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 ABSTRACT  

 
MECHANISM INVESTIGATION OF PSEUDOURIDINE SYNTHASES TruB AND 

RluA WITH RNA CONTAINING 5-FLUOROURIDINE AND 4-THIOURIDINE 

 
Uyen T Duong 

July 3, 2017	

	 Pseudouridine synthases (Ψ synthases) are the enzymes that catalyze the 

isomerization of uridine (U) to pseudouridine (Ψ), which is the most prevalent post-

transcriptional modification of RNA. The Ψ synthases fall into six different families that 

share no significant global sequence similarity; however, they all involve a conserved 

aspartic acid residue which is absolutely essential for activity.  

 Tyrosine is a conserved residue in the active site in five of the six families of Ψ 

synthases (phenylalanine in the TruD family) and was hypothesized as the general base 

for the isomerization reaction. To confirm the function of Tyr-96, Y96F RluA was 

assayed with both ASL and [F5U]ASL. U is converted to Ψ and F5U to F5U products. 

These results argue against the role of Tyr serving as general base. However, the slow 

rates of reactions and higher concentration of Y96F RluA needed for any reaction 

indicates that Tyr-96 does facilitates at least one step of the reaction. 

 The major product of F5U from the action of Ψ synthases is a ribo isomer whereas 

the minor product is arabino, and its generation requires epimerization at C2′. The 
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deprotonation at C2′ can be achieved by the conserved Asp or O2. To test if O2 is the 

general base, the isomerized U was replaced by 4-thiouridine (s4U). As an essential first 

step, RNA containing s4U needs to be verified as a good substrate for Ψ synthases, so 

RluA and TruB were incubated with [s4U]RNA. Intact [s4U]RNA shifted to later and 

shorter retention times after incubation with RluA and TruB, respectively. Traces of the 

digestion products of [s4U]RNA after incubation with the two enzymes also showed the 

new peaks that absorbed more strongly at 330 nm than 260 nm. These results indicate 

that [s4U]RNA can be handled as a substrate.	
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CHAPTER I 

PSEUDOURIDINE AND THE PSEUDOURIDINE SYNTHASES 

	
Pseudouridine (Ψ), the C-glycoside isomer of uridine (U) is the most common 

post-transcriptional modification of RNA  [1, 2]. Ψ was discovered in 1951 and is also 

known as the ‘fifth nucleotide’ in RNA [1]. Ψ has been found in every species examined 

and in all classes of RNA [3, 4]. Pseudouridine synthases (Ψ synthases) are the enzymes 

responsible for this site-specific isomerization of U to Ψ.   

 

 

 

Figure 1.1: The isomerization of U to Ψ 
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1.1 Physiological significance of pseudouridine 

The conversion of U to Ψ occurs in all three domains of life and is the most 

prevalent post-transcriptional modification [1]; however, the reason for this isomerization 

and the importance of Ψ at many positions in diverse RNAs have remained poorly 

understood. A speculative role for Ψ was based on its distinctive physical and chemical 

properties in comparison with U. The C glycosidic bond in Ψ enhances rotational 

freedom as compared to the N glycosidic bond in U; therefore, Ψ was anticipated to 

exhibit greater conformational flexibility than U [5]. Also, the N1–H in Ψ can act as an 

additional hydrogen bond donor, suggesting that Ψ might impart structural rigidity in 

RNA. This conclusion has been confirmed by nuclear magnetic resonance [6], CD 

spectroscopy [7], and molecular dynamics simulations [8]. Furthermore, Ψ enhances 

local RNA stacking in both single and duplex-stranded, which has been proposed to be 

the most important contribution of Ψ to the stabilization of RNA structure [3, 6, 7, 9].  

The ubiquity of Ψ in all forms of RNA emphasizes its physiological importance. 

Lack of Ψ at position 1911, 1915, and 1917 of 23S rRNA in Escherichia coli (E. coli) 

causes severe growth retardation [10-12]. In eukaryotes, Ψ is localized in the region of 

interaction between U2 snRNA and pre-mRNA. Absence of Ψ in this position affects the 

production of mature transcripts by impairing the splicing activity of pre-mRNA [13].  

The X-linked form of the human disease dyskeratosis congenita results from a 

mutation or deletion in the gene dyskerin, an ortholog of the Ψ synthase-encoding Cbf5 

gene. Patients with this disease have defects in highly regenerative tissues, such as skin 

and bone marrow, and chromosomal instability [14-16]. Cells of individuals with this 

disorder show reduced amounts of telomerase RNA and thus decreased telomerase 
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activity with resulting difficulty in maintaining telomere length [14-16]. The lack of Ψ 

residues and the reduced telomerase activity may be responsible for dyskeratosis 

congenita.  

1.2 Pseudouridine synthases 

The pseudouridine synthases catalyze the isomerization of U to Ψ at specific 

positions in certain RNAs. Based on sequence data and structural analysis, the Ψ 

synthases fall into six different families that share no significant global sequence 

similarity [17-20] and are named after the first cloned member: TruA [21], TruB [22], 

RluA [23], RsuA [24], TruD [19], and Pus10 [25]; the first five are from E. coli, and 

Pus10 is found only in archaea and eukaryotes. Crystal structures from representative 

members of each family show that they share a common fold with a core β-sheet along 

with several conserved active site amino acid residues, so they likely share a common 

mechanism. The active site of all six families shows an absolutely conserved aspartic acid 

residue Asp, which was shown to be critical for enzyme activity and proposed to act as a 

nucleophile in the isomerization reaction [11, 12, 26, 27]. In cocrystal structures of 

several Ψ synthases with RNA, the conserved Asp is located in the same structural 

position [28].  

The work in this thesis focuses on the E. coli Ψ synthases RluA and TruB. RluA 

(ribosomal large subunit pseudouridine synthases) is responsible for the isomerization of 

U746 in 23S rRNA and U32 in the anticodon stem-loop (ASL) of fives tRNA [19, 21-

24]. TruB is responsible for the pseudouridylation of U55 in the T-arm stem loop (TSL) 

in tRNAs [22]. Mueller and co-workers have reported the kinetic parameters of RluA 

with ASL and full-length tRNA. The value of  kcat with ASL is only 1.5-fold lower than 



	 4	

the value with full-length tRNA, and the Km value is 2.9-fold higher than with tRNA, 

indicating that ASL is only a very slightly poorer substrate than full-length tRNA [29]. 

Similar results were obtained by Santi and co-workers for TruB in comparison of full-

length tRNA and the 17-mer corresponding to yeast TSL [30]. 

1.3 Proposed mechanism for synthases 

Two general mechanisms have been proposed for the Ψ synthases. The first was 

the “Michael mechanism” (Figure 1.3). In this mechanism, the conserved Asp acting as a 

nucleophile attacks C6 of the pyrimidine ring to form a covalent adduct (a Michael 

adduct). Following cleavage of the N-glycosidic bond and rotation 180˚ around the new 

bond to the conserved Asp, reattachment at C5 forms the new C-glycosidic bond. The 

conserved Asp departs as leaving group, and deprotonation at C5 generates Ψ.  

