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ABSTRACT 

 

ALGORITHMS FOR AUTOMATED ASSIGNMENT OF SOLUTION-STATE AND 

SOLID-STATE PROTEIN NMR SPECTRA 

Andrey Smelter 

July 17, 2017 

 

Protein nuclear magnetic resonance spectroscopy (Protein NMR) is an invaluable 

analytical technique for studying protein structure, function, and dynamics. There are two 

major types of NMR spectroscopy that are used for investigation of protein structure – 

solution-state and solid-state NMR. Solution-based NMR spectroscopy is typically 

applied to proteins of small and medium size that are soluble in water. Solid-state NMR 

spectroscopy is amenable for proteins that are insoluble in water. 

In the vast majority NMR-based protein studies, the first step after experiment 

optimization is the assignment of protein resonances via the association of chemical shift 

values to specific atoms in a protein macromolecule. Depending on the quality of the 

spectra, a manual protein resonance assignment process often requires a considerable 

amount of time, from weeks to months-worth of effort even, by an experienced NMR 

spectroscopist. 
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The resonance assignment processes for solution-state and solid-state protein 

NMR studies are conceptually similar, but have distinct differences due to the utilization 

of different NMR experiments and to the use of different resonances for grouping peaks 

into spin systems. 

Currently, there is a shortage of robust, effective software tools that can perform 

solid-state protein resonance assignment and there is no general software that can 

perform both solution-state and solid-state protein resonance assignment in a reliable, 

automated fashion. Hence, the motivation of this research is to design and implement 

algorithms and software tools that will automate the resonance assignment problem. 

As a result of this research, several algorithms and software packages that aid 

several important steps in the protein resonance assignment process were  developed. For 

example, the nmrstarlib software package can access and utilize data deposited in the 

NMR-STAR format; the core of this library is the lexical analyzer for NMR-STAR 

syntax that acts as a generator-based state-machine for token processing. The jpredapi 

software package provides an easy-to-use API to submit and retrieve results from 

secondary structure prediction server. The single peak list and pairwise peak list 

registration algorithms address the problem of multiple sources of variance within single 

peak list and between different peak lists and is capable of calculating the match 

tolerance values necessary for spin system grouping. The single peak list and pairwise 

peak list grouping algorithms are based on the well-known DBSCAN clustering 

algorithm and are designed to group peaks into spin systems within single peak list as 

well as between different peak lists. 
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CHAPTER 1 

INTRODUCTION 

1.1 Protein resonance assignment 

The process of protein resonance assignment of peaks derived from protein NMR 

spectra is the first critical step for the vast majority of studies of protein structure and 

dynamics by NMR. In most of the cases, the assignment of protein resonances is 

performed manually and can take a significant amount of time, ranging from weeks to 

several months of work depending on the difficulty of the assignment problem and the 

quality of spectra. 

1.1.1 Solution-state NMR sequential protein resonance manual assignment strategy 

overview 

The first systematic approach to manually assign protein resonances and 

subsequently determine the protein 3-dimensional structure was proposed in the 1980s by 

Nobel prize winner Kurt Wüthrich and his research group [1]. This is sequential 

resonance assignment strategy that relies on two types of 2-dimensional nuclear magnetic 

resonance (2D NMR) experiments: correlated spectroscopy (COSY) and nuclear 

Overhausser effect spectroscopy (NOESY). In the first phase, the COSY experiment 

provides information about 
1
H – 

1
H through-bond (spin-spin) connectivities which can be 

used to identify amino acid spin systems [2]. Then, in the second phase, NOESY 

experiment is used to identify through-space (dipole-dipole) interactions of neighbor 

hydrogen atoms within 2-5 Å proximity from each other [3], linking 



2 

 

neighboring spin systems together. Spin systems determined in the first stage can be 

assigned to specific residues in the protein sequence by linking to spin systems of its 

neighbors as determined in the second phase. This sequential approach was used during 

1980s and allowed the assignment of proteins of up to ~10-15 kilodaltons (kD) (~80-120 

residues). Development of 
15

N-labeling methodologies during the late 1980s improved 

peak dispersion, enabling the assignment of larger protein molecules using the sequential 

assignment approach [4], [5]. 

1.1.2 Solution-state NMR triple resonance manual assignment strategy overview 

In the early 1990s, advancements in 
13

C and 
15

N double labeling protein synthesis 

technologies led to the development of new strategies that use 
1
H, 

13
C, and 

15
N 

magnetically active nuclei to design new 2D and 3D protein NMR experiments and 

assignments strategies [6], [7]. This triple-resonance strategy relies on set of NMR 

experiments that utilize through-bond (spin-spin) couplings to identify spin systems that 

belong to either single amino acid or dipeptide. Then the redundancy across multiple 

spectra is used to identify neighbor spin systems and link them together, which results in 

resonance assignments for the full protein chain. 

In a typical triple resonance experiment, the backbone amide 
1
H and 

15
N 

resonance pair are used as common resonances across all spectra, i.e. they serve as root 

resonances for grouping peaks from multiple spectra into spin systems. This 
1
H and 

15
N 

double resonance is associated with one or more carbons which include backbone 

carbonyl 
13

C, backbone 
13

CA, or side-chain 
13

C in order to assign backbone and side-

chain resonances. 
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1.1.3 Solid-state NMR manual assignment strategy overview 

In the early 2000s, researchers started to apply magic-angle spinning solid-state 

NMR (MAS SSNMR) to the problem of protein resonance assignment and structure 

determination. The first assignable spectral data were obtained around 2000 [8] and the 

first high-resolution structures of a peptide [9] and a protein [10] were obtained in 2002. 

Since that period, the field of MAS solid-state NMR has experienced rapid development.  

Resonance assignment by solid-state NMR often requires uniform 
13

C and 
15

N 

double labeling of protein of interest. A typical assignment strategy uses experiments that 

utilize 
13

C and 
15

N resonances to group peaks from multiple spectra into spin systems. 

Depending on the chosen strategy, double or triple root resonances are used to create spin 

systems that associate 
13

C and 
15

N of residues   and    . Although standard solid-state 

NMR strategies use 
13

C and 
15

N resonances, experiments that utilize 
1
H-detection are 

being developed [11]–[13], which can improve the sensitivity of the spectrum and 

increase the number of experimental strategies to perform resonance assignment. 

1.1.4 Automated protein resonance assignment overview 

With the development of each new generation of NMR experiments, improved 

manual approaches for sequence site-specific protein resonance assignment would first 

develop, followed by the development of computational methodologies that would 

attempt to automate the manual assignment process. In the late 1980s and early 1990s, 

automated and semi-automated algorithms were developed to perform resonance 

assignment on homo-nuclear and then hetero-nuclear solution-state protein NMR spectra. 

Later, due to the advancements in solid-state protein NMR, the feasibility of automated 

protein resonance assignment was demonstrated in 2010. A more detailed discussion on 

automated assignment algorithms and methodologies is provided in the next chapter. 



4 

 

1.2 Motivation 

With the advancements in sequencing technologies, genetic and protein sequence 

information became widely available with the ultimate goal to understand the function of 

gene-products, mostly protein biological function. However, a protein’s biological 

function more directly depends on its 3-dimensional structure, which has spurred the 

continued development of methods for determining protein structure and related 

dynamics. 

Two related methods for determining a protein’s 3-dimensional structure and 

dynamics is solution-state and solid-state protein NMR. As of July 2017, these techniques 

contribute about 10 % (~10,300 solution-state NMR structures and ~100 solid-state NMR 

structures) of the structures deposited in Protein Data Bank [14]. But more importantly, 

NMR structure determination methods facilitate the study of classes of proteins not 

amenable to other structure determination techniques like x-ray crystallography and can 

observe and verify structural and dynamic characteristics that may not be detectable by x-

ray crystallography. These reasons provide the motivation for the development of new 

computational methodologies that enable robust automated protein resonance assignment 

and subsequent structure determination, especially for the solid-state NMR technique. 

The scope of this dissertation is focused on providing the survey of currently 

available automated resonance assignment approaches for both solution-state and solid-

state protein NMR data and demonstrating results of new algorithms and software tools 

for implementing effective and robust automated protein resonance assignment. 



5 

 

1.3 Dissertation outline 

Chapter 2 reviews the important biological applications of both solution-state and 

solid-state protein NMR. This chapter explains the problem of protein resonance 

assignment for solution-state and solid-state NMR from the algorithmic/computational 

point of view. Next it reviews currently available algorithms that are applied to the 

protein resonance assignment problem in both solution-state and solid-state protein 

NMR. Chapter 3 provides general design principles and the philosophy behind approach 

to the protein resonance assignment problem, along with the data structures and 

algorithms supporting this approach. Chapter 4 provides a description of the software 

package nmrstarlib which is designed to provide easy-to use access in order to utilize 

protein NMR data such as assigned chemical shifts and assigned experimental peak lists 

in the NMR-STAR format, especially publicly-available NMR-STAR formatted datasets 

in the Biological Magnetic Resonance Data Bank [15]. Chapter 5 describes the first 

critical step in resonance assignment algorithms, which is new single peak list 

registration and single peak list spin system grouping algorithms for peak lists that have 

multiple peaks per spin system, which are used to create initial local spin system 

groupings. Chapter 6 provides a description of the pairwise peak list registration and spin 

system grouping algorithms which globally merge spin system clusters from different 

peak lists, while detecting and correcting spin system overlap or spin system split in the 

initial spin system groupings. Chapter 7 is devoted to discussion and future directions of 

the whole analysis. Time and space complexity of the algorithms is discussed. Chapter 8 

is devoted to project summary and conclusions. 
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CHAPTER 2 

PROTEIN NMR AUTOMATED RESONANCE ASSIGNMENT 

BACKGROUND 

2.1 Biology background 

NMR spectroscopy is one of the essential analytical techniques that complements 

x-ray crystallography and electron microscopy in protein 3D structure determination. As 

of July 2017 NMR spectroscopy contributes 9% (10,404 structures out of 121,831 total 

structures available) of the protein 3D structures to the Protein Data Bank (PDB) [14]. 

 

Figure 1. PDB statistics by experimental method used to determine 3D structure of 

proteins (as of July 2017). 
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Both solution-state and solid-state NMR spectroscopies contribute structures to 

the PDB. However, the number of structures determined by solution-state NMRis 

significantly larger than the number of structures determined by solid-state NMR 

spectroscopy. As of July 2017, the number of protein structures solved by solution-state 

NMR is ~10,400 and the number of structures solved by solid-state NMR is ~100 

(Figure 2). The low numbers of solid-state NMR structures solved to date come from the 

challenges associated with obtaining good quality spectra for samples in the solid-state. 

But several advancements, which include improvements in spectrometer hardware, 

development of fast and ultra-fast magic-angle-spinning probes, and development of new 

experiments specific to solid-state NMR spectroscopy, are improving the resolution and 

overall quality of solid-state protein NMR spectra. 

 

Figure 2. The percentage of structures determined by solution-state and solid-state NMR 

spectroscopy in PDB (as of July 2017). 
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There are several advantages that NMR spectroscopy provides in protein structure 

determination as compared to other methods: experiments are carried out in a native-like 

environment both in solution-state NMR and solid-state NMR; the ability to obtain 

unique information about protein dynamics; and there is no need to crystallize proteins 

into diffractable crystals. One of the big disadvantages of NMR spectroscopy is that 

structure determination is limited to relatively small proteins. 

Also, NMR spectroscopy complements x-ray crystallography in the structure 

determination of membrane proteins, especially in cases where a given protein cannot be 

crystallized. In cases where membrane proteins cannot be solubilized for solution-state 

NMR investigations, proteins can by studied by solid-state NMR in the microcrystalline 

state. An estimated 20%-30% of all genes in most genomes encode membrane proteins 

[16]. Membrane proteins are one of the main protein classes besides fibrous proteins, 

globular proteins, and disordered proteins. Also, membrane proteins are directly 

associated with the membranes of a cell or organelle and have myriads of functions that 

are crucial to many fundamental biological processes of organisms [17]. Highlighting just 

a few, these functions include: transport of ions, metabolites, and larger molecules 

(proteins and RNA) across membranes; relaying signals between the internal and external 

environment of a cell; targeting enzymes to the specific locations in the cell; controlling 

the composition of the membrane bilayer; maintenance and organization of the shape of 

cells and organelles [18]; recognition and defense against invading pathogens; and 

maintenance of lipid energy supply [17]. Because of the important roles they play, 

malfunctioning membrane proteins can be causal agents in a large variety of diseases. For 

example, malfunctioning ion channels can cause neurological and cardiac diseases [19], 
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[20]. Color blindness is caused by nonfunctional photoreceptors [21]. Cystic fibrosis is 

caused by mutations that lead to the misfolding of a chloride transporter in the lung [22]. 

3D structure and dynamics are needed in order to mechanistically understand how 

specific membrane proteins function in biological and disease processes and for 

structure-based (rational) drug design. Also, more than 50% of all current drug targets are 

membrane proteins [18], [23]. Unfortunately, only a relatively small number of these 

membrane protein 3D structures have been characterized. Membrane proteins account for 

less than 1% of the proteins with known 3D structure (~700 unique structures [24] out of 

~121831 structure entities in the PDB [14]). Membrane proteins remain hard to study by 

traditional methods, because their structures depend on complex membrane environments 

[25]. 

Another class of proteins that are difficult to study by classical approaches is 

amyloid fibrils. Amyloid refers to the abnormal fibrous protein aggregates found in 

organs and tissues [26]. Medical interest in amyloid fibrils comes from their involvement 

in a variety of diseases such as Alzheimer’s disease, type II diabetes, Parkinson’s disease, 

and Huntington’s disease [27]. 

2.2 Description of the protein resonance assignment problem 

2.2.1 Difference between solution-state and solid-state assignment strategies 

Both solution-state and solid-state protein NMR resonance assignment strategies 

are conceptually very similar to each other. However, software tools and algorithms  

developed for solution-state NMR cannot be directly applied to the solid-state NMR peak 

lists due to the fact that solution-state and solid-state utilize different NMR experiments 

and, as a result, different resonances are used to organize peaks into spin systems. Figure 
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3 demonstrates differences between typical resonances used in grouping peaks across 

multiple different peak lists for solution-state (Figure 3a) and solid-state (Figure 3b) 

protein NMR, i.e. a typical solution-state NMR assignment strategy utilizes 
1
H and 

15
N 

resonances to organize peaks into spin systems versus a typical solid-state NMR 

assignment strategy that uses a combination of 
13

CO, 
15

N, and 
13

CA resonances to 

assembly spin systems. However, in addition to 
13

C and 
15

N detection, new solid-state 

NMR experimental assignment strategies are being developed that utilize 
1
H resonance 

detection [11]–[13]. Table 1 and Table 2 summarize experimental assignment strategies 

employed in solution-state and solid-state protein NMR respectively, color-coded 

according to categories described by Figure 3a and Figure 3b. 

 

Figure 3. Standard dipeptide spin system definitions for protein resonance assignments in 

solution-state and solid-state NMR. Spin system root resonances are color coded: a) 

solution-state NMR assignment strategies based on 
1
H and 

15
N root definition found in all 

standard experiments used in spin system assembly; b) solid-state NMR is based on 

partial triple resonance root definition that utilizes 
13

C and 
15

N resonances and include 

one, two, or three resonances that are used in spin system assembly depending on the 

assignment strategy. 
 

 

a b 
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Table 1. Solution-state NMR experimental assignment strategies for protein resonance 

assignment. 

Category II 

(Hi–Ni) 
Hi–Ni 

Hi–Ni–COi-1 

Hi–Ni–(CAi)–COi 

Hi–Ni–(CAi-1)–COi-1 

Hi–Ni–CAi 

Hi–Ni–CAi-1 

Hi–Ni–(COi-1)–CAi-1 

Hi–Ni–(COi-1)–CAi-1CBi-1 

Hi–Ni–CAi-1CBi-1 

Hi–Ni–CAiCBi 

Hi–Ni–(COi-1)–CAi-1CBi-1CGi-1 

Hi–Ni–(COi-1CAi-1CBi-1CGi-1)–HAi-1HBi-1HGi-1 

Hi–Ni–(COi-1CAi-1CBi-1)–HAi-1HBi-1 

 

Table 2. Solid-state NMR experimental assignment strategies for protein resonance 

assignment. 

 

2.2.2 Protein resonance assignment problem description 

The protein resonance assignment problem can be represented as a bipartite 

graph: a graph whose vertices can be divided into two disjoint sets such that every edge 

connects a vertex in the first set to a vertex in the second set. One set is a collection of 

spin systems (SS) and the second ordered set represents the linear amino acid sequence 

(AA) of a protein. Figure 4 demonstrates the general case of the protein resonance 

assignment problem as a bipartite graph. 

The basic assignment problem is essentially the same mathematically for both 

solution-state NMR and solid-state NMR. Thus, a reliable common assignment strategy 

is implemented in the following basic steps: 1) peak list registration – alignment of 

Category I  

(Ni) 

Category IIa  

( COi–1–Ni) 

Category IIb 

(CAi–Ni) 

Combined 

IIa and IIb 

Category III 

(COi–1–Ni–CAi) 
CAi–Ni–COi–1 
Ni–CAi–CXi 

Ni–COi–1–CXi–1  

Ni–COi–1–CAi–1 
Ni–CAi–CAiCBi  

Ni–CAi–CBi  

Ni–COi–1–(CAi-1)–CAi-1–CBi-1  
Ni–COi–1–(CAi-1)–CBi-1 

Ni–CAi–COi 

COi–1–Ni–CAi  
COi–1–Ni–(CAi)–CXi  

Ni–COi–1–CXi-1  

Ni–COi–1–CAi-1  
COi–1–Ni–(CAi)–CBi 

COi–1–Ni–(CAi)–COi 

Ni–COi–1–(CAi-1)–CAi-1–CBi-1  
Ni–COi–1–(CAi-1)–CBi-1 

CAi–Ni–COi–1  
CAi–Ni–(COi–1)–CXi–1  

Ni–CAi–CXi  

Ni–CAi–CAiCBi  
Ni–CAi–CBi  

Ni–CAi–COi  

CAi–Ni–(COi–1)–CAi-1 
 

CAi–Ni–COi–1 
Ni–COi–1–CXi–1 

Ni–CAi–CXi 

CAi–Ni–COi–1–CXi–1  
COi–1–Ni–CAi–CXi 

CAi–Ni–COi–1–CAi-1  

COi–1–Ni–CAi–CBi 
COi–1–Ni–CAi–CAiCBi 

COi–1–Ni–CAi–COi 
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common dimensions between peak lists from different spectra; 2) peak list quality 

assessment – evaluation of the quality of input peak lists; 3) spin system grouping – 

grouping peaks from peak lists into spin systems using common root resonances; 4) 

amino acid typing – classification of dipeptide spin systems by possible amino acid type 

using chemical shift values; 5) linking – linking nearest-neighbor spin systems by 

matching sequential and intraresidue chemical shifts; 6) mapping – mapping linked spin 

system segments uniquely to the primary sequence(s) of the protein; 7) resonance 

assignment quality assessment – evaluation of the quality of the resulting resonance 

assignments. 

 

Figure 4. Bipartite graph representing the protein resonance assignment problem: black 

circles represent linear sequence of amino acids, where each letter is a single-letter amino 

acid code; blue ovals represent root resonances that were used to group peaks into spin 

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated 

with it; each ladder contains chemical shift values. 
 



13 

 

 

Figure 5. Multi-layered bipartite graph representing the protein resonance assignment 

problem with secondary structure information: black circles represent the linear sequence 

of amino acids, where each letter outside circle is a single-letter amino acid code; each 

letter inside circle designate secondary structure conformation (H – helix, S – strand, C – 

coil); blue ovals represent root resonances that were used to group peaks into spin 

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated 

with it; each ladder contains chemical shift values. 

 

It is known that chemical shift values are secondary-structure-dependent [28]. 

Thus, the inclusion of secondary structure information transforms the bipartite 

representation into a multi-layered bipartite graph representation with additional layers of 

edges and nodes. Figure 5 demonstrates the multi-layered bipartite graph representation 

where black edges between spin systems (blue ovals) and primary sequence (black 

circles) form the first layer bipartite graph, then gray edges between spin systems (blue 

ovals) and primary sequence (gray circles) form the second layer bipartite graph. Many 
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layers are possible depending on the different secondary structure combinations the 

primary protein sequence can have. 

In order to reduce the number of layers, prior information can be leveraged to 

predict secondary structure for specific parts of the primary sequence. The state of the art 

secondary structure prediction from sequence tools achieve very high prediction accuracy 

[29]. In addition, secondary structure information can be extracted from homologous 

protein structures generated by homology modeling tools. 

The number of edges can be reduced by the prediction of the most probable amino 

acids for particular chemical shifts within spin systems (either root and/or ladder 

chemical shift values). Figure 6 shows the protein resonance assignment problem where 

secondary structure information reduces the number of layers, and amino acid typing 

information reduces the number of edges. Leveraging redundancy in chemical shift 

values between intraresidue and sequential ladders spin systems can be linked together 

into a segment and then that segment can be mapped into a protein sequence. 
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Figure 6. Secondary structure prediction information limits the number of layers; amino 

acid typing limits the number of edges between spin systems and primary amino acid 

sequence; red chemical shift values identify spin system linking; red edges represent spin 

system mapping into the amino acid sequence. 

 

2.2.3 Example resonance assignment strategy using a set of solid-state NMR peak 

lists 

Figure 7 illustrates a combined Category IIa and IIb assignment strategy that 

utilizes three different peak lists derived from solid-state NMR experiments. The 3D 

NCOCX peaks  are composed of chemical shift values that belong to 
15

N of residue  , 

13
CO of residue    , and 

13
CX of residue     [30], with the resulting NCOCX peak 

list containing multiple peaks per spin system due to 
13

CX (any carbon) dimension. The 

3D CANCO peaks have chemical shift values from 
13

CA and 
15

N of residue  , and 
13

CO 

of residue     [31], with the resulting CANCO peak list containing a single peak per 

spin system. The 3D NCACX peaks contain chemical shift values from 
15

N, 
13

CA, and 

13
CX of the same residue   [30], with the resulting NCACX peak list containing multiple 
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peaks per spin system due to 
13

CX dimension. The 
15

N of residue   and 
13

CO of residue 

    chemical shift values can be used to group peaks into spin systems between the 

NCOCX and CANCO peak lists, then the 
15

N and 
13

CA of residue   chemical shift values 

can be used to group peaks into spin systems between the NCACX and CANCO peak 

lists. Together, both groupings form global spin systems across all three peak lists. 

 

Figure 7. Example of solid-state NMR assignment strategy based on NCOCX, CANCO, 

and NCACX experiments. 
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Figure 8. NCACX, CANCO, and NCOCX peak lists during the assignment process: a) 

unassigned peak lists; b) peaks that belong to the same spin system within single peak list as 

well as across different peak lists are identified; c) peaks that belong to the same spin 

system are isolated, grouped, and assigned; d) completely assigned peak lists. 
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The identified spin systems are used to calculate the list of most probable amino 

acids for each of the spin system’s ladders. Next, linking and mapping algorithms must 

be applied in order to uniquely assign the spin systems to the protein sequence. 

Figure 8 demonstrates the assignment strategy illustrated in Figure 7 in terms of 

peak lists: Figure 8a shows the unassigned NCOCX, CANCO, and NCACX peak lists. 

In Figure 8b, the groups of peaks within and across peaks lists are identified. Figure 8c 

shows isolated spin system group that has been typed and assigned. Figure 8d 

demonstrates completely assigned peak lists after each of the spin system groups are 

typed, linked, and uniquely mapped to the protein sequence. 

