
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2017

Algorithms for automated assignment of solution-state and solid-Algorithms for automated assignment of solution-state and solid-

state protein NMR spectra. state protein NMR spectra.

Andrey Smelter
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Bioinformatics Commons

Recommended Citation Recommended Citation
Smelter, Andrey, "Algorithms for automated assignment of solution-state and solid-state protein NMR
spectra." (2017). Electronic Theses and Dissertations. Paper 2779.
https://doi.org/10.18297/etd/2779

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.library.louisville.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2779
mailto:thinkir@louisville.edu

ALGORITHMS FOR AUTOMATED ASSIGNMENT OF SOLUTION-STATE AND

SOLID-STATE PROTEIN NMR SPECTRA

By

Andrey Smelter

Specialist Degree, Perm State University, Russia, 2010

M.S., University of Louisville, U.S.A., 2013

A Dissertation

Submitted to the Faculty of the

School of Interdisciplinary and Graduate Studies of the University of Louisville

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Interdisciplinary Studies: Specialization in Bioinformatics

School of Interdisciplinary and Graduate Studies

University of Louisville

Louisville, Kentucky

August 2017

© Copyright 2017 by Andrey Smelter

All Rights Reserved

ii

ALGORITHMS FOR AUTOMATED ASSIGNMENT OF SOLUTION-STATE AND

SOLID-STATE PROTEIN NMR SPECTRA

By

Andrey Smelter

Specialist Degree, Perm State University, Russia, 2010

M.S., University of Louisville, U.S.A., 2013

A Dissertation Approved on

July 17, 2017

By the following Dissertation Committee

Hunter N.B. Moseley, Ph.D. Advisor

Eric C. Rouchka, D.Sc. Co-Advisor

Juw Won Park, Ph.D.

Richard J. Wittebort, Ph.D.

Guy Brock, Ph.D.

iii

DEDICATION

This dissertation is dedicated to my parents,

all my family and friends

for their support and encouragement.

iv

ACKNOWLEDGEMENTS

I would like to thank a number of people I owe a debt of gratitude and without

whom this dissertation work could not have been possible.

I am especially grateful to my advisor Dr. Hunter Moseley for his excellent

support and guidance during my doctoral journey. I am thankful for the opportunity to

learn so much from him and work on the project that requires knowledge across multiple

areas. His broad knowledge in multiple disciplines, passion for diligent research, and

ability to work on many unrelated projects at the same time always inspires me.

I am also thankful to my co-advisor Dr. Eric Rouchka who guided me through the

entire Bioinformatics Ph.D. program and was always helpful with all the obstacles I

encountered on my way towards the completion of the program and always provided

valuable advice. I am thankful to Dr. Rouchka for the opportunity to be in Bioinformatics

Ph.D. program and work in the Bioinformatics Lab.

I would like to thank Dr. Juw Won Park, Dr. Richard Wittebort, and Dr. Guy

Brock for being on my dissertation committee. With Dr. Park I worked on a RNA

sequencing project and learned invaluable bioinformatics tools and techniques necessary

to analyze next generation sequencing data. I was lucky to work with Dr. Wittebort on

experimental protein NMR project and gained insights on the problem domain from the

spectroscopist perspective. With Dr. Brock I took statistical methods for bioinformatics

v

class where I learned necessary statistical background which I used extensively in my

research project.

I would like to thank my current and former lab members who made the lab a

friendly and enjoyable place: Xi Chen, Sen Yao, Joshua Mitchell, Eugene Hinderer,

Morgan Astra, Andrew Nova, Dr. Abdallah Eteleeb, Ernur Saka, Mohammed Sayed, and

many others. I would like to thank Dr. Robert Flight for valuable advice and especially

for his passion for open research and open science.

Last but not least, I would like to thank my parents for their support, love, and

opportunities they provided me in my life. I am thankful to all my family and friends that

always encouraged me and helped me get through the program. I am especially thankful

to Marina Malovichko whom I met in Louisville during my years at the University of

Louisville. I am thankful for her love and kindness. She is extremely supportive and

caring, and she made me a better person.

vi

ABSTRACT

ALGORITHMS FOR AUTOMATED ASSIGNMENT OF SOLUTION-STATE AND

SOLID-STATE PROTEIN NMR SPECTRA

Andrey Smelter

July 17, 2017

Protein nuclear magnetic resonance spectroscopy (Protein NMR) is an invaluable

analytical technique for studying protein structure, function, and dynamics. There are two

major types of NMR spectroscopy that are used for investigation of protein structure –

solution-state and solid-state NMR. Solution-based NMR spectroscopy is typically

applied to proteins of small and medium size that are soluble in water. Solid-state NMR

spectroscopy is amenable for proteins that are insoluble in water.

In the vast majority NMR-based protein studies, the first step after experiment

optimization is the assignment of protein resonances via the association of chemical shift

values to specific atoms in a protein macromolecule. Depending on the quality of the

spectra, a manual protein resonance assignment process often requires a considerable

amount of time, from weeks to months-worth of effort even, by an experienced NMR

spectroscopist.

vii

The resonance assignment processes for solution-state and solid-state protein

NMR studies are conceptually similar, but have distinct differences due to the utilization

of different NMR experiments and to the use of different resonances for grouping peaks

into spin systems.

Currently, there is a shortage of robust, effective software tools that can perform

solid-state protein resonance assignment and there is no general software that can

perform both solution-state and solid-state protein resonance assignment in a reliable,

automated fashion. Hence, the motivation of this research is to design and implement

algorithms and software tools that will automate the resonance assignment problem.

As a result of this research, several algorithms and software packages that aid

several important steps in the protein resonance assignment process were developed. For

example, the nmrstarlib software package can access and utilize data deposited in the

NMR-STAR format; the core of this library is the lexical analyzer for NMR-STAR

syntax that acts as a generator-based state-machine for token processing. The jpredapi

software package provides an easy-to-use API to submit and retrieve results from

secondary structure prediction server. The single peak list and pairwise peak list

registration algorithms address the problem of multiple sources of variance within single

peak list and between different peak lists and is capable of calculating the match

tolerance values necessary for spin system grouping. The single peak list and pairwise

peak list grouping algorithms are based on the well-known DBSCAN clustering

algorithm and are designed to group peaks into spin systems within single peak list as

well as between different peak lists.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT ... vi

LIST OF TABLES .. xii

LIST OF FIGURES .. xv

CHAPTER 1 INTRODUCTION .. 1

1.1 Protein resonance assignment ... 1

1.1.1 Solution-state NMR sequential protein resonance manual assignment strategy

overview .. 1

1.1.2 Solution-state NMR triple resonance manual assignment strategy overview ... 2

1.1.3 Solid-state NMR manual assignment strategy overview 3

1.1.4 Automated protein resonance assignment overview.. 3

1.2 Motivation ... 4

1.3 Dissertation outline ... 5

CHAPTER 2 PROTEIN NMR AUTOMATED RESONANCE ASSIGNMENT

BACKGROUND .. 6

2.1 Biology background .. 6

2.2 Description of the protein resonance assignment problem 9

2.2.1 Difference between solution-state and solid-state assignment strategies 9

2.2.2 Protein resonance assignment problem description ... 11

2.2.3 Example resonance assignment strategy using a set of solid-state NMR peak

lists .. 15

2.3 Currently available automated assignment tools .. 18

2.3.1 Tools for automated assignment of solution-state NMR data 18

2.3.2 Tools for automated assignment of solid-state NMR data............................... 20

CHAPTER 3 PROJECT DESIGN OVERVIEW ... 23

3.1 Overview ... 23

3.2 Modeling of the protein resonance assignment problem using UML 23

ix

3.2.1 Design of core entities ... 23

3.2.2 Design of configuration files ... 29

3.2.3 Description of algorithms .. 32

3.2.3.1 Peak list registration algorithm ... 32

3.2.3.2 Spin system grouping algorithm ... 32

3.2.3.3 Amino acid typing algorithm .. 33

3.2.3.4 Linking and mapping algorithms .. 33

CHAPTER 4 NMRSTARLIB – TOOL FOR ACCESSING AND MANIPULATING

NMR-STAR FILES .. 35

4.1 Overview ... 35

4.2 Introduction ... 37

4.3 Implementation ... 39

4.4 Results ... 46

4.4.1 Performance on NMR-STAR formatted files .. 46

4.4.2 Performance on JSONized NMR-STAR files ... 48

4.4.3 Comparison to similar existing software ... 49

4.5 Discussion ... 51

4.5.1 The nmrstarlib interface ... 51

4.5.2 Advantages of using nmrstarlib and JSONized NMR-STAR version 53

4.6 Conclusions ... 57

CHAPTER 5 INTERNAL REGISTRATION AND GROUPING ALGORITHMS 59

5.1 Overview ... 59

5.2 Introduction ... 60

5.2.1 Lack of automated tools to determine match tolerances 61

5.2.2 Presence of multiple sources of variance ... 61

5.2.3 Application of registration algorithm in grouping algorithm 64

5.2.4 Algorithm for generating simulated peak lists ... 64

5.3 Materials and methods .. 65

5.3.1 Experimental data sets ... 65

5.3.2 Simulated data sets ... 66

5.3.3 Single peak list registration algorithm ... 67

x

5.3.4 Single peak list grouping algorithm ... 70

5.3.5 Combined single peak list registration and grouping algorithm 73

5.3.6 Peak list simulation algorithm ... 74

5.4 Results and discussion .. 75

5.4.1 Performance on experimental data sets .. 75

5.4.2 Performance on simulated data sets ... 79

5.4.3 Comparison to hierarchical DBSCAN algorithm .. 82

5.5 Conclusions ... 84

CHAPTER 6 PAIRWISE REGISTRATION AND GROUPING ALGORITHMS 85

6.1 Overview ... 85

6.2 Introduction ... 85

6.3 Materials and Methods .. 87

6.3.1 Experimental data sets ... 87

6.3.2 Pairwise peak list registration algorithm.. 87

6.3.3 Pairwise grouping algorithm .. 93

6.3.3.1. One-to-one pairwise comparison ... 94

6.3.3.2 One-to-many pairwise comparison ... 95

6.3.3.3 Many-to-one pairwise comparison ... 96

6.3.3.4 Many-to-many pairwise comparison .. 98

6.3.3.5 Missing spin system recovery ... 99

6.4 Results and Discussion ... 100

6.4.1 Importance of peak list registration ... 100

6.4.2 Correction of manually assigned peak lists ... 102

6.4.3 Accuracy of pairwise registration algorithm on simulated peak lists with

known offsets .. 105

6.4.3.1 Peak lists with small amount of variance .. 105

6.4.3.1 Peak lists with larger variance .. 106

6.4.4 Accuracy of the pairwise spin system grouping algorithm 107

6.4.4.1 Pairwise spin system grouping on experimental peak lists 107

6.4.4.2 Pairwise spin system grouping on simulated peak lists 108

6.5 Conclusions ... 108

xi

CHAPTER 7 DISCUSSION ... 109

7.1 Evaluation of performance .. 109

7.2 Command-line interfaces .. 110

7.2.1 The nmrstarlib command-line interface ... 110

7.2.2 Registration algorithm command-line interface .. 110

7.2.3 Grouping algorithm command-line interface ... 111

7.2.4 The jpredapi command-line interface .. 112

7.3 Future directions ... 113

7.3.1 Advanced spin system typing algorithm .. 113

7.3.2 Spin system linking and mapping algorithm ... 114

CHAPTER 8 CONCLUSIONS .. 116

REFERENCES ... 118

APPENDIX A LIST OF ABBREVIATIONS .. 128

APPENDIX B SIMULATED PEAK LIST EXAMPLES .. 129

CURRICULUM VITAE ... 133

xii

LIST OF TABLES

Table 1. Solution-state NMR experimental assignment strategies for protein resonance

assignment... 11

Table 2. Solid-state NMR experimental assignment strategies for protein resonance

assignment... 11

Table 3. Programs for automated resonance assignment of solution-state NMR data. 19

Table 4. Programs for automated resonance assignment of solid-state NMR data. 20

Table 5. The nmrstarlib library performance test against NMR-STAR formatted files

using pure Python and Python with C extension and against JSONized NMR-STAR files

using the standard Python library json parser and the UltraJSON (ujson) 3
rd

 party

library. ... 46

Table 6. Converting NMR-STAR formatted files into their equivalent JSON format. 48

Table 7. Performance comparison of nmrstarlib to other Python libraries. 50

Table 8. Common usage patterns for the nmrstarlib module. ... 52

Table 9. The nmrstarlib library command-line interface common usage patterns. 52

Table 10. Comparison of nmrstarlib to other Python libraries. .. 53

Table 11. Solution-state and solid-state NMR derived peak lists. 66

Table 12. Spin system grouping results for solution-state NMR derived peak lists using

combined registration and grouping algorithm. .. 76

Table 13. Spin system grouping results for solid-state NMR derived peak lists using

combined registration and grouping algorithm. .. 77

xiii

Table 14. Summary on simulated HN(CO)CACB peak lists. .. 79

Table 15. Spin system grouping results for solution-state NMR derived peak lists using

HDBSCAN algorithm. .. 83

Table 16. Spin system grouping results for solid-state NMR derived peak lists using

HDBSCAN algorithm. .. 83

Table 17. The solid-state NMR derived peak lists for pairwise algorithm testing. 87

Table 18. Example of two peak lists used in registration algorithm. 89

Table 19. Peak difference matrix for “peaklist1”. .. 90

Table 20. Peak difference matrix for “peaklist2”. .. 90

Table 21. Euclidean distance matrix for “peaklist1” (distances). 91

Table 22. Euclidean distance matrix for “peaklist2” (distances

). .. 91

Table 23. Example of registration offset calculation for identified support pairs. 92

Table 24. Manually assigned CAN(CO)CA peak list example. 103

Table 25. Corrected manually assigned CAN(CO) CA peak list example. 104

Table 26. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with minimum variance.

... 106

Table 27. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with amount of variance

corresponding to experimental peak lists. ... 107

Table 28. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with larger amount of

variance. .. 107

Table 29. Accuracy of the pairwise grouping algorithm on experimental peak lists. 108

xiv

Table 30. Accuracy of the pairwise grouping algorithm on simulated peak lists. 108

xv

LIST OF FIGURES

Figure 1. PDB statistics by experimental method used to determine 3D structure of

proteins (as of July 2017). ... 6

Figure 2. The percentage of structures determined by solution-state and solid-state NMR

spectroscopy in PDB (as of July 2017). .. 7

Figure 3. Standard dipeptide spin system definitions for protein resonance assignments in

solution-state and solid-state NMR. Spin system root resonances are color coded: a)

solution-state NMR assignment strategies based on
1
H and

15
N root definition found in all

standard experiments used in spin system assembly; b) solid-state NMR is based on

partial triple resonance root definition that utilizes
13

C and
15

N resonances and include

one, two, or three resonances that are used in spin system assembly depending on the

assignment strategy. .. 10

Figure 4. Bipartite graph representing the protein resonance assignment problem: black

circles represent linear sequence of amino acids, where each letter is a single-letter amino

acid code; blue ovals represent root resonances that were used to group peaks into spin

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated

with it; each ladder contains chemical shift values. .. 12

Figure 5. Multi-layered bipartite graph representing the protein resonance assignment

problem with secondary structure information: black circles represent the linear sequence

of amino acids, where each letter outside circle is a single-letter amino acid code; each

letter inside circle designate secondary structure conformation (H – helix, S – strand, C –

coil); blue ovals represent root resonances that were used to group peaks into spin

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated

with it; each ladder contains chemical shift values. .. 13

Figure 6. Secondary structure prediction information limits the number of layers; amino

acid typing limits the number of edges between spin systems and primary amino acid

sequence; red chemical shift values identify spin system linking; red edges represent spin

system mapping into the amino acid sequence. .. 15

xvi

Figure 7. Example of solid-state NMR assignment strategy based on NCOCX, CANCO,

and NCACX experiments. .. 16

Figure 8. NCACX, CANCO, and NCOCX peak lists during the assignment process: a)

unassigned peak lists; b) peaks that belong to the same spin system within single peak list

as well as across different peak lists are identified; c) peaks that belong to the same spin

system are isolated, grouped, and assigned; d) completely assigned peak lists. 17

Figure 9. UML class dependency diagram that represents the overall design of data

structures and algorithms for the automated protein resonance assignment..................... 24

Figure 10. UML class dependency diagram of PeakListParser objects representing

inheritance relationships. .. 25

Figure 11. UML class dependency diagram of PeakFilter objects representing

inheritance relationships. .. 26

Figure 12. UML diagram of AssignmentProblem entity representing weak

association relationships. .. 27

Figure 13. UML diagram of composite design pattern. .. 27

Figure 14. Example of tree structure that can be built with composite design pattern. 28

Figure 15. UML diagram of Peak, Dimension, and Resonance entities representing

weak composite relationships. .. 28

Figure 16. Example of spectra description file for the solid-state NMR experiments. 30

Figure 17. Example of resonance classes configuration file... 31

Figure 18. Example of expected values configuration file. .. 31

Figure 19. Organization of the nmrstarlib package version 2.0.0. a) UML package

diagram of the nmrstarlib library; b) UML class diagram of the bmrblex.py

(bmrblex.pyx) module; c) UML class diagram of the nmrstarlib.py module; d)

UML class diagram of the converter.py module; e) UML class diagram of the

csviewer.py module; f) UML class diagram of the plsimulator.py module; g)

UML class diagram of the translator.py module; h) UML class diagram of the

noise.py module. ... 41

xvii

Figure 20. Diagram showing what function calls are made during the process of

StarFile object creation. .. 43

Figure 21. Internal StarFile object representation and correspondence to NMR-STAR

format without comments: a) An example of a NMR-STAR formatted file; b)

StarFile dictionary representation equivalent to the NMR-STAR formatted file and

the JSONized version of the NMR-STAR file. .. 44

Figure 22. Example of output file: chemical shifts organized by amino acid residue type

produced by csviewer.py module. ... 45

Figure 23. Graph showing the dependency of loading time into StarFile object from

the size of file: a) Loading times for NMR-STAR 3.1 formatted files; b) Loading times

for JSONized NMR-STAR 3.1 files. .. 47

Figure 24. Frequency polygon of loading times for NMR-STAR files: a) Comparison of

loading times between NMR-STAR 2.1 and JSONized NMR-STAR 2.1; b) Comparison

of loading times between NMR-STAR 3.1 and JSONized NMR-STAR 3.1. 49

Figure 25. Code example showing how to access data from JSONized NMR-STAR files

using R programming language. ... 55

Figure 26. Code example showing how to access data from JSONized NMR-STAR files

using JavaScript programming language. ... 56

Figure 27. Code example showing how to access data from JSONized NMR-STAR files

using C++ programming language. .. 57

Figure 28. Zoomed-in visualization of spin systems taken from two experimental

HN(CO)CACB peak lists that demonstrates the presence of multiple sources of variance

within peak lists. The dots correspond to peak centers, two peaks form an individual spin

system, ovals show the per-dimension variance (bivariance): a) for the 30S ribosomal

protein S28E from Pyrococcus horikoshii, spin systems 44 and 66 show variance in the H

dimension; b) for pancreatic ribonuclease both spin systems 68 and 130 show variance in

both H and N dimensions. ... 62

Figure 29. Flow diagram of the single peak list registration algorithm. 68

Figure 30. Flow diagram of the single peak list grouping algorithm................................ 72

xviii

Figure 31. Flow diagram overview of the entire registration and grouping process. 73

Figure 32. Visualization of spin system grouping results where colored points correspond

peak centers grouped into spin systems, peak centers of the same color belong to the

same spin system (spin systems are numbered sequentially), unnumbered blue points

correspond to either spurious unassigned peaks or in case of HN(CO)CACB peak lists

peaks corresponding to glycine residues (due to missing CB resonance): a) example of

best spin system clustering for 30S ribosomal protein S28E from Pyrococcus horikoshii

(HN(CO)CACB peak list); b) example of worst spin system clustering non-structural

protein 1 (HN(CO)CACB peak list); c) example of best spin system clustering for GB1

protein (NCACX peak list); d) example of worst spin system clustering for DsbB protein

(NCACX peak list). .. 78

Figure 33. Single source of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions. The dots correspond to the percentage of the grouped/overlapped peaks,

whiskers are calculated standard error of the mean. ... 80

Figure 34. Two sources of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions, 20% of peaks have five times larger variance than the remaining 80% of

peaks in all dimensions. The dots correspond to the percentage of the grouped/overlapped

peaks, whiskers are calculated standard error of the mean. .. 81

Figure 35. Two sources of variance in one dimension: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions, 20% of peaks have five times larger variance than the remaining 80% of

peaks in N dimension. The dots correspond to the percentage of the grouped/overlapped

peaks, whiskers are calculated standard error of the mean. .. 82

Figure 36. Flow diagram of the combined single peak list registration algorithm and

pairwise peak list registration algorithm. .. 88

Figure 37. Visualization of “peaklist1” and “peaklist2” used in pairwise registration. ... 89

Figure 38. Visualization of distances between every pair of peaks, in

“peaklist1” and in “peaklist2”. ... 91

Figure 39. Flow diagram of the pairwise grouping algorithm. ... 94

xix

Figure 40. One-to-one pairwise comparison case. .. 95

Figure 41. One-to-many pairwise comparison case. ... 96

Figure 42. Many-to-one pairwise comparison case (overlapped spin systems). 97

Figure 43. Many-to-one pairwise comparison case (resolved spin systems). 97

Figure 44. Many-to-one pairwise comparison case (overlapped spin systems). 98

Figure 45. Many-to-one pairwise comparison case (resolved spin systems). 99

Figure 46. Missing spin system recovery. .. 100

Figure 47. CAN(CO)CA peak list (red crosses) and NCACX peak list (blue crosses)

without registration (a) and with registration applied (b). .. 101

Figure 48. Command-line interface of the nmrstarlib package. 111

Figure 49. Command-line interface of the single and pairwise peak list registration

algorithms. .. 112

Figure 50. Command-line interface of single peak list grouping algorithm (the combined

registration and grouping algorithm). ... 112

Figure 51. Command-line interface for the jpredapi package. 113

1

CHAPTER 1

INTRODUCTION

1.1 Protein resonance assignment

The process of protein resonance assignment of peaks derived from protein NMR

spectra is the first critical step for the vast majority of studies of protein structure and

dynamics by NMR. In most of the cases, the assignment of protein resonances is

performed manually and can take a significant amount of time, ranging from weeks to

several months of work depending on the difficulty of the assignment problem and the

quality of spectra.

1.1.1 Solution-state NMR sequential protein resonance manual assignment strategy

overview

The first systematic approach to manually assign protein resonances and

subsequently determine the protein 3-dimensional structure was proposed in the 1980s by

Nobel prize winner Kurt Wüthrich and his research group [1]. This is sequential

resonance assignment strategy that relies on two types of 2-dimensional nuclear magnetic

resonance (2D NMR) experiments: correlated spectroscopy (COSY) and nuclear

Overhausser effect spectroscopy (NOESY). In the first phase, the COSY experiment

provides information about
1
H –

1
H through-bond (spin-spin) connectivities which can be

used to identify amino acid spin systems [2]. Then, in the second phase, NOESY

experiment is used to identify through-space (dipole-dipole) interactions of neighbor

hydrogen atoms within 2-5 Å proximity from each other [3], linking

2

neighboring spin systems together. Spin systems determined in the first stage can be

assigned to specific residues in the protein sequence by linking to spin systems of its

neighbors as determined in the second phase. This sequential approach was used during

1980s and allowed the assignment of proteins of up to ~10-15 kilodaltons (kD) (~80-120

residues). Development of
15

N-labeling methodologies during the late 1980s improved

peak dispersion, enabling the assignment of larger protein molecules using the sequential

assignment approach [4], [5].

1.1.2 Solution-state NMR triple resonance manual assignment strategy overview

In the early 1990s, advancements in
13

C and
15

N double labeling protein synthesis

technologies led to the development of new strategies that use
1
H,

13
C, and

15
N

magnetically active nuclei to design new 2D and 3D protein NMR experiments and

assignments strategies [6], [7]. This triple-resonance strategy relies on set of NMR

experiments that utilize through-bond (spin-spin) couplings to identify spin systems that

belong to either single amino acid or dipeptide. Then the redundancy across multiple

spectra is used to identify neighbor spin systems and link them together, which results in

resonance assignments for the full protein chain.

In a typical triple resonance experiment, the backbone amide
1
H and

15
N

resonance pair are used as common resonances across all spectra, i.e. they serve as root

resonances for grouping peaks from multiple spectra into spin systems. This
1
H and

15
N

double resonance is associated with one or more carbons which include backbone

carbonyl
13

C, backbone
13

CA, or side-chain
13

C in order to assign backbone and side-

chain resonances.

3

1.1.3 Solid-state NMR manual assignment strategy overview

In the early 2000s, researchers started to apply magic-angle spinning solid-state

NMR (MAS SSNMR) to the problem of protein resonance assignment and structure

determination. The first assignable spectral data were obtained around 2000 [8] and the

first high-resolution structures of a peptide [9] and a protein [10] were obtained in 2002.

Since that period, the field of MAS solid-state NMR has experienced rapid development.

Resonance assignment by solid-state NMR often requires uniform
13

C and
15

N

double labeling of protein of interest. A typical assignment strategy uses experiments that

utilize
13

C and
15

N resonances to group peaks from multiple spectra into spin systems.

Depending on the chosen strategy, double or triple root resonances are used to create spin

systems that associate
13

C and
15

N of residues and . Although standard solid-state

NMR strategies use
13

C and
15

N resonances, experiments that utilize
1
H-detection are

being developed [11]–[13], which can improve the sensitivity of the spectrum and

increase the number of experimental strategies to perform resonance assignment.

1.1.4 Automated protein resonance assignment overview

With the development of each new generation of NMR experiments, improved

manual approaches for sequence site-specific protein resonance assignment would first

develop, followed by the development of computational methodologies that would

attempt to automate the manual assignment process. In the late 1980s and early 1990s,

automated and semi-automated algorithms were developed to perform resonance

assignment on homo-nuclear and then hetero-nuclear solution-state protein NMR spectra.

Later, due to the advancements in solid-state protein NMR, the feasibility of automated

protein resonance assignment was demonstrated in 2010. A more detailed discussion on

automated assignment algorithms and methodologies is provided in the next chapter.

4

1.2 Motivation

With the advancements in sequencing technologies, genetic and protein sequence

information became widely available with the ultimate goal to understand the function of

gene-products, mostly protein biological function. However, a protein’s biological

function more directly depends on its 3-dimensional structure, which has spurred the

continued development of methods for determining protein structure and related

dynamics.

Two related methods for determining a protein’s 3-dimensional structure and

dynamics is solution-state and solid-state protein NMR. As of July 2017, these techniques

contribute about 10 % (~10,300 solution-state NMR structures and ~100 solid-state NMR

structures) of the structures deposited in Protein Data Bank [14]. But more importantly,

NMR structure determination methods facilitate the study of classes of proteins not

amenable to other structure determination techniques like x-ray crystallography and can

observe and verify structural and dynamic characteristics that may not be detectable by x-

ray crystallography. These reasons provide the motivation for the development of new

computational methodologies that enable robust automated protein resonance assignment

and subsequent structure determination, especially for the solid-state NMR technique.

The scope of this dissertation is focused on providing the survey of currently

available automated resonance assignment approaches for both solution-state and solid-

state protein NMR data and demonstrating results of new algorithms and software tools

for implementing effective and robust automated protein resonance assignment.

5

1.3 Dissertation outline

Chapter 2 reviews the important biological applications of both solution-state and

solid-state protein NMR. This chapter explains the problem of protein resonance

assignment for solution-state and solid-state NMR from the algorithmic/computational

point of view. Next it reviews currently available algorithms that are applied to the

protein resonance assignment problem in both solution-state and solid-state protein

NMR. Chapter 3 provides general design principles and the philosophy behind approach

to the protein resonance assignment problem, along with the data structures and

algorithms supporting this approach. Chapter 4 provides a description of the software

package nmrstarlib which is designed to provide easy-to use access in order to utilize

protein NMR data such as assigned chemical shifts and assigned experimental peak lists

in the NMR-STAR format, especially publicly-available NMR-STAR formatted datasets

in the Biological Magnetic Resonance Data Bank [15]. Chapter 5 describes the first

critical step in resonance assignment algorithms, which is new single peak list

registration and single peak list spin system grouping algorithms for peak lists that have

multiple peaks per spin system, which are used to create initial local spin system

groupings. Chapter 6 provides a description of the pairwise peak list registration and spin

system grouping algorithms which globally merge spin system clusters from different

peak lists, while detecting and correcting spin system overlap or spin system split in the

initial spin system groupings. Chapter 7 is devoted to discussion and future directions of

the whole analysis. Time and space complexity of the algorithms is discussed. Chapter 8

is devoted to project summary and conclusions.

6

CHAPTER 2

PROTEIN NMR AUTOMATED RESONANCE ASSIGNMENT

BACKGROUND

2.1 Biology background

NMR spectroscopy is one of the essential analytical techniques that complements

x-ray crystallography and electron microscopy in protein 3D structure determination. As

of July 2017 NMR spectroscopy contributes 9% (10,404 structures out of 121,831 total

structures available) of the protein 3D structures to the Protein Data Bank (PDB) [14].

