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ABSTRACT 

 

THE COMPARATIVE CYTOTOXICITY AND GENOTOXICITY OF 
HEXAVALENT CHROMIUM IN HUMANS AND SEA TURTLES 

 
Rachel M. Speer 

 
June 14, 2017 

 

Monitoring the health effects of environmental contaminants can be achieved using 

sentinel species as models. Leatherback sea turtles (Dermochelys coriacea) are 

an endangered marine species that may experience prolonged exposures to 

environmental contaminants including hexavalent chromium [Cr(VI)]. While Cr(VI) 

has been identified as a known human carcinogen, the health effects in marine 

species are poorly understood. In this study the cytotoxic and genotoxic effects of 

particulate and soluble Cr(VI) were assessed in leatherback lung cells and 

compared to those in human lung cells. Cr(VI) induced a concentration-dependent 

increase in cytotoxicity and genotoxicity in leatherback lung cells indicating Cr(VI) 

may be a health concern for leatherbacks and other long-lived marine species. 

Additionally, these results were comparable to those in humans. Based on these 

results leatherbacks are an ideal model species for monitoring the health effects 

of Cr(VI) and therefore serve as an indicator species for environmental human 

exposures. 
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CHAPTER 1: INTRODUCTION 

1.1 The One Health Approach 

The One Environmental Health approach incorporates considerations of the health 

of humans, wildlife, and the ecosystem to gain a comprehensive view of total 

health (Figure 1). Wildlife species are commonly used as sentinels to monitor the 

health of the environment [1-4]. Specifically, the application of studying marine 

species provides a look into the health of the oceans and potential threats that may 

be affecting both wildlife species and humans [5-7]. The One Health concept aims 

to incorporate these interdisciplinary approaches and diverse research 

perspectives to consider all aspects of health.  

While the focus of One Health has heavily been on infectious disease this 

approach is being increasingly expanded to toxicological research. There have 

been many case reports of poisoning events and toxicological monitoring using 

wildlife species around the world. For example, cattle and horses in Minnesota in 

the 1960s were found to have lead poisoning leading to close monitoring of the 

human population [8]. Similarly, dichlorodiphenyltrichloroethane (DDT) and 

polychlorinated biphenyls (PCBs) have been widely documented in marine 

mammals to evaluate environmental contamination and to assess human health 

risks [9]. Here, the One Health approach was applied using leatherback sea turtles 

as a model species to understand the threat of metal pollution to them, to monitor 
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the health of the oceans, and to better understand human health in the 

environment. 

 

 

Figure 1. One Health Approach  

This figure shows a schematic of the One Health Approach including areas of study 
in each related field. This figure demonstrates that there are multiple areas of 
research that can be utilized together to gain an overall view of one health. 

 

1.2 Chromium Exposure 

Chromium (Cr) is a metal that is found naturally in the Earth’s crust and which has 

many desirable properties such as its hardness, resistance to corrosion, and bright 

colors [10]. It is widely used in many applications such as a coloring agent for 

paints and dyes, chrome plating, leather tanning, an anticorrosive agent for boats, 

aircraft, and military equipment, and it is a component of alloys used in joint 

replacement prosthetics [11,12]. As Cr is widely used in these applications 

exposure to it can be widespread. Humans and wildlife species may be exposed 
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to Cr in the environment, while humans risk additional exposure in occupational 

settings where Cr is used.  

 

 

Figure 2. Physico-Chemico Properties of Chromium 

This figure shows the two main properties of chromium that determine its 
toxicological effects including valence state and solubility. Cr(III) does not readily 
enter the cell because it binds ligands in the body making a bully molecule. Cr(VI), 
however, uses anion transport to readily enter cells where it is reduced to Cr(III). 

 

There are two main chemical-physico properties that affect the risks associated 

with Cr exposure; valence state and solubility (Figure 2). There are seven oxidation 

states of Cr, of which only elemental [Cr(0)], trivalent chromium [Cr(III)], and 

hexavalent chromium [Cr(VI)] are stable in the environment [13]. Aside from 

elemental Cr, Cr(III) is the form commonly found in the environment and is 

generally considered to be safe to human health. The chemical structure of Cr(III) 

promotes it to bind to molecules extracellularly making it a bulky molecule unable 

to enter cells readily [14].  
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Cr(VI) is almost exclusively found in the environment as a result of human activities 

such as the burning of fossil fuels and other industrial processes. The structure of 

Cr(VI) mimics that of sulphate and phosphate groups. Therefore, chromate utilizes 

anion transport channels to enter cells though facilitated diffusion [14]. Once inside 

the cell, Cr(VI) is rapidly reduced by several different factors including ascorbate, 

NADPH, and glutathione to Cr(III) [15]. During this process reactive oxygen 

species (ROS) are released and the Cr ion passes through two oxidation states 

Cr(V) and Cr(IV) before reaching stability as Cr(III) [15]. This reduction process of 

Cr(VI) to Cr(III) is thought to be responsible for the toxicities and carcinogenic 

effects associated with Cr(VI) exposure. 

 

Figure 3. Intracellular Reduction of Hexavalent Chromium 

This figure demonstrates the reduction process of Cr(VI) to Cr(III) that occurs 
intracellularly. This process results in the formation of reactive oxygen species and 
transient Cr intermediates including Cr(V) and Cr(IV) before reaching stability as 
Cr(III). 

 

The second property that affects the risk of Cr(VI) exposure is solubility. Cr 

compounds range from completely soluble to insoluble with various degrees of 

solubility in between. Many metals including Cr have been shown to have different 

Cr(VI) is reduced by a reductant 
decreasing its oxidation state in 

one or two steps. 

 

Reactive oxygen species and 
transient Cr intermediates are 

formed. 



 

5 
 

effects based on solubility [16-18]. For example, particulate Cr(VI) rather than 

soluble Cr(VI) is considered to be the most carcinogenic form. The rationale behind 

the higher carcinogenicity of particulate Cr(VI) is that particulate Cr(VI) deposits at 

sites in the body and does not rapidly dissolve leading to prolonged exposures 

[11]. Specifically, the deposition of particulate Cr(VI) and its slow release as it 

dissolves is associated with Cr(VI)-induced lung cancer [11]. 

Exposure to Cr(VI) occurs predominantly through inhalation and ingestion and to 

a lesser degree dermal absorption [11]. Therefore, the health risks associated with 

Cr(VI) exposure follow accordingly. Cr(VI) is known to cause many respiratory 

effects such as asthma, chronic bronchitis and inflammation, ulceration of the 

nasal mucosa, and congestion [11]. Cr(VI) is a known human lung carcinogen 

inducing lung tumors characterized by genomic instability, and this outcome is well 

documented in chromate workers [19-21]. Furthermore, additional Cr(VI) health 

risks include developmental issues and immune system effects as well as renal 

and hepatic impairments [11,22,23].  

One area of recent and growing concern is low level, lifetime exposures that put 

both humans and wildlife, including leatherback sea turtles, at risk. The health 

status of the oceans has recently been changing at a faster rate due to climate 

change leading to concerns such as ocean acidification [24]. This process may 

lead to the release of hazardous compounds, such as Cr(VI), deposited in ocean 

sediments [25-27]. Hazardous compounds released from the sediments may 

suspend in the water column where leatherback sea turtles, a pelagic species, 

spend a majority of their time [28]. In addition to being released from ocean 
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sediments Cr(VI) is also released into the environment through the burning of fossil 

fuels and other industrial processes [10,29-31]. Ultimately Cr(VI) released in this 

manner can travel through air currents around the world with the potential to settle 

in the oceans.  

1.3 Leatherback Sea Turtles 

Leatherback sea turtles (Dermochelys coriacea) are a large and long lived marine 

reptile that spend the entirety of their lives in the ocean except for when females 

lay their eggs. Leatherbacks are found throughout all of the world’s oceans and 

commonly travel long distances during their lives. The extended amount of time 

leatherbacks spend in the ocean subjects them to exposure to pollutants and 

contaminants that may be present [32-38]. These pollutants have the potential to 

lead to detrimental health effects including reproductive issues [34,38,39]. 

Furthermore, leatherbacks may bioaccumulate environmental contaminants 

exacerbating health issues caused by exposure to environmental contaminants 

including Cr(VI). 