2.3 Currently available automated assignment tools 

2.3.1 Tools for automated assignment of solution-state NMR data 

This section provides an overview of the automated protein resonance assignment 

software tools and algorithms for the solution-state NMR. Table 3 shows a non-

exhaustive list of solution-state NMR tools published in the last 20 years or so. There are 

several major computational methods and approaches that are employed to address the 

automated resonance assignment problem: Monte Carlo/simulated annealing methods, 

evolutionary algorithms, exhaustive search, best-first heuristic and tree search 

approaches. 

Monte Carlo/simulated annealing methods [32], [33], [34], [35], [36] try to 

explore the landscape of all possible solutions and optimize the pseudo energy function in 

order to identify the global optimal resonance assignments. Genetic algorithm [37], [38], 

[39] approaches are related to Monte Carlo methods and try to identify the optimal 

resonance assignments through evolution of set of initial random individual solutions.  
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Table 3. Programs for automated resonance assignment of solution-state NMR data. 

Year 

published 
Program name Core methodology Grouping Registration 

1997 Buchler et al [32] 
Monte Carlo / 

simulated annealing 
Yes No 

1997 
AUTOASSIGN [40], 

[41] 
Heuristic best-first Yes Yes 

1997 GARANT [37] Genetic algorithm Yes No 

1997 Li et al [42] Heuristic best-first Yes No 

1997 Lukin et al [33] 
Monte Carlo / 

simulated annealing 
Yes No 

1998 CAMRA [43] 

Matching predicted 

shifts with observed 

spin systems 

Yes No 

1998 PASTA [34] 
Monte Carlo / 

simulated annealing 
Yes No 

2000 MAPPER [44] Exhaustive search Yes No 

2000 TATAPRO [45] Exhaustive search Yes No 

2002 Andrec et al [46] Exhaustive search Yes No 

2003 Reed et al [35] 
Monte Carlo / 

simulated annealing 
Yes No 

2003 IBIS [47] Heuristic best-first Yes No 

2003 MONTE [36] 
Monte Carlo / 

simulated annealing 
Yes No 

2003 PACES [48] Exhaustive search Yes No 

2004 MARS [49] Heuristic best-first Yes No 

2005 CASA [50] Depth-first tree search Yes No 

2005 PISTACHIO [51] 

Probabilistic 

identification of spin 

systems and their 

assignments 

Yes No 

2007 CISA [52] Connectivity graph Yes No 

2007 GASA [53] Connectivity graph Yes No 

2008 MATCH [38] Genetic algorithm Yes No 

2009 IPASS [54] 
Integer linear 

programming 
Yes No 

2010 SAGA [55] Depth-first tree search Yes No 

2012 FLYA [39] Genetic algorithm Yes Yes 

2013 EZ-ASSIGN [56] Exhaustive search Yes No 

 

The optimal solution is deduced through multiple cycles of mutation and recombination. 

Global and local optimization schemas might be used to guide the resonance assignment 

to the global optimum. Heuristic best-first approaches [40], [41], [42], [47], [49] try to 

identify the set of initial best unambiguous (complete, non-overlapped) segments of spin 
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systems and assign them first, then try to assign the more ambiguous (overlapped, 

incomplete) spin systems next. 

2.3.2 Tools for automated assignment of solid-state NMR data 

This section provides an overview of the automated protein resonance assignment 

software tools and approaches published recently that are designed specifically to handle 

the task of protein resonance assignment of peak lists derived from solid-state NMR 

experiments. The number of programs designed for solid-state NMR automated 

assignment is significantly smaller than the number of solution-state NMR automated 

assignment tools. Table 4 shows a list of programs designed to perform automated 

protein resonance assignment of solid-state NMR data. 

Table 4. Programs for automated resonance assignment of solid-state NMR data. 

Year 

published 
Program name Core methodology Grouping Registration 

2010 MC_ASSIGN1 [57] 
Monte Carlo/ 

simulated annealing 
Yes No 

2010 SASS [58] Heuristic best-first Yes Yes 

2013 ssFLYA [59] Genetic algorithm Yes Yes 

2014 GAMES_ASSIGN [60] Genetic algorithm Yes No 

 

In 2010, one of the first programs that demonstrated feasibility of automated 

protein resonance assignment on solid-state NMR peak lists was the MC_ASSIGN1[57]. 

The MC_ASSIGN1 algorithm uses protein sequence and a limited set of 2D peak lists, 

N(CA)CX and N(CO)CX, in order to generate sequential resonance assignment. The 

approach is based on a Monte Carlo/simulated annealing computational algorithm. The 

algorithm tries to assign each peak within N(CA)CX and N(CO)CX to every residue 

within protein sequence using global optimization score function. During the algorithm 

execution, this score function tries to maximize the number of “good connections” and 
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minimize the number of “bad connections”, number of “edges”, and number of unused 

peaks. The MC_ASSIGN1 algorithm was tested against uniformly labeled HET-s(218–

289) fibrils with known manual assignments. 

Another early approach that demonstrated tractability of automated protein 

resonance assignment using solid-state NMR peak list was the SASS software [58]. The 

program also used a limited set of solid-state NMR experiments, 3D NCACX, 3D 

CAN(CO)CA, and 4D CANCOCX in order to produce the resonance assignments of 56 

amino acids long GB1 protein with known manual assignments. The design of the 

program is similar to the solution NMR assignment package AutoAssign [40], [61]–[63]. 

It implements the prototype grouping, and typing algorithms, but uses linking and 

mapping algorithms from the AutoAssign. The prototype program was able to achieve 

84.1% assignment of the 
15

N, 
13

CO, 
13

CA, and 
13

CB resonances with no errors. Both 

MC_ASSIGN1 and SASS programs represented a proof of concept software tools that 

demonstrate the tractability of the automated protein resonance assignment problem. 

Later, in 2013, the algorithm called ssFLYA was developed within the automated 

resonance assignment and structure calculation program CYANA [59]. This approach 

was developed on the basis of FLYA algorithm for automated assignment of solution-

state NMR peak lists within same CYANA software [39]. The ssFLYA algorithm is able 

to handle more standard 2D and 3D solid-state NMR peak lists such as 3D NCACB, 3D 

CAN(CO)CA, 3D CANCO, 3D NCACO, 3D NCACX, 3D NCOCA, 3D NCOCX, 2D 

NCO, and 2D NCA. The resonance assignment solutions are generated by comparing the 

set of measured peaks with known positions to the set of expected assigned peaks with 

unknown positions. The resonance assignment process relies on a global evolutionary 
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optimization algorithm and local optimization routine that takes back and tries to reassign 

small parts of the generated assignment. Initial set of solutions is generated randomly. 

The recombination procedure is used to generate a new generation of resonance 

assignment solutions from the previous generation. The scoring function is used in order 

to select the best resonance assignment solutions and the solution that maximizes the 

scoring function is then reported as the final solution. The algorithm was applied to peak 

lists from four different proteins: microcrystals of ubiquitin and Ure2 prion C-terminal 

domain amyloids of HET-s(218–289) and α-synuclein. 

In 2014, the algorithm called GAMES_ASSIGN (Genetic Algorithm using 

Maximum Entropy for Solid state NMR resonance ASSIGNments of proteins) was 

published. This algorithm uses standard solid-state NMR experiments such as 3D 

NCACX, 3D NCACO, 3D NCOCX, 3D NCOCA, 3D CONCA. The algorithm proceeds 

in three phases. In the first phase, spin systems are generated by pairing peaks one by 

one. In the second phase, resonance assignments are generated by pairing generated spin 

systems to the specific positions within protein sequence. Both the first and second 

phases are repeated a number of times in order to generate the set of candidate resonance 

assignment solutions. A genetic algorithm with mutation and recombination is applied at 

these phases in order to guide the creation best candidate solutions. Statistics are 

generated during the first two phases, including how many times a certain peak was 

assigned to a particular position within the protein sequence. In the third phase, the final 

consensus resonance assignments are generated utilizing the statistics information 

obtained in the first and second phases. Peak lists from three different proteins were used 

to evaluate the performance: GB1, ubiquitin, and CsmA. 
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CHAPTER 3 

PROJECT DESIGN OVERVIEW 

 

3.1 Overview 

This chapter provides a high-level overview of the algorithms and data structures 

necessary to model and solve the protein resonance assignment problem. In order to 

model the overall protein resonance assignment problem, the Unified Modeling 

Language (UML) was used to describe which algorithms and objects are necessary to 

implement. 

3.2 Modeling of the protein resonance assignment problem using UML 

3.2.1 Design of core entities 

Several groups of entities that handle different aspects of the protein resonance 

assignment problem are defined (Figure 9). Processing/Management Entities 

are responsible for parsing peak lists, parsing protein sequences, and creating supporting 

entities. Physical Entities are designed to represent real objects such as a peak 

list, peak, protein sequence, etc. Descriptive Entities model the objects that are 

necessary for the description of the protein resonance assignment problem, such as a list 

of expected resonance values for each specific monomer, a description of monomers, a 

description of spectra, a description of resonance classes, etc. Characterized 

Entities are objects that combine prior information such as secondary structure 

prediction and homology modeling with descriptive entities.
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Potential Assignment Entities enable the mapping of spin systems to 

Characterized Entities representing sequence sites in the protein sequence(s). 

Algorithmic Entities are classes and methods that directly solve the protein 

resonance assignment problem. 

 

Figure 9. UML class dependency diagram that represents the overall design of data 

structures and algorithms for the automated protein resonance assignment. 
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Entities in Figure 9 are connected using different types of connectors: a simple 

line represents weak association between entities; a line with filled diamond represents 

composition relationships between entities, when object of one type is composed of 

object of another type and cannot exist independently; a line with empty diamond 

represents aggregation relationships between entities, when object of one type is 

composed (weaker composition) of object of another type, but they can exist 

independently; a line with an arrow represents inheritance relationships between entities, 

when one object extends the functionality of another object. 

 
Figure 10. UML class dependency diagram of PeakListParser objects representing 

inheritance relationships. 

 

Figure 10 shows class dependency diagram for entities responsible for parsing 

experimental peak lists into a PeakList object. Here three concrete peak list parsers 

SparkyPeakListParser, AutoAssignPeakListParser, and 

JSONPeakListParser inherit from an abstract PeakListParser object. This 

design provides an abstract common peak list parsing interface and each of the concrete 

peak lists parsers implement their own specific parse() method to address the specific 
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parsing requirements of each peak list format. Additional peak list parsers can be easily 

defined by subclassing the abstract PeakListParser object. 

Figure 11 shows the class dependency diagram for the PeakFilter objects 

that is not shown on the main diagram. Here an abstract PeakFilter object provides a 

common interface that specifies a list of parameters (filter_parameters) for the 

concrete peak filters. Currently, only ChemShiftPeakFilter is applied to filter out 

artefact peaks that are present within experimental peak lists, using minimum and 

maximum chemical shift ranges for 
13

C, 
15

N, and 
1
H dimensions. In addition, an abstract 

PeakFilter class has the filterlist static method that operates on a peak list and 

uses list of specified filters to filter out unwanted peaks. Additional peak filters can be 

specified by subclassing PeakFilter class, for example, peak filters based on peak 

intensity or line width. 

 
Figure 11. UML class dependency diagram of PeakFilter objects representing 

inheritance relationships. 

 

Figure 12 shows an AssignmentProblem entity representing an entry point 

that uses different configuration files in order to facilitate creation of the other entities. It 

mostly consists of static methods that orchestrate the creation of all other entities, 

therefore it has weak association relationships with all entities it creates. 

The composite design pattern is used in several places in the implementation, 

allowing us to treat complex objects the same way as a primitive object. Here the 
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PeakComponent represents an abstract class that provides a common interface for both 

the Peak and PeakGroup objects. Each Peak object represents a simple individual 

peak within the peak list. The PeakGroup object represents a more complex entity that 

can consists of multiple peaks, hence the PeakGroup name. The key idea is that groups 

of peaks can be manipulated in exactly the same way as each individual peak. 

 
Figure 12. UML diagram of AssignmentProblem entity representing weak 

association relationships. 

 

 
Figure 13. UML diagram of composite design pattern. 
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This concept is applied during the single and pairwise peak lists registration and 

grouping algorithms (Chapter 5 and 6) in order to create peak lists that consist of groups 

of peaks that belong to the same spin systems (local spin system groups) instead of 

individual peaks. This allow the algorithm to build global spin systems via pairwise 

comparison through merging peak groups and treat those peak groups as if they were 

individual peaks. Figure 14 demonstrates an example of the resulting tree structure, 

where peak groups can consist of individual peaks (groups #1, #2, and #3) as well as 

mixture of peak groups and individual peaks (groups #4 and #5). In this context, both 

peaks and peak groups are treated as if they were same type of object. 

 
Figure 14. Example of tree structure that can be built with composite design pattern. 

 

Figure 15 shows an example of the composition relationships where a Peak 

object is composed of multiple Dimension objects and each dimension has its 

corresponding Resonance object, and this group of objects cannot exist independently 

of each other. 

 
Figure 15. UML diagram of Peak, Dimension, and Resonance entities representing 

weak composite relationships. 
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3.2.2 Design of configuration files 

To facilitate the creation of required entities, several configuration files using the 

JSON file format were developed. The use of JSON file format is a very important 

implementation decision: i) there are JSON parsers in every major computer language, 

facilitating future integration of this project with other major NMR software, ii) JSON is 

more human-readable than XML, and iii) all configuration files will have the same well-

known base JSON file format, making them easier to understand and to maintain, iv) the 

use of human-readable and editable configuration files allows us to isolate important 

aspects of the protein resonance assignment problem such as description of the spectra 

from the actual code implementation, allowing the creation of generic algorithms that are 

capable of working on both solution-state and solid-state protein resonance assignment 

data. 

The spectra_description.json file stores information about peak 

descriptions for different types of NMR experiments, enabling the easy incorporation of 

future solution-state and solid-state NMR experiments. Figure 16 shows an example of 

spectral descriptions for the solid-state NMR experiments. 

The resonance_classes.json configuration file stores all available 

individual as well as composite resonances that are available for every monomer. This 

configuration file allows the representation of each peak description in terms of generic 

resonance classes rather than amino acid specific resonance types. Figure 17 shows an 

example configuration file that describes resonance classes. 
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{ 

    "NCA": { 

        "Labels": ["N", "CA"], 

        "MinNumberPeaksPerSpinSystem": 1, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["N", "CA"]} 

        ] 

    }, 

 

    "NCO": { 

        "Labels": ["N", "CO-1"], 

        "MinNumberPeaksPerSpinSystem": 1, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["N", "CO-1"]} 

        ] 

    }, 

 

    "NCACX": { 

        "Labels": ["N", "CA", "CX"], 

        "MinNumberPeaksPerSpinSystem": 2, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["N", "CA", "CO"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CA"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CB"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CG"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CD"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CE"]}, 

            {"fraction": 1, "dimensions": ["N", "CA", "CZ"]} 

        ] 

    }, 

 

    "NCOCX": { 

        "Labels": ["N", "CO-1", "CX-1"], 

        "MinNumberPeaksPerSpinSystem": 2, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CA-1"]}, 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CB-1"]}, 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CG-1"]}, 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CD-1"]}, 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CE-1"]}, 

            {"fraction": 1, "dimensions": ["N", "CO-1", "CZ-1"]} 

        ] 

    }, 

 

    "CANCO": { 

        "Labels": ["CA", "N", "CO-1"], 

        "MinNumberPeaksPerSpinSystem": 1, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1"]} 

        ] 

    }, 

 

    "CANCOCX": { 

        "Labels": ["CA", "N", "CO-1", "CX-1"], 

        "MinNumberPeaksPerSpinSystem": 2, 

        "PeakDescriptions": [ 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CO-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CA-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CB-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CG-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CD-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CE-1"]}, 

            {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CZ-1"]} 

        ] 

    } 

} 
Figure 16. Example of spectra description file for the solid-state NMR experiments. 
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{ 

    "CA": ["CA"], 

    "CB": ["CB"], 

    "CG": ["CG", "CG1", "CG2"], 

    "CD": ["CD", "CD1", "CD2"], 

    "CE": ["CE", "CE1", "CE2", "CE3"], 

    "CZ": ["CZ", "CZ2", "CZ3"], 

    "CO": ["C"], 

    "C":  ["C"], 

    "CX": ["CA", "CB", "CG", "CG1", "CG2", "CD", "CD1", "CD2", "CE",  

           "CE1", "CE2", "CE3", "CZ", "CZ2", "CZ3", "C"], 

 

    "H":  ["H"], 

    "HN": ["H"], 

    "HA": ["HA", "HA2", "HA3"], 

    "HB": ["HB", "HB2", "HB3"], 

    "HG": ["HG", "HG1", "HG12", "HG13", "HG2", "HG3"], 

    "HD": ["HD1", "HD2", "HD21", "HD22", "HD3"], 

    "HE": ["HE", "HE1", "HE2", "HE21", "HE22", "HE3"], 

    "HH": ["HH", "HH11", "HH12", "HH2", "HH21", "HH22"], 

    "HZ": ["HZ", "HZ2", "HZ3"], 

 

    "N":  ["N"], 

    "ND": ["ND1", "ND2"], 

    "NE": ["NE", "NE1", "NE2"], 

    "NZ": ["NZ"] 

} 
Figure 17. Example of resonance classes configuration file. 
 

    "Helix": { 

        "A": { 

            "CA": { 

                "ExpectedChemShift": 54.83,  

                "Stdev": 1.05 

            },  

            "CB": { 

                "ExpectedChemShift": 18.26,  

                "Stdev": 0.88 

            },  

            "CO": { 

                "ExpectedChemShift": 179.4,  

                "Stdev": 1.32 

            },  

            "HA": { 

                "ExpectedChemShift": 4.03,  

                "Stdev": 0.33 

            },  

            "HB": { 

                "ExpectedChemShift": 1.35,  

                "Stdev": 0.29 

            },  

            "HN": { 

                "ExpectedChemShift": 8.08,  

                "Stdev": 0.52 

            },  

            "N": { 

                "ExpectedChemShift": 121.44,  

                "Stdev": 2.37 

            } 

        }, ... 

    ... 
Figure 18. Example of expected values configuration file. 
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The expected_values.json configuration file contains information about 

expected chemical shift and standard deviation statistics. Expected values for 
13

Cα, 
13

Cβ, 

13
CO, 

15
N, 

1
H, and 

1
Hα were derived from RefDB [64], statistics for 

13
Cγ, 

13
Cδ, 

13
Cε, 

1
Hβ, 

1
Hγ, 

1
Hδ, 

1
Hε, and others were derived from BMRB [15]. An example configuration 

file with information about expected chemical shift values for different secondary 

structures is shown on Figure 18. 

3.2.3 Description of algorithms 

3.2.3.1 Peak list registration algorithm 

The peak list registration algorithm provides necessary registration offsets and 

peak list quality statistics necessary to group peaks into spin systems. The peak list 

registration algorithm executes in two modes: i) self-registration for a single peak list that 

contains multiple peaks per spin system; ii) pairwise-registration for two different peak 

lists. This is one of the most computationally expensive steps in implementation. Due to 

this fact, it is implemented as a stand-alone C++ program to improve efficiency of the 

algorithm. This alignment algorithm provides: (i) the best mapping of peaks from an 

“input” peak list to the “root” peak list for their comparable dimensions; (ii) the 

registration for translating the “input” peak list to the “root” peak list in their comparable 

dimensions; and (iii) the standard deviations of this registration, which are needed to 

calculate match tolerances. 

3.2.3.2 Spin system grouping algorithm 

The spin system grouping algorithm utilizes the registration algorithm in order to 

infer match tolerance values for a single peak list first and then for multiple different 

peak lists and therefore consists of two sub-algorithms – one for single peak lists spin 

system grouping and the other one for grouping peaks from several different peak lists. 
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By applying the self-registration algorithm, the uncertainty in the chemical shift values of peak 

lists that have more than one peak per spin system be statistically analyzed. Next, the algorithm 

performs an averaging of root resonance values of these initial peak groups to improve their 

estimation of chemical shift values in terms of their standard error. The pairwise grouping 

algorithm merges peaks across different peak lists using statistics derived from the pairwise-

registration algorithm. 

3.2.3.3 Amino acid typing algorithm 

This algorithm creates an ordered list of the highest probable amino acid types for 

each spin system. Most of the current amino acid typing algorithms use chemical shift 

statistics directly derived from BMRB, without considering secondary structure and 

resonance covariance information. However, it is well-known that chemical shift values 

for Cα and Cβ are secondary-structure-dependent [28]. The Re-referenced Protein 

Chemical shift Database (RefDB) [64] contains corrected or re-referenced expected 

chemical shift values, derived from the BMRB, but organized in tables depending on the 

protein secondary structure conformation: coil, helix, beta strands, and average of three. 

Therefore, RefDB secondary-structure-specific tables for the underlying chemical shift 

statistics are used within Bayesian-based amino acid typing algorithm. 

3.2.3.4 Linking and mapping algorithms 

The goal of the linking algorithm is to identify nearest neighbor spin systems 

through the redundancy information present between intraresidue and sequential ladders 

during the global spin systems comparison. Identified neighbor spin systems are then 

linked together into longer segments. Next, the goal of mapping algorithm is to map the 

generated segments to the most probable locations within the protein sequence. Linking 
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and mapping algorithms are described in more detail in the future directions section of 

Chapter 7. 
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CHAPTER 4 

NMRSTARLIB – TOOL FOR ACCESSING AND MANIPULATING 

NMR-STAR FILES 

 

4.1 Overview 

The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of 

Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It 

is an important resource for many researchers using NMR to study structural, 

biophysical, and biochemical properties of biological macromolecules. It is primarily 

maintained and accessed in a flat file ASCII format known as NMR-STAR. While the 

format is human readable, the size of most BMRB entries makes computer readability 

and explicit representation a practical requirement for almost any rigorous systematic 

analysis. 

To aid in the use of this public resource, the package called nmrstarlib in the 

popular open-source programming language Python was developed. The nmrstarlib’s 

implementation is very efficient, both in design and execution. The library has facilities 

for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing 

them into usable Python dictionary- and list-based data structures, making access and 

manipulation of the experimental data very natural within Python programs (i.e. 

“saveframe” and “loop” records represented as individual Python dictionary data 

structures). Another major advantage of this design is that data stored in 
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original NMR-STAR can be easily converted into its equivalent JavaScript Object 

Notation (JSON) format, a lightweight data interchange format, facilitating data access 

and manipulation using Python and any other programming language that implements a 

JSON parser/generator (i.e., all popular programming languages). Also tools to easily 

access and visualize assigned chemical shift values and to convert between NMR-STAR 

and JSONized NMR-STAR formatted files were developed. The nmrstarlib package can 

also be used to generate a wide range of simulated peak lists and introduce multiple 

sources of variance in order to generate more realistic data sets. The full API Reference 

Documentation, User Guide and Tutorial with code examples are also available online 

[65]. 

The library was tested on all current BMRB entries: 100% of all entries are parsed 

without any errors for both NMR-STAR version 2.1 and version 3.1 formatted files. Also 

comparison of software to three currently available Python libraries is provided for 

parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR. 

The nmrstarlib is a simple, fast, and efficient library for accessing data from the 

BMRB. The library provides an intuitive dictionary-based interface with which Python 

programs can read, edit, and write NMR-STAR formatted files and their equivalent 

JSONized NMR-STAR files. The nmrstarlib can be used as a library for accessing and 

manipulating data stored in NMR-STAR files and as a command-line tool to convert 

from NMR-STAR file format into its equivalent JSON file format and vice versa, 

generate a large number of simulated peak lists, and visualize chemical shift values. 
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The library was developed with the following use cases in mind: ability to access 

assigned chemical shift values, ability to access experimental peak lists if they are 

available, ability to generate a large number of simulated peak lists from assigned 

chemical shift values and account for multiple sources of variance. The following chapter 

provides the implementation description and various tests that were performed with the 

library using BMRB data. 

4.2 Introduction 

The Biological Magnetic Resonance Data Bank (BMRB) is a free, publicly-

accessible repository of data on peptides, proteins, and nucleic acids obtained through 

NMR Spectroscopy [15], that is part of the worldwide Protein Databank (wwPDB) [66]. 