Figure 1. PDB statistics by experimental method used to determine 3D structure of

proteins (as of July 2017).

7

Both solution-state and solid-state NMR spectroscopies contribute structures to

the PDB. However, the number of structures determined by solution-state NMRis

significantly larger than the number of structures determined by solid-state NMR

spectroscopy. As of July 2017, the number of protein structures solved by solution-state

NMR is ~10,400 and the number of structures solved by solid-state NMR is ~100

(Figure 2). The low numbers of solid-state NMR structures solved to date come from the

challenges associated with obtaining good quality spectra for samples in the solid-state.

But several advancements, which include improvements in spectrometer hardware,

development of fast and ultra-fast magic-angle-spinning probes, and development of new

experiments specific to solid-state NMR spectroscopy, are improving the resolution and

overall quality of solid-state protein NMR spectra.

Figure 2. The percentage of structures determined by solution-state and solid-state NMR

spectroscopy in PDB (as of July 2017).

8

There are several advantages that NMR spectroscopy provides in protein structure

determination as compared to other methods: experiments are carried out in a native-like

environment both in solution-state NMR and solid-state NMR; the ability to obtain

unique information about protein dynamics; and there is no need to crystallize proteins

into diffractable crystals. One of the big disadvantages of NMR spectroscopy is that

structure determination is limited to relatively small proteins.

Also, NMR spectroscopy complements x-ray crystallography in the structure

determination of membrane proteins, especially in cases where a given protein cannot be

crystallized. In cases where membrane proteins cannot be solubilized for solution-state

NMR investigations, proteins can by studied by solid-state NMR in the microcrystalline

state. An estimated 20%-30% of all genes in most genomes encode membrane proteins

[16]. Membrane proteins are one of the main protein classes besides fibrous proteins,

globular proteins, and disordered proteins. Also, membrane proteins are directly

associated with the membranes of a cell or organelle and have myriads of functions that

are crucial to many fundamental biological processes of organisms [17]. Highlighting just

a few, these functions include: transport of ions, metabolites, and larger molecules

(proteins and RNA) across membranes; relaying signals between the internal and external

environment of a cell; targeting enzymes to the specific locations in the cell; controlling

the composition of the membrane bilayer; maintenance and organization of the shape of

cells and organelles [18]; recognition and defense against invading pathogens; and

maintenance of lipid energy supply [17]. Because of the important roles they play,

malfunctioning membrane proteins can be causal agents in a large variety of diseases. For

example, malfunctioning ion channels can cause neurological and cardiac diseases [19],

9

[20]. Color blindness is caused by nonfunctional photoreceptors [21]. Cystic fibrosis is

caused by mutations that lead to the misfolding of a chloride transporter in the lung [22].

3D structure and dynamics are needed in order to mechanistically understand how

specific membrane proteins function in biological and disease processes and for

structure-based (rational) drug design. Also, more than 50% of all current drug targets are

membrane proteins [18], [23]. Unfortunately, only a relatively small number of these

membrane protein 3D structures have been characterized. Membrane proteins account for

less than 1% of the proteins with known 3D structure (~700 unique structures [24] out of

~121831 structure entities in the PDB [14]). Membrane proteins remain hard to study by

traditional methods, because their structures depend on complex membrane environments

[25].

Another class of proteins that are difficult to study by classical approaches is

amyloid fibrils. Amyloid refers to the abnormal fibrous protein aggregates found in

organs and tissues [26]. Medical interest in amyloid fibrils comes from their involvement

in a variety of diseases such as Alzheimer’s disease, type II diabetes, Parkinson’s disease,

and Huntington’s disease [27].

2.2 Description of the protein resonance assignment problem

2.2.1 Difference between solution-state and solid-state assignment strategies

Both solution-state and solid-state protein NMR resonance assignment strategies

are conceptually very similar to each other. However, software tools and algorithms

developed for solution-state NMR cannot be directly applied to the solid-state NMR peak

lists due to the fact that solution-state and solid-state utilize different NMR experiments

and, as a result, different resonances are used to organize peaks into spin systems. Figure

10

3 demonstrates differences between typical resonances used in grouping peaks across

multiple different peak lists for solution-state (Figure 3a) and solid-state (Figure 3b)

protein NMR, i.e. a typical solution-state NMR assignment strategy utilizes
1
H and

15
N

resonances to organize peaks into spin systems versus a typical solid-state NMR

assignment strategy that uses a combination of
13

CO,
15

N, and
13

CA resonances to

assembly spin systems. However, in addition to
13

C and
15

N detection, new solid-state

NMR experimental assignment strategies are being developed that utilize
1
H resonance

detection [11]–[13]. Table 1 and Table 2 summarize experimental assignment strategies

employed in solution-state and solid-state protein NMR respectively, color-coded

according to categories described by Figure 3a and Figure 3b.

Figure 3. Standard dipeptide spin system definitions for protein resonance assignments in

solution-state and solid-state NMR. Spin system root resonances are color coded: a)

solution-state NMR assignment strategies based on
1
H and

15
N root definition found in all

standard experiments used in spin system assembly; b) solid-state NMR is based on

partial triple resonance root definition that utilizes
13

C and
15

N resonances and include

one, two, or three resonances that are used in spin system assembly depending on the

assignment strategy.

a b

11

Table 1. Solution-state NMR experimental assignment strategies for protein resonance

assignment.

Category II

(Hi–Ni)
Hi–Ni

Hi–Ni–COi-1

Hi–Ni–(CAi)–COi

Hi–Ni–(CAi-1)–COi-1

Hi–Ni–CAi

Hi–Ni–CAi-1

Hi–Ni–(COi-1)–CAi-1

Hi–Ni–(COi-1)–CAi-1CBi-1

Hi–Ni–CAi-1CBi-1

Hi–Ni–CAiCBi

Hi–Ni–(COi-1)–CAi-1CBi-1CGi-1

Hi–Ni–(COi-1CAi-1CBi-1CGi-1)–HAi-1HBi-1HGi-1

Hi–Ni–(COi-1CAi-1CBi-1)–HAi-1HBi-1

Table 2. Solid-state NMR experimental assignment strategies for protein resonance

assignment.

2.2.2 Protein resonance assignment problem description

The protein resonance assignment problem can be represented as a bipartite

graph: a graph whose vertices can be divided into two disjoint sets such that every edge

connects a vertex in the first set to a vertex in the second set. One set is a collection of

spin systems (SS) and the second ordered set represents the linear amino acid sequence

(AA) of a protein. Figure 4 demonstrates the general case of the protein resonance

assignment problem as a bipartite graph.

The basic assignment problem is essentially the same mathematically for both

solution-state NMR and solid-state NMR. Thus, a reliable common assignment strategy

is implemented in the following basic steps: 1) peak list registration – alignment of

Category I

(Ni)

Category IIa

(COi–1–Ni)

Category IIb

(CAi–Ni)

Combined

IIa and IIb

Category III

(COi–1–Ni–CAi)
CAi–Ni–COi–1
Ni–CAi–CXi

Ni–COi–1–CXi–1

Ni–COi–1–CAi–1
Ni–CAi–CAiCBi

Ni–CAi–CBi

Ni–COi–1–(CAi-1)–CAi-1–CBi-1
Ni–COi–1–(CAi-1)–CBi-1

Ni–CAi–COi

COi–1–Ni–CAi
COi–1–Ni–(CAi)–CXi

Ni–COi–1–CXi-1

Ni–COi–1–CAi-1
COi–1–Ni–(CAi)–CBi

COi–1–Ni–(CAi)–COi

Ni–COi–1–(CAi-1)–CAi-1–CBi-1
Ni–COi–1–(CAi-1)–CBi-1

CAi–Ni–COi–1
CAi–Ni–(COi–1)–CXi–1

Ni–CAi–CXi

Ni–CAi–CAiCBi
Ni–CAi–CBi

Ni–CAi–COi

CAi–Ni–(COi–1)–CAi-1

CAi–Ni–COi–1
Ni–COi–1–CXi–1

Ni–CAi–CXi

CAi–Ni–COi–1–CXi–1
COi–1–Ni–CAi–CXi

CAi–Ni–COi–1–CAi-1

COi–1–Ni–CAi–CBi
COi–1–Ni–CAi–CAiCBi

COi–1–Ni–CAi–COi

12

common dimensions between peak lists from different spectra; 2) peak list quality

assessment – evaluation of the quality of input peak lists; 3) spin system grouping –

grouping peaks from peak lists into spin systems using common root resonances; 4)

amino acid typing – classification of dipeptide spin systems by possible amino acid type

using chemical shift values; 5) linking – linking nearest-neighbor spin systems by

matching sequential and intraresidue chemical shifts; 6) mapping – mapping linked spin

system segments uniquely to the primary sequence(s) of the protein; 7) resonance

assignment quality assessment – evaluation of the quality of the resulting resonance

assignments.

Figure 4. Bipartite graph representing the protein resonance assignment problem: black

circles represent linear sequence of amino acids, where each letter is a single-letter amino

acid code; blue ovals represent root resonances that were used to group peaks into spin

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated

with it; each ladder contains chemical shift values.

13

Figure 5. Multi-layered bipartite graph representing the protein resonance assignment

problem with secondary structure information: black circles represent the linear sequence

of amino acids, where each letter outside circle is a single-letter amino acid code; each

letter inside circle designate secondary structure conformation (H – helix, S – strand, C –

coil); blue ovals represent root resonances that were used to group peaks into spin

systems; each spin systems has an intraresidue (I) and sequential (S) ladder associated

with it; each ladder contains chemical shift values.

It is known that chemical shift values are secondary-structure-dependent [28].

Thus, the inclusion of secondary structure information transforms the bipartite

representation into a multi-layered bipartite graph representation with additional layers of

edges and nodes. Figure 5 demonstrates the multi-layered bipartite graph representation

where black edges between spin systems (blue ovals) and primary sequence (black

circles) form the first layer bipartite graph, then gray edges between spin systems (blue

ovals) and primary sequence (gray circles) form the second layer bipartite graph. Many

14

layers are possible depending on the different secondary structure combinations the

primary protein sequence can have.

In order to reduce the number of layers, prior information can be leveraged to

predict secondary structure for specific parts of the primary sequence. The state of the art

secondary structure prediction from sequence tools achieve very high prediction accuracy

[29]. In addition, secondary structure information can be extracted from homologous

protein structures generated by homology modeling tools.

The number of edges can be reduced by the prediction of the most probable amino

acids for particular chemical shifts within spin systems (either root and/or ladder

chemical shift values). Figure 6 shows the protein resonance assignment problem where

secondary structure information reduces the number of layers, and amino acid typing

information reduces the number of edges. Leveraging redundancy in chemical shift

values between intraresidue and sequential ladders spin systems can be linked together

into a segment and then that segment can be mapped into a protein sequence.

15

Figure 6. Secondary structure prediction information limits the number of layers; amino

acid typing limits the number of edges between spin systems and primary amino acid

sequence; red chemical shift values identify spin system linking; red edges represent spin

system mapping into the amino acid sequence.

2.2.3 Example resonance assignment strategy using a set of solid-state NMR peak

lists

Figure 7 illustrates a combined Category IIa and IIb assignment strategy that

utilizes three different peak lists derived from solid-state NMR experiments. The 3D

NCOCX peaks are composed of chemical shift values that belong to
15

N of residue ,

13
CO of residue , and

13
CX of residue [30], with the resulting NCOCX peak

list containing multiple peaks per spin system due to
13

CX (any carbon) dimension. The

3D CANCO peaks have chemical shift values from
13

CA and
15

N of residue , and
13

CO

of residue [31], with the resulting CANCO peak list containing a single peak per

spin system. The 3D NCACX peaks contain chemical shift values from
15

N,
13

CA, and

13
CX of the same residue [30], with the resulting NCACX peak list containing multiple

16

peaks per spin system due to
13

CX dimension. The
15

N of residue and
13

CO of residue

 chemical shift values can be used to group peaks into spin systems between the

NCOCX and CANCO peak lists, then the
15

N and
13

CA of residue chemical shift values

can be used to group peaks into spin systems between the NCACX and CANCO peak

lists. Together, both groupings form global spin systems across all three peak lists.

Figure 7. Example of solid-state NMR assignment strategy based on NCOCX, CANCO,

and NCACX experiments.

17

N
C

O
C

X

a

N

C
O

C
X

b

C
A

N
C

O

C
A

N
C

O

N
C

A
C

X

N
C

A
C

X

N
C

O
C

X

c

N
C

O
C

X

d

C
A

N
C

O

C
A

N
C

O

N
C

A
C

X

N
C

A
C

X

Figure 8. NCACX, CANCO, and NCOCX peak lists during the assignment process: a)

unassigned peak lists; b) peaks that belong to the same spin system within single peak list as

well as across different peak lists are identified; c) peaks that belong to the same spin

system are isolated, grouped, and assigned; d) completely assigned peak lists.

18

The identified spin systems are used to calculate the list of most probable amino

acids for each of the spin system’s ladders. Next, linking and mapping algorithms must

be applied in order to uniquely assign the spin systems to the protein sequence.

Figure 8 demonstrates the assignment strategy illustrated in Figure 7 in terms of

peak lists: Figure 8a shows the unassigned NCOCX, CANCO, and NCACX peak lists.

In Figure 8b, the groups of peaks within and across peaks lists are identified. Figure 8c

shows isolated spin system group that has been typed and assigned. Figure 8d

demonstrates completely assigned peak lists after each of the spin system groups are

typed, linked, and uniquely mapped to the protein sequence.

2.3 Currently available automated assignment tools

2.3.1 Tools for automated assignment of solution-state NMR data

This section provides an overview of the automated protein resonance assignment

software tools and algorithms for the solution-state NMR. Table 3 shows a non-

exhaustive list of solution-state NMR tools published in the last 20 years or so. There are

several major computational methods and approaches that are employed to address the

automated resonance assignment problem: Monte Carlo/simulated annealing methods,

evolutionary algorithms, exhaustive search, best-first heuristic and tree search

approaches.

Monte Carlo/simulated annealing methods [32], [33], [34], [35], [36] try to

explore the landscape of all possible solutions and optimize the pseudo energy function in

order to identify the global optimal resonance assignments. Genetic algorithm [37], [38],

[39] approaches are related to Monte Carlo methods and try to identify the optimal

resonance assignments through evolution of set of initial random individual solutions.

19

Table 3. Programs for automated resonance assignment of solution-state NMR data.

Year

published
Program name Core methodology Grouping Registration

1997 Buchler et al [32]
Monte Carlo /

simulated annealing
Yes No

1997
AUTOASSIGN [40],

[41]
Heuristic best-first Yes Yes

1997 GARANT [37] Genetic algorithm Yes No

1997 Li et al [42] Heuristic best-first Yes No

1997 Lukin et al [33]
Monte Carlo /

simulated annealing
Yes No

1998 CAMRA [43]

Matching predicted

shifts with observed

spin systems

Yes No

1998 PASTA [34]
Monte Carlo /

simulated annealing
Yes No

2000 MAPPER [44] Exhaustive search Yes No

2000 TATAPRO [45] Exhaustive search Yes No

2002 Andrec et al [46] Exhaustive search Yes No

2003 Reed et al [35]
Monte Carlo /

simulated annealing
Yes No

2003 IBIS [47] Heuristic best-first Yes No

2003 MONTE [36]
Monte Carlo /

simulated annealing
Yes No

2003 PACES [48] Exhaustive search Yes No

2004 MARS [49] Heuristic best-first Yes No

2005 CASA [50] Depth-first tree search Yes No

2005 PISTACHIO [51]

Probabilistic

identification of spin

systems and their

assignments

Yes No

2007 CISA [52] Connectivity graph Yes No

2007 GASA [53] Connectivity graph Yes No

2008 MATCH [38] Genetic algorithm Yes No

2009 IPASS [54]
Integer linear

programming
Yes No

2010 SAGA [55] Depth-first tree search Yes No

2012 FLYA [39] Genetic algorithm Yes Yes

2013 EZ-ASSIGN [56] Exhaustive search Yes No

The optimal solution is deduced through multiple cycles of mutation and recombination.

Global and local optimization schemas might be used to guide the resonance assignment

to the global optimum. Heuristic best-first approaches [40], [41], [42], [47], [49] try to

identify the set of initial best unambiguous (complete, non-overlapped) segments of spin

20

systems and assign them first, then try to assign the more ambiguous (overlapped,

incomplete) spin systems next.

2.3.2 Tools for automated assignment of solid-state NMR data

This section provides an overview of the automated protein resonance assignment

software tools and approaches published recently that are designed specifically to handle

the task of protein resonance assignment of peak lists derived from solid-state NMR

experiments. The number of programs designed for solid-state NMR automated

assignment is significantly smaller than the number of solution-state NMR automated

assignment tools. Table 4 shows a list of programs designed to perform automated

protein resonance assignment of solid-state NMR data.

Table 4. Programs for automated resonance assignment of solid-state NMR data.

Year

published
Program name Core methodology Grouping Registration

2010 MC_ASSIGN1 [57]
Monte Carlo/

simulated annealing
Yes No

2010 SASS [58] Heuristic best-first Yes Yes

2013 ssFLYA [59] Genetic algorithm Yes Yes

2014 GAMES_ASSIGN [60] Genetic algorithm Yes No

In 2010, one of the first programs that demonstrated feasibility of automated

protein resonance assignment on solid-state NMR peak lists was the MC_ASSIGN1[57].

The MC_ASSIGN1 algorithm uses protein sequence and a limited set of 2D peak lists,

N(CA)CX and N(CO)CX, in order to generate sequential resonance assignment. The

approach is based on a Monte Carlo/simulated annealing computational algorithm. The

algorithm tries to assign each peak within N(CA)CX and N(CO)CX to every residue

within protein sequence using global optimization score function. During the algorithm

execution, this score function tries to maximize the number of “good connections” and

21

minimize the number of “bad connections”, number of “edges”, and number of unused

peaks. The MC_ASSIGN1 algorithm was tested against uniformly labeled HET-s(218–

289) fibrils with known manual assignments.

Another early approach that demonstrated tractability of automated protein

resonance assignment using solid-state NMR peak list was the SASS software [58]. The

program also used a limited set of solid-state NMR experiments, 3D NCACX, 3D

CAN(CO)CA, and 4D CANCOCX in order to produce the resonance assignments of 56

amino acids long GB1 protein with known manual assignments. The design of the

program is similar to the solution NMR assignment package AutoAssign [40], [61]–[63].

It implements the prototype grouping, and typing algorithms, but uses linking and

mapping algorithms from the AutoAssign. The prototype program was able to achieve

84.1% assignment of the
15

N,
13

CO,
13

CA, and
13

CB resonances with no errors. Both

MC_ASSIGN1 and SASS programs represented a proof of concept software tools that

demonstrate the tractability of the automated protein resonance assignment problem.

Later, in 2013, the algorithm called ssFLYA was developed within the automated

resonance assignment and structure calculation program CYANA [59]. This approach

was developed on the basis of FLYA algorithm for automated assignment of solution-

state NMR peak lists within same CYANA software [39]. The ssFLYA algorithm is able

to handle more standard 2D and 3D solid-state NMR peak lists such as 3D NCACB, 3D

CAN(CO)CA, 3D CANCO, 3D NCACO, 3D NCACX, 3D NCOCA, 3D NCOCX, 2D

NCO, and 2D NCA. The resonance assignment solutions are generated by comparing the

set of measured peaks with known positions to the set of expected assigned peaks with

unknown positions. The resonance assignment process relies on a global evolutionary

22

optimization algorithm and local optimization routine that takes back and tries to reassign

small parts of the generated assignment. Initial set of solutions is generated randomly.

The recombination procedure is used to generate a new generation of resonance

assignment solutions from the previous generation. The scoring function is used in order

to select the best resonance assignment solutions and the solution that maximizes the

scoring function is then reported as the final solution. The algorithm was applied to peak

lists from four different proteins: microcrystals of ubiquitin and Ure2 prion C-terminal

domain amyloids of HET-s(218–289) and α-synuclein.

In 2014, the algorithm called GAMES_ASSIGN (Genetic Algorithm using

Maximum Entropy for Solid state NMR resonance ASSIGNments of proteins) was

published. This algorithm uses standard solid-state NMR experiments such as 3D

NCACX, 3D NCACO, 3D NCOCX, 3D NCOCA, 3D CONCA. The algorithm proceeds

in three phases. In the first phase, spin systems are generated by pairing peaks one by

one. In the second phase, resonance assignments are generated by pairing generated spin

systems to the specific positions within protein sequence. Both the first and second

phases are repeated a number of times in order to generate the set of candidate resonance

assignment solutions. A genetic algorithm with mutation and recombination is applied at

these phases in order to guide the creation best candidate solutions. Statistics are

generated during the first two phases, including how many times a certain peak was

assigned to a particular position within the protein sequence. In the third phase, the final

consensus resonance assignments are generated utilizing the statistics information

obtained in the first and second phases. Peak lists from three different proteins were used

to evaluate the performance: GB1, ubiquitin, and CsmA.

23

CHAPTER 3

PROJECT DESIGN OVERVIEW

3.1 Overview

This chapter provides a high-level overview of the algorithms and data structures

necessary to model and solve the protein resonance assignment problem. In order to

model the overall protein resonance assignment problem, the Unified Modeling

Language (UML) was used to describe which algorithms and objects are necessary to

implement.

3.2 Modeling of the protein resonance assignment problem using UML

3.2.1 Design of core entities

Several groups of entities that handle different aspects of the protein resonance

assignment problem are defined (Figure 9). Processing/Management Entities

are responsible for parsing peak lists, parsing protein sequences, and creating supporting

entities. Physical Entities are designed to represent real objects such as a peak

list, peak, protein sequence, etc. Descriptive Entities model the objects that are

necessary for the description of the protein resonance assignment problem, such as a list

of expected resonance values for each specific monomer, a description of monomers, a

description of spectra, a description of resonance classes, etc. Characterized

Entities are objects that combine prior information such as secondary structure

prediction and homology modeling with descriptive entities.

24

Potential Assignment Entities enable the mapping of spin systems to

Characterized Entities representing sequence sites in the protein sequence(s).

Algorithmic Entities are classes and methods that directly solve the protein

resonance assignment problem.

Figure 9. UML class dependency diagram that represents the overall design of data

structures and algorithms for the automated protein resonance assignment.

25

Entities in Figure 9 are connected using different types of connectors: a simple

line represents weak association between entities; a line with filled diamond represents

composition relationships between entities, when object of one type is composed of

object of another type and cannot exist independently; a line with empty diamond

represents aggregation relationships between entities, when object of one type is

composed (weaker composition) of object of another type, but they can exist

independently; a line with an arrow represents inheritance relationships between entities,

when one object extends the functionality of another object.

Figure 10. UML class dependency diagram of PeakListParser objects representing

inheritance relationships.

Figure 10 shows class dependency diagram for entities responsible for parsing

experimental peak lists into a PeakList object. Here three concrete peak list parsers

SparkyPeakListParser, AutoAssignPeakListParser, and

JSONPeakListParser inherit from an abstract PeakListParser object. This

design provides an abstract common peak list parsing interface and each of the concrete

peak lists parsers implement their own specific parse() method to address the specific

26

parsing requirements of each peak list format. Additional peak list parsers can be easily

defined by subclassing the abstract PeakListParser object.

Figure 11 shows the class dependency diagram for the PeakFilter objects

that is not shown on the main diagram. Here an abstract PeakFilter object provides a

common interface that specifies a list of parameters (filter_parameters) for the

concrete peak filters. Currently, only ChemShiftPeakFilter is applied to filter out

artefact peaks that are present within experimental peak lists, using minimum and

maximum chemical shift ranges for
13

C,
15

N, and
1
H dimensions. In addition, an abstract

PeakFilter class has the filterlist static method that operates on a peak list and

uses list of specified filters to filter out unwanted peaks. Additional peak filters can be

specified by subclassing PeakFilter class, for example, peak filters based on peak

intensity or line width.

Figure 11. UML class dependency diagram of PeakFilter objects representing

inheritance relationships.

Figure 12 shows an AssignmentProblem entity representing an entry point

that uses different configuration files in order to facilitate creation of the other entities. It

mostly consists of static methods that orchestrate the creation of all other entities,

therefore it has weak association relationships with all entities it creates.

The composite design pattern is used in several places in the implementation,

allowing us to treat complex objects the same way as a primitive object. Here the

27

PeakComponent represents an abstract class that provides a common interface for both

the Peak and PeakGroup objects. Each Peak object represents a simple individual

peak within the peak list. The PeakGroup object represents a more complex entity that

can consists of multiple peaks, hence the PeakGroup name. The key idea is that groups

of peaks can be manipulated in exactly the same way as each individual peak.

Figure 12. UML diagram of AssignmentProblem entity representing weak

association relationships.

Figure 13. UML diagram of composite design pattern.

28

This concept is applied during the single and pairwise peak lists registration and

grouping algorithms (Chapter 5 and 6) in order to create peak lists that consist of groups

of peaks that belong to the same spin systems (local spin system groups) instead of

individual peaks. This allow the algorithm to build global spin systems via pairwise

comparison through merging peak groups and treat those peak groups as if they were

individual peaks. Figure 14 demonstrates an example of the resulting tree structure,

where peak groups can consist of individual peaks (groups #1, #2, and #3) as well as

mixture of peak groups and individual peaks (groups #4 and #5). In this context, both

peaks and peak groups are treated as if they were same type of object.

Figure 14. Example of tree structure that can be built with composite design pattern.

Figure 15 shows an example of the composition relationships where a Peak

object is composed of multiple Dimension objects and each dimension has its

corresponding Resonance object, and this group of objects cannot exist independently

of each other.

Figure 15. UML diagram of Peak, Dimension, and Resonance entities representing

weak composite relationships.

29

3.2.2 Design of configuration files

To facilitate the creation of required entities, several configuration files using the

JSON file format were developed. The use of JSON file format is a very important

implementation decision: i) there are JSON parsers in every major computer language,

facilitating future integration of this project with other major NMR software, ii) JSON is

more human-readable than XML, and iii) all configuration files will have the same well-

known base JSON file format, making them easier to understand and to maintain, iv) the

use of human-readable and editable configuration files allows us to isolate important

aspects of the protein resonance assignment problem such as description of the spectra

from the actual code implementation, allowing the creation of generic algorithms that are

capable of working on both solution-state and solid-state protein resonance assignment

data.

The spectra_description.json file stores information about peak

descriptions for different types of NMR experiments, enabling the easy incorporation of

future solution-state and solid-state NMR experiments. Figure 16 shows an example of

spectral descriptions for the solid-state NMR experiments.

The resonance_classes.json configuration file stores all available

individual as well as composite resonances that are available for every monomer. This

configuration file allows the representation of each peak description in terms of generic

resonance classes rather than amino acid specific resonance types. Figure 17 shows an

example configuration file that describes resonance classes.

30

{

 "NCA": {

 "Labels": ["N", "CA"],

 "MinNumberPeaksPerSpinSystem": 1,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["N", "CA"]}

]

 },

 "NCO": {

 "Labels": ["N", "CO-1"],

 "MinNumberPeaksPerSpinSystem": 1,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["N", "CO-1"]}

]

 },

 "NCACX": {

 "Labels": ["N", "CA", "CX"],

 "MinNumberPeaksPerSpinSystem": 2,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["N", "CA", "CO"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CA"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CB"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CG"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CD"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CE"]},

 {"fraction": 1, "dimensions": ["N", "CA", "CZ"]}

]

 },

 "NCOCX": {

 "Labels": ["N", "CO-1", "CX-1"],

 "MinNumberPeaksPerSpinSystem": 2,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["N", "CO-1", "CA-1"]},

 {"fraction": 1, "dimensions": ["N", "CO-1", "CB-1"]},

 {"fraction": 1, "dimensions": ["N", "CO-1", "CG-1"]},

 {"fraction": 1, "dimensions": ["N", "CO-1", "CD-1"]},

 {"fraction": 1, "dimensions": ["N", "CO-1", "CE-1"]},

 {"fraction": 1, "dimensions": ["N", "CO-1", "CZ-1"]}

]

 },

 "CANCO": {

 "Labels": ["CA", "N", "CO-1"],

 "MinNumberPeaksPerSpinSystem": 1,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1"]}

]

 },

 "CANCOCX": {

 "Labels": ["CA", "N", "CO-1", "CX-1"],

 "MinNumberPeaksPerSpinSystem": 2,

 "PeakDescriptions": [

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CO-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CA-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CB-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CG-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CD-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CE-1"]},

 {"fraction": 1, "dimensions": ["CA", "N", "CO-1", "CZ-1"]}

]

 }

}
Figure 16. Example of spectra description file for the solid-state NMR experiments.