The second mechanism is the “acylal mechanism” (Figure 1.4), which involves 

nucleophilic attack by the conserved Asp on C1′ of the ribose ring either through a 

concerted or step-wise process to form an acylal intermediate. After N-glycosidic bond 

breakage, the uracilate ion is free to rotate 180˚, moving C5 close to C1′ for C-glycosidic 

bond formation with the conserved Asp as leaving group. The subsequent deprotonation 

of C5 by the conserved Asp yields Ψ. 

5-Fluorouridine (F5U). 5-Fluorouracil (F5Ura) has been known as a potent anti-

cancer drug for over 60 years. It is widely used in the treatment of various type of 

cancers, particularly for colorectal and testicular cancers [31]. However, the mechanisms 

by which F5Ura causes cell death and tumours become resistant to F5Ura remains unclear, 

although the action of F5Ura involves its conversion to 5-fluorouridine (F5U). 

Samuelsson demonstrated that F5U inhibits the post-transcriptional conversion of uridine 
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to pseudouridine in RNA species and that RNAs containing F5U form stable complexes 

with Ψ synthases [32]. F5U is also converted to several intracellular active metabolites 

such as 5-fluorodeoxyuridine monophosphate (F5dUMP), which acts as an inhibitor of 

thymidylate synthase and thus blocks the sole de novo source of dTTP, which is 

necessary for DNA replication and repair [31, 33]. To examine the mechanism of the Ψ 

synthases, RNA containing F5U ([F5U]RNA) was used as a mechanistic probe 

(Figure 1.5B).  

When the Ψ synthase TruA was incubated with [F5U]tRNA, TruA was 

irreversibly inhibited and formed a covalent adduct between protein and RNA 

(Figure 1.5C), as judged by denaturing gels [30]. After heat disruption of the adduct, a 

hydrated product of F5U was observed, which was reasonably ascribed to ester hydrolysis 

of the Michael adduct and thus taken to support the Michael mechanism (Figure 1.3) 

[34]. However, a noncovalent complex was observed in cocrystals of TruB and 

[F5U]TSL, but the product of F5U was hydrated and also rearranged to the C-glycoside 

isomer [35]. Based on these observations, Hoang and Ferré–D′Amaré concluded that 

TruB follows the Michael mechanism and ascribed the absence of a covalent adduct to 

the slow ester hydrolysis of the Michael adduct during crystal growth and data 

acquisition [35]. A similar set of experiments with the Ψ synthase RluA revealed that it is 

also irreversibly inhibited and forms an adduct with [F5U]ASL, similarly to TruA when 

incubated with [F5U]tRNA [36].  

To determine if the products form by ester hydrolysis or direct hydration 

(Figure 1.6), reactions of [F5U]RNA and TruB [37], RluA [29], and TruA [38] were run 

in buffer containing 50% [18O]water. In all cases, 18O label ends up in RNA rather than in 
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the conserved Asp. These results eliminated ester hydrolysis of the Michael adduct; 

instead, a water molecular adds directly to the pyrimidine ring. Based on these 

observations, Mueller and co-workers proposed a scheme to account for the handling of 

F5U, in which all Ψ synthases proceeds through either the Michael or acylal mechanisms 

to rearranged F5U (Figure 1.7). With TruB, the conserved Asp does not form a stable 

covalent adduct, and the rearranged F5U is spontaneous hydrated when released into 

solution. In other Ψ synthases (such as RluA and TruA), the conserved Asp can reach C6 

to form a covalent adduct between the conserved Asp and [F5U]RNA, which undergoes 

elimination (rather than ester hydrolysis) to generate rearranged F5U upon heating, 

followed by spontaneous hydration in solution [29, 38]. 

Studies by Spedaliere and Mueller proved that [F5U]TSL neither inhibits nor 

forms a stable adduct with TruB; in fact, TruB converts F5U into its rearranged and 

hydrated C-glycoside isomer in a time frame similar to the natural conversion of U to Ψ 

[36]. Furthermore, HPLC analysis of the nucleotides resulting from treatment with S1 

nuclease and alkaline phosphatase of reacted [F5U]TSL showed two more polar products 

of F5U in a ratio of ~3:1 [36]. MALDI-MS analysis confirmed that F5U became hydrated 

after incubation with TruB, consistent with products seen in the cocrystal. NMR 

experiments revealed that both products of F5U were dinucleotides with the cytidine 

residue that follow F5U in [F5U]TSL, and an identical result was obtained from the action 

of TruA on [F5U]RNA [38]. However, HPLC analysis of the RluA products showed a 

single peak with different retention time than either TruB product [29]. 
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Figure 1.2: The ‘cloverleaf’ representation of E. coli tRNAPhe. The anticodon stem 

loop (ASL) is the substrate for RluA, and T-arm stem loop (TSL) is the substrate for 

TruB, which isomerizes U32 and U55 (underlined), respectively.  
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Figure 1.3: The proposed “Michael mechanism” for Ψ synthases. The conserved 

Asp nucleophilically attacks C6 of the pyrimidine ring to form a covalent adduct (a 

Michael addition). N-glycosidic bond cleavage occurs, and the pyrimidine ring 

rotates 180˚ around the bond to the conserved Asp. Reattachment at C5 forms the 

C-glycosidic bond, followed by the elimination of Asp and deprotonation to 

complete the isomerization.  
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Figure 1.4: The proposed “acylal mechanism” for Ψ synthases. The nucleophilic 

attack by the conserved Asp on C1′ of the ribose ring proceeds through either a 

concerted or step-wise process to form an acylal intermediate. After N-glycosidic 

bond breakage, the uracilate ion is free to rotate 180˚, bringing C5 close to C1′ to 

form the C-glycosidic bond. Deprotonation by the conserved Asp yields Ψ. 
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Figure 1.5: A, 5-fluorouracil. B, 5–fluorouridine. C, The putative Michael adduct 

between TruA and [F5U]RNA proposed by Santi [30]. 
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A 

 

 

B 

 

 

Figure 1.6: 18O labeling scheme. A, Ester hydrolysis would result in 18O 

incorporation into the conserved Asp. B, Direct hydration of the rearranged 

product of F5U. 18O is abbreviated with a filled O. 
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Figure 1.7: A consistent scheme for the handling of F5U in RNA by different Ψ 

synthase [38].  
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(Figure 1.8). For the formation of the arabino product, epimerization at C2′ must occur, 

which requires deprotonation from the “top” face to form a glycal intermediate followed 

by reprotonation from the “bottom” face. To determine whether the protonation at C2′ is 
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directly from solution or an active site acid, reactions of RNA containing either U or F5U 

with TruB and RluA were run in buffer made with deuterated water, and the products 

were examined for the incorporation of deuterium into a C2′ position. No “wash-in” was 

observed with either TruB or RluA, indicating that no direct protonation from solution 

occurred; therefore, the essential Asp must transfer the proton removed from U to the 

“wrong” face of the glycal intermediate to generate an arabino isomer [40]. This result 

strongly disfavors the Michael mechanism because the Asp would be tied up in an ester 

bond, making it unable to protonate C2′. The acylal mechanism can accommodate the 

arabino product of F5U because the decreased nucleophilicity of the anion of 5-

fluorouridine versus uracil provides a longer lifetime of the acylal intermediate, which is 

in equilibrium with an oxocarbenium species and the free conserved Asp. The acidity of 

C2′ in the oxocarbenium species would facilitate deprotonation by the conserved Asp, 

and reprotonation from the opposite face would result in an arabino product (Figure 1.9).  

