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ABSTRACT 

PREVENTION AND TREATMENT OF FAMILIAL ADENOMATOUS POLYPOSIS AND 

COLORECTAL CANCER BY BILBERRY-DERIVED ANTHOCYANIDINS 

Ashley Marie Mudd 

July 13th 2017 

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths within the United 

States. Familial adenomatous polyposis (FAP) is an inherited disorder which if left untreated will 

develop into colon cancer. The family of plant-derived compounds, anthocyanins, show significant 

therapeutic potential against a variety of diseases, however, they are limited by their instability and 

poor bioavailability. The goal of my Master’s research project was to determine whether 

anthocyanidins (non-glycosylated anthocyanins) are more effective than the native anthocyanins, 

and whether exosomal formulation of anthocyanidins (ExoAnthos) can enhance therapeutic 

potency compared with free Anthos against both FAP and CRC. The antiproliferative effects of the 

native mixture of Anthos isolated from bilberry, with and without exosomal formulation, as well as 

individual Anthos against APC mutant (HT-29, Caco2), APC wild-type (HCT116) colon cancer cells 

and CCD-18Co normal colon cells were assessed using an MTT assay. To assess 

chemopreventive effects, the impact of the Anthos on polyp number was investigated in the 

APCMin/+ mouse model for FAP. While therapeutic efficacy of the Anthos treatment on colorectal 

tumor number was assessed in vivo using an APCMin/+ ETBF mouse tumor model. Early 

mechanistic work was undertaken to assess the impact of Anthos treatment on EGFR and Src 

phosphorylation using western blot analysis. Antiproliferation studies showed that ExoAnthos 

significantly lowered the IC50 compared to free Anthos against colon cancer cells. Anthos treatment 

led to significant reductions in polyp and tumor counts in vivo. Reduced Src and EGFR 

phosphorylation was also observed. These results provide a promising outlook on the future of the 

berry Anthos for treatment and prevention for both FAP and CRC.  
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BACKGROUND & INTRODUCTION 

Colorectal cancer 

Colorectal cancer is the third most common form of cancer diagnosed in men and women 

and the third leading class for yearly cancer-related deaths within the United States. 

According to the American Cancer Society, an estimated 135,430 individuals will be 

diagnosed and 50,260 will die from colorectal cancer in the US in 2017 alone. 

Furthermore, according to the SEER database, in 2014 an estimated 1,317,247 

individuals were living with colorectal cancer in the United States. Given the prevalence 

and lethality of colorectal cancer, there is a great need for investigating not only 

chemotherapeutic alternatives but also chemopreventive strategies for this disease. 

Influences on the development of colorectal cancer  

A wide variety of influences have been found to impact an individual’s chance of 

developing colorectal cancer including age, race, gender [1], lifestyle and diet [2]. The 

highest incidence rates have been found in North America, Europe, Australia and New 

Zealand and the lowest incidence rates have been found in Africa and South-Central Asia 

[3]. Although the incidence of colorectal cancer has been decreasing since the mid to late 

1980s for individuals over 55 years old, a recent study has found a rather disconcerting 

uptick in the colorectal cancer incidence for individuals below 55 years old [4]. A 

particularly concerning trend was noted for millennials, with individuals born circa 1990 

having a risk of developing colon cancer that is double that of an individual born circa 1950 

and for rectal cancer the risk was four fold higher. Moreover, a greater number of the 

younger cases were found in the distal colon as opposed to the proximal colon. This is 
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somewhat surprising considering that tumors in the distal colon have been decreasing 

overall in recent years, while tumors of the proximal colon have become more common in 

the 55 years or older portion of the population [4]. The exact causes for this recent increase 

in younger individuals have yet to be defined. However, a number of factors have been 

shown to contribute to the development of colorectal cancer. The below summary provides 

an overview of some of the key environmental as well as genetic factors that are related 

to the topic of this thesis and that have been found to impact the development of colorectal 

cancer.  

The impact of diet and lifestyle on CRC risk 

The important role that diet and lifestyle play not only on one’s overall health but on the 

chance of developing colorectal cancer has been found in a number of studies.  

Furthermore, it should be noted that chronic inflammation has been shown to be a 

significant etiological factor in the development of colorectal adenocarcinoma [5]. It has 

been shown in both males and females that a link exists between consuming a high 

inflammatory diet, i.e. a diet rich in animal fat, alcohol et cetera and low in fruits and 

vegetables, and developing colorectal cancer [2]. Moreover, results from the same study 

also supported the benefits of an anti-inflammatory diet, which include plant based foods 

which are a rich source of phytochemicals, over a pro-inflammatory diet, which includes 

fried foods, highly processed food etc., as a means of decreasing the risk of developing 

CRC [2]. Additionally, coffee which contains a variety of bioactive compounds including 

polyphenols, melanoidins, diterpenes, and caffeine is believed to also lower the risk of 

developing CRC [6]. Epidemiological studies comparing coffee drinkers vs. non-drinkers 

showed a 26% lower odds of developing CRC [6].  There also appeared to be a dose 

dependent trend for both colon and rectal cancers. It was also noted that decaffeinated as 

well as boiled coffee showed an inverse association (OR, 0.82; 95% CI: 0.68-0.99; 
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P=0.04) and (OR, 0.82; 95% CI: 0.71-0.94; P=0.004) respectively [6]. In addition to coffee, 

it has also been shown that regular green tea consumption (at least three times per week 

for a minimum of 6 months), which is a rich source of antioxidant tea polyphenols, reduces 

the risk of colorectal cancer (HR=0.54, 95% CI: 0.34-0.86). Furthermore, it was noted that 

as green tea consumption was increased risk of colorectal cancer decreased (Ptrend=0.01) 

[7].  

In addition to dietary influences, another important factor that must be considered is the 

long term use of medications such as statins, aspirin and non-aspirin nonsteroidal anti-

inflammatory drugs which are also believed to lower the risk of developing CRC. For 

example statins which are believed to inhibit 3-hydroxy-3methylglutaryl coenzyme A 

(HMG-CoA) reductase which is overexpressed in colorectal cancer cells were associated 

with a 47 percent relative reduction in risk of CRC [8]. Whereas, NSAIDS, which are 

believed to act by inhibiting cyclooxygenase-2, which has been shown to be upregulated 

in colorectal cancer, was shown to yield an adjusted relative risk of 0.5 (95% confidence 

interval of 0.4-0.7) [9].  

Great insight into the complex exchange between the individual and their surroundings 

and their associated risk of developing colorectal cancer has been gained by the sheer 

depth of epidemiological studies conducted to date. However, the above findings should 

be interpreted with caution due to the dangers of inferring causation from association. The 

above studies provide a promising foundation from which the topic of my thesis, i.e. the 

use of anthocyanidins as both a chemotherapeutic as well as preventative agent, has been 

constructed.  

Outline of mutations found to be linked with development of CRC 

In addition to the extrinsic influences discussed above, another key participant in the 

dialogue of colorectal carcinogenesis is genetics. Some of the key genes that have been 
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found to influence the development of CRC include TP53, KRAS/BRAF [10, 11], 

EGFR/PTEN [12-14], SMAD7 [15], MLH1 [16], MUTYH [17] and the adenomatous 

polyposis coli (APC) gene [18-21]. 

Both sporadic and hereditary cases of colorectal cancer have been attributed to mutations 

in the adenomatous polyposis coli (APC) gene. It has been noted that 34-70% of sporadic 

colon cancer cases feature inactivating mutations in APC particularly in the mutation 

cluster region, with genetic aberrations such as deletions, insertions, point and missense 

mutations detected in the mutation cluster region in 72% of the patients studied [18]. It has 

also been shown that individuals with APC gene mutations possess a significantly 

increased risk for colorectal cancer (pooled OR of 1.42 and 95% CI of 1.16-1.74 with a P 

value of 0.00085) [19]. Furthermore, it should be noted that APC mutations appear to be 

more likely to occur with TP53 mutations (OR 3.513, 95% CI of 1.212-10.184) and KRAS 

mutations (OR 1.995, 95% CI of 0.607-6.554) [21]. 

The important role that the above mutations, especially APC, play in the development of 

CRC has been historically well documented. Moving forward, the characterization or 

“fingerprinting” of an individual’s specific mutations will be key in developing personalized 

therapeutic regimens for each patient. 

           Pathways of genomic instability that can lead to CRC  

It is commonly accepted knowledge that three main molecular pathways of genomic 

instability are involved in the development of CRC and include: the chromosomal instability 

pathway (CIN), the mismatch repair deficient or microsatellite instability pathway (MSI), 

and the CpG island methylator phenotype (CIMP) pathway. 

The CIN pathway, which was originally elucidated by Fearon and Vogelstein in 1990, is 

believed to be responsible for most cases of CRC and is observed in 65-70% of sporadic 
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CRC’s [22]. These cases feature characteristic loss of heterozygosity (LOH), sub-

chromosomal genomic amplifications and widespread aneuploidy. In Fearon and 

Vogelstein’s seminal 1990 article, they proposed a multistep model for colorectal 

carcinogenesis [23] which is shown in Figure 1. The initiating event in adenoma formation 

is the inactivation of the Adenomatous Polyposis Coli (APC) tumor suppressor gene which 

is followed by activating mutations of KRAS. Additional mutations in TGF-β [24], PIK3CA 

[25], and TP53 [26] pathways then drive the subsequent malignant transformation. It 

should be noted that although APC mutations serve as the initiating event in human and 

mouse models, mutational activation of KRAS is unable to initiate cancer in vivo and only 

when combined with mutant APC will mutant KRAS promote tumor progression, thus 

supporting Fearon’s multistep model [27]. 