It is important to study the potential effects of environmental contaminants on 

leatherback sea turtles in order to understand the potential impact on the health of 

their population, the health of their environment, and to gain insight into human 

health. Leatherback sea turtles are an endangered species and face many 

pressures due to human activity [40,41]. In addition to the health impacts from 

exposure to human-derived contaminants leatherback sea turtles face threats 

including plastic in the oceans, fishing entanglement, and habitat degradation 
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[42,43]. Finally, reptiles tend to be more sensitive to chemical exposures in the 

environment and therefore serve as early indicators of toxic events [44]. 

Since leatherback sea turtles may experience prolonged exposure to Cr(VI) in the 

marine environment through the air, water, and food sources it is important to 

understand the potential health implications of this potential exposure. Several 

studies have investigated metal levels in leatherback sea turtles around the world 

and found their tissues can accumulate metals such as mercury, cadmium, lead, 

and arsenic [34-38,43-47]. To my knowledge only one study has investigated Cr 

levels in leatherback sea turtles, but did not measure Cr levels in lung tissue [47]. 

However, one study showed that in tissues of adult and young loggerhead sea 

turtles (Caretta caretta) Cr accumulated in the highest concentrations in the lung 

[48]. Another study found that Cr levels in the yolk of eggs from green sea turtles 

(Chelonia mydas) were considered above normal compared to levels observed in 

mammals and birds, however the effects of these levels remain unknown [49].  

Previously, the Wise Laboratory found Cr(VI) was both cytotoxic and genotoxic to 

another sea turtle species, the hawksbill sea turtle (Eretmochelys imbricate) [7,50]. 

Additionally, no studies so far have investigated the effect of Cr(VI) in leatherback 

sea turtles. Therefore, in this study the cytotoxic and genotoxic effects of Cr(VI) in 

leatherback sea turtle lung cells were investigated and these effects were 

compared to those in human lung cells. These data will provide insight to the 

potential health effects of Cr(VI) to leatherback sea turtles and how they relate to 

human health. The data are presented in two sets. The first set encompasses a 

comparison between three chromate compounds, including both soluble and 
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particulate forms, in leatherback sea turtles. The second data set is a comparison 

of the effects of one particulate chromate compound between leatherback sea 

turtle and human lung cells. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Chemicals and reagents 

DMEM/F12 (1X), phosphate-buffered solution (PBS) 1X without calcium or 

magnesium, Corning glutaGRO supplement (200 mM), tissue culture dishes, 

flasks and plasticware were purchased from Corning (Corning, NY). Sodium 

pyruvate (100 mM) was purchased from Lonza (Allendale, NJ). Gurr's buffer and 

0.5% trypsin-EDTA (10X), and 0.25% trypsin-EDTA were purchased from Life 

Technologies Corp (Carlsbad, CA). Crystal violet and acetic acid were purchased 

from J.T. Baker (Phillipsburg, NJ). Lead chromate (CAS#7758-97-6), sodium 

chromate (CAS#7775-11-3), and demecolcine were purchased from Sigma-

Aldrich (St. Louis, MO). Potassium chloride (KCl) and zinc chromate was 

purchased from Alfa Aesar (CAS#13530-65-9; ACS reagent minimum 98% purity, 

Alfa Aesar, Ward Hill, MA). Giesma stain was purchased from Biomedical 

Specialties Inc. (Santa Monica, CA). Seradigm premium grade fetal bovine serum 

(FBS), Sodium dodecyl sulfate (SDS), and methanol were purchased from VWR 

International (Radnor, PA). Attachment factor was purchased from ThermoFisher 

Scientific (Waltham, MA). Trace-element grade nitric acid was purchased from 

Fischer Scientific (Hampton, NH). Cosmic calf serum (CCS) was purchased from 

Hyclone (Logan, UT).
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2.2 Cell line development and cell culture 

Leatherback sea turtle primary lung cells were established from explant lung tissue 

derived from a leatherback sea turtle embryo and named PGDC9-1LU cells. 

PGDC9-1LU cells were maintained as sub-confluent monolayers in DMEM/F12 

media supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% 

glutaGRO, and 0.1% sodium pyruvate. PGDC9-1LU cells were incubated in 5% 

CO2 at 26ºC and media were replaced with fresh, warm media every two to three 

days. Cells were subcultured every four to six days using 0.1% trypsin-EDTA. The 

cell line was evaluated for numerical and structural chromosome normality through 

subsequent passaging of the cells. All experiments were done in cells in passage 

20 or less, and no aneuploidy or cellular morphological changes were observed in 

untreated cells. 

Normal human lung fibroblasts (NHLFs) were used as a representative human 

lung cell line. NHLF cells are primary lung fibroblasts purchased from Lonza 

(Allendale, NJ; CAT# CC-2512, LOT NO: 0000511473). The cells came from a 37 

year old Caucasian man and the cells exhibit normal growth parameters and a 

normal karyotype. NHLF cells were maintained as a monolayer in DMEM/F-12 

supplemented with 15% CCS, 1% glutaGRO, 0.1mM sodium pyruvate, and 1% 

penicillin/streptomycin and fed every other day. Cells were subcultured every three 

to four days using 0.25% trypsin-EDTA. All experiments were maintained in a 

37°C, humidified incubator with 5% CO2. 
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2.3 Chromium preparation 

Sodium chromate (Na2CrO4) was used as a representative soluble Cr(VI) 

compound. Solutions of sodium chromate were weighed and dissolved in double-

distilled water (18). Appropriate dilutions for each treatment concentration were 

made, then filter sterilized through a 10 ml syringe with a 0.2 um filter. Sodium 

chromate is 100% soluble in water and was administered in micromolar (μM) 

concentrations. Final chromate concentrations in cell culture ranged from 0-10 μM 

sodium chromate for the soluble chromate treatments. 

Lead chromate (PbCrO4) and zinc chromate (ZnCrO4) were used as representative 

particulate Cr(VI) compounds and were administered as a suspension in water 

(18). Lead chromate and zinc chromate are insoluble in water and were therefore 

administered as weight per surface area (μg/cm2). Zinc chromate has a higher 

solubility factor than lead chromate and can therefore dissolve in cell culture media 

distinguishing it from lead chromate. Final chromate concentrations in cell culture 

ranged from 0-10 μg/cm2 for the lead chromate treatments and 0-0.4 μg/cm2 for 

the zinc chromate treatments; concentrations believed to be environmentally 

relevant ranges to which humans, sea turtles, and other wildlife species may be 

exposed. 

Suspensions of lead or zinc chromate particles were prepared by rinsing twice in 

double-distilled water to remove any water-soluble contaminants. Then the 

particles were washed twice in acetone to remove any organic contaminants. The 

washed particles were air-dried, weighed, and placed in double-distilled water in a 
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borosilicate scintillation vial and stirred overnight with a magnetic stir bar at 4°C. 

In previous studies by the Wise Laboratory these methods were shown to result in 

particles in the size range of 0.2-2.3 μm with a mean size of 2.7 μm [49,50]. During 

the preparation of the appropriate dilutions and during the treatment procedure the 

particles were kept in suspension using a vortex mixer. The dilutions were 

dispensed directly into cultures from these suspensions. 

2.5 Intracellular chromium ion measurements 

Intracellular chromium ion levels were determined by atomic absorption 

spectrometry (AAS).  Cells were seeded at a density of 700,000 cells in a 100-mm 

tissue-culture dish and allowed to grow for 48 h. Then the cells were treated with 

various concentrations of sodium chromate for 24 h or lead or zinc chromate for 0 

h, 24 h, or 120 h exposure periods. At the end of the treatment time 3 mL of media 

were collected using a 3 mL syringe and filtered through a 0.2 μm filter into new 

tubes. Two mL of filtered media were placed in fresh tubes and diluted with 2 mL 

of 2% trace element grade nitric acid. Then the remaining media were collected to 

account for any detached or loosely adherent cells. The cells were washed once 

with PBS and the PBS was also collected. Then, cells were removed using 0.1% 

trypsin-EDTA and the trypsin digestion was stopped using previously collected 

media. The cells were then centrifuged at 1000 rpm for 5 min and the supernatant 

was aspirated. The cells were resuspended in 4 mL of PBS and the cells were 

counted using a Beckman Coulter Multisizer III (17).  
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The cells were centrifuged again at 1000 rpm for 5 minutes and the supernatant 

was aspirated. The cell pellet was resuspended one more time in 4 mL PBS and 

centrifuged at 1000 rpm for 5 minutes. The supernatant was aspirated and the cells 

were placed in 1 mL of a hypotonic solution of 0.075 M KCl for 5 minutes followed 

by 1 mL of 2% SDS to lyse the cells for 15 minutes. The cell solution was then 

sheered through an 18 gauge needle seven times and filtered through a 0.2 μm 

filter. Then 1.5 mL of the filtered cell solution were diluted in 2.5 mL 2% trace 

element grade nitric acid. Chromium ion concentrations were measured by AAS 

using a PinAAcle 900Z Atomic Absorption Spectrometer. Each experiment was 

repeated at least three times, and each sample was analyzed by AAS in triplicate. 