 

 

Figure 1.8: The major and minor products of F5U* differ in stereo configuration at 

C2′ [39] 
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Figure 1.9: The acylal mechanism recast to account for the formation of the arabino 

product of. The boxed manifold exists only for F5U because of the increased life time 

of the acylal intermediate, which is equilibrium with the oxocarbenium ion. [39]  

 

The existence of the glycal intermediate opens a new mechanistic possibility: the 

“glycal mechanism” (Figure 1.10), which can easily explain both the major and minor 

products of F5U (Figure 1.11). With normal substrate (RNA containing U), the 

mechanism begins with the deprotonation at C2′ to eliminate pyrimidine ring and form 

the glycal intermediate, followed by rotation of the detached pyrimidine ring. 

Reattachment at C5 forms the new C-glycosidic bond with reprotonation of C2′. 

Deprotonation at C5 yield Ψ and completes the isomerization.  

 To test if the Ψ synthases proceeds through the glycal mechanism, the 2′-

deuterated stem-loop substrates for TruB and RluA were prepared, and their reaction 

rates were compared with unlabeled substrates. The observed kinetic isotope effects with 
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partially rate-limiting, which provides direct evidence for the operation of glycal 

mechanism during the conversion of U to Ψ [40]. 

 

 

   

 

Figure 1.10: The “glycal mechanism” for Ψ formation. The elimination of uracil 

proceeds through either a concerted (lower path) or step-wise (upper path) to form 

a glycal intermediate. After the C-glycoside rearrangement, C2′ is reprotonated by 

the conserved Asp, followed by deprotonation to generates Ψ. [39] 
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Figure 1.11: The “glycal mechanism” with F5U. Reprotonation from the “bottom” 

face of the glycal ring yields the arabino product of F5U. 

 

 

O
RNAO

RNAO

HN
O

N
O

6
5

F

1

O O

HN
O

N
O F

O
RNAO

RNAO

HN
NH

O

HO

uridine (U)

glycal
intermediate

OH

OH

Asp

H
2

O
RNAO

RNAO OH

H
2 O O

Asp

N
NH

O

OF

O
RNAO

RNAO OH

HO O

Asp

O
RNAO

RNAO

HN
O

N
O

6
5

H

1

O O

uridine (U)
OH

Asp

H
2

N
NH

O

O
RNAO

OH
HO O

Asp

F O

O
RNAO

RNAO OH

OR

pyrimidine 
rotation

H2OF O

O
RNAO

RNAO

HO

RNAO

H    to 
bottom face

H    to 
top face

O
RNAO

RNAO

HN
NH

O

HO

H2O
F OHO

F5U ribo product

F5U arabino product

N
NH

O

OF

N
NH

O

OF



	 17	

The Mueller group proposed a mildly revised scheme to account for the arabino 

product of F5U (Figure 1.12). The formation of products of F5U proceed through either 

the glycal mechanism or the acylal mechanism (recast for the observed arabino product) 

to rearranged F5U. 

 

 

 

 

Figure 1.12: A scheme proposed by the Mueller group consistent with all 

observations, including the arabino product of F5U. 
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4-Thiouridine as a mechanistic probe. Three different mechanisms have been 

proposed for the Ψ synthases: the Michael (Figure 1.3), acylal (Figure 1.4), and glycal 

(Figure 1.10) mechanisms. To explain both the ribo and arabino products of F5U, the 

Mueller group proposed the glycal mechanism for the Ψ synthases, which is formulated 

with deprotonation at C2′ by the conserved Asp to form the glycal intermediate. O2 of 

uracil could also deprotonate at C2′ (Figure 1.13); however, in this case, the proton must 

migrate to the conserved Asp in order to reprotonate at C2′ from the opposite face to 

yield the arabino product since the bulky pyrimidine ring may not allow O2 access the 

“bottom face” of the glycal intermediate. In the crystal structures of the glycal 

complexes, O2 of fluorouracil is positioned directly above C2′ in a good position to act as 

the base for glycal formation [41].  

To test if O2 is the general base, the isomerized U will be replaced with 4-

thiouridine (s4U). Some bacteria naturally have s4U at position 8 of several tRNA, and 

this s4U not only stabilizes the fold of the tRNA [42, 43] but also plays an important role 

as a photosensor for near-UV light [44]. Replacing oxygen with sulfur at position 4 of the 

pyrimidine ring results in a significantly lower pKa for s4U (8.2) than for U (9.3) [42], 

making the anion of 4-thiouracil more stable and a better leaving group than the anion of 

uracil itself and hence increasing the rate of reaction. However, the lower pKa of s4U also 

means that 4-thiouracil(ate) is a weaker base than uracil(ate); therefore deprotonation of 

C2′ should slow, thus decreasing the rate of reaction. The rate of the overall reaction 

depends on two processes: leaving group departure and deprotonation of C2′, and s4U is 

expected to have opposite effects on the speed of each. A slower rate of overall reaction 

will imply that O2 is the general base since slower deprotonation is the expected effect of 
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s4U substitution. A faster rate is less informative because O2 could still be the base that 

deprotonates C2′, but the effect of being a better leaving group dominates. To ensure s4U 

is handled as a substrate and to identify the products, assays of s4U with TruB and RluA 

were performed and analyzed by HPLC. This work with s4U in a RNA substrate is 

described in Chapter 3 of this thesis. 

 

 

 

 

 

Figure 1.13: Deprotonation at C2′ by O2. The proton then migrates to O4 or the 

conserved Asp to reprotonate at C2′. Since neither O2 nor O4 seem likely to be able 

to access the “bottom” face of the glycal intermediate, the arabino product of F5U 

requires migration of the removed proton to the conserved Asp. 
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CHAPTER II 

	
MECHANISTIC INVESTIGATION OF Y96F RluA USING  

ASL AND ASL CONTAINING 5–FLUOROURIDINE 

2.1 Introduction 

In chapter 1, three Ψ synthase mechanisms were presented, and they all involve 

an active site aspartic acid residue (Asp) acting as a nucleophile or a base [34, 39]. In the 

“Michael mechanism”, the conserved Asp acts as a nucleophile to attack C6 of the 

pyrimidine ring to form a Michael adduct (Figure 1.3). The alternative “acylal 

mechanism” instead proposes a nucleophilic attack by the conserved Asp on C1′ of the 

ribose ring (Figure 1.4). The third mechanism is the “glycal mechanism”, which involes 

the conserved Asp acting as base to deprotonate at C2′ to form a glycal intermediate 

(Figure 1.10). Huang and co-workers noted a conserved tyrosine (Tyr) residue in the 

active site in four of the five families of Ψ synthases (Phe in the TruD family) and 

conducted site-directed mutagenesis on this Tyr [45]. When Y76F TruB was incubated 

with natural RNA substrate, no conversion of U to Ψ was observed. However, when F5U 

replaced the isomerized U in the stem-loop, Y76F TruB catalyzes the reaction of 

[F5U]RNA, making a rearranged and hydrated product just like wild-type TruB [45]. 