The Microsatellite instability (MSI) pathway accounts for approximately 10-20% of all 

CRCs [28]. Although the MSI pathway was originally elucidated for individuals with familial 

Lynch syndrome, most CRCs with MSI are sporadic. In fact, only 3% of all CRCs come 

from Lynch syndrome families [29]. MSI tumors caused by Lynch syndrome are 

associated with germline mutations in DNA mismatch repair (MMR) genes and often have 

KRAS mutations, but never have BRAF mutations. 

Lynch syndrome tumors also typically occur in younger individuals and typically have a 

better prognosis than non-MSI tumors [30]. Approximately 50% of sporadic cases of MSI 

have BRAF mutations and are associated with CIMP, unlike Lynch syndrome tumors. As 

can be expected, sporadic cases of MSI-associated CRCs typically occur in older 

individuals[29].  
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Figure 1: Adenoma-carcinoma sequence in the development of colorectal cancer  
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The CpG island methylator (CIMP) is observed in approximately 30% of CRC cases [31]. 

As its name implies, the CIMP pathway promotes epigenetic instability and enables 

sporadic cancers to methylate the promoter regions of key tumor suppressor genes 

thereby effectively inactivating their expression [32]. In fact it is present in all tumors with 

MLH1 aberrant methylation [33]. CIMP positive tumors typically exhibit specific 

clinicopathological features such as proximal location and tend to be more common in 

older women, are often MSI and poorly differentiated. They also tend to have a distinct 

molecular profile which features low TP53 and high BRAF mutation rates [34]. 

Furthermore, cases of colorectal cancer that develop via the CIMP pathway tend to 

develop from sessile serrated adenomas rather than adenomatous polyps [35]. 

Current standard of care  

As with most cancers current treatment options for individuals diagnosed with colorectal 

cancer include one or more of the following options: surgery, radiation therapy, non-

targeted chemotherapy, or targeted therapy. 

According to the American Cancer Society, drugs currently approved by the U.S. FDA for 

the treatment of colorectal cancer include: capecitabine, fluorouracil (5-FU), irinotecan, 

oxaliplatin, and trifluridine/tipiracil. One or more of these chemotherapeutic drugs are most 

often given over the course of treatment with more common treatment regimens with these 

drugs including: 5-FU, 5-FU with a vitamin called leucovorin which improves the efficacy 

of 5-FU [36], capecitabine, 5-FU with leucovorin and oxaliplatin (FOLFOX), 5-FU with 

leucovorin and irinotecan (FOLFIRI), capecitabine with either irinotecan (XELIRI or 

CAPIRI) or oxaliplatin (XELOX or CAPEOX), and irinotecan alone. A variety of negative 

side effects are associated with taking the standard chemotherapeutic drugs including: 

nausea, vomiting, fatigue, diarrhea, suppression of bone marrow, immunosuppression, 

and liver damage [37, 38]. Given the current limitations and negative side effects 



8 
 

associated with the current standard of care, additional treatment options are greatly 

needed.  

In addition to non-targeted chemotherapeutic treatment options, targeted therapies are 

also common, including: bevacizumab, regorafenib, ramucirumab and ziv-aflibercept, 

which are antiangiogenesis therapies, and cetuximab and panitumumab which are anti- 

EGFR therapies [39]. Although, one of the key benefits of targeted therapy is the reduction 

in off-target side-effects, they are also accompanied with side-effects including 

gastrointestinal perforation, arterial thromboses which include strokes and myocardial 

infractions [40].  

Treatment options for individuals diagnosed with colon cancer are typically dependent 

upon their specific stage. Additional factors such as age and other health problems are 

also considered for the optimal treatment plan [41]. In most cases, when the cancer has 

not spread to distant sites, surgery is typically the first main treatment. For more advanced 

stage cancers, an adjuvant chemotherapy may also be recommended. Adjuvant 

chemotherapy may be recommended as early as stage II, but is more typically 

recommended beginning in stage III [41]. For the more advanced stage IV cases of colon 

cancer where the disease has spread to distant organs and tissues, a key component of 

the treatment is chemotherapy since in most cases surgery will not cure these individuals. 

Since the early 2000’s, 5 new drugs have been approved for the treatment of stage IV 

colon cancer. These drugs fall into one of the three following classes: multi-kinase 

inhibitors, anti-angiogenic (Bevacizumab, Ziv-aflibercept), or EGFR blockers (Cetuximab, 

panitumumab) [42].  

Key limitations in the current standard of care include, but are not limited to the following 

areas: off-target side effects, the current gap that exists in adjuvant therapy for stage I and 

especially stage II cancers of the colon, and limitations in treatment options for older 
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individuals. Given these limitations, research investigating alternative preventative 

treatment options is of great importance. 

Familial Adenomatous Polyposis (FAP) 

The majority of colorectal cancer cases originate from previously benign adenomatous 

polyps. This process of transformation from benign polyp to malignancy typically takes 

decades to occur, with approximately 85% of colorectal cases occurring after the age of 

55 years, according to data acquired by the U.S. preventive services task force. A small 

subset of CRC cases stem from familial syndromes such as Lynch syndrome, FAP, 

attenuated FAP (AFAP), MUTYH-associated polyposis (MAP) and rare syndromes such 

as hyperplastic polyposis, Peutz-Jeghers syndrome (PJS) and juvenile polyposis 

syndrome [43, 44]. 

FAP is an autosomal dominant pre-cancerous colorectal condition with an incidence at 

birth of around 1/8,300 [45]. FAP occurs with equal frequency in both males and females 

and accounts for less than 1% of colorectal cases [45]. The disease may begin as early 

as the teenage years, with colon cancer developing on average by the age of 39 years 

old. Furthermore, approximately 7% of individuals with FAP will develop CRC by the time 

they reach 21 years old and 95% of FAP sufferers will develop CRC by the time they reach 

the age of 50 [46]. FAP is caused by mutation(s) in the adenomatous polyposis coli (APC) 

gene. The APC gene, which is located on chromosome 5q21 is a tumor suppressor gene 

that encodes for a 312 kDa protein with 2843 amino acids. It is expressed in a variety of 

fetal and adult tissues including colorectal epithelium as well as mammary [47]. 

Mutation(s) in the APC gene, 60% of which are nonsense mutations, have been shown to 

accelerate the initiation of the adenoma-carcinoma sequence since the inactivation of APC 

serves as the initial step in the development of CRC in FAP [45]. The APC protein serves 
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as a scaffolding protein which affects cell adhesion and migration. The mammalian form 

of APC contains multiple binding domains including an oligomerization domain, an 

armadillo repeat domain, a repeat domain consisting of between 15-20 residues which is 

important for binding to β-catenin, SAMP repeats which are important for axin binding, a 

basic domain that is responsible for microtubule binding, and finally C-terminal domains, 

which bind the proteins, EB1 and HDLG [48]. 

APC interacts with a variety of other key proteins such as the Wnt/Wg pathway members, 

β-catenin and axin, the Rac guanine-nucleotide-exchange factor (GEF) Asef1, the 

cytoskeletal regulators EB1 and IQGAP1, as well as microtubules [49]. Mutations in APC 

lead to the accumulation of β-catenin in the cytoplasm where it binds and activates the T-

cell factor (TCF) and lymphoid enhancer factor (LEF) families of transcription factors 

altering the expression of genes that encode for the metalloprotease matrilysin, ephrins, 

cyclin D1 and the proto-oncogene c-myc which in turn lead to changes in cellular 

proliferation, differentiation and migration [50].  

If left untreated, individuals with FAP will develop colorectal cancer by their forties [51]. As 

discussed above, APC plays a key role in the multi-step model of colorectal cancer 

proposed by Fearon and Vogelstein (Figure 1). The disease is characterized by the 

development of hundreds to thousands of adenomatous colon polyps. Currently, the only 

approved primary modality of treatment for FAP is prophylactic cancer-preventive 

colorectal surgery. Given the lack of non-invasive treatment options and the role of FAP 

in CRC development, additional treatment options are of great need. 

Anthos: a promising treatment for FAP and colorectal cancer 

Several plant-derived compounds such as quinine, codeine, paclitaxel, apomorphine, 

have been an invaluable source of medicines for humans throughout history. One 
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particular family of compounds that has sparked recent interest is flavonoids and members 

such as anthocyanins. 

Flavonoids 

One particular class of relevance is the flavonoids which is one of the largest groups of 

secondary metabolites with well over 6000 molecules [52]. Compounds classified as 

flavonoids, which all share a common core 15-carbon skeleton, can be divided into 6 major 

classes: flavanols, flavonols, flavonones, flavones, isoflavones and anthocyanins. 

Flavonoids are commonly synthesized by plants in order to fulfil a variety of protective 

functions ranging from as a chromatic attractant for pollinators, as a deterrent for pests, 

as a protectant against UV-B, as well as an antimicrobial agent [53]. 

Anthocyanins and anthocyanidins 

Found in dark-colored vegetables, fruits, grains and flowers, anthocyanins, which comes 

from the Greek words Anthos for flower and kyanos for blue, provide the characteristic 

red, purple and blue hues to eggplant, blueberry, black rice and black sesame seeds. Over 

600 structurally distinct anthocyanins have been identified in nature [54, 55]. It should be 

noted that anthocyanins are known as anthocyanidins when non-glycosylated. Of the 

seventeen anthocyanidins found in nature, only six, including the glycosylated forms of: 

cyanidin (Cy), delphinidin (Dp), petunidin (Pt), peonidin (Pn), pelargonidin (Pg) and 

malvidin (Mv), are widely distributed [56]. The above anthocyanidins are typically bonded 

to glucose, galactose, arabinose, rhamnose, and xylose in either a mono-, di- or tri-

saccharide form. An additional layer of complexity is provided by the fact that the sugar 

moieties can also be acylated by various aromatic or aliphatic acids. The various 

combinations/permutations of anthocyanidins and their pendant sugars vary from plant to 
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plant. Importantly, it should be highlighted that the active component of the compounds is 

the central anthocyanidin moiety.  