To account for the possibility that undissolved chromium particles may pass 

through the 0.2 μm filter 0 h treatments were performed for the particulate 

chromium experiments. The chromium ion concentrations from the 0 h treatment 

were subtracted from the 24 h treatment chromium ion concentrations. For all 

samples the corrected intracellular chromium ion concentrations were converted 

from μg/L to μM by dividing by the volume of the sample, the atomic weight of 

chromium, the number of cells in the sample, and the average cell volume 

determined by a Beckman Coulter Multisizer III. 

2.6 Cytotoxicity assay 

Cytotoxicity was determined using a clonogenic assay designed to measure a 

reduction in plating efficiency in treatment groups that can be compared to the 

control (Figure 4) (17). Cells were seeded at a density of about 1500 cells/cm2 in 
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a 6-well tissue-culture plate, and allowed to grow for 48 h. The cells were then 

treated for 24 h with various concentrations of sodium chromate or lead chromate. 

After the treatment time the media were collected to include any loosely attached 

mitotic cells, and the cells were rinsed once with PBS.  Then, cells were removed 

from the 6-well plate using 0.1% trypsin. Previously collected media was used to 

stop the enzymatic action of trypsin and the cell solutions were centrifuged at 1000 

rpm for 5 minutes. The media were aspirated and the pellet was resuspended in 5 

mL of fresh complete media.  

The cells were the counted using a Beckman Coulter Multisizer III and reseeded 

at colony forming density (1000 cells per dish) with 5 mL of media in 100-mm 

tissue-culture dishes pre-coated with attachment factor. The cells were allowed to 

grow until colonies were visible, approximately 2.5 weeks and were fed with warm, 

fresh media every 5 days during that time. When colonies had formed they were 

fixed with 100% methanol, stained with crystal violet and counted. There were four 

dishes per treatment group, and each experiment was repeated at least three 

times. The results are expressed as relative survival derived from the number of 

colonies within a treatment group divided by the number of colonies in the negative 

control. 

2.7 Clastogenicity assay 

Clastogenicity was measured using a chromosome aberration assay (17). Cells 

were seeded at a density of 700,000 cells in 100-mm tissue-culture dishes and 
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allowed to grow for 48 h. The cultures were then treated with various 

concentrations of sodium chromate, lead chromate, or zinc chromate for 24 h or 

 

 

 

 

Figure 4. Cytotoxicity Assay 

This figure shows representative images of stained cytotoxicity dishes where 
colonies are visible. The dish on the left is the control and each dish to the right 
was treated with increasing concentrations of sodium chromate. With increasing 
concentrations of sodium chromate there are fewer colonies indicating cytotoxicity. 

 

120 h exposure periods. Five hours (sea turtle cells) or one hour (NHLF cells) 

before the end of the treatment time, 0.1 μg/ml demecolcine was added to arrest 

the cells in metaphase.  

After the exposure time the media was collected from each dish to include any 

loosely adherent mitotic cells, and the cells were rinsed once with PBS. Then the 

cells were removed from the dishes using 0.1% trypsin. Previously collected media 

was used to stop the enzymatic action of trypsin and the cell solutions were 

centrifuged at 1000 rpm for 5 minutes. The supernatant was aspirated and the 

pellet was resuspended in 10 mL of 0.075 M potassium chloride hypotonic solution 

for 17 minutes in order to swell the cells. Then 1 mL of methanol: acetic acid (3:1) 

fixative was added to the hypotonic cell solution to prepare the cells for fixing. The 

cells were the centrifuged again at 1000 rpm for 5 minutes and the supernatant 

Control         0.5 μM          1 μM            2.5 μM          5 μM  
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was aspirated. Then, 10 mL of methanol: acetic acid (3:1) fixative was slowly 

added to the resuspended cells. The cells were maintained in the fixative at 4 °C 

for at least 20 minutes, then the fixative was changed twice. Cells were then 

dropped on clean wet slides and stained using a 5% Geimsa stain in Gurr’s buffer.  

2.8 Chromosome scoring criteria 

One hundred individual metaphases per treatment concentration were analyzed 

(50 per scorer) in each experiment and each experiment was repeated at least 

three times (18). Clastogenesis was measured based on the number and 

frequency of chromosome aberrations. The various types of aberrations were 

pooled together in order to determine the total amount of damage in 100 

metaphases. Additionally, the percent of metaphases with any type of damage was 

also calculated. Specifically, metaphases were analyzed for various types of 

chromosome damage including chromatid lesions (gaps and breaks), isochromatid 

lesions (gaps and breaks), chromatid exchanges, dicentric chromosomes, ring 

structures, double minutes, acentric fragments, chromatid exchanges, and 

fragmented chromosomes (Figure 5). Metaphases were also analyzed for 

aneuploidy and metaphase damage including centromere spreading, 

endoreduplication, hypercondensation, premature centromere division, and 

premature anaphase (Figure 6).  
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Figure 5. Types of Chromosome Damage  

This figure illustrates several types of damage that are scored in the genotoxicity 
assay. For example, chromatid lesions occur where there is a break in one arm of 
the chromosome whereas an isochromatic lesion occurs where there is a break in 
both chromosome arms.  

 

Figure 6. Types of Metaphase Damage 

This figure shows representative images of the types of metaphase damage 
screened for in the genotoxicity assay including premature anaphase, premature 
centromere division, polyploidy, and endoreduplication. 
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2.9 Statistics 

Student's t-tests were conducted to determine statistical significance between data 

points. Results are presented as the mean ± standard error of the mean. Statistical 

significance was determined to be a p value less than 0.05. 
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CHAPTER 3: RESULTS – A COMPARISON OF THE CYTOTOXIC 
AND GENOTOXIC EFFECTS OF CHROMATE COMPOUNDS IN 

LEATHERBACK SEA TURTLES 

 

3.1 Particulate and Soluble Hexavalent Chromium Compounds are Cytotoxic to 

Leatherback Sea Turtle Lung Cells 

Cytotoxicity was measured using a clonogenic survival assay to determine the 

ability for cells to proliferate after exposure to chemicals. Exposure to particulate 

or soluble chromate induced a concentration-dependent decrease in relative 

survival in leatherback sea turtle lung cells after 24 h exposure (Figure 7A, 7B, and 

7C). Soluble sodium chromate exposures of 0.5, 1, 2.5, 5, and 10 μM reduced 

relative survival to 86.6, 62, 40.3, 17.4, and 4.4%, respectively. Particulate lead 

chromate exposures of 0.1, 0.5, 1, 5, and 10 μg/cm2 reduced relative survival to 

87.5, 66.2, 51.2, 18, and 6.3%, respectively. Particulate zinc chromate exposures 

of 0.1, 0.15, 0.2, 0.3, and 0.4 μg/cm2 reduced relative survival to 68.8, 56.4, 42.9, 

33.2, and 17.6, respectively.
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Figure 7: Particulate and Soluble Chromate are Cytotoxic to Leatherback Sea 
Turtle Lung Cells  
This figure shows 24 h exposure to particulate or soluble chromate reduced 
relative survival in a concentration-dependent manner. Data represent an average 
of at least three independent experiments ± standard error of the mean. 
*Statistically significant compared to control (p < 0.05). a) Sodium chromate b) 
Lead chromate c) Zinc chromate. 
 