Based on these observations, Huang concluded that the hydroxyl group in the side chain 

of Tyr-76 must play a critical role in the final step of the reaction, which is deprotonation 
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at C5 to form the product of Ψ (Figure 2.1). This step does not happen with [F5U]RNA 

since a base cannot remove the fluorine as it does a proton. The rationale seems to be 

sound; however, there is evidence arguing against the role of Tyr-76 serving as a general 

base. First, if Tyr-76 is a general base and only conducts the final step of the reaction 

(removes the proton from C5 of rearranged U), then the other steps should still occur, 

allowing the rearrangement of uridine to the C-glycoside. Since the intermediate is more 

polar than U, it would elute at an earlier retention time than U from a reverse-phase 

HPLC column, but no new peaks were detected [45]. Second, the pH profile studies on 

TruB from the Mueller group shows a descending limb with a pKa of 9, suggesting that 

the deprotonation of Tyr could slow the reaction by disrupting the electrostatic 

environment of the active site [46]. Therefore, Mueller and co-workers proposed that 

Tyr-76 donates either a proton or hydrogen bond to the pyrimidine ring (the leaving 

group) to facilitate N-glycosidic bond cleavage. Third, the conserved Tyr seen in the first 

four families of the Ψ synthase was not found in TruD family; instead, Phe residues 

occupy in this position. Finally, the crystal structure of wild-type RluB with [F5U]RNA 

shows a covalent bond of the hydroxyl group of Tyr-140 and the pyrimidine ring of F5U 

(Figure 2.2) [47]. To confirm the function of Tyr-76, additional experiments are required. 

As described, in this chapter, Y96F RluA was overexpressed and incubated with both 

ASL and [F5U]ASL in order to illuminate the function of the conserved Tyr in the 

formation of Ψ and to test whether results with Y76F TruB are common to another family 

of Ψ synthases. Reverse-phase HPLC analysis of both intact and digested RNA from 

each reaction were analyzed. 
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Figure 2.1: Mechanism proposed by Phannachet et al for the Ψ synthases [45] 

 

 

 

Figure 2.2. The crystal structural shows a covalent bond between Tyr-140 and the 

pyrimidine ring. From Ref [47] 
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2.2 Experimental 

2.2.1 Materials 

Competent BLR(DE3) pLysS E. coli cells were purchased from Novagen 

(Madison, WI). A CLIPEUS C8 5-µm column (250 ´ 4.6 mm) was purchased from 

Higgins Analytical, Inc. (Mountain View, CA), and a Zorbax analytical SB-C18 5-µm 

column (50 ´ 4.6 mm) was purchased from Agilent (Santa Clara, CA). Ni-NTA 

superflow resin and QIAprep Spin Mini prep kits were purchased from Qiagen 

(Chatsworth, CA). S1 nuclease and calf intestinal alkaline phosphatase were purchased 

from Promega (Madison, WI). Oligonucleotide ASL (5′-GGGGAUUGAAAAUCCCC-

 3′) and [F5U]ASL (5′-GGGGAF5UUGAAAAUCCCC-3′) were purchased from 

Dharmacon (Lafayette, CO). Ultra-pure deionized water was obtained using a Millipore® 

Milli-Q integral system (Billerica, MA) equipped with a 0.2 µm filter. Laemmli buffer 

(2´) was 120 mM Tris•HCl buffer, pH 6.8, containing SDS (4%, w/v), glycerol (20%, 

v/v), and bromophenol blue (0.02%, w/v). RNA loading dye (2´) was 95% aqueous 

formamide containing bromophenol blue (0.025%, w/v), xylene cyanol (0.025%, w/v), 

and EDTA (0.5 mM).  

2.2.2 Overexpression and Purification of Y96F RluA 

Overexpression. An overnight culture of BLR(DE3) pLysS/pBH222 was used to 

inoculate LB broth (1 L) in a baffled flask and shaken vigorously at 37 ˚C. When OD600 

reached 0.4–0.6, isopropyl-β-D-thiogalactopyranoside (4 mL, 100 mM) was added 

(0.4 mM final concentration). The cells were harvested 3 h after induction (OD600 = 1.1–

1.2). The cells were centrifuged at 6,000g for 30 min at 4 ˚C and resuspended in lysis 

buffer (10 mL), which is 50 mM sodium phosphate buffer, pH 8.0, containing imidazole 
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(10 mM) and NaCl (300 mM). The suspensions were quick-frozen and stored at –80 ˚C.  

Purification. The cell pellets containing overexpressed Y96F RluA were thawed 

and sonicated, and then the lysate was centrifuged (13,500g for 30 min) to pellet cell 

debris. A slurry of Ni-NTA superflow resin (3 mL settled resin volume) was added to the 

supernatant and nutated for 1 h to bind the His-tagged Y96F RluA to the resin. The resin 

was pelleted (7500g for 30 min), resuspended in lysis buffer (3 mL), and packed into a 

column. The column was washed (3 × 5 mL) with 50 mM sodium phosphate buffer, 

pH 8.0, containing imidazole (20 mM) and NaCl (300 mM). The bound Y96F RluA was 

eluted (2 × 5 mL) with 50 mM sodium phosphate buffer, pH 8.0, containing imidazole 

(250 mM) and NaCl (300 mM). The elutions were dialyzed in 20 mM HEPES buffer, 

pH 7.5, EDTA (0.5 mM), β-mercaptoethanol (1 mM), and glycerol (5% v/v) for 2 × 2 h. 

The Y96F RluA was then further purified by POROS HS anion exchange 

chromatography, eluting with a linear gradient of KCl (0–1 M) in 20 mM HEPES buffer, 

pH 7.5, containing EDTA (0.5 mM), β-mercaptoethanol (1 mM), and glycerol (5% v/v). 

Each protein-bearing fraction (1 mL) was analyzed for purity by SDS-PAGE.  

RNase Activity Assays. The fractions containing Y96F RluA were tested for 

RNase contamination. The RluA-bearing fractions from POROS HS chromatography 

were assayed at a constant protein concentration (100 nM). Each RluA-bearing fraction 

(100 nM) was incubated with RNA markers at 37 ˚C for 1 h, which were then analyzed 

by urea-PAGE. Fractions that were pure by SDS-PAGE and RNase-free were combined 

and dialyzed (2 × 2 h) against 23.5 mM HEPES buffer, pH 7.5, containing KCl 

(176.5 mM), EDTA (0.58 mM), DTT (0.58 mM), and glycerol (5% v/v). Y96F RluA 

concentrations were determined using A280 and ε280= 30700 M-1cm-1.  
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2.2.3 Deprotection and Purification of 2′-ACE RNA Oligonucleotides  

Synthetic oligonucleotide (17-mer) stemloop (ASL or [F5U]ASL) was deprotected 

according to the manufacturer’s protocol. Lyophilized ASL or [F5U]ASL (340 nmol) was 

dissolved in 100 mM acetate buffer, pH 3.8, made by the addition of tetra-

methylethylenediamine (TEMED) to a solution of acetic acid, and incubated at 60 ˚C for 

2 h. The deprotected ASL or [F5U]ASL was lyophilized using a Speed Vac concentrator 

and then dissolved in water (100 µl). ASL and [F5U]ASL were further purified by HPLC 

over a C8 preparatory column (Clipeus C8 5µm, 250 × 10 mm, Higgins Analytical, 

Mountain View, CA), eluting with a gradient of acetonitrile (0–40%) in 5 mM 

ammonium acetate buffer, pH 6.0. The ASL or [F5U]ASL was lyophilized, redissolved in 

water, and stored at –20 ˚C. The final ASL or [F5U]ASL concentration was determined 

using A260 and an extinction coefficient (170500 M-1cm-1) provided by Dharmacon.  