The core structure of anthocyanidin (Figure 2) is composed of an aromatic ring A that is 

bonded to a heterocyclic ring C containing oxygen that is bound via carbon to a third 

aromatic ring B. The substituted flavonoids contain a flavylium cation, which due to its 

conjugated double bonds, absorbs light with a characteristic peak range between 500-

550nm. The specific hue(s) associated with each anthocyanin depend upon the degree of 

hydroxylation and type/number of substitutions. A total of 17 anthocyanidins have been 

isolated to date [57]. 

The specific anthocyanin fingerprint varies between each type of fruit, vegetable, grain or 

flower.  For example fruits such as red currents and elderberry contain primarily cyanidin, 

whereas blueberry, bilberry and jamun contain 5 anthocyanidins- cyanidin, delphinidin, 

petunidin, peonidin and malvidin, all in their glycosylated forms. Bilberry in particular 

contains a native mixture of delphinidin, cyanidin, malvidin, peonidin, and petunidin in a 

relative ratio of 33:28:16:16:7 [58]. As noted above, in addition to variations in the core 

anthocyanidin structure, variations in the pendant sugar moieties also varies from plant to 

plant. For example, even though red currant and blackcurrant are closely related, red 

currant contains mainly mono- and diglycosides, whereas black currant contains primarily 

rutinosides and only a minor glycoside component [59]. 

           Role of anthocyanins within plants 

Within plants, anthocyanins accumulate in vacuoles of a variety of cells in both vegetative 

as well as reproductive organs. Most of the 17 anthocyanidins isolated to date are found 

only in the reproductive structures of the plants whereas only six anthocyanidins (cyanidin, 

peonidin, delphinidin, petunidin, malvidin and pelargonidin) have been found in the 

vegetative organs [60]. 
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Figure 2: Structures for the five anthocyanidins (the active moiety of anthocyanins) 

contained in blueberry and bilberry 
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Furthermore, anthocyanins are synthesized in the branch of the flavonoid biosynthetic 

pathway that is involved in the synthesis of isoflavonoids and flavonols [57]. Anthocyanins 

are thought to play a variety of different functions within plants ranging from as 

antioxidants, sunscreens, and even as metal-chelating agents and in delaying foliar 

senescence under conditions of mineral imbalance or macronutrient deficiency [57]. Given 

their beneficial roles in plants, one can easily hypothesize that benefits may be gained 

from their consumption by humans.  

           Anthocyanin absorption, stability, and digestion  

Absorption of anthocyanidins and anthocyanins by gut epithelial cells occurs via different 

mechanisms due to the structural differences. Due to the hydrophilicity added by the sugar 

residues on anthocyanins they must utilize active transport mechanisms whereas 

anthocyanidins, which do not have a sugar residue and are more hydrophobic are able to 

be passively absorbed by gut epithelial cells [61]. In fact, the hydrophobicity of a 

compound, expressed in terms of its partition coefficient (log octanol/water) is often used 

as a predictive means to determine the ability of a compound to passively diffuse across 

a biological membrane.  Interestingly, it has been found that nonenzymatic deglycosylation 

does not occur in the human body for polyphenols such as quercetin [62]. Additionally, 

only polyphenols with attached glucose, arabinose or xylose and not rhamnose moieties 

can serve as potential substrates for human β-glucosidases. Therefore, rhamnose 

moieties can only be cleaved once they reach the colon where they can serve as a 

substrate for bacterial α-rhamosidases [61]. This limitation may have important 

ramifications for the activity of rhamnose-containing anthocyanins in diseases of the small 

intestine or in diseases where digestive transport time is expedited such as inflammatory 

bowel disease (IBD).  
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Another important topic that must be addressed in the discussion of anthocyanin 

metabolism is the role of deconjugation and reconjugation reactions. Although 

anthocyanins do not appear to undergo as extensive of metabolism as other flavonoids, it 

will be discussed for completion since it occurs and is a variable that must be considered 

[63]. Following hydrolysis, the free aglycones undergo metabolic processing in the form of 

methylation, sulfation, glucuronidation or a combination of the above reactions [64, 65]. 

Based on the structural differences between anthocyanins versus anthocyanidins, the 

impact that conjugation has on the biological properties of the circulating metabolites is 

evident.  

Overall, one should understand that a competition between the uptake of anthocyanidins 

and the excretion of more hydrophilic anthocyanins as well as their conjugated 

counterparts exists. Therefore, one could posit that by administering anthocyanidins either 

in their pure form or by nano-delivery systems, one would enhance their therapeutic 

potential in the clinical setting.   

Data from In vitro work 

A variety of in vitro studies have been conducted in order to investigate the impact that 

anthocyanins derived from various sources have on colon cancer cell lines. Berry extracts 

containing anthocyanins isolated from cowberry, strawberry, bilberry, and blueberry have 

been shown to inhibit the proliferation of the colon cancer cell line HCT116 [66]. 

Furthermore, anthocyanin rich extracts derived from fruits including bilberry (Vaccinium 

myrtillus L.),  grape (Vitis vinifera), and chokeberry (Aronia meloncarpa E.) have been 

shown to inhibit the growth of the colon cancer cell line HT-29 cells but not the non-

tumorigenic NCM460 colon cells [67].  
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A variety of potential mechanisms have been suggested in the literature. For instance, 

anthocyanins isolated from the grape, Vitis coignetiae Pulliat were shown to induce 

caspase-dependent apoptotic cell death, activate p38-MAPK and suppress Akt in HCT-

116 colon cancer cells [68]. Moreover, pelargonidin, found in a variety of berries such as 

strawberries and pomegranates, was shown to inhibit proliferation of the colon cancer cell 

line HT-29 and induce apoptosis and G2/M cell cycle arrest by the intrinsic apoptotic 

pathway [69]. Additionally, delphinidin, found in fruits like blueberry, has also been shown 

to induce apoptosis and G2/M cell cycle arrest in HCT116 colon cancer cells [70]. The 

mechanism by which delphinidin led to G2/M arrest and apoptosis in HCT116 cells is 

believed to be due to suppression of the NF-κB pathway [70]. Anthocyanins and 

anthocyanidins have also been shown to induce significant oxidative DNA-strand 

cleavage in the presence of dithiotheritol (DTT), but not DMSO, which serves as a free 

radical scavenger, at physiological pH. It was further hypothesized that at pH 7.5, the 

quinones formed from anthocyanins and anthocyanidins autoxidize to yield hydrogen 

peroxide [71]. Fe 3+ is believed to increase anthocyanin-induced cleavage since when it is 

reduced it is able to stimulate the production of hydroxyl radicals from hydrogen peroxide. 

The resulting hydroxyl radical, rather than hydrogen peroxide, is believed to induce the 

cleavage of DNA [71]. Only at high concentrations were anthocyanins also shown to inhibit 

topoisomerase relaxation [71]. 

Data from in vivo studies 

The beneficial effects of anthocyanins shown in vitro have also been shown to exist in 

vivo. For instance, the anthocyanin-rich soybean fraction containing cyanidin-3-glucoside, 

delphinidin-3-glucoside and petunidin-3-glucoside, was shown to significantly decrease 

the number of intestinal tumors in ApcMin/+ mice fed a 0.5% anthocyanin-rich extract 

compared to control animals [72]. Furthermore, mucosal expression of cytosolic 
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phospholipase A2 and cyclooxygenase-2, which are both involved in inflammatory 

response, were significantly decreased in mice treated with 0.5% anthocyanin-rich extract 

[72]. Additionally, an in vivo study in ApcMin/+ mice using 0.3% oenocyanin, which contains 

the 3-glucosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin extracted from 

grape pomace, showed a reduction in adenoma burden and reduction in proliferation index 

in colonic adenomatous crypts [73]. A reduction in the expression of Akt, which is involved 

in a variety of cellular processes including glucose metabolism, apoptosis, cellular 

proliferation, transcription and migration, was also observed in 0.3% oenocyanin-treated 

mice [73]. Interestingly, oenocyanin anthocyanins and their metabolites were not found in 

the plasma but rather only in the urine and intestine [73]. Moreover, in a mouse model of 

colitis, dextran sulfate sodium (DSS) induced histological damage and weight loss were 

significantly improved in mice administered a red raspberry anthocyanin-rich fraction [74]. 

In the same study, anti-inflammatory properties were shown in vivo with overall reductions 

in the expression of cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), IL-6 and 

inducible nitric oxide (iNOS) in red raspberry anthocyanin-rich fraction treated RAW264.7 

cells [74]. 

A study assessing the impact of dietary cyanidin-3-glucoside and an anthocyanin mixture 

from bilberry on the development of adenomas in an ApcMin/+  mouse model for FAP [75] 

showed that ingestion of cyanidin-3-glucoside or a bilberry derived anthocyanin mix led to 

a reduction in adenoma load in a dose dependent fashion. It should be noted that although 

significant reductions in adenoma numbers were seen for cyanidin-3-glucoside (p< 0.001) 

and Mirtoselect bilberry anthocyanins (p<0.05), the doses that were used were 0.3% of 

the diet which is equivalent to 450 mg/kg/day or 2.6 g/80 kg human dosage, when the 

authors extrapolated using the dose/surface area comparison between species [76]. 

When the Mirtoselect native bilberry mixture was extrapolated back to the amount of fresh 
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berries that would need to be consumed, it was concluded that an individual would need 

to consume ~740 g of fresh bilberry a day [75]. Given the large nature of the dose used in 

the study, which is further complicated due to the presence of high sugar content (about 

60% in blueberry), it is clear that one would need to lower the dose by identifying the active 

principles in order to be a clinically-viable option.  