3.2 Particulate and Soluble Hexavalent Chromium are Genotoxic to Leatherback 

Sea Turtle Lung Cells 

Next the genotoxicity of particulate and soluble chromate compounds was 

measured in leatherback sea turtle lung cells using a chromosome aberration 

assay. Both particulate and soluble chromate induced a concentration-dependent 

increase in genotoxicity in leatherback sea turtle lung cells (Figure 8A, 8B, and 

8C). Treatment with 24 h exposure to 0, 0.5, 1, 2.5, and 5 μM soluble sodium 

chromate resulted in 9, 15, 23.3, 31, and 35.3% of metaphases with damage and 

9.3, 17.3, 29.7, 40.7, and 50.7 total damage in 100 metaphases. Similarly, 0, 0.1, 
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0.5, 1, and 5 μg/cm2 particulate lead chromate for 24 h resulted in 10.3, 8, 16.7, 

23.7 and 31.3% of metaphases with damage and 14.3, 9.7, 21, 28, and 43.7 total 

damage in 100 metaphases. Finally, treatment with 24 h exposure to 0.1, 0.15, 

0.2, 0.3, and 0.4 μg/cm2 particulate zinc chromate resulted in 8, 19.3, 23.3, 27.3, 

34.7, and 38.7% of metaphases with damage and 11.3, 24.7, 32, 33.3, 48, and 

51.3 total damage in 100 metaphases. Treatment with the highest concentration 

for lead chromate and sodium chromate (10 μg/cm2 and 10 μM, respectively) 

tested in our cytotoxicity assays resulted in no metaphases in the genotoxicity 

assays indicating cell cycle arrest or failure to enter mitosis.  

Figure 8 
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Figure 8: Particulate and Soluble Chromate are Genotoxic to Leatherback 
Sea Turtle Lung Cells 

This figure shows after 24 h exposure particulate and soluble chromate induces a 
concentration-dependent increase in chromosome damage. No metaphases were 
observed at the highest concentration tested for particulate chromate (10 μg/cm2) 
or soluble chromate (10 μM). Data represent an average of three independent 
experiments ± standard error of the mean. *Statistically significant compared to 
control (p < 0.05). a) Sodium chromate. b) Lead chromate c) Zinc chromate. 
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Additionally, the total amount of damage in 100 metaphases was increased 

compared to the percent of metaphases with damage following both particulate 

and soluble chromate exposures. This outcome reflects that some cells contained 

more than one event of damage e.g. two chromatid breaks. A majority of the 

damage observed in the leatherback sea turtle lung cells following soluble or 

particulate chromate exposures were chromatid gaps or chromatid breaks (Table 

I, II, and III). Other more complex types of damage such as centromere spreading 

or dicentric chromosomes were either not observed or occurred at a very low 

frequency in the analysis, however there were slightly more complex types of 

damage in zinc chromate treated cells than the sodium chromate or lead chromate 

treated cells. 

3.3 Intracellular Chromium Ion Concentrations Increase Following Particulate or 

Soluble Hexavalent Chromium Exposure  

Cells use different mechanisms to import metals depending on the solubility of the 

metal and valence states. Therefore different concentrations of metal ions 

accumulate in cells following exposures. Additionally, soluble and particulate 

chromate differ in their units of measurement i.e. μM vs. μg/cm2, respectively. 

Intracellular levels of chromium following 24 h exposure to either soluble or 

particulate chromate in leatherback sea turtle lung cells were measured to 

investigate the possibility for differing intracellular accumulation. Intracellular 

chromium ion concentrations increased in a concentration-dependent manner 

after soluble or particulate chromate exposure in leatherback sea turtle lung cells 

(Figure 9A, 9B, and 9C). For example, 24 h exposure to 0, 0.5, 1, 2.5, 5, and 10 
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μM soluble sodium chromate intracellular chromium ion concentrations were 12, 

75, 142, 471, 868, and 1229 μM, respectively. Similarly, 0, 0.1, 0.5, 1, 5, and 10 

μg/cm2 particulate lead chromate resulted in intracellular chromium ion 

concentrations of 0, 1, 210, 399, 763, and 1076 μM, respectively. Finally, after 24 

h exposure to 0.1, 0.15, 0.2, 0.3, and 0.4 μg/cm2 particulate zinc chromate 

intracellular chromium ion concentrations were slightly lower than the other two 

chromate compounds at 0, 84, 150, 207, 262, and 381 μM, respectively.  

3.4 Chromate Compounds Induce Similar levels of Cytotoxicity and Genotoxicity 
Based on Intracellular Chromium Concentrations 

In order to compare particulate and soluble chromate exposures directly the 

cytotoxicity of particulate and soluble chromate were evaluated using the 

intracellular chromium ion concentrations determined by AAS. Based on these 

intracellular chromium ion concentrations soluble sodium chromate and particulate 

lead chromate induce similar levels of cytotoxicity (Figure 10A). However, cells 

treated with zinc chromate had similar levels of cytotoxicity but at much lower 

intracellular chromium ion concentrations. For example, for the second highest 

concentration of lead chromate tested, an intracellular chromium ion concentration 

of 763 μM reduced relative survival to 18% while an intracellular chromium ion 

concentration of 868 μM following the second highest concentration of sodium 

chromate reduced relative survival to 17.4%, and the highest dose of zinc 

chromate with an intracellular chromium ion concentration of 381 μM reduced 

relative survival to 17.6%. Therefore, zinc chromate induces similar levels of 

cytotoxicity at half the intracellular chromium ion concentration required by sodium 

or lead chromate at higher concentrations. 
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Figure 9. Intracellular Chromium Ion Concentrations Increase with 
Increasing Particulate and Soluble Chromate Treatment.  

This figure shows that with increasing particulate and soluble chromate treatments, 
intracellular chromium ion concentrations increase in a concentration-dependent 
manner. Data represent an average of at least three independent experiments ± 
standard error of the mean. *Statistically significant compared to control (p < 0.05). 
a) Sodium chromate. b) Lead chromate c) Zinc chromate. 

 

The genotoxicity of soluble and particulate Cr(VI) was measured using the 

intracellular chromium ion concentrations from the metal ion uptake assays. Lead 

chromate was slightly less genotoxic compared to sodium chromate at similar 

intracellular chromium ion concentrations (Figure 10B). For example, an 

intracellular chromium ion concentration of 399 μM following 24 h exposure to 

particulate chromate resulted in 23.7 percent of metaphases with damage while 

an intracellular chromium ion concentration of 471 μM following soluble chromate 

exposure resulted in 23.3 percent of metaphases with damage. Zinc chromate 
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induced similar levels of genotoxicity as lead chromate and sodium chromate at 

slightly lower intracellular chromium ion concentrations. For example, an 

intracellular chromium ion concentration of 262 μM following zinc chromate 

exposure induced 34.7 percent of metaphases with damage.  
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Figure 10: Particulate and Soluble Chromium Induce Varying Levels of 
Cytotoxicity and Genotoxicity in Leatherback Sea Turtle Lung Cells 

This figure shows that at similar levels of intracellular chromium ion concentrations 
particulate and soluble chromate induce a similar frequency of cells with damage 
and similar levels of total chromosome damage. a) Relative survival. b) Percent of 
metaphases with damage. Data represent an average of at least three experiments 
± standard error of the mean. 
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CHAPTER 4: RESULTS – A COMPARISON OF THE 
CYTOTOXICITY AND GENOTOXICITY OF PARTICULATE Cr(VI) IN 

HUMAN AND LEATHERBACK SEA TURTLE LUNG CELLS 

 

In this data set, the effects of particulate zinc chromate in leatherback sea turtle 

and human lung cells were compared directly. The two species were treated with 

the same concentrations of zinc chromate and assessed using the same 

parameters. Additionally, both acute, 24 h, and prolonged, 120 h, exposure periods 

were included in order to assess how these cell types may be affected temporally. 

This approach is especially important considering that particulate chromate 

exposures tend to be long term events.  

4.1 Particulate Hexavalent Chromium is Similarly Cytotoxic to Leatherback Sea 

Turtle and Human Lung Cells 

First, the cytotoxicity of zinc chromate was assessed using the clonogenic survival 

assay based on treatment concentrations. Exposure to zinc chromate induced a 

similar concentration-dependent decrease in relative survival in leatherback sea 

turtle and human lung cells after 24 and 120 h exposure (Figure 11A and 11B). 

Exposures of 0.1, 0.15, 0.2, 0.3, and 0.4 μg/cm2 zinc chromate for 24 h reduced 

relative survival to 68.6, 56.4, 42.9, 33.2, and 17.6%, respectively in the 

leatherback cells and 93, 87.9, 68.9, 41.4, and 23.8% respectively in the human 

cells. After 120 h exposure of 0.1, 0.15, 0.2, 0.3, and 0.4 μg/cm2 zinc chromate
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relative survival was reduced to 81.1, 68.3, 41, 15.5, and 3.7% respectively in 

leatherback cells and 82.5, 48.6, 47.4, 31.8, and 19.3 respectively in the human 

cells. 