2.2.4 Assay of Y96F RluA Activity 

Reaction of ASL. The reaction mixture (800 µL) was 50 mM HEPES buffer, 

pH 7.5, containing sodium chloride (175 mM), DTT (5 mM), EDTA (1 mM), RNase 

inhibitor (30 units), and ASL (50 µM). After pre-equilibration at 37 ˚C, reaction was 

initiated by the addition of Y96F RluA (to 5 µM). Aliquots (100 µL) were removed at 

various times and immediately heated at 97 ˚C for 10 min. The protein precipitate was 

pelleted by centrifugation, and the supernatant was transferred to a fresh tube. Residual 

protein was extracted from the supernatant with an equal volume of phenol/chloroform 

(1:1), and the aqueous layer was removed and transferred to a fresh tube. One tenth 

volume of 0.3 M sodium acetate buffer pH 6.0, was added and well-mixed followed by 

cold absolute ethanol (330 µL), and the mixture placed in –80 ˚C for 2 h. The supernatant 
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was removed, and the pellet was rinsed with cold 70% aqueous ethanol (100 µL), air-

dried, and resuspended in 50 mM HEPES buffer (100 µL), pH 7.5, containing sodium 

chloride (175 mM) and EDTA (1mM) then passed through a 0.2 µm filter before being 

analyzed by reverse phase HPLC (Clipeus C18 5 µm column, 150 × 4.6 mm; Higgins 

Analytical, Mountain View, CA). RNA was eluted with an acetonitrile gradient by the 

following program (the first number is the percentage of aqueous acetonitrile, 40% v/v, in 

25 mM ammonium acetate buffer, pH 6.0; the second number is the elapsed time in 

minutes): 0, 0; 0, 3; 5, 8; 15, 18; 15, 23; 30, 26; 50, 27.5; 50, 29; 100, 30; 100, 31; 0, 32; 

0, 36. 

Digestion of ASL. To confirm the formation of product, ASL was digested after 

incubation with Y97F RluA and ethanol precipitation. The protocol described above was 

followed through the phenol/chloroform extraction. The air-dried pellet was resuspended 

in 50 mM sodium acetate buffer (100 µL), pH 4.5, containing sodium chloride (280 mM) 

and zinc chloride (4.5 mM). S1 nuclease (100 units) was added; after 1 h at 37 ˚C, the 

digestion mixture was heated to 100 ˚C for 5 min and then cooled on ice. Additional S1 

nuclease (100 units) and alkaline phosphatase (5 units) were added, and the digestion 

mixture was incubated for an additional 3 h at 37 ˚C, then passed through a 0.2 µm filter 

and analyzed by reverse-phase HPLC as described for intact ASL. 

Reaction of [F5U]ASL. The reaction mixture (1.00 mL) was 50 mM HEPES 

buffer, pH 7.5, containing sodium chloride (175 mM), DTT (5 mM), EDTA (1 mM), 

RNase inhibitor (30 units), and [F5U]ASL (2 µM). After pre-equilibration at 37 ˚C, the 

reaction was initiated by the addition of Y96F RluA (to 1 µM). Aliquots (500 µL) were 

removed at 3 h and immediately incubated at 97 ˚C for 10 min. The protein precipitate 
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was pelleted by centrifugation, and the supernatant was transferred to a fresh tube. 

Residual protein was extracted from the supernatant with an equal volume of 

phenol/chloroform (1:1), and the aqueous layer was removed and transferred to a fresh 

tube. One tenth volume of 0.3 M sodium acetate buffer, pH 6.0, was added and well-

mixed followed by cold absolute ethanol (1.65 mL), and the mixture placed at –80 ˚C for 

2 h. The supernatant was removed, and the pellet was rinsed with cold 70% aqueous 

ethanol (100 µL), air-dried, and resuspended in 50 mM HEPES buffer (100 µL), pH 7.5, 

containing sodium chloride (175 mM) and EDTA (1mM) then passed through a 0.2 µm 

filter and analyzed by reverse-phase HPLC as described for intact ASL. 

Digestion of [F5U]ASL. The digestion to nucleosides of [F5U]ASL before or after 

incubation with Y96F RluA was performed by the method described above for the 

digestion of ASL.  

2.2.5 Formation of the Adduct between Y96F RluA and [F5U]ASL 

The adduct between Y96F RluA and [F5U]ASL was formed by incubating Y96F 

RluA (1 µM) and [F5U]ASL (2 µM) in the reaction buffer for 3 h at 37 ˚C. The sample 

(60 µL) was then diluted with 2´ Laemmli buffer (60 µL) and split into two samples of 

equal volume; one was heated at 97 ˚C for 10 min, and the other was kept on ice. 

Aliquots of each sample were analyzed by SDS-PAGE (10% gel) to verify the presence 

of adduct, which was indicated by a band that shifted to a higher apparent molecular 

weight.  

2.3 Results 

2.3.1 Overexpression and Purification of Y96F RluA 

The expression vector pBH222 was used to encode Y96F RluA. Protein was 
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overexpressed and purified by nickel affinity chromatography followed by cation 

exchange chromatography. For long term stability, pure fractions of Y96F RluA were 

combined, concentrated to 2–4 mg/ml, and made up to 20% (v/v) with added glycerol, 

and stored at –20 ˚C. 

 

 

 

 

A                                                                                  B                           

 

Figure 2.3: SDS-PAGE analysis of the overexpression and purification of Y96F 

RluA (28 kDA). A, Overexpression of Y96F RluA. B, purified fractions of Y96F 

RluA. MW, molecular weight markers, wide range (Fisher Scientific; Waltham, 

MA). 
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2.3.2 Y96F RluA isomerizes uridine and F5U in stem-loop substrate 

To verify that Y96F RluA isomerizes the U in ASL and F5U in [F5U]ASL, both 

ASL (50 µM) and [F5U]ASL (2 µM) were incubated with Y96F RluA (5 µM and 1 µM, 

respectively). Intact ASL and [F5U]ASL were both analyzed by reverse-phase HPLC. 

The ASL peak shifted to a shorter retention time after incubation with Y96F RluA, which 

is similar to the behavior of wild-type RluA when it incubated with ASL. However, the 

HPLC analysis showed less than 11% conversion of substrate ASL (with U) to product 

ASL (with Ψ) after 6 h, which is consistent with only a single turnover.  

 

 

Figure 2.4: Time course for the conversion of ASL (50 µM) upon incubation with 

Y96F RluA (5 µM). HPLC traces showing the increase in Ψ with time. The major 

peaks are substrate ASL (with U) at 15 min and product (with Ψ) at 14 min. 
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The Y96F RluA also modified [F5U]ASL and shifted it to a greater retention time, 

which is the behavior of wild-type RluA. Since the Y96F RluA reaction was conducted 

with excess substrate, unreacted [F5U]ASL remained. The peak integration indicated 75% 

of [F5U]ASL was converted to product after 4 h, which is 1.5 turnovers per Y96F RluA 

present. To ensure that the shift was due to formation of the products of [F5U]ASL 

(hereafter, the product of F5U = F5U*), a complete reaction of [F5U]ASL after incubation 

with Y96F RluA was digested to free nucleosides and analyzed by reverse-phase HPLC. 