31

{

 "CA": ["CA"],

 "CB": ["CB"],

 "CG": ["CG", "CG1", "CG2"],

 "CD": ["CD", "CD1", "CD2"],

 "CE": ["CE", "CE1", "CE2", "CE3"],

 "CZ": ["CZ", "CZ2", "CZ3"],

 "CO": ["C"],

 "C": ["C"],

 "CX": ["CA", "CB", "CG", "CG1", "CG2", "CD", "CD1", "CD2", "CE",

 "CE1", "CE2", "CE3", "CZ", "CZ2", "CZ3", "C"],

 "H": ["H"],

 "HN": ["H"],

 "HA": ["HA", "HA2", "HA3"],

 "HB": ["HB", "HB2", "HB3"],

 "HG": ["HG", "HG1", "HG12", "HG13", "HG2", "HG3"],

 "HD": ["HD1", "HD2", "HD21", "HD22", "HD3"],

 "HE": ["HE", "HE1", "HE2", "HE21", "HE22", "HE3"],

 "HH": ["HH", "HH11", "HH12", "HH2", "HH21", "HH22"],

 "HZ": ["HZ", "HZ2", "HZ3"],

 "N": ["N"],

 "ND": ["ND1", "ND2"],

 "NE": ["NE", "NE1", "NE2"],

 "NZ": ["NZ"]

}
Figure 17. Example of resonance classes configuration file.

 "Helix": {

 "A": {

 "CA": {

 "ExpectedChemShift": 54.83,

 "Stdev": 1.05

 },

 "CB": {

 "ExpectedChemShift": 18.26,

 "Stdev": 0.88

 },

 "CO": {

 "ExpectedChemShift": 179.4,

 "Stdev": 1.32

 },

 "HA": {

 "ExpectedChemShift": 4.03,

 "Stdev": 0.33

 },

 "HB": {

 "ExpectedChemShift": 1.35,

 "Stdev": 0.29

 },

 "HN": {

 "ExpectedChemShift": 8.08,

 "Stdev": 0.52

 },

 "N": {

 "ExpectedChemShift": 121.44,

 "Stdev": 2.37

 }

 }, ...

 ...
Figure 18. Example of expected values configuration file.

32

The expected_values.json configuration file contains information about

expected chemical shift and standard deviation statistics. Expected values for
13

Cα,
13

Cβ,

13
CO,

15
N,

1
H, and

1
Hα were derived from RefDB [64], statistics for

13
Cγ,

13
Cδ,

13
Cε,

1
Hβ,

1
Hγ,

1
Hδ,

1
Hε, and others were derived from BMRB [15]. An example configuration

file with information about expected chemical shift values for different secondary

structures is shown on Figure 18.

3.2.3 Description of algorithms

3.2.3.1 Peak list registration algorithm

The peak list registration algorithm provides necessary registration offsets and

peak list quality statistics necessary to group peaks into spin systems. The peak list

registration algorithm executes in two modes: i) self-registration for a single peak list that

contains multiple peaks per spin system; ii) pairwise-registration for two different peak

lists. This is one of the most computationally expensive steps in implementation. Due to

this fact, it is implemented as a stand-alone C++ program to improve efficiency of the

algorithm. This alignment algorithm provides: (i) the best mapping of peaks from an

“input” peak list to the “root” peak list for their comparable dimensions; (ii) the

registration for translating the “input” peak list to the “root” peak list in their comparable

dimensions; and (iii) the standard deviations of this registration, which are needed to

calculate match tolerances.

3.2.3.2 Spin system grouping algorithm

The spin system grouping algorithm utilizes the registration algorithm in order to

infer match tolerance values for a single peak list first and then for multiple different

peak lists and therefore consists of two sub-algorithms – one for single peak lists spin

system grouping and the other one for grouping peaks from several different peak lists.

33

By applying the self-registration algorithm, the uncertainty in the chemical shift values of peak

lists that have more than one peak per spin system be statistically analyzed. Next, the algorithm

performs an averaging of root resonance values of these initial peak groups to improve their

estimation of chemical shift values in terms of their standard error. The pairwise grouping

algorithm merges peaks across different peak lists using statistics derived from the pairwise-

registration algorithm.

3.2.3.3 Amino acid typing algorithm

This algorithm creates an ordered list of the highest probable amino acid types for

each spin system. Most of the current amino acid typing algorithms use chemical shift

statistics directly derived from BMRB, without considering secondary structure and

resonance covariance information. However, it is well-known that chemical shift values

for Cα and Cβ are secondary-structure-dependent [28]. The Re-referenced Protein

Chemical shift Database (RefDB) [64] contains corrected or re-referenced expected

chemical shift values, derived from the BMRB, but organized in tables depending on the

protein secondary structure conformation: coil, helix, beta strands, and average of three.

Therefore, RefDB secondary-structure-specific tables for the underlying chemical shift

statistics are used within Bayesian-based amino acid typing algorithm.

3.2.3.4 Linking and mapping algorithms

The goal of the linking algorithm is to identify nearest neighbor spin systems

through the redundancy information present between intraresidue and sequential ladders

during the global spin systems comparison. Identified neighbor spin systems are then

linked together into longer segments. Next, the goal of mapping algorithm is to map the

generated segments to the most probable locations within the protein sequence. Linking

34

and mapping algorithms are described in more detail in the future directions section of

Chapter 7.

35

CHAPTER 4

NMRSTARLIB – TOOL FOR ACCESSING AND MANIPULATING

NMR-STAR FILES

4.1 Overview

The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of

Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It

is an important resource for many researchers using NMR to study structural,

biophysical, and biochemical properties of biological macromolecules. It is primarily

maintained and accessed in a flat file ASCII format known as NMR-STAR. While the

format is human readable, the size of most BMRB entries makes computer readability

and explicit representation a practical requirement for almost any rigorous systematic

analysis.

To aid in the use of this public resource, the package called nmrstarlib in the

popular open-source programming language Python was developed. The nmrstarlib’s

implementation is very efficient, both in design and execution. The library has facilities

for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing

them into usable Python dictionary- and list-based data structures, making access and

manipulation of the experimental data very natural within Python programs (i.e.

“saveframe” and “loop” records represented as individual Python dictionary data

structures). Another major advantage of this design is that data stored in

36

original NMR-STAR can be easily converted into its equivalent JavaScript Object

Notation (JSON) format, a lightweight data interchange format, facilitating data access

and manipulation using Python and any other programming language that implements a

JSON parser/generator (i.e., all popular programming languages). Also tools to easily

access and visualize assigned chemical shift values and to convert between NMR-STAR

and JSONized NMR-STAR formatted files were developed. The nmrstarlib package can

also be used to generate a wide range of simulated peak lists and introduce multiple

sources of variance in order to generate more realistic data sets. The full API Reference

Documentation, User Guide and Tutorial with code examples are also available online

[65].

The library was tested on all current BMRB entries: 100% of all entries are parsed

without any errors for both NMR-STAR version 2.1 and version 3.1 formatted files. Also

comparison of software to three currently available Python libraries is provided for

parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR.

The nmrstarlib is a simple, fast, and efficient library for accessing data from the

BMRB. The library provides an intuitive dictionary-based interface with which Python

programs can read, edit, and write NMR-STAR formatted files and their equivalent

JSONized NMR-STAR files. The nmrstarlib can be used as a library for accessing and

manipulating data stored in NMR-STAR files and as a command-line tool to convert

from NMR-STAR file format into its equivalent JSON file format and vice versa,

generate a large number of simulated peak lists, and visualize chemical shift values.

37

The library was developed with the following use cases in mind: ability to access

assigned chemical shift values, ability to access experimental peak lists if they are

available, ability to generate a large number of simulated peak lists from assigned

chemical shift values and account for multiple sources of variance. The following chapter

provides the implementation description and various tests that were performed with the

library using BMRB data.

4.2 Introduction

The Biological Magnetic Resonance Data Bank (BMRB) is a free, publicly-

accessible repository of data on peptides, proteins, and nucleic acids obtained through

NMR Spectroscopy [15], that is part of the worldwide Protein Databank (wwPDB) [66].

It currently consists of more than 11,000 individual NMR-STAR file entries, containing a

wide range of NMR spectral data, experimental details, and biochemical data collected

from thousands of biological samples. The NMR-STAR format is based on the Self-

defining Text Archival and Retrieving (STAR) flat file database format [67], with some

modifications specific to the BMRB. STAR provides a hierarchical dictionary structure

for storing arbitrary data. In NMR-STAR, the format specifies top-level dictionaries

called “saveframes”, which are used to categorize the data and meta-data about the

experiment. Inside each saveframe is an arbitrarily number of key-value pairs and tables

of records (loops). The key-value pairs store a single piece of information under a

descriptive variable name. Each loop stores a table of records, each record containing a

set of values representing individual fields in the record. There are currently two active

versions of the BMRB: version 2.1 and version 3.1. While they both use the same NMR-

38

STAR format at the most general level, the layout of the data in the two formats is

different.

Python is a free, open-source scripting language which runs on all major

operating systems [68], [69]. It is designed to facilitate the development and maintenance

of simple, efficient, and readable code. Python has object-oriented programming facilities

and includes several high-level data structure objects in its standard library. Among these

are the dictionary, a data structure implemented via the dict class that stores data as a

set of key-value pairs (specific mappings between keys and values). The OrderedDict

class is identical to the dict class except that the order of inserted keys-value pairs is

remembered. This is particularly useful for categorical data with sequential relationships.

The dictionary data structure is the most straightforward mechanism for representing and

using data from NMR-STAR files, which have a nested, mostly dictionary-like structure

themselves. However, to my knowledge no NMR-STAR parsing library using this design

exists. The newest major version of Python (version 3.0.0), was initially released on

2008-12-03, however many software libraries and utilities written in Python still use

Python version 2.x exclusively. As Python version 3.1 brings many substantial

improvements over Python 2.x (including the addition of the OrderedDict class,

which was later back-ported to Python version 2.7 [70]). As of Python version 3.5

OrderedDict is implemented in C, which makes it much faster than the Python 2.7

implementation of OrderedDict. Moreover, in Python 3.6, the dict data structure

implementation becomes ordered by default and dict and OrderedDict are more

efficient than in any previous versions of Python. While support for Python 2.7 is

provided for use by legacy code, I believe that researchers will prefer libraries and tools

39

written in latest version of Python (currently 3.6) in order to develop maintainable

codebases, especially as Python version 2.x becomes less supported over time. Moreover,

Python version 2.7 will no longer be maintained after the Spring of 2020 [71]. Two

publically available Python libraries for parsing NMR-STAR format files PyStarLib [72]

and NMRPyStar [73] both require Python version 2.7. PyNMRSTAR [74] works with

both major versions of Python (2.7 and 3.3+).

4.3 Implementation

The nmrstarlib package consists of several modules: nmrstarlib.py,

bmrblex.py, converter.py, csviewer.py, plsimulator.py,

translator.py, and noise.py (Figure 19a). The nmrstarlib.py module

(Figure 19c) provides the StarFile class, which implements a nested Python

dictionary/list representation of a BMRB NMR-STAR file. Once a NMR-STAR

formatted file is processed into a StarFile object, experimental data can be accessed

directly from the StarFile object, using bracket accessors as with any regular Python

dict object. The nmrstarlib.py module relies on the bmrblex.py module

(Figure 19b) for processing of tokens. The bmrblex.py module provides the

bmrblex generator – BMRB lexical analyzer (parser). Two versions of the bmrblex

module are provided: a pure Python version (bmrblex.py) and a Python + C extension

(bmrblex.pyx, cbmrblex.c) for faster performance. The compiled C extensions are

implemented in the Cython programming language [75], which I will call the Cython

implementation. If the Cython implementation of bmrblex fails for any reason, the

library will use the Python implementation, ensuring that the library always works.

40

The library creates an internal representation of the NMR-STAR format as a

nesting of OrderedDict objects with the top-level object StarFile inheriting from

the OrderedDict class (Figure 19c). This allows the user to access data in its original

NMR-STAR organization using familiar Python dictionary syntax. The library provides

facilities to read data from NMR-STAR formatted files into an internal StarFile

object, to access and make modifications to this StarFile object, and to save the

resulting StarFile object as a new NMR-STAR formatted file. It is also possible to

create NMR-STAR files from scratch using this library; however, this requires the user to

adhere to the recommended layout for NMR-STAR formatted files by adding keys and

values to the StarFile object in the appropriate order.

The nmrstarlib.py module provides a memory-efficient read_files()

generator function (Figure 19c) that yields (emits) StarFile objects, one at a time for

each file parsed. When reading an NMR-STAR formatted file (Figure 20), the

read_files() generator function first opens the file and passes a filehandle to the

StarFile.read() method that reads the text into Python as a string and passes that

string into the bmrblex object that then splits the text into tokens. As the bmrblex

lexical analyzer keeps emitting valid tokens, the StarFile object is constructed

sequentially. The StarFile object decides what type of token it is dealing with and

chooses which internal method to call in order to construct itself, i.e. calls to

StarFile._build_starfile(), Starfile._build_saveframe(), or

StarFile._build_loop().

41

a

b

c

d

e

f

g

h

Figure 19. Organization of the nmrstarlib package version 2.0.0. a) UML package

diagram of the nmrstarlib library; b) UML class diagram of the bmrblex.py

(bmrblex.pyx) module; c) UML class diagram of the nmrstarlib.py module; d)

UML class diagram of the converter.py module; e) UML class diagram of the

csviewer.py module; f) UML class diagram of the plsimulator.py module; g)

UML class diagram of the translator.py module; h) UML class diagram of the

noise.py module.

42

For example, Figure 20 shows the function call diagram during the StarFile

object creation: the _build_saveframe() method is called 25 times and

_build_loop() is called 37 times, meaning that the NMR-STAR file consists of 25

different saveframe categories and 37 loops. The total number of tokens processed is

equal to 36,155 = 27 (from _build_starfile) + 786 (from _build_saveframe)

+ 35,342 (from _build_loop).

Each saveframe category is also an OrderedDict data structure that can be

accessed by saveframe name as the key from the top-level StarFile object. Once a

saveframe dictionary is constructed and populated with key-value pairs, it descends

further into each loop and constructs a tuple of two lists: the first list

corresponding to loop field keys (loop field names); the second list consists of

OrderedDict objects corresponding to loop rows (loop records) in the original NMR-

STAR file. By the end of parsing, a single nested dictionary/list structure in the form of a

StarFile dictionary object (Figure 21b) is constructed, emulating the structure of the

original NMR-STAR formatted file (Figure 21a). In addition, comments can be parsed

and included as additional key-value pairs within the nested dictionary structure.

The nmrstarlib.py module provides a GenericFilePath (Figure 19c

and Figure 20) object that is used by the read_files() generator function in order to

open NMR-STAR formatted files from many different sources: a single file on a local

machine; a URL address of a single file; a directory of files on a local machine; an

archive of files on a local machine; a URL address of an archive of files; or the BMRB id

of a single file.

43

Figure 20. Diagram showing what function calls are made during the process of

StarFile object creation.

To write from a StarFile object to an NMR-STAR formatted file, the library

recursively crawls through the StarFile dictionary structure, formatting and printing

each of the keys and corresponding values sequentially. This allows to recall the

sequential order of the original NMR-STAR formatted file, due to the stored ordering of

key insertion from the underlying OrderedDict objects. Using Python’s json library,

the entire StarFile dictionary structure can be saved as JSON (JavaScript Object

Notation), which is an open, human-readable, lightweight data exchange format that is

readable by most programming languages via optimized parsing libraries. This JSON

conversion of StarFile objects greatly facilitated the implementation of the

converter.py module which converts original NMR-STAR formatted files into their

equivalent JSONized NMR-STAR files and vice versa. The converter.py module

44

(Figure 19d) consists of a single Converter class which can convert in both one-to-

one (single file) and many-to-many (directory or archive of files) modes.

a b

data_336

save_entry_information

 _Entry.Sf_category entry_information

 _Entry.Sf_framecode entry_information

 _Entry.ID 336

 _Entry.Title

;

1H-NMR studies of structural homologies between

the heme environments in horse cytochrome c and

in cytochrome c-552 from Euglena gracilis

;

 _Entry.Type macromolecule

 _Entry.Version_type update

 _Entry.Submission_date 1995-07-31

 _Entry.Accession_date 1996-04-12

 _Entry.Last_release_date .

 _Entry.Original_release_date .

 _Entry.Origination BMRB

 _Entry.NMR_STAR_version 3.1.1.61

 _Entry.Original_NMR_STAR_version .

 _Entry.Experimental_method NMR

 _Entry.Experimental_method_subtype .

 _Entry.Details .

 _Entry.BMRB_internal_directory_name .

 loop_

 _Entry_author.Ordinal

 _Entry_author.Given_name

 _Entry_author.Family_name

 _Entry_author.First_initial

 _Entry_author.Middle_initials

 _Entry_author.Family_title

 _Entry_author.Entry_ID

 1 Regula Keller . M. . 336

 2 Kurt Wuthrich . . . 336

 stop_

save_

{

 "data": "336",

 "save_entry_information": {

 "Entry.Sf_category": "entry_information",

 "Entry.Sf_framecode": "entry_information",

 "Entry.ID": "336",

 "Entry.Title": "\n;\n1H-NMR studies of

structural homologies between the heme

environments in horse \ncytochrome c and in

cytochrome c-552 from Euglena gracilis\n;",

 "Entry.Type": "macromolecule",

 "Entry.Version_type": "update",

 "Entry.Submission_date": "1995-07-31",

 "Entry.Accession_date": "1996-04-12",

 "Entry.Last_release_date": ".",

 "Entry.Original_release_date": ".",

 "Entry.Origination": "BMRB",

 "Entry.NMR_STAR_version": "3.1.1.61",

 "Entry.Original_NMR_STAR_version": ".",

 "Entry.Experimental_method": "NMR",

 "Entry.Experimental_method_subtype": ".",

 "Entry.Details": ".",

 "Entry.BMRB_internal_directory_name": ".",

 "loop_0": [

 [

 "Entry_author.Ordinal",

 "Entry_author.Given_name",

 "Entry_author.Family_name",

 "Entry_author.First_initial",

 "Entry_author.Middle_initials",

 "Entry_author.Family_title",

 "Entry_author.Entry_ID"

],

 [

 {

 "Entry_author.Ordinal": "1",

 "Entry_author.Given_name": "Regula",

 "Entry_author.Family_name": "Keller",

 "Entry_author.First_initial": ".",

 "Entry_author.Middle_initials": "M.",

 "Entry_author.Family_title": ".",

 "Entry_author.Entry_ID": "336"

 },

 {

 "Entry_author.Ordinal": "2",

 "Entry_author.Given_name": "Kurt",

 "Entry_author.Family_name": "Wuthrich",

 "Entry_author.First_initial": ".",

 "Entry_author.Middle_initials": ".",

 "Entry_author.Family_title": ".",

 "Entry_author.Entry_ID": "336"

 }

]

]

 }

}

Figure 21. Internal StarFile object representation and correspondence to NMR-

STAR format without comments: a) An example of a NMR-STAR formatted file; b)

StarFile dictionary representation equivalent to the NMR-STAR formatted file and

the JSONized version of the NMR-STAR file.

45

The converter.py module relies on the translator.py module (Figure

19g) in order to decide what type of conversion to perform, i.e. convert between NMR-

STAR format and JSONized NMR-STAR format (StarFileToStarFile) or from

NMR-STAR file to peak list file (StarFileToPeakList).

The plsimulator.py (Figure 19f) module provides facilities necessary to

generate different types of simulated peak lists. The noise.py module (Figure 19h)

provides a NoiseGenerator class that is responsible for addition of random normal

noise to peaks during simulated peak list creation.

In order to simplify access to assigned chemical shift data, the csviewer.py

module was created (Figure 19e) that includes the CSViewer class that can access both

the NMR-STAR version 2.1 and version 3.1 assigned chemical shifts loop and visualize

(organize) chemical shift values by amino acid residue type, and save this visualization as

an image file or a pdf document (Figure 22). The csviewer.py module requires the

graphviz Python library [76] in order to create an output file. In addition to visualizing

chemical shift values, the csviewer.py module provide code example for utilizing the

nmrstarlib library.

Figure 22. Example of output file: chemical shifts organized by amino acid residue type

produced by csviewer.py module.

46

Overall, the nmrstarlib package can be used in two ways: 1) as a library for

accessing and manipulating data stored in NMR-STAR formatted files, converting

between NMR-STAR and its equivalent JSON format, create set of simulated peak lists,

and visualizing assigned chemical shift values; or 2) as a standalone command-line tool

for converting files in bulk and visualizing assigned chemical shift values. The docopt

Python library [77] was utilized to create the nmrstarlib package command-line interface.

4.4 Results

4.4.1 Performance on NMR-STAR formatted files

As part of nmrstarlib’s development process, the library was tested extensively

against the entire BMRB for both NMR-STAR version 2.1 and version 3.1 [78]. To

measure the performance speed of the nmrstarlib library, a simple program was used that

accesses NMR-STAR files from local directory one file at a time, which then creates a

StarFile object and records how much time in seconds it took to create the object.

Table 5. The nmrstarlib library performance test against NMR-STAR formatted files

using pure Python and Python with C extension and against JSONized NMR-STAR files

using the standard Python library json parser and the UltraJSON (ujson) 3
rd

 party

library.

NMR-

STAR 2.1

NMR-

STAR 3.1

JSONized

NMR-STAR 2.1

JSONized

NMR-STAR 3.1

Number of files 11,270 11,244 11,270 11,244

Total size of files, GB 1.1 1.8 4.6 22.0

Time, sec

Pure Python json 326 1,100 30 130

Python with C
extension

*ujson 320 423 27 126

Average reading

speed, KB/sec

Pure Python json 3,290 1,700 158,549 176,479

Python with C
extension

*ujson 3,351 4,421 176,166 182,082

* Support for the ujson library for versions of Python is implemented starting with Python 3.6, because the ujson

library does not provide methods to keep the dict data structure in order when parsing from JSON files; however,

starting with Python 3.6, the dict data structure is ordered by default.

Table 5 shows that library was able to read the entire BMRB for both NMR-

STAR version 2.1 and version 3.1 without any errors. With the pure Python

implementation, it took 1,110 sec (~18.3 min) and 326 sec (~5.4 min) to read NMR-

47

STAR version 3.1 and NMR-STAR version 2.1, respectively. With the more efficient

Cython implementation, it took 423 sec (~7 min) and 320 sec (~5.3 min) to read NMR-

STAR version 3.1 and NMR-STAR version 2.1, respectively. The metric kilobytes per

second (KB/sec) was used, because files/sec would be a misleading metric due to widely

varying files sizes in the BMRB and because read times scale almost linearly (Figure 23)

with file size. As such, the nmrstarlib’s average reading speed is 1,700 KB/sec (NMR-

STAR 3.1) and 3,290 KB/sec (NMR-STAR 2.1) for the Python implementation and

4,421 KB/sec (NMR-STAR 3.1) and 3,351 KB/sec (NMR-STAR 2.1) for the Cython

implementation on the hardware used for testing. The NMR-STAR 3.1 is more

comprehensive than NMR-STAR 2.1 and usually represents more experimental

information and details. This additional complexity is computationally harder to parse.

However, for Cython implementation the average reading speed for NMR-STAR 3.1 was

faster than for NMR-STAR 2.1 due to multiline text pre-processing discussed in more

detail in the next section.

Figure 23. Graph showing the dependency of loading time into StarFile object from

the size of file: a) Loading times for NMR-STAR 3.1 formatted files; b) Loading times

for JSONized NMR-STAR 3.1 files.

48

4.4.2 Performance on JSONized NMR-STAR files

Next, both NMR-STAR version 2.1 and version 3.1 files were converted into their

equivalent JSON format and speed tests were performed again (Table 5). The reading

times of both JSONized NMR-STAR version 2.1 and version 3.1 were significantly faster

than read times of the original NMR-STAR formatted files: 130 sec (~2.2 min) and 30

sec (~0.5 min) for NMR-STAR version 3.1 and NMR-STAR version 2.1, respectively,

for the entire BMRB data set. The average read speed was 176,479 KB/sec and 158,549

KB/sec for version 3.1 and version 2.1, respectively. Next, performance tests were

repeated using another compiled JSON parsing third-party library, UltraJSON (ujson)

[79]. The reading times and average reading speeds of JSONized NMR-STAR files were

slightly faster than using the built-in json parser: 127 sec (182,082 KB/sec) and 27 sec

(176,166 KB/sec) for version 3.1 and version 2.1 respectively (Table 5).

Table 6. Converting NMR-STAR formatted files into their equivalent JSON format.

 Directory zip archive tar.gz archive tar.bz2 archive

Format
NMR-

STAR 2.1

NMR-

STAR 3.1

NMR-

STAR 2.1

NMR-

STAR 3.1

NMR-

STAR 2.1

NMR-

STAR 3.1

NMR-

STAR 2.1

NMR-

STAR 3.1

Number of files 11,270 11,244 11,270 11,244 11,270 11,244 11,270 11,244

Time, min 8 20 9 22 12 27 15 68

Total size, MB 4,756 22,942 230 470 200 409 131 222

Table 6 shows how much time it took to convert the entire BMRB into its

JSONized version and how much disk space it occupied as uncompressed directory and

as compressed zip and tar archives. Compressed zip and tar formats represent the entire

BMRB database in a single file and save disk space. In order to simplify access, library

provides facilities to directly read NMR-STAR files from zip and tar archives without the

requirement to manually decompress and separate the archive into separate files first.

Frequency polygons of loading times on Figure 24 show that the majority of NMR-

STAR and JSONized NMR-STAR files can be loaded into a StarFile object in less

49

than 1 second per file and JSONized NMR-STAR files can be loaded much faster than

the original NMR-STAR files. Figure 24a and Figure 24b show that the fastest reading

times were for parsing JSONized NMR-STAR files using the ujson and json parsers.

However on Figure 24a, it is clear that the pure Python implementation outperformed the

Cython implementation for some of the NMR-STAR 2.1 files (e.g. BMRB ID: 17192,

16692). This is because those files contain saveframe categories deposited as very large

multiline blocks of text and the majority of time is spent to pre-process them, equivalent

NMR-STAR 3.1 files have those saveframes properly formatted and do not require extra

time to pre-process multiline text blocks. For NMR-STAR 3.1 formatted files (Figure

24b), the Cython implementation outperformed pure Python implementation in all cases.

Figure 24. Frequency polygon of loading times for NMR-STAR files: a) Comparison of

loading times between NMR-STAR 2.1 and JSONized NMR-STAR 2.1; b) Comparison

of loading times between NMR-STAR 3.1 and JSONized NMR-STAR 3.1.

4.4.3 Comparison to similar existing software

Using the entire BMRB, speed performance tests between the nmrstarlib package

and the three other publically available Python libraries for reading NMR-STAR

formatted files were performed: PyStarLib [72], NMRPyStar [73], and PyNMRSTAR

[74]. For each of these libraries, a simple Python program that loads a NMR-STAR

50

formatted file from a directory, creates an object representation, and then reports how

much time it took to process each file. Results of these comparisons are summarized in

Table 7. For the pure Python implementation, PyStarLib showed the fastest reading time:

239 sec (~4 min) and 796 sec (~13.3 min) for NMR-STAR version 2.1 and version 3.1

respectively, but it was not able to parse 0.43 % (48 files) NMR-STAR version 2.1 and

4.08 % (459 files) NMR-STAR version 3.1. All errors occurred inside a function that is

responsible for processing multiline quoted text, which uses regular expressions to

collapse multiline quoted text into a single token. The most probable cause for these

errors is a regular expression that is not capable of handling all edge cases. Examples of

failures include files where: i) multiline quoted text included a semicolon character inside

the text; ii) multiline quoted text that is not followed by the new line character; and iii)

multiline quoted text followed by a loop.

Table 7. Performance comparison of nmrstarlib to other Python libraries.

 nmrstarlib PyStarLib NMRPyStar PyNMRSTAR

Parsing NMR-STAR 2.1

Number of files 11,270 11,270 11,270 11,270

Time, sec

Pure Python 326 239 N/A 547

Python with

C Extension
320 N/A N/A 144

Success rate, % 100 99.57 0 100

Parsing NMR-STAR 3.1

Number of files 11,244 11,244 11,244 11,244

Time, sec

Pure Python 1,100 796 56,569 2,354

Python with

C Extension
423 N/A N/A 538

Success rate, % 100 95.92 100 100

The pure Python implementation of the nmrstarlib package was the second fastest

method 326 sec (~5.4 min) and 1,110 sec (~18.3 min) and, more importantly, parsed

100% of files for both NMR-STAR 2.1 and NMR-STAR 3.1, respectively. The

NMRPyStar library showed the slowest results, taking 56,569 sec (~15.7 hours) to

51

process NMR-STAR version 3.1 and was not able to read any of the NMR-STAR version

2.1 files (error status code was reported by the program during execution). Both the

nmrstarlib and PyNMRSTAR provide Python + C extension implementations in order to

speed up the tokenization process. The nmrstarlib performed faster than PyNMRSTAR

on NMR-STAR 3.1 files: 423 sec (~7 min) versus 538 sec (~9 min). However,

PyNMRSTAR was faster than nmrstarlib on NMR-STAR 2.1 files: 144 sec (~2.4 min)

versus 320 sec (~5.3 min). Overall, the nmrstarlib (Python + C extension

implementation) was the fastest method to read NMR-STAR 3.1 files, and PyNMRSTAR

(Python + C extension implementation) was the fastest method to read NMR-STAR 2.1

files. However, when using the JSONized versions of NMR-STAR files with the

nmrstarlib library, parsing speed can be further improved to 30 sec for NMR-STAR 2.1

and 130 sec for NMR-STAR 3.1 (see Table 5).