Figure 11 
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Figure 11: Particulate Chromate is Cytotoxic to Leatherback Sea Turtle and 
Human Lung Cells  
This figure shows 24 or 120 h exposure to particulate zinc chromate reduced 
relative survival in a concentration-dependent manner in leatherback sea turtle and 
human lung cells. Data represent an average of at least three independent 
experiments ± standard error of the mean. *Statistically significant compared to 
control (p < 0.05). ▲Statistically significant between sea turtle and human (p < 0.05. 
a) 24 h b) 120 h. 

 

4.2 Exposure Time of Particulate Chromate has Different Effects in Leatherback 

Sea Turtle and Human Lung Cells 

Next the genotoxicity of zinc chromate in leatherback sea turtle and human lung 

cells was compared using the chromosome aberration assay. Zinc chromate 

induced a concentration-dependent increase in genotoxicity in both leatherback 

sea turtle and human lung cells after 24 and 120 h exposure (Figure 12A and 12B). 

Treatment with 24 h exposure to 0.1, 0.15, 0.2, 0.3, and 0.4 μg/cm2 zinc chromate 

resulted in 19.3, 23.3, 27.3, 34.7, and 38.7% of metaphases with damage in 

leatherback cells. After 24h exposure to 0.1, 0.15, 0.2, and 0.3 μg/cm2 zinc 

chromate in human cells the percent of metaphases with damage were 29.3, 35, 

38.7, and 45.7, respectively.  

After 120 h exposure to 0.1, 0.15, 0.2 and 0.3 μg/cm2 zinc chromate there were 

28, 31.3, 39.3, and 48% of metaphases with damage in leatherback lung cells, 

respectively. Treatment with 0.1, 0.15, 0.2 μg/cm2 zinc chromate in human lung 

cells resulted in 16, 19.3, and 28% of metaphases with damage, respectively. 

There were no metaphases after 24 h exposure to zinc chromate at the highest 

dose of 0.4 μg/cm2 in human lung cells, and after 120 h exposure there were no 

metaphases at this concentration in either cell line. Additionally, after 120 h 
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exposure to zinc chromate there were no metaphases in human cells at the 0.3 

μg/cm2 concentration.  

 

 

Figure 12. Particulate Chromate Induces Genotoxicity in Leatherback Sea 
Turtle and Human Lung Cells  
This figure shows 24 or 120 h exposure to particulate zinc chromate increases 
chromosome damage in a concentration-dependent manner in leatherback sea 
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turtle and human lung cells. At the highest dose after 24 h exposure and the 
highest two doses after 120 h exposure no metaphases (NM) were observed in 
human lung cells. Similarly, there were no metaphases at the highest dose after 
120 h exposure in leatherback sea turtle lung cells.  Data represent an average of 
at least three independent experiments ± standard error of the mean. *Statistically 
significant compared to control (p < 0.05). ▲Statistically significant between sea 
turtle and human (p < 0.05. a) 24 h b) 120 h. 

 

Based on these data, after 24 h exposure to zinc chromate human cells 

accumulate more damage and undergo cell cycle arrest at the highest 

concentration while the leatherback cells continue to accumulate damage. After 

120 h exposure leatherback cells accumulate more damage than human cells but 

do not undergo cell cycle arrest at levels of damage that this is seen in the human 

cells. Additionally, a majority of the damage observed following 24 or 120 h zinc 

chromate exposure in leatherback sea turtle and human cells were chromatid gaps 

or chromatid breaks (Tables III, IV, V, and VI). More complex types of chromosome 

damage were observed at low frequencies in the leatherback sea turtle cells, but 

these were slightly increased in the human cells. Finally, there appears to be no 

difference in the types of damage observed between the 24 and 120 h exposure 

treatments.  
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4.3 Intracellular Chromium Ion Concentrations are Similar in Leatherback Sea 

Turtle and Human Lung Cells Following Particulate Hexavalent Chromium 

Exposure  

Intracellular chromium ion concentrations increased in a concentration-dependent 

manner after 24 or 120 h zinc chromate exposure in leatherback sea turtle and 

human lung cells (Figure 13A and 13B). After 24 h exposure to 0, 0.1, 0.15, 0.2, 

0.3, and 0.4 μg/cm2 zinc chromate intracellular chromium ion concentrations were 

0, 84, 150, 207, 262, and 381 μM, respectively in leatherback sea turtle cells and 

0, 60, 108, 107, 280, and 236 μM in human lung cells, respectively. After 120 h 

zinc chromate exposure the levels of intracellular Cr were increased compared to 

the 24 h exposure experiments for both cell lines. For example, 0, 0.1, 0.15, 0.2, 

0.3, and 0.4 μg/cm2 zinc chromate resulted in intracellular chromium   ion 

concentrations of 0, 171, 281, 360, 706, and 1035 μM, respectively while in human 

lung cells the intracellular chromium ion concentrations were 0, 33, 77, 154, 482, 

and 502 μM. The 120 h human intracellular chromium levels are the result of two 

independent experiments rather than three due to machine malfunction. 

Additionally, the leatherback sea turtle cells contained higher levels of chromium 

after the 120 h exposure than human cells especially at higher concentrations.  
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Figure 13. Leatherback Sea Turtle and Human Lung Cells Accumulate Similar 
Levels of Intracellular Chromium after 24 and 120 h Exposure 

This figure shows that with increasing particulate zinc chromate treatments, 
intracellular chromium ion concentrations increase in a concentration-dependent 
manner after 24 and 120 h exposure in leatherback sea turtle and human lung 
cells. Data represent an average of at least three independent experiments ± 
standard error of the mean†. *Statistically significant compared to control (p < 
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0.05). a) 24 h. b) 120 h. †Data represent an average of two independent 
experiments for the human 120 h intracellular chromium ion concentrations. 

 

4.4 Particulate Hexavalent Chromium Induces Similar Trends in Cytotoxicity and 

Genotoxicity in Leatherback Sea Turtle and Human Lung Cells 

In addition to comparing the effects of zinc chromate based on treatment 

concentrations comparisons based on intracellular chromium ion concentration 

were also performed. Based on these intracellular chromium ion concentrations 

particulate zinc chromate induce similar levels of cytotoxicity (Figure 14A and 14B). 

For example, at the 24 h time point an intracellular chromium ion concentration of 

262 μM reduced relative survival to 33.2 percent in turtles while an intracellular 

chromium ion concentration of  280 μM following reduced relative survival to 41.4 

%, in humans.  
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Figure 14. Particulate Chromate Induces Similar Trends of Cytotoxicity in 
Leatherback Sea Turtle and Human Lung Cells. 

This figure shows that at similar levels of intracellular chromium ion concentrations 
particulate chromate induces similar trends in cytotoxicity in leatherback sea turtle 
and human lung cells. a) 24 h. b) 120 h. Data represent an average of at least 
three experiments ± standard error of the mean†. †Data represent an average of 
two independent experiments for the human 120 h intracellular chromium ion 
concentrations. 

 

Similar to the cytotoxicity, the genotoxicity of zinc chromate using the intracellular 

chromium ion concentrations measured by AAS was assessed. After 24 h 

exposure, zinc chromate was slightly more genotoxic to sea turtle lung cells 

compared to human lung cells (Figure 15A). For example, an intracellular 

chromium ion concentration of 150 μM resulted in 23.3 percent of metaphases with 

damage in sea turtle lung cells while an intracellular chromium ion concentration 

of 108 μM resulted in 35 percent of metaphases with damage in human lung cells. 

However, after 120 h exposure zinc chromate induced a very similar frequency of 

cells with damage in sea turtle and human lung cells. For example, at an 
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intracellular chromium ion concentration of 171 μM the percent of metaphases with 

damage was 28 in sea turtle lung cells while an intracellular chromium ion 

concentration of 154 μM also induced 28 percent of metaphases with damage in 

human lung cells.  
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Figure 15. Particulate Chromate Induces Similar Levels of Genotoxicity in 
Leatherback Sea Turtle and Human Lung Cells. 

This figure shows that at similar levels of intracellular chromium ion concentrations 
particulate chromate induces a similar frequency of cells in leatherback sea turtle 
and human lung cells. a) 24 h. b) 120 h. Data represent an average of at least 
three experiments ± standard error of the mean†. †Data represent an average of 
two independent experiments for the human 120 h intracellular chromium ion 
concentrations.  
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 CHAPTER 5: DISCUSSION 

 

In this study a One Health approach was used to address the health risks 

associated with the global environmental contaminant Cr(VI). The One Health 

approach is a research strategy that incorporates human health, wildlife health, 

and ecosystem health in order to establish a more comprehensive understanding 

of global health. Traditionally, the One Health approach has been used to 

investigate the spread of disease [1-4]. However, more and more this approach is 

being used to evaluate health risks associated with environmental contaminants. 