Data from clinical trials  

A limited number of clinical trials have been undertaken to assess the impact that 

anthocyanins, taken in the form of either berry powder or as an anthocyanin-rich 

standardized bilberry extract, has on colorectal cancer. The first study was a clinical trial 

assessing whether an anthocyanin-rich standardized bilberry extract (Mirtocyan) 

administered to patients (1.3, 2.8 or 5.6 g, containing 0.5-2.0 g anthocyanins) daily for 7 

days before surgery would induce pharmacodynamics changes that would be in 

agreement with chemopreventive efficacy [77]. Results from the study showed that a 7% 

decrease in proliferation was observed in tumor tissues taken from patients when 

compared to their pre-intervention values. Another clinical trial investigating the impact of 

freeze-dried blackberry powder (60g/day, for 1 to 9 weeks) in colorectal cancer patients 

showed beneficial changes in GM-CSF and IL-8, markers for proliferation and apoptosis 

respectively [78].  

A clinical trial assessing the impact of black raspberry (BRB) powder on biomarkers of 

colorectal tumor development showed that the methylation patterns of three Wnt inhibitors 

including WIF1, SFRP2, SFRP5 and the developmental regulator PAX6a were protectively 

modulated in normal and in colorectal tumor tissues in patients receiving the black 

raspberry powder (60 g/d) for an average of 4 weeks. Furthermore, the protective 

modulation of methylation was associated with decreased expression of the enzyme that 

transfers methyl groups to the cytosine nucleotides in genomic DNA, DNA (Cytosine-5-)-
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Methyltransferase 1 (DNMT1) [79]. Interestingly, the authors also noted that black 

raspberry powder decreased β-catenin as well as protectively modified Ki-67, TUNEL, 

CD105, as well as DNMT1 in colorectal tissues from the 20 patients. CD105 and DNMT1 

were also found to be modulated in adjacent normal tissues. The impact on β-catenin and 

E-cadherin expression was also shown to be dose dependent, with the high dose (~ 4 

weeks) BRB powder treatment yielding greater impact than the low dose (~ 2 weeks) BRB 

powder treatment [79]. 

In addition to studies on colorectal cancer, anthocyanin-rich bilberry extract has also been 

shown to reduce the amount of pro-inflammatory cytokines including TNF-α and IFN-γ in 

colon biopsies from patients with ulcerative colitis (UC). Furthermore, serum levels from 

UC patients that were successfully treated with anthocyanin-rich bilberry extract had 

enhanced levels of immunoregulatory IL-10 and the Th-17 cell specific cytokine IL-22 and 

reduced levels of TNF-α and IFN-γ [80]. In another clinical trial testing the impact of a 

standardized anthocyanin-rich bilberry extract on UC disease activity showed that after 6 

weeks of treatment, 63.4% of patients achieved remission and 90.9% of patients showed 

a response. It was also noted that fecal calprotectin levels were also decreased during the 

treatment, which further suggests that intestinal inflammation was reduced [81]. 

It should be noted that all of the anthocyanin-mediated colorectal cancer clinical trials 

published to date have been conducted using anthocyanins rather than anthocyanidins. 

Although the bioavailability of anthocyanins is very low in the plasma (<1%), greater 

bioavailability has been found in colonic tissues [82]. This suggests that they may have 

greater potential since they can directly interact with the colon tissue. Additionally, one 

can posit that additional benefits in uptake, if administered in the aglycon form (ie as 

anthocyanidins) or by utilizing a nano drug delivery vehicle such as bovine milk derived 

exosomes (i.e. ExoAnthos).  
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Exosomes 

Size, history, sources 

Exosomes are defined as membrane-bound vesicles that range in size from 30-100nm, in 

diameter, feature a density in sucrose gradients of 1.13-1.19 g/ml, are highly enriched with 

tetraspanin molecules and are of endocytic origin [83]. Exosomes were discovered in 1983 

by Pan and Johnstone. In 1989, Pan and Johnstone named the vesicles exosomes [84]. 

Since their identification, exosomes have been isolated from essentially all biological fluids 

such as saliva, peripheral blood, cerebrospinal fluid (CSF), urine, sweat, malignant 

effusions and milk [85]. 

Exosome formation 

Exosomes are initially formed via a process of endocytosis, with the internalization of the 

cell membrane to yield endosomes (Figure 3). Following the formation of endosomes, 

many small vesicles are formed inside the endosome by invagination of parts of the 

endosomal, multi-vesicular body (MVB), membrane. The MVBs then fuse with the cell 

membrane thereby releasing the intraluminal vesicles into the extracellular space.  

Following their release, these vesicles are referred to as exosomes.  
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Figure 3: Classic pathway of exosome formation. After endocytosis, endosomes are 

formed via the internalization of the cell membrane (sidedness noted in the diagram as 

blue for the initial internal face and black for the initial external face). A process of 

invagination of the endosome yields smaller bodies inside the MVB, which can proceed to 

processing via the golgi apparatus, be released via exocytosis yielding exosomes or be 

degraded by the lysosome.   

 

 

 

 

 

 

 

invagination

exocytosis

Early endosome

MVB
(late endosome)

Golgi 
apparatus

lysosome

Stimulus

endocytosis



22 
 

Exosome composition  

Exosomal membranes are primarily composed of lipids and proteins and are enriched with 

lipid rafts [86]. The lipid composition of exosomes is distinctively rich in cholesterol, 

ceramide, sphingomyelin, and phosphatidylserine[87]. However, exosomes contain 

minimal to no lysobisphospatidic acid (LBPA), which distinguishes them from MVBs’ 

intraluminal vesicles (ILVs) [87]. Furthermore, the fatty acids in exosomes tend to be 

saturated or monounsaturated, which in addition to the high concentration of cholesterol 

is believed to lead to the lateral segregation of these lipids into exosomes during their 

formation [88]. Results from proteomic studies suggest that exosomes contain specific 

proteins from endosomes, plasma membrane, and cytosol [89]. Examples of proteins from 

the endosome include Alix, Tsg101, Rab GTPase, SNAREs Annexin and Flotillin. Proteins 

originally associated with the plasma membrane include tetraspanins, such as CD63, 

CD81 and CD37. It should be noted that exosomes contain very few proteins from other 

intracellular organelles such as the nucleus, mitochondria and Golgi [87].  

 

Exosome cargo 

In addition to proteins, exosomes have been found to carry as cargo within their lumen, 

that include mRNA, miRNA, small noncoding RNA species such as structural RNAs, tRNA 

fragments, vault RNA, small interfering RNAs, RNA transcripts that overlap with protein 

coding regions and repeat sequences [88]. More recent data indicate the presence of 

some DNA as well [90]. The RNA cargo contained within exosomes can either be taken 

up by neighboring cells or transported by the circulating exosomes and taken up by distant 

cells. Ultimately, the RNA cargo in exosomes is believed to function as a form of genetic 

exchange between cells [86]. 
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Exosome role in cell to cell communication 

 Once called the “garbage bag” of cells, exosomes have been found to play an important 

role in cell to cell communication.  After finding that mRNAs and miRNAs were present in 

exosomes derived from mast cells, it was also found that the mRNA in these exosomes 

were transported to recipient cells and following uptake were translated into proteins thus 

providing evidence for the ability of exosomes to transfer of genetic material [91]. It was 

noted that not all mRNAs that were abundant in the secreting cells were packaged into 

exosomes thereby suggesting that specific targeting machinery for mRNAs may exist [91]. 

It has also been shown that tumor derived exosomes can both suppress the function of 

immune cells by promoting the differentiation of regulatory T lymphocytes or by inducing 

apoptosis of activated cytotoxic T cells [92]. Exosomes can also induce immune 

responses by transferring tumor antigens to dendritic cells and to present tumor antigens 

[93]. Interestingly, it has been found that exosomes can fuse especially well with the 

plasma membranes under acidic conditions mimicking those of the cancer cell 

microenvironment [94].  

            Exosomes as therapeutics                                                                                             

Special interest in the application of exosomes for diagnostic as well as drug delivery 

purposes has recently taken root within the scientific community. A key area of research 

within our laboratory is in utilizing exosomes as a drug delivery vehicle. Prior to the work 

conducted in this lab, the primary source of exosomes for drug delivery purposes was 

from cell culture media and serum. In order to overcome the obvious limitations posed by 

these sources such as quantity, safety, cost and translatability, our lab pioneered the use 

of exosomes derived from bovine milk [95, 96]. Not only does bovine milk provide a 

scalable source of exosomes, it also exhibits cross-species tolerance. Furthermore, no 

adverse immune or inflammatory responses have been found [97].  
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Exosomes derived from raw bovine milk can effectively deliver a variety of both hydrophilic 

as well as lipophilic compounds such as curcumin, withaferin A (WFA), paclitaxel, celastrol 

and doxorubicin.  Moreover, tumor targeting of the exosomes with folic acid was shown to 

increase biological efficacy. Exosomal formulations containing WFA, celastrol, or 

curcumin have shown increased efficacy over drug alone in both in vitro and in vivo against 

lung and breast cancer [95, 96]. Prior to the body of studies contained within this 

manuscript no experiments were undertaken with colon cancer. In addition to the role of 

the exosomes as a drug delivery vehicle, they are also believed to deliver an additional 

“payload” of their own. For instance, our lab has identified the presence of immune-related 

miRNAs such as miR-146a, -155, -181a and -223 in bovine milk derived exosomes [95].  

The overarching goal of my Master’s work has been to investigate the use of bilberry 

derived Anthos as both a chemotherapeutic as well as chemopreventive agent in 

colorectal cancer as well as FAP. I have also undertaken preliminary studies with 

ExoAnthos, with the ultimate goal of utilizing this nano-delivery system in future work. 
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METHODS & MATERIALS 

Anthocyanins and anthocyanidins 

The individual anthocyanins, delphinidin 3,5-diglucoside, malvidin 3,5-diglucoside, 

petunidin 3,5-diglucoside and cyanidin 3-monoglucoside were a kind gift from Dr. Inder P. 