It currently consists of more than 11,000 individual NMR-STAR file entries, containing a 

wide range of NMR spectral data, experimental details, and biochemical data collected 

from thousands of biological samples. The NMR-STAR format is based on the Self-

defining Text Archival and Retrieving (STAR) flat file database format [67], with some 

modifications specific to the BMRB. STAR provides a hierarchical dictionary structure 

for storing arbitrary data. In NMR-STAR, the format specifies top-level dictionaries 

called “saveframes”, which are used to categorize the data and meta-data about the 

experiment. Inside each saveframe is an arbitrarily number of key-value pairs and tables 

of records (loops). The key-value pairs store a single piece of information under a 

descriptive variable name. Each loop stores a table of records, each record containing a 

set of values representing individual fields in the record. There are currently two active 

versions of the BMRB: version 2.1 and version 3.1. While they both use the same NMR-
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STAR format at the most general level, the layout of the data in the two formats is 

different. 

Python is a free, open-source scripting language which runs on all major 

operating systems [68], [69]. It is designed to facilitate the development and maintenance 

of simple, efficient, and readable code. Python has object-oriented programming facilities 

and includes several high-level data structure objects in its standard library. Among these 

are the dictionary, a data structure implemented via the dict class that stores data as a 

set of key-value pairs (specific mappings between keys and values). The OrderedDict 

class is identical to the dict class except that the order of inserted keys-value pairs is 

remembered. This is particularly useful for categorical data with sequential relationships. 

The dictionary data structure is the most straightforward mechanism for representing and 

using data from NMR-STAR files, which have a nested, mostly dictionary-like structure 

themselves. However, to my knowledge no NMR-STAR parsing library using this design 

exists. The newest major version of Python (version 3.0.0), was initially released on 

2008-12-03, however many software libraries and utilities written in Python still use 

Python version 2.x exclusively. As Python version 3.1 brings many substantial 

improvements over Python 2.x (including the addition of the OrderedDict class, 

which was later back-ported to Python version 2.7 [70]). As of Python version 3.5 

OrderedDict is implemented in C, which makes it much faster than the Python 2.7 

implementation of OrderedDict. Moreover, in Python 3.6, the dict data structure 

implementation becomes ordered by default and dict and OrderedDict are more 

efficient than in any previous versions of Python. While support for Python 2.7 is 

provided for use by legacy code, I believe that researchers will prefer libraries and tools 
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written in latest version of Python (currently 3.6) in order to develop maintainable 

codebases, especially as Python version 2.x becomes less supported over time. Moreover, 

Python version 2.7 will no longer be maintained after the Spring of 2020 [71]. Two 

publically available Python libraries for parsing NMR-STAR format files PyStarLib [72] 

and NMRPyStar [73] both require Python version 2.7. PyNMRSTAR [74] works with 

both major versions of Python (2.7 and 3.3+). 

4.3 Implementation 

The nmrstarlib package consists of several modules: nmrstarlib.py, 

bmrblex.py, converter.py, csviewer.py, plsimulator.py, 

translator.py, and noise.py (Figure 19a). The nmrstarlib.py module 

(Figure 19c) provides the StarFile class, which implements a nested Python 

dictionary/list representation of a BMRB NMR-STAR file. Once a NMR-STAR 

formatted file is processed into a StarFile object, experimental data can be accessed 

directly from the StarFile object, using bracket accessors as with any regular Python 

dict object. The nmrstarlib.py module relies on the bmrblex.py module 

(Figure 19b) for processing of tokens. The bmrblex.py module provides the 

bmrblex generator – BMRB lexical analyzer (parser). Two versions of the bmrblex 

module are provided: a pure Python version (bmrblex.py) and a Python + C extension 

(bmrblex.pyx, cbmrblex.c) for faster performance. The compiled C extensions are 

implemented in the Cython programming language [75], which I will call the Cython 

implementation. If the Cython implementation of bmrblex fails for any reason, the 

library will use the Python implementation, ensuring that the library always works. 
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The library creates an internal representation of the NMR-STAR format as a 

nesting of OrderedDict objects with the top-level object StarFile inheriting from 

the OrderedDict class (Figure 19c). This allows the user to access data in its original 

NMR-STAR organization using familiar Python dictionary syntax. The library provides 

facilities to read data from NMR-STAR formatted files into an internal StarFile 

object, to access and make modifications to this StarFile object, and to save the 

resulting StarFile object as a new NMR-STAR formatted file. It is also possible to 

create NMR-STAR files from scratch using this library; however, this requires the user to 

adhere to the recommended layout for NMR-STAR formatted files by adding keys and 

values to the StarFile object in the appropriate order. 

The nmrstarlib.py module provides a memory-efficient read_files() 

generator function (Figure 19c) that yields (emits) StarFile objects, one at a time for 

each file parsed. When reading an NMR-STAR formatted file (Figure 20), the 

read_files() generator function first opens the file and passes a filehandle to the 

StarFile.read() method that reads the text into Python as a string and passes that 

string into the bmrblex object that then splits the text into tokens. As the bmrblex 

lexical analyzer keeps emitting valid tokens, the StarFile object is constructed 

sequentially. The StarFile object decides what type of token it is dealing with and 

chooses which internal method to call in order to construct itself, i.e. calls to 

StarFile._build_starfile(), Starfile._build_saveframe(), or 

StarFile._build_loop(). 
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a 

 

b 

 

c 

 
d 

 

e 

 

f 

 
g 

 

h 

 

Figure 19. Organization of the nmrstarlib package version 2.0.0. a) UML package 

diagram of the nmrstarlib library; b) UML class diagram of the bmrblex.py 

(bmrblex.pyx) module; c) UML class diagram of the nmrstarlib.py module; d) 

UML class diagram of the converter.py module; e) UML class diagram of the 

csviewer.py module; f) UML class diagram of the plsimulator.py module; g) 

UML class diagram of the translator.py module; h) UML class diagram of the 

noise.py module. 
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For example, Figure 20 shows the function call diagram during the StarFile 

object creation: the _build_saveframe() method is called 25 times and 

_build_loop() is called 37 times, meaning that the NMR-STAR file consists of 25 

different saveframe categories and 37 loops. The total number of tokens processed is 

equal to 36,155 = 27 (from _build_starfile) + 786 (from _build_saveframe) 

+ 35,342 (from _build_loop). 

Each saveframe category is also an OrderedDict data structure that can be 

accessed by saveframe name as the key from the top-level StarFile object. Once a 

saveframe dictionary is constructed and populated with key-value pairs, it descends 

further into each loop and constructs a tuple of two lists: the first list 

corresponding to loop field keys (loop field names); the second list consists of 

OrderedDict objects corresponding to loop rows (loop records) in the original NMR-

STAR file. By the end of parsing, a single nested dictionary/list structure in the form of a 

StarFile dictionary object (Figure 21b) is constructed, emulating the structure of the 

original NMR-STAR formatted file (Figure 21a). In addition, comments can be parsed 

and included as additional key-value pairs within the nested dictionary structure. 

The nmrstarlib.py module provides a GenericFilePath (Figure 19c 

and Figure 20) object that is used by the read_files() generator function in order to 

open NMR-STAR formatted files from many different sources: a single file on a local 

machine; a URL address of a single file; a directory of files on a local machine; an 

archive of files on a local machine; a URL address of an archive of files; or the BMRB id 

of a single file. 
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Figure 20. Diagram showing what function calls are made during the process of 

StarFile object creation. 

 

To write from a StarFile object to an NMR-STAR formatted file, the library 

recursively crawls through the StarFile dictionary structure, formatting and printing 

each of the keys and corresponding values sequentially. This allows to recall the 

sequential order of the original NMR-STAR formatted file, due to the stored ordering of 

key insertion from the underlying OrderedDict objects. Using Python’s json library, 

the entire StarFile dictionary structure can be saved as JSON (JavaScript Object 

Notation), which is an open, human-readable, lightweight data exchange format that is 

readable by most programming languages via optimized parsing libraries. This JSON 

conversion of StarFile objects greatly facilitated the implementation of the 

converter.py module which converts original NMR-STAR formatted files into their 

equivalent JSONized NMR-STAR files and vice versa. The converter.py module 
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(Figure 19d) consists of a single Converter class which can convert in both one-to-

one (single file) and many-to-many (directory or archive of files) modes.  

a b 

data_336 

 

save_entry_information 

  _Entry.Sf_category  entry_information 

  _Entry.Sf_framecode  entry_information 

  _Entry.ID  336 

  _Entry.Title   

; 

1H-NMR studies of structural homologies between 

the heme environments in horse cytochrome c and 

in cytochrome c-552 from Euglena gracilis 

; 

  _Entry.Type  macromolecule 

  _Entry.Version_type  update 

  _Entry.Submission_date  1995-07-31 

  _Entry.Accession_date  1996-04-12 

  _Entry.Last_release_date  . 

  _Entry.Original_release_date  . 

  _Entry.Origination  BMRB 

  _Entry.NMR_STAR_version  3.1.1.61 

  _Entry.Original_NMR_STAR_version  . 

  _Entry.Experimental_method  NMR 

  _Entry.Experimental_method_subtype  . 

  _Entry.Details  . 

  _Entry.BMRB_internal_directory_name  . 

  loop_ 

    _Entry_author.Ordinal 

    _Entry_author.Given_name 

    _Entry_author.Family_name 

    _Entry_author.First_initial 

    _Entry_author.Middle_initials 

    _Entry_author.Family_title 

    _Entry_author.Entry_ID 

   1 Regula Keller . M. . 336 

   2 Kurt Wuthrich . . . 336 

  stop_ 

save_ 

{ 

  "data": "336", 

  "save_entry_information": { 

    "Entry.Sf_category": "entry_information", 

    "Entry.Sf_framecode": "entry_information", 

    "Entry.ID": "336", 

    "Entry.Title": "\n;\n1H-NMR studies of 

structural homologies between the heme 

environments in horse \ncytochrome c and in 

cytochrome c-552 from Euglena gracilis\n;", 

    "Entry.Type": "macromolecule", 

    "Entry.Version_type": "update", 

    "Entry.Submission_date": "1995-07-31", 

    "Entry.Accession_date": "1996-04-12", 

    "Entry.Last_release_date": ".", 

    "Entry.Original_release_date": ".", 

    "Entry.Origination": "BMRB", 

    "Entry.NMR_STAR_version": "3.1.1.61", 

    "Entry.Original_NMR_STAR_version": ".", 

    "Entry.Experimental_method": "NMR", 

    "Entry.Experimental_method_subtype": ".", 

    "Entry.Details": ".", 

    "Entry.BMRB_internal_directory_name": ".", 

    "loop_0": [ 

      [ 

      "Entry_author.Ordinal", 

      "Entry_author.Given_name", 

      "Entry_author.Family_name", 

      "Entry_author.First_initial", 

      "Entry_author.Middle_initials", 

      "Entry_author.Family_title", 

      "Entry_author.Entry_ID" 

      ], 

      [ 

        { 

        "Entry_author.Ordinal": "1", 

        "Entry_author.Given_name": "Regula", 

        "Entry_author.Family_name": "Keller", 

        "Entry_author.First_initial": ".", 

        "Entry_author.Middle_initials": "M.", 

        "Entry_author.Family_title": ".", 

        "Entry_author.Entry_ID": "336" 

        }, 

        { 

        "Entry_author.Ordinal": "2", 

        "Entry_author.Given_name": "Kurt", 

        "Entry_author.Family_name": "Wuthrich", 

        "Entry_author.First_initial": ".", 

        "Entry_author.Middle_initials": ".", 

        "Entry_author.Family_title": ".", 

        "Entry_author.Entry_ID": "336" 

        } 

      ] 

    ] 

  } 

} 

Figure 21. Internal StarFile object representation and correspondence to NMR-

STAR format without comments: a) An example of a NMR-STAR formatted file; b) 

StarFile dictionary representation equivalent to the NMR-STAR formatted file and 

the JSONized version of the NMR-STAR file. 
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The converter.py module relies on the translator.py module (Figure 

19g) in order to decide what type of conversion to perform, i.e. convert between NMR-

STAR format and JSONized NMR-STAR format (StarFileToStarFile) or from 

NMR-STAR file to peak list file (StarFileToPeakList). 

The plsimulator.py (Figure 19f) module provides facilities necessary to 

generate different types of simulated peak lists. The noise.py module (Figure 19h) 

provides a NoiseGenerator class that is responsible for addition of random normal 

noise to peaks during simulated peak list creation. 

In order to simplify access to assigned chemical shift data, the csviewer.py 

module was created (Figure 19e) that includes the CSViewer class that can access both 

the NMR-STAR version 2.1 and version 3.1 assigned chemical shifts loop and visualize 

(organize) chemical shift values by amino acid residue type, and save this visualization as 

an image file or a pdf document (Figure 22). The csviewer.py module requires the 

graphviz Python library [76] in order to create an output file. In addition to visualizing 

chemical shift values, the csviewer.py module provide code example for utilizing the 

nmrstarlib library. 

 
Figure 22. Example of output file: chemical shifts organized by amino acid residue type 

produced by csviewer.py module. 
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Overall, the nmrstarlib package can be used in two ways: 1) as a library for 

accessing and manipulating data stored in NMR-STAR formatted files, converting 

between NMR-STAR and its equivalent JSON format, create set of simulated peak lists, 

and visualizing assigned chemical shift values; or 2) as a standalone command-line tool 

for converting files in bulk and visualizing assigned chemical shift values. The docopt 

Python library [77] was utilized to create the nmrstarlib package command-line interface. 

4.4 Results 

4.4.1 Performance on NMR-STAR formatted files 

As part of nmrstarlib’s development process, the library was tested extensively 

against the entire BMRB for both NMR-STAR version 2.1 and version 3.1 [78]. To 

measure the performance speed of the nmrstarlib library, a simple program was used that 

accesses NMR-STAR files from local directory one file at a time, which then creates a 

StarFile object and records how much time in seconds it took to create the object. 

Table 5. The nmrstarlib library performance test against NMR-STAR formatted files 

using pure Python and Python with C extension and against JSONized NMR-STAR files 

using the standard Python library json parser and the UltraJSON (ujson) 3
rd

 party 

library. 

 
NMR-

STAR 2.1 

NMR-

STAR 3.1 

JSONized 

NMR-STAR 2.1 

JSONized 

NMR-STAR 3.1 

Number of files 11,270 11,244 11,270 11,244 

Total size of files, GB 1.1 1.8 4.6 22.0 

Time, sec 

Pure Python json 326 1,100 30 130 

Python with C 
extension 

*ujson 320 423 27 126 

Average reading 

speed, KB/sec 

Pure Python json 3,290 1,700 158,549 176,479 

Python with C 
extension 

*ujson 3,351 4,421 176,166 182,082 

* Support for the ujson library for versions of Python is implemented starting with Python 3.6, because the ujson 

library does not provide methods to keep the dict data structure in order when parsing from JSON files; however, 

starting with Python 3.6, the dict data structure is ordered by default. 

Table 5 shows that library was able to read the entire BMRB for both NMR-

STAR version 2.1 and version 3.1 without any errors. With the pure Python 

implementation, it took 1,110 sec (~18.3 min) and 326 sec (~5.4 min) to read NMR-
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STAR version 3.1 and NMR-STAR version 2.1, respectively. With the more efficient 

Cython implementation, it took 423 sec (~7 min) and 320 sec (~5.3 min) to read NMR-

STAR version 3.1 and NMR-STAR version 2.1, respectively. The metric kilobytes per 

second (KB/sec) was used, because files/sec would be a misleading metric due to widely 

varying files sizes in the BMRB and because read times scale almost linearly (Figure 23) 

with file size. As such, the nmrstarlib’s average reading speed is 1,700 KB/sec (NMR-

STAR 3.1) and 3,290 KB/sec (NMR-STAR 2.1) for the Python implementation and 

4,421 KB/sec (NMR-STAR 3.1) and 3,351 KB/sec (NMR-STAR 2.1) for the Cython 

implementation on the hardware used for testing. The NMR-STAR 3.1 is more 

comprehensive than NMR-STAR 2.1 and usually represents more experimental 

information and details. This additional complexity is computationally harder to parse. 

However, for Cython implementation the average reading speed for NMR-STAR 3.1 was 

faster than for NMR-STAR 2.1 due to multiline text pre-processing discussed in more 

detail in the next section. 

 
Figure 23. Graph showing the dependency of loading time into StarFile object from 

the size of file: a) Loading times for NMR-STAR 3.1 formatted files; b) Loading times 

for JSONized NMR-STAR 3.1 files. 
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4.4.2 Performance on JSONized NMR-STAR files 

Next, both NMR-STAR version 2.1 and version 3.1 files were converted into their 

equivalent JSON format and speed tests were performed again (Table 5). The reading 

times of both JSONized NMR-STAR version 2.1 and version 3.1 were significantly faster 

than read times of the original NMR-STAR formatted files: 130 sec (~2.2 min) and 30 

sec (~0.5 min) for NMR-STAR version 3.1 and NMR-STAR version 2.1, respectively, 

for the entire BMRB data set. The average read speed was 176,479 KB/sec and 158,549 

KB/sec for version 3.1 and version 2.1, respectively. Next, performance tests were 

repeated using another compiled JSON parsing third-party library, UltraJSON (ujson) 

[79]. The reading times and average reading speeds of JSONized NMR-STAR files were 

slightly faster than using the built-in json parser: 127 sec (182,082 KB/sec) and 27 sec 

(176,166 KB/sec) for version 3.1 and version 2.1 respectively (Table 5). 

Table 6. Converting NMR-STAR formatted files into their equivalent JSON format. 

 Directory zip archive tar.gz archive tar.bz2 archive 

Format 
NMR-

STAR 2.1 

NMR-

STAR 3.1 

NMR-

STAR 2.1 

NMR-

STAR 3.1 

NMR-

STAR 2.1 

NMR-

STAR 3.1 

NMR-

STAR 2.1 

NMR-

STAR 3.1 

Number of files 11,270 11,244 11,270 11,244 11,270 11,244 11,270 11,244 

Time, min 8 20 9 22 12 27 15 68 

Total size, MB 4,756 22,942 230 470 200 409 131 222 

 

Table 6 shows how much time it took to convert the entire BMRB into its 

JSONized version and how much disk space it occupied as uncompressed directory and 

as compressed zip and tar archives. Compressed zip and tar formats represent the entire 

BMRB database in a single file and save disk space. In order to simplify access, library 

provides facilities to directly read NMR-STAR files from zip and tar archives without the 

requirement to manually decompress and separate the archive into separate files first. 

Frequency polygons of loading times on Figure 24 show that the majority of NMR-

STAR and JSONized NMR-STAR files can be loaded into a StarFile object in less 
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than 1 second per file and JSONized NMR-STAR files can be loaded much faster than 

the original NMR-STAR files. Figure 24a and Figure 24b show that the fastest reading 

times were for parsing JSONized NMR-STAR files using the ujson and json parsers. 

However on Figure 24a, it is clear that the pure Python implementation outperformed the 

Cython implementation for some of the NMR-STAR 2.1 files (e.g. BMRB ID: 17192, 

16692). This is because those files contain saveframe categories deposited as very large 

multiline blocks of text and the majority of time is spent to pre-process them, equivalent 

NMR-STAR 3.1 files have those saveframes properly formatted and do not require extra 

time to pre-process multiline text blocks. For NMR-STAR 3.1 formatted files (Figure 

24b), the Cython implementation outperformed pure Python implementation in all cases. 

 
Figure 24. Frequency polygon of loading times for NMR-STAR files: a) Comparison of 

loading times between NMR-STAR 2.1 and JSONized NMR-STAR 2.1; b) Comparison 

of loading times between NMR-STAR 3.1 and JSONized NMR-STAR 3.1. 

 

4.4.3 Comparison to similar existing software 

Using the entire BMRB, speed performance tests between the nmrstarlib package 

and the three other publically available Python libraries for reading NMR-STAR 

formatted files were performed: PyStarLib [72], NMRPyStar [73], and PyNMRSTAR 

[74]. For each of these libraries, a simple Python program that loads a NMR-STAR 
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formatted file from a directory, creates an object representation, and then reports how 

much time it took to process each file. Results of these comparisons are summarized in 

Table 7. For the pure Python implementation, PyStarLib showed the fastest reading time: 

239 sec (~4 min) and 796 sec (~13.3 min) for NMR-STAR version 2.1 and version 3.1 

respectively, but it was not able to parse 0.43 % (48 files) NMR-STAR version 2.1 and 

4.08 % (459 files) NMR-STAR version 3.1. All errors occurred inside a function that is 

responsible for processing multiline quoted text, which uses regular expressions to 

collapse multiline quoted text into a single token. The most probable cause for these 

errors is a regular expression that is not capable of handling all edge cases. Examples of 

failures include files where: i) multiline quoted text included a semicolon character inside 

the text; ii) multiline quoted text that is not followed by the new line character; and iii) 

multiline quoted text followed by a loop. 

Table 7. Performance comparison of nmrstarlib to other Python libraries. 

 nmrstarlib PyStarLib NMRPyStar PyNMRSTAR 

Parsing NMR-STAR 2.1 

Number of files 11,270 11,270 11,270 11,270 

Time, sec 

Pure Python 326 239 N/A 547 

Python with 

C Extension 
320 N/A N/A 144 

Success rate, % 100 99.57 0 100 

Parsing NMR-STAR 3.1 

Number of files 11,244 11,244 11,244 11,244 

Time, sec 

Pure Python 1,100 796 56,569 2,354 

Python with 

C Extension 
423 N/A N/A 538 

Success rate, % 100 95.92 100 100 

 

The pure Python implementation of the nmrstarlib package was the second fastest 

method 326 sec (~5.4 min) and 1,110 sec (~18.3 min) and, more importantly, parsed 

100% of files for both NMR-STAR 2.1 and NMR-STAR 3.1, respectively. The 

NMRPyStar library showed the slowest results, taking 56,569 sec (~15.7 hours) to 
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process NMR-STAR version 3.1 and was not able to read any of the NMR-STAR version 

2.1 files (error status code was reported by the program during execution). Both the 

nmrstarlib and PyNMRSTAR provide Python + C extension implementations in order to 

speed up the tokenization process. The nmrstarlib performed faster than PyNMRSTAR 

on NMR-STAR 3.1 files: 423 sec (~7 min) versus 538 sec (~9 min). However, 

PyNMRSTAR was faster than nmrstarlib on NMR-STAR 2.1 files: 144 sec (~2.4 min) 

versus 320 sec (~5.3 min). Overall, the nmrstarlib (Python + C extension 

implementation) was the fastest method to read NMR-STAR 3.1 files, and PyNMRSTAR 

(Python + C extension implementation) was the fastest method to read NMR-STAR 2.1 

files. However, when using the JSONized versions of NMR-STAR files with the 

nmrstarlib library, parsing speed can be further improved to 30 sec for NMR-STAR 2.1 

and 130 sec for NMR-STAR 3.1 (see Table 5). 

All tests were performed on a single workstation desktop computer with Intel(R) 

Core(TM) i7-4930K CPU @ 3.40GHz processor, 64 GB memory, and a solid-state drive. 

The latest stable version of Python (Python 3.6.0) was used to compare libraries. Python 

version 2.7 was used for libraries that do not support the latest version of Python. 

4.5 Discussion 

4.5.1 The nmrstarlib interface 

To use nmrstarlib as a library, first import the library. Next, create a StarFile 

generator that will return StarFile instances one at a time from many different file 

sources: a local file, URL address of a file, directory, archive, BMRB id. Next, the 

StarFile object can be utilized like any built-in Python dict object. Table 8 shows 

common usage patterns for reading NMR-STAR files into StarFile objects, accessing 
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and manipulating data using bracket accessors, and writing StarFile objects back to 

both NMR-STAR and JSONized NMR-STAR formats. For more detailed examples, see 

“The nmrstarlib Tutorial” documentation available online [65]. 