All tests were performed on a single workstation desktop computer with Intel(R)

Core(TM) i7-4930K CPU @ 3.40GHz processor, 64 GB memory, and a solid-state drive.

The latest stable version of Python (Python 3.6.0) was used to compare libraries. Python

version 2.7 was used for libraries that do not support the latest version of Python.

4.5 Discussion

4.5.1 The nmrstarlib interface

To use nmrstarlib as a library, first import the library. Next, create a StarFile

generator that will return StarFile instances one at a time from many different file

sources: a local file, URL address of a file, directory, archive, BMRB id. Next, the

StarFile object can be utilized like any built-in Python dict object. Table 8 shows

common usage patterns for reading NMR-STAR files into StarFile objects, accessing

52

and manipulating data using bracket accessors, and writing StarFile objects back to

both NMR-STAR and JSONized NMR-STAR formats. For more detailed examples, see

“The nmrstarlib Tutorial” documentation available online [65].

Table 8. Common usage patterns for the nmrstarlib module.

Usage Example

Reading:
sf_gen = nmrstarlib.read_files(‘path’)

starfile = next(sf_gen)

Access/Modification:
starfile[‘saveframe’][‘key’]

starfile[‘saveframe’][‘key’] = new_value

Writing:
starfile.write(fileobj, fileformat=‘nmrstar’)

starfile.write(fileobj, fileformat=‘json’)

Table 9. The nmrstarlib library command-line interface common usage patterns.

Command Description Example

convert Convert between NMR-

STAR and JSON formats

$ python3 –m nmrstarlib convert bmr18569.str 18569.json \

 --from_format=nmrstar -–to_format=json

$ python3 –m nmrstarlib convert 18569.json bmr18569.str \

 --from_format=json –-to_format=nmrstar

plsimulate Convert NMR-STAR

formatted file into

simulated peak list file

python3 -m nmrstarlib plsimulate \

 bmr18569.txt 18569_peaklist.txt HNcoCACB \

 --from_format=nmrstar --to_format=sparky

python3 -m nmrstarlib plsimulate \

 18569 18569_peaklist.txt HNcoCACB \

 --from_format=nmrstar --to_format=sparky \

 --H_std=0.001 --N_std=0.01 --C_std=0.01

csview View assigned chemical

shifts

$ python3 –m nmrstarlib csview 18569 \

 --csview_outfile=18569_cs_all

 --csview_format=png

$ python3 –m nmrstarlib csview 18569 \

 --aminoacids=GLU,THR

 -–atoms=CA,CB,CG,CG2 \

 --csview_outfile=18569_cs_GLU_THR_CA_CB_CG_CG2 \

 --csview_format=png

The nmrstarlib command-line interface provides several commands: the

convert command in order to convert between NMR-STAR format and its equivalent

JSON format; the plsimulate command to create simulated peak lists from assigned

chemical shift values; the csview command for quick access to assigned chemical shift

data of a single StarFile, organizing chemical shifts by amino acid residue type.

Table 9 shows common usage examples for the convert, plsimulate and csview

53

commands. For a full list of available conversion and peak list simulation options and

more detailed examples see “The nmrstarlib API Reference” and “The nmrstarlib

Tutorial” documentation [65].

Also the “User Guide”, “The nmrstarlib Tutorial” and “The nmrstarlib API

Reference” documentation and up-to-date online documentation were developed (Table

10).

Table 10. Comparison of nmrstarlib to other Python libraries.

Feature nmrstarlib PyStarLib NMRPyStar PyNMRSTAR

Read NMR-STAR 2.1 Yes Yes No Yes

Read NMR-STAR 3.1 Yes Yes Yes Yes

Supported Python version 2.7, 3.4+ 2.7 2.7 2.6, 2.7, 3.3+

API Reference

documentation
Yes No No Yes

Tutorial documentation Yes No No Yes

PDF of documentation Yes No No Yes

User Guide documentation Yes No Yes No

Up to date online

documentation
Yes No No No

Open Source License
MIT

(GitHub)

GPL

(SourceForge)

MIT

(GitHub)

GPL

(GitHub)

4.5.2 Advantages of using nmrstarlib and JSONized NMR-STAR version

One of the main advantages of the library is that it provides a one-to-one mapping

between each of the following representations of BMRB entries: NMR-STAR format,

internal Python OrderedDict- and list-based objects, and JSONized NMR-STAR

format. This makes the library more Python-idiomatic, providing a very intuitive

programming interface for accessing and manipulating NMR data. Another benefit of the

nmrstarlib package is that the bmrblex.py lexical analyser module is written in a

generic fashion, making it easy to adapt for parsing data from other STAR-related

formats, for example, the Crystallographic Information File (CIF) and its closely related

macromolecular CIF (mmCIF) format.

54

JSON is an open, programming language independent, human-readable, data

exchange standard that represents data objects in a nested dictionary/list ASCII format.

JSON is one of the most common formats for asynchronous browser/server

communication as an alternative to XML (Extensible Markup Language). The JSON

object representation was selected, because it has a smaller overhead compared to

common XML object representations, making it faster to parse and more human-readable

when formatted for this purpose. But more importantly, it facilitates a one-to-one

mapping with both nested Python data structures and BMRB’s nested data

representations of their entries. While XML is more flexible, it is not easily represented

by a nesting of standard Python data structures that would produce an intuitive

programming interface. Also, JSONization of the original NMR-STAR files provides

several advantages: i) much faster reading times (see Table 5) and ii) makes the data

stored in BMRB entries easily accessible to other programming languages that have

JSON parsers, i.e. all modern programming languages, scripting as well as compiled,

without requiring to write a specific parser for the specialized NMR-STAR format.

Figure 25, Figure 26, and Figure 27 show code examples for accessing data from

JSONized NMR-STAR files using R with the jsonlite library [80], JavaScript with

the jQuery library [81], and C++ with the RapidJSON library [82], respectively.

But one disadvantage of using JSON format is that it is more verbose in

comparison to the original NMR-STAR format. As a result, uncompressed JSONized

NMR-STAR files occupy more disk space (Table 6). However, the nmrstarlib library

offers the ability to read NMR-STAR files in both uncompressed (directory of files) and

55

compressed (zip and tar archives) forms, making storage and access of JSONized NMR-

STAR files very efficient.

R Example using jsonlite library

> # install library

> install.packages("jsonlite")

> # load library

> library(jsonlite)

> # load data

> starfile <- fromJSON("bmr18569.str.json")

> # print saveframe names

> names(starfile)

 [1] "data" "save_entry_information"

 [3] "save_entry_citation" "save_assembly"

 [5] "save_EVH1" "save_natural_source"

 [7] "save_experimental_source" "save_sample_1"

 [9] "save_sample_2" "save_sample_3"

[11] "save_sample_4" "save_sample_conditions_1"

[13] "save_sample_conditions_2" "save_sample_conditions_3"

[15] "save_sample_conditions_4" "save_AZARA"

[17] "save_xwinnmr" "save_ANSIG"

[19] "save_CNS" "save_spectrometer_1"

[21] "save_spectrometer_2" "save_NMR_spectrometer_list"

[23] "save_experiment_list" "save_chemical_shift_reference_1"

[25] "save_assigned_chem_shift_list_1" "save_combined_NOESY_peak_list"

> # access saveframe key-value data

> starfile$data

[1] "18569"

>

> starfile$save_entry_information$Entry.NMR_STAR_version
[1] "3.1.1.61"

>

> # access loop data

> starfile$save_entry_information$loop_1

[[1]]

[1] "Data_set.Type" "Data_set.Count" "Data_set.Entry_ID"

[[2]]

 Data_set.Type Data_set.Count Data_set.Entry_ID

1 assigned_chemical_shifts 1 18569

2 spectral_peak_list 1 18569

Figure 25. Code example showing how to access data from JSONized NMR-STAR files

using R programming language.

JavaScript Example using jQuery

<!DOCTYPE html>

<html>

 <head>

 <title>Reading JSONized NMR-STAR with jQuery</title>

 </head>

 <body>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>

 <script>

 $.getJSON("bmr18569.str.json", function(starfile) {

 console.log(starfile.data); // prints data tag id

 console.log(starfile.save_entry_information); // prints entire saveframe data

 console.log(starfile.save_entry_information.loop_1); // prints loop_1 data

 });

56

 </script>

 </body>

</html>

Figure 26. Code example showing how to access data from JSONized NMR-STAR files

using JavaScript programming language.

C++ example using RapidJSON library
#include <iostream>

// include rapidjson headers

#include "rapidjson/document.h"

#include "rapidjson/filereadstream.h"

using namespace std;

int main()

{

 // open file

 FILE* fp = fopen("bmr18569.str.json", "r"); // Windows use "rb"

 // read input stream via FILE pointer

 char readBuffer[65536];

 rapidjson::FileReadStream is(fp, readBuffer, sizeof(readBuffer));

 // create rapidjson::Document and parse input stream

 rapidjson::Document starfile;

 starfile.ParseStream(is);

 fclose(fp); // close file pointer

 // print saveframe names

 cout << "Accessing saveframe categories: \n";

 for (rapidjson::Value::ConstMemberIterator itr = starfile.MemberBegin();

 itr != starfile.MemberEnd(); ++itr)

 {

 cout << " " << itr->name.GetString() << "\n";

 }

 // access saveframe key-value data

 cout << "Accessing saveframe data: \n";

 cout << " " << "data: " << starfile["data"].GetString() << "\n";

 cout << " " << "NMR-STAR version: " <<

 starfile["save_entry_information"]["Entry.NMR_STAR_version"].GetString() << "\n";

 // access loop data

 cout << "Accessing loop data:\n";

 const rapidjson::Value& loop_1_fields =

starfile["save_entry_information"]["loop_1"][0];

 const rapidjson::Value& loop_1_values =

starfile["save_entry_information"]["loop_1"][1];

 cout << "loop fields:\n";

 for (rapidjson::SizeType i = 0; i < loop_1_fields.Size(); i++)

 {

 cout << " " << loop_1_fields[i].GetString() << "\n";

 }

 cout << "loop values:\n";

 for (rapidjson::SizeType i = 0; i < loop_1_values.Size(); i++)

 {

 for (rapidjson::Value::ConstMemberIterator itr = loop_1_values[i].MemberBegin();

 itr != loop_1_values[i].MemberEnd(); ++itr)

 {

 itr->name.GetString();

 cout << " " << itr->name.GetString() << ": " << itr->value.GetString() << "\n";

 }

 }

57

}

// Output after compiling and executing

Accessing saveframe categories:

 data

 save_entry_information

 save_entry_citation

 save_assembly

 save_EVH1

 save_natural_source

 save_experimental_source

 save_sample_1

 save_sample_2

 save_sample_3

 save_sample_4

 save_sample_conditions_1

 save_sample_conditions_2

 save_sample_conditions_3

 save_sample_conditions_4

 save_AZARA

 save_xwinnmr

 save_ANSIG

 save_CNS

 save_spectrometer_1

 save_spectrometer_2

 save_NMR_spectrometer_list

 save_experiment_list

 save_chemical_shift_reference_1

 save_assigned_chem_shift_list_1

 save_combined_NOESY_peak_list

Accessing saveframe data:

 data: 18569

 NMR-STAR version: 3.1.1.61

Accessing loop data:

loop fields:

 Data_set.Type

 Data_set.Count

 Data_set.Entry_ID

loop values:

 Data_set.Type: assigned_chemical_shifts

 Data_set.Count: 1

 Data_set.Entry_ID: 18569

 Data_set.Type: spectral_peak_list

 Data_set.Count: 1

 Data_set.Entry_ID: 18569

Figure 27. Code example showing how to access data from JSONized NMR-STAR files

using C++ programming language.

4.6 Conclusions

The nmrstarlib package is a useful Python library, providing classes and other

facilities for parsing, accessing, and manipulating data stored in NMR-STAR and

JSONized NMR-STAR formats. Also, nmrstarlib provides a simple command-line

interface that can convert from NMR-STAR file format into its equivalent JSON file

format and vice versa, create large number of simulated peak lists, as well as access and

visualize assigned chemical shift values. The library has an easy-to-use, idiomatic

58

dictionary-based interface, usable in programs written in Python. The library also has

extensive documentation including the “User Guide”, “The nmrstarlib Tutorial”, and

“The nmrstarlib API Reference”. Furthermore, the easy conversion into the JSONized

NMR-STAR format facilitates utilization of BMRB entries by programs in any

programming language with a JSON parser. This same basic approach can be used to

quickly JSONize other older text-based scientific data formats, making the underlying

scientific data easily accessible in a wide variety of programming languages. As

demonstrated in this study, many available JSON parsers are highly optimized and

typically much more efficient than specialized parsers for scientific data formats. Thus,

JSONization of older scientific data formats provides easy steps for reaching

Interoperability and Reusability goals of FAIR guiding principles [83].

59

CHAPTER 5

INTERNAL REGISTRATION AND GROUPING ALGORITHMS

5.1 Overview

Peak lists derived from NMR spectra are commonly used as input data for a

variety of computer assisted and automated analyses. These include automated protein

resonance assignment and protein structure calculation software tools. Prior to these

analyses, peak lists must be aligned to each other and sets of related peaks must be

grouped based on common chemical shift dimensions. Even when programs can perform

peak grouping, they require the user to provide uniform match tolerances or use default

values. However, peak grouping is further complicated by multiple sources of variance in

peak position limiting the effectiveness of grouping methods that utilize uniform match

tolerances. In addition, no method currently exists for deriving peak positional variances

from single peak lists for grouping peaks into spin systems, i.e. spin system grouping

within a single peak list. Therefore, a complementary pair of peak list registration and

spin system grouping algorithms was designed to overcome these limitations. These

algorithms are implemented into an approach that can identify multiple dimension-

specific positional variances that exist in a single peak list and group peaks from a single

peak list into spin systems. The resulting algorithms generate a variety of useful statistics

on both a single peak list and pairwise peak list alignment, especially for quality

assessment of peak list datasets.

60

To facilitate evaluation, a peak list simulator within the nmrstarlib package was

developed that generates user-defined assigned peak lists from a given BMRB entry or

set of entries. A range of low and high quality experimental solution-state and solid-state

NMR peak lists was used to assess performance of registration and grouping algorithms.

Analyses show that algorithms using only single iteration and uniform match

tolerances approach are only able to recover from 50 % to 80 % of spin systems due to

the presence of multiple sources of variance. The registration and grouping algorithm

recovers additional spin systems by reevaluating match tolerances in multiple iterations.

In addition, over 100,000 simulated peak lists with one or two sources of variance were

generated to evaluate the performance and robustness of these new registration and peak

grouping algorithms.

5.2 Introduction

One of the prerequisite analyses for protein structure determination is the

assignment of chemical shifts to specific nuclei in a protein structure. During the

assignment process, spin systems are mapped to individual amino acid residues in a

protein sequence. In general, a spin system can be viewed as a group of nuclear spins that

interact with each other in a magnetic field. In this study, a spin system is defined as a

collection of related resonances associated with specific atoms in a molecule that can be

grouped within a single spectrum and across multiple spectra with common resonances.

In the context of biopolymers such as proteins, spin systems often represent resonances

associated with atoms within one, two, or even three bonded residues. Manual resonance

assignment is tedious and can take a significant amount of time. Therefore, a variety of

automated and semi-automated assignment programs have been developed to facilitate

61

the protein resonance assignment process, specifically for solution [84], [85] and solid-

state NMR [58], [59]. The process of automated resonance assignment typically involves

several major steps: grouping peaks across peak lists into spin systems, classification of

those spin systems by possible amino acid type, linking neighboring spin systems into

segments, and then mapping those segments onto protein sequence.

5.2.1 Lack of automated tools to determine match tolerances

One of the historical problems that has limited the use of automated and semi-

automated protein resonance assignment tools along with other analyses of NMR peak

lists is the requirement that users either specify uniform match tolerances typically for
1
H

and
15

N resonances (for solution-state NMR) and
15

N, and
13

C resonances (for solid-state

NMR) to perform spin systems grouping and linking, or rely on default uniform match

tolerance values. Some programs even expect the user to provide spin systems instead of

peak lists [58]. In essence, the user is left to determine which match tolerances should be

used for their dataset. Restated, basic peak positional variance statistics that could be

derived from the peak lists data are being required from the user, limiting the utility of

these tools. Also, these same peak list statistics are useful for assessing the quality of

peak lists, especially for downstream analyses [86], [87].

5.2.2 Presence of multiple sources of variance

Another problem that exists in experimental peak lists derived from both solution

and solid-state NMR experiments is the presence of multiple variances in dimension-

specific peak positions. In effect, there is a subset of peaks within a single peak list that

have a smaller variance and can be grouped into spin systems using tighter match

tolerance values, and a subset of peaks that have a larger variance in one or all

dimensions that require larger match tolerance values for grouping into spin systems. On

62

the one hand, using tighter tolerance values could result in failure to group peaks with

larger variances, on the other hand using larger tolerance values could result in spin

system overlap in peaks that have a smaller variance. This also limits the utility of

uniform match tolerances for spin system grouping, linking and mapping algorithms.

Figure 28 demonstrates the presence of peak groups (clusters) with multiple sources of

variance in peak positions within experimental HN(CO)CACB peak lists.

a

b

Figure 28. Zoomed-in visualization of spin systems taken from two experimental

HN(CO)CACB peak lists that demonstrates the presence of multiple sources of variance

within peak lists. The dots correspond to peak centers, two peaks form an individual spin

system, ovals show the per-dimension variance (bivariance): a) for the 30S ribosomal

protein S28E from Pyrococcus horikoshii, spin systems 44 and 66 show variance in the H

dimension; b) for pancreatic ribonuclease both spin systems 68 and 130 show variance in

both H and N dimensions.

For the 30S ribosomal protein S28E from Pyrococcus horikoshii in Figure 28a,

the two visualized spins systems demonstrate different sources of variances in the amide

1
H dimension. For the pancreatic ribonuclease in Figure 28b, the visualized spin systems

demonstrate multiple sources of variance in both amide
1
H and

15
N dimensions. These

multiple sources of variance arise from an array of sample conditions, analytical

63

conditions, experimental parameters, and spectral artefacts that can each contribute a

difference source of variation to a peak’s position, i.e. center.

AutoAssign, an automated resonance assignment software for solution-state

NMR, was the first automated protein resonance assignment tool to provide the ability to

register different peak lists, extract peak list quality statistics, and offset registration

values necessary to align a set of peak lists against a specified reference peak list [58],

[88]. The more recently developed Peakmatch algorithm can also match a set of peak lists

against a reference peak list and derive offset values using a complete grid search or

downhill simplex optimization [89]. Both AutoAssign’s registration algorithm and the

Peakmatch algorithm work in pairwise mode, i.e. they match a target peak list against a

reference peak list, but they are both unable to derive statistics necessary to group peaks

into spin systems within a single peak list with more than one peak per spin system (e.g.

HN(CO)CACB, NCACX, CANCOCX). While single peak list registration functionality

is not required to group peaks into spin systems, it facilitates the development of new

grouping algorithms that use a bottom-up approach in grouping peaks into spin systems.

In other words, single peak list registration can facilitate the creation of more accurate

spin system groups from more reliable smaller variance peak lists first and then extend

those spin systems across spectra using pairwise registration statistics derived from

pairwise alignment of two different peak lists.

Therefore, a new registration algorithm that can calculate dimension-specific peak

position statistics for a single peak list with multiple peaks per spin system was

developed. This self-registration mode is accomplished by aligning the single peak list

against itself ignoring same-peak matches in order to calculate these dimension-specific

64

peak positional variances. This new registration algorithm provides the necessary

statistics to allow inter-peak-list peak grouping and to assess the peak positional

uncertainty of individual peak lists.

5.2.3 Application of registration algorithm in grouping algorithm

Since peak positions have multiple sources of variance which are difficult to

handle with uniform match tolerances, a new iterative grouping algorithm that combines

the peak list registration algorithm with an adaptation of the density-based spatial

clustering of applications with noise (DBSCAN) clustering algorithm [90] normalized by

dimension-specific peak position variances was developed. This combined algorithm is

capable of grouping peaks from a single peak list into spin systems using different sets of

match tolerances derived from the new registration algorithm in an iterative analysis.

5.2.4 Algorithm for generating simulated peak lists

A related problem is the limited number of assigned experimental peak lists

available in the public repositories for the robust evaluation of computational NMR

analysis algorithms and methods. As of July, 2017, the Biological Magnetic Resonance

Data Bank (BMRB) [15] contains only a few hundred assigned peak lists from a wide

variety of NMR experiments. In order to utilize these assigned peak lists for software tool

evaluation, they need to be extracted and converted into appropriate file formats (e.g.

Sparky [91], [92], AutoAssign, Xeasy [93], etc.). Also, thorough robustness analysis

requires thousands of assigned peak lists for the rigorous testing of algorithms and

methods. To provide the necessary datasets, simulated assigned peak lists can be derived

from assigned protein resonance assignment entries in the BMRB. However, the

simulation of assigned peak lists that provide the same level of difficulty as real

experimental peak lists is difficult to generate. Historically, few published methods have

65

been evaluated with simulated peak lists incorporating even a single source of variance.

One published evaluation of protein resonance assignment methods even used simulated

peak lists with no variance added, representing a very unrealistic test of performance

[50].

To address these and related NMR-STAR file utilization problems, the nmrstarlib

package [94], an open source library that can be used to extract experimental peak list

data from BMRB entries and convert them into peak lists of appropriate format (e.g.

Sparky) was used. In addition, a peak list simulator that can create peak lists of different

types using the entire BMRB was implemented, allowing the creation of large number of

simulated assigned peak lists that includes dimension-specific noise from multiple

sources of variance as specified by the user. This new peak list simulator is part of the

nmrstarlib package [94].

5.3 Materials and methods

5.3.1 Experimental data sets

The combined registration and grouping algorithm was evaluated using 16

different experimental peak lists from 13 different proteins: 10 peak lists were derived

from solution NMR experiments and 6 peak lists were derived from solid-state NMR

experiments (Table 11). Peak lists usually contain chemical shift values for each

dimension that correspond to a specific pattern in a specific NMR experiment and may

contain additional information such as peak intensity, line width, and peak volume.

66

Table 11. Solution-state and solid-state NMR derived peak lists.

Protein Sequence length Spectrum type NMR type BMRB ID / PDB ID

Bovine pancreatic trypsin inhibitor (BPTI) 58 HN(CO)CACB Solution-state 5359 / 5PTI
Cold shock protein (CspA) [95] 70 HN(CO)CACB Solution-state 4296 / 3MEF

Protein yggU from E.coli (Target ER14)
[96]

108 HN(CO)CACB Solution-state 5596 / 1N91

Fibroblast growth factor (FGF) [97] 154 HN(CO)CACB Solution-state 4091 / 1BLD
30S ribosomal protein S28E from

Pyrococcus horikoshii (Target JR19) [98]
82 HN(CO)CACB Solution-state 5691 / 1NY4

Non-structural protein 1 (NS1) [99] 73 HN(CO)CACB Solution-state 4317 / 1NS1
Ribonuclease pancreatic (RnaseC6572S)

[100]
124 HN(CO)CACB Solution-state 4032 / 1SRN

Ribonuclease pancreatic (RnaseWT) [100] 124 HN(CO)CACB Solution-state 4031 / 1SRN
Z domain of staphylococcal protein A

[101]
71 HN(CO)CACB Solution-state 5656 / 1H0T

Staphylococcus aureus protein SAV1430
(Target ZR18) [102]

91 HN(CO)CACB Solution-state 5844 / 1PQX

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 CANCOCX Solid-state 15156 / 2JSV

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 NCACX Solid-state 15156 / 2JSV

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 NCOCX Solid-state 15156 / 2JSV

Disulfide bond formation protein B (DsbB)
[104]

176 NCACX Solid-state 18493 / 2LTQ

Cytoskeleton-associated protein-glycine-
rich domains (CAP-Gly) [105]

89 NCACX Solid-state 19025 / 2M02

Cytoskeleton-associated protein-glycine-
rich domains (CAP-Gly) [105]

89 NCOCX Solid-state 19025 / 2M02

5.3.2 Simulated data sets

Simulated HN(CO)CACB peak lists were generated using the peak list simulation

algorithm. For HN(CO)CACB peak lists, every amino acid in the protein sequence not

followed by a proline residue should produce two peaks per spin system, except for

glycine residues due to missing CB resonances. Initially, 6,896 “ideal” (0-variance) peak

lists were generated. Then peak lists that had exact duplicate peaks in all three

dimensions were filtered out, because it will create spin systems with more than two

peaks per spin system and mark those spin systems as overlapping. Next, peak lists that

had missing chemical shift values for CA or CB except for glycine residues were

removed. Finally, 2,549 peak lists remained after removing peak lists with duplicate

peaks or missing data. Using these remaining peak lists, additional peak lists were

simulated for single source of variance in all dimensions, two sources of variance in all

67

dimensions, and two sources of variance in N dimension by adding varying amounts of

normally-distributed random noise (equation (1)):

 ()

√

()

 (1)

where is mean, and is standard deviation. In the case of two sources of variance, 20%

of the peaks had noise standard deviation added that is five times larger than 80% of the

remaining peaks in each simulated peak list.

5.3.3 Single peak list registration algorithm

Single peak list registration algorithm is based on a previously developed peak list

registration algorithm within the automated protein resonance assignment program

AutoAssign [58], [88]. The algorithm has similarities to a point pattern match algorithm

[106] and a landsat image registration algorithm [107] developed in the 1980’s, but

solves a more generalized multiple mapping issue than either of those older algorithms.

Extensive modifications to the algorithm that includes new functionality and significant

improvement in the computational efficiency were made. The new registration algorithm

can perform both pairwise-registration of two different peak lists as well as self-

registration of a single peak list that has multiple peaks per spin system. In either

algorithmic mode, the registration algorithm operates on two peak lists: an “input” peak

list and a “root” or reference peak list. The algorithm calculates the best mapping of

peaks from the “input” peak list to peaks in the “root” peak list for their comparable

spectral dimensions to derive offsets needed to translate the “input” peak list to the “root”

peak list in these comparable dimensions. The algorithm also calculates the standard

deviation between mapped pairs of peaks in their comparable dimensions. The self-

68

registration mode of the algorithm treats a single peak list as both the “input” and “root”

peak lists and then calculates the best mapping of peaks assuming zero translation offsets

and ignoring perfect matches due to self-mapping.

Figure 29. Flow diagram of the single peak list registration algorithm.

Figure 29 shows the flow diagram of the new registration algorithm for self-

registration execution mode. First, the algorithm parses two peak list files (i.e. the same

peak list file twice for self-registration). Then for each peak list, the algorithm constructs

a Euclidean distance matrix, i.e. calculates the distance between every pair of peaks

within a peak list. Next, the algorithm creates a support matrix and compares each

“input” peak distance matrix row to each “root” peak distance matrix row in order to

calculate the set of supporting peak mapping pairs, i.e. the support set (). Each cell in

the support matrix has a set of support pairs () , i.e. pairs of indices that

69

identify individual coordinates in the support matrix. Using the pair of indices, a

corresponding support set can be identified. Using the support pairs in the support sets,

the robustness score for a given support pair () is calculated using a sum of Jaccard

similarity coefficients (Jaccard indices) multiplied by corresponding peak difference

matching probabilities as illustrated in equation (2):

 () ∑

()

 () (2)

where are the row and column coordinates of the support matrix, are the row and

column coordinates of the support matrix whose pair () is an element of , and

 is the chi-square probability calculated for corresponding peak differences in the

“input” and “root” peak lists for specified degrees of freedom , i.e. as defined by

equation (3):

 ()

∑(
([] []) ([] [])

 []
)

(3)

where specifies the index of the comparable dimension of a peak in both the “input” and

“root” peak lists and their corresponding standard deviation . A supporting peak

mapping pair is determined by a match tolerance defined in terms of standard deviation

units. The default is four standard deviation units. The self-registration execution mode

excludes identical peak mappings from this comparison. Using the support list, a

robustness score is calculated for each comparison. The robustness score indicates how

many peaks in the “input” peak list are mapped to corresponding peaks in “root” peak list

70

in a concordant manner (i.e. below match tolerances) with a single mapping peak-pair

representing the center of the concordance. The higher the robustness score, the larger the

concordance. Next, the algorithm uses the support list of the peak mapping pair with the

best robustness score to calculate the registration offsets and statistics, which is used to

derive new match tolerances. The algorithm iterates until the statistics of registration

converge, i.e. until per dimension standard deviations stop changing.

One detail to note in equation (3) is the use of [] in calculating the chi-

square statistic. Based on linear error analysis and independent variable propagation

rules, one would expect [] √ to be the correct estimate of the standard deviation to

use in this equation. However, in this iterative registration approach, [] provides

superior performance. I believe that the use of instead of √ accounts for non-

independent error propagation in the given difference of differences analysis.