Environmental contaminants such as Cr(VI) are excellent candidates to study in 

the One Health approach because they often affect human health, wildlife, and 

ecosystem health independently as well as interdependently [53,54]. Cr(VI) for 

example is a known human lung carcinogen which also has reproductive, 

immunological, and developmental toxicities [11,22,23]. Human data on Cr(VI) 

toxicities provides insight into how Cr(VI) in the environment may be affecting the 

leatherback sea turtle population. Data concerning the levels of Cr in leatherback 

sea turtle tissues can provide information about environmental exposures to Cr(VI) 

and how they may contribute to human health. Finally, comparison studies 

between humans and wildlife species provide data that is informative for evaluating 

risk assessment and uncovering mechanistic differences between species that 

may lead to treatment therapies. In this study, the One Health approach provided
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intriguing and valuable data that will advance our understanding of Cr(VI) toxicities 

and carcinogenicity. 

The importance of studying Cr(VI) in the health of leatherback sea turtles is further 

exemplified by their critically endangered status [40]. Leatherback sea turtles face 

many anthropogenic challenges which include exposure to environmental 

contaminants [42,43,55,56]. These challenges may contribute to the low 

reproductive success rates of leatherback sea turtles or compromise their 

development. Indeed, only 1 in 1000 leatherback sea turtles reach reproductive 

age [38]. Additionally, leatherback sea turtle exposure to contaminants is 

potentially exacerbated by the fact that leatherbacks are large and long lived 

marine reptiles which increases their risk of repeated toxic insult and accumulation 

of contaminants. Accordingly, in this study Cr(VI) was evaluated in leatherback sea 

turtles using both acute and prolonged exposures.  

Only one study has measured Cr levels in leatherback sea turtle tissues, however 

this study did not evaluate Cr levels in the lung [47]. Interestingly, a hawksbill sea 

turtle study showed that the highest levels of Cr were in the lungs compared to 

liver, kidney, and muscle further suggesting sea turtles may be at risk to Cr(VI) 

exposure in the lung [48]. Leatherback sea turtles are air breathing animals who 

hold their breath for long periods of time during deep dives to forage which creates 

added pressures and potentially increases risks associated with Cr(VI) inhalation 

[28]. An interesting study reported marine animals may be exposed to higher levels 

of air pollutants because these pollutants have a tendency to concentrate at the 

water-air interface [57]. The pressure and extended period of time leatherbacks 
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hold their breath increases the amount of time the lung tissue may be exposed to 

airborne pollutants including Cr(VI). Furthermore, the lung is specifically known to 

be a target of Cr(VI) exposure, and in humans Cr(VI) is a known lung carcinogen 

[11]. This study is the first to investigate Cr(VI) in leatherback sea turtles. 

Considering the breathing behavior of leatherbacks, their potential inhalation 

exposure, and the fact that Cr(VI) is a lung carcinogen lung cells were used in this 

study. Previous studies have shown that metals such as cobalt, nickel, and Cr can 

have varying toxic effects based on the solubility of the metals [5,6,16,17,58,59]. 

Therefore, both soluble and particulate forms of Cr(VI) were included in the 

analysis to account for this possibility. 

The first goal of this study was to investigate the cytotoxicity of chromate 

compounds in leatherback sea turtle lung cells. All three chromate compounds, 

soluble sodium chromate, particulate zinc chromate, and particulate lead 

chromate, induced a concentration dependent increase in cytotoxicity after 24 h 

exposure. The levels of cytotoxicity caused by Cr(VI) exposure were assessed in 

a previous study using hawksbill sea turtle skin cells [50]. That study also found 

that both soluble and particulate Cr(VI) were cytotoxic in hawksbill sea turtles. The 

same assays were used to assess cytotoxicity in hawksbill sea turtles, however, 

when compared to our results in leatherback sea turtles, hawksbill sea turtles were 

slightly more sensitive the cytotoxic effect of Cr(VI) exposure. One other study 

evaluated Cr(VI) cytotoxicity in sea turtle cells [60]. That study measured the 

cytotoxicity of soluble Cr(VI) in green sea turtles and found that Cr(VI) IC50 values 

indicated high levels of cytotoxicity. The green sea turtle study included cell lines 
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from several different tissues including lung, liver, and testes which all showed 

similar trends. To summarize, the results reported in this study in leatherback sea 

turtle cells support the cytotoxicity data of the two other studies that have 

investigated Cr(VI) cytotoxicity in sea turtle cells that showed Cr(VI) compounds 

are cytotoxic to sea turtle cells.  

Next, the genotoxicity of chromate compounds was investigated in leatherback sea 

turtle lung cells in order to understand further the underlying mechanisms of Cr(VI) 

toxicity in leatherback sea turtles. A chromosome aberration assay directly 

revealed that soluble and particulate chromate compounds were genotoxic to 

leatherback sea turtle cells. All three chromate compounds induced a 

concentration-dependent increase in chromosome damage following 24 h 

exposure. This finding suggests that Cr(VI) may have serious implications in the 

genomic integrity of leatherback sea turtle cells. The genotoxicity of Cr(VI) was 

also assessed in the hawksbill sea turtle study which showed a similar trend in 

response observed in the leatherback sea turtles [50]. However, in the hawksbill 

sea turtle study there were no metaphases at 5 μM sodium chromate and 5 μg/cm2 

lead chromate whereas in leatherback sea turtles chromosome damage continued 

to increase. This result indicates that while Cr(VI) compounds have similar 

genotoxic effects across sea turtle species, there are slight differences in the levels 

of toxicity that remain to be understood. 

Cr(VI) compound toxicities are dependent on the internalization and subsequent 

reduction of Cr(VI) to Cr(III) [61]. Additionally, previous studies have shown that 

the uptake of Cr(VI) is dependent on the chromate compound, the species, and 
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also the tissue from which cells are derived [5,6,7,21]. Since this study was the 

first to evaluate Cr(VI) specifically in leatherback sea turtle cells the internalization 

of Cr in leatherback sea turtle lung cells was investigated. Twenty four hour 

exposure to all three chromate compounds resulted in a concentration-dependent 

increase in intracellular Cr ions in leatherback sea turtle lung cells. This result 

proves that Cr(VI) can enter leatherback sea turtle lung cells where it has its toxic 

effects. Interestingly, there were higher levels of intracellular Cr ion concentrations 

following sodium chromate and lead chromate exposure compared to zinc 

chromate. However, the reason behind this difference is not yet known. The 

intracellular chromium ion concentrations reported here in leatherback sea turtle 

cells follows a trend similar to that which was previously reported in hawksbill sea 

turtle cells [50]. However, the intracellular Cr ion concentrations in hawksbill skin 

cells was much lower than those reported in this study in leatherback sea turtle 

cells. This may be due to species or cell type differences and further indicates that 

there are mechanisms of Cr(VI) toxicity that remain elusive. This is contrary to 

results following lead chromate exposure which resulted in very similar levels of 

intracellular Cr ion concentrations in both leatherback and hawksbill sea turtle 

cells. Finally, a study that investigated soluble and particulate Cr(VI) in alligator 

cells found that they accumulated similar levels of intracellular Cr following 

particulate chromate exposure, but lower intracellular Cr ion concentrations 

following soluble chromate exposures [58]. Together, the results of this study show 

that Cr can enter leatherback sea turtle lung cells following exposure to chromate 

compounds. Additionally, these results relate to previous data in the literature 
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suggesting that Cr(VI) exposure is a threat to leatherback sea turtles.  These 

results also indicate that there is much to uncover about how chromate compounds 

elicit their toxic effects in leatherback sea turtle cells and other species. 

Soluble and particulate chromate compounds use different units of measure (i.e. 

μM for soluble chromate and μg/cm2 for particulate chromate). Therefore, it is 

difficult to compare cytotoxicity and genotoxicity data between them directly. Due 

to this discrepancy and the varying levels of intracellular Cr ion levels following 

exposure to the three chromate compounds investigated this study sought to 

compare the cytotoxic and genotoxic effects of the chromate compounds based 

on intracellular Cr ion concentrations. Based on intracellular Cr ion concentrations 

soluble sodium chromate and particulate lead chromate induced similar levels of 

cytotoxicity in leatherback sea turtle lung cells. However, zinc chromate induced 

levels of cytotoxicity comparable to sodium chromate and lead chromate, but at 

intracellular Cr ion concentrations much lower than the other two chromate 

compounds. This result is very interesting because it suggests that there is a 

mechanism behind zinc chromate exposure that results in higher cytotoxic effects. 