Table 8. Common usage patterns for the nmrstarlib module. 

Usage Example 

Reading: 
sf_gen = nmrstarlib.read_files(‘path’) 

starfile = next(sf_gen) 

Access/Modification: 
starfile[‘saveframe’][‘key’] 

starfile[‘saveframe’][‘key’] = new_value 

Writing: 
starfile.write(fileobj, fileformat=‘nmrstar’) 

starfile.write(fileobj, fileformat=‘json’) 

 

Table 9. The nmrstarlib library command-line interface common usage patterns. 

Command Description Example 

convert Convert between NMR-

STAR and JSON formats 

$ python3 –m nmrstarlib convert bmr18569.str 18569.json \ 

          --from_format=nmrstar -–to_format=json 

 
$ python3 –m nmrstarlib convert 18569.json bmr18569.str \ 

          --from_format=json –-to_format=nmrstar 

plsimulate Convert NMR-STAR 

formatted file into 

simulated peak list file 

python3 -m nmrstarlib plsimulate \ 

        bmr18569.txt 18569_peaklist.txt HNcoCACB \ 

        --from_format=nmrstar --to_format=sparky 

 

python3 -m nmrstarlib plsimulate \ 

        18569 18569_peaklist.txt HNcoCACB \ 

        --from_format=nmrstar --to_format=sparky \ 

        --H_std=0.001 --N_std=0.01 --C_std=0.01 

csview View assigned chemical 

shifts 

$ python3 –m nmrstarlib csview 18569 \ 

          --csview_outfile=18569_cs_all  

          --csview_format=png 

 

$ python3 –m nmrstarlib csview 18569 \ 

          --aminoacids=GLU,THR  

          -–atoms=CA,CB,CG,CG2 \ 

          --csview_outfile=18569_cs_GLU_THR_CA_CB_CG_CG2 \ 

          --csview_format=png 

 

The nmrstarlib command-line interface provides several commands: the 

convert command in order to convert between NMR-STAR format and its equivalent 

JSON format; the plsimulate command to create simulated peak lists from assigned 

chemical shift values; the csview command for quick access to assigned chemical shift 

data of a single StarFile, organizing chemical shifts by amino acid residue type. 

Table 9 shows common usage examples for the convert, plsimulate and csview 
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commands. For a full list of available conversion and peak list simulation options and 

more detailed examples see “The nmrstarlib API Reference” and “The nmrstarlib 

Tutorial” documentation [65]. 

Also the “User Guide”, “The nmrstarlib Tutorial” and “The nmrstarlib API 

Reference” documentation and up-to-date online documentation were developed (Table 

10). 

Table 10. Comparison of nmrstarlib to other Python libraries. 

Feature nmrstarlib PyStarLib NMRPyStar PyNMRSTAR 

Read NMR-STAR 2.1 Yes Yes No Yes 

Read NMR-STAR 3.1 Yes Yes Yes Yes 

Supported Python version 2.7, 3.4+ 2.7 2.7 2.6, 2.7, 3.3+ 

API Reference 

documentation 
Yes No No Yes 

Tutorial documentation Yes No No Yes 

PDF of documentation Yes No No Yes 

User Guide documentation Yes No Yes No 

Up to date online 

documentation 
Yes No No No 

Open Source License 
MIT 

(GitHub) 

GPL 

(SourceForge) 

MIT 

(GitHub) 

GPL 

(GitHub) 

 

4.5.2 Advantages of using nmrstarlib and JSONized NMR-STAR version 

One of the main advantages of the library is that it provides a one-to-one mapping 

between each of the following representations of BMRB entries: NMR-STAR format, 

internal Python OrderedDict- and list-based objects, and JSONized NMR-STAR 

format. This makes the library more Python-idiomatic, providing a very intuitive 

programming interface for accessing and manipulating NMR data. Another benefit of the 

nmrstarlib package is that the bmrblex.py lexical analyser module is written in a 

generic fashion, making it easy to adapt for parsing data from other STAR-related 

formats, for example, the Crystallographic Information File (CIF) and its closely related 

macromolecular CIF (mmCIF) format. 
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JSON is an open, programming language independent, human-readable, data 

exchange standard that represents data objects in a nested dictionary/list ASCII format. 

JSON is one of the most common formats for asynchronous browser/server 

communication as an alternative to XML (Extensible Markup Language). The JSON 

object representation was selected, because it has a smaller overhead compared to 

common XML object representations, making it faster to parse and more human-readable 

when formatted for this purpose. But more importantly, it facilitates a one-to-one 

mapping with both nested Python data structures and BMRB’s nested data 

representations of their entries. While XML is more flexible, it is not easily represented 

by a nesting of standard Python data structures that would produce an intuitive 

programming interface. Also, JSONization of the original NMR-STAR files provides 

several advantages: i) much faster reading times (see Table 5) and ii) makes the data 

stored in BMRB entries easily accessible to other programming languages that have 

JSON parsers, i.e. all modern programming languages, scripting as well as compiled, 

without requiring to write a specific parser for the specialized NMR-STAR format. 

Figure 25, Figure 26, and Figure 27 show code examples for accessing data from 

JSONized NMR-STAR files using R with the jsonlite library [80], JavaScript with 

the jQuery library [81], and C++ with the RapidJSON library [82], respectively. 

But one disadvantage of using JSON format is that it is more verbose in 

comparison to the original NMR-STAR format. As a result, uncompressed JSONized 

NMR-STAR files occupy more disk space (Table 6). However, the nmrstarlib library 

offers the ability to read NMR-STAR files in both uncompressed (directory of files) and 
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compressed (zip and tar archives) forms, making storage and access of JSONized NMR-

STAR files very efficient. 

R Example using jsonlite library 

> # install library 

> install.packages("jsonlite") 

 

> # load library 

> library(jsonlite) 

 

> # load data 

> starfile <- fromJSON("bmr18569.str.json") 

 

> # print saveframe names 

> names(starfile) 

 [1] "data"              "save_entry_information"      

 [3] "save_entry_citation"       "save_assembly"          

 [5] "save_EVH1"            "save_natural_source"       

 [7] "save_experimental_source"    "save_sample_1"          

 [9] "save_sample_2"          "save_sample_3"          

[11] "save_sample_4"          "save_sample_conditions_1"     

[13] "save_sample_conditions_2"    "save_sample_conditions_3"     

[15] "save_sample_conditions_4"    "save_AZARA"            

[17] "save_xwinnmr"          "save_ANSIG"            

[19] "save_CNS"            "save_spectrometer_1"       

[21] "save_spectrometer_2"       "save_NMR_spectrometer_list"    

[23] "save_experiment_list"      "save_chemical_shift_reference_1" 

[25] "save_assigned_chem_shift_list_1" "save_combined_NOESY_peak_list" 

 

> # access saveframe key-value data 

> starfile$data 

[1] "18569" 

> 

> starfile$save_entry_information$Entry.NMR_STAR_version 
[1] "3.1.1.61" 

> 

> # access loop data 

> starfile$save_entry_information$loop_1 

[[1]] 

[1] "Data_set.Type"   "Data_set.Count"  "Data_set.Entry_ID" 

 

[[2]] 

       Data_set.Type Data_set.Count Data_set.Entry_ID 

1 assigned_chemical_shifts       1       18569 

2    spectral_peak_list       1       18569  

Figure 25. Code example showing how to access data from JSONized NMR-STAR files 

using R programming language. 

 

JavaScript Example using jQuery 

<!DOCTYPE html> 

<html> 

  <head> 

    <title>Reading JSONized NMR-STAR with jQuery</title> 

  </head> 

  <body> 

    <script 

src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>     

    <script> 

      $.getJSON("bmr18569.str.json", function(starfile) { 

        console.log(starfile.data);          // prints data tag id 

        console.log(starfile.save_entry_information); // prints entire saveframe data 

        console.log(starfile.save_entry_information.loop_1); // prints loop_1 data 

      }); 
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    </script> 

  </body> 

</html> 

Figure 26. Code example showing how to access data from JSONized NMR-STAR files 

using JavaScript programming language. 

 

C++ example using RapidJSON library 
#include <iostream> 

 

// include rapidjson headers 

#include "rapidjson/document.h" 

#include "rapidjson/filereadstream.h" 

 

using namespace std; 

 

int main() 

{ 

  // open file 

  FILE* fp = fopen("bmr18569.str.json", "r"); // Windows use "rb" 

 

  // read input stream via FILE pointer 

  char readBuffer[65536]; 

  rapidjson::FileReadStream is(fp, readBuffer, sizeof(readBuffer)); 

 

  // create rapidjson::Document and parse input stream 

  rapidjson::Document starfile; 

  starfile.ParseStream(is); 

 

  fclose(fp); // close file pointer 

 

  // print saveframe names 

  cout << "Accessing saveframe categories: \n"; 

  for (rapidjson::Value::ConstMemberIterator itr = starfile.MemberBegin(); 

     itr != starfile.MemberEnd(); ++itr)  

  { 

    cout << "  " << itr->name.GetString() << "\n"; 

  } 

 

  // access saveframe key-value data 

  cout << "Accessing saveframe data: \n"; 

  cout << "  " << "data: " << starfile["data"].GetString() << "\n"; 

  cout << "  " << "NMR-STAR version: " <<  

      starfile["save_entry_information"]["Entry.NMR_STAR_version"].GetString() << "\n"; 

 

  // access loop data 

  cout << "Accessing loop data:\n"; 

  const rapidjson::Value& loop_1_fields = 

starfile["save_entry_information"]["loop_1"][0]; 

  const rapidjson::Value& loop_1_values = 

starfile["save_entry_information"]["loop_1"][1]; 

 

  cout << "loop fields:\n"; 

  for (rapidjson::SizeType i = 0; i < loop_1_fields.Size(); i++) 

  { 

    cout << "  " << loop_1_fields[i].GetString() << "\n"; 

  } 

 

  cout << "loop values:\n"; 

  for (rapidjson::SizeType i = 0; i < loop_1_values.Size(); i++)  

  { 

    for (rapidjson::Value::ConstMemberIterator itr = loop_1_values[i].MemberBegin();  

       itr != loop_1_values[i].MemberEnd(); ++itr) 

    { 

      itr->name.GetString(); 

      cout << "  " << itr->name.GetString() << ": " << itr->value.GetString() << "\n"; 

    } 

  } 
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} 

 

// Output after compiling and executing 

Accessing saveframe categories:  

  data 

  save_entry_information 

  save_entry_citation 

  save_assembly 

  save_EVH1 

  save_natural_source 

  save_experimental_source 

  save_sample_1 

  save_sample_2 

  save_sample_3 

  save_sample_4 

  save_sample_conditions_1 

  save_sample_conditions_2 

  save_sample_conditions_3 

  save_sample_conditions_4 

  save_AZARA 

  save_xwinnmr 

  save_ANSIG 

  save_CNS 

  save_spectrometer_1 

  save_spectrometer_2 

  save_NMR_spectrometer_list 

  save_experiment_list 

  save_chemical_shift_reference_1 

  save_assigned_chem_shift_list_1 

  save_combined_NOESY_peak_list 

 

Accessing saveframe data: 

  data: 18569 

  NMR-STAR version: 3.1.1.61 

 

Accessing loop data: 

loop fields: 

  Data_set.Type 

  Data_set.Count 

  Data_set.Entry_ID 

loop values: 

  Data_set.Type: assigned_chemical_shifts 

  Data_set.Count: 1 

  Data_set.Entry_ID: 18569 

  Data_set.Type: spectral_peak_list 

  Data_set.Count: 1 

  Data_set.Entry_ID: 18569 

Figure 27. Code example showing how to access data from JSONized NMR-STAR files 

using C++ programming language. 

 

4.6 Conclusions 

The nmrstarlib package is a useful Python library, providing classes and other 

facilities for parsing, accessing, and manipulating data stored in NMR-STAR and 

JSONized NMR-STAR formats. Also, nmrstarlib provides a simple command-line 

interface that can convert from NMR-STAR file format into its equivalent JSON file 

format and vice versa, create large number of simulated peak lists, as well as access and 

visualize assigned chemical shift values. The library has an easy-to-use, idiomatic 
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dictionary-based interface, usable in programs written in Python. The library also has 

extensive documentation including the “User Guide”, “The nmrstarlib Tutorial”, and 

“The nmrstarlib API Reference”. Furthermore, the easy conversion into the JSONized 

NMR-STAR format facilitates utilization of BMRB entries by programs in any 

programming language with a JSON parser. This same basic approach can be used to 

quickly JSONize other older text-based scientific data formats, making the underlying 

scientific data easily accessible in a wide variety of programming languages. As 

demonstrated in this study, many available JSON parsers are highly optimized and 

typically much more efficient than specialized parsers for scientific data formats. Thus, 

JSONization of older scientific data formats provides easy steps for reaching 

Interoperability and Reusability goals of FAIR guiding principles [83]. 
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CHAPTER 5 

INTERNAL REGISTRATION AND GROUPING ALGORITHMS 

 

5.1 Overview 

Peak lists derived from NMR spectra are commonly used as input data for a 

variety of computer assisted and automated analyses. These include automated protein 

resonance assignment and protein structure calculation software tools. Prior to these 

analyses, peak lists must be aligned to each other and sets of related peaks must be 

grouped based on common chemical shift dimensions. Even when programs can perform 

peak grouping, they require the user to provide uniform match tolerances or use default 

values. However, peak grouping is further complicated by multiple sources of variance in 

peak position limiting the effectiveness of grouping methods that utilize uniform match 

tolerances. In addition, no method currently exists for deriving peak positional variances 

from single peak lists for grouping peaks into spin systems, i.e. spin system grouping 

within a single peak list. Therefore, a complementary pair of peak list registration and 

spin system grouping algorithms was designed to overcome these limitations. These 

algorithms are implemented into an approach that can identify multiple dimension-

specific positional variances that exist in a single peak list and group peaks from a single 

peak list into spin systems. The resulting algorithms generate a variety of useful statistics 

on both a single peak list and pairwise peak list alignment, especially for quality 

assessment of peak list datasets. 
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To facilitate evaluation, a peak list simulator within the nmrstarlib package was 

developed that generates user-defined assigned peak lists from a given BMRB entry or 

set of entries. A range of low and high quality experimental solution-state and solid-state 

NMR peak lists was used to assess performance of registration and grouping algorithms. 

Analyses show that algorithms using only single iteration and uniform match 

tolerances approach are only able to recover from 50 % to 80 % of spin systems due to 

the presence of multiple sources of variance. The registration and grouping algorithm 

recovers additional spin systems by reevaluating match tolerances in multiple iterations. 

In addition, over 100,000 simulated peak lists with one or two sources of variance were 

generated to evaluate the performance and robustness of these new registration and peak 

grouping algorithms. 

5.2 Introduction 

One of the prerequisite analyses for protein structure determination is the 

assignment of chemical shifts to specific nuclei in a protein structure. During the 

assignment process, spin systems are mapped to individual amino acid residues in a 

protein sequence. In general, a spin system can be viewed as a group of nuclear spins that 

interact with each other in a magnetic field. In this study, a spin system is defined as a 

collection of related resonances associated with specific atoms in a molecule that can be 

grouped within a single spectrum and across multiple spectra with common resonances. 

In the context of biopolymers such as proteins, spin systems often represent resonances 

associated with atoms within one, two, or even three bonded residues. Manual resonance 

assignment is tedious and can take a significant amount of time. Therefore, a variety of 

automated and semi-automated assignment programs have been developed to facilitate 
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the protein resonance assignment process, specifically for solution [84], [85] and solid-

state NMR [58], [59]. The process of automated resonance assignment typically involves 

several major steps: grouping peaks across peak lists into spin systems, classification of 

those spin systems by possible amino acid type, linking neighboring spin systems into 

segments, and then mapping those segments onto protein sequence. 

5.2.1 Lack of automated tools to determine match tolerances 

One of the historical problems that has limited the use of automated and semi-

automated protein resonance assignment tools along with other analyses of NMR peak 

lists is the requirement that users either specify uniform match tolerances typically for 
1
H 

and 
15

N resonances (for solution-state NMR) and 
15

N, and 
13

C resonances (for solid-state 

NMR) to perform spin systems grouping and linking, or rely on default uniform match 

tolerance values. Some programs even expect the user to provide spin systems instead of 

peak lists [58]. In essence, the user is left to determine which match tolerances should be 

used for their dataset. Restated, basic peak positional variance statistics that could be 

derived from the peak lists data are being required from the user, limiting the utility of 

these tools. Also, these same peak list statistics are useful for assessing the quality of 

peak lists, especially for downstream analyses [86], [87]. 

5.2.2 Presence of multiple sources of variance 

Another problem that exists in experimental peak lists derived from both solution 

and solid-state NMR experiments is the presence of multiple variances in dimension-

specific peak positions. In effect, there is a subset of peaks within a single peak list that 

have a smaller variance and can be grouped into spin systems using tighter match 

tolerance values, and a subset of peaks that have a larger variance in one or all 

dimensions that require larger match tolerance values for grouping into spin systems. On 
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the one hand, using tighter tolerance values could result in failure to group peaks with 

larger variances, on the other hand using larger tolerance values could result in spin 

system overlap in peaks that have a smaller variance. This also limits the utility of 

uniform match tolerances for spin system grouping, linking and mapping algorithms. 

Figure 28 demonstrates the presence of peak groups (clusters) with multiple sources of 

variance in peak positions within experimental HN(CO)CACB peak lists. 

a 

 

b 

 
Figure 28. Zoomed-in visualization of spin systems taken from two experimental 

HN(CO)CACB peak lists that demonstrates the presence of multiple sources of variance 

within peak lists. The dots correspond to peak centers, two peaks form an individual spin 

system, ovals show the per-dimension variance (bivariance): a) for the 30S ribosomal 

protein S28E from Pyrococcus horikoshii, spin systems 44 and 66 show variance in the H 

dimension; b) for pancreatic ribonuclease both spin systems 68 and 130 show variance in 

both H and N dimensions. 

 

For the 30S ribosomal protein S28E from Pyrococcus horikoshii in Figure 28a, 

the two visualized spins systems demonstrate different sources of variances in the amide 

1
H dimension. For the pancreatic ribonuclease in Figure 28b, the visualized spin systems 

demonstrate multiple sources of variance in both amide 
1
H and 

15
N dimensions. These 

multiple sources of variance arise from an array of sample conditions, analytical 
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conditions, experimental parameters, and spectral artefacts that can each contribute a 

difference source of variation to a peak’s position, i.e. center. 

AutoAssign, an automated resonance assignment software for solution-state 

NMR, was the first automated protein resonance assignment tool to provide the ability to 

register different peak lists, extract peak list quality statistics, and offset registration 

values necessary to align a set of peak lists against a specified reference peak list [58], 

[88]. The more recently developed Peakmatch algorithm can also match a set of peak lists 

against a reference peak list and derive offset values using a complete grid search or 

downhill simplex optimization [89]. Both AutoAssign’s registration algorithm and the 

Peakmatch algorithm work in pairwise mode, i.e. they match a target peak list against a 

reference peak list, but they are both unable to derive statistics necessary to group peaks 

into spin systems within a single peak list with more than one peak per spin system (e.g. 

HN(CO)CACB, NCACX, CANCOCX). While single peak list registration functionality 

is not required to group peaks into spin systems, it facilitates the development of new 

grouping algorithms that use a bottom-up approach in grouping peaks into spin systems. 

In other words, single peak list registration can facilitate the creation of more accurate 

spin system groups from more reliable smaller variance peak lists first and then extend 

those spin systems across spectra using pairwise registration statistics derived from 

pairwise alignment of two different peak lists. 

Therefore, a new registration algorithm that can calculate dimension-specific peak 

position statistics for a single peak list with multiple peaks per spin system was 

developed. This self-registration mode is accomplished by aligning the single peak list 

against itself ignoring same-peak matches in order to calculate these dimension-specific 
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peak positional variances. This new registration algorithm provides the necessary 

statistics to allow inter-peak-list peak grouping and to assess the peak positional 

uncertainty of individual peak lists. 

5.2.3 Application of registration algorithm in grouping algorithm 

Since peak positions have multiple sources of variance which are difficult to 

handle with uniform match tolerances, a new iterative grouping algorithm that combines 

the peak list registration algorithm with an adaptation of the density-based spatial 

clustering of applications with noise (DBSCAN) clustering algorithm [90] normalized by 

dimension-specific peak position variances was developed. This combined algorithm is 

capable of grouping peaks from a single peak list into spin systems using different sets of 

match tolerances derived from the new registration algorithm in an iterative analysis. 

5.2.4 Algorithm for generating simulated peak lists 

A related problem is the limited number of assigned experimental peak lists 

available in the public repositories for the robust evaluation of computational NMR 

analysis algorithms and methods. As of July, 2017, the Biological Magnetic Resonance 

Data Bank (BMRB) [15] contains only a few hundred assigned peak lists from a wide 

variety of NMR experiments. In order to utilize these assigned peak lists for software tool 

evaluation, they need to be extracted and converted into appropriate file formats (e.g. 

Sparky [91], [92], AutoAssign, Xeasy [93], etc.). Also, thorough robustness analysis 

requires thousands of assigned peak lists for the rigorous testing of algorithms and 

methods. To provide the necessary datasets, simulated assigned peak lists can be derived 

from assigned protein resonance assignment entries in the BMRB. However, the 

simulation of assigned peak lists that provide the same level of difficulty as real 

experimental peak lists is difficult to generate. Historically, few published methods have 
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been evaluated with simulated peak lists incorporating even a single source of variance. 

One published evaluation of protein resonance assignment methods even used simulated 

peak lists with no variance added, representing a very unrealistic test of performance 

[50]. 

To address these and related NMR-STAR file utilization problems, the nmrstarlib 

package [94], an open source library that can be used to extract experimental peak list 

data from BMRB entries and convert them into peak lists of appropriate format (e.g. 

Sparky) was used. In addition, a peak list simulator that can create peak lists of different 

types using the entire BMRB was implemented, allowing the creation of large number of 

simulated assigned peak lists that includes dimension-specific noise from multiple 

sources of variance as specified by the user. This new peak list simulator is part of the 

nmrstarlib package [94]. 

5.3 Materials and methods 

5.3.1 Experimental data sets 

The combined registration and grouping algorithm was evaluated using 16 

different experimental peak lists from 13 different proteins: 10 peak lists were derived 

from solution NMR experiments and 6 peak lists were derived from solid-state NMR 

experiments (Table 11). Peak lists usually contain chemical shift values for each 

dimension that correspond to a specific pattern in a specific NMR experiment and may 

contain additional information such as peak intensity, line width, and peak volume. 
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Table 11. Solution-state and solid-state NMR derived peak lists. 