5.3.4 Single peak list grouping algorithm

Single peak list spin system grouping algorithm is based on the widely-used

density-based clustering algorithm DBSCAN [90], which can detect clusters of varying

size and shape. The original DBSCAN algorithm requires two global parameters: radius

ε, which defines the ε-neighborhood of a point and the minimum number of points µ that

can form a cluster. The DBSCAN algorithm uses a region query similarity function to

initialize clusters where it calculates the Euclidean distance between core point and every

other point in the data and function that expands cluster by examining neighborhoods of

points in the initialized cluster in order to discover cluster points [90].

In this case, each peak represents a point in a peak list data and in order to group

peaks into clusters (spin systems) without overlap or split, we would have to know the

71

radius ε for each of the clusters in advance. For peak list data, it is not easy to know those

parameters in advance and requires domain expert to identify tolerances needed for

grouping peaks into spin systems (clusters). This is further complicated by the presence

of multiple sources of variance affecting subsets of peaks within a single peak list, i.e.

some peaks will require larger tolerances for grouping them into spin systems than others.

Therefore, uniform tolerances cannot be used to discover optimal peak grouping.

For the grouping algorithm, the region query function that uses the neighborhood

radius ε and the Euclidean distance similarity function was replaced with version that

uses a chi-square distance cutoff and variance-normalized distance (chi-square value) to

decide if a peak can be included into a spin system cluster or not. Equation (4) describes

the criteria for inclusion or exclusion of peaks from the initialized spin system cluster:

{

√∑(

 [] []

 []
)

 √ ()

√∑(
 [] []

 []
)

 √ ()

 (4)

where and is every pair of peaks within a single peak list, – number of

degrees of freedom that correspond to the number of comparable dimensions, –

specifies index of comparable dimension within a peak and its corresponding standard

deviation obtained from the registration algorithm, () – chi-square inverse

cumulative distribution function for a given -value and degrees of freedom. If the

normalized distance between peaks is less than or equal to the inverse survival function

for a given -value and corresponding degrees of freedom, the peak belongs to the spin

72

system cluster, otherwise the peak is excluded from the spin system cluster. The

variances used to calculate the normalized distance are supplied by the self-registration

algorithm. The use of a chi-square value allows the cutoff parameter to be provided in

terms of a chi-square probability. The default for the algorithm is a -value ≤ 0.0001.

Figure 30. Flow diagram of the single peak list grouping algorithm.

Figure 30 shows the flow diagram of the peak grouping algorithm that groups

peaks within a single peak list into spin systems. The grouping algorithm consists of two

73

main functions – one that initializes the clusters and the other that expands clusters by

examining the neighborhood of an initialized cluster in a similar fashion to DBSCAN

[90].

5.3.5 Combined single peak list registration and grouping algorithm

In order to address the presence of multiple sources of peak positional variance,

an iterative algorithm that combines both the self-registration algorithm and grouping

algorithm to derive spin system clusters using multiple variance-based match tolerances

calculated with the help of the registration algorithm was developed. Figure 31 shows the

flow diagram of the combined algorithm.

Figure 31. Flow diagram overview of the entire registration and grouping process.

First, the combined algorithm reads a single peak list in and runs the self-

registration algorithm to identify initial variance values for each comparable dimension.

74

Next, the grouping algorithm uses per dimension variance values to group peaks into spin

system clusters. Then, the combined algorithm checks if there are unclustered peaks left.

From the unclustered peaks, the algorithm creates a new peak list file and attempts to

register it against itself again to determine new larger variances that can be used to group

peaks into spin system clusters.

5.3.6 Peak list simulation algorithm

To create additional data sets for robustness analysis, an algorithm that can

simulate peak lists using assigned chemical shift values deposited in BMRB entries was

developed. This algorithm is implemented as a peak list simulator submodule within the

nmrstarlib Python package [94], which facilitates the reading and writing of NMR-STAR

formatted files, especially entry files maintained by BMRB. This algorithm uses the

nmrstarlib functionality to access assigned chemical shift values for H, C and N

resonances for each residue in a protein chain and then saves them as a peak list file in

different formats (e.g. Sparky, AutoAssign, JSON). Moreover, the algorithm provides the

ability to add varying amounts of noise to each dimension of the peak list in order to

create more realistic data sets. The peak list simulator uses a very generic spectrum

definitions based on different resonance classes (e.g. CA, CB, N, etc.) and their relative

positions (-1, 0, +1, etc.), therefore different through-bond experiments can be described

for both solution and solid-state NMR spectra very easily. The local contact peaks for

through-space experiments can be simulated as well using the relative position

descriptions (0, +1, +2, +3, +4).

75

5.4 Results and discussion

5.4.1 Performance on experimental data sets

First, the performance of combined registration and grouping algorithm on

manually assigned peak lists derived from solution and solid-state NMR experiments was

evaluated. Table 12 shows the summary of results for peak lists derived from solution

NMR HN(CO)CACB type experiments [108]. The expected number of peaks for the

HN(CO)CACB peak list can be estimated from a protein sequence, i.e. for every spin

system in a protein there should be at least two peaks except for glycine (due to missing

CB resonance) and proline (due to missing amide H resonance) residues ([number of

amino acids in sequence – number of prolines – number of glycines]×2 + number of

glycines – 1). Similarly, the expected number of spin systems (clusters) for the

HN(CO)CACB peak list can be estimated from a known sequence (number of amino

acids in sequence – 1 – number of GLY residues – number of PRO residues). The

number of observed peaks is usually larger than the number of expected peaks for a given

protein sequence due to NMR artefacts and the presence of multiple conformations with

slow exchange. The number of ungrouped peaks shows how many peaks were left

ungrouped after the iterative registration and grouping procedure. This number is

proportional to number of glycine residues (because of a missing corresponding peak for

CB resonance) in the protein sequence, and the number of artefact peaks that appear in

the spectrum. The numbers of missing, overlapped, and split spin systems were inferred

directly from the assigned peak lists. For example, a split in spin systems occurs when

two peaks that should form their own spin system cluster end up being added into other

neighbor spin system clusters. Results of the iterative grouping algorithm summarized in

Table 12 show that it is capable of grouping peaks into spin system clusters that

76

correspond to real spin systems in a protein sequence. When the grouping algorithm was

limited to a single registration-grouping iteration, the number of identified clusters

decreased dramatically (see Table 12 value in parenthesis) ranging from 13% fewer

recovered clusters for the 30S ribosomal protein (BMRBID 5691) to 57% fewer

recovered clusters for pancreatic ribonuclease (BMRBID 4032).

Table 12. Spin system grouping results for solution-state NMR derived peak lists using

combined registration and grouping algorithm.

Protein / Peak list Expected
peaks

Observed
peaks

Ungrouped
peaks

Expected
spin systems

Identified
spin systems*

Missing spin
systems

Overlapped
spin systems

Split spin
systems

BPTI / HN(CO)CACB 101 134 17 47 54 (30) 0 0 2
CSP / HN(CO)CACB 125 145 39 57 53 (32) 12 0 0
ER14 / HN(CO)CACB 194 181 7 93 87 (57) 8 2 0
FGF / HN(CO)CACB 273 303 24 128 139 (112) 13 2 1
JR19 / HN(CO)CACB 151 141 7 71 67 (58) 4 0 0
NS1 / HN(CO)CACB 137 203 36 66 81 (43) 26 8 2
RnaseC6572S /
HN(CO)CACB

235 282 16 116 130 (56) 18 4 2

RnaseWT /
HN(CO)CACB

235 403 19 116 181 (122) 9 2 1

ZDOM /
HN(CO)CACB

134 153 29 67 55 (40) 15 3 5

ZR18 / HN(CO)CACB 172 163 3 85 80 (52) 5 0 0

* Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of

grouping algorithm was performed.

Table 13 contains similar summary results for solid-state NMR derived peak lists.

CANCOCX [109], NCACX [30], and NCOCX [30] peak lists for the GB1 protein were

nearly complete and therefore showed low number of overlapped and split spin systems.

Peak lists for the DsbB and Cap-Gly proteins had a large number of missing and artefact

peaks, therefore a higher number of overlapped and split spin systems were observed.

The quality of peak list registration and therefore spin system grouping is highly

correlated with the quality of peak lists. Also, the larger the number of missing and

artefact peaks in the peak lists, the larger the overlap in spin systems that were generally

observed. Similar to solution-state NMR derived peak lists, the algorithm was limited to a

single registration-grouping iteration. However, the solid-state NMR derived peak lists

77

were more consistent and did not have as much dimension-specific variance in

comparison to solution-state NMR derived peak lists (see Table 13 value in parenthesis).

This may seem surprising, given the typical lower spectral quality of solid-state NMR

spectra in comparison to solution NMR spectra in terms of sensitivity and peak widths.

However, when good quality solid-state NMR spectra are obtainable, the greater spread

of peaks across the
15

N and
13

C dimensions used for grouping provides advantages over

the more crowded amide
1
H and

15
N dimensions used for grouping in solution NMR

spectra.

Table 13. Spin system grouping results for solid-state NMR derived peak lists using

combined registration and grouping algorithm.

Protein / Peak list Expected
peaks*

Observed
peaks

Ungrouped
peaks

Expected
spin systems

Identified spin
systems**

Missing spin
systems

Overlapped
spin systems

Split spin
systems

GB1 / CANCOCX 268 240 70 55 56 (56) 1 6 28
GB1 / NCACX 268 463 62 55 65 (65) 0 0 19
GB1 / NCOCX 268 474 16 55 82 (67) 0 4 10
DsbB / NCACX 940 215 43 175 47 (47) 126 14 1
CapGly / NCACX 410 515 16 88 50 (50) 33 25 0
CapGly / NCOCX 410 218 25 88 47 (47) 38 32 5

* Number of expected peaks estimated based on magnetization transfer pattern and amino acid sequence. Alternative magnetization
transfer pathways increase the number of peaks present.

** Value in parenthesis shows how many spin systems were identified if only uniform tolerances were used and single iteration of

grouping algorithm was performed.

The best and worst spin system grouping results are visualized on Figure 32:

panel a) shows the best grouping result for solution NMR derived peak lists – clean non-

overlapped clusters with a small number of artifact peaks; panel b) shows the worst result

for solution NMR derived peak lists, which has more overlap and more artifact peaks;

panels c) and d) show the best and worst results for solid-state NMR peak lists, with

more artifact peaks observed in comparison to solution NMR peak lists and significantly

higher overlap due to the lower quality of the peak lists.

78

a

b

c

d

Figure 32. Visualization of spin system grouping results where colored points correspond

peak centers grouped into spin systems, peak centers of the same color belong to the

same spin system (spin systems are numbered sequentially), unnumbered blue points

correspond to either spurious unassigned peaks or in case of HN(CO)CACB peak lists

peaks corresponding to glycine residues (due to missing CB resonance): a) example of

best spin system clustering for 30S ribosomal protein S28E from Pyrococcus horikoshii

(HN(CO)CACB peak list); b) example of worst spin system clustering non-structural

protein 1 (HN(CO)CACB peak list); c) example of best spin system clustering for GB1

protein (NCACX peak list); d) example of worst spin system clustering for DsbB protein

(NCACX peak list).

79

5.4.2 Performance on simulated data sets

To evaluate robustness of algorithms, large numbers of simulated HN(CO)CACB

peak lists were generated (see Table 14). To create peak lists that better reflect what is

observed in experimental peak lists, varying amounts of noise were introduced based on

random normal distributions for several conditions: i) single source of variance in all

dimensions; ii) two sources of variance in all dimensions; iii) two sources of variance in

one dimension.

Table 14. Summary on simulated HN(CO)CACB peak lists.

Number of variance sources Minimum standard
deviation values

Maximum standard
deviation values

Total number of
simulated peak lists

Single source of variance in all dimensions H: 0.001
C: 0.01
N: 0.01

H: 0.050
C: 0.50
N: 0.50

127,450

Two sources of variance in all dimensions H: 0.001, 0.005
C: 0.01, 0.05
N: 0.01, 0.05

H: 0.010, 0.050
C: 0.10, 0.50
N: 0.10, 0.50

25,490

Two sources of variance in N dimension, single
source of variance in C and H dimensions

H: 0.001
C: 0.01

N: 0.01, 0.05

H: 0.010
C: 0.10

N: 0.10, 0.50

25,490

Figure 33 demonstrates results for the single source of variance condition, where

peak lists were simulated with increasing random noise from 0.001 ppm to 0.050 ppm for

1
H dimension and from 0.01 ppm to 0.50 ppm for

13
C and

15
N dimensions. The

percentage of accurately grouped peaks versus percentage of overlapped peaks are

plotted as a function of dimension-specific standard deviations. The red vertical line

separates high quality versus low quality peak lists with larger peak positional variance

and overlap. Normally, good quality peak lists have
1
H,

13
C, and

15
N chemical shift

standard deviations on the left side of the red line. It is clear from the diagram that for the

smallest variance in peak positions, the algorithm groups 99% of peaks into correct non-

overlapped spin systems across all simulated peak lists. As variance in peak positions

increases percentage of overlapped peaks increases. At larger dimension-specific

80

variance condition (0.01 for
1
H dimension and 0.1 for

13
C and

15
N dimensions), it is still

capable of grouping 77% of peaks into clean non-overlapped spin systems.

Figure 33. Single source of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions. The dots correspond to the percentage of the grouped/overlapped peaks,

whiskers are calculated standard error of the mean.

Figure 34 shows similar results but for two sources of variance in all dimensions,

i.e. 80% of peaks had random normal noise added from 0.001 ppm to 0.01 ppm for
1
H

dimension and from 0.01 ppm to 0.1 ppm for
13

C and
15

N dimensions, the remaining 20%

of peaks had random normal noise five times higher (from 0.005 ppm to 0.05 ppm for
1
H

dimension and from 0.05 ppm to 0.5 ppm for
13

C and
15

N dimensions).

81

Figure 34. Two sources of variance in all dimensions: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions, 20% of peaks have five times larger variance than the remaining 80% of

peaks in all dimensions. The dots correspond to the percentage of the grouped/overlapped

peaks, whiskers are calculated standard error of the mean.

Figure 35 shows results for the case were
15

N dimension had two sources of

variance, and
1
H and

13
C dimensions had only one source of variance. Results in Figure

34 and Figure 35 demonstrate that the iterative grouping algorithm can handle peak lists

with multiple sources of variance in single or all dimensions and can group 99% of peaks

for the smallest variance values in peak dimensions and 71% of peaks at the 0.01
1
H

chemical shift standard deviation level.

82

Figure 35. Two sources of variance in one dimension: percentage of grouped (non-

overlapped) and overlapped peaks with increase in standard deviation values of peak

dimensions, 20% of peaks have five times larger variance than the remaining 80% of

peaks in N dimension. The dots correspond to the percentage of the grouped/overlapped

peaks, whiskers are calculated standard error of the mean.

5.4.3 Comparison to hierarchical DBSCAN algorithm

In order to test if other clustering algorithms can be used to group peaks within

single peak list into spin system clusters, a recently developed variation of DBSCAN

called hierarchical DBSCAN (HDBSCAN) was used [110], [111]. This clustering

algorithm was chosen, because it has several advantages over other clustering algorithms:

it does not require the expected number of clusters upfront (as opposed to k-means) and it

does not require specification of the ε-neighborhood parameter (as opposed to the regular

83

DBSCAN clustering algorithm). This hierarchical version performs DBSCAN using

varying values of radius ε and integrates all results to find the best clustering solution.

Table 15. Spin system grouping results for solution-state NMR derived peak lists using

HDBSCAN algorithm.

Protein / Peak list Expected
peaks

Observed
peaks

Ungrouped
peaks

Expected
spin systems

Identified
spin systems

Missing spin
systems

Overlapped
spin systems

Split spin
systems

BPTI / HN(CO)CACB 101 134 15 47 24 0 31 0
CSP / HN(CO)CACB 125 145 37 57 21 12 35 1
ER14 / HN(CO)CACB 194 181 33 93 26 8 77 1
FGF / HN(CO)CACB 273 303 43 128 53 13 108 3
JR19 / HN(CO)CACB 151 141 18 71 23 4 66 3
NS1 / HN(CO)CACB 137 203 49 66 31 26 43 8
RnaseC6572S /
HN(CO)CACB

235 282 38 116 45 18 90 4

RnaseWT /
HN(CO)CACB

235 403 68 116 68 9 75 9

ZDOM /
HN(CO)CACB

134 153 22 67 25 15 49 5

ZR18 / HN(CO)CACB 172 163 42 85 22 5 59 0

Table 15 shows results of HDBSCAN for solution NMR peak lists. The number

of overlapping spin systems was significantly higher in comparison to combined

registration and grouping algorithm implementation. Also, for solid-state NMR derived

peak lists, HDBSCAN performed slightly worse (see Table 16). The implementation of

iterative registration and grouping algorithm is slower than HDBSCAN due to the

complexity of the registration algorithm step, but it produces more accurate and more

consistent results for both solution and solid-state NMR derived experimental peak lists

as well as for simulated peak lists.

Table 16. Spin system grouping results for solid-state NMR derived peak lists using

HDBSCAN algorithm.

Protein / Peak list Expected
peaks*

Observed
peaks

Ungrouped
peaks

Expected
spin systems

Identified
spin systems

Missing spin
systems

Overlapped
spin systems

Split spin
systems

GB1 / CANCOCX 268 240 16 55 51 1 29 9
GB1 / NCACX 268 463 14 55 63 0 2 1
GB1 / NCOCX 268 474 14 55 67 0 4 7
DsbB / NCACX 940 215 27 175 37 126 31 3
CapGly / NCACX 410 515 36 88 70 33 21 17
CapGly / NCOCX 410 218 20 88 42 38 46 7

* Number of expected peaks estimated based on magnetization transfer pattern and amino acid sequence. Alternative magnetization

transfer pathways increase the number of peaks present.

84

5.5 Conclusions

A new peak list registration algorithm was developed. The algorithm is capable of

executing in two modes: self-registration and pairwise-registration. Self-registration

mode allows the derivation of registration statistics for a single unassigned peak list that

has multiple peaks per spin system. Pairwise-registration allows alignment of two

different unassigned peak lists in order to calculate registration statistics. Using this self-

registration algorithm, a new bottom-up iterative grouping algorithm was developed. This

algorithm can group peaks into spin systems within a single peak list and can handle

multiple sources of variance that are present within experimental data sets. Utilization of

the single peak list registration algorithm will facilitate the development of more

sophisticated and automated spin system grouping algorithms that produce more accurate

spin systems for downstream data analyses.

Automated tools that allow the creation of simulated peak lists with a range of

positional variances using assigned chemical shifts in BMRB entries were developed.

These tools were applied for generation of a very large simulated dataset from the entire

BMRB to rigorously test the performance and robustness of algorithms. These tests

showed that algorithms can detect multiple sources of variance introduced into simulated

data sets and reliably group peaks into spin systems for peak lists that are far from ideal.

85

CHAPTER 6

PAIRWISE REGISTRATION AND GROUPING ALGORITHMS

6.1 Overview

Protein resonance assignment is the first critical step in protein structure

determination. A typical protein resonance assignment strategy uses a set of peak lists

derived from different types of NMR experiments. This requires an agreement in

chemical shift values between different peak lists. Due to chemical shift referencing

problems, chemical shift values can become shifted relative to each other, which causes

severe problems in spin system grouping and as a result affects all downstream resonance

assignment steps. The pair of complimentary pairwise peak list registration and grouping

algorithms was developed. These algorithms utilize single peak list registration and

grouping algorithms first in order to create global spin systems groups across all peak

lists in a bottom-up merge fashion. In other words, the most consistent data is leveraged

first in order to create local spin system groups for a single peak list and then grow the

spin systems by comparing spin systems groups or individual peaks from different peak

lists.

6.2 Introduction

A set of peak lists derived from different types of NMR experiments is required to

assign resonances within protein NMR spectra. Both solution-state and solid-state protein

NMR assignment strategies require at least three peak lists in order to produce reliable

86

resonance assignments. Prior to the resonance assignment, it is very important to analyze

the quality of the peak lists in terms of consistency chemical shift values between

different peak lists as well as reliably estimate match tolerance values for grouping peaks

into spin systems. Failure to register several different peak lists against each other is a

strong indicator of insufficient peak list quality. As a result, such peak lists cannot be

used in the resonance assignment process, because we cannot reliably estimate match

tolerance values for peaks grouping because of poor peak (chemical shifts) matching

between different peak lists. Such problems can result from inconsistent chemical shift

referencing during the data acquisition phase, inadequate resolution in a match

dimension, or a variety of issues that can arise during the data acquisition or processing

phases.

In order to solve inconsistency problems in chemical shift values between

different peak lists, a pairwise registration algorithm that can derive the offset values to

make one peak list match the other was developed. In addition, the algorithm produces

standard deviations per each comparable dimension that are used in the complimentary

pairwise grouping algorithm. The pairwise grouping algorithm works in a bottom-up

fashion and utilizes the single peak list grouping algorithm first to derive internal groups

of peaks within single peak list for peak lists that have more than one peak per spin

system. Then starting with the best peak list, i.e. the peak list with the smallest standard

deviation values in comparable dimensions, the pairwise grouping algorithm merges

peaks from different peak lists into global spin systems.

The pairwise grouping has all the properties of the single peak list grouping

algorithm described in Chapter 5, i.e. it works in an iterative fashion and as a result can

87

account for multiple sources of variance. In addition, the pairwise grouping algorithm has

rules to detect split spin systems, overlapped spin systems, and missing peaks or spin

systems by pairwise comparison of peaks or groups of peaks that are being merged

together.

6.3 Materials and Methods

6.3.1 Experimental data sets

The pairwise registration and grouping algorithm was evaluated using a set of

different peak lists derived from solid-state NMR spectra of β1 immunoglobulin binding

domain of protein G (GB1) (Table 17).

Table 17. The solid-state NMR derived peak lists for pairwise algorithm testing.

Protein Sequence length Spectrum type NMR type BMRB ID / PDB ID

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 CAN(CO)CA Solid-state 15156 / 2JSV

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 NCACX Solid-state 15156 / 2JSV

β1 immunoglobulin binding domain of
protein G (GB1) [103]

56 CANCOCX Solid-state 15156 / 2JSV

6.3.2 Pairwise peak list registration algorithm

The single peak list registration algorithm described in Chapter 5 and pairwise

registration algorithms are implemented within the same code base and have a common

command-line interface. The difference is that the single peak list operates on single peak

list and pairwise algorithm operates on two different peak lists (an “input” peak list and a

“root” or reference peak list). Both algorithms calculate the best mapping of peaks from

the “input” peak list to peaks in the “root” peak list for their comparable spectral

dimensions. The pairwise registration algorithm derives needed offsets from match peaks

in “root” peak list to “input” peak list. Based on the registration, the algorithm calculates

the standard deviation between mapped pairs of peaks in their comparable dimensions,

88

which can be used as an estimation of match tolerance values for the pairwise grouping.

Figure 36 shows the flow diagram for both single peak list registration and pairwise peak

list registration algorithms. If the “input” peak list is identical to the “root” peak list, the

self-registration branch of the algorithm executes. If the “input” and “root” peak list are

different, the pairwise-registration branch of the algorithm executes.

Figure 36. Flow diagram of the combined single peak list registration algorithm and

pairwise peak list registration algorithm.

The robustness score is calculated according to equations (2) and (3). The only

conceptual difference is that since “root” and “input” peak lists are different, every

pairwise peak comparison is allowed. In single peak list registration algorithm only non-

89

identical comparisons are allowed due to the fact that “root” and “input” peak lists are the

same.

To give a specific example, let’s consider four peaks in “peaklist1” and five peaks

in “peaklist2” in Table 18 and Figure 37.

Table 18. Example of two peak lists used in registration algorithm.

Peaklist1 Peaklist2

CA, ppm N, ppm # CA, ppm N, ppm

1 54.319 122.274 … … …

2 60.062 117.66 11 54.119 121.826

3 57.132 125.585 12 59.848 117.36

4 53.815 124.145 13 56.968 125.285

… … … 14 53.615 123.855

… … … 15 54.118 118.102

… … … … … …

Figure 37. Visualization of “peaklist1” and “peaklist2” used in pairwise registration.

First, for every peak the peak difference matrix is constructed by calculating peak

differences for comparable dimensions, for example:

CA: 55.319 – 55.319 = 0

N: 122.274 – 122.274 = 0

CA: 55.319 – 60.062 = –4.743

90

N: 122.274 – 117.66 = 4.614

…

Table 19 and Table 20 show the peak difference matrices for “peaklist1” and

“peaklist2”, respectively.

Table 19. Peak difference matrix for “peaklist1”.

Peak #
1 2 3 4

CA N CA N CA N CA N

1 0 0 –4.743 4.614 –1.813 –3.311 1.504 –1.871

2 4.743 –4.614 0 0 2.93 –7.925 6.247 –6.485

3 1.813 3.311 –2.93 7.925 0 0 3.317 1.44

4 –1.504 1.871 –6.247 6.485 –3.317 –1.44 0 0

Table 20. Peak difference matrix for “peaklist2”.

Peak #
11 12 13 14 15

CA N CA N CA N CA N CA N

11 0 0 –5.729 4.466 –2.849 –3.459 0.504 –2.029 0.001 3.724

12 5.729 –4.466 0 0 2.88 –7.925 6.233 –6.495 5.73 –0.742

13 2.849 3.459 –2.88 7.925 0 0 3.353 1.43 2.85 7.183

14 –0.504 2.029 –6.233 6.495 –3.353 –1.43 0 0 –0.503 5.753

15 –0.001 –3.724 –5.73 0.742 –2.85 –7.183 0.503 –5.753 0 0

Next, using peak difference matrix, variance normalized Euclidean distance can be

calculated for every pair of peaks for each peak list as shown on Figure 38. Table 21and

Table 22 show calculated Euclidean distance matrices for “peaklist1” and “peaklist2”,

respectively.

 √∑ (

)

where is comparable dimension (CA or N), is initial standard deviation (0.075 ppm

for C and N dimensions), match value is set to 4. For example, variance

normalized distance between peak #1 and peak #2 is equal to:

91

 √(

)

 (

)

Table 21. Euclidean distance matrix for “peaklist1” (distances).

Peak # 1 2 3 4

1 0 11.0283 6.2914 4.0009

2 11.0283 0 14.0821 15.0074

3 6.2914 14.0821 0 6.0268

4 4.0009 15.0074 6.0268 0

Table 22. Euclidean distance matrix for “peaklist2” (distances

).

Peak # 11 12 13 14 15

11 0 12.1068 7.4687 3.4844 6.2066

12 12.1068 0 14.053 15.003 9.6297

13 7.4687 14.053 0 6.0753 12.8796

14 3.4844 15.003 6.0753 0 9.6249

15 6.2066 9.6297 12.8796 9.6249 0

Figure 38. Visualization of distances between every pair of peaks, in
“peaklist1” and in “peaklist2”.

Using the Euclidean distance matrices the data structure called support matrix is

calculated which contains the coordinates of a clique of peaks that match the best

between two peak lists based on the distances, i.e. support pairs. Distances are compared

92

row by row and those that match best within tolerances are selected. The support pairs in

this instance are the following:

() () () ()

Detection of the maximal clique, i.e. clique with the largest number of support pairs is a

classic graph theoretical problem [112] that is NP-complete in its computational

complexity. The registration offsets are calculated for each dimension for every support

pair and then averaged:

 []

∑| [] []|

where – peaks from peaklist1, – peaks from peaklist2 such that they form

support pair (,), – number of support pairs, – comparable dimension (CA

or N). Table 23 shows an example calculation for the identified support pairs.

Table 23. Example of registration offset calculation for identified support pairs.

CA N

55.319 – 55.119 = 0.2 ppm 122.274 – 121.826 = 0.448 ppm

60.062 – 59.848 = 0.214 ppm 117.66 – 117.36 = 0.3 ppm

57.132 – 56.968 = 0.164 ppm 125.585 – 125.285 = 0.3 ppm

53.815 – 53.615 = 0.2 ppm 124.145 – 123.855 = 0.29 ppm

Finally, average of registration offset values can be calculated per each comparable

dimension:

 []

 ppm

 []

 ppm

93

6.3.3 Pairwise grouping algorithm

Similarly to the pairwise registration algorithm, the pairwise grouping algorithm

was developed within a single code base and has all the properties of the single peak list

grouping algorithm. The difference is that when two different peak lists are compared,

the pairwise grouping algorithm has additional rules to detect and resolve spin system

split, spin system overlap, or missing peaks or spin systems. Figure 39 shows the flow

diagram that describes the process for grouping peaks into spin systems. Instead of

working on a single experimental peak list, the pairwise grouping algorithm works on a

combined “input” and “root” peak list. For every peak or internal spin system that “input”

and/or peak list composed of it first initializes the spin system cluster and queries all

neighbor peaks or internals spin system clusters using match tolerances derived from the

pairwise registration algorithm. Then similarly to single peak list grouping, it passes all

identified neighbors and seed to the expansion phase in order to find additional peaks or

internal spin system clusters that may belong to the initialized spin system cluster. The

criteria for inclusion of a peak or peak group into a cluster are the same as for single peak

list grouping algorithm as described by equation (4). Then, distinctly from the single peak

list grouping algorithm, the pairwise grouping algorithm passes all identified peaks and

internal clusters to examine cluster step in order to identify potential problems in the final

cluster, such as spin system split, spin system overlap. Once the problem is detected, the

algorithm tries to resolve it and return clean spin system clusters. There are few pairwise

comparison outcomes that are possible: one-to-one, one-to-many, many-to-one, and

many-to-many group mappings.