Singh of the National Institute of Pharmaceutical Education and Research (S. A. S. Nagar, 

India). The individual Anthos, delphindin, cyanidin, petunidin, malvidin, peonidin and 

pelargonidin, were purchased from Chromadex (Irvine, CA). The native Anthos mixture 

isolated from bilberry with purity of >80% was generously provided by 3P Biotechnologies, 

Inc. (Louisville, KY). 

Isolation of bilberry-derived Anthos 

The native Anthos mixture from bilberry obtained from 3P Biotechnologies (Louisville, KY) 

were further enriched using C18 Sep-Pak cartridges (Waters, Milford, MA, USA). Anthos 

were eluted with acidified (0.1% HCl) ethanol. The enriched extract was then dried using 

a Savant Speed-Vac (Thermo Scientific, USA) and stored at -20 °C. Purity was verified 

using HPLC-PDA-UV. Briefly, 15 µl samples were analyzed using a Shimadzu Premier 

C18 reverse-phase column (250x4.6 mm i.d., 5 µm). Mobile phase A was composed of 

water: formic acid: acetonitrile (87:10:3) and mobile phase B was composed of water: 

formic acid: acetonitrile (40:10:50). The flow rate was 0.6 ml/min and the gradient condition 

was 0-5 min 5% B; 5-15 min 15% B; 15-20 min 25% B; 20-30 min 35% B; 30-40 min 45% 

B; 40-45 min 100% B; 45-50 min 5% B. Anthos were detected at 520 nm by PDA-UV and 

total Anthos concentration was calculated using a standard curve. The reference 
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compounds were purchased from Chromadex (Irvine, CA) and Cayman Chemical 

Company (Ann Arbor, MI). 

Isolation of milk-derived exosomes 

Exosomes were isolated from raw bovine milk using differential centrifugation using the 

method described by Munagala et al., [95]  Briefly, in order to remove casein aggregates, 

fat globules as well as other debris, the milk was first centrifuged at 20,000xg for 30 

minutes at 4 ºC using a TA-10259 rotor and Allegra 25R centrifuge (Beckman Coulter, 

Fullerton, CA). The resulting whey was then filtered by passing through grade 90 

cheesecloth. In order to remove microvesicles and large particles, the whey was then 

subsequently centrifuged at 100,000xg for 60 minutes at 4 ºC using an Optima LE-80K 

Ultracentrifuge (Beckman Coulter, Fullerton, CA). About two thirds of the resulting 

supernatant was then carefully transferred to new tubes, discarding the bottom one third 

of the supernatant and the pellet, and further centrifuged at 135,000xg for 90 minutes at 

4 ºC using an Optima LE-80K Ultracentrifuge (Beckman Coulter, Fullerton, CA). After 

discarding the supernatant, the resulting exosome pellet was washed three times with 

PBS. The pellets were pooled and suspended in PBS (final protein content adjusted to 6 

mg/ml) using a Potter homogenizer. The homogenized suspensions were then filtered 

through a 0.22 µm filter for sterilization. Exosomal preparations were then assessed for 

size distribution, morphology, and protein markers using Zetasizer (Malvern Instruments 

Ltd., Malvern, Worchestshire, UK), atomic force microscopy (Oxford Instruments, Goleta, 

CA) and Western blot, respectively. Bovine colostrum-derived exosomes, prepared the 

same as the milk exosomes, were provided for the studies as a kind gift from 3P 

Biotechnologies (Louisville, KY). 
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Protein determination  

Protein estimation for exosomal preparations was assessed using a bicinchoninic acid 

(BCA) assay (Thermo Scientific, Rockford, IL). In order to determine protein concentration, 

diluted exosomal preparations were compared, in triplicate, to a serially-diluted bovine 

serum albumin (BSA) standard curve.  

Loading of the Anthos onto the exosomes (ExoAnthos) 

The native mixture of bilberry Anthos was loaded onto exosomes by mixing Anthos 

(dissolved in ethanol and water) with the exosomes in a 1:5 (Anthos:Exosomal protein) 

ratio at room temperature (22 ºC). Unbound Anthos and any protein coagulates were 

removed using low speed centrifugation (10,000×g for 10 min), and the exosomes that 

were loaded with Anthos were then collected by ultracentrifugation (135,000 x g for 1.5 h). 

The pellet was then suspended in PBS and passed through a 0.22 µm filter and stored at 

-80 ºC.  

Analysis of drug loading 

In order to determine the practical drug load of Anthos in the ExoAnthos formulation, the 

protein and Anthos concentrations were measured. Briefly, a 50 µl aliquot of ExoAnthos 

formulation was mixed with 950 µl of acidified ethanol (0.1% HCl). The precipitated 

proteins were separated by centrifugation (10,000 x g for 10 minutes). The Anthos 

contained in the supernatant was then analyzed using a SpectraMax M2 spectrometer 

(Molecular Devices, Sunnyvale, CA). Anthos were detected at 520 nm and total Anthos 

concentration was calculated using a standard curve. Reference Anthos were acquired 

from Chromadex (Irvine, CA). Anthos concentrations were confirmed via HPLC-PDA. The 

pelleted exosomal proteins were determined by the BCA method described above. The 

percent drug load when then calculated by dividing the amount of Anthos by exosomal 
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proteins x 100 [95]. The proportionate loading of individual Anthos was confirmed using 

HPLC-DAD.  

Characterization of Exosomes and ExoAnthos 

The size of control colostrum exosomes and ExoAnthos, which were diluted in PBS to 1 

mg/ml, were determined using a Zetasizer (Malvern Instruments Ltd, Malvern, 

Worcestershire, UK). Morphology of the exosomes and ExoAnthos was determined by 

atomic force microscopy (AFM). Briefly, exosomes and ExoAnthos were diluted with 

deionized water to 10 µg/ml. A 2 µl aliquot of each sample was then placed on a silica 

wafer and air dried for 30 min. Images were captured using an Asylum MF-3D AFM 

(Oxford Instruments, Goleta, CA)  in tapping mode using aluminum-coated silicon probes.  

The amplitude, topographic height and phase retraces were imaged with a fixed force 

(<1nN) at a scanning rate of 1 Hz. Images were processed using IGOR software.  

 

Cells, culture conditions and treatments 

The APC wild-type HCT 116 (ATCC® CCL-247™) and APC mutant Caco-2 (ATCC® HTB-

37™) colon cancer cell lines were acquired from American Type Culture Collection 

(Manassas, VA, USA). The APC mutant colon cancer cell line HT-29 (ATCC® HTB-

38D™) was a kind gift from Dr. Nobuyuki Matoba (University of Louisville). HCT-116 and 

HT-29 cells were maintained in McCoy’s 5A medium (Gibco, Grand Island, NY) 

supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin in a 

humidified atmosphere containing 5% CO2 at 37 °C. Caco-2 and CCD-18Co cells were 

maintained in Memα (Gibco, Grand Island, NY) supplemented with 20% FBS, 100 U/ml 

penicillin and 100 ug/ml streptomycin in a humidified atmosphere containing 5% CO2 at 

37 °C. 
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Measurement of cell viability 

The cytotoxicity of the colostrum exosomes, the bilberry Anthos and ExoAnthos in colon 

cancer cell lines was assessed by enzymatic reduction of the tetrazolium dye MTT. Briefly, 

3.0 x103 cells/well were grown in a 96-well tissue culture plates and were then exposed to 

varying concentrations of the Anthos, ExoAnthos, the exosomes or vehicle control 24 

hours after seeding. After 72 h treatment, cells were incubated with 5 mg/ml MTT reagent 

for 2 h. The resulting formazan crystals were then solubilized in DMSO and 

spectrophotometrically measured at 570 nm (Bio-rad, Philadelphia, PA, USA). IC50 values 

were then determined using Calcysyn software version 2.1 (Biosoft, Cambridge, England).   

 

Western-blot analysis 

For western-blot analysis, 50 µg of protein was resolved using gel electrophoresis and 

electrotransferred to polyvinylidene difluoride membranes by semi-dry transfer (Biorad 

Trans-blot SD, Hercules, CA). Blots were blocked with 4% dry powder milk or BSA for 1 h 

and then incubated with primary antibodies at 4ºC overnight and secondary antibodies 

conjugated to peroxidase for 1 h at room temperature. Blots were then developed with an 

ECL detection system. Densitometric analysis was then performed using ImageJ 1.x 

software [98]. 

 

Animal model for FAP and CRC 

ApcMin/+ mice are often used to study FAP and CRC. The mice exhibit a germline nonsense 

mutation at codon 850 of the APC gene, which causes the spontaneous development of 

polyps predominantly in the small intestine by the age of 10-12 weeks.  
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ETBF 

Enterotoxigenic Bacteriodes fragilis (ETBF) has been found to exist asymptomatically in 

12.4% of individuals and in 27% of individuals with diarrhea symptoms [99]. It is well known 

as a global cause of diarrheal disease that is accompanied by colitis in both humans and 

animals. The pathogenicity associated with ETBF is due to the secretion of a 20 kDa zinc-

dependent metalloprotease toxin, B. fragilis toxin (BFT), which binds to colonic epithelial 

cells and leads to the cleavage of E-cadherin, which is a tumor suppressor protein and 

the secretion of interleukin-8 [100]. This ultimately leads to the stimulation of proliferation 

and migration of human colon cancer cells [101]. Furthermore, BFT has also been shown 

to induce pro-inflammatory cytokine secretion by further activating the NFƘB pathway 

[101].  