Protein Sequence length Spectrum type NMR type BMRB ID / PDB ID 

Bovine pancreatic trypsin inhibitor (BPTI) 58 HN(CO)CACB Solution-state 5359 / 5PTI 
Cold shock protein (CspA) [95] 70 HN(CO)CACB Solution-state 4296 / 3MEF 

Protein yggU from E.coli (Target ER14) 
[96] 

108 HN(CO)CACB Solution-state 5596 / 1N91 

Fibroblast growth factor (FGF) [97] 154 HN(CO)CACB Solution-state 4091 / 1BLD 
30S ribosomal protein S28E from 

Pyrococcus horikoshii (Target JR19) [98] 
82 HN(CO)CACB Solution-state 5691 / 1NY4 

Non-structural protein 1 (NS1) [99] 73 HN(CO)CACB Solution-state 4317 / 1NS1 
Ribonuclease pancreatic (RnaseC6572S) 

[100] 
124 HN(CO)CACB Solution-state 4032 / 1SRN 

Ribonuclease pancreatic (RnaseWT) [100] 124 HN(CO)CACB Solution-state 4031 / 1SRN 
Z domain of staphylococcal protein A 

[101] 
71 HN(CO)CACB Solution-state 5656 / 1H0T 

Staphylococcus aureus protein SAV1430 
(Target ZR18) [102] 

91 HN(CO)CACB Solution-state 5844 / 1PQX 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 CANCOCX Solid-state 15156 / 2JSV 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 NCACX Solid-state 15156 / 2JSV 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 NCOCX Solid-state 15156 / 2JSV 

Disulfide bond formation protein B (DsbB) 
[104] 

176 NCACX Solid-state 18493 / 2LTQ 

Cytoskeleton-associated protein-glycine-
rich domains (CAP-Gly) [105] 

89 NCACX Solid-state 19025 / 2M02 

Cytoskeleton-associated protein-glycine-
rich domains (CAP-Gly) [105] 

89 NCOCX Solid-state 19025 / 2M02 

 

5.3.2 Simulated data sets 

Simulated HN(CO)CACB peak lists were generated using the peak list simulation 

algorithm. For HN(CO)CACB peak lists, every amino acid in the protein sequence not 

followed by a proline residue should produce two peaks per spin system, except for 

glycine residues due to missing CB resonances. Initially, 6,896 “ideal” (0-variance) peak 

lists were generated. Then peak lists that had exact duplicate peaks in all three 

dimensions were filtered out, because it will create spin systems with more than two 

peaks per spin system and mark those spin systems as overlapping. Next, peak lists that 

had missing chemical shift values for CA or CB except for glycine residues were 

removed. Finally, 2,549 peak lists remained after removing peak lists with duplicate 

peaks or missing data. Using these remaining peak lists, additional peak lists were 

simulated for single source of variance in all dimensions, two sources of variance in all 
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dimensions, and two sources of variance in N dimension by adding varying amounts of 

normally-distributed random noise (equation (1)): 

 ( )  
 

√    
 
 
(   ) 

    (1) 

 

where   is mean, and   is standard deviation. In the case of two sources of variance, 20% 

of the peaks had noise standard deviation added that is five times larger than 80% of the 

remaining peaks in each simulated peak list. 

5.3.3 Single peak list registration algorithm 

Single peak list registration algorithm is based on a previously developed peak list 

registration algorithm within the automated protein resonance assignment program 

AutoAssign [58], [88]. The algorithm has similarities to a point pattern match algorithm 

[106] and a landsat image registration algorithm [107] developed in the 1980’s, but 

solves a more generalized multiple mapping issue than either of those older algorithms. 

Extensive modifications to the algorithm that includes new functionality and significant 

improvement in the computational efficiency were made. The new registration algorithm 

can perform both pairwise-registration of two different peak lists as well as self-

registration of a single peak list that has multiple peaks per spin system. In either 

algorithmic mode, the registration algorithm operates on two peak lists: an “input” peak 

list and a “root” or reference peak list. The algorithm calculates the best mapping of 

peaks from the “input” peak list to peaks in the “root” peak list for their comparable 

spectral dimensions to derive offsets needed to translate the “input” peak list to the “root” 

peak list in these comparable dimensions. The algorithm also calculates the standard 

deviation between mapped pairs of peaks in their comparable dimensions. The self-
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registration mode of the algorithm treats a single peak list as both the “input” and “root” 

peak lists and then calculates the best mapping of peaks assuming zero translation offsets 

and ignoring perfect matches due to self-mapping. 

 
Figure 29. Flow diagram of the single peak list registration algorithm. 

 

Figure 29 shows the flow diagram of the new registration algorithm for self-

registration execution mode. First, the algorithm parses two peak list files (i.e. the same 

peak list file twice for self-registration). Then for each peak list, the algorithm constructs 

a Euclidean distance matrix, i.e. calculates the distance between every pair of peaks 

within a peak list. Next, the algorithm creates a support matrix and compares each 

“input” peak distance matrix row to each “root” peak distance matrix row in order to 

calculate the set of supporting peak mapping pairs, i.e. the support set (  ). Each cell in 

the support matrix has a set of support pairs (   )        , i.e. pairs of indices that 
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identify individual coordinates in the support matrix. Using the pair of indices, a 

corresponding support set can be identified. Using the support pairs in the support sets, 

the robustness score for a given support pair (   ) is calculated using a sum of Jaccard 

similarity coefficients (Jaccard indices) multiplied by corresponding peak difference 

matching probabilities as illustrated in equation (2): 

          (   )  ∑
            

            
(   )      

     
 (       ) (2) 

 

where     are the row and column coordinates of the support matrix,     are the row and 

column coordinates of the support matrix whose pair (   ) is an element of      , and 

       is the chi-square probability calculated for corresponding peak differences in the 

“input” and “root” peak lists for specified degrees of freedom   , i.e. as defined by 

equation (3): 
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where   specifies the index of the comparable dimension of a peak in both the “input” and 

“root” peak lists and their corresponding standard deviation    . A supporting peak 

mapping pair is determined by a match tolerance defined in terms of standard deviation 

units. The default is four standard deviation units. The self-registration execution mode 

excludes identical peak mappings from this comparison. Using the support list, a 

robustness score is calculated for each comparison. The robustness score indicates how 

many peaks in the “input” peak list are mapped to corresponding peaks in “root” peak list 
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in a concordant manner (i.e. below match tolerances) with a single mapping peak-pair 

representing the center of the concordance. The higher the robustness score, the larger the 

concordance. Next, the algorithm uses the support list of the peak mapping pair with the 

best robustness score to calculate the registration offsets and statistics, which is used to 

derive new match tolerances. The algorithm iterates until the statistics of registration 

converge, i.e. until per dimension standard deviations stop changing. 

One detail to note in equation (3) is the use of    [ ]    in calculating the chi-

square statistic. Based on linear error analysis and independent variable propagation 

rules, one would expect    [ ]  √  to be the correct estimate of the standard deviation to 

use in this equation. However, in this iterative registration approach,    [ ]    provides 

superior performance. I believe that the use of   instead of √  accounts for non-

independent error propagation in the given difference of differences analysis. 

5.3.4 Single peak list grouping algorithm 

Single peak list spin system grouping algorithm is based on the widely-used 

density-based clustering algorithm DBSCAN [90], which can detect clusters of varying 

size and shape. The original DBSCAN algorithm requires two global parameters: radius 

ε, which defines the ε-neighborhood of a point and the minimum number of points µ that 

can form a cluster. The DBSCAN algorithm uses a region query similarity function to 

initialize clusters where it calculates the Euclidean distance between core point and every 

other point in the data and function that expands cluster by examining neighborhoods of 

points in the initialized cluster in order to discover cluster points [90]. 

In this case, each peak represents a point in a peak list data and in order to group 

peaks into clusters (spin systems) without overlap or split, we would have to know the 
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radius ε for each of the clusters in advance. For peak list data, it is not easy to know those 

parameters in advance and requires domain expert to identify tolerances needed for 

grouping peaks into spin systems (clusters). This is further complicated by the presence 

of multiple sources of variance affecting subsets of peaks within a single peak list, i.e. 

some peaks will require larger tolerances for grouping them into spin systems than others. 

Therefore, uniform tolerances cannot be used to discover optimal peak grouping.  

For the grouping algorithm, the region query function that uses the neighborhood 

radius ε and the Euclidean distance similarity function was replaced with version that 

uses a chi-square distance cutoff and variance-normalized distance (chi-square value) to 

decide if a peak can be included into a spin system cluster or not. Equation (4) describes 

the criteria for inclusion or exclusion of peaks from the initialized spin system cluster:  

{
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where       and       is every pair of peaks within a single peak list,    – number of 

degrees of freedom that correspond to the number of comparable dimensions,   – 

specifies index of comparable dimension within a peak and its corresponding standard 

deviation     obtained from the registration algorithm,    (    ) – chi-square inverse 

cumulative distribution function for a given  -value and degrees of freedom. If the 

normalized distance between peaks is less than or equal to the inverse survival function 

for a given  -value and corresponding degrees of freedom, the peak belongs to the spin 
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system cluster, otherwise the peak is excluded from the spin system cluster. The 

variances used to calculate the normalized distance are supplied by the self-registration 

algorithm. The use of a chi-square value allows the cutoff parameter to be provided in 

terms of a chi-square probability. The default for the algorithm is a  -value ≤ 0.0001. 

 
Figure 30. Flow diagram of the single peak list grouping algorithm. 

 

Figure 30 shows the flow diagram of the peak grouping algorithm that groups 

peaks within a single peak list into spin systems. The grouping algorithm consists of two 
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main functions – one that initializes the clusters and the other that expands clusters by 

examining the neighborhood of an initialized cluster in a similar fashion to DBSCAN 

[90]. 

5.3.5 Combined single peak list registration and grouping algorithm 

In order to address the presence of multiple sources of peak positional variance, 

an iterative algorithm that combines both the self-registration algorithm and grouping 

algorithm to derive spin system clusters using multiple variance-based match tolerances 

calculated with the help of the registration algorithm was developed. Figure 31 shows the 

flow diagram of the combined algorithm. 

 
Figure 31. Flow diagram overview of the entire registration and grouping process. 

 

First, the combined algorithm reads a single peak list in and runs the self-

registration algorithm to identify initial variance values for each comparable dimension. 



74 

 

Next, the grouping algorithm uses per dimension variance values to group peaks into spin 

system clusters. Then, the combined algorithm checks if there are unclustered peaks left. 

From the unclustered peaks, the algorithm creates a new peak list file and attempts to 

register it against itself again to determine new larger variances that can be used to group 

peaks into spin system clusters. 

5.3.6 Peak list simulation algorithm 

To create additional data sets for robustness analysis, an algorithm that can 

simulate peak lists using assigned chemical shift values deposited in BMRB entries was 

developed. This algorithm is implemented as a peak list simulator submodule within the 

nmrstarlib Python package [94], which facilitates the reading and writing of NMR-STAR 

formatted files, especially entry files maintained by BMRB. This algorithm uses the 

nmrstarlib functionality to access assigned chemical shift values for H, C and N 

resonances for each residue in a protein chain and then saves them as a peak list file in 

different formats (e.g. Sparky, AutoAssign, JSON). Moreover, the algorithm provides the 

ability to add varying amounts of noise to each dimension of the peak list in order to 

create more realistic data sets. The peak list simulator uses a very generic spectrum 

definitions based on different resonance classes (e.g. CA, CB, N, etc.) and their relative 

positions (-1, 0, +1, etc.), therefore different through-bond experiments can be described 

for both solution and solid-state NMR spectra very easily. The local contact peaks for 

through-space experiments can be simulated as well using the relative position 

descriptions (0, +1, +2, +3, +4). 
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5.4 Results and discussion 

5.4.1 Performance on experimental data sets 

First, the performance of combined registration and grouping algorithm on 

manually assigned peak lists derived from solution and solid-state NMR experiments was 

evaluated. Table 12 shows the summary of results for peak lists derived from solution 

NMR HN(CO)CACB type experiments [108]. The expected number of peaks for the 

HN(CO)CACB peak list can be estimated from a protein sequence, i.e. for every spin 

system in a protein there should be at least two peaks except for glycine (due to missing 

CB resonance) and proline (due to missing amide H resonance) residues ([number of 

amino acids in sequence – number of prolines – number of glycines]×2 + number of 

glycines – 1). Similarly, the expected number of spin systems (clusters) for the 

HN(CO)CACB peak list can be estimated from a known sequence (number of amino 

acids in sequence – 1 – number of GLY residues – number of PRO residues). The 

number of observed peaks is usually larger than the number of expected peaks for a given 

protein sequence due to NMR artefacts and the presence of multiple conformations with 

slow exchange. The number of ungrouped peaks shows how many peaks were left 

ungrouped after the iterative registration and grouping procedure. This number is 

proportional to number of glycine residues (because of a missing corresponding peak for 

CB resonance) in the protein sequence, and the number of artefact peaks that appear in 

the spectrum. The numbers of missing, overlapped, and split spin systems were inferred 

directly from the assigned peak lists. For example, a split in spin systems occurs when 

two peaks that should form their own spin system cluster end up being added into other 

neighbor spin system clusters. Results of the iterative grouping algorithm summarized in 

Table 12 show that it is capable of grouping peaks into spin system clusters that 
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correspond to real spin systems in a protein sequence. When the grouping algorithm was 

limited to a single registration-grouping iteration, the number of identified clusters 

decreased dramatically (see Table 12 value in parenthesis) ranging from 13% fewer 

recovered clusters for the 30S ribosomal protein (BMRBID 5691) to 57% fewer 

recovered clusters for pancreatic ribonuclease (BMRBID 4032). 

Table 12. Spin system grouping results for solution-state NMR derived peak lists using 

combined registration and grouping algorithm. 

Protein / Peak list Expected 
peaks 

Observed 
peaks 

Ungrouped 
peaks 

Expected 
spin systems 

Identified 
spin systems* 

Missing spin 
systems 

Overlapped 
spin systems 

Split spin 
systems 

BPTI / HN(CO)CACB 101 134 17 47 54 (30) 0 0 2 
CSP / HN(CO)CACB 125 145 39 57 53 (32) 12 0 0 
ER14 / HN(CO)CACB 194 181 7 93 87 (57) 8 2 0 
FGF / HN(CO)CACB 273 303 24 128 139 (112) 13 2 1 
JR19 / HN(CO)CACB 151 141 7 71 67 (58) 4 0 0 
NS1 / HN(CO)CACB 137 203 36 66 81 (43) 26 8 2 
RnaseC6572S / 
HN(CO)CACB 

235 282 16 116 130 (56) 18 4 2 

RnaseWT / 
HN(CO)CACB 

235 403 19 116 181 (122) 9 2 1 

ZDOM / 
HN(CO)CACB 

134 153 29 67 55 (40) 15 3 5 

ZR18 / HN(CO)CACB 172 163 3 85 80 (52) 5 0 0 

* Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of 

grouping algorithm was performed. 

 

Table 13 contains similar summary results for solid-state NMR derived peak lists. 

CANCOCX [109], NCACX [30], and NCOCX [30] peak lists for the GB1 protein were 

nearly complete and therefore showed low number of overlapped and split spin systems. 

Peak lists for the DsbB and Cap-Gly proteins had a large number of missing and artefact 

peaks, therefore a higher number of overlapped and split spin systems were observed. 

The quality of peak list registration and therefore spin system grouping is highly 

correlated with the quality of peak lists. Also, the larger the number of missing and 

artefact peaks in the peak lists, the larger the overlap in spin systems that were generally 

observed. Similar to solution-state NMR derived peak lists, the algorithm was limited to a 

single registration-grouping iteration. However, the solid-state NMR derived peak lists 
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were more consistent and did not have as much dimension-specific variance in 

comparison to solution-state NMR derived peak lists (see Table 13 value in parenthesis). 

This may seem surprising, given the typical lower spectral quality of solid-state NMR 

spectra in comparison to solution NMR spectra in terms of sensitivity and peak widths. 

However, when good quality solid-state NMR spectra are obtainable, the greater spread 

of peaks across the 
15

N and 
13

C dimensions used for grouping provides advantages over 

the more crowded amide 
1
H and 

15
N dimensions used for grouping in solution NMR 

spectra. 

Table 13. Spin system grouping results for solid-state NMR derived peak lists using 

combined registration and grouping algorithm. 

Protein / Peak list Expected 
peaks* 

Observed 
peaks 

Ungrouped 
peaks 

Expected 
spin systems 

Identified spin 
systems** 

Missing spin 
systems 

Overlapped 
spin systems 

Split spin 
systems 

GB1 / CANCOCX 268 240 70 55 56 (56) 1 6 28 
GB1 / NCACX 268 463 62 55 65 (65) 0 0 19 
GB1 / NCOCX 268 474 16 55 82 (67) 0 4 10 
DsbB / NCACX 940 215 43 175 47 (47) 126 14 1 
CapGly / NCACX 410 515 16 88 50 (50) 33 25 0 
CapGly / NCOCX 410 218 25 88 47 (47) 38 32 5 

* Number of expected peaks estimated based on magnetization transfer pattern and amino acid sequence. Alternative magnetization 
transfer pathways increase the number of peaks present. 

** Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of 

grouping algorithm was performed. 

 

The best and worst spin system grouping results are visualized on Figure 32: 

panel a) shows the best grouping result for solution NMR derived peak lists – clean non-

overlapped clusters with a small number of artifact peaks; panel b) shows the worst result 

for solution NMR derived peak lists, which has more overlap and more artifact peaks; 

panels c) and d) show the best and worst results for solid-state NMR peak lists, with 

more artifact peaks observed in comparison to solution NMR peak lists and significantly 

higher overlap due to the lower quality of the peak lists. 
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a 

 

b 

 
c 

 

d 

 
Figure 32. Visualization of spin system grouping results where colored points correspond 

peak centers grouped into spin systems, peak centers of the same color belong to the 

same spin system (spin systems are numbered sequentially), unnumbered blue points 

correspond to either spurious unassigned peaks or in case of HN(CO)CACB peak lists 

peaks corresponding to glycine residues (due to missing CB resonance): a) example of 

best spin system clustering for 30S ribosomal protein S28E from Pyrococcus horikoshii 

(HN(CO)CACB peak list); b) example of worst spin system clustering non-structural 

protein 1 (HN(CO)CACB peak list); c) example of best spin system clustering for GB1 

protein (NCACX peak list); d) example of worst spin system clustering for DsbB protein 

(NCACX peak list). 
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5.4.2 Performance on simulated data sets 

To evaluate robustness of algorithms, large numbers of simulated HN(CO)CACB 

peak lists were generated (see Table 14). To create peak lists that better reflect what is 

observed in experimental peak lists, varying amounts of noise were introduced based on 

random normal distributions for several conditions: i) single source of variance in all 

dimensions; ii) two sources of variance in all dimensions; iii) two sources of variance in 

one dimension. 

Table 14. Summary on simulated HN(CO)CACB peak lists. 

Number of variance sources Minimum standard 
deviation values 

Maximum standard 
deviation values 

Total number of 
simulated peak lists 

Single source of variance in all dimensions H: 0.001 
C: 0.01 
N: 0.01 

H: 0.050 
C: 0.50 
N: 0.50 

127,450 

Two sources of variance in all dimensions H: 0.001, 0.005 
C: 0.01, 0.05 
N: 0.01, 0.05 

H: 0.010, 0.050 
C: 0.10, 0.50 
N: 0.10, 0.50 

25,490 

Two sources of variance in N dimension, single 
source of variance in C and H dimensions 

H: 0.001 
C: 0.01 

N: 0.01, 0.05 

H: 0.010 
C: 0.10 

N: 0.10, 0.50 

25,490 

 

Figure 33 demonstrates results for the single source of variance condition, where  

peak lists were simulated with increasing random noise from 0.001 ppm to 0.050 ppm for 

1
H dimension and from 0.01 ppm to 0.50 ppm for 

13
C and 

15
N dimensions. The 

percentage of accurately grouped peaks versus percentage of overlapped peaks are 

plotted as a function of dimension-specific standard deviations. The red vertical line 

separates high quality versus low quality peak lists with larger peak positional variance 

and overlap. Normally, good quality peak lists have 
1
H, 

13
C, and 

15
N chemical shift 

standard deviations on the left side of the red line. It is clear from the diagram that for the 

smallest variance in peak positions, the algorithm groups 99% of peaks into correct non-

overlapped spin systems across all simulated peak lists. As variance in peak positions 

increases percentage of overlapped peaks increases. At larger dimension-specific 
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variance condition (0.01 for 
1
H dimension and 0.1 for 

13
C and 

15
N dimensions), it is still 

capable of grouping 77% of peaks into clean non-overlapped spin systems. 

 
Figure 33. Single source of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak 

dimensions. The dots correspond to the percentage of the grouped/overlapped peaks, 

whiskers are calculated standard error of the mean. 

 

Figure 34 shows similar results but for two sources of variance in all dimensions, 

i.e. 80% of peaks had random normal noise added from 0.001 ppm to 0.01 ppm for 
1
H 

dimension and from 0.01 ppm to 0.1 ppm for 
13

C and 
15

N dimensions, the remaining 20% 

of peaks had random normal noise five times higher (from 0.005 ppm to 0.05 ppm for 
1
H 

dimension and from 0.05 ppm to 0.5 ppm for 
13

C and 
15

N dimensions). 
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Figure 34. Two sources of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak 

dimensions, 20% of peaks have five times larger variance than the remaining 80% of 

peaks in all dimensions. The dots correspond to the percentage of the grouped/overlapped 

peaks, whiskers are calculated standard error of the mean. 

 

Figure 35 shows results for the case were 
15

N dimension had two sources of 

variance, and 
1
H and 

13
C dimensions had only one source of variance. Results in Figure 

34 and Figure 35 demonstrate that the iterative grouping algorithm can handle peak lists 

with multiple sources of variance in single or all dimensions and can group 99% of peaks 

for the smallest variance values in peak dimensions and 71% of peaks at the 0.01 
1
H 

chemical shift standard deviation level. 
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Figure 35. Two sources of variance in one dimension: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak 

dimensions, 20% of peaks have five times larger variance than the remaining 80% of 

peaks in N dimension. The dots correspond to the percentage of the grouped/overlapped 

peaks, whiskers are calculated standard error of the mean. 

 

5.4.3 Comparison to hierarchical DBSCAN algorithm 

In order to test if other clustering algorithms can be used to group peaks within 

single peak list into spin system clusters, a recently developed variation of DBSCAN 

called hierarchical DBSCAN (HDBSCAN) was used [110], [111]. This clustering 

algorithm was chosen, because it has several advantages over other clustering algorithms: 

it does not require the expected number of clusters upfront (as opposed to k-means) and it 

does not require specification of the ε-neighborhood parameter (as opposed to the regular 
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DBSCAN clustering algorithm). This hierarchical version performs DBSCAN using 

varying values of radius ε and integrates all results to find the best clustering solution. 

Table 15. Spin system grouping results for solution-state NMR derived peak lists using 

HDBSCAN algorithm. 

Protein / Peak list Expected 
peaks 

Observed 
peaks 

Ungrouped 
peaks 

Expected 
spin systems 

Identified 
spin systems 

Missing spin 
systems 

Overlapped 
spin systems 

Split spin 
systems 

BPTI / HN(CO)CACB 101 134 15 47 24 0 31 0 
CSP / HN(CO)CACB 125 145 37 57 21 12 35 1 
ER14 / HN(CO)CACB 194 181 33 93 26 8 77 1 
FGF / HN(CO)CACB 273 303 43 128 53 13 108 3 
JR19 / HN(CO)CACB 151 141 18 71 23 4 66 3 
NS1 / HN(CO)CACB 137 203 49 66 31 26 43 8 
RnaseC6572S / 
HN(CO)CACB 

235 282 38 116 45 18 90 4 

RnaseWT / 
HN(CO)CACB 

235 403 68 116 68 9 75 9 

ZDOM / 
HN(CO)CACB 

134 153 22 67 25 15 49 5 

ZR18 / HN(CO)CACB 172 163 42 85 22 5 59 0 

 

Table 15 shows results of HDBSCAN for solution NMR peak lists. The number 

of overlapping spin systems was significantly higher in comparison to combined 

registration and grouping algorithm implementation. Also, for solid-state NMR derived 

peak lists, HDBSCAN performed slightly worse (see Table 16). The implementation of 

iterative registration and grouping algorithm is slower than HDBSCAN due to the 

complexity of the registration algorithm step, but it produces more accurate and more 

consistent results for both solution and solid-state NMR derived experimental peak lists 

as well as for simulated peak lists. 

Table 16. Spin system grouping results for solid-state NMR derived peak lists using 

HDBSCAN algorithm. 