Before incubation of [F5U]ASL with Y96F RluA, peaks corresponding to C, U, F5U, G, 

and A were observed. After incubation, the C, U, G, and A peaks remained, but the F5U 

peak was reduced, and a new peak appeared at 4.8 min. The new of peak was observed at 

4.8 min when [F5U]ASL incubated with Y96F RluA, indicating the formation of F5U*.  

 

Figure 2.5: HPLC analysis of [F5U]ASL after incubation with Y96F RluA. The peak 

at 15.5 min is substrate and peak at 16.8 min is product. 
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Figure 2.6: Digestion of [F5U]ASL after incubated with Y96F RluA. 

 

2.3.3 Adduct formation between Y96F RluA and [F5U]ASL 

To probe adduct formation, [F5U]ASL (2 µM) was incubated with Y96F RluA 

(1 µM) for 3 h at 37 ˚C. After reaction, an aliquot (60 µL) was diluted into Laemmli 

buffer (60 µL) and split into two samples of equal volume; one of those was heated at 

97 ˚C for 10 min, and the other was kept on ice. Aliquots of each sample were analyzed 

by SDS-PAGE (10% gel) to verify the presence of adduct. The gel analysis revealed a 

new, slower moving band, which indicated that the adduction of [F5U]ASL and Y96F 

RluA causes a gel shift to a higher apparent molecular weight due to retardation of the 

protein by the added mass of the RNA. When heated, the normal migration of Y96F 

RluA is observed, which means that heating disrupts the adduct with release of the RNA 

from the protein. SDS-PAGE characteristic showed ~40% adduction of Y96F RluA 

by the 2-fold excess of [F5U]ASL. 
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Figure 2.7: SDS-PAGE (10%) analysis if the formation of the adduct between Y96F 

RluA and [F5U]ASL. The gel shifted of Y96F RluA upon incubation with [F5U]ASL 

indicates adduct formation (lane 1). Heating disrupts the adduct (lane 2). 

 

2.4 Discussion 

 Phannachet et al. have proposed that the active site Tyr acts as the general base 

for the isomerization reaction of U to Ψ [45]. If this result is common to another family 

of Ψ synthases, then the absence of a modified U product is expected when Y96F RluA is 

incubated with natural substrate (ASL). Instead, U is converted to Ψ and F5U to F5U* 

when Y96F RluA is incubated with ASL and [F5U]ASL, respectively. The products from 

the action of Y96F RluA have identical elution behavior on reverse-phase HPLC as those 

from the action of wild-type RluA, indicating the formation of the same products. The 

appearance of Ψ upon incubation of Y96F RluA with ASL casts doubt on the conclusion 

of Phannachet et al. about the active site of Tyr serving as general base. At the least, this 

Tyr is not essential in the final step of the reaction, which is deprotonation at C5 to form 

the product of Ψ.  

To determine whether Y96F RluA converts U to Ψ in a time frame similar to 

wild-type RluA, Y96F RluA (5 µM) was incubated with an excess of ASL (50 µM), and 
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the product was monitored over time by reverse-phase HPLC. The results showed that 

roughly 10% conversion of U to Ψ, which means only a single turnover occurred after 6 h 

incubation. The slow rate of reaction indicated longer incubation times are required for 

Y96F RluA to produce detectable Ψ, and thus the Tyr might not be essential for activity 

but does facilitate at least one step of the reaction.  

Incubation of Y96F RluA with a two-fold excess of [F5U]ASL results in the 

formation of an adduct as observed on denaturing SDS-PAGE. However, only ~40% of 

the enzyme formed an adduct. The HPLC analysis performed in parallel to the gel 

analysis revealed 75% of [F5U]ASL is converted into its hydrated product, which is more 

than a single turnovers. These results showed that Y96F RluA is not completely driven 

into the adduct as judged by SDS-PAGE. This behavior of Y96F RluA could arise for 

two possible reasons. First, Y96F RluA may adopt a specific conformation to bind RNA, 

and only a part of the protein exists in such a conformation at any given time. Second, an 

adduct may form between F5U and Tyr-96 instead of the conserved Asp, just like the 

covalent bond between F5U and Tyr-140 of RluB [47].  

 Based on the observations reported here, it seems that Tyr-96 plays a very 

important but not essential role in enzyme activity period. The slow rates of reactions and 

higher concentration of Y96F RluA needed for any reaction indicates that Tyr-96 may 

provide binding stability or facilitates glycosidic bond cleavage by donating a proton or a 

hydrogen bond to the uracil(ate). Since the anion of 5-florouracil is a better leaving group 

than the anion of uracil, the glycosidic bond of F5U can undergo cleavage without the 

assistance provided by Tyr-96, thus explaining the slower reaction of ASL than 

[F5U]ASL when incubated with Y96F RluA. 
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CHAPTER III 

MECHANISTIC INVESTIGATION OF RluA AND TruB 

 USING RNA CONTAINING 4-THIOURIDINE 

	
3.1 Introduction  

Pseudouridine synthases are the enzymes that catalyze an isomerization reaction 

of specific U residues to Ψ in RNAs [1, 2]. Ψ synthases are classified into six families 

that share minimal sequence similarity with each other. However, crystal structures of all 

six families reveal that they share a common fold with a core β-sheet along with several 

conserved active site amino acid residues and therefore they likely share a common 

mechanism [48]. 

Researchers have used RNA containing 5-fluorouridine as a mechanistic probe. 

Studies of the interaction of TruB and RluA with [F5U]RNA revealed that TruB does not 

form a covalent adduct with [F5U]RNA but RluA does [36]. However, both enzymes 

convert F5U to rearranged and hydrated products. Two peaks in the HPLC analysis 

showed that TruB generates two products of F5U, but RluA generated only one product 

peak from F5U, which differed from either of the TruB product peaks [29, 36].  Mass 

spectrometric analysis and the observation of two resonances in the 31P NMR spectrum 

confirmed that both TruB products were isolated as dinucleotides containing the cytidine 

that follow F5U in [F5U]TSL [38]. The dinucleotide products can explain the difference 
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in HPLC retention times between the RluA and the TruB products peaks since uridine 

rather than cytidine follows F5U in [F5U]ASL. Subsequent NMR and MS experiments 

from the Mueller group revealed that RluA also converts F5U into two products. They are 

both dinucleotides with uridine and are very similar to the TruB products, confirming that 

both enzymes generate the same two isomeric products from F5U [38]. NMR experiments 

by Miracco and Mueller showed that both products of F5U from the action of TruB and 

RluA differ at C2′ of the pentose ring rather than in the pyrimidine ring: the major 

product of F5U is the ribo isomer, and the minor product is the arabino isomer [39]. The 

change in configuration at C2′ requires deprotonation to form a glycal intermediate, 

followed by reprotonation from the “top” and “bottom” face to afford the ribo and 

arabino products. The deprotonation at C2′ can be achieved by the conserved Asp or O2 

of the pentose ring; however, since O2 seem to be unable to access the “bottom” face of 

the glycal intermediate, the proton from O2 then must migrate to the conserved Asp to 

reprotonate the glycal intermediate from the “bottom” face to generate the arabino 

product. Cocrystal structures show that the O2 is located right above C2′ of the glycal 

intermediate where it can possibly act as a base to deprotonate C2′ [41].  