While this result is expected as zinc chromate is a particulate chromate compound 

and particulate chromates are considered to be more toxic it does not explain the 

difference between zinc chromate and the other particulate chromate compound 

tested, lead chromate. Further studies will be required to understand this difference 

better. The results of this study are contrary to a study that showed soluble 

chromate was more cytotoxic to hawksbill sea turtle skin cells than particulate 

chromate based on intracellular Cr ion concentrations and another study that 
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showed soluble chromate was more cytotoxic than particulate chromate using 

these same metrics [50].  

As differences in cytotoxicity between chromate compounds based on intracellular 

Cr ion concentrations were found the genotoxicity was also assessed using this 

method. Similar to the cytotoxicity results, soluble sodium chromate and particulate 

lead chromate induced similar levels of genotoxicity based on intracellular Cr ion 

concentrations. Additionally, zinc chromate induced similar levels of genotoxicity 

as lead chromate and sodium chromate, but at lower intracellular Cr ion levels. At 

similar levels of chromosome damage the intracellular Cr ion concentration needed 

to elicit this response following zinc chromate exposure was almost four times 

lower than that of the other two chromate compounds. This result is striking and 

suggests that leatherback sea turtle lung cells may be much more sensitive to zinc 

chromate exposure. Furthermore, zinc chromate is one of the most widely used 

chromate compounds and therefore the risk of exposure to it in the environment 

may be greater. One last consideration is that zinc chromate was also shown to 

have higher cytotoxic and genotoxic effects in human lung cells [62,63] which is 

consistent with the present results in the leatherback sea turtle lung cells. The 

results considering genotoxicity based on intracellular Cr ion concentration are 

also consistent with the hawksbill sea turtle study, however, in that study zinc 

chromate was not assessed [50]. Together the intracellular Cr ion concentration 

comparison provides intriguing information about the cytotoxicity and genotoxicity 

of chromate compounds in leatherback cells consistent with results in cells of other 

sea turtle species and humans. It also suggests that further comparisons between 
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leatherback species may provide insight into the mechanisms behind Cr(VI)-

induced toxicities.  

Although it is undocumented if leatherback sea turtles develop lung cancer 

associated with Cr(VI) exposure, the toxicological data here is informative about 

potential health effects from Cr(VI) exposure demonstrating that they may be at 

risk. The results from the experiments investigating the cytotoxicity and 

genotoxicity of chromate compounds in leatherback sea turtle cells has important 

implications in evaluating their risk to Cr(VI) exposure. These data show that the 

toxicities of Cr(VI) in leatherback sea turtle cells likely contribute to negative health 

effects. Leatherback sea turtles exposed to Cr(VI) in the environment would have 

to compensate for any cytotoxic and genotoxic effects they suffer from Cr(VI) 

exposure. Furthermore, while these effects were demonstrated in leatherback sea 

turtle lung cells, they may also translate to other tissues such as those involved in 

reproduction or immune function. Cr(VI) is also known to have negative effects in 

these tissues (11), and any one or combination of toxicity in cells in these tissues 

adds pressure to the survival of leatherback sea turtles; an already endangered 

and compromised species.  

The second goal of the current study was to compare human and leatherback 

cellular responses using the One Health approach. Using this method is supported 

by the results in the first part of this study investigating leatherback sea turtles by 

providing a basis to investigate how those results compare to results in humans. 

Additionally, human-leatherback sea turtle comparisons were performed using 

zinc chromate as it was the most cytotoxic and genotoxic, and has widespread risk 
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of exposure. Additionally, to emulate actual exposures better, both acute and 

prolonged time points in this comparison were included. First the cytotoxicity of 

zinc chromate based on exposure concentrations was compared between species. 

A similar trend in cytotoxic response following 24 and 120 h exposures to zinc 

chromate was observed (Figure 11), however, the leatherback sea turtle cells were 

slightly more sensitive. Similar results were obtained comparing the cytotoxicity of 

chromate in hawksbill sea turtle cells to human cells although these experiments 

were performed with different chromate compounds [7].  

Next the genotoxicity of zinc chromate in human and leatherback sea turtle lung 

cells also were evaluated based on treatment concentration. Interestingly, after 24 

h exposure human cells accumulated slightly more damage than leatherback sea 

turtle cells (Figure 12). However, after 120 h this result was reversed with slightly 

higher levels of genotoxicity occurring in leatherback sea turtle cells. The reason 

for this switch remains to be determined, but the change in response indicates that 

there are some differences in how human and leatherback cells respond to Cr(VI) 

exposure. It was additionally noted that there were no metaphases in the human 

lung cells at the highest concentration, 0.4 μg/cm2, following 24 h zinc chromate 

exposure while leatherback lung cells continued to accumulate damage. This trend 

continued at the 120 h time point where both cell lines had no metaphases at the 

highest concentration, but human lung cells lacked metaphases at the second 

highest time point where chromosome damage continued to increase in 

leatherback lung cells (Figure 12). Cell cycle arrest has been observed at high 

concentrations in other study species as well (5,6,7,18). However, the mechanism 
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behind this effect remains to be uncovered. One possibility is that the cells may be 

overwhelmed by the amount of energy required to repair genomic damage and 

that the high levels of damage may be inducing death signals in the cell. This result 

along with the switch in genotoxic sensitivity at different time points demonstrates 

that a DNA repair change or advantage specific to one species may be uncovered 

that provides insight into Cr(VI) toxicity.    

After comparing the cytotoxic and genotoxic effects of zinc chromate in human and 

leatherback sea turtle lung cells based on treatment concentration next these 

comparisons were based on intracellular Cr ion concentrations. Similar to different 

chromate compounds inducing varying levels of Cr ion concentrations, the ability 

of cells from different species to internalize Cr(VI) also can vary in this respect. 

First, the intracellular Cr ion concentrations in both species were assessed and 

showed that after 24 h exposure there was no difference in the levels of 

intracellular Cr ions between species (Figure 13). However, after 120 h exposure 

there were higher concentrations of Cr ions in the leatherback sea turtle cells 

compared to human cells. Since once in the cell it is very unlikely that Cr can leave, 

this accumulation of intracellular Cr ions may have serious toxic implications for 

both species, and this risk may be increased in leatherback sea turtles. This result 

also demonstrates temporal- and species-specific differences in Cr ion uptake. The 

results also support previous studies showing different levels of Cr uptake between 

human cells and those of other species [5,6,7,58,59]. However, in some cases 

human cells internalize more Cr, and in others cells from wildlife species have 

higher levels of intracellular Cr.  
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Next, intracellular Cr ion concentrations were assessed to compare the cytotoxicity 

and genotoxicity of zinc chromate between human cells and leatherback sea turtle 

cells. Based on intracellular Cr ion concentrations the cytotoxic response to Cr(VI) 

was normalized after 24 and 120 h in both cell lines. In assessing genotoxicity, 

after 24 h zinc chromate exposure chromosome damage was slightly higher in 

human cells compared to leatherback sea turtle cells based on the intracellular Cr 

ion concentrations. However, after 120 h exposure again the levels of genotoxicity 

were normalized between human and leatherback sea turtle lung cells based on 

the intracellular Cr ion concentrations. The one difference that became evident 

when looking at the intracellular genotoxicity data was that leatherback sea turtle 

cells continued to proliferate producing metaphases with increasing chromosome 

damage at intracellular Cr ion concentrations much higher than that of human cells. 

This is reflective of the cell cycle arrest observed in the human cells at lower 

concentrations than occurs in leatherback sea turtle cells. These data suggest that 

leatherback sea turtle cells escape cell death mechanism that are usually activated 

in response to high levels of damage to the genome. Additionally, it supports 

previous data that show similar differences between species in genotoxicity based 

on intracellular Cr ion concentrations. For example, in the hawksbill sea turtle study 

Cr(VI) induced similar levels of genotoxicity based on intracellular Cr ion 

concentrations, however that study only looked at 24 h exposures (7). A right whale 

study found results similar to those of the hawksbill study as well (6). These data 

indicate that there are mechanisms that are species and temporally dependent 

contributing to the cytotoxic and genotoxic impact of Cr(VI) exposure. Furthermore, 
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these data are important for understanding how different levels of environmental 

exposure may impact each of these species individually, but also establishes a 

means to relate them to one another.  