Protein / Peak list Expected 
peaks* 

Observed 
peaks 

Ungrouped 
peaks 

Expected 
spin systems 

Identified 
spin systems 

Missing spin 
systems 

Overlapped 
spin systems 

Split spin 
systems 

GB1 / CANCOCX 268 240 16 55 51 1 29 9 
GB1 / NCACX 268 463 14 55 63 0 2 1 
GB1 / NCOCX 268 474 14 55 67 0 4 7 
DsbB / NCACX 940 215 27 175 37 126 31 3 
CapGly / NCACX 410 515 36 88 70 33 21 17 
CapGly / NCOCX 410 218 20 88 42 38 46 7 

* Number of expected peaks estimated based on magnetization transfer pattern and amino acid sequence. Alternative magnetization 

transfer pathways increase the number of peaks present. 
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5.5 Conclusions 

A new peak list registration algorithm was developed. The algorithm is capable of 

executing in two modes: self-registration and pairwise-registration. Self-registration 

mode allows the derivation of registration statistics for a single unassigned peak list that 

has multiple peaks per spin system. Pairwise-registration allows alignment of two 

different unassigned peak lists in order to calculate registration statistics. Using this self-

registration algorithm, a new bottom-up iterative grouping algorithm was developed. This 

algorithm can group peaks into spin systems within a single peak list and can handle 

multiple sources of variance that are present within experimental data sets. Utilization of 

the single peak list registration algorithm will facilitate the development of more 

sophisticated and automated spin system grouping algorithms that produce more accurate 

spin systems for downstream data analyses. 

Automated tools that allow the creation of simulated peak lists with a range of 

positional variances using assigned chemical shifts in BMRB entries were developed. 

These tools were applied for generation of a very large simulated dataset from the entire 

BMRB to rigorously test the performance and robustness of algorithms. These tests 

showed that algorithms can detect multiple sources of variance introduced into simulated 

data sets and reliably group peaks into spin systems for peak lists that are far from ideal. 
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CHAPTER 6 

PAIRWISE REGISTRATION AND GROUPING ALGORITHMS 

 

6.1 Overview 

Protein resonance assignment is the first critical step in protein structure 

determination. A typical protein resonance assignment strategy uses a set of peak lists 

derived from different types of NMR experiments. This requires an agreement in 

chemical shift values between different peak lists. Due to chemical shift referencing 

problems, chemical shift values can become shifted relative to each other, which causes 

severe problems in spin system grouping and as a result affects all downstream resonance 

assignment steps. The pair of complimentary pairwise peak list registration and grouping 

algorithms was developed. These algorithms utilize single peak list registration and 

grouping algorithms first in order to create global spin systems groups across all peak 

lists in a bottom-up merge fashion. In other words, the most consistent data is leveraged 

first in order to create local spin system groups for a single peak list and then grow the 

spin systems by comparing spin systems groups or individual peaks from different peak 

lists. 

6.2 Introduction 

A set of peak lists derived from different types of NMR experiments is required to 

assign resonances within protein NMR spectra. Both solution-state and solid-state protein 

NMR assignment strategies require at least three peak lists in order to produce reliable
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resonance assignments. Prior to the resonance assignment, it is very important to analyze 

the quality of the peak lists in terms of consistency chemical shift values between 

different peak lists as well as reliably estimate match tolerance values for grouping peaks 

into spin systems. Failure to register several different peak lists against each other is a 

strong indicator of insufficient peak list quality. As a result, such peak lists cannot be 

used in the resonance assignment process, because we cannot reliably estimate match 

tolerance values for peaks grouping because of poor peak (chemical shifts) matching 

between different peak lists. Such problems can result from inconsistent chemical shift 

referencing during the data acquisition phase, inadequate resolution in a match 

dimension, or a variety of issues that can arise during the data acquisition or processing 

phases. 

In order to solve inconsistency problems in chemical shift values between 

different peak lists, a pairwise registration algorithm that can derive the offset values to 

make one peak list match the other was developed. In addition, the algorithm produces 

standard deviations per each comparable dimension that are used in the complimentary 

pairwise grouping algorithm. The pairwise grouping algorithm works in a bottom-up 

fashion and utilizes the single peak list grouping algorithm first to derive internal groups 

of peaks within single peak list for peak lists that have more than one peak per spin 

system. Then starting with the best peak list, i.e. the peak list with the smallest standard 

deviation values in comparable dimensions, the pairwise grouping algorithm merges 

peaks from different peak lists into global spin systems. 

The pairwise grouping has all the properties of the single peak list grouping 

algorithm described in Chapter 5, i.e. it works in an iterative fashion and as a result can 
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account for multiple sources of variance. In addition, the pairwise grouping algorithm has 

rules to detect split spin systems, overlapped spin systems, and missing peaks or spin 

systems by pairwise comparison of peaks or groups of peaks that are being merged 

together. 

6.3 Materials and Methods 

6.3.1 Experimental data sets 

The pairwise registration and grouping algorithm was evaluated using a set of 

different peak lists derived from solid-state NMR spectra of β1 immunoglobulin binding 

domain of protein G (GB1) (Table 17). 

Table 17. The solid-state NMR derived peak lists for pairwise algorithm testing. 

Protein Sequence length Spectrum type NMR type BMRB ID / PDB ID 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 CAN(CO)CA Solid-state 15156 / 2JSV 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 NCACX Solid-state 15156 / 2JSV 

β1 immunoglobulin binding domain of 
protein G (GB1) [103] 

56 CANCOCX Solid-state 15156 / 2JSV 

 

6.3.2 Pairwise peak list registration algorithm 

The single peak list registration algorithm described in Chapter 5 and pairwise 

registration algorithms are implemented within the same code base and have a common 

command-line interface. The difference is that the single peak list operates on single peak 

list and pairwise algorithm operates on two different peak lists (an “input” peak list and a 

“root” or reference peak list). Both algorithms calculate the best mapping of peaks from 

the “input” peak list to peaks in the “root” peak list for their comparable spectral 

dimensions. The pairwise registration algorithm derives needed offsets from match peaks 

in “root” peak list to “input” peak list. Based on the registration, the algorithm calculates 

the standard deviation between mapped pairs of peaks in their comparable dimensions, 
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which can be used as an estimation of match tolerance values for the pairwise grouping. 

Figure 36 shows the flow diagram for both single peak list registration and pairwise peak 

list registration algorithms. If the “input” peak list is identical to the “root” peak list, the 

self-registration branch of the algorithm executes. If the “input” and “root” peak list are 

different, the pairwise-registration branch of the algorithm executes. 

 
Figure 36. Flow diagram of the combined single peak list registration algorithm and 

pairwise peak list registration algorithm. 

 

The robustness score is calculated according to equations (2) and (3). The only 

conceptual difference is that since “root” and “input” peak lists are different, every 

pairwise peak comparison is allowed. In single peak list registration algorithm only non-
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identical comparisons are allowed due to the fact that “root” and “input” peak lists are the 

same. 

To give a specific example, let’s consider four peaks in “peaklist1” and five peaks 

in “peaklist2” in Table 18 and Figure 37. 

Table 18. Example of two peak lists used in registration algorithm. 

Peaklist1 Peaklist2 

# CA, ppm N, ppm # CA, ppm N, ppm 

1 54.319 122.274 … … … 

2 60.062 117.66 11 54.119 121.826 

3 57.132 125.585 12 59.848 117.36 

4 53.815 124.145 13 56.968 125.285 

… … … 14 53.615 123.855 

… … … 15 54.118 118.102 

… … … … … … 

 

 
Figure 37. Visualization of “peaklist1” and “peaklist2” used in pairwise registration. 

 

First, for every peak the peak difference matrix is constructed by calculating peak 

differences for comparable dimensions, for example: 

CA: 55.319 – 55.319 = 0 

N: 122.274 – 122.274 = 0 

CA: 55.319 – 60.062 = –4.743 
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N: 122.274 – 117.66 = 4.614 

… 

Table 19 and Table 20 show the peak difference matrices for “peaklist1” and 

“peaklist2”, respectively. 

Table 19. Peak difference matrix for “peaklist1”. 

Peak # 
1 2 3 4 

CA N CA N CA N CA N 

1 0 0 –4.743 4.614 –1.813 –3.311 1.504 –1.871 

2 4.743 –4.614 0 0 2.93 –7.925 6.247 –6.485 

3 1.813 3.311 –2.93 7.925 0 0 3.317 1.44 

4 –1.504 1.871 –6.247 6.485 –3.317 –1.44 0 0 

 

Table 20. Peak difference matrix for “peaklist2”. 

Peak # 
11 12 13 14 15 

CA N CA N CA N CA N CA N 

11 0 0 –5.729 4.466 –2.849 –3.459 0.504 –2.029 0.001 3.724 

12 5.729 –4.466 0 0 2.88 –7.925 6.233 –6.495 5.73 –0.742 

13 2.849 3.459 –2.88 7.925 0 0 3.353 1.43 2.85 7.183 

14 –0.504 2.029 –6.233 6.495 –3.353 –1.43 0 0 –0.503 5.753 

15 –0.001 –3.724 –5.73 0.742 –2.85 –7.183 0.503 –5.753 0 0 

 

Next, using peak difference matrix, variance normalized Euclidean distance can be 

calculated for every pair of peaks for each peak list as shown on Figure 38. Table 21and  

Table 22 show calculated Euclidean distance matrices for “peaklist1” and “peaklist2”, 

respectively. 

         √∑ (
                
                

)
 

 
  

where   is comparable dimension (CA or N),     is initial standard deviation (0.075 ppm 

for C and N dimensions), match           value is set to 4. For example, variance 

normalized distance between peak #1 and peak #2 is equal to: 
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Table 21. Euclidean distance matrix for “peaklist1” (distances            ). 

Peak # 1 2 3 4 

1 0 11.0283 6.2914 4.0009 

2 11.0283 0 14.0821 15.0074 

3 6.2914 14.0821 0 6.0268 

4 4.0009 15.0074 6.0268 0 

 

Table 22. Euclidean distance matrix for “peaklist2” (distances 

                             ). 

Peak # 11 12 13 14 15 

11 0 12.1068 7.4687 3.4844 6.2066 

12 12.1068 0 14.053 15.003 9.6297 

13 7.4687 14.053 0 6.0753 12.8796 

14 3.4844 15.003 6.0753 0 9.6249 

15 6.2066 9.6297 12.8796 9.6249 0 

 

 
Figure 38. Visualization of distances between every pair of peaks,             in 
“peaklist1” and                               in “peaklist2”. 
 

Using the Euclidean distance matrices the data structure called support matrix is 

calculated which contains the coordinates of a clique of peaks that match the best 

between two peak lists based on the distances, i.e. support pairs. Distances are compared 
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row by row and those that match best within tolerances are selected. The support pairs in 

this instance are the following: 

(    ) (    ) (    ) (    ) 

Detection of the maximal clique, i.e. clique with the largest number of support pairs is a 

classic graph theoretical problem [112] that is NP-complete in its computational 

complexity. The registration offsets are calculated for each dimension for every support 

pair and then averaged: 

            [ ]  
 

 
∑|     [ ]       [ ]|

 

   

  

where       – peaks from peaklist1,       – peaks from peaklist2 such that they form 

support pair (     ,      ),   – number of support pairs,   – comparable dimension (CA 

or N). Table 23 shows an example calculation for the identified support pairs. 

Table 23. Example of registration offset calculation for identified support pairs. 

CA N 

55.319 – 55.119 = 0.2 ppm 122.274 – 121.826 = 0.448 ppm 

60.062 – 59.848 = 0.214 ppm 117.66 – 117.36 = 0.3 ppm 

57.132 – 56.968 = 0.164 ppm 125.585 – 125.285 = 0.3 ppm 

53.815 – 53.615 = 0.2 ppm 124.145 – 123.855 = 0.29 ppm 

 

Finally, average of registration offset values can be calculated per each comparable 

dimension: 

 

            [  ]  
                   

 
       ppm 

 

            [ ]  
                  

 
       ppm 
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6.3.3 Pairwise grouping algorithm 

Similarly to the pairwise registration algorithm, the pairwise grouping algorithm 

was developed within a single code base and has all the properties of the single peak list 

grouping algorithm. The difference is that when two different peak lists are compared, 

the pairwise grouping algorithm has additional rules to detect and resolve spin system 

split, spin system overlap, or missing peaks or spin systems. Figure 39 shows the flow 

diagram that describes the process for grouping peaks into spin systems. Instead of 

working on a single experimental peak list, the pairwise grouping algorithm works on a 

combined “input” and “root” peak list. For every peak or internal spin system that “input” 

and/or peak list composed of it first initializes the spin system cluster and queries all 

neighbor peaks or internals spin system clusters using match tolerances derived from the 

pairwise registration algorithm. Then similarly to single peak list grouping, it passes all 

identified neighbors and seed to the expansion phase in order to find additional peaks or 

internal spin system clusters that may belong to the initialized spin system cluster. The 

criteria for inclusion of a peak or peak group into a cluster are the same as for single peak 

list grouping algorithm as described by equation (4). Then, distinctly from the single peak 

list grouping algorithm, the pairwise grouping algorithm passes all identified peaks and 

internal clusters to examine cluster step in order to identify potential problems in the final 

cluster, such as spin system split, spin system overlap. Once the problem is detected, the 

algorithm tries to resolve it and return clean spin system clusters. There are few pairwise 

comparison outcomes that are possible: one-to-one, one-to-many, many-to-one, and 

many-to-many group mappings. 
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Figure 39. Flow diagram of the pairwise grouping algorithm. 

 

6.3.3.1. One-to-one pairwise comparison 

The one-to-one pairwise comparison case is the best possible outcome. This 

means that during every pairwise comparison that occurred during merging peak or 

internal spin systems into global spin systems there was always a one-to-one matching 

between peaks or groups of peaks, i.e. the resulting global spin system is clean and does 

not contain any overlap. Figure 40 demonstrates the merging of peaks and internal spin 

systems into global spin systems for the one-to-one pairwise comparison case. 
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Figure 40. One-to-one pairwise comparison case. 
 

6.3.3.2 One-to-many pairwise comparison 

The one-to-many comparison case usually means that during merging of peaks 

into global spin system clusters, there was a situation when several internal spin systems 

or peaks pointed to a single spin system in a global comparison. This usually indicates the 

split between internal spin systems or internal spin systems and individual groups. The 

split case is resolved by merging several split entities in order to produce a clean global 

spin system. Figure 41 demonstrates the split case when two internal spin systems in the 

NCACX peak list were merged into a single spin system during the pairwise comparison 

of internal NCACX spin systems with CAN(CO)CA peak list. 
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Figure 41. One-to-many pairwise comparison case. 

 

6.3.3.3 Many-to-one pairwise comparison 

The many-to-one pairwise comparison case during creation of global spin systems 

is the undesirable situation, which usually indicates there was an overlap in one of the 

internal spin system groups that needs to be resolved before creating the final global spin 

systems. Figure 42 shows the case with the overlap that happened in the internal 

grouping of the CANCOCX peak list. Two internal spin system groups that were created 

from NCACX and CAN(CO)CA pairwise comparisons point to a single CAN(CO)CX 

internal spin system group. Figure 43 shows the overlap is being resolved, i.e. right 

before creating the final overlapped global spin system, the overlapped CANCOCX 

internal spin system group is disassembled into individual peaks. Next, the two internal 

spin systems that were created from the NCACX and CAN(CO)CA comparison act as 

centroids for assigning each individual peak from the CANCOCX peak list. The variance 

normalized Euclidean distance is used in order to identify the closest centroid and assign 

each individual peak. The variances for normalizing Euclidean distance are derived from 
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the pairwise registration algorithm. In the end, instead of one overlapped global spin 

system, two resolved global spin systems are created. 

 
Figure 42. Many-to-one pairwise comparison case (overlapped spin systems). 
 

 
Figure 43. Many-to-one pairwise comparison case (resolved spin systems). 
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6.3.3.4 Many-to-many pairwise comparison 

The many-to-many pairwise comparison case is very similar to the many-to-one 

pairwise comparison case and also indicates the overlap during the global spin system 

creation process. Figure 44 demonstrates a many-to-many pairwise comparison case 

where two different internal spin systems created from NCACX and CAN(CO)CA 

pairwise comparison point to two different internal spin systems created from 

CANCOCX. Once this case is detected, it is handled in a similar way as many-to-one 

comparison, i.e. CANCOCX internal spin systems are disassembled into individual peaks 

and pairwise spin system groups created from NCACX and CAN(CO)CA act as 

centroids. The variance normalized Euclidean distance is calculated in order to find the 

closest spin system. Figure 45 shows how the overlapped spin system is being resolved 

into two different global spin systems. 

 
Figure 44. Many-to-one pairwise comparison case (overlapped spin systems). 
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Figure 45. Many-to-one pairwise comparison case (resolved spin systems). 

 

6.3.3.5 Missing spin system recovery 

In addition to detecting split and overlap cases during pairwise comparison, it is 

also possible to recover spin systems or peaks that are present in one peak list but missing 

in the other. Figure 46 demonstrates an example when the peak is missing in the 

CAN(CO)CA peak list and the internal spin system group is not formed due to this fact. 

The group of peaks is not discarded during the pairwise comparison and is used for 

pairwise comparison at later stages and if a corresponding peak or group of peaks is 

found within the CANCOCX peak list, the global clean cluster can be created. In other 

words, to recover a missing internal spin system, it is necessary that it is found in at least 

two different peak lists. 
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Figure 46. Missing spin system recovery. 

 

6.4 Results and Discussion 

6.4.1 Importance of peak list registration 

Inaccuracies in NMR referencing cause variance in chemical shift values between 

different experimental peak lists. As a result, inconsistencies between different peak lists 

present a serious challenge for the automated protein resonance assignment algorithms. 

The pairwise registration and grouping algorithm produces both the registration offset 

values and standard deviations values for each comparable dimension between different 

peak lists. The standard deviations are then used to calculate match tolerance values for 

each dimension for grouping peaks into spin systems. Prior to grouping, the offset values 

must be applied to one of the peak lists in order for peaks to match within match 

tolerance values. Failure to apply registration offsets typically result in failure to group 

peaks into spin systems and every peak ends up ungrouped (considered as “noise” data 

point) or results in incorrect peak grouping with severe overlap. 
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a 

 
b 

 
Figure 47. CAN(CO)CA peak list (red crosses) and NCACX peak list (blue crosses) 

without registration (a) and with registration applied (b). 
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Figure 47 shows the 
15

N and 
13

CA peak positions of the “root” CAN(CO)CA 

peak list versus “input” NCACX without (Figure 47a) and with (Figure 47b) applied 

dimension-specific registration offset values. It is clear that in order to group peaks into 

spin systems without registration applied (Figure 47a), the match tolerances values 

would have to be increased which in turn will result in spin system overlap. On the other 

hand, calculated registration offset values applied to the “input” NCACX peak list 

(Figure 47a) make “input” peaks match “root” peaks and results in correct grouping with 

no overlap. 

6.4.2 Correction of manually assigned peak lists 

With the help of the pairwise grouping algorithm, I was able to correct the manual 

expert assignment of the peak lists and verify it using the deposited chemical shift values 

in the BMRB (BMRBID 18397).  

Table 24 shows an example of an experimental manually assigned CAN(CO)CA 

peak list. Using the pairwise grouping algorithm, incorrect assignments were identified as 

well as additional assignments were made directly within the same peak list using 

unassigned peaks (“?-?-?” assignment designates manually unassigned peak lists but were 

present in the spectrum and have been retained). Red rows in  

Table 24 indicate incorrect assignment within the CAN(CO)CA peak list, for 

example, peaks #27 and #28 that belong to neighboring spin systems T18-T17 and T17-

T16 were assigned incorrectly. In addition, peak #63 that belongs to the D40-V39 spin 

system was incorrectly assigned to the E56-T55 spin system. Moreover, the grouping 

algorithm was able to identify the correct E56-T55 spin system (peak #7) and missing 

Y45-T44 spin system (peak #11). 
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Table 24. Manually assigned CAN(CO)CA peak list example. 

Peak # Assignment w1 w2 w3 
1 ?-?-? 54.770 126.179 54.918 

2 ?-?-? 61.880 117.174 73.084 

3 ?-?-? 60.822 117.328 70.994 

4 ?-?-? 47.369 108.372 53.976 

5 ?-?-? 58.146 131.956 72.584 

6 ?-?-? 58.020 131.913 58.106 

7 ?-?-? 58.118 131.926 61.703 

8 ?-?-? 63.044 121.502 54.907 

9 ?-?-? 63.157 123.491 52.942 

10 ?-?-? 55.168 123.925 55.013 

11 ?-?-? 58.358 119.808 61.319 

12 Q2CA-N-M1CA 56.304 126.102 54.663 

13 Y3CA-N-Q2CA 57.626 124.163 56.279 

14 K4CA-N-Y3CA 55.387 123.710 57.563 

15 L5CA-N-K4CA 53.518 127.842 55.228 

16 I6CA-N-L5CA 60.533 127.075 53.453 

17 L7CA-N-I6CA 55.224 127.926 60.410 

18 N8CA-N-L7CA 51.263 126.082 54.975 

19 G9CA-N-N8CA 45.176 110.361 51.203 

20 K10CA-N-G9CA 59.885 121.926 45.111 

21 T11CA-N-K10CA 62.498 107.326 59.759 

22 L12CA-N-T11CA 55.012 128.562 62.376 

23 K13CA-N-L12CA 53.824 124.124 54.888 

24 G14CA-N-K13CA 45.484 106.539 53.810 

25 E15CA-N-G14CA 54.450 121.845 45.419 

26 T16CA-N-E15CA 60.643 115.975 54.358 

27 T17CA-N-T16CA 61.827 117.237 60.837 

28 T18CA-N-T17CA 60.864 117.237 60.548 

29 E19CA-N-T18CA 54.823 126.186 61.774 

30 A20CA-N-E19CA 51.505 126.664 54.788 

31 V21CA-N-A20CA 64.132 117.118 51.220 

32 D22CA-N-V21CA 53.055 116.343 64.049 

33 A23CA-N-D22CA 55.021 123.515 52.959 

34 A24CA-N-A23CA 55.035 121.450 54.973 

35 T25CA-N-A24CA 68.033 118.227 54.969 

36 A26CA-N-T25CA 55.582 124.728 67.876 

37 E27CA-N-A26CA 59.686 117.233 55.541 

38 K28CA-N-E27CA 60.776 118.234 59.600 

39 V29CA-N-K28CA 66.870 119.901 60.656 

40 F30CA-N-V29CA 58.074 119.534 66.658 

41 K31CA-N-F30CA 60.706 121.458 57.950 

42 Q32CA-N-K31CA 59.427 122.031 60.501 

43 Y33CA-N-Q32CA 62.080 121.725 59.295 

44 N35CA-N-A34CA 57.588 119.148 56.507 

45 D36CA-N-N35CA 56.395 122.065 57.537 

46 N37CA-N-D36CA 54.041 115.918 56.419 

47 G38CA-N-N37CA 47.362 109.297 53.993 

48 V39CA-N-G38CA 62.284 122.646 47.257 

49 G41CA-N-D40CA 45.692 108.969 53.266 

50 E42CA-N-G41CA 55.712 120.157 45.616 

51 W43CA-N-E42CA 58.048 125.926 55.649 

52 T44CA-N-W43CA 61.481 110.041 57.960 

53 D46CA-N-Y45CA 51.405 127.294 58.240 

54 D47CA-N-D46CA 55.107 124.372 51.411 

55 A48CA-N-D47CA 54.587 120.039 54.916 

56 T49CA-N-A48CA 60.880 105.053 54.496 

57 K50CA-N-T49CA 56.014 120.492 60.772 

58 T51CA-N-K50CA 63.023 113.082 56.019 

59 F52CA-N-T51CA 57.166 130.990 62.949 

60 T53CA-N-F52CA 60.815 113.073 57.045 

61 V54CA-N-T53CA 58.945 119.200 60.808 
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62 T55CA-N-V54CA 61.846 125.006 58.929 

63 E56CA-N-T55CA 53.102 131.816 62.197 

Table 25 shows the CAN(CO)CA peak list that has been corrected after the pairwise 

algorithm comparison. 

