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ABSTRACT

ESTIMATION OF THE THREE KEY PARAMETERS AND THE
LEAD TIME DISTRIBUTION IN LUNG CANCER SCREENING

Ruiqi Liu

July 25, 2017

This dissertation contains three research projects on cancer screening proba-

bility modeling. Cancer screening is the primary technique for early detection. The

goal of screening is to catch the disease early before clinical symptoms appear. In

these projects, the three key parameters and lead time distribution were estimated to

provide a statistical point of view on the effectiveness of cancer screening programs.

In the first project, cancer screening probability model was used to analyze

the computed tomography (CT) scan group in the National Lung Screening Trial

(NLST) data. Three key parameters were estimated using Bayesian approach and

Markov Chain Monte Carlo simulations. The NLST CT arm data have been used

for the estimation. The sensitivity for lung cancer screening using CT scan is much

higher than those screening using X-ray. The transition probability from disease-free

to preclinical state has a peak around age 70 for both genders. The posterior mean

sojourn time is around 1.5 years for all groups.

The second project is dealing with lead time distribution estimation. Since the

lead time is unobservable, the effectiveness of screening exams regarding the survival

benefits becomes a major concern. In this study, the estimates for the projected

lead time was presented by using the NLST CT arm data. Simulation results show
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that the probability of no-early-detection increases monotonically when the screening

interval increases for both genders. The mean lead time appears longer for women

than for men.

In previous study, it was assumed that a person has no screening history before

entering the study. However, the participants of the screening programs are usually

aged population and they may already have at least one prior screening exam in the

past and look healthy. In the third project, we extended the previously developed

lead time distribution to consider an individual’s screening history and to see how

much this history will affect the lead time. We did simulation for each combination

of initial screening ages, sensitivities, mean sojourn times, current ages and screening

schedules in the past and in the future. We also applied the newly developed lead

time distribution to the NLST data.
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CHAPTER 1

INTRODUCTION

This dissertation consists of three interconnected research projects (Chapters 2-4) on

cancer screening probability modeling. Three key parameters in cancer screening are

estimated using Bayesian approach in the first project (Chapter 2). In the second

project (Chapter 3), the lead time distribution is estimated based on the results

obtained in first project. The last project deals with developing lead time distribution

for individuals with screening history.

This chapter is a review of methods used to estimate the three key parameters

and the lead time distribution, which follows Liu et al. (2017).

1.1 Cancer Screening Overview

Lung cancer is the most life-threatening cancer for both men and women in the U.S.

and worldwide. The cause of lung cancer remains unknown. However, about 80%

of lung cancer deaths are caused by smoking and secondhand smoke exposure. It is

clear that tobacco smoking is one of the strongest risk factors for lung cancer. The

advanced lung cancer is often hard to treat, the 5-year survival rate for patients with

early stage lung cancer is around 50%, but it is less than 5% for patients with stage IV

lung cancer (NCI, 2015). The disease may not show any signs or symptoms during the

early stage lung cancer, thus it is very possible that the disease unknowingly moves

to the late stage without any intervention. The fact is, nearly 70% of lung cancers

are diagnosed at advanced stages, and the general prognosis of lung cancer is poor
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(Molina et al., 2008).

Cancer screening, as the primary technique for early detection, has been carried

out since 1960s. The goal of screening is to catch the disease early before clinical

symptoms appear. The United States Preventive Services Task Force (USPSTF)

has recommended screening schedules for almost all of the most prevalent cancers

(USPSTF, 2016), such as breast, lung, colon, cervical cancer, etc. Although different

cancer sites have their specific characteristics and developmental stages, they all share

some common features as well.

I will first outline the commonly followed progressive model used in cancer

screening and its parameters. A cohort of apparently healthy individuals are enrolled

in a screening program to detect the presence of a specific disease. The disease

progressive stochastic model was first proposed by Zelen and Feinleib (1969) and has

been used since then. In this model, the disease develops by progressing through 3

states: S0 → Sp → Sc (See Figure 1.1). S0 refers to the disease-free state or the state

in which the disease can not be detected; Sp refers to the preclinical disease state,

in which an asymptomatic individual unknowingly has the disease that a screening

exam can detect; and Sc refers to the disease state at which the disease manifests itself

in clinical symptoms. The progressive disease model describes the natural history of

lesions detected by screening for cancer. The goal of screening programs is to detect

the cancer in the preclinical state (Sp), so that it may be treated before adverse

symptoms arise.