The effects of Cr(VI) in other marine species have recently been investigated due 

to the health concerns of environmental exposures to it that may be similar in 

leatherback sea turtles. The Wise Laboratory previously showed high levels of Cr 

in the skin of sperm whales in a global study [3]. These levels were comparable to 

or higher than Cr levels found in lung tissue of chromate workers who developed 

cancers as a result of their exposure [62,63]. Similarities between sperm whales 

and leatherback sea turtles including their range of habitat throughout all of the 

world’s oceans, similar behaviors including diving to deep depths for extended 

periods of time, and their long lifespans indicate that their exposures to Cr may be 

similar. Cr levels were also at higher levels in North Atlantic right whales and 

Southern right whales further indicating exposure to Cr in the ocean environment 

is ubiquitous and occurs across species [59,64]. As Cr(VI) was shown here to be 

both cytotoxic and genotoxic to leatherback cells and that Cr is known to 

accumulate in the tissues of marine species, the next consideration in determining 

the risk of Cr(VI) to leatherbacks  is to evaluate the levels of Cr in leatherback 

tissues. 

Furthermore the mechanisms behind particulate and soluble Cr(VI) toxicity is 

currently being investigated primarily in human cells, but has yet to be elucidated 

[65,66,66]. However, one recent study investigated DNA repair mechanisms in 

North Atlantic right whales compared to humans and found the whales had a 
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robust DNA repair response to Cr(VI)-induced DNA double strand breaks that 

otherwise fails in humans [68]. These data indicate that individual species may 

have different mechanisms underlying their response to Cr(VI) exposure and may 

provide valuable information about how the toxic effects of Cr(VI) exposure may 

be evaded. This study also suggests that there are different mechanisms 

underlying Cr(VI) toxicity between humans and leatherback sea turtles. 

Specifically, DNA repair mechanisms may be slightly different in leatherback sea 

turtles than humans, and the response leatherbacks have to Cr(VI) reported here 

provides a basis for this hypothesis. Especially after longer exposures leatherback 

lung cells responded to Cr(VI) differently than human lung cells indicated by higher 

levels of chromosome damage and increased frequency of damage where human 

lung cells underwent cell cycle arrest. Additionally, the types of genomic damage 

observed in this study included chromatid breaks and gaps indicating that Cr(VI) 

induces DNA double strand breaks that may lead to permanent structural 

chromosome instability (CIN).  CIN is a hallmark of lung cancers and can severely 

affect the integrity of the genome. Indeed, studies have shown Cr(VI) induces DNA 

double strand breaks and inhibits DNA repair pathways in human lung cells likely 

contributing to the carcinogenic potential of Cr(VI) exposure [67,69].  

When looking back at previous studies of the genotoxic effects of Cr(VI) in sperm 

whale cells, human cells, and hawksbill sea turtle cells there is a similar trend in 

the cytotoxic and genotoxic response to Cr(VI) [5,6,50,59]. However, the sperm 

whales were the most resistant to Cr(VI)-induced damage followed by the 

hawksbill sea turtles, and finally humans being most susceptible to damage. The 
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variation in response to Cr(VI) may indicate differences in repair efficiency between 

species and risk to the populations. Cr(VI) induced genotoxicity in leatherbacks 

most similarly to hawksbill sea turtles of these three species. Differences in repair 

and defense mechanisms may also be true for leatherback sea turtles, but further 

testing is required to determine this hypothesis. 

Ultimately, this study showed two results that are meaningful in assessing 

leatherback sea turtle health in relation to Cr(VI) exposure and also how human-

leatherback sea turtle comparisons can be used in the One Health approach. First, 

chromate compounds were found to be cytotoxic and genotoxic in leatherback sea 

turtle lung cells. These results suggest that exposure to Cr(VI) is a concern for 

leatherback sea turtle health and warrants consideration when assessing their risk 

to environmental contaminants. Second,  a human and leatherback sea turtle 

comparison found that while there are similar cytotoxic and genotoxic trends in 

how human cells and leatherback sea turtle cells respond to Cr(VI) exposure, there 

are some differences. These differences indicate that there may be underlying 

mechanistic differences between humans and sea turtles that can be further 

investigated to better understand Cr(VI) toxicity and how Cr(VI) affects these 

species individually. In conclusion, leatherback sea turtles fit well into the One 

Health model, and using leatherback cells and human cells to evaluate Cr(VI) 

exposures will provide a valuable research perspective in assessing Cr(VI) risk. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

6.1 Strengths of this Work  

This work is pioneering in that currently there are no data investigating the effects 

of Cr(VI) in leatherback sea turtles. This work contributes to the One Health 

approach which was coined by and is endorsed by the Center for Disease Control 

(CDC) as well as the American Veterinary Medical Association and other 

regulatory agencies. Utilizing the One Health approach is valuable in determining 

the risks associated with exposure to environmental contaminants like Cr(VI). 

Environmental contaminants can affect all three aspects of One Health; humans, 

wildlife, and the ecosystem. Furthermore, these three aspects of One Health are 

interconnected which may increase the effect they have on one another. 

Importantly, the information gained from humans, wildlife, and the ecosystem can 

be compared to one another to strengthen our understanding of how 

environmental contaminants affect health in general. 

Rigorous methods were also used in this study to evaluate the cytotoxicity and 

genotoxicity of Cr(VI) in our cell culture models. The clonogenic survival assay is 

a gold standard in the field not only evaluating cytotoxicity of chemicals, but also 

the potential for the cells to proliferate. Additionally, direct measurements of 

genotoxicity with the chromosome aberration assay were used. Finally, Cr(VI) is 

known to have its toxic effects based on its internalization and subsequent  
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intracellular reduction. Many studies do not take into consideration the potential for 

different cell types to accumulate different levels of Cr. However, this is important 

because exposures induce different toxic responses depending on this factor. 

Therefore, they were included in this study. 

 6.2 Limitations and Future Directions 

This study is limited by the fact that only cells from one tissue type in the 

leatherback sea turtles and humans were investigated. There are no documented 

cases of lung cancer in leatherback sea turtles. However, exposure to 

environmental Cr(VI) may have other health effects in leatherbacks that are 

affecting the population. Additionally, as the introduction noted no one has 

measured Cr levels in lung tissue of leatherback sea turtles so it is unknown what 

levels these may be. However, in the future Cr levels will be measured in 

leatherback sea turtle tissue samples including liver, lung, and skin using 

inductively-coupled plasma mass spectrometry (ICP-MS). 

Additionally, this work requires more mechanistic data to gain a better 

understanding of how Cr(VI) affects both leatherback sea turtles and humans. 

More mechanistic data investigating how Cr(VI) exposure affects protein 

expression and DNA repair response in leatherback sea turtle cells will further 

compare Cr(VI) exposure in leatherback sea turtle cells and human cells. It will 

also uncover any differences in the responses between them. Whale cells are less 

sensitive to Cr(VI) exposure than human cells [5,68]. This insight prompted a 

closer look into why that is and how the genomic-protective system of whales may 

be employed to improve human health. Similarly, this approach can be applied in 

the leatherback sea turtle model.  
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6.3 Conclusions 

In summary, these data indicate that leatherback sea turtles are at risk of 

experiencing negative health effects of Cr(VI) exposure. Additionally, these effects 

are comparable to other marine species as well as those in humans. The literature 

suggests that Cr(VI) exposure has the potential to affect the reproductive and 

immune systems and is widely accepted as a carcinogen (11). The information 

gathered here indicates that leatherback sea turtles may be at risk for the 

detrimental health effects associated with environmental Cr(VI) exposure and may 

play a role in the slow recovery of their endangered population.  

Additionally, a response to Cr(VI) was observed in leatherback sea turtle cells 

similar to those observed in other marine species (4,5,6,7).  Directly comparing the 

response of leatherback sea turtle cells and human cells to Cr(VI) showed similar 

cytotoxic and genotoxic responses between these two species. Therefore, 

leatherback sea turtles may serve as an indicator species for monitoring the health 

of the environment in the One Health research model. This model will improve the 

understanding of the health of humans, wildlife, and the ecosystem as a whole by 

establishing baseline data and providing multiple perspectives to evaluate the 

health impacts of environmental pollutants.
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