Table 25. Corrected manually assigned CAN(CO) CA peak list example. 

Peak # Assignment w1 w2 w3 
1 ?-?-? 54.770 126.179 54.918 

2 ?-?-? 61.880 117.174 73.084 

3 ?-?-? 60.822 117.328 70.994 

4 ?-?-? 47.369 108.372 53.976 

5 ?-?-? 58.146 131.956 72.584 

6 ?-?-? 58.020 131.913 58.106 

7 E56CA-N-T54CA 58.118 131.926 61.703 

8 ?-?-? 63.044 121.502 54.907 

9 ?-?-? 63.157 123.491 52.942 

10 ?-?-? 55.168 123.925 55.013 

11 Y45CA-N-T44CA 58.358 119.808 61.319 

12 Q2CA-N-M1CA 56.304 126.102 54.663 

13 Y3CA-N-Q2CA 57.626 124.163 56.279 

14 K4CA-N-Y3CA 55.387 123.710 57.563 

15 L5CA-N-K4CA 53.518 127.842 55.228 

16 I6CA-N-L5CA 60.533 127.075 53.453 

17 L7CA-N-I6CA 55.224 127.926 60.410 

18 N8CA-N-L7CA 51.263 126.082 54.975 

19 G9CA-N-N8CA 45.176 110.361 51.203 

20 K10CA-N-G9CA 59.885 121.926 45.111 

21 T11CA-N-K10CA 62.498 107.326 59.759 

22 L12CA-N-T11CA 55.012 128.562 62.376 

23 K13CA-N-L12CA 53.824 124.124 54.888 

24 G14CA-N-K13CA 45.484 106.539 53.810 

25 E15CA-N-G14CA 54.450 121.845 45.419 

26 T16CA-N-E15CA 60.643 115.975 54.358 

27 T18CA-N-T17CA 61.827 117.237 60.837 

28 T17CA-N-T16CA 60.864 117.237 60.548 

29 E19CA-N-T18CA 54.823 126.186 61.774 

30 A20CA-N-E19CA 51.505 126.664 54.788 

31 V21CA-N-A20CA 64.132 117.118 51.220 

32 D22CA-N-V21CA 53.055 116.343 64.049 

33 A23CA-N-D22CA 55.021 123.515 52.959 

34 A24CA-N-A23CA 55.035 121.450 54.973 

35 T25CA-N-A24CA 68.033 118.227 54.969 

36 A26CA-N-T25CA 55.582 124.728 67.876 

37 E27CA-N-A26CA 59.686 117.233 55.541 

38 K28CA-N-E27CA 60.776 118.234 59.600 

39 V29CA-N-K28CA 66.870 119.901 60.656 

40 F30CA-N-V29CA 58.074 119.534 66.658 

41 K31CA-N-F30CA 60.706 121.458 57.950 

42 Q32CA-N-K31CA 59.427 122.031 60.501 

43 Y33CA-N-Q32CA 62.080 121.725 59.295 

44 N35CA-N-A34CA 57.588 119.148 56.507 

45 D36CA-N-N35CA 56.395 122.065 57.537 

46 N37CA-N-D36CA 54.041 115.918 56.419 

47 G38CA-N-N37CA 47.362 109.297 53.993 

48 V39CA-N-G38CA 62.284 122.646 47.257 

49 G41CA-N-D40CA 45.692 108.969 53.266 

50 E42CA-N-G41CA 55.712 120.157 45.616 

51 W43CA-N-E42CA 58.048 125.926 55.649 

52 T44CA-N-W43CA 61.481 110.041 57.960 

53 D46CA-N-Y45CA 51.405 127.294 58.240 

54 D47CA-N-D46CA 55.107 124.372 51.411 
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55 A48CA-N-D47CA 54.587 120.039 54.916 

56 T49CA-N-A48CA 60.880 105.053 54.496 

57 K50CA-N-T49CA 56.014 120.492 60.772 

58 T51CA-N-K50CA 63.023 113.082 56.019 

59 F52CA-N-T51CA 57.166 130.990 62.949 

60 T53CA-N-F52CA 60.815 113.073 57.045 

61 V54CA-N-T53CA 58.945 119.200 60.808 

62 T55CA-N-V54CA 61.846 125.006 58.929 

63 D40CA-N-V39CA 53.102 131.816 62.197 

 

6.4.3 Accuracy of pairwise registration algorithm on simulated peak lists with 

known offsets 

6.4.3.1 Peak lists with small amount of variance 

To evaluate how accurately algorithm can calculate offset registration values for 

each of the comparable dimensions, two peak lists using the peak list simulation 

algorithm (described in Chapter 5) were simulated. Two peak list from GB1 protein entry 

(BMRBID 18397): one peak list is used as a “root” peak list (CAN(CO)CA) and the 

other peak list is used as “input” peak list (NCACX). The amount of variance (in terms of 

standard deviations) that was added to the peak lists was 0.01 ppm for both 
13

CA and 
15

N 

dimension. Next, offset values were added to each of the comparable dimensions in 

“input” peak list, i.e. to every peak in simulated NCACX peak list registration offset 

value 0.55 ppm for every 
13

CA dimension and 0.87 ppm for every 
15

N dimension were 

added. The offset values were chosen arbitrarily. The registration algorithm calculated 

the registration offset values for 
13

CA and 
15

N dimensions that match initially specified 

offset values (see Table 26). This means that in order for the “input” NCACX peak list to 

match the “root” CAN(CO)CA peak list, we need to subtract 0.55 ppm for every peak in 

the 
13

CA dimension and 0.87 ppm for every peak in the 
15

N dimension. Here, the 

introduced registration values are positive, because they were added to the simulated 

“input” peak list; calculated registration values are negative, meaning that we need to 

subtract those offset values in order to make “input” peak list match “root” peak list. 
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Also, the introduced standard deviation is the parameter that was used to set the amount 

of noise drawn from random normal distribution in order to create a simulated peak list; 

therefore, the calculated standard deviation is typically smaller than the introduced 

standard deviation parameter. 

Table 26. The offset values calculated by registration algorithm during pairwise 

comparison of CAN(CO)CA and NCACX simulated peak lists with minimum variance. 

Dimension 

Introduced 

registration offset 

value, ppm 

Calculated 

registration offset 

value, ppm 

Introduced 

standard 

deviation, ppm 

Calculated 

standard 

deviation, ppm 
15

N 0.55 –0.5521 0.01 0.009 
13

CA 0.87 –0.8693 0.01 0.008 

 

The exact simulated CAN(CO)CA and NCACX peak lists that were used to calculate the 

registration offsets are shown in Table B1 and Table B2, respectively. 

6.4.3.1 Peak lists with larger variance 

The original experimental peak lists contained the larger variance in their 
13

CA 

and 
15

N dimensions, 0.02 ppm and 0.03 ppm, respectively, in terms of standard 

deviations. Simulated peak lists with the amount of variance corresponding to 0.02 ppm 

for 
13

CA and 0.03 ppm for the 
15

N dimensions in terms of standard deviation values were 

created. Next offset values were added to both 
13

CA (0.55 ppm) and 
15

N (0.87 ppm) as in 

the previous simulation. Table 27 shows that the registration algorithm was able to 

identify correct offset values with slightly higher amount of variance introduced into the 

peak lists. 

Next, a larger amount of variance was introduced to the peak lists. The peak lists 

were simulated using a variance equal to 0.1 ppm and 0.15 ppm in terms of standard 

deviation values for the 
13

CA and 
15

N dimensions. The offset values 0.55 ppm and 0.87 
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ppm were added to 
13

CA and 
15

N dimensions of the NCACX peak list as in the previous 

simulations, and the registration algorithm was tested again. 

Table 27. The offset values calculated by registration algorithm during pairwise 

comparison of CAN(CO)CA and NCACX simulated peak lists with amount of variance 

corresponding to experimental peak lists. 

Dimension 

Introduced 

registration offset 

value, ppm 

Calculated 

registration offset 

value, ppm 

Introduced 

standard 

deviation, ppm 

Calculated 

standard 

deviation, ppm 
15

N 0.55 –0.5518 0.03 0.02 
13

CA 0.87 –0.8692 0.02 0.01 

 

Table 28 shows that the registration algorithm was able to handle the amount of 

variance five times larger than that in the original experimental peak lists and was able to 

report correct offset registration values. 

Table 28. The offset values calculated by registration algorithm during pairwise 

comparison of CAN(CO)CA and NCACX simulated peak lists with larger amount of 

variance. 

Dimension 

Introduced 

registration offset 

value, ppm 

Calculated 

registration offset 

value, ppm 

Introduced 

standard 

deviation, ppm 

Calculated 

standard 

deviation, ppm 
15

N 0.55 –0.5518 0.15 0.13 
13

CA 0.87 –0.8748 0.1 0.08 

 

6.4.4 Accuracy of the pairwise spin system grouping algorithm 

6.4.4.1 Pairwise spin system grouping on experimental peak lists 

Table 29 shows the summary of the pairwise grouping algorithm on experimental 

NCACX, CAN(CO)CA, and CANCOCX. First, two internally grouped NCACX and 

CAN(CO)CA peak lists were grouped pairwise. Next, CANCOCX groups were grouped 

with the groups from NCACX and CAN(CO)CA. The spin system groups were analyzed 

in terms of a number of overlaps and splits at each pairwise grouping step. The results of 

the pairwise grouping algorithm show that the majority of the spin system clusters are 

grouped with no overlap. 
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Table 29. Accuracy of the pairwise grouping algorithm on experimental peak lists. 

Protein/ 

Group 

Expected 

spin 

systems 

Observed 

spin 

systems 

Registration 

offsets 

Calculated 

stds 

Overlapped 

spin systems 

Split 

spin 

systems 

GB1 

[NCACX + CAN(CO)CA] 
55 55 

CA: 0.553 

N: 0.870 

CA: 0.059 

N: 0.148 
2 1 

GB1 

[[NCACX + 

CAN(CO)CA]+CANCOCX] 

55 60 
CA: 0.542 
N: 0.955 

CA: 0.065 
N: 0.180 

4 2 

 

6.4.4.2 Pairwise spin system grouping on simulated peak lists 

Table 30 shows the same summary of the grouping algorithm but using simulated 

peak lists. Due to the smaller variance within simulated peak lists the number of overlap 

and split spin systems are minimized to 0 at each pairwise grouping step. 

Table 30. Accuracy of the pairwise grouping algorithm on simulated peak lists. 

Protein/ 

Group 

Expected 

spin 

systems 

Observed 

spin 

systems 

Registration 

offsets 

Calculated 

stds 

Overlapped 

spin systems 

Split 

spin 

systems 

GB1 

[NCACX + CAN(CO)CA] 
55 55 

CA: -0.002 

N: 0.001 

CA: 0.009 

N: 0.010 
0 0 

GB1 
[[NCACX + 

CAN(CO)CA]+CANCOCX] 

55 55 
CA: -0.003 

N: -0.001 

CA: 0.008 

N: 0.009 
0 0 

 

6.5 Conclusions 

A new pairwise peak list registration and grouping algorithms were developed. 

The pairwise registration and grouping algorithms rely on single peak list registration 

algorithms in order to create internal spin system groups and expand those groups by a 

pairwise comparison of different peak lists starting from the best quality peak lists first. 

The algorithm can take into account multiple sources of variance present within the 

single peak list as well as between different peak lists due to the iterative nature of the 

algorithm and the coupling registration and grouping steps. The algorithms can detect 

spin systems split, overlap, or recover missing spin systems in one or more peak lists. 

Also it was demonstrated on simulated peak lists that the registration algorithm can 

accurately determine registration offset values as well as standard deviation values. 
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CHAPTER 7 

DISCUSSION 

 

7.1 Evaluation of performance 

The proposed algorithms are implemented as individual programs with their own 

command-line interfaces and documentation. The nmrstarlib package is written in the 

Python programming language with C-extensions implemented using the Cython 

programming language to improve speed efficiency for processing NMR-STAR files. 

The computational time and space complexity of the nmrstarlib library linearly depends 

on the size of the file. Typically, it takes a fraction of a second to process a single NMR-

STAR file (see Figure 23).  

The single and pairwise peak list registration algorithm is implemented in C++ 

programming language and is the most computationally intensive algorithm in the 

discussed research. The algorithm is optimized to a computational complexity of 

 (        ) where   and   represent the lengths of the “root” and “input” peak lists, 

respectively. 

The spin system grouping algorithm is implemented in Python and is coupled 

with the registration algorithm in order to discover multiple sources of variance  present 

in a single peak list as well as between different peak lists. The average computational 

complexity of the grouping algorithm alone without coupling with 
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the registration algorithm is  (      ), where   represents a total number of peaks 

being grouped by the grouping algorithm. It depends on the region query function that 

queries peaks according to defined distance function, the worst case running time is 

 (  ). 

The jpredapi package is designed to submit queries to the Jpred4 secondary 

structure prediction server [29] and is implemented in Python. The running time depends 

on the load of the third-party Jpred4 secondary structure prediction server. 

7.2 Command-line interfaces 

7.2.1 The nmrstarlib command-line interface 

The main use cases of the nmrstarlib command-line interface is to convert original 

NMR-STAR files to their JSONized representation (using convert command) and 

generate simulated peak lists (using plsimulate command) utilizing assigned 

chemical shift values and the spectrum description describing the magnetization pathway 

transfer which in turn describes the specific dimensions that will be added to each peak 

within a peak list. The varying amount of variance can be added to the simulated peak 

lists using options to specify the standard deviation for each of the 
1
H, 

13
C, and 

15
N 

dimensions. Figure 48 shows the complete command-line interface. 

7.2.2 Registration algorithm command-line interface 

Figure 49 shows the command-line interface for the single and pairwise peak list 

registration algorithm. The execution requires providing two peak lists “root” and “input” 

to calculate per dimension offset registration values and standard deviations. It is also 

necessary to specify the correct order of dimensions using option (--dim parameter) and 
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control the registration mode (--noi parameter must be specified in order to execute the 

algorithm in single peak list registration mode). 

nmrstarlib command-line interface 

Usage: 

    nmrstarlib -h | --help 

    nmrstarlib --version 

 

    nmrstarlib convert (<from_path> <to_path>) [--from_format=<format>]  

                       [--to_format=<format>] [--bmrb_url=<url>]  

                       [--nmrstar_version=<version>] [--verbose] 

 

    nmrstarlib csview <starfile_path> [--amino_acids=<aa>] [--atoms=<at>]  

                      [--csview_outfile=<path>] [--csview_format=<format>]  

                      [--bmrb_url=<url>] [--nmrstar_version=<version>] [--verbose] 

 

    nmrstarlib plsimulate (<from_path> <to_path> <spectrum>) [--from_format=<format>]  

                          [--to_format=<format>] [--plsplit=<%>] [--distribution=<func>] 

                          [--H=<value>] [--C=<value>] [--N=<value>] [--bmrb_url=<url>]  

                          [--nmrstar_version=<version>]  

                          [--spectrum_descriptions=<path>] [--verbose] 

Options: 

    -h, --help                      Show this screen. 

    --version                       Show version. 

    --verbose                       Print what files are processing. 

    --from_format=<format>          Input file format, available formats:  

                                    nmrstar, json [default: nmrstar]. 

    --to_format=<format>            Output file format, available formats:  

                                    nmrstar, json [default: json]. 

    --nmrstar_version=<version>     Version of NMR-STAR format to use, available: 

                                    2, 3 [default: 3]. 

    --bmrb_url=<url>                URL to BMRB REST interface  

                                    [default: http://rest.bmrb.wisc.edu/bmrb/NMR-STAR3/]. 

    --amino_acids=<aa>              Comma-separated amino acid three-letter codes. 

    --atoms=<at>                    Comma-separated BMRB atom codes. 

    --csview_outfile=<path>         Where to save chemical shifts table. 

    --csview_format=<format>        Format to which save chemical shift table  

                                    [default: svg]. 

    --plsplit=<%>                   How to split peak list into chunks by percent 

                                    [default: 100]. 

    --distribution=<func>           Statistical distribution function [default: normal]. 

    --H=<value>                     Standard deviation for H dimensions. 

    --C=<value>                     Standard deviation for C dimensions. 

    --N=<value>                     Standard deviation for N dimensions. 

    --spectrum_descriptions=<path>  Path to custom spectrum descriptions file. 
Figure 48. Command-line interface of the nmrstarlib package. 

 

7.2.3 Grouping algorithm command-line interface 

Figure 50 shows the command-line interface for the single peak list grouping 

algorithm. The algorithm requires a single peak list that contain multiple peaks per spin 

system and path to the registration algorithm executable. The group command is used to 

analyze peaks and returns groups of peaks (spin systems). The visualize command is 

used to visualize the spin systems in 2D space. 
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crs (calculate registration statistics) command-line interface 

Calculates the registration statistics that will make input_peaklist match root_peaklist 

(reference peak list). 

 

Usage: 

    crs (<input_peaklist> <root_peaklist>) [options] 

 

    input_peaklist    The peak list you wish to register and filter. 

    root_peaklist     The reference peak list. 

 

Options: 

    --verbose                               Print more information. 

    --noi                                   Run in self-registration mode. 

    --nobounds                              Do not perform bounds checking. 

    --dim <i1> <i2> <...> : <r1> <r2> <...> Description of matching dimensions in input 

                                            and root peak lists. 

    --tolerance <num_units>                 Number of stds to use as the match tolerance 

                                            [default: 4]. 

    --H <init_std>                          Set starting std to try for H dimensions  

                                            [default: 0.0075]. 

    --C <init_std>                          Set starting std to try for C dimensions  

                                            [default: 0.075]. 

    --N <init_std>                          Set starting std to try for N dimensions  

                                            [default: 0.075]. 

    --i <max>                               Maximum number of iteration to perform  

                                            [default: 20]. 

    --save <json_filename>                  Save results of the registration algorithm  

                                            into JSON file. 

Figure 49. Command-line interface of the single and pairwise peak list registration 

algorithms. 

 
ssc (Spin System Creator) command-line interface 

 

Usage: 

    ssc -h | --help 

    ssc --version 

    ssc group (--plpath=<path>) (--plformat=<format>) (--stype=<type>)  

              (--dims=<labels>) (--rdims=<labels>)  

              [--result=<path>] [--crs=<path>] 

    ssc visualize <grouping_result> <x_idx> <y_idx> <x_label> <y_label> <plot_title> 

 

Options: 

    -h, --help                   Show this screen. 

    --version                    Show version. 

    --plpath=<path>              Path to peak list. 

    --plformat=<format>          Peak list format. 

    --stype=<type>               Spectrum type. 

    --dims=<labels>              Comma-separated dimension labels. 

    --rdims=<labels>             Comma-separated root dimension labels. 

    --crs=<path>                 Registration algorithm executable path. 

    --result=<path>              Path to directory where results will be saved. 
Figure 50. Command-line interface of single peak list grouping algorithm (the combined 

registration and grouping algorithm). 

 

7.2.4 The jpredapi command-line interface 

Figure 51 shows the command-line interface for the jpredapi package that is used 

to submit queries to the secondary structure prediction server. The submit command is 

used to submit queries. The status command shows the current status of the 
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submitted job (e.g. processing or completed), and get_results command is used to 

retrieve the results of completed job. 

jpredapi command-line interface 

 

The RESTful API allows JPred users to submit jobs from the command-line. 

 

Usage: 

    jpredapi -h | --help 

    jpredapi --version 

 

    jpredapi submit (--mode=<mode> --format=<format>)  

                    (--file=<filename> | --seq=<sequence>) 

                    [--email=<name@domain.com>] [--name=<job_name>] [--skipPDB=<value>] 

                    [--rest=<address>] [--jpred4=<address>] [--silent] 

 

    jpredapi status (--job_id=<id>) [--results_dir=<path>] 

                    [--wait_interval=<interval>] [--extract] [--silent] 

 

    jpredapi get_results (--job_id=<id>) [--results_dir=<path>] 

                         [--wait_interval=<interval>] [--extract] [--silent] 

 

    jpredapi quota (--email=<name@domain.com>) 

 

Options: 

    -h, --help                   Show this help message. 

    --version                    Show jpredapi version. 

    --silent                     Do not print messages. 

    --extract                    Extract results tar.gz archive into folder. 

    --mode=<mode>                Submission mode, possible values: single, batch, msa. 

    --format=<format>            Submission format, possible values: raw, fasta, msf,  

                                 blc. 

    --file=<filename>            Filename of a file with the job input (sequence(s)). 

    --seq=<sequence>             Instead of passing input file, for single-sequence  

                                 submission. 

    --email=<name@domain.com>    E-mail address where job report will be sent 

                                 (optional for all but batch submissions). 

    --name=<job_name>            Job name. 

    --job_id=<job_id>            Job id. 

    --skipPDB=<value>            PDB check, possible values: True, False [default: True]. 

    --results_dir=<path>         Path where to save archive with results. 

    --rest=<address>             REST address of server 

                                 [default: www.compbio.dundee.ac.uk/jpred4/cgi-bin/rest]. 

    --jpred4=<address>           Address of Jpred4 server 

                                 [default: www.compbio.dundee.ac.uk/jpred4]. 

    --wait_interval=<interval>   Wait interval before retrying to check job status in 

                                 seconds [default: 60]. 
Figure 51. Command-line interface for the jpredapi package. 

 

7.3 Future directions 

7.3.1 Advanced spin system typing algorithm 

Development of a new spin system typing algorithm that utilizes secondary 

structure prediction prior information, chemical shift statistics derived from the RefDB 

[64], and use of covariance matrices to predict the list of most probable amino acid types 

is the first immediate next step. The Bayesian-based amino acid typing algorithm which 
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utilizes secondary structure prediction typing information can be used for each of the 

specific ladders within each spin system in order to determine the list of most probable 

amino acid types. Equation (5) specifies the Bayesian probability to predict the most 

probable amino acid types for specific ladders within spin system: 

 (   |   )  
∑  (         )   (     ) 

∑ ( (         )   (     ))   

 (5) 

 

where       – sequence site   and secondary structure   (helix, sheet, coil),     – 

chemical shift values for spin system  ,  (   |   ) – probability of     given    , 

 (         ) – probability of     given      ,  (     ) – prior information probability of 

     , ∑ ( (         )   (     ))    – sum over all possibilities. 

7.3.2 Spin system linking and mapping algorithm 

The next step logical step is to use typed spin systems in order to sequentially 

assign them by linking the nearest neighbor spin systems into segments and mapping 

segments into protein sequence. The linking of spin systems can be calculated as the 

difference between sequential and intraresidue ladders. Equation (6) describes the linking 

score that can be used to identify the neighbor spin systems and form spin system 

segments: 

   
 √∑ (     )

 
 

 
(6) 

 

where,    – chemical shift   from sequential ladder  ,    – chemical shift   from 

intraresidue ladder   (see Figure 3). 
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The segment mapping algorithm maps linked spin system segments uniquely to 

the protein sequence. Every generated segment can be scored using the equation (7): 

  ∏ (          )

 

   

 (7) 

 

where  (          ) is the probability of sequence site     given chemical shifts     

within combined ladder (  ). 
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CHAPTER 8 

CONCLUSIONS 

 

To summarize the research, several new general software packages and 

algorithms were designed and implemented in order to aid the automated resonance 

assignment of peak lists derived from both solution-state and solid-state NMR spectra. 