 

In vivo CRC studies 

Animal experiments were performed in agreement with an approved protocol by the 

Institutional Animal Care and Use Committee at the University of Louisville. Breeding 

colonies were established by Dr. Nejat K. Egilmez’s lab [102] at the University of Louisville 

using C57BL/6J Min/+ (ApcMin/+) mice which were originally attained from Jackson 

Laboratories (Bar Harbour, ME, USA). Mice were genotyped for the APC mutation using 

PCR according to the protocol outlined by Jackson Laboratories. Mice were fed a standard 

chow diet and received water ad libitum for the duration of the study and were maintained 

on a standard light/dark cycle. At 5-6 weeks age, animals were administered antibiotic and 

4 days later they were administered ETBF to promote tumorigenesis. One week following 

ETBF inoculation, animals began their respective treatment regimen. Two studies were 

performed to test the impact of the Anthos on tumor number. In the first study male ApcMin/+ 

mice were orally administered (by gavage) 20 mg/kg Anthos or vehicle control. Animals 

were treated 5 times a week for 4 weeks. Animals were euthanized in the fed state at 12 
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weeks and colon tumors were counted. For the second study female ApcMin/+ mice were 

orally administered (by gavage) 40 mg/kg Anthos or vehicle control. Animals were treated 

3 times a week for 4 weeks. Animals were euthanized in the fed state at 11-12 weeks and 

colon tumors were counted.  

 

In vivo FAP study 

Animal experiments were performed in agreement with an approved protocol by the 

Institutional Animal Care and Use Committee at the University of Louisville. Breeding 

colonies were established by Dr. Nejat K. Egilmez’s lab [102, 103] at the University of 

Louisville using C57BL/6J Min/+ (ApcMin/+) mice which were originally attained from 

Jackson Laboratories (Bar Harbour, ME, USA). Mice were genotyped for the APC 

mutation using PCR according to the protocol outlined by Jackson Laboratories. Mice 

were fed a standard chow diet and received water ad libitum for the duration of the study 

and were maintained on a standard light/dark cycle. Treatments began when animals were 

8-9 weeks old. Male (n=4) and female (n=4) ApcMin/+ mice were orally administered (by 

gavage) 40 mg/kg Anthos or vehicle control. Animals were treated 3 times per week for 5 

weeks. Animals were euthanized at 13-14 weeks. Following fixation of intestines using 

formalin, intestinal polyps were counted using a microscope (Leica EZ4, Wetzlar, 

Germany) by four different experienced individuals after blinding the samples.  

 

Data analysis 

Statistical analysis was performed using Graph Pad Prism statistical software version 4.03 

(La Jolla, CA). Student’s t-test was used for both animal studies. IC50 values were 

determined using CalcuSyn software version 2.1 (Biosoft, Cambridge, England). 
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RESULTS 

Purity of bilberry-derived Anthos  

Prior to performing any experiments with the Anthos, we first determined the purity of each 

Anthos preparation. HPLC-DAD analysis yielded a chromatogram (Figure 4) with five 

peaks featuring retention times that matched in retention times with the reference Anthos,   

delphinidin, cyanidin, petunidin, peonidin, and malvidin. The bilberry Anthos mixture used 

in these experiments were confirmed to have a purity greater than 96% and an average 

purity of 98%. 

Anti-proliferative effects of anthocyanins versus Anthos on colon cancer cells 

In order to determine whether a difference exists between the activities of Anthos versus 

anthocyanins (delphinidin, cyanidin, delphinidin 3,5-diglucoside, cyanidin 3-glucoside, and 

cyanidin 3,5-diglucoside) in colon cancer cells, we compared the anti-proliferative activity 

of two individual Anthos, delphinidin and cyanidin, with their respective anthocyanins, in 

HCT-116 colon cancer cells. As shown in Figure 5, a clear benefit is derived from the 

cleavage of the sugar moiety from the anthocyanin component.  The greatest advantage 

in the reduction of IC50 is shown for delphinidin which yielded a greater than 6-fold 

reduction when the sugar moiety was absent. A similar although slightly lower reduction 

was observed for cyanidin versus cyanidin 3-glucoside, and cyanidin 3,5-diglucoside, with 

2- and nearly 5-fold reductions, respectively. The difference in the anti-proliferative 

activities for the Anthos versus their respective anthocyanins is most likely due to the 

differences in size and partition coefficient associated with the possession of the sugar 
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moiety presumably affecting their cell uptake. Furthermore, it should be noted that little 

difference was observed for mono versus di-glycosylated forms of cyanidin. Ultimately, 

the absence of the sugar moiety enables anthocyanidins to be passively absorbed by the 

gut epithelial cells [61].  

           Anti-proliferative effects of Anthos on colon cancer cells 

After confirming that Anthos yielded greater antiproliferative properties than anthocyanins 

we next set out to determine the relative anti-proliferative activity of the individual Anthos 

in colon cancer cells. We then measured antiproliferative activity for the available four 

Anthos, delphinidin, petunidin, malvidin, cyanidin and compared them with the native 

bilberry Anthos mixture in HCT-116 and HT-29 colon cancer cells. As shown in Figure 6 

and Table 1  the lowest IC50 was achieved by delphinidin (23 µM), followed by petunidin, 

malvidin, and cyanidin in HCT-116 cells. A slightly different trend was observed for HT-29 

cells with delphinidin and petunidin yielding the lowest IC50 value of 68 µM followed by 

cyanidin and malvidin.  Overall, it was noted that the HCT-116 was more sensitive than 

the HT-29 cells to all the Anthos tested.   

In vitro toxicity study with Anthos in normal colon cells  

Prior to testing Anthos in an in vivo model, we first assessed if Anthos presented any 

toxicity to normal colon CCD-18Co cells. Comparison of the selectivity index values 

calculated by comparing Anthos treated CCD-18Co normal colon cells with HT-29 and 

HCT-116 colon cancer cells yielded values of 9 and 14 for HT-29 and HCT-116 colon 

cancer cells, respectively (Figure 7). These values were well above the recommended 

minimal SI value of 3 that is used to determine whether a drug selectively targets cancer 

cells over normal cells. Therefore, given the in vitro selectivity results we decided that 

Anthos were selective toward cancer cells and were would be promising to test against 

FAP and CRC mouse models.   
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Figure 4 Representative chromatogram of C18 enriched bilberry-derived Anthos: HPLC profile of 

native mixture of bilberry-derived anthocyanidins including delphinidin (Dp), cyanidin (Cy), 

petunidin (Pt), peonidin (Pe), and malvidin (Mv). The purity was verified to be greater than 96% 

for all Anthos samples used in the studies included in this thesis. 
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Figure 5 Antiproliferative activity of individual anthocyanidins and their anthocyanin 

counterparts against colon cancer cell line HCT-116: Colon cancer cell line HCT 116 was treated 

with various concentrations of the individual anthocyanidins cyanidin (Cy) or delphinidin (Dp) and 

their anthocyanin counterparts cyanidin 3-glucoside (C3G), cyanidin 3,5-diglucoside (C3DG) or 

delphinidin 3,5-diglucoside (D3DG) respectively for 72 h and the effect on cell growth inhibition 

was assessed using an MTT assay. Data represent average ±SD (n=3).  
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Figure 6 Antiproliferative activity of individual anthocyanidins against colon cancer cell lines: 

Colon cancer cell lines HCT116 and HT-29 were treated with various concentrations of individual 

anthocyanidins including cyanidin (Cy), delphinidin (Dp), malvidin (Mv) and petunidin (Pt) for 72 

h and the effect on cell growth inhibition was assessed using an MTT assay. Data represent 

average ±SEM (n=3-4). 
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Cell line 
HCT116 IC50 

[µM] 
HT-29 IC50  

[µM] 

Dp 23 68 

Cy 84 103 

Pt 53 68 

Mv 66 156 

 

TABLE 1: Antiproliferative activity of individual anthocyanidins against colon cancer cells. 

Values listed for the four anthocyanidins tested including cyanidin (Cy), delphinidin (Dp), 

malvidin (Mv) and petunidin (Pt).  
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Figure 7 Antiproliferative activity of native bilberry Anthos mixture against colon normal cells 

and cancer cell lines: Colon normal cells CCD-18Co and colon cancer cell lines HCT-116 and HT-29 

were treated with various concentrations of bilberry-derived Anthos for 72 h and the effect on 

cell growth inhibition was assessed using an MTT assay. Data represent average ±SEM (n=4). 
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Impact of Anthos treatment on polyp development in ApcMin/+ mice FAP model 

In order to determine if Anthos treatment beneficially impacts intestinal polyp number in 

vivo, ApcMin/+ mice were treated with 40 mg/kg Anthos three times per week for four weeks 

by oral gavage. Both male and female mice (n=4 per group) were tested. Results from the 

study (Figure 8) showed that intestinal polyp number was significantly reduced in both 

male and female mice treated with the Anthos (p=0.02 and p=0.004, respectively). The 

average number of polyps for vehicle control animals was 41 polyps and with Anthos 

treatment it was 18 polyps. A slightly higher number of polyps was found in the female 

mice but reduction in the polyps with the Anthos treatment was evident, in fact, the effect 

was more pronounced (3.1 fold reduction, p=0.004) compared to male mice (1.8 fold 

reduction, p=0.02).  