0
6

S0
� � Sp

� � Sc
�

t1
6

t
6

t2
6

-

Figure 1.1: Disease progressive states and the lead time

Sensitivity is the probability that an screening exam result is positive, given

that an individual is in the preclinical state Sp. More specifically, a binary variable

2



D represents the true disease status of an individual, that is, D takes value one when

an individual has the disease, and zero otherwise. The binary variable X represents

test result from a screening exam, with X = 1 indicating that the test is positive.

The sensitivity is the probability of correctly identifying those who have the disease,

that is, β = P (X = 1|D = 1). Specificity is the probability of correctly identifying

those who do not have the disease, that is, α = P (X = 0|D = 0). Ideally, we

desire the test to have both a sensitivity and specificity of 100%, but in reality this

is unachievable. In fact, both sensitivity and specificity cannot be estimated directly

from data summary in a mass screening. To see why, suppose there are n people

taking part in one screening exam, according to their true disease status and the

screening results, they can be classified into four categories as in Table 1.1.

Table 1.1: True disease status and test result in one mass screening

Disease Status
Diseased: D = 1 Not diseased: D = 0

Test + True positive (n11) False positive (n12)
Result − False negative (n21) True negative (n22)

From Table 1.1, the sensitivity β = n11/(n11 + n21), and the specificity α =

n22/(n12 + n22), where n11 and n12 can be obtained by a follow-up exam, such as a

biopsy after a positive screening result to confirm either the finding is cancerous or

not. However, for those screened negative individuals (who are the majority in a mass

screening), confirmation of the true disease status is not cost effective, nor ethical.

Therefore n21 and n22 are usually unknown, hence the β and the α cannot be obtained

from data directly. Also, a screened negative individual who has been followed and

found to be positive later may involve two cases: either it is a false negative on the

previous screening exams, or it is a newly developed case. However, sensitivity can

be estimated by the likelihood method and collected mass screening data (Shen and

Zelen, 1999; Wu et al., 2005a,b).

3



Sojourn time is the time from when the disease first develops to the manifes-

tation of clinical symptoms. If one enters the preclinical state (Sp) at age t1, and

becomes clinically incident (Sc) later at age t2, then (t2 − t1) is the sojourn time,

see Figure 1.1. The nature of data collection in a screening program make the exact

observation of time of onset of either Sp or Sc impossible. Therefore, estimation of

the sojourn time distribution is difficult. However, this information can be obtained

under model assumptions. For example, it is believed that the preclinical state of

breast cancer may last from 1 to 4 years (Shen and Zelen, 1999; Shen et al., 2001;

Wu et al., 2005a,b), and it may last longer for colorectal cancer (Wu et al., 2009b).

Hence, there is a good chance that cancer could be detected in its preclinical stage,

which is the goal of implementing a screening program.

The transition density from the disease free state (S0) to the preclinical state

(Sp) is the probability density function (PDF) of the time duration in the disease-

free state S0, i.e., t1 in Figure 1.1. It is commonly assumed that the sojourn time

and the transition time are independent (Wu et al., 2005a,b). Due to the imperfect

sensitivity of the test and the interval-censored nature of the data, the transition

density is typically estimated by relying on common parametric models or interval-

constant assumptions.

Lead time is the length of time that the diagnosis is advanced by screening.

In Figure 1.1, if one is offered a screening exam at time t within the time interval

(t1, t2), and cancer is diagnosed, then the length of the time (t2 − t) is the lead time.

An individual with a longer lead time usually has a better prognosis than one with

a shorter lead time. For a particular case detected by the screening, the lead time

is unobservable, due to the fact that once cancer was diagnosed, it will be treated

immediately, making it impossible to observe the onset of clinical state Sc.

The three key parameters in screening are the sensitivity, the sojourn time

and the transition density. They are the key parameters due to the fact that all
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other estimates are functions of these three key parameters, including the lead time.

We will briefly review the existing statistical methods used to estimate the three key

parameters in cancer screening, as well as the methods for estimating the lead time.

We first introduce some notation used in the remainder of the dissertation.

Consider a group of initially asymptomatic individuals scheduled with K ordered

screening exams t0 < t1 < . . . < tK−1, where ti−1 represents a person’s age when

receiving the ith screen, i = 1, . . . , K. For an annual screening program, ti = t0 + i.

We define β as the sensitivity of the screening exam, β = β(ti) if it is age-dependent.

The function w(t) describes the time duration in S0; note that it is a sub-PDF due to

the fact that someone may stay in the state S0 during their lifetime. Finally, q(·) is

the probability density function of the sojourn time in Sp, with the survival function

Q(z) =
∫∞
z
q(x) dx.