The nmrstarlib library was designed to easily access NMR data from the NMR-STAR 

formatted files, i.e. access assigned chemical shift values, experimental peak lists if they 

are available, and generate a large number of simulated peak lists without variance and 

single or multiple sources of variance for algorithms robustness testing. The jpredapi 

package was designed to easily submit queries to the secondary structure prediction 

server and utilize this prior information for the amino acid typing algorithm. A pair of 

single peak list registration and spin system grouping algorithms was designed in order to 

address the problem of presence of multiple sources of variance within single peak list 

that have multiple peaks per spin system and create the initial spin systems based on 

calculated match tolerance values. It was shown that algorithms using only single 

iteration and uniform match tolerances approach are only able to recover from 50 % to 80 

% of spin systems due to the presence of multiple sources of variance. The single peak 

list registration and grouping algorithm are able to recover additional spin systems by 

reevaluating match tolerances in multiple iterations. The pairwise registration and 

grouping algorithms were designed to solve the problem of multiple sources of variance 
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that exist between different peak lists, calculate offset registration values, i.e. account for 

inconsistencies between different peak lists that occur due to incorrect chemical shift 

referencing. In addition, through pairwise comparison of different peak lists the pairwise 

registration and grouping algorithms can identify the spin system overlap, spin system 

split, or missing spin systems. Using simulated peak lists from different NMR 

experiments it was shown that the algorithms can correctly identify artificially introduced 

offset values as well as match tolerance values required for spin system grouping across 

peak lists. Together, these methods development and implementation provide valuable 

tools for protein NMR quality assessment and provide a basis for the development of an 

effective and robust automated protein resonance assignment package amenable to both 

solution-state and solid-state NMR peak list datasets. 
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APPENDIX A 

LIST OF ABBREVIATIONS 

 

AA   Amino Acid 

API   Application Programming Interface 

BMRB   Biological Magnetic Resonance Bank 

BMRBID  Biological Magnetic Resonance Bank identifier 

CIF   Crystallographic Information File 

DBSCAN  Density-based spatial clustering of applications with noise 

FAIR   Findable, Accessible, Interoperable, and Reusable 

HDBSCAN  Hierarchical DBSCAN 

JSON   JavaScript Object Notation 

MAS   Magic-angle spinning 

NMR   Nuclear Magnetic Resonance 

PDB   Protein Data Bank 

PEP   Python Enhancement Proposal 

REST   Representational state transfer 

SS   Spin System/Sequence Site/Support Set 

STAR   Self-defining Text Archive and Retrieval 

UML   Unified Modeling Language 

XML   Extensible Markup Language 
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APPENDIX B 

SIMULATED PEAK LIST EXAMPLES 

 

Table B1. Simulated CAN(CO)CA peak list (BMRBID 18397). 

Peak # Assignment w1 w2 w3 
1 Q2CA-N-M1CA 56.08998724415861 125.5070237879975 54.525460498759784 

2 Y3CA-N-Q2CA 57.20000110173284 123.69704843317199 56.08195962645852 

3 K4CA-N-Y3CA 55.19890411103603 122.4040373463508 57.20466677132368 

4 L5CA-N-K4CA 53.048002366758276 126.2414736560956 55.200772909507045 

5 I6CA-N-L5CA 60.04083023167545 126.08316380727885 53.055687323974645 

6 L7CA-N-I6CA 54.843908683820025 126.7484359958205 60.024319587153016 

7 N8CA-N-L7CA 50.80477470316926 124.88727263084405 54.84759761329681 

8 G9CA-N-N8CA 44.73568034623651 109.48002972043292 50.77510404384722 

9 K10CA-N-G9CA 59.376659781971654 120.78517773915708 44.71538168383893 

10 T11CA-N-K10CA 62.23183686676209 106.60758954254734 59.40197617756998 

11 L12CA-N-T11CA 54.59285604656336 127.34195466486149 62.23881152802562 

12 K13CA-N-L12CA 53.55484172132135 123.0135344383692 54.614481170185954 

13 G14CA-N-K13CA 45.1031945803211 105.5391973673235 53.565917961170605 

14 E15CA-N-G14CA 53.925301336282736 121.2834690051228 45.09794477154259 

15 T16CA-N-E15CA 60.26456108375081 115.48172495521821 53.926292640549505 

16 T17CA-N-T16CA 60.37993888040222 115.4611235779842 60.28362710201867 

17 T18CA-N-T17CA 61.68176980806341 115.98146739315655 60.34683729710857 

18 E19CA-N-T18CA 54.315207575711064 125.04026037959156 61.697225780355865 

19 A20CA-N-E19CA 50.8075654636244 125.33685015063142 54.33535323274808 

20 V21CA-N-A20CA 63.7462903217478 116.46664354199123 50.80310089905041 

21 D22CA-N-V21CA 52.467302209239264 115.53885710836218 63.716091315093756 

22 A23CA-N-D22CA 54.751402457453715 123.00540186128194 52.47199639441082 

23 A24CA-N-A23CA 54.71918961369314 120.61838059750413 54.75535425000724 

24 T25CA-N-A24CA 67.54804736653017 117.0207638536372 54.71433863629124 

25 A26CA-N-T25CA 55.23169170190556 123.8771133515964 67.56202665719907 

26 E27CA-N-A26CA 59.30816012761388 116.1937041980287 55.25769802670506 

27 K28CA-N-E27CA 60.49374416024143 117.22561568240506 59.298809306262626 

28 V29CA-N-K28CA 66.59752605340188 119.03260437326401 60.49367000849438 

29 F30CA-N-V29CA 57.40814705133402 118.3496235793004 66.59403419519356 

30 K31CA-N-F30CA 60.30834382115652 120.64412820576668 57.42500048936475 

31 Q32CA-N-K31CA 59.04020387048314 121.12276325017254 60.3026059624695 

32 Y33CA-N-Q32CA 61.8671419247353 120.7252462887843 59.04275345941449 

33 A34CA-N-Y33CA 56.30211439342077 122.51277739864445 61.87668317121093 

34 N35CA-N-A34CA 57.26094994588013 118.06872499286543 56.30356175918259 

35 D36CA-N-N35CA 56.0792143510658 120.97634138933645 57.268024574771566 

36 N37CA-N-D36CA 53.70133445562052 114.75213159778963 56.086334221846656 

37 G38CA-N-N37CA 47.03979494212038 108.27566081302902 53.694149384643694 

38 V39CA-N-G38CA 61.944180117520915 121.64640813122338 47.031608819815276 

39 D40CA-N-V39CA 52.63109904188199 130.6656535021392 61.95519784135377 

40 G41CA-N-D40CA 45.25039333567271 108.10334189555662 52.64047347336225 

41 E42CA-N-G41CA 54.92049770506791 118.25607966797557 45.234388010907765 

42 W43CA-N-E42CA 57.71462979526749 124.70285485231021 54.917648457628715 

43 T44CA-N-W43CA 61.176160986159225 109.00706387073404 57.699085841865674 

44 Y45CA-N-T44CA 58.055321401596764 118.37314066265702 61.15645822140491 

45 D46CA-N-Y45CA 50.84120126126258 126.29620170792327 58.0790406586594 

46 D47CA-N-D46CA 54.69631563448615 123.23755520756762 50.837987492121286 

47 A48CA-N-D47CA 54.026517417904365 118.39033648414215 54.67854798619943 

48 T49CA-N-A48CA 60.44341637877914 104.18612045224553 54.039361628991436 

49 K50CA-N-T49CA 55.504187568702015 119.38243748231302 60.47060213396953 

50 T51CA-N-K50CA 62.63757501160989 111.9001557495533 55.51019041112089 

51 F52CA-N-T51CA 56.684820301932 130.2686330371651 62.65321259602127 

52 T53CA-N-F52CA 60.44503015990373 111.92772371737388 56.68763529821447 

53 V54CA-N-T53CA 58.6692707688915 118.1164215364167 60.44317072794205 

54 T55CA-N-V54CA 61.497516969059 123.7899940409246 58.669400478059025 

55 E56CA-N-T54CA 57.55348493758591 131.08470567790837 61.51666806413445 
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Table B2. Simulated NCACX peak list (BMRBID 18397). 

Peak # Assignment w1 w2 w3 
1 Q2N-CA-C 126.37474657752463 56.63837257155845 174.86629358773598 

2 Q2N-CA-CA 126.36848363529755 56.63909646382991 56.09984762511398 

3 Q2N-CA-CB 126.34732142151232 56.62611167606748 30.32104339137229 

4 Q2N-CA-CG 126.375763777546 56.636808884098016 35.60240123815321 

5 Q2N-CA-CD 126.3547395847522 56.6254767894534 180.2821691525966 

6 Y3N-CA-C 124.55185938571728 57.75035516123179 174.8713848011184 

7 Y3N-CA-CA 124.57779013310311 57.76572988480728 57.19197720651176 

8 Y3N-CA-CB 124.58043473114724 57.742548316586834 43.54553001450174 

9 K4N-CA-C 123.27310087371445 55.75636535659763 173.31591088008074 

10 K4N-CA-CA 123.26760273614376 55.753256079534076 55.20559552046438 

11 K4N-CA-CB 123.28584214768209 55.752685544699 36.277874628349196 

12 K4N-CA-CG 123.28278447883608 55.7454444953196 25.660111580679896 

13 K4N-CA-CD 123.27539503899574 55.7391050161097 29.06301344409681 

14 L5N-CA-C 127.10077465242769 53.60825174227536 174.66265808434846 

15 L5N-CA-CA 127.11655134416607 53.600223467763094 53.04340680554794 

16 I6N-CA-C 126.95090592637777 60.59505728435444 175.07989575651135 

17 I6N-CA-CA 126.93753738495685 60.59551959878378 60.02525384609561 

18 I6N-CA-CB 126.95111521659469 60.60710529611978 37.875300412596864 

19 L7N-CA-C 127.63198815463531 55.391522551687935 174.8866862743816 

20 L7N-CA-CA 127.65178907281144 55.398030176630456 54.84601982534066 

21 L7N-CA-CB 127.62174700261683 55.40347971244275 42.994465645654 

22 L7N-CA-CD1 127.63514102596997 55.391225260944125 26.055416546255508 

23 L7N-CA-CD2 127.61853837911471 55.39661458457827 25.084864823507235 

24 N8N-CA-C 125.73920814797353 51.325079638782604 176.22662058542198 

25 N8N-CA-CA 125.7249632690477 51.33186412395423 50.79191035118426 

26 N8N-CA-CB 125.7508700077936 51.33133148601983 38.37360796424758 

27 N8N-CA-CG 125.74594466910337 51.35453565659011 176.31264849270488 

28 G9N-CA-C 110.38444242372643 45.275378346770864 173.03710755336644 

29 G9N-CA-CA 110.35413233446099 45.27493644220507 44.720004400346326 

30 K10N-CA-C 121.67235017176056 59.957514252328856 178.9675708873985 

31 K10N-CA-CA 121.69263149006557 59.941956406431906 59.40748121574479 

32 K10N-CA-CB 121.66236041631812 59.94674673579991 32.85016130525905 

33 K10N-CA-CG 121.67811082346287 59.954182814619664 25.636279113972968 

34 K10N-CA-CD 121.6739945619845 59.94632387100416 29.291196645542943 

35 T11N-CA-C 107.49933636170229 62.78848912695365 173.2002028994154 

36 T11N-CA-CA 107.48092284881253 62.7824230570412 62.25504959718718 

37 T11N-CA-CB 107.50132872660146 62.797680634756475 69.80697875609283 

38 T11N-CA-CG2 107.50123762141583 62.79237956575546 22.698017785627126 

39 L12N-CA-C 128.22473669835472 55.1548346700391 173.59638531183595 

40 L12N-CA-CA 128.2101522859729 55.13668264439651 54.60752524008299 

41 L12N-CA-CB 128.23429973015402 55.16289023081968 43.29448379232769 

42 L12N-CA-CD1 128.23582560222306 55.17667176791743 26.132079805118526 

43 K13N-CA-C 123.88680512466497 54.09482859703417 175.5894423407792 

44 K13N-CA-CA 123.90910204695982 54.112505896538615 53.55635857732763 

45 G14N-CA-C 106.40963109971118 45.62730266717992 171.1294485889564 

46 G14N-CA-CA 106.38370693106117 45.644198187067964 45.1013947739578 

47 E15N-CA-C 122.13534646911859 54.475786135327255 173.74656480364177 

48 E15N-CA-CA 122.13182586905461 54.47640950143144 53.94300109565274 

49 E15N-CA-CB 122.13681110000044 54.46723453705194 33.47279643652776 

50 T16N-CA-C 116.347138459632 60.82539697932505 171.76867666228054 

51 T16N-CA-CA 116.36624383735669 60.82192013747659 60.27999033174986 

52 T16N-CA-CB 116.34653014785314 60.83419246316472 70.62702785346805 

53 T16N-CA-CG2 116.36782097410823 60.83636291218967 20.011123900906842 

54 T17N-CA-C 116.33193327058657 60.928013878469734 173.79854449498035 

55 T17N-CA-CA 116.32089518646767 60.90909365461843 60.37822834928552 

56 T17N-CA-CB 116.31161508068658 60.93116461515987 73.00671073225485 

57 T17N-CA-CG2 116.31216355260378 60.92039938739741 21.440154763842948 

58 T18N-CA-C 116.85954493995624 62.2140286147248 171.04737482786783 

59 T18N-CA-CA 116.84851836092865 62.220921554885784 61.67639854852682 

60 T18N-CA-CB 116.85304519526116 62.22361385045373 70.99262953094194 

61 T18N-CA-CG2 116.84536991369178 62.233560855712454 18.72884215261144 
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62 E19N-CA-C 125.91997008802345 54.878857928913604 175.61006913369428 

63 E19N-CA-CA 125.89990754162018 54.887540467440424 54.33934971676499 

64 A20N-CA-C 126.20370700883457 51.363543827802204 177.6162933632579 

65 A20N-CA-CA 126.19496903387859 51.37050942146125 50.814165289088976 

66 A20N-CA-CB 126.22294528702804 51.34072346537154 23.706026727248624 

67 V21N-CA-C 117.3289948272376 64.28412509088761 174.7105500957272 

68 V21N-CA-CA 117.36343973374419 64.29136590015015 63.733954361846735 

69 V21N-CA-CB 117.35669604594011 64.29370801617658 31.96235744172191 

70 V21N-CA-CG1 117.33764461189564 64.28084541979402 20.99281070284152 

71 D22N-CA-C 116.40237400699012 53.008656273434596 174.90692770091422 

72 D22N-CA-CA 116.40101788148584 53.02951005550764 52.47770190969666 

73 D22N-CA-CB 116.38942630073623 53.02109094239296 42.661300163449695 

74 A23N-CA-C 123.87053163720914 55.308355904032105 179.76830179787635 

75 A23N-CA-CA 123.86686902897017 55.309579220810846 54.75719029920559 

76 A23N-CA-CB 123.87818981868088 55.30148414422537 18.23870428487891 

77 A24N-CA-C 121.46753955594083 55.26274614608674 181.38180928104723 

78 A24N-CA-CA 121.46957541346823 55.27360023942305 54.70910222055376 

79 A24N-CA-CB 121.47903707039582 55.27448525452084 18.151226171519273 

80 T25N-CA-C 117.89375946523226 68.12068459821047 175.64080434343694 

81 T25N-CA-CA 117.89075964522748 68.10675773103603 67.55610069355237 

82 T25N-CA-CB 117.87796969046943 68.12314506180006 67.59754372030436 

83 T25N-CA-CG2 117.88112350141881 68.10358232878185 21.298333369389805 

84 A26N-CA-C 124.75638218456216 55.780121558478854 177.25642668156806 

85 A26N-CA-CA 124.75874040778872 55.786456593490904 55.24269656537311 

86 A26N-CA-CB 124.77235040807447 55.80354643829877 17.56431380440011 

87 E27N-CA-C 117.05847561947884 59.86190050683349 177.70624092921577 

88 E27N-CA-CA 117.05485045183815 59.84840213229669 59.32109096188497 

89 E27N-CA-CB 117.05118101982632 59.849682621888014 29.15000421150389 

90 K28N-CA-C 118.09505466626433 61.04705204471706 178.7734112065052 

91 K28N-CA-CA 118.0939000257617 61.042653603355625 60.509586644256075 

92 K28N-CA-CB 118.0916800615009 61.04908473200433 32.783749561137036 

93 V29N-CA-C 119.9006081974715 67.15892388061484 178.5822623944007 

94 V29N-CA-CA 119.89185406576382 67.14035596986682 66.58791191969965 

95 V29N-CA-CB 119.90913855826857 67.15506910322482 32.01118932661409 

96 V29N-CA-CG1 119.90858666178023 67.17045065446547 22.24092873909696 

97 V29N-CA-CG2 119.91438508895064 67.1491728443379 21.109995916599 

98 F30N-CA-C 119.23343472195869 57.95686248999264 178.91122383167908 

99 F30N-CA-CA 119.20364274454032 57.96902115702179 57.40945460472741 

100 K31N-CA-C 121.50660521297785 60.86719274039746 179.57761026422074 

101 K31N-CA-CA 121.50855080931062 60.85926700104904 60.30284945992987 

102 K31N-CA-CB 121.50923419472835 60.87224979232287 31.855263682892947 

103 K31N-CA-CD 121.4826302795287 60.85720820745724 29.22101034262877 

104 Q32N-CA-C 122.00152088918666 59.60779339759821 177.37285277147396 

105 Q32N-CA-CA 122.013457095649 59.60525657633825 59.054204476353924 

106 Q32N-CA-CB 121.99686477196575 59.595574828347196 28.97196074214277 

107 Q32N-CA-CD 121.99662317590283 59.59504032927243 179.75144234464221 

108 Y33N-CA-C 121.60041319684575 62.40477718361685 178.53702321256395 

109 Y33N-CA-CA 121.59049181412631 62.42931543709156 61.89149735873813 

110 Y33N-CA-CB 121.58811299553751 62.42494826325337 38.89482678981095 

111 A34N-CA-C 123.37370035386915 56.839881594327835 179.40955539643974 

112 A34N-CA-CA 123.37972630831551 56.840218853595545 56.315132802130584 

113 A34N-CA-CB 123.38625431095323 56.84305762772488 17.982836354109317 

114 N35N-CA-C 118.9406336251923 57.825531839639886 179.462504273583 

115 N35N-CA-CA 118.94740254747359 57.824577097277775 57.288226160597816 

116 N35N-CA-CB 118.94711248200271 57.81383718031868 39.41509769381999 

117 N35N-CA-CG 118.92418997973732 57.83465801509005 176.00039393758652 

118 D36N-CA-C 121.8548370216947 56.63833954114289 175.89137293219727 

119 D36N-CA-CA 121.8523981031267 56.61702387426289 56.057900034784986 

120 D36N-CA-CB 121.83886993367527 56.62477194354053 38.44322027893197 

121 N37N-CA-C 115.61368574050466 54.24398857303175 174.0319639980829 

122 N37N-CA-CA 115.61214139468052 54.24561915071859 53.681875502774716 

123 N37N-CA-CB 115.61353484717496 54.250528057453096 40.47090742236391 

124 N37N-CA-CG 115.62028168956367 54.239985953039664 176.6181834480967 

125 G38N-CA-C 109.14548455939055 47.595962539867045 173.8501364888506 

126 G38N-CA-CA 109.14739848140712 47.59365971925514 47.02300923613492 

127 V39N-CA-C 122.51193383597331 62.51333309268938 174.9787456224277 

128 V39N-CA-CA 122.49143044818096 62.50703953588854 61.94843251118124 
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129 V39N-CA-CB 122.49787695427139 62.48365249826458 31.83299167011932 

130 V39N-CA-CG1 122.48683381881233 62.509296847047544 22.018150116703108 

131 D40N-CA-C 131.5302166473598 53.19724131117937 174.73988738326102 

132 D40N-CA-CA 131.52399153365718 53.188298144800676 52.64001453716309 

133 D40N-CA-CB 131.52671133680525 53.184327349893366 41.18262373759988 

134 G41N-CA-C 108.99310048490746 45.789239759605266 172.63503043742523 

135 G41N-CA-CA 108.98514596752801 45.81594816803027 45.258775102477195 

136 E42N-CA-C 119.12415670603133 55.469864652076765 177.77166830099642 

137 E42N-CA-CA 119.12169805951353 55.467167471277506 54.9159124708808 

138 E42N-CA-CB 119.12648460103468 55.47278387308149 31.066074731666365 

139 W43N-CA-C 125.57693265292565 58.2519204142371 177.16169891663364 

140 W43N-CA-CA 125.57039761013453 58.27062615097913 57.70369967212549 

141 W43N-CA-CB 125.56402469889645 58.248283966462694 33.66699787163827 

142 T44N-CA-C 109.86345917142916 61.712178267494956 173.74585990775753 

143 T44N-CA-CA 109.88612622336083 61.70938990522632 61.166038910362566 

144 T44N-CA-CG2 109.89042219397506 61.71269310091192 20.90478627656454 

145 Y45N-CA-C 119.26542199210138 58.615932158556525 171.76075789735305 

146 Y45N-CA-CA 119.25138375738929 58.61158612871409 58.06754244771449 

147 D46N-CA-C 127.17219745395516 51.3997599552715 175.75364322992743 

148 D46N-CA-CA 127.18145585289383 51.39403084491661 50.851169152758104 

149 D46N-CA-CB 127.16742287011871 51.37419221456706 42.08345374475197 

150 D47N-CA-C 124.1319952728446 55.24686686310918 177.01120423743282 

151 D47N-CA-CA 124.09369997045992 55.24227652966274 54.7045059564102 

152 D47N-CA-CB 124.1107202640821 55.25202038902626 42.94369452314282 

153 A48N-CA-C 119.24074820975306 54.58603759525219 179.3610321505171 

154 A48N-CA-CA 119.26159102786877 54.58200003103815 54.02961923736523 

155 A48N-CA-CB 119.26022101642715 54.559479867792405 19.067257851245046 

156 T49N-CA-C 105.05528316359172 61.00315567598269 175.70218181747381 

157 T49N-CA-CA 105.08407379610355 61.0033259579515 60.45380112030202 

158 T49N-CA-CB 105.06716949084783 61.01347744424112 69.89089292977744 

159 T49N-CA-CG2 105.0567881832911 61.00359578933136 21.597138806238142 

160 K50N-CA-C 120.24627385758113 56.05459168231778 175.23185933646604 

161 K50N-CA-CA 120.25416097643715 56.04556113359048 55.50547676857063 

162 T51N-CA-C 112.74039365109172 63.21868144313733 174.12394975571473 

163 T51N-CA-CA 112.76528581100708 63.21923940676241 62.66243410403021 

164 T51N-CA-CB 112.73970269569332 63.20858254122815 71.82358285881497 

165 T51N-CA-CG2 112.75991885950224 63.20587990749114 21.002262912858594 

166 F52N-CA-C 131.13125492508357 57.21320870587695 175.58142320920783 

167 F52N-CA-CA 131.1314438227842 57.229474832302316 56.65597922952022 

168 F52N-CA-CB 131.12706491027492 57.231286541428275 43.475757775045196 

169 T53N-CA-C 112.78996177971143 60.97901833393373 171.89594336767078 

170 T53N-CA-CA 112.79081329410026 60.98305975548514 60.43837648544439 

171 T53N-CA-CG2 112.78904130462386 60.992470926590634 20.973646358302172 

172 V54N-CA-C 118.99275773585974 59.207268606992834 172.45136390133092 

173 V54N-CA-CA 118.99834647577225 59.21412762175015 58.65922963840883 

174 V54N-CA-CB 118.98670003930283 59.20111949657525 32.583696560336314 

175 V54N-CA-CG1 119.00355191569214 59.216122769631696 21.884922175165705 

176 T55N-CA-C 124.67322515827635 62.06218204601004 174.05241664395675 

177 T55N-CA-CA 124.66321191520731 62.064664085015686 61.50458244677173 

178 T55N-CA-CB 124.66565955596148 62.06012250164029 72.30408457680252 

179 T55N-CA-CG2 124.66733375803453 62.05426872860013 21.281331374517737 

180 E56N-CA-C 131.9504484180766 58.09501631293763 180.10593984109164 

181 E56N-CA-CA 131.9448435612036 58.11078502563426 57.56516414719059 

182 E56N-CA-CB 131.95917123459583 58.105543240951 33.17020972688592 
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