Impact of Anthos treatment on colon tumor development in ETBF ApcMin/+ mice 

CRC model 

Upon completion of in vitro testing of Anthos in both APC wild-type and APC mutant cell 

lines, the next step was to investigate whether Anthos treatment would impact colon tumor 

number in vivo in ApcMin/+ mice which were treated with Anthos at either 20 mg/kg Anthos 

5 times per week or 40 mg/kg 3 times per week for 4 weeks by oral gavage. Results from 

the study (Figure 9) showed a significant reduction in the number of colon tumors with the 

Anthos treatment compared with the vehicle treatment (p=0.03). The average number of 

tumors was reduced from 23 in control mice to 9 in Anthos-treated mice.  Furthermore, 

similar average tumor counts were noted in both male and female animals (p<0.05). These 

results support our in vitro findings. 
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Figure 8 Antipolyp activity of bilberry-derived Anthos against intestinal polyps: ApcMin/+  mice 

were treated via oral gavage with bilberry derived Anthos three times a week (40 mg/kg bw) or 

vehicle control. Data represent the distribution of animal polyp counts by gender, with the 

average noted. Male Anthos vs. control p=0.02 and female Anthos vs. control p=0.004.  
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Figure 9 Anti-tumor activity of bilberry-derived Anthos against colon tumors: ApcMin/+  mice 

were treated via oral gavage with bilberry derived Anthos three times per week (40 mg/kg bw), 

five times per week (20 mg/kg bw), or vehicle control. Data represent the distribution of animal 

tumor counts by gender, with the average noted. Male and female Anthos vs. control p<0.05. 
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Preliminary work investigating role of Anthos in the potential inhibition of EGFR 

and Src  

We next probed the mechanism of Anthos by western-blot analysis. Preliminary results 

comparing the phosphorylation of EGFR by probing for the phosphorylation of tyrosine 

1048 (Y1048), to total EGFR, corrected for loading using β-actin suggest that Anthos led 

to a dose-dependent decrease in EGFR phosphorylation (Figure 10). A more pronounced 

decrease in phosphorylation was observed for Src at tyrosine 416 (Y416) (Figure 11). 

Minimal to no changes were seen in the expression of either total EGFR or total Src 

following Anthos treatment. These association studies will be used as the foundation for 

my mechanistic work which will be further elucidated with additional work to be completed 

in the near future.  

Loading and characterization of exosomes and ExoAnthos 

We investigated if a nano-formulation of Anthos would improve its potency. We chose the 

milk-derived exosomal nano formulation for Anthos (ExoAnthos) because of higher Anthos 

loading compared with the milk exosomes. An average practical drug loading of 25% was 

achieved for ExoAnthos.  The average size for exosomes and ExoAnthos measured by 

the Zetasizer was 81 nm (Figure 12). Moreover, the surface morphology of ExoAnthos, 

determined by AFM, showed that ExoAnthos maintained the same characteristic spherical 

shape as the original exosomes.  

Profile of Anthos loading onto/into colostrum derived exosomes  

We next wanted to confirm that each of the five anthocyanidins, delphinidin, cyanidin, 

petunidin, peonidin, and malvidin present in the mixture were loaded proportionately 

onto/into the exosomes. We also wanted to confirm that the Anthos ratio was maintained 

during the storage. The HPLC profiles of the five Anthos contained in the free Anthos 
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mixture (Figure 13) remained nearly the same as the native bilberry Anthos ratio for 

ExoAnthos on both day 0 and day 12 (Figure 13). Therefore, not only do the individual 

moieties of the Anthos mixture load equally, the ExoAnthos formulation was stable 

following freezing and thawing.  

Anti-proliferative effects of Exosomes alone on colon cancer cells 

Prior to assessing the impact of ExoAnthos, we first determined whether the exosomes 

per se (in the absence of Anthos) possessed anti-proliferative activity in the colon cancer 

cell lines, HCT-116 and HT-29 or normal CCD-18Co colon cells. Treatment of these colon 

cancer cell lines and normal cells with 0-200 µg/ml of exosomal proteins for 72 h resulted 

in minimal to modest cell growth inhibition (Figure 14). The APC wild-type cells, HCT-116 

showed a maximum level of inhibition of 36% whereas normal CCD-18Co cells and the 

APC mutant cell line HT-29 showed only a slight cell kill (0 to 10%).  These results suggest 

that colostrum exosomes possess no in vitro toxicity to the normal cells and that they 

possess an intrinsic activity against colon cancer cells specifically. This “internal payload” 

effect is an exciting feature that our lab has also identified for other cancers such as breast 

and lung cancers [104]. 

Anti-proliferative effects of bilberry Anthos versus ExoAnthos in normal colon and 

colon cancer cell lines 

We next compared the impact of exosomal formulation of the Anthos on the proliferation 

of the colon cancer cell lines HT-29, HCT-116, Caco2 and normal CCD-18Co colon cells. 

The results from these studies (Figure 15) showed a clear  
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Figure 10 Changes in EGFR phosphorylation after treatment with Bilberry derived Anthos: Colon 

cancer cell line HT-29 was treated with various concentrations of bilberry-derived Anthos 

overnight and the effect on phosphorylation of EGFR at Y1068 was assessed using western blot 

analysis and compared to total EGFR and β-actin loading control.  
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Figure 11 Changes in Src phosphorylation after treatment with Bilberry derived Anthos: Colon 

cancer cell line HT-29 was treated with various concentrations of bilberry-derived Anthos 

overnight and the effect on phosphorylation of Src at Y416 was assessed using western blot 

analysis and compared to total Src and β-actin loading control.  
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Figure 12 Morphology and size of milk exosomes and ExoAnthos: Exosomes derived from bovine 

milk and ExoAnthos were analyzed by AFM (A) and zetasizer (B). Amplitude and topographic  

images were captured simultaneously  using a fixed force <1 nM and scanning rate of 1 Hz.  
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Figure 13 Loading and Stability of Anthos: HPLC profiles of Anthos extracted from exosomes day 

0 and 12 days after loading compared to Anthos reference.  
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Figure 14 Antiproliferative activity of Exosomes against colon normal cells and cancer cell lines: 

Colon normal cells CCD-18Co and colon cancer cell lines HCT-116 and HT-29 were treated with 

various concentrations of milk derived exosomes for 72 h and the effect on cell growth inhibition 

was assessed using an MTT assay. Data represent average ±SEM (n=3). 
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Figure 15 Antiproliferative activity of Anthos vs. ExoAnthos against colon normal cells and 

cancer cell lines: Colon normal cells CCD-18Co and colon cancer cell lines HCT-116, HT-29 and 

Caco2 were treated with various concentrations of bilberry-derived Anthos and ExoAnthos for 72 

h and the effect on cell growth inhibition was assessed using an MTT assay. Data represent 

average ±SEM (n=3). 
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Cell line 
IC50 Anthos 

(µM) 
SI Anthos 

IC50 ExoAnthos 
(µM) 

SI ExoAnthos 
Fold 

difference in 
IC50 values 

CCD-18Co 1050 - 407 - - 

HCT116 75 14 20 20 4 

HT-29 124 9 8 51 16 

 

TABLE 2: Antiproliferative activity and selectivity index for bilberry derived Anthos and 

ExoAnthos against colon cancer and normal colon cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

increase in the anti-proliferative properties of Anthos against colon cancer cells, with 4-

16-fold decreases in the IC50 values of ExoAnthos as compared to the free Anthos (Table 

2). One can posit that the improved anti-proliferative effects of the ExoAnthos formulation 

over Anthos alone is most likely due to the increased cell uptake and stability in media of 

the ExoAnthos over Anthos. Part of the higher potency of ExoAnthos may be attributed to 

the intrinsic effect of the exosomes alone.   

In order to determine whether Anthos or ExoAnthos were selective toward colon cancer 

over normal colon cells in vitro, we determined the selectivity index (SI) values for both 

HCT 116 and HT-29 colon cancer cells compared to normal colon CCD-18Co cells. The 

results (Table 2) showed not only that both Anthos and ExoAnthos were selective for colon 

cancer over normal colon cells, but that ExoAnthos enhanced this selectivity, with the 

greatest increase yielded in HT-29 cells which went from an SI value of 9 for Anthos to 51 

for ExoAnthos. Overall, these results confirm that Anthos and ExoAnthos do not show in 

vitro toxicity for the normal CCD-18Co colon cells and that the cytotoxicity is specific for 

colon cancer cells. 

 

Impact of Milk-derived ExoAnthos vs. Colostrum-derived ExoAnthos on the Anti-

proliferative effects in colon cancer cells 

The next generation of exosomes that 3P Biotechnologies has been developing are 

derived from bovine colostrum. Prior to this work, no in vitro or in vivo data had been 

collected comparing the milk exosomes loaded with Anthos versus the colostrum 

exosomes loaded with Anthos. To compare the two formulations, we assessed the anti-

proliferative activity of the milk- and the colostrum-derived ExoAnthos formulations 

alongside the free Anthos in the colon cancer cell line HCT-116. The results from these 
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studies (Figure 16) confirmed that no difference in the anti-proliferative properties exists 

between colostrum ExoAnthos and milk ExoAnthos formulations for HCT-116 colon 

cancer cells. Both formulations showed a clear increase in the anti-proliferative properties 

of ExoAnthos over the free Anthos against colon cancer cells. With 4-fold decreases in 

the IC50 values of Anthos, when delivered by either colostrum- or milk-derived exosomes. 
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Figure 16 Antiproliferative activity of Anthos vs. Milk ExoAnthos and Colostrum ExoAnthos 

against colon cancer cell line HCT-116: Colon cancer cell line HCT116 was treated with various 

concentrations of bilberry-derived Anthos, milk ExoAnthos and colostrum ExoAnthos for 72 h and 

the effect on cell growth inhibition was assessed using an MTT assay.  
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DISCUSSION 

Although great progress has been made in the treatment of CRC, it still remains the third 

leading cause of cancer related death. Additionally, FAP remains an orphan disease with 

the only approved treatment being surgical resection of the colon. Furthermore, even after 

surgical resection, individuals with FAP still face the risk of developing cancers of the small 

intestine. Therefore, there is an urgent need for developing novel treatments to combat 

both CRC as well as FAP.  

The plant pigments known as anthocyanins have been consumed by humans throughout 

history. Within recent history anthocyanins have become an area of interest for their 

potential benefits to human health. Although benefits have been noted for anthocyanins, 

limitations have also become apparent due to their limited bioavailability and stability. 