In this chapter, the isomerized U is replaced by 4-thiouridine (s4U) in order to test 

if O2 is a general base of the glycal mechanism. Some bacteria have s4U at position 8 in 

tRNA, and it serves as a sensor for near-UV light [49]. The lower pKa for s4U (8.2) 

relative to U (9.2) reflects the greater stability of the anion of 4-thiouracil than the anion 

of uracil; hence the leaving group is better for s4U than U, which increase the rates of 

reaction. However, the lower pKa for s4U also makes the 4-thiouracil(ate) a weaker base 

than uracil(ate), thus making it harder to deprotonate C2′ and slowing the rate of reaction. 
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Because the overall rate of the reaction depends on leaving group departure and 

deprotonation of C2′, a slower rate of reaction will indicate O2 is a general base since 

leaving group departure should be faster with s4U. As an essential first step, RNA 

containing s4U needs to be verified as a good substrate for Ψ synthase. Therefore, assays 

of s4U with TruB and RluA were performed. Both intact and digested of [s4U]TSL and  

[s4U]ASL were analyzed by reverse-phase HPLC after incubation with TruB and RluA, 

respectively.  

3.2 Experimental 

3.2.1 Materials 

Competent BLR(DE3) pLysS E. coli cells were purchased from Novagen 

(Madison, WI). A CLIPEUS C8 5-µm column (250 ´ 4.6 mm) was purchased from 

Higgins Analytical, Inc. (Mountain View, CA), and a Zorbax analytical SB-C18 5-µm 

column (50 ´ 4.6 mm) was purchased from Agilent (Santa Clara, CA). Ni-NTA 

superflow resin and QIAprep Spin Mini prep kits were purchased from Qiagen 

(Chatsworth, CA). S1 nuclease and calf intestinal alkaline phosphatase were purchased 

from Promega (Madison, WI). Oligonucleotide [s4U]ASL (5′-GGGGAs4UUGAAAAU-

CCCC-3′) and [s4U]TSL (5′-CUGUGUs4UCGAUCCACAG-3′) were purchased from 

Thermofisher Dharmacon (Lafayette, CO). Ultra-pure deionized water was obtained 

using a Millipore® Milli-Q integral system (Billerica, MA) equipped with a 0.2 µm filter. 

Laemmli buffer (2´) was 120 mM Tris•HCl buffer, pH 6.8, containing SDS (4%, w/v), 

glycerol (20%, v/v), and bromophenol blue (0.02%, w/v). RNA loading dye (2´) was 

95% aqueous formamide containing bromophenol blue (0.025%, w/v), xylene cyanol 

(0.025%, w/v), and EDTA (0.5 mM).  
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3.2.2 Overexpression and purification of wild-type RluA and TruB 

Overexpression and purification of wild-type RluA. An overnight culture of 

BLR(DE3) pLysS/pΨ746 was grown and put through the protocol previously described 

for overexpression and purification of Y96F RluA (Chapter 2.2.2).  

Overexpression and purification of wild-type TruB. Purified, RNase-free TruB 

was generously provided by A. Gibbs (University of Louisville).  

3.2.3 Deprotection and Purification of 2′-ACE RNA Oligonucleotides  

ASL containing 4-thiouridine ([s4U]ASL) (5′-GGGGAs4UUGAAAAUCCCC-3′) 

and TSL containing 4-thiouridine ([s4U]TSL) (5′-CUGUGUs4UCGAUCCACAG-3′) 

were purchased from Thermofisher Dharmacon (Lafayette, CO). The [s4U]ASL and 

[s4U]TSL were deprotected  and purified as described above (Chapter 2.2.3). The final 

[s4U]ASL and [s4U]TSL concentration were determined using A260  and extinction 

coefficients (170,500 M-1cm-1 and 162,800 M-1cm-1, respectively) provided by 

Dharmacon. 

3.2.4 Assay of RluA and ASL containing 4-thiouridine 

Reaction of [s4U]ASL. The reaction mixture (200 µL) was 50 mM HEPES buffer, 

pH 7.5, containing sodium chloride (175 mM), DTT (5 mM), EDTA (1mM), RNase 

inhibitor (30 units), and [s4U]ASL (10 µM). After pre-equilibration at 37 ˚C, the reaction 

was initiated by the addition of RluA (to 10 µM). Aliquots (75 µL) were removed after 

3 h and immediately added to quench solution (25 µL), which was 0.5 M sodium 

phosphate buffer, pH 7.5, containing sodium chloride (0.5M), then heated at 97 ˚C for 

10 min. The quenched aliquots were passed over G-25 spin columns that had been pre-

equilibrated with 125 mM sodium phosphate buffer, pH 7.5, containing sodium chloride 
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(125 mM), then passed through a 0.2 µm filter before being analyzed by reverse-phase 

HPLC as described for intact ASL (Chapter 2.2.4). 

Digestion of [s4U]ASL. To confirm the formation of product, [s4U]ASL was 

digested after incubation with RluA. Aliquots (100 µL) were removed after 3 h and 

immediately heated at 97 ˚C for 10 min. The aliquot was spun for 10 min at 14,000g to 

pellet denatured protein, and the supernatant was transferred to a fresh tube and diluted 

into 50 mM sodium acetate buffer (100 µL), pH 4.5, containing sodium chloride 

(280 mM) and zinc chloride (4.5 mM). S1 nuclease (100 units) was added; after 1 h at 

37 ˚C, the digestion mixture was incubated at 100 ˚C for 5 min and then cooled on ice. 

Additional S1 nuclease (100 units) and alkaline phosphatase (5 units) were added, and the 

digestion mixture was incubated for an additional 3 h at 37 ˚C, then passed through a 

0.2 µm filter and analyzed by reverse phase HPLC as described for intact ASL 

(Chapter 2.2.4). 

3.2.5 Assay of TruB and TSL containing 4-thiouridine 

Reaction of [s4U]TSL. The reaction mixture (200 µL) was 50 mM HEPES buffer, 

pH 7.5, containing ammonium chloride (100 mM) and EDTA (0.1 mM), RNase inhibitor 

(30 units), and [s4U]TSL (10 µM). After pre-equilibration at 37 ˚C, the reaction was 

initiated by the addition of TruB (to 10 µM) and incubated for 3 h. The analysis followed 

the protocol as described for the reaction of ASL (Chapter 2.2.4).   

Digestion of [s4U]TSL. To confirm the formation of product, the digestion of 

[s4U]TSL after incubation with TruB was accomplished by the same method described 

previously for the digestion ASL (Chapter 2.2.4).  
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3.3 Results 

3.3.1 Assay of RluA and ASL containing 4-thiouridine 

	 In order to determine if [s4U]ASL is modified by RluA, [s4U]ASL (10 µM) was 

incubated with RluA (10 µM) at 37 ˚C for 3 h and analyzed by reverse-phase HPLC. The 

HPLC analysis revealed a shift to later retention time after incubation with RluA 

(Figure 3.1).  