94

Figure 39. Flow diagram of the pairwise grouping algorithm.

6.3.3.1. One-to-one pairwise comparison

The one-to-one pairwise comparison case is the best possible outcome. This

means that during every pairwise comparison that occurred during merging peak or

internal spin systems into global spin systems there was always a one-to-one matching

between peaks or groups of peaks, i.e. the resulting global spin system is clean and does

not contain any overlap. Figure 40 demonstrates the merging of peaks and internal spin

systems into global spin systems for the one-to-one pairwise comparison case.

95

Figure 40. One-to-one pairwise comparison case.

6.3.3.2 One-to-many pairwise comparison

The one-to-many comparison case usually means that during merging of peaks

into global spin system clusters, there was a situation when several internal spin systems

or peaks pointed to a single spin system in a global comparison. This usually indicates the

split between internal spin systems or internal spin systems and individual groups. The

split case is resolved by merging several split entities in order to produce a clean global

spin system. Figure 41 demonstrates the split case when two internal spin systems in the

NCACX peak list were merged into a single spin system during the pairwise comparison

of internal NCACX spin systems with CAN(CO)CA peak list.

96

Figure 41. One-to-many pairwise comparison case.

6.3.3.3 Many-to-one pairwise comparison

The many-to-one pairwise comparison case during creation of global spin systems

is the undesirable situation, which usually indicates there was an overlap in one of the

internal spin system groups that needs to be resolved before creating the final global spin

systems. Figure 42 shows the case with the overlap that happened in the internal

grouping of the CANCOCX peak list. Two internal spin system groups that were created

from NCACX and CAN(CO)CA pairwise comparisons point to a single CAN(CO)CX

internal spin system group. Figure 43 shows the overlap is being resolved, i.e. right

before creating the final overlapped global spin system, the overlapped CANCOCX

internal spin system group is disassembled into individual peaks. Next, the two internal

spin systems that were created from the NCACX and CAN(CO)CA comparison act as

centroids for assigning each individual peak from the CANCOCX peak list. The variance

normalized Euclidean distance is used in order to identify the closest centroid and assign

each individual peak. The variances for normalizing Euclidean distance are derived from

97

the pairwise registration algorithm. In the end, instead of one overlapped global spin

system, two resolved global spin systems are created.

Figure 42. Many-to-one pairwise comparison case (overlapped spin systems).

Figure 43. Many-to-one pairwise comparison case (resolved spin systems).

98

6.3.3.4 Many-to-many pairwise comparison

The many-to-many pairwise comparison case is very similar to the many-to-one

pairwise comparison case and also indicates the overlap during the global spin system

creation process. Figure 44 demonstrates a many-to-many pairwise comparison case

where two different internal spin systems created from NCACX and CAN(CO)CA

pairwise comparison point to two different internal spin systems created from

CANCOCX. Once this case is detected, it is handled in a similar way as many-to-one

comparison, i.e. CANCOCX internal spin systems are disassembled into individual peaks

and pairwise spin system groups created from NCACX and CAN(CO)CA act as

centroids. The variance normalized Euclidean distance is calculated in order to find the

closest spin system. Figure 45 shows how the overlapped spin system is being resolved

into two different global spin systems.

Figure 44. Many-to-one pairwise comparison case (overlapped spin systems).

99

Figure 45. Many-to-one pairwise comparison case (resolved spin systems).

6.3.3.5 Missing spin system recovery

In addition to detecting split and overlap cases during pairwise comparison, it is

also possible to recover spin systems or peaks that are present in one peak list but missing

in the other. Figure 46 demonstrates an example when the peak is missing in the

CAN(CO)CA peak list and the internal spin system group is not formed due to this fact.

The group of peaks is not discarded during the pairwise comparison and is used for

pairwise comparison at later stages and if a corresponding peak or group of peaks is

found within the CANCOCX peak list, the global clean cluster can be created. In other

words, to recover a missing internal spin system, it is necessary that it is found in at least

two different peak lists.

100

Figure 46. Missing spin system recovery.

6.4 Results and Discussion

6.4.1 Importance of peak list registration

Inaccuracies in NMR referencing cause variance in chemical shift values between

different experimental peak lists. As a result, inconsistencies between different peak lists

present a serious challenge for the automated protein resonance assignment algorithms.

The pairwise registration and grouping algorithm produces both the registration offset

values and standard deviations values for each comparable dimension between different

peak lists. The standard deviations are then used to calculate match tolerance values for

each dimension for grouping peaks into spin systems. Prior to grouping, the offset values

must be applied to one of the peak lists in order for peaks to match within match

tolerance values. Failure to apply registration offsets typically result in failure to group

peaks into spin systems and every peak ends up ungrouped (considered as “noise” data

point) or results in incorrect peak grouping with severe overlap.

101

a

b

Figure 47. CAN(CO)CA peak list (red crosses) and NCACX peak list (blue crosses)

without registration (a) and with registration applied (b).

102

Figure 47 shows the
15

N and
13

CA peak positions of the “root” CAN(CO)CA

peak list versus “input” NCACX without (Figure 47a) and with (Figure 47b) applied

dimension-specific registration offset values. It is clear that in order to group peaks into

spin systems without registration applied (Figure 47a), the match tolerances values

would have to be increased which in turn will result in spin system overlap. On the other

hand, calculated registration offset values applied to the “input” NCACX peak list

(Figure 47a) make “input” peaks match “root” peaks and results in correct grouping with

no overlap.

6.4.2 Correction of manually assigned peak lists

With the help of the pairwise grouping algorithm, I was able to correct the manual

expert assignment of the peak lists and verify it using the deposited chemical shift values

in the BMRB (BMRBID 18397).

Table 24 shows an example of an experimental manually assigned CAN(CO)CA

peak list. Using the pairwise grouping algorithm, incorrect assignments were identified as

well as additional assignments were made directly within the same peak list using

unassigned peaks (“?-?-?” assignment designates manually unassigned peak lists but were

present in the spectrum and have been retained). Red rows in

Table 24 indicate incorrect assignment within the CAN(CO)CA peak list, for

example, peaks #27 and #28 that belong to neighboring spin systems T18-T17 and T17-

T16 were assigned incorrectly. In addition, peak #63 that belongs to the D40-V39 spin

system was incorrectly assigned to the E56-T55 spin system. Moreover, the grouping

algorithm was able to identify the correct E56-T55 spin system (peak #7) and missing

Y45-T44 spin system (peak #11).

103

Table 24. Manually assigned CAN(CO)CA peak list example.

Peak # Assignment w1 w2 w3
1 ?-?-? 54.770 126.179 54.918

2 ?-?-? 61.880 117.174 73.084

3 ?-?-? 60.822 117.328 70.994

4 ?-?-? 47.369 108.372 53.976

5 ?-?-? 58.146 131.956 72.584

6 ?-?-? 58.020 131.913 58.106

7 ?-?-? 58.118 131.926 61.703

8 ?-?-? 63.044 121.502 54.907

9 ?-?-? 63.157 123.491 52.942

10 ?-?-? 55.168 123.925 55.013

11 ?-?-? 58.358 119.808 61.319

12 Q2CA-N-M1CA 56.304 126.102 54.663

13 Y3CA-N-Q2CA 57.626 124.163 56.279

14 K4CA-N-Y3CA 55.387 123.710 57.563

15 L5CA-N-K4CA 53.518 127.842 55.228

16 I6CA-N-L5CA 60.533 127.075 53.453

17 L7CA-N-I6CA 55.224 127.926 60.410

18 N8CA-N-L7CA 51.263 126.082 54.975

19 G9CA-N-N8CA 45.176 110.361 51.203

20 K10CA-N-G9CA 59.885 121.926 45.111

21 T11CA-N-K10CA 62.498 107.326 59.759

22 L12CA-N-T11CA 55.012 128.562 62.376

23 K13CA-N-L12CA 53.824 124.124 54.888

24 G14CA-N-K13CA 45.484 106.539 53.810

25 E15CA-N-G14CA 54.450 121.845 45.419

26 T16CA-N-E15CA 60.643 115.975 54.358

27 T17CA-N-T16CA 61.827 117.237 60.837

28 T18CA-N-T17CA 60.864 117.237 60.548

29 E19CA-N-T18CA 54.823 126.186 61.774

30 A20CA-N-E19CA 51.505 126.664 54.788

31 V21CA-N-A20CA 64.132 117.118 51.220

32 D22CA-N-V21CA 53.055 116.343 64.049

33 A23CA-N-D22CA 55.021 123.515 52.959

34 A24CA-N-A23CA 55.035 121.450 54.973

35 T25CA-N-A24CA 68.033 118.227 54.969

36 A26CA-N-T25CA 55.582 124.728 67.876

37 E27CA-N-A26CA 59.686 117.233 55.541

38 K28CA-N-E27CA 60.776 118.234 59.600

39 V29CA-N-K28CA 66.870 119.901 60.656

40 F30CA-N-V29CA 58.074 119.534 66.658

41 K31CA-N-F30CA 60.706 121.458 57.950

42 Q32CA-N-K31CA 59.427 122.031 60.501

43 Y33CA-N-Q32CA 62.080 121.725 59.295

44 N35CA-N-A34CA 57.588 119.148 56.507

45 D36CA-N-N35CA 56.395 122.065 57.537

46 N37CA-N-D36CA 54.041 115.918 56.419

47 G38CA-N-N37CA 47.362 109.297 53.993

48 V39CA-N-G38CA 62.284 122.646 47.257

49 G41CA-N-D40CA 45.692 108.969 53.266

50 E42CA-N-G41CA 55.712 120.157 45.616

51 W43CA-N-E42CA 58.048 125.926 55.649

52 T44CA-N-W43CA 61.481 110.041 57.960

53 D46CA-N-Y45CA 51.405 127.294 58.240

54 D47CA-N-D46CA 55.107 124.372 51.411

55 A48CA-N-D47CA 54.587 120.039 54.916

56 T49CA-N-A48CA 60.880 105.053 54.496

57 K50CA-N-T49CA 56.014 120.492 60.772

58 T51CA-N-K50CA 63.023 113.082 56.019

59 F52CA-N-T51CA 57.166 130.990 62.949

60 T53CA-N-F52CA 60.815 113.073 57.045

61 V54CA-N-T53CA 58.945 119.200 60.808

104

62 T55CA-N-V54CA 61.846 125.006 58.929

63 E56CA-N-T55CA 53.102 131.816 62.197

Table 25 shows the CAN(CO)CA peak list that has been corrected after the pairwise

algorithm comparison.

Table 25. Corrected manually assigned CAN(CO) CA peak list example.

Peak # Assignment w1 w2 w3
1 ?-?-? 54.770 126.179 54.918

2 ?-?-? 61.880 117.174 73.084

3 ?-?-? 60.822 117.328 70.994

4 ?-?-? 47.369 108.372 53.976

5 ?-?-? 58.146 131.956 72.584

6 ?-?-? 58.020 131.913 58.106

7 E56CA-N-T54CA 58.118 131.926 61.703

8 ?-?-? 63.044 121.502 54.907

9 ?-?-? 63.157 123.491 52.942

10 ?-?-? 55.168 123.925 55.013

11 Y45CA-N-T44CA 58.358 119.808 61.319

12 Q2CA-N-M1CA 56.304 126.102 54.663

13 Y3CA-N-Q2CA 57.626 124.163 56.279

14 K4CA-N-Y3CA 55.387 123.710 57.563

15 L5CA-N-K4CA 53.518 127.842 55.228

16 I6CA-N-L5CA 60.533 127.075 53.453

17 L7CA-N-I6CA 55.224 127.926 60.410

18 N8CA-N-L7CA 51.263 126.082 54.975

19 G9CA-N-N8CA 45.176 110.361 51.203

20 K10CA-N-G9CA 59.885 121.926 45.111

21 T11CA-N-K10CA 62.498 107.326 59.759

22 L12CA-N-T11CA 55.012 128.562 62.376

23 K13CA-N-L12CA 53.824 124.124 54.888

24 G14CA-N-K13CA 45.484 106.539 53.810

25 E15CA-N-G14CA 54.450 121.845 45.419

26 T16CA-N-E15CA 60.643 115.975 54.358

27 T18CA-N-T17CA 61.827 117.237 60.837

28 T17CA-N-T16CA 60.864 117.237 60.548

29 E19CA-N-T18CA 54.823 126.186 61.774

30 A20CA-N-E19CA 51.505 126.664 54.788

31 V21CA-N-A20CA 64.132 117.118 51.220

32 D22CA-N-V21CA 53.055 116.343 64.049

33 A23CA-N-D22CA 55.021 123.515 52.959

34 A24CA-N-A23CA 55.035 121.450 54.973

35 T25CA-N-A24CA 68.033 118.227 54.969

36 A26CA-N-T25CA 55.582 124.728 67.876

37 E27CA-N-A26CA 59.686 117.233 55.541

38 K28CA-N-E27CA 60.776 118.234 59.600

39 V29CA-N-K28CA 66.870 119.901 60.656

40 F30CA-N-V29CA 58.074 119.534 66.658

41 K31CA-N-F30CA 60.706 121.458 57.950

42 Q32CA-N-K31CA 59.427 122.031 60.501

43 Y33CA-N-Q32CA 62.080 121.725 59.295

44 N35CA-N-A34CA 57.588 119.148 56.507

45 D36CA-N-N35CA 56.395 122.065 57.537

46 N37CA-N-D36CA 54.041 115.918 56.419

47 G38CA-N-N37CA 47.362 109.297 53.993

48 V39CA-N-G38CA 62.284 122.646 47.257

49 G41CA-N-D40CA 45.692 108.969 53.266

50 E42CA-N-G41CA 55.712 120.157 45.616

51 W43CA-N-E42CA 58.048 125.926 55.649

52 T44CA-N-W43CA 61.481 110.041 57.960

53 D46CA-N-Y45CA 51.405 127.294 58.240

54 D47CA-N-D46CA 55.107 124.372 51.411

105

55 A48CA-N-D47CA 54.587 120.039 54.916

56 T49CA-N-A48CA 60.880 105.053 54.496

57 K50CA-N-T49CA 56.014 120.492 60.772

58 T51CA-N-K50CA 63.023 113.082 56.019

59 F52CA-N-T51CA 57.166 130.990 62.949

60 T53CA-N-F52CA 60.815 113.073 57.045

61 V54CA-N-T53CA 58.945 119.200 60.808

62 T55CA-N-V54CA 61.846 125.006 58.929

63 D40CA-N-V39CA 53.102 131.816 62.197

6.4.3 Accuracy of pairwise registration algorithm on simulated peak lists with

known offsets

6.4.3.1 Peak lists with small amount of variance

To evaluate how accurately algorithm can calculate offset registration values for

each of the comparable dimensions, two peak lists using the peak list simulation

algorithm (described in Chapter 5) were simulated. Two peak list from GB1 protein entry

(BMRBID 18397): one peak list is used as a “root” peak list (CAN(CO)CA) and the

other peak list is used as “input” peak list (NCACX). The amount of variance (in terms of

standard deviations) that was added to the peak lists was 0.01 ppm for both
13

CA and
15

N

dimension. Next, offset values were added to each of the comparable dimensions in

“input” peak list, i.e. to every peak in simulated NCACX peak list registration offset

value 0.55 ppm for every
13

CA dimension and 0.87 ppm for every
15

N dimension were

added. The offset values were chosen arbitrarily. The registration algorithm calculated

the registration offset values for
13

CA and
15

N dimensions that match initially specified

offset values (see Table 26). This means that in order for the “input” NCACX peak list to

match the “root” CAN(CO)CA peak list, we need to subtract 0.55 ppm for every peak in

the
13

CA dimension and 0.87 ppm for every peak in the
15

N dimension. Here, the

introduced registration values are positive, because they were added to the simulated

“input” peak list; calculated registration values are negative, meaning that we need to

subtract those offset values in order to make “input” peak list match “root” peak list.

106

Also, the introduced standard deviation is the parameter that was used to set the amount

of noise drawn from random normal distribution in order to create a simulated peak list;

therefore, the calculated standard deviation is typically smaller than the introduced

standard deviation parameter.

Table 26. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with minimum variance.

Dimension

Introduced

registration offset

value, ppm

Calculated

registration offset

value, ppm

Introduced

standard

deviation, ppm

Calculated

standard

deviation, ppm
15

N 0.55 –0.5521 0.01 0.009
13

CA 0.87 –0.8693 0.01 0.008

The exact simulated CAN(CO)CA and NCACX peak lists that were used to calculate the

registration offsets are shown in Table B1 and Table B2, respectively.

6.4.3.1 Peak lists with larger variance

The original experimental peak lists contained the larger variance in their
13

CA

and
15

N dimensions, 0.02 ppm and 0.03 ppm, respectively, in terms of standard

deviations. Simulated peak lists with the amount of variance corresponding to 0.02 ppm

for
13

CA and 0.03 ppm for the
15

N dimensions in terms of standard deviation values were

created. Next offset values were added to both
13

CA (0.55 ppm) and
15

N (0.87 ppm) as in

the previous simulation. Table 27 shows that the registration algorithm was able to

identify correct offset values with slightly higher amount of variance introduced into the

peak lists.

Next, a larger amount of variance was introduced to the peak lists. The peak lists

were simulated using a variance equal to 0.1 ppm and 0.15 ppm in terms of standard

deviation values for the
13

CA and
15

N dimensions. The offset values 0.55 ppm and 0.87

107

ppm were added to
13

CA and
15

N dimensions of the NCACX peak list as in the previous

simulations, and the registration algorithm was tested again.

Table 27. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with amount of variance

corresponding to experimental peak lists.

Dimension

Introduced

registration offset

value, ppm

Calculated

registration offset

value, ppm

Introduced

standard

deviation, ppm

Calculated

standard

deviation, ppm
15

N 0.55 –0.5518 0.03 0.02
13

CA 0.87 –0.8692 0.02 0.01

Table 28 shows that the registration algorithm was able to handle the amount of

variance five times larger than that in the original experimental peak lists and was able to

report correct offset registration values.

Table 28. The offset values calculated by registration algorithm during pairwise

comparison of CAN(CO)CA and NCACX simulated peak lists with larger amount of

variance.

Dimension

Introduced

registration offset

value, ppm

Calculated

registration offset

value, ppm

Introduced

standard

deviation, ppm

Calculated

standard

deviation, ppm
15

N 0.55 –0.5518 0.15 0.13
13

CA 0.87 –0.8748 0.1 0.08

6.4.4 Accuracy of the pairwise spin system grouping algorithm

6.4.4.1 Pairwise spin system grouping on experimental peak lists

Table 29 shows the summary of the pairwise grouping algorithm on experimental

NCACX, CAN(CO)CA, and CANCOCX. First, two internally grouped NCACX and

CAN(CO)CA peak lists were grouped pairwise. Next, CANCOCX groups were grouped

with the groups from NCACX and CAN(CO)CA. The spin system groups were analyzed

in terms of a number of overlaps and splits at each pairwise grouping step. The results of

the pairwise grouping algorithm show that the majority of the spin system clusters are

grouped with no overlap.

108

Table 29. Accuracy of the pairwise grouping algorithm on experimental peak lists.

Protein/

Group

Expected

spin

systems

Observed

spin

systems

Registration

offsets

Calculated

stds

Overlapped

spin systems

Split

spin

systems

GB1

[NCACX + CAN(CO)CA]
55 55

CA: 0.553

N: 0.870

CA: 0.059

N: 0.148
2 1

GB1

[[NCACX +

CAN(CO)CA]+CANCOCX]

55 60
CA: 0.542
N: 0.955

CA: 0.065
N: 0.180

4 2

6.4.4.2 Pairwise spin system grouping on simulated peak lists

Table 30 shows the same summary of the grouping algorithm but using simulated

peak lists. Due to the smaller variance within simulated peak lists the number of overlap

and split spin systems are minimized to 0 at each pairwise grouping step.

Table 30. Accuracy of the pairwise grouping algorithm on simulated peak lists.

Protein/

Group

Expected

spin

systems

Observed

spin

systems

Registration

offsets

Calculated

stds

Overlapped

spin systems

Split

spin

systems

GB1

[NCACX + CAN(CO)CA]
55 55

CA: -0.002

N: 0.001

CA: 0.009

N: 0.010
0 0

GB1
[[NCACX +

CAN(CO)CA]+CANCOCX]

55 55
CA: -0.003

N: -0.001

CA: 0.008

N: 0.009
0 0

6.5 Conclusions

A new pairwise peak list registration and grouping algorithms were developed.

The pairwise registration and grouping algorithms rely on single peak list registration

algorithms in order to create internal spin system groups and expand those groups by a

pairwise comparison of different peak lists starting from the best quality peak lists first.

The algorithm can take into account multiple sources of variance present within the

single peak list as well as between different peak lists due to the iterative nature of the

algorithm and the coupling registration and grouping steps. The algorithms can detect

spin systems split, overlap, or recover missing spin systems in one or more peak lists.

Also it was demonstrated on simulated peak lists that the registration algorithm can

accurately determine registration offset values as well as standard deviation values.

109

CHAPTER 7

DISCUSSION

7.1 Evaluation of performance

The proposed algorithms are implemented as individual programs with their own

command-line interfaces and documentation. The nmrstarlib package is written in the

Python programming language with C-extensions implemented using the Cython

programming language to improve speed efficiency for processing NMR-STAR files.

The computational time and space complexity of the nmrstarlib library linearly depends

on the size of the file. Typically, it takes a fraction of a second to process a single NMR-

STAR file (see Figure 23).

The single and pairwise peak list registration algorithm is implemented in C++

programming language and is the most computationally intensive algorithm in the

discussed research. The algorithm is optimized to a computational complexity of

 () where and represent the lengths of the “root” and “input” peak lists,

respectively.

The spin system grouping algorithm is implemented in Python and is coupled

with the registration algorithm in order to discover multiple sources of variance present

in a single peak list as well as between different peak lists. The average computational

complexity of the grouping algorithm alone without coupling with

110

the registration algorithm is (), where represents a total number of peaks

being grouped by the grouping algorithm. It depends on the region query function that

queries peaks according to defined distance function, the worst case running time is

 ().

The jpredapi package is designed to submit queries to the Jpred4 secondary

structure prediction server [29] and is implemented in Python. The running time depends

on the load of the third-party Jpred4 secondary structure prediction server.

7.2 Command-line interfaces

7.2.1 The nmrstarlib command-line interface

The main use cases of the nmrstarlib command-line interface is to convert original

NMR-STAR files to their JSONized representation (using convert command) and

generate simulated peak lists (using plsimulate command) utilizing assigned

chemical shift values and the spectrum description describing the magnetization pathway

transfer which in turn describes the specific dimensions that will be added to each peak

within a peak list. The varying amount of variance can be added to the simulated peak

lists using options to specify the standard deviation for each of the
1
H,

13
C, and

15
N

dimensions. Figure 48 shows the complete command-line interface.

7.2.2 Registration algorithm command-line interface

Figure 49 shows the command-line interface for the single and pairwise peak list

registration algorithm. The execution requires providing two peak lists “root” and “input”

to calculate per dimension offset registration values and standard deviations. It is also

necessary to specify the correct order of dimensions using option (--dim parameter) and

111

control the registration mode (--noi parameter must be specified in order to execute the

algorithm in single peak list registration mode).

nmrstarlib command-line interface

Usage:

 nmrstarlib -h | --help

 nmrstarlib --version

 nmrstarlib convert (<from_path> <to_path>) [--from_format=<format>]

 [--to_format=<format>] [--bmrb_url=<url>]

 [--nmrstar_version=<version>] [--verbose]

 nmrstarlib csview <starfile_path> [--amino_acids=<aa>] [--atoms=<at>]

 [--csview_outfile=<path>] [--csview_format=<format>]

 [--bmrb_url=<url>] [--nmrstar_version=<version>] [--verbose]

 nmrstarlib plsimulate (<from_path> <to_path> <spectrum>) [--from_format=<format>]

 [--to_format=<format>] [--plsplit=<%>] [--distribution=<func>]

 [--H=<value>] [--C=<value>] [--N=<value>] [--bmrb_url=<url>]

 [--nmrstar_version=<version>]

 [--spectrum_descriptions=<path>] [--verbose]

Options:

 -h, --help Show this screen.

 --version Show version.

 --verbose Print what files are processing.

 --from_format=<format> Input file format, available formats:

 nmrstar, json [default: nmrstar].

 --to_format=<format> Output file format, available formats:

 nmrstar, json [default: json].

 --nmrstar_version=<version> Version of NMR-STAR format to use, available:

 2, 3 [default: 3].

 --bmrb_url=<url> URL to BMRB REST interface

 [default: http://rest.bmrb.wisc.edu/bmrb/NMR-STAR3/].

 --amino_acids=<aa> Comma-separated amino acid three-letter codes.

 --atoms=<at> Comma-separated BMRB atom codes.

 --csview_outfile=<path> Where to save chemical shifts table.

 --csview_format=<format> Format to which save chemical shift table

 [default: svg].

 --plsplit=<%> How to split peak list into chunks by percent

 [default: 100].

 --distribution=<func> Statistical distribution function [default: normal].

 --H=<value> Standard deviation for H dimensions.

 --C=<value> Standard deviation for C dimensions.

 --N=<value> Standard deviation for N dimensions.

 --spectrum_descriptions=<path> Path to custom spectrum descriptions file.
Figure 48. Command-line interface of the nmrstarlib package.

7.2.3 Grouping algorithm command-line interface

Figure 50 shows the command-line interface for the single peak list grouping

algorithm. The algorithm requires a single peak list that contain multiple peaks per spin

system and path to the registration algorithm executable. The group command is used to

analyze peaks and returns groups of peaks (spin systems). The visualize command is

used to visualize the spin systems in 2D space.

112

crs (calculate registration statistics) command-line interface

Calculates the registration statistics that will make input_peaklist match root_peaklist

(reference peak list).

Usage:

 crs (<input_peaklist> <root_peaklist>) [options]

 input_peaklist The peak list you wish to register and filter.

 root_peaklist The reference peak list.

Options:

 --verbose Print more information.

 --noi Run in self-registration mode.

 --nobounds Do not perform bounds checking.

 --dim <i1> <i2> <...> : <r1> <r2> <...> Description of matching dimensions in input

 and root peak lists.

 --tolerance <num_units> Number of stds to use as the match tolerance

 [default: 4].

 --H <init_std> Set starting std to try for H dimensions

 [default: 0.0075].

 --C <init_std> Set starting std to try for C dimensions

 [default: 0.075].

 --N <init_std> Set starting std to try for N dimensions

 [default: 0.075].

 --i <max> Maximum number of iteration to perform

 [default: 20].

 --save <json_filename> Save results of the registration algorithm

 into JSON file.

Figure 49. Command-line interface of the single and pairwise peak list registration

algorithms.

ssc (Spin System Creator) command-line interface

Usage:

 ssc -h | --help

 ssc --version

 ssc group (--plpath=<path>) (--plformat=<format>) (--stype=<type>)

 (--dims=<labels>) (--rdims=<labels>)

 [--result=<path>] [--crs=<path>]

 ssc visualize <grouping_result> <x_idx> <y_idx> <x_label> <y_label> <plot_title>

Options:

 -h, --help Show this screen.

 --version Show version.

 --plpath=<path> Path to peak list.

 --plformat=<format> Peak list format.

 --stype=<type> Spectrum type.

 --dims=<labels> Comma-separated dimension labels.

 --rdims=<labels> Comma-separated root dimension labels.

 --crs=<path> Registration algorithm executable path.

 --result=<path> Path to directory where results will be saved.
Figure 50. Command-line interface of single peak list grouping algorithm (the combined

registration and grouping algorithm).

7.2.4 The jpredapi command-line interface

Figure 51 shows the command-line interface for the jpredapi package that is used

to submit queries to the secondary structure prediction server. The submit command is

used to submit queries. The status command shows the current status of the

113

submitted job (e.g. processing or completed), and get_results command is used to

retrieve the results of completed job.

jpredapi command-line interface

The RESTful API allows JPred users to submit jobs from the command-line.

Usage:

 jpredapi -h | --help

 jpredapi --version

 jpredapi submit (--mode=<mode> --format=<format>)

 (--file=<filename> | --seq=<sequence>)

 [--email=<name@domain.com>] [--name=<job_name>] [--skipPDB=<value>]

 [--rest=<address>] [--jpred4=<address>] [--silent]

 jpredapi status (--job_id=<id>) [--results_dir=<path>]

 [--wait_interval=<interval>] [--extract] [--silent]

 jpredapi get_results (--job_id=<id>) [--results_dir=<path>]

 [--wait_interval=<interval>] [--extract] [--silent]

 jpredapi quota (--email=<name@domain.com>)

Options:

 -h, --help Show this help message.

 --version Show jpredapi version.

 --silent Do not print messages.

 --extract Extract results tar.gz archive into folder.