Previous work from our lab has shown that Anthos are more potent than anthocyanins in 

inhibiting non-small-cell lung cancer cell growth [58, 96]. Additionally, work from our lab 

also has shown that both dietary black raspberry and blueberry caused significant 

inhibition of breast cancer in a rat model [105] and lung cancer in a mouse model [106]. 

However, prior to these studies no work had been conducted to test the impact of Anthos 

on CRC or FAP. Therefore, for my Master’s project, after working on Anthos and 

ExoAnthos in breast cancer initially, I have focused my research to investigate the impact 

of Anthos and ExoAnthos on colorectal cancer and FAP, the results of which are contained 

within this thesis.  

Previous studies in our lab have shown that differences exist in the antiproliferative 

capacity of Anthos versus anthocyanins in lung cancer [96]. Results from the comparison 
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of Anthos with their respective anthocyanins show that delphinidin, and cyanidin are more 

potent that their 3-monoglucoside and 3,5-diglucoside anthocyanin counterparts in the 

colon cancer cell line HCT-116. These results are not surprising considering that Anthos 

not only are somewhat more lipophilic due to their higher partition coefficients than their 

anthocyanin counterparts and are therefore able to be taken up passively by cells whereas 

anthocyanins are known to require active transport.  

Interestingly, when the colon cancer cell lines, HCT-116 and HT-29 were treated with 

individual Anthos, including delphinidin, cyanidin, malvidin, or petunidin, different levels of 

antiproliferative properties were noted for each compound. Furthermore, although 

delphinidin and petunidin yielded the lowest IC50 values, slightly different trends were 

noted for the remaining Anthos in each cell line. Moreover, slightly lower IC50 values were 

achieved by HCT-116 cells when compared to HT-29 cells. Structure-function relationship 

differences have been suggested to exist previously. For instance, it was noted that 

delphinidin and cyanidin inhibited LPS-induced COX-2 expression, whereas malvidin, 

peonidin and pelargonidin did not show a similar trend [107]. Additionally, different Anthos 

substitution patterns were found to lead to different cellular signaling cascades effects 

[108]. For instance, only malvidin which features methoxy groups at the 3’ and 5’ positions 

of the B-ring lead to inhibition of cAMP-specific phosphodiesterases (PDEs) whereas, 

cyanidin and delphinidin were shown to inhibit EGFR in human vulva carcinoma A431 

cells [108]. However, it should be noted that the authors of this study did not investigate 

petunidin, which showed the second highest antiproliferative impact, after delphinidin, in 

our studies with HT-29 and HCT-116 colon cancer cells. Therefore, more work is still 

needed to uncover differences in mechanisms, which may exist between individual Anthos 

and whether alternative mixtures may provide an additional synergistic value over the 

native bilberry mixture. 
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In addition to the trends noted for the individual Anthos, HCT-116 cells also appeared to 

be more sensitive to the native mixture of the Anthos from bilberries when compared to 

HT-29 cells. This difference between the two cell lines is perhaps due to the influence of 

Anthos on p53, which is active in HCT-116 but mutated in HT-29 cells. It has been 

previously reported that anthocyanins alter the expression of p53 [109]. Given the 

preliminary findings showing decreased activity of EGFR and Src one could postulate that 

this could lead to decreased STAT3 activity thereby resulting in changes in the expression 

of factors such as p53 along with a host of other key players in carcinogenesis such as c-

Myc, Bcl-2, Bcl-xL, survivin, Cyclin D1 among many others [110-114]. This is due to the 

ability of STAT3 to act both directly and indirectly due to its ability to mediate the 

expression of or physically associate with other transcription factors thereby suppressing 

or enhancing gene regulatory functions [115]. Additional mechanistic studies are planned 

to clearly elucidate the specifics of the pathway(s). We also plan to examine the effects of 

the individual Anthos and the optimized Anthos mixture for their relative effects on the 

EGFR and Src activities.  

Individuals with FAP characteristically develop hundreds to thousands of polyps in their 

intestines. Typically by their late teens to early twenties, FAP patients undergo CRC 

prophylactic surgery.  Given the lack of treatment options for FAP, developing alternative 

preventative treatment options clearly represents an “unmet” need. With this in mind, the 

potential application of Anthos to the prevention of FAP is a key possibility following the 

successful in vitro results with the colon cancer cell lines HT-29, HCT-116 and Caco-2. In 

vivo studies assessing the impact that Anthos has on FAP in ApcMin/+ mouse model 

showed significant decreases in intestinal polyp number in the Anthos-treated mice 

compared to vehicle treatment in both male and females (p=0.02 and p=0.004 

respectively). Interestingly, it was previously shown that APC deficiency was associated 
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with an increase in EGFR activity and c-Src expression in ApcMin/+ mouse adenomas and 

intestinal enterocytes [116]. In light of the preliminary in vitro findings with Anthos 

decreasing the activity of EGFR and c-Src, we postulate that Anthos is decreasing polyp 

formation via this pathway. Further studies will be undertaken to better study the true 

nature of the relationship between Anthos and receptor and non-receptor tyrosine kinases 

using the ApcMin/+ model for FAP. Therefore, given the significant decrease in polyps 

observed and the mechanistic implications, the potential for Anthos treatment for FAP 

patients appears promising.  

In addition to the promising results attained with the chemoprevention and FAP study in 

the ApcMin/+ mouse model, additional in vivo work assessing the impact of Anthos on a 

CRC ApcMin/+ ETBF mouse model showed that Anthos treatment significantly (p<0.05) 

lowered the number of colorectal tumors in the Anthos-treated mice compared to vehicle 

treatment. These results corroborate with the in vitro data. ETBF, a subtype of B. fragilis 

that secrets the metalloprotease enterotoxin B. Fragilis toxin (BFT), is associated with 

diarrheal disease in both humans and animals as well as active inflammatory bowel 

disease. A study looking at the prevalence of ETBF found that 26.8% of individuals with 

diarrhea and 12.4% of individuals without diarrhea had stool samples that were positive 

for the presence of ETBF [99]. In addition to increasing the secretion of chloride and 

permeability of intestinal epithelial cells, BFT also activates STAT3 and TH17 responses 

and leads to increased Cox-2. Given the preliminary in vitro data which suggests that 

Anthos decreases the activity of EGFR and Src, one could posit that Anthos treatment 

may act by effectively decreasing the activity of STAT3 and ultimately altering downstream 

expression of Cox-2, c-myc etc. Additional in vitro and in vivo studies will be conducted to 

further elucidate this pathway. Overall, results from in vivo work with an ApcMin/+ mouse 

model for FAP offer an exciting possibility for potential treatments in the future.  
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Benefits of exosomal delivery have been established within our lab for drugs such as 

withaferin A, celestrol and paclitaxel in lung cancer [96, 97]. One of the key goals of my 

graduate research project is to utilize exosomal delivery for Anthos. The average drug 

load attained for the ExoAnthos is 25%. Using HPLC-PDA-UV it has also been found that 

all the individual Anthos were loaded proportionately. Furthermore, loading of the Anthos 

onto/into the exosomes did not significantly change their size or morphology.  When 

comparing the impact that exosomal delivery of the Anthos has on colon cancer cell 

proliferation using the APC mutant and APC wild-type colon cancer cell lines, 16-fold and 

4-fold reductions in the IC50 values were found in the respective HT-29 and HCT-116 cells. 

These results correspond with our previous findings for other drugs delivered using 

exosomes [104]. Therefore, the results support our initial hypothesis that exosomal 

delivery will improve Anthos potency presumably due to increased bioavailability and 

stability of Anthos.  

Bovine milk-derived exosomes have been well established as a nano drug carrier within 

the Gupta lab [95, 96]. Before switching from bovine milk to bovine colostrum derived 

exosomes within the study, the new system was investigated and compared to Anthos-

loaded milk exosomes. Results from the comparison of milk- versus colostrum-derived 

exosomes loaded with Anthos showed that the colostrum exosomes resulted in higher 

Anthos loading, although no significant differences were found in the anti-proliferative 

activity of the two formulations. Therefore, once this was established, my future work will 

utilize the colostrum-derived exosomes.   
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SUMMARY & CONCLUSIONS 

The findings from these series of studies establish the therapeutic potential of Anthos on 

both CRC and FAP. In addition to confirming previous findings by our lab that Anthos are 

more potent than anthocyanins, the results from in vitro work testing of the individual 

Anthos also illustrate the different potencies of specific Anthos such as delphinidin and 

petunidin over malvidin and peonidin. Our findings from the in vitro studies also suggest 

that great promise exists for ExoAnthos in further enhancing Anthos effects. Preliminary 

mechanistic work suggested that Anthos resulted in dose-dependent decrease in the 

phosphorylation of Src (Y418) and EGFR (Y1068) which could potentially serve as one of 

the pathways by which Anthos may be decreasing cell proliferation. 

Current limitations of this work include the lack of an in vivo dose-escalation study. 

Additionally, further studies need to be completed to more definitively elucidate the nature 

of the interaction between Anthos, EGFR, and Src and the downstream targets such as 

pSTAT5b, total pSTAT5b, pSTAT3, total STAT3, Cox-2, c-myc, Cyclin D1 and D2, β-

catenin et cetera. Future work will also focus on identifying an optimal mixture of Anthos, 

followed by the generation of an exosomal formulation featuring this specific mixture. One 

of the key limitations of using the ExoAnthos formulation is with low drug load. Therefore, 

future work will also investigate the kinetic parameters to increase the Anthos loading 

onto/into the exosomes. An additional area that will be investigated is the impact that 

Anthos and ExoAnthos have on immunological markers including, but not limited to IL-1β, 

IL-4, IL-6, IL-10, IL-17, IFNγ and TNFα. Furthermore, my PhD. work will investigate the 
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impact of Anthos on a proposed dialogue between the environmental carcinogen 

benzo[a]pyrene and ETBF bacteria using an ApcMin/+ mouse model. 
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