 To ensure that the difference in chromatographic behavior of [s4U]ASL after 

incubation with RluA arose from alteration of the s4U, [s4U]ASL was digested to free 

nucleosides before and after incubation with RluA and the products were analyzed by 

reverse-phase HPLC. With detection at 260 nm, C, U, G, s4U, A were observed with the 

s4U peak greatly diminished, and a new peak (10 min) appeared after reaction. With 

detection at 330 nm, s4U (16.5 min) appeared before incubation with RluA, but the s4U 

was essentially replaced by four sizable peaks, with the largest product peak (10 min) at 

the same retention time as the new peak detected at 260 nm. These results show that 

RluA acts on [s4U]ASL, but the identity of the products needs to be investigated further. 
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Figure 3.1: HPLC analysis of [s4U]ASL before (green) and after (blue) incubation 

with RluA. The peak at 16.1 min and 18.3 min are [s4U]ASL before and after 

incubation with WT RluA, respectively. 

	

	

Figure 3.2: HPLC analysis of the nucleosides resulting from digestion of [s4U]ASL 

before (red) and after (black) incubation with RluA. The stars indicates the location 

of the new peaks. 
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3.3.2 Assay of TruB and TSL containing 4-thiouridine 

To investigate further whether results with RluA and [s4U]ASL are common to 

another family of Ψ synthases, the same set of reactions were performed with E. coli 

TruB and [s4U]TSL. HPLC analysis showed that incubation with TruB slightly shifts 

[s4U]TSL to a shorter retention time (18.3 min) compared to unreacted [s4U]TSL 

(18.7 min) (Figure 3.4). To make sure that the change in [s4U]TSL was due to reaction of 

s4U, [s4U]TSL both before and after incubation with TruB was digested to free 

nucleosides, which were characterized by HPLC. With detection at 260 nm, C, U, G, s4U, 

A were observed after reaction, but the s4U peak was replaced by two new peaks (13 and 

19.5 min). With detection at 330 nm, s4U (16.5 min) appeared before incubation with 

TruB but was essentially replaced by four sizable peaks (8, 10, 13, and 19.5 min) after 

incubation. These results show that TruB acts on [s4U]TSL, but the identity of the 

products needs to be further investigated. 
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Figure 3.3: HPLC analysis of [s4U]TSL before (green) and after (blue) incubation 

with TruB. The peak at 18.7 min is [s4U]TSL before incubation with TruB, and the 

peak at 18.3 min is [s4U]TSL after incubation with TruB. 

 

Figure 3.4: HPLC analysis of the nucleosides resulting from digestion of [s4U]TSL 

before (red) and after (black) incubation with TruB. The stars indicates the location 

of the new peaks. 
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                                       s4U                                                             s4Ψ 

 

Figure 3.5: The isomerization of s4U to s4Ψ. 
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Figure 3.6: A, the arabino-s4Ψ product. B, the arabino-s4U product. 
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A                                                                             B 

                              

                  RluA product                                                               TruB product 

Figure 3.7: A, The ribo- s4Ψ product from the action of RluA. B, Dinucleotide 

product from the action of TruB. 

 

 

 

Figure 3.8: The spectra of new peaks from the action of RluA. 

HN NH

O

SO

RNAO

RNAO

OH

HN NH

O

SO

P
O

O
O

N

ONO

OH OH

NH2

HO



	 45

 

 

Figure 3.9: The spectra of new peaks from the action of TruB.  

 

3.4 Discussion 

Studies of the interaction of TruB and RluA with [F5U]RNA revealed that both 

enzymes convert F5U into two products, and the difference between them is at C2′ of the 

pentose ring: the major product is the ribo isomer whereas the minor product is the 

arabino isomer [39]. To explain the arabino product of F5U, C2′ must be deprotonated 

followed by reprotonation from the opposite face. The deprotonation at C2′ can be 

achieved either by the conserved Asp or O2 of uracil. O2 is positioned directly above C2′, 

which is a good position to act as base to generate the glycal intermediate [41]. However, 

O2 seems to be unable to access the “bottom face” of the glycal intermediate, so the 

proton must migrate from O2 to the conserved Asp in order to reprotonate from the distal 

face. To determine whether O2 is the general base, the reaction of RNA containing s4U 
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([s4U]RNA) in place of U was used. To ensure that [s4U]RNA can act as a substrate, 

assays of TruB and RluA with [s4U]RNA were performed and analyzed by reverse-phase 

HPLC. Intact [s4U]RNA shifted to later and shorter retention times after incubation with 

RluA and TruB, respectively, and peak integration indicated that all of the [s4U]RNA 

reacted. Traces of the digestion products of [s4U]RNA after incubation with the two 

enzymes showed the new peaks that absorbed more strongly at 330 nm than 260 nm. 

These results indicate that both RluA and TruB act on [s4U]RNA, and thus [s4U]RNA 

can be handled as a substrate. The product is expected to be 4-thiopseudouridine (s4Ψ; 

Figure 3.5).  

The action of RluA replaced the s4U peak with four sizable peaks (8, 10, 15, and 

18 min). Because s4Ψ is more polar than s4U, s4Ψ should elute earlier in reverse phase 

HPLC, which agrees with the tentative assignment of the largest product peak (10 min; 

Figure 3.2) as s4Ψ (Figure 3.7A). That peak (10 min) also absorbs more strongly at 

330 nm than 260 nm, which is consistent with the assignment (Figure 3.8). The identities 

of the minor products (8 and 15 min; Figure 3.2) are less sure, but based on the precedent 

of [F5U]RNA [26], one may be arabino-s4Ψ (Figure 3.6A) and the other arabino-s4U 

(Figure 3.6B). The latter is rationalized because sulfur is larger than oxygen, so the 

rotation of 4-thiouracil(ate) in the active site may be harder than for uracil(ate), leading 

N1 to attack C1′ of the glycal intemadiate with reprotonation from “bottom” face.  

Similar to the results with RluA, the s4U peak was replaced with four sizable 

peaks (8, 10, 13, and 19.5 min) after incubation with TruB. The peak at 19.5 min has an 

absorbance maximum at 285 nm, so it does not contain a 4-thiouracil chromophore 

(Figure 3.9). Among the other three peaks 8, 10, 13 min with ratio of 9:1:10, respectively; 
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the spectrum of the peak at 13 min shows two peaks with absorbance maxima at 270 nm 

and 330 nm (Figure 3.9), which are characteristic of cytidine and s4U and therefore 

suggests that the s4U product at 13 min formed by the action of TruB is a dinucleotide of 

an s4U product with the cytidine residue that follows s4U in [s4U]TSL (Figure 3.7B). The 

peaks at 8 and 10 min seem to elute at the same retention time as peaks at 8 and 10 min 

on the action of RluA. Also, the spectra of the two peaks show they are not dinucleotides 

(Figure 3.9), thus the peak at 8 may be arabino-s4Ψ or arabino-s4U, and the peak at 

10 min is tentatively assigned as s4Ψ. To confirm the different products, liquid 

chromatography-mass spectroscopy can be used since the dinucleotide product have 

higher molecular mass than mononucleotide. 1H-NMR can distinguish between arabino-

s4Ψ or arabino-s4U and s4Ψ product. 

 Once the products are identified, the full kinetic characterization of RluA and 

TruB with [s4U]RNA substrate will be performed in order to compare the difference in 

rates of the reaction catalyzed by RluA and TruB with natural substrate versus 

[s4U]RNA. A slower rate with [s4U]RNA will imply O2 is the general base, but a faster 

rate will not. 
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