 --mode=<mode> Submission mode, possible values: single, batch, msa.

 --format=<format> Submission format, possible values: raw, fasta, msf,

 blc.

 --file=<filename> Filename of a file with the job input (sequence(s)).

 --seq=<sequence> Instead of passing input file, for single-sequence

 submission.

 --email=<name@domain.com> E-mail address where job report will be sent

 (optional for all but batch submissions).

 --name=<job_name> Job name.

 --job_id=<job_id> Job id.

 --skipPDB=<value> PDB check, possible values: True, False [default: True].

 --results_dir=<path> Path where to save archive with results.

 --rest=<address> REST address of server

 [default: www.compbio.dundee.ac.uk/jpred4/cgi-bin/rest].

 --jpred4=<address> Address of Jpred4 server

 [default: www.compbio.dundee.ac.uk/jpred4].

 --wait_interval=<interval> Wait interval before retrying to check job status in

 seconds [default: 60].
Figure 51. Command-line interface for the jpredapi package.

7.3 Future directions

7.3.1 Advanced spin system typing algorithm

Development of a new spin system typing algorithm that utilizes secondary

structure prediction prior information, chemical shift statistics derived from the RefDB

[64], and use of covariance matrices to predict the list of most probable amino acid types

is the first immediate next step. The Bayesian-based amino acid typing algorithm which

114

utilizes secondary structure prediction typing information can be used for each of the

specific ladders within each spin system in order to determine the list of most probable

amino acid types. Equation (5) specifies the Bayesian probability to predict the most

probable amino acid types for specific ladders within spin system:

 (|)
∑ () ()

∑ (() ())

 (5)

where – sequence site and secondary structure (helix, sheet, coil), –

chemical shift values for spin system , (|) – probability of given ,

 () – probability of given , () – prior information probability of

 , ∑ (() ()) – sum over all possibilities.

7.3.2 Spin system linking and mapping algorithm

The next step logical step is to use typed spin systems in order to sequentially

assign them by linking the nearest neighbor spin systems into segments and mapping

segments into protein sequence. The linking of spin systems can be calculated as the

difference between sequential and intraresidue ladders. Equation (6) describes the linking

score that can be used to identify the neighbor spin systems and form spin system

segments:

 √∑ ()

(6)

where, – chemical shift from sequential ladder , – chemical shift from

intraresidue ladder (see Figure 3).

115

The segment mapping algorithm maps linked spin system segments uniquely to

the protein sequence. Every generated segment can be scored using the equation (7):

 ∏ ()

 (7)

where () is the probability of sequence site given chemical shifts

within combined ladder ().

116

CHAPTER 8

CONCLUSIONS

To summarize the research, several new general software packages and

algorithms were designed and implemented in order to aid the automated resonance

assignment of peak lists derived from both solution-state and solid-state NMR spectra.

The nmrstarlib library was designed to easily access NMR data from the NMR-STAR

formatted files, i.e. access assigned chemical shift values, experimental peak lists if they

are available, and generate a large number of simulated peak lists without variance and

single or multiple sources of variance for algorithms robustness testing. The jpredapi

package was designed to easily submit queries to the secondary structure prediction

server and utilize this prior information for the amino acid typing algorithm. A pair of

single peak list registration and spin system grouping algorithms was designed in order to

address the problem of presence of multiple sources of variance within single peak list

that have multiple peaks per spin system and create the initial spin systems based on

calculated match tolerance values. It was shown that algorithms using only single

iteration and uniform match tolerances approach are only able to recover from 50 % to 80

% of spin systems due to the presence of multiple sources of variance. The single peak

list registration and grouping algorithm are able to recover additional spin systems by

reevaluating match tolerances in multiple iterations. The pairwise registration and

grouping algorithms were designed to solve the problem of multiple sources of variance

117

that exist between different peak lists, calculate offset registration values, i.e. account for

inconsistencies between different peak lists that occur due to incorrect chemical shift

referencing. In addition, through pairwise comparison of different peak lists the pairwise

registration and grouping algorithms can identify the spin system overlap, spin system

split, or missing spin systems. Using simulated peak lists from different NMR

experiments it was shown that the algorithms can correctly identify artificially introduced

offset values as well as match tolerance values required for spin system grouping across

peak lists. Together, these methods development and implementation provide valuable

tools for protein NMR quality assessment and provide a basis for the development of an

effective and robust automated protein resonance assignment package amenable to both

solution-state and solid-state NMR peak list datasets.

118

REFERENCES

[1] K. Wüthrich, G. Wider, G. Wagner, and W. Braun, “Sequential resonance

assignments as a basis for determination of spatial protein structures by high

resolution proton nuclear magnetic resonance,” J. Mol. Biol., vol. 155, no. 3, pp.

311–319, Mar. 1982.

[2] W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy.

Application to nuclear magnetic resonance,” J. Chem. Phys., vol. 64, no. 5, pp.

2229–2246, Mar. 1976.

[3] A. Kumar, R. R. Ernst, and K. Wüthrich, “A two-dimensional nuclear Overhauser

enhancement (2D NOE) experiment for the elucidation of complete proton-proton

cross-relaxation networks in biological macromolecules,” Biochem. Biophys. Res.

Commun., vol. 95, no. 1, pp. 1–6, Jul. 1980.

[4] D. Marion, P. C. Driscoll, L. E. Kay, P. T. Wingfield, A. Bax, A. M. Gronenborn,

and G. M. Clore, “Overcoming the overlap problem in the assignment of proton

NMR spectra of larger proteins by use of three-dimensional heteronuclear proton-

nitrogen-15 Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-

multiple quantum coherence spectroscopy:,” Biochemistry, vol. 28, no. 15, pp.

6150–6156, Jul. 1989.

[5] B. A. Messerle, G. Wider, G. Otting, C. Weber, and K. Wüthrich, “Solvent

suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O

solutions,” J. Magn. Reson., vol. 85, no. 3, pp. 608–613, Dec. 1989.

[6] M. Ikura, L. E. Kay, and A. Bax, “A novel approach for sequential assignment of

proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-

resonance three-dimensional NMR spectroscopy. Application to calmodulin,”

Biochemistry, vol. 29, no. 19, pp. 4659–4667, May 1990.

[7] L. E. Kay, M. Ikura, R. Tschudin, and A. Bax, “Three-dimensional triple-

resonance NMR spectroscopy of isotopically enriched proteins,” J. Magn. Reson.,

vol. 89, no. 3, pp. 496–514, Oct. 1990.

[8] A. McDermott, T. Polenova, A. Bockmann, K. W. Zilm, E. K. Paulson, R. W.

Martin, and G. T. Montelione, “Partial NMR assignments for uniformly (13C,

15N)-enriched BPTI in the solid state.,” J. Biomol. NMR, vol. 16, no. 3, pp. 209–

219, 2000.

[9] C. M. Rienstra, L. Tucker-Kellogg, C. P. Jaroniec, M. Hohwy, B. Reif, M. T.

119

McMahon, B. Tidor, T. Lozano-Pérez, and R. G. Griffin, “De novo determination

of peptide structure with solid-state magic-angle spinning NMR spectroscopy,”

Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 16, pp. 10260–10265, 2002.

[10] F. Castellani, B. Van Rossum, A. Diehl, M. Schubert, K. Rehbein, and H.

Oschkinat, “Structure of a protein determined by solid-state magic-angle-spinning

NMR spectroscopy,” Nature, vol. 420, no. 6911, pp. 98–102, 2002.

[11] D. H. Zhou, G. Shah, M. Cormos, C. Mullen, D. Sandoz, and C. M. Rienstra,

“Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40

kHz magic-angle spinning.,” J. Am. Chem. Soc., vol. 129, no. 38, pp. 11791–

11801, 2007.

[12] V. Kurauskas, E. Crublet, P. Macek, R. Kerfah, D. F. Gauto, J. Boisbouvier, and P.

Schanda, “Sensitive proton-detected solid-state NMR spectroscopy of large

proteins with selective CH 3 labelling: application to the 50S ribosome subunit,”

Chem. Commun., vol. 52, no. 61, pp. 9558–9561, 2016.

[13] P. Fricke, V. Chevelkov, M. Zinke, K. Giller, S. Becker, and A. Lange, “Backbone

assignment of perdeuterated proteins by solid-state NMR using proton detection

and ultrafast magic-angle spinning,” Nat. Protoc., vol. 12, no. 4, pp. 764–782,

Mar. 2017.

[14] H. M. Berman, “The Protein Data Bank,” Nucleic Acids Res., vol. 28, no. 1, pp.

235–242, Jan. 2000.

[15] E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M.

Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie,

R. Kent Wenger, H. Yao, and J. L. Markley, “BioMagResBank,” Nucleic Acids

Res., vol. 36, no. SUPPL. 1, pp. D402–D408, 2008.

[16] A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer, “Predicting

transmembrane protein topology with a hidden Markov model: application to

complete genomes.,” J. Mol. Biol., vol. 305, no. 3, pp. 567–80, Jan. 2001.

[17] A. McDermott, “Structure and dynamics of membrane proteins by magic angle

spinning solid-state NMR.,” Annu. Rev. Biophys., vol. 38, pp. 385–403, Jan. 2009.

[18] G. Von Heijne, “The membrane protein universe: what’s out there and why

bother?,” J. Intern. Med., vol. 261, no. 6, pp. 543–57, 2007.

[19] G. W. Abbott, “Molecular mechanisms of cardiac voltage-gated potassium

channelopathies.,” Curr. Pharm. Des., vol. 12, no. 28, pp. 3631–3644, 2006.

[20] J. J. Gargus, “Ion channel functional candidate genes in multigenic

neuropsychiatric disease.,” Biol. Psychiatry, vol. 60, no. 2, pp. 177–185, 2006.

[21] A. M. Spiegel, “Defects in G protein-coupled signal transduction in human

disease.,” Annu. Rev. Physiol., vol. 58, pp. 143–170, 1996.

120

[22] L. S. King, D. Kozono, and P. Agre, “From structure to disease: the evolving tale

of aquaporin biology.,” Nat. Rev. Mol. Cell Biol., vol. 5, no. 9, pp. 687–698, 2004.

[23] M. Tang, G. Comellas, and C. M. Rienstra, “Advanced Solid-State NMR

Approaches for Structure Determination of Membrane Proteins and Amyloid

Fibrils,” Acc. Chem. Res., vol. 46, no. 9, pp. 2080–2088, 2013.

[24] “Membrane Proteins of Known 3D Structure Database.” [Online]. Available:

http://blanco.biomol.uci.edu/mpstruc/.

[25] D. T. Murray, N. Das, and T. A. Cross, “Solid State NMR Strategy for

Characterizing Native Membrane Protein Structures,” Acc. Chem. Res., 2013.

[26] R. N. Rambaran and L. C. Serpell, “Amyloid fibrils: abnormal protein assembly.,”

Prion, vol. 2, no. 3, pp. 112–7, 2008.

[27] R. Tycko, “Solid State NMR Studies of Amyloid Fibril Structure,” Annu Rev Phys

Chem, vol. 62, pp. 279–299, 2011.

[28] S. Spera and A. Bax, “Empirical correlation between protein backbone

conformation and C.alpha. and C.beta. 13C nuclear magnetic resonance chemical

shifts,” J. Am. Chem. Soc., vol. 113, no. 14, pp. 5490–5492, 1991.

[29] A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, “JPred4: a protein secondary

structure prediction server,” Nucleic Acids Res., vol. 43, no. W1, pp. W389–W394,

Jul. 2015.

[30] J. Pauli, M. Baldus, B. van Rossum, H. de Groot, and H. Oschkinat, “Backbone

and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain

by magic angle spinning solid-state NMR at 17.6 Tesla.,” Chembiochem, vol. 2,

no. 4, pp. 272–81, Apr. 2001.

[31] Y. Li, D. a Berthold, H. L. Frericks, R. B. Gennis, and C. M. Rienstra, “Partial

(13)C and (15)N chemical-shift assignments of the disulfide-bond-forming enzyme

DsbB by 3D magic-angle spinning NMR spectroscopy.,” Chembiochem, vol. 8, no.

4, pp. 434–42, Mar. 2007.

[32] N. E. . Buchler, E. R. . Zuiderweg, H. Wang, and R. A. Goldstein, “Protein

Heteronuclear NMR Assignments Using Mean-Field Simulated Annealing,” J.

Magn. Reson., vol. 125, no. 1, pp. 34–42, Mar. 1997.

[33] J. A. Lukin, A. P. Gove, S. N. Talukdar, and C. Ho, “Automated probabilistic

method for assigning backbone resonances of (13 C , 15 N) -labeled proteins,”

vol. 9, pp. 151–166, 1997.

[34] M. Leutner, R. M. Gschwind, J. Liermann, C. Schwarz, G. Gemmecker, and H.

Kessler, “Automated backbone assignment of labeled proteins using the threshold

accepting algorithm.,” J. Biomol. NMR, vol. 11, no. 1, pp. 31–43, 1998.

[35] M. A. C. Reed, A. M. Hounslow, K. H. Sze, I. G. Barsukov, L. L. P. Hosszu, A. R.

121

Clarke, C. J. Craven, and J. P. Waltho, “Effects of Domain Dissection on the

Folding and Stability of the 43 kDa Protein PGK Probed by NMR,” J. Mol. Biol.,

vol. 330, no. 5, pp. 1189–1201, Jul. 2003.

[36] T. K. Hitchens, J. A. Lukin, Y. Zhan, S. A. McCallum, and G. S. Rule, “MONTE:

An automated Monte Carlo based approach to nuclear magnetic resonance

assignment of proteins,” J. Biomol. NMR, vol. 25, no. 1, pp. 1–9, 2003.

[37] C. Bartels, P. Güntert, M. Billeter, and K. Wüthrich, “GARANT-a general

algorithm for resonance assignment of multidimensional nuclear magnetic

resonance spectra,” J. Comput. Chem., vol. 18, no. 1, pp. 139–149, Jan. 1997.

[38] J. Volk, T. Herrmann, and K. Wüthrich, “Automated sequence-specific protein

NMR assignment using the memetic algorithm MATCH.,” J. Biomol. NMR, vol.

41, no. 3, pp. 127–38, Jul. 2008.

[39] E. Schmidt and P. Güntert, “A New Algorithm for Reliable and General NMR

Resonance Assignment.,” J. Am. Chem. Soc., vol. 134, no. 30, pp. 12817–29,

2012.

[40] D. E. Zimmerman, C. A. Kulikowski, Y. Huang, W. Feng, M. Tashiro, S.

Shimotakahara, C. Chien, R. Powers, and G. T. Montelione, “Automated analysis

of protein NMR assignments using methods from artificial intelligence.,” J. Mol.

Biol., vol. 269, no. 4, pp. 592–610, 1997.

[41] H. N. Moseley and G. T. Montelione, “Automated analysis of NMR assignments

and structures for proteins.,” Curr. Opin. Struct. Biol., vol. 9, no. 5, pp. 635–642,

1999.

[42] K.-B. Li and B. C. Sanctuary, “Automated Resonance Assignment of Proteins

Using Heteronuclear 3D NMR. 1. Backbone Spin Systems Extraction and Creation

of Polypeptides,” J. Chem. Inf. Comput. Sci., vol. 37, no. 2, pp. 359–366, Mar.

1997.

[43] W. Gronwald, L. Willard, T. Jellard, R. F. Boyko, D. S. Wishart, F. D.

Sönnichsen, and B. D. Sykes, “CAMRA : Chemical shift based computer aided

protein NMR assignments,” pp. 395–405, 1998.

[44] P. Güntert, M. Salzmann, D. Braun, and K. Wüthrich, “Sequence-specific NMR

assignment of proteins by global fragment mapping with the program MAPPER,”

J. Biomol. NMR, vol. 18, no. 2, pp. 129–137, 2000.

[45] H. S. Atreya, S. C. Sahu, K. V. R. Chary, and G. Govil, “A tracked approach for

automated NMR assignments in proteins (TATAPRO),” pp. 125–136, 2000.

[46] M. Andrec and R. M. Levy, “Protein sequential resonance assignments by

combinatorial enumeration using 13 Cα chemical shifts and their (i, i−1) sequential

connectivities,” J. Biomol. NMR, vol. 23, no. 4, pp. 263–270, 2002.

[47] S. G. Hyberts and G. Wagner, “IBIS – a tool for automated sequential assignment

122

of protein spectra from triple resonance experiments.,” J. Biomol. NMR, vol. 26,

no. 4, pp. 335–344, 2003.

[48] B. E. Coggins and P. Zhou, “PACES: Protein sequential assignment by computer-

assisted exhaustive search.,” J. Biomol. NMR, vol. 26, no. 2, pp. 93–111, 2003.

[49] Y.-S. Jung and M. Zweckstetter, “Mars – robust automatic backbone assignment

of proteins.,” J. Biomol. NMR, vol. 30, no. 1, pp. 11–23, 2004.

[50] J. Wang, T. Wang, E. R. P. Zuiderweg, and G. M. Crippen, “CASA: an efficient

automated assignment of protein mainchain NMR data using an ordered tree

search algorithm.,” J. Biomol. NMR, vol. 33, no. 4, pp. 261–79, Dec. 2005.

[51] H. R. Eghbalnia, A. Bahrami, L. Wang, A. Assadi, and J. L. Markley,

“Probabilistic Identification of Spin Systems and their Assignments including

Coil-Helix Inference as Output (PISTACHIO).,” J. Biomol. NMR, vol. 32, no. 3,

pp. 219–233, 2005.

[52] Xiang Wan and Guohui Lin, “CISA: Combined NMR Resonance Connectivity

Information Determination and Sequential Assignment,” IEEE/ACM Trans.

Comput. Biol. Bioinforma., vol. 4, no. 3, pp. 336–348, Jul. 2007.

[53] X. WAN and G. LIN, “GASA: A GRAPH-BASED AUTOMATED NMR

BACKBONE RESONANCE SEQUENTIAL ASSIGNMENT PROGRAM,” J.

Bioinform. Comput. Biol., vol. 5, no. 02a, pp. 313–333, Apr. 2007.

[54] M. Alipanahi, B., Gao, X., Karakoc, E., Balbach, F., Donaldson, L., Arrowsmith,

C. and Li, “IPASS: Error tolerant NMR backbone resonance assignment by linear

programming,” Univ. Waterloo Tech. Rep. CS-2009, 16, 2009.

[55] G. M. Crippen, A. Rousaki, M. Revington, Y. Zhang, and E. R. P. Zuiderweg,

“SAGA: rapid automatic mainchain NMR assignment for large proteins.,” J.

Biomol. NMR, vol. 46, no. 4, pp. 281–98, Apr. 2010.

[56] E. R. P. Zuiderweg, I. Bagai, P. Rossi, and E. B. Bertelsen, “EZ-ASSIGN, a

program for exhaustive NMR chemical shift assignments of large proteins from

complete or incomplete triple-resonance data,” J. Biomol. NMR, vol. 57, no. 2, pp.

179–191, Oct. 2013.

[57] R. Tycko and K.-N. Hu, “A Monte Carlo/simulated annealing algorithm for

sequential resonance assignment in solid state NMR of uniformly labeled proteins

with magic-angle spinning.,” J. Magn. Reson., vol. 205, no. 2, pp. 304–14, Aug.

2010.

[58] H. N. B. Moseley, L. J. Sperling, and C. M. Rienstra, “Automated protein

resonance assignments of magic angle spinning solid-state NMR spectra of β1

immunoglobulin binding domain of protein G (GB1).,” J. Biomol. NMR, vol. 48,

no. 3, pp. 123–8, Nov. 2010.

[59] E. Schmidt, J. Gath, B. Habenstein, F. Ravotti, K. Székely, M. Huber, L. Buchner,

123

A. Böckmann, B. H. Meier, and P. Güntert, “Automated solid-state NMR

resonance assignment of protein microcrystals and amyloids,” J. Biomol. NMR,

vol. 56, no. 3, pp. 243–254, May 2013.

[60] J. T. Nielsen, N. Kulminskaya, M. Bjerring, and N. C. Nielsen, “Automated robust

and accurate assignment of protein resonances for solid state NMR,” J. Biomol.

NMR, vol. 59, no. 2, pp. 119–134, Jun. 2014.

[61] G. T. M. Moseley, H.N., D. Monleon, “Automatic Determination of Protein

Backbone Resonance Assignments from Triple Resonance Nuclear Magnetic

Resonance Data,” vol. 339, no. 1994, pp. 91–108, 2001.

[62] H. N. B. Moseley, G. Sahota, and G. T. Montelione, “Assignment validation

software suite for the evaluation and presentation of protein resonance assignment

data.,” J. Biomol. NMR, vol. 28, no. 4, pp. 341–55, 2004.

[63] Y. J. Huang, H. N. B. Moseley, M. C. Baran, C. Arrowsmith, R. Powers, R.

Tejero, T. Szyperski, and G. T. Montelione, “An integrated platform for automated

analysis of protein NMR structures.,” Methods Enzymol., vol. 394, pp. 111–141,

2005.

[64] H. Zhang, S. Neal, and D. S. Wishart, “RefDB: a database of uniformly referenced

protein chemical shifts.,” J. Biomol. NMR, vol. 25, no. 3, pp. 173–195, 2003.

[65] A. Smelter and H. N. B. Moseley, “nmrstarlib - Python library that facilitates

reading and writing NMR-STAR formatted files.” [Online]. Available:

https://github.com/MoseleyBioinformaticsLab/nmrstarlib.

[66] H. Berman, K. Henrick, H. Nakamura, and J. L. Markley, “The worldwide Protein

Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data,” Nucleic

Acids Res., vol. 35, no. SUPPL. 1, 2007.

[67] S. R. Hall, “The STAR file: a new format for electronic data transfer and

archiving,” J. Chem. Inf. Model., vol. 31, no. 2, pp. 326–333, 1991.

[68] Python Software Foundation, “Python Language Reference, version 2.7,” Python

Software Foundation. 2013.

[69] G. Van Rossum and F. L. Drake, “The Python Library Reference,” October, pp. 1–

1144, 2010.

[70] A. Ronacher and R. Hettinger, “PEP 372 -- Adding an ordered dictionary to

collections.” [Online]. Available: https://www.python.org/dev/peps/pep-0372/.

[71] “Python 2.7 Countdown.” [Online]. Available: https://pythonclock.org/.

[72] J. Doreleijers, “PyStarLib.” [Online]. Available:

https://sourceforge.net/projects/pystarlib/.

[73] M. Fenwick, “NMRPyStar.” [Online]. Available:

124

https://github.com/mattfenwick/NMRPyStar.

[74] J. Wedell, “PyNMRSTAR.” [Online]. Available:

https://github.com/uwbmrb/PyNMRSTAR.

[75] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith,

“Cython: The best of both worlds,” Comput. Sci. Eng., vol. 13, no. 2, pp. 31–39,

Mar. 2011.

[76] “graphviz Python library.” [Online]. Available:

http://graphviz.readthedocs.io/en/latest/index.html.

[77] “docopt Python Library for creating command-line interfaces.” [Online].

Available: http://docopt.readthedocs.io/en/latest/.

[78] “Biological Magnetic Resonance Bank.” [Online]. Available:

http://www.bmrb.wisc.edu/.

[79] “UltraJSON. UltraJSON is an ultra fast JSON encoder and decoder written in pure

C with bindings for Python 2.5+ and 3.” [Online]. Available:

https://github.com/esnme/ultrajson.

[80] J. Ooms, T. D. Lang, and H. Lloyd, “jsonlite: A Robust, High Performance JSON

Parser and Generator for R.” [Online]. Available: https://cran.r-

project.org/web/packages/jsonlite/index.html.

[81] “jQuery is a cross-platform JavaScript library.” [Online]. Available:

http://jquery.com/.

[82] M. Yip, “RapidJSON - A fast JSON parser/generator for C++ with both

SAX/DOM style API.” [Online]. Available: http://rapidjson.org/.

[83] M. D. Wilkinson, M. Dumontier, Ij. J. Aalbersberg, G. Appleton, M. Axton, A.

Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J.

Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds,

C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J.

S. Grethe, J. Heringa, P. a. . ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J.

Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M.

Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,

M. a. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A.

Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons, “The FAIR

Guiding Principles for scientific data management and stewardship,” Sci. Data,

vol. 3, p. 160018, 2016.

[84] P. Guerry and T. Herrmann, Advances in automated NMR protein structure

determination., vol. 44, no. 3. 2011.

[85] E. Schmidt and P. Güntert, “A New Algorithm for Reliable and General NMR

Resonance Assignment,” J. Am. Chem. Soc., vol. 134, no. 30, pp. 12817–12829,

Aug. 2012.

125

[86] M. C. Baran, Y. J. Huang, H. N. B. Moseley, and G. T. Montelione, “Automated

analysis of protein NMR assignments and structures.,” Chem. Rev., vol. 104, no. 8,

pp. 3541–3556, 2004.

[87] H. N. B. Moseley, D. Monleon, and G. T. Montelione, “Automatic Determination

of Protein Backbone Resonance Assignments from Triple Resonance Nuclear

Magnetic Resonance Data,” no. 732, 2001, pp. 91–108.

[88] D. Monleón, K. Colson, H. N. B. Moseley, C. Anklin, R. Oswald, T. Szyperski,

and G. T. Montelione, “Rapid analysis of protein backbone resonance assignments

using cryogenic probes, a distributed Linux-based computing architecture, and an

integrated set of spectral analysis tools,” in Journal of Structural and Functional

Genomics, 2002, vol. 2, no. 2, pp. 93–101.

[89] L. Buchner, E. Schmidt, and P. Güntert, “Peakmatch: a simple and robust method

for peak list matching.,” J. Biomol. NMR, vol. 55, no. 3, pp. 267–77, Mar. 2013.

[90] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise,” in Proceedings of

the 2nd International Conference on Knowledge Discovery and Data Mining,

1996, pp. 226–231.

[91] T. D. Goddard and D. G. Kneller, “SPARKY 3, University of California, San

Francisco.” [Online]. Available: http://www.cgl.ucsf.edu/home/sparky/.

[92] W. Lee, M. Tonelli, and J. L. Markley, “NMRFAM-SPARKY: enhanced software

for biomolecular NMR spectroscopy.,” Bioinformatics, pp. 1–2, 2014.

[93] C. Bartels, T. he Xia, M. Billeter, P. Güntert, and K. Wüthrich, “The program

XEASY for computer-supported NMR spectral analysis of biological

macromolecules,” J. Biomol. NMR, vol. 6, no. 1, pp. 1–10, Jul. 1995.

[94] A. Smelter, M. Astra, and H. N. B. Moseley, “A fast and efficient python library

for interfacing with the Biological Magnetic Resonance Data Bank,” BMC

Bioinformatics, vol. 18, no. 1, p. 175, Dec. 2017.

[95] W. Feng, R. Tejero, D. E. Zimmerman, M. Inouye, and G. T. Montelione,

“Solution NMR structure and backbone dynamics of the major cold-shock protein

(CspA) from Escherichia coli: Evidence for conformational dynamics in the

single-stranded RNA-binding site,” Biochemistry, vol. 37, no. 31, pp. 10881–

10896, Aug. 1998.

[96] J. M. Aramini, J. L. Mills, T. B. Acton, M. J. Wu, T. Szyperski, and G. T.

Montelione, “Resonance assignments for the hypothetical protein yggU from

Escherichia coli,” J. Biomol. NMR, 2003.

[97] F. J. Moy, a P. Seddon, E. B. Campbell, P. Böhlen, and R. Powers, “1H, 15N, 13C

and 13CO assignments and secondary structure determination of basic fibroblast

growth factor using 3D heteronuclear NMR spectroscopy.,” J. Biomol. NMR, vol.

126

6, no. 3, pp. 245–254, 1995.

[98] J. M. Aramini, Y. J. Huang, J. R. Cort, S. Goldsmith-Fischman, R. Xiao, L. Y.

Shih, C. K. Ho, J. Liu, B. Rost, B. Honig, M. A. Kennedy, T. B. Acton, and G. T.

Montelione, “Solution NMR structure of the 30S ribosomal protein S28E from

Pyrococcus horikoshii,” Protein Sci, vol. 12, no. 12, pp. 2823–2830, 2003.

[99] C. Chien, R. Tejero, Y. Huang, D. E. Zimmerman, C. B. Ríos, R. M. Krug, and G.

T. Montelione, “A novel RNA-binding motif in influenza A virus non-structural

protein 1,” Nat. Struct. Biol., vol. 4, no. 11, pp. 891–895, Nov. 1997.

[100] S. Shimotakahara, C. B. Ríos, J. H. Laity, D. E. Zimmerman, H. A. Scheraga, and

G. T. Montelione, “NMR Structural Analysis of an Analog of an Intermediate

Formed in the Rate-Determining Step of One Pathway in the Oxidative Folding of

Bovine Pancreatic Ribonuclease A: Automated Analysis of 1H, 13C, and 15N

Resonance Assignments for Wild-Type and Mutant ,” Biochemistry, vol. 36, no.

23, pp. 6915–6929, Jun. 1997.

[101] D. Zheng, J. M. Aramini, and G. T. Montelione, “Validation of helical tilt angles

in the solution NMR structure of the Z domain of Staphylococcal protein A by

combined analysis of residual dipolar coupling and NOE data.,” Protein Sci., vol.

13, no. 2, pp. 549–554, 2004.

[102] K. A. Mercier, M. Baran, V. Ramanathan, P. Revesz, R. Xiao, G. T. Montelione,

and R. Powers, “FAST-NMR: Functional annotation screening technology using

NMR spectroscopy,” J. Am. Chem. Soc., vol. 128, no. 47, pp. 15292–15299, Nov.

2006.

[103] W. T. Franks, D. H. Zhou, B. J. Wylie, B. G. Money, D. T. Graesser, H. L.

Frericks, G. Sahota, and C. M. Rienstra, “Magic-angle spinning solid-state NMR

spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1):

15N and 13C chemical shift assignments and conformational analysis.,” J. Am.

Chem. Soc., vol. 127, no. 35, pp. 12291–12305, 2005.

[104] M. Tang, A. E. Nesbitt, L. J. Sperling, D. A. Berthold, C. D. Schwieters, R. B.

Gennis, and C. M. Rienstra, “Structure of the Disulfide Bond Generating

Membrane Protein DsbB in the Lipid Bilayer.,” J. Mol. Biol., 2013.

[105] S. Yan, G. Hou, C. D. Schwieters, S. Ahmed, J. C. Williams, and T. Polenova,

“Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin

Determined by Magic Angle Spinning NMR Spectroscopy: Conformational

Plasticity and Interactions with End-Binding Protein EB1.,” J. Mol. Biol., 2013.

[106] A. R. Ranade Sanjay, “Point pattern matching by relaxation,” Pattern Recognit.,

vol. 12, no. 4, pp. 269–275, 1980.

[107] J. Ton and A. K. Jain, “Registering Landsat Images By Point Matching,” IEEE

Trans. Geosci. Remote Sens., vol. 27, no. 5, pp. 642–651, 1989.

127

[108] S. Grzesiek and A. Bax, “Correlating backbone amide and side chain resonances in

larger proteins by multiple relayed triple resonance NMR,” J. Am. Chem. Soc., vol.

114, no. 16, pp. 6291–6293, 1992.

[109] W. T. Franks, K. D. Kloepper, B. J. Wylie, and C. M. Rienstra, “Four-dimensional

heteronuclear correlation experiments for chemical shift assignment of solid

proteins.,” J. Biomol. NMR, vol. 39, no. 2, pp. 107–31, Oct. 2007.

[110] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Clustering Based

on Hierarchical Density Estimates,” Adv. Knowl. Discov. Data Min., pp. 160–172,

2013.

[111] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based

clustering,” J. Open Source Softw., vol. 2, no. 11, 2017.

[112] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The Maximum Clique

Problem,” in Handbook of Combinatorial Optimization: Supplement Volume A,

D.-Z. Du and P. M. Pardalos, Eds. Boston, MA: Springer US, 1999, pp. 1–74.

128

APPENDIX A

LIST OF ABBREVIATIONS

AA Amino Acid

API Application Programming Interface

BMRB Biological Magnetic Resonance Bank

BMRBID Biological Magnetic Resonance Bank identifier

CIF Crystallographic Information File

DBSCAN Density-based spatial clustering of applications with noise

FAIR Findable, Accessible, Interoperable, and Reusable

HDBSCAN Hierarchical DBSCAN

JSON JavaScript Object Notation

MAS Magic-angle spinning

NMR Nuclear Magnetic Resonance

PDB Protein Data Bank

PEP Python Enhancement Proposal

REST Representational state transfer

SS Spin System/Sequence Site/Support Set

STAR Self-defining Text Archive and Retrieval

UML Unified Modeling Language

XML Extensible Markup Language

129

APPENDIX B

SIMULATED PEAK LIST EXAMPLES

Table B1. Simulated CAN(CO)CA peak list (BMRBID 18397).

Peak # Assignment w1 w2 w3
1 Q2CA-N-M1CA 56.08998724415861 125.5070237879975 54.525460498759784

2 Y3CA-N-Q2CA 57.20000110173284 123.69704843317199 56.08195962645852

3 K4CA-N-Y3CA 55.19890411103603 122.4040373463508 57.20466677132368

4 L5CA-N-K4CA 53.048002366758276 126.2414736560956 55.200772909507045

5 I6CA-N-L5CA 60.04083023167545 126.08316380727885 53.055687323974645

6 L7CA-N-I6CA 54.843908683820025 126.7484359958205 60.024319587153016

7 N8CA-N-L7CA 50.80477470316926 124.88727263084405 54.84759761329681

8 G9CA-N-N8CA 44.73568034623651 109.48002972043292 50.77510404384722

9 K10CA-N-G9CA 59.376659781971654 120.78517773915708 44.71538168383893

10 T11CA-N-K10CA 62.23183686676209 106.60758954254734 59.40197617756998

11 L12CA-N-T11CA 54.59285604656336 127.34195466486149 62.23881152802562

12 K13CA-N-L12CA 53.55484172132135 123.0135344383692 54.614481170185954

13 G14CA-N-K13CA 45.1031945803211 105.5391973673235 53.565917961170605

14 E15CA-N-G14CA 53.925301336282736 121.2834690051228 45.09794477154259

15 T16CA-N-E15CA 60.26456108375081 115.48172495521821 53.926292640549505

16 T17CA-N-T16CA 60.37993888040222 115.4611235779842 60.28362710201867

17 T18CA-N-T17CA 61.68176980806341 115.98146739315655 60.34683729710857

18 E19CA-N-T18CA 54.315207575711064 125.04026037959156 61.697225780355865

19 A20CA-N-E19CA 50.8075654636244 125.33685015063142 54.33535323274808

20 V21CA-N-A20CA 63.7462903217478 116.46664354199123 50.80310089905041

21 D22CA-N-V21CA 52.467302209239264 115.53885710836218 63.716091315093756

22 A23CA-N-D22CA 54.751402457453715 123.00540186128194 52.47199639441082

23 A24CA-N-A23CA 54.71918961369314 120.61838059750413 54.75535425000724

24 T25CA-N-A24CA 67.54804736653017 117.0207638536372 54.71433863629124

25 A26CA-N-T25CA 55.23169170190556 123.8771133515964 67.56202665719907

26 E27CA-N-A26CA 59.30816012761388 116.1937041980287 55.25769802670506

27 K28CA-N-E27CA 60.49374416024143 117.22561568240506 59.298809306262626

28 V29CA-N-K28CA 66.59752605340188 119.03260437326401 60.49367000849438

29 F30CA-N-V29CA 57.40814705133402 118.3496235793004 66.59403419519356

30 K31CA-N-F30CA 60.30834382115652 120.64412820576668 57.42500048936475

31 Q32CA-N-K31CA 59.04020387048314 121.12276325017254 60.3026059624695

32 Y33CA-N-Q32CA 61.8671419247353 120.7252462887843 59.04275345941449

33 A34CA-N-Y33CA 56.30211439342077 122.51277739864445 61.87668317121093

34 N35CA-N-A34CA 57.26094994588013 118.06872499286543 56.30356175918259

35 D36CA-N-N35CA 56.0792143510658 120.97634138933645 57.268024574771566

36 N37CA-N-D36CA 53.70133445562052 114.75213159778963 56.086334221846656

37 G38CA-N-N37CA 47.03979494212038 108.27566081302902 53.694149384643694

38 V39CA-N-G38CA 61.944180117520915 121.64640813122338 47.031608819815276

39 D40CA-N-V39CA 52.63109904188199 130.6656535021392 61.95519784135377

40 G41CA-N-D40CA 45.25039333567271 108.10334189555662 52.64047347336225

41 E42CA-N-G41CA 54.92049770506791 118.25607966797557 45.234388010907765

42 W43CA-N-E42CA 57.71462979526749 124.70285485231021 54.917648457628715

43 T44CA-N-W43CA 61.176160986159225 109.00706387073404 57.699085841865674

44 Y45CA-N-T44CA 58.055321401596764 118.37314066265702 61.15645822140491

45 D46CA-N-Y45CA 50.84120126126258 126.29620170792327 58.0790406586594

46 D47CA-N-D46CA 54.69631563448615 123.23755520756762 50.837987492121286

47 A48CA-N-D47CA 54.026517417904365 118.39033648414215 54.67854798619943

48 T49CA-N-A48CA 60.44341637877914 104.18612045224553 54.039361628991436

49 K50CA-N-T49CA 55.504187568702015 119.38243748231302 60.47060213396953

50 T51CA-N-K50CA 62.63757501160989 111.9001557495533 55.51019041112089

51 F52CA-N-T51CA 56.684820301932 130.2686330371651 62.65321259602127

52 T53CA-N-F52CA 60.44503015990373 111.92772371737388 56.68763529821447

53 V54CA-N-T53CA 58.6692707688915 118.1164215364167 60.44317072794205

54 T55CA-N-V54CA 61.497516969059 123.7899940409246 58.669400478059025

55 E56CA-N-T54CA 57.55348493758591 131.08470567790837 61.51666806413445

130

Table B2. Simulated NCACX peak list (BMRBID 18397).

Peak # Assignment w1 w2 w3
1 Q2N-CA-C 126.37474657752463 56.63837257155845 174.86629358773598

2 Q2N-CA-CA 126.36848363529755 56.63909646382991 56.09984762511398

3 Q2N-CA-CB 126.34732142151232 56.62611167606748 30.32104339137229

4 Q2N-CA-CG 126.375763777546 56.636808884098016 35.60240123815321

5 Q2N-CA-CD 126.3547395847522 56.6254767894534 180.2821691525966

6 Y3N-CA-C 124.55185938571728 57.75035516123179 174.8713848011184

7 Y3N-CA-CA 124.57779013310311 57.76572988480728 57.19197720651176

8 Y3N-CA-CB 124.58043473114724 57.742548316586834 43.54553001450174

9 K4N-CA-C 123.27310087371445 55.75636535659763 173.31591088008074

10 K4N-CA-CA 123.26760273614376 55.753256079534076 55.20559552046438

11 K4N-CA-CB 123.28584214768209 55.752685544699 36.277874628349196

12 K4N-CA-CG 123.28278447883608 55.7454444953196 25.660111580679896

13 K4N-CA-CD 123.27539503899574 55.7391050161097 29.06301344409681

14 L5N-CA-C 127.10077465242769 53.60825174227536 174.66265808434846

15 L5N-CA-CA 127.11655134416607 53.600223467763094 53.04340680554794

16 I6N-CA-C 126.95090592637777 60.59505728435444 175.07989575651135

17 I6N-CA-CA 126.93753738495685 60.59551959878378 60.02525384609561

18 I6N-CA-CB 126.95111521659469 60.60710529611978 37.875300412596864

19 L7N-CA-C 127.63198815463531 55.391522551687935 174.8866862743816

20 L7N-CA-CA 127.65178907281144 55.398030176630456 54.84601982534066

21 L7N-CA-CB 127.62174700261683 55.40347971244275 42.994465645654

22 L7N-CA-CD1 127.63514102596997 55.391225260944125 26.055416546255508

23 L7N-CA-CD2 127.61853837911471 55.39661458457827 25.084864823507235

24 N8N-CA-C 125.73920814797353 51.325079638782604 176.22662058542198

25 N8N-CA-CA 125.7249632690477 51.33186412395423 50.79191035118426

26 N8N-CA-CB 125.7508700077936 51.33133148601983 38.37360796424758

27 N8N-CA-CG 125.74594466910337 51.35453565659011 176.31264849270488

28 G9N-CA-C 110.38444242372643 45.275378346770864 173.03710755336644

29 G9N-CA-CA 110.35413233446099 45.27493644220507 44.720004400346326

30 K10N-CA-C 121.67235017176056 59.957514252328856 178.9675708873985

31 K10N-CA-CA 121.69263149006557 59.941956406431906 59.40748121574479

32 K10N-CA-CB 121.66236041631812 59.94674673579991 32.85016130525905

33 K10N-CA-CG 121.67811082346287 59.954182814619664 25.636279113972968

34 K10N-CA-CD 121.6739945619845 59.94632387100416 29.291196645542943

35 T11N-CA-C 107.49933636170229 62.78848912695365 173.2002028994154

36 T11N-CA-CA 107.48092284881253 62.7824230570412 62.25504959718718

37 T11N-CA-CB 107.50132872660146 62.797680634756475 69.80697875609283

38 T11N-CA-CG2 107.50123762141583 62.79237956575546 22.698017785627126

39 L12N-CA-C 128.22473669835472 55.1548346700391 173.59638531183595

40 L12N-CA-CA 128.2101522859729 55.13668264439651 54.60752524008299

41 L12N-CA-CB 128.23429973015402 55.16289023081968 43.29448379232769

42 L12N-CA-CD1 128.23582560222306 55.17667176791743 26.132079805118526

43 K13N-CA-C 123.88680512466497 54.09482859703417 175.5894423407792

44 K13N-CA-CA 123.90910204695982 54.112505896538615 53.55635857732763

45 G14N-CA-C 106.40963109971118 45.62730266717992 171.1294485889564

46 G14N-CA-CA 106.38370693106117 45.644198187067964 45.1013947739578

47 E15N-CA-C 122.13534646911859 54.475786135327255 173.74656480364177

48 E15N-CA-CA 122.13182586905461 54.47640950143144 53.94300109565274

49 E15N-CA-CB 122.13681110000044 54.46723453705194 33.47279643652776

50 T16N-CA-C 116.347138459632 60.82539697932505 171.76867666228054

51 T16N-CA-CA 116.36624383735669 60.82192013747659 60.27999033174986

52 T16N-CA-CB 116.34653014785314 60.83419246316472 70.62702785346805

53 T16N-CA-CG2 116.36782097410823 60.83636291218967 20.011123900906842

54 T17N-CA-C 116.33193327058657 60.928013878469734 173.79854449498035

55 T17N-CA-CA 116.32089518646767 60.90909365461843 60.37822834928552

56 T17N-CA-CB 116.31161508068658 60.93116461515987 73.00671073225485

57 T17N-CA-CG2 116.31216355260378 60.92039938739741 21.440154763842948

58 T18N-CA-C 116.85954493995624 62.2140286147248 171.04737482786783

59 T18N-CA-CA 116.84851836092865 62.220921554885784 61.67639854852682

60 T18N-CA-CB 116.85304519526116 62.22361385045373 70.99262953094194

61 T18N-CA-CG2 116.84536991369178 62.233560855712454 18.72884215261144

131

62 E19N-CA-C 125.91997008802345 54.878857928913604 175.61006913369428

63 E19N-CA-CA 125.89990754162018 54.887540467440424 54.33934971676499

64 A20N-CA-C 126.20370700883457 51.363543827802204 177.6162933632579

65 A20N-CA-CA 126.19496903387859 51.37050942146125 50.814165289088976

66 A20N-CA-CB 126.22294528702804 51.34072346537154 23.706026727248624

67 V21N-CA-C 117.3289948272376 64.28412509088761 174.7105500957272

68 V21N-CA-CA 117.36343973374419 64.29136590015015 63.733954361846735

69 V21N-CA-CB 117.35669604594011 64.29370801617658 31.96235744172191

70 V21N-CA-CG1 117.33764461189564 64.28084541979402 20.99281070284152

71 D22N-CA-C 116.40237400699012 53.008656273434596 174.90692770091422

72 D22N-CA-CA 116.40101788148584 53.02951005550764 52.47770190969666

73 D22N-CA-CB 116.38942630073623 53.02109094239296 42.661300163449695

74 A23N-CA-C 123.87053163720914 55.308355904032105 179.76830179787635

75 A23N-CA-CA 123.86686902897017 55.309579220810846 54.75719029920559

76 A23N-CA-CB 123.87818981868088 55.30148414422537 18.23870428487891

77 A24N-CA-C 121.46753955594083 55.26274614608674 181.38180928104723

78 A24N-CA-CA 121.46957541346823 55.27360023942305 54.70910222055376

79 A24N-CA-CB 121.47903707039582 55.27448525452084 18.151226171519273

80 T25N-CA-C 117.89375946523226 68.12068459821047 175.64080434343694

81 T25N-CA-CA 117.89075964522748 68.10675773103603 67.55610069355237

82 T25N-CA-CB 117.87796969046943 68.12314506180006 67.59754372030436

83 T25N-CA-CG2 117.88112350141881 68.10358232878185 21.298333369389805

84 A26N-CA-C 124.75638218456216 55.780121558478854 177.25642668156806

85 A26N-CA-CA 124.75874040778872 55.786456593490904 55.24269656537311

86 A26N-CA-CB 124.77235040807447 55.80354643829877 17.56431380440011

87 E27N-CA-C 117.05847561947884 59.86190050683349 177.70624092921577

88 E27N-CA-CA 117.05485045183815 59.84840213229669 59.32109096188497

89 E27N-CA-CB 117.05118101982632 59.849682621888014 29.15000421150389

90 K28N-CA-C 118.09505466626433 61.04705204471706 178.7734112065052

91 K28N-CA-CA 118.0939000257617 61.042653603355625 60.509586644256075

92 K28N-CA-CB 118.0916800615009 61.04908473200433 32.783749561137036

93 V29N-CA-C 119.9006081974715 67.15892388061484 178.5822623944007

94 V29N-CA-CA 119.89185406576382 67.14035596986682 66.58791191969965

95 V29N-CA-CB 119.90913855826857 67.15506910322482 32.01118932661409

96 V29N-CA-CG1 119.90858666178023 67.17045065446547 22.24092873909696

97 V29N-CA-CG2 119.91438508895064 67.1491728443379 21.109995916599

98 F30N-CA-C 119.23343472195869 57.95686248999264 178.91122383167908

99 F30N-CA-CA 119.20364274454032 57.96902115702179 57.40945460472741

100 K31N-CA-C 121.50660521297785 60.86719274039746 179.57761026422074

101 K31N-CA-CA 121.50855080931062 60.85926700104904 60.30284945992987

102 K31N-CA-CB 121.50923419472835 60.87224979232287 31.855263682892947

103 K31N-CA-CD 121.4826302795287 60.85720820745724 29.22101034262877

104 Q32N-CA-C 122.00152088918666 59.60779339759821 177.37285277147396

105 Q32N-CA-CA 122.013457095649 59.60525657633825 59.054204476353924

106 Q32N-CA-CB 121.99686477196575 59.595574828347196 28.97196074214277

107 Q32N-CA-CD 121.99662317590283 59.59504032927243 179.75144234464221

108 Y33N-CA-C 121.60041319684575 62.40477718361685 178.53702321256395

109 Y33N-CA-CA 121.59049181412631 62.42931543709156 61.89149735873813

110 Y33N-CA-CB 121.58811299553751 62.42494826325337 38.89482678981095

111 A34N-CA-C 123.37370035386915 56.839881594327835 179.40955539643974

112 A34N-CA-CA 123.37972630831551 56.840218853595545 56.315132802130584

113 A34N-CA-CB 123.38625431095323 56.84305762772488 17.982836354109317

114 N35N-CA-C 118.9406336251923 57.825531839639886 179.462504273583

115 N35N-CA-CA 118.94740254747359 57.824577097277775 57.288226160597816

116 N35N-CA-CB 118.94711248200271 57.81383718031868 39.41509769381999

117 N35N-CA-CG 118.92418997973732 57.83465801509005 176.00039393758652

118 D36N-CA-C 121.8548370216947 56.63833954114289 175.89137293219727

119 D36N-CA-CA 121.8523981031267 56.61702387426289 56.057900034784986

120 D36N-CA-CB 121.83886993367527 56.62477194354053 38.44322027893197

121 N37N-CA-C 115.61368574050466 54.24398857303175 174.0319639980829

122 N37N-CA-CA 115.61214139468052 54.24561915071859 53.681875502774716

123 N37N-CA-CB 115.61353484717496 54.250528057453096 40.47090742236391

124 N37N-CA-CG 115.62028168956367 54.239985953039664 176.6181834480967

125 G38N-CA-C 109.14548455939055 47.595962539867045 173.8501364888506

126 G38N-CA-CA 109.14739848140712 47.59365971925514 47.02300923613492

127 V39N-CA-C 122.51193383597331 62.51333309268938 174.9787456224277

128 V39N-CA-CA 122.49143044818096 62.50703953588854 61.94843251118124

132

129 V39N-CA-CB 122.49787695427139 62.48365249826458 31.83299167011932

130 V39N-CA-CG1 122.48683381881233 62.509296847047544 22.018150116703108

131 D40N-CA-C 131.5302166473598 53.19724131117937 174.73988738326102

132 D40N-CA-CA 131.52399153365718 53.188298144800676 52.64001453716309

133 D40N-CA-CB 131.52671133680525 53.184327349893366 41.18262373759988

134 G41N-CA-C 108.99310048490746 45.789239759605266 172.63503043742523

135 G41N-CA-CA 108.98514596752801 45.81594816803027 45.258775102477195

136 E42N-CA-C 119.12415670603133 55.469864652076765 177.77166830099642

137 E42N-CA-CA 119.12169805951353 55.467167471277506 54.9159124708808

138 E42N-CA-CB 119.12648460103468 55.47278387308149 31.066074731666365

139 W43N-CA-C 125.57693265292565 58.2519204142371 177.16169891663364

140 W43N-CA-CA 125.57039761013453 58.27062615097913 57.70369967212549

141 W43N-CA-CB 125.56402469889645 58.248283966462694 33.66699787163827

142 T44N-CA-C 109.86345917142916 61.712178267494956 173.74585990775753

143 T44N-CA-CA 109.88612622336083 61.70938990522632 61.166038910362566

144 T44N-CA-CG2 109.89042219397506 61.71269310091192 20.90478627656454

145 Y45N-CA-C 119.26542199210138 58.615932158556525 171.76075789735305

146 Y45N-CA-CA 119.25138375738929 58.61158612871409 58.06754244771449

147 D46N-CA-C 127.17219745395516 51.3997599552715 175.75364322992743

148 D46N-CA-CA 127.18145585289383 51.39403084491661 50.851169152758104

149 D46N-CA-CB 127.16742287011871 51.37419221456706 42.08345374475197

150 D47N-CA-C 124.1319952728446 55.24686686310918 177.01120423743282

151 D47N-CA-CA 124.09369997045992 55.24227652966274 54.7045059564102

152 D47N-CA-CB 124.1107202640821 55.25202038902626 42.94369452314282

153 A48N-CA-C 119.24074820975306 54.58603759525219 179.3610321505171

154 A48N-CA-CA 119.26159102786877 54.58200003103815 54.02961923736523

155 A48N-CA-CB 119.26022101642715 54.559479867792405 19.067257851245046

156 T49N-CA-C 105.05528316359172 61.00315567598269 175.70218181747381

157 T49N-CA-CA 105.08407379610355 61.0033259579515 60.45380112030202

158 T49N-CA-CB 105.06716949084783 61.01347744424112 69.89089292977744

159 T49N-CA-CG2 105.0567881832911 61.00359578933136 21.597138806238142

160 K50N-CA-C 120.24627385758113 56.05459168231778 175.23185933646604

161 K50N-CA-CA 120.25416097643715 56.04556113359048 55.50547676857063

162 T51N-CA-C 112.74039365109172 63.21868144313733 174.12394975571473

163 T51N-CA-CA 112.76528581100708 63.21923940676241 62.66243410403021

164 T51N-CA-CB 112.73970269569332 63.20858254122815 71.82358285881497

165 T51N-CA-CG2 112.75991885950224 63.20587990749114 21.002262912858594

166 F52N-CA-C 131.13125492508357 57.21320870587695 175.58142320920783

167 F52N-CA-CA 131.1314438227842 57.229474832302316 56.65597922952022

168 F52N-CA-CB 131.12706491027492 57.231286541428275 43.475757775045196

169 T53N-CA-C 112.78996177971143 60.97901833393373 171.89594336767078

170 T53N-CA-CA 112.79081329410026 60.98305975548514 60.43837648544439

171 T53N-CA-CG2 112.78904130462386 60.992470926590634 20.973646358302172

172 V54N-CA-C 118.99275773585974 59.207268606992834 172.45136390133092

173 V54N-CA-CA 118.99834647577225 59.21412762175015 58.65922963840883

174 V54N-CA-CB 118.98670003930283 59.20111949657525 32.583696560336314

175 V54N-CA-CG1 119.00355191569214 59.216122769631696 21.884922175165705

176 T55N-CA-C 124.67322515827635 62.06218204601004 174.05241664395675

177 T55N-CA-CA 124.66321191520731 62.064664085015686 61.50458244677173

178 T55N-CA-CB 124.66565955596148 62.06012250164029 72.30408457680252

179 T55N-CA-CG2 124.66733375803453 62.05426872860013 21.281331374517737

180 E56N-CA-C 131.9504484180766 58.09501631293763 180.10593984109164

181 E56N-CA-CA 131.9448435612036 58.11078502563426 57.56516414719059

182 E56N-CA-CB 131.95917123459583 58.105543240951 33.17020972688592

133

CURRICULUM VITAE

Andrey Smelter
2405 Sherry Rd • Louisville, KY 40217

andrey.smelter@gmail.com • 502-403-0973

EDUCATION
2013-2017 University of Louisville, Louisville, KY 40292
 Department of Computer Engineering and Computer Science

Ph.D. candidate in Interdisciplinary Studies: Concentration in
Bioinformatics

2010-2013 University of Louisville, Louisville, KY 40292
 Department of Chemistry

M.S. Chemistry

2005-2010 Perm State University, Perm, Russia, 614990
Department of Chemistry
Specialist Degree in Chemistry

RESEARCH EXPERIENCE
2013-present Ph.D. Candidate

Development of software tools for analysis of protein Nuclear Magnetic
Resonance spectral data. Developing and refining the grouping, typing,
linking and mapping algorithms and data structures needed to automate
the protein resonance assignment of solution and solid-state NMR
spectral data. Development of software libraries to facilitate access and
manipulation of protein NMR data deposited in Biological Magnetic
Resonance Data Bank.

2011-2013 M.S. Chemistry
Developed data structures to model and automate resonance assignment
of protein Nuclear Magnetic Resonance spectral data.

2009-2010 Specialist Degree in Chemistry

Studied chemical kinetics of aluminum reduction from alkylbenzene

aluminizing electrolytes using polarization and impedance methods.

mailto:andrey.smelter@gmail.com

134

SOFTWARE ENGINEERING

 Programming Languages: Python, working knowledge of C++, R

 Python packages: NumPy, SciPy, Jupyter, Cython, bokeh, matplotlib, PyQt.

 Software documentation: sphinx, Doxygen.

 Software testing: pytest, unittest.

 Version control: Git, Github, Gitlab.

PUBLICATIONS

 Andrey Smelter, Eric C. Rouchka, and Hunter N.B. Moseley. “Detecting and
accounting for multiple sources of positional variance in peak list registration
and spin system grouping.” Submitted to Journal of Biomolecular NMR.

 Andrey Smelter, Morgan Astra, and Hunter NB Moseley. “A fast and efficient
python library for interfacing with the Biological Magnetic Resonance Data
Bank.” BMC bioinformatics 18.1 (2017): 175.

POSTER PRESENTATIONS

 Andrey Smelter, Indraneel Reddy, Eric C. Rouchka, Hunter N.B. Moseley (2015)
“Automated Assignment of Magic-Angle-Spinning Solid-State Protein NMR
Spectra” UT-KBRIN Bioinformatics Summit, Buchanan, TN

 Andrey Smelter, Eric C. Rouchka, Hunter N.B. Moseley (2016) “Automated
Assignment of Magic-Angle-Spinning Solid-State Protein NMR Spectra” UT-KBRIN
Bioinformatics Summit, Cadiz, KY

 Andrey Smelter, Xi Chen, Eric C. Rouchka, Hunter N.B. Moseley “Registration and
grouping algorithms in protein NMR derived peak lists and their application in
protein NMR reference correction.” Biophysical Society Meeting (2017), New
Orleans, LA

 Andrey Smelter, Xi Chen, Eric C. Rouchka, Hunter N.B. Moseley “Registration and
grouping algorithms in protein NMR derived peak lists and their application in
protein NMR reference correction” UT-KBRIN Bioinformatics Summit, Burns, TN

 Andrey Smelter, Morgan Astra, Hunter N.B. Moseley “A Fast and Efficient Python
Library for Interfacing with the Biological Magnetic Resonance Data Bank” UT-
KBRIN Bioinformatics Summit, Burns, TN

TEACHING EXPERIENCE
Teaching Assistant, Department of Chemistry, University of Louisville (2010-2013):

 CHEM 103: Introduction to Chemistry Lab

 CHEM 207: Introduction to Chemical Analysis I Lab

 CHEM 208: Introduction to Chemical Analysis II Lab

 CHEM 343: Organic Chemistry Laboratory I

 CHEM 441: Elements of Physical Chemistry Recitation

HONORS AND AWARDS

 5-Year Full Tuition Scholarship, Perm State University (2005-2010).

135

 Awarded with a special scholarship from one of the largest oil companies in
Russia (LUKOIL) as one of the best students of Department of Chemistry in Perm
State University (2009-2010).

	Algorithms for automated assignment of solution-state and solid-state protein NMR spectra.
	Recommended Citation

	tmp.1501556698.pdf.4lOtm