The mass screening data used in these methods usually consist of three parts

from each screening cycle: ni is the total number of individuals examined at ith screen

(at age ti−1); si denotes the number of individuals diagnosed by the ith screening

exam, that is, the number of screen-detected cases; ri is the number of individuals

found in the clinical state (Sc) within the ith screening interval (ti−1, ti), that is,

the number of interval cases. Table 1.2 shows the data format for a mass screening

program with K scheduled exams, where t0 is the age at the first exam, and the

triplets (ni, si, ri) stratified by the initial age are the data we use.

Table 1.2: A sample of mass cancer screening data

Age (t0) n1 s1 r1 n2 s2 r2 . . . nK sK rK
...

60 1946 16 3 1847 13 1 . . . 1797 17 0
61 1786 18 0 1678 14 1 . . . 1659 11 3
62 1548 11 1 1452 8 2 . . . 1408 12 0
...

5



1.2 Estimation of the Three Key Parameters

1.2.1 Likelihood function in stable and nonstable disease models

Shen and Zelen (1999) proposed a likelihood function to estimate the screening sen-

sitivity and the mean sojourn time under the assumptions of a stable and nonstable

disease model. The stable model means that the transition density w(t) = w, is

uniformly distributed over all ages, and the nonstable model allows the probabil-

ity of transitioning w(t) to depend on t. In their approach, they take w(t) to be a

step function of age with discontinuities every five years. The sojourn time was as-

sumed to follow an exponential(µ) distribution in both stable and nonstable models,

i.e., Q(x) = exp(−x/µ). The estimated parameters are the sensitivity β, the mean

sojourn time µ and the transition density w.

Consider the ith screening interval [ti−1, ti) of a fixed age strata. Let Di be

the probability of an preclinical individual diagnosed at the ith screen given at age

ti−1. It can be calculated by

Di =

 βwµ
[
1− β

∑i−1
j=1(1− β)i−j−1Q(ti−1 − tj−1)

]
(i > 1),

βwµ (i = 1).
(1.1)

Let Ii be the probability of an individual being incident in the ith interval, it is given

by

Ii = wµ

[
ti − ti−1

µ
− β

i−1∑
j=0

(1− β)i−j−1{Q(ti−1 − tj)−Q(ti − tj)}

]
. (1.2)

Thus, the full likelihood function was derived as

Li = Di
siIi

ri{1−Di − Ii}ni−si−ri
3∏
j=1

(
αj
β

)sij
, (1.3)
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where the likelihood functions only depend on sensitivities for different modalities αj

and the parameter vector of the sojourn time distribution. The overall sensitivity,

β = α1 +α2 +α3, is applied to the case of using two screening modalities simultaneous

in each exam, such as using mammogram and physical exam in breast cancer, or

using chest X-ray and sputum cytology in lung cancer, with β1 = α1 + α3 and β2 =

α2 + α3 represent sensitivity of each modality (See Shen et al. (2001) for details).

And si1 + si2 + si3 = si denotes the number of cases detected by modality 1 only, by

modality 2 only and by both.

By treating ri and si as approximately Poisson, they develop a simplified con-

ditional likelihood function

Li =
Ii
riDi

si

{Ii +Di}(ri+si)

3∏
j=1

(
αj
β

)sij
. (1.4)

In both papers (Shen and Zelen, 1999; Shen et al., 2001), the data was not

stratified by age, which means, Table 1.2 could be collapsed into a vector. Two breast

cancer screening datasets: the Health Insurance Plan (HIP) study and Canadian

National Breast Screening studies were used in both the stable and non-stable model.

In the non-stable model, estimates of the transition constant w in every five years can

be achieved by using the incidence data from the SEERs database. The innovation

of this study is that a likelihood function was developed to estimate the sensitivity

and the mean sojourn time.

1.2.2 Estimation of age-dependent sensitivity and transition probability

Wu et al. (2005a) developed statistical inference procedures to estimate the sojourn

time, the age-dependent sensitivity, and the age-dependent transition density from

the disease-free state to the preclinical state. Both maximum likelihood estimate

(MLE) and Bayesian posterior estimates were used to estimate the parameters. The
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age was considered to be a covariate of the sensitivity and the transition probability

density.

Consider a cohort of initially asymptomatic individuals who enter the screening

program at age t0. There are K ordered screening exams that will occur at age

t0 < t1 · · · < tK−1. T = tK is the follow-up time after the last exam, during which an

incident case may be detected. Let (ni,t0 , si,t0 , ri,t0) be the data for the ith interval

as defined for the strata with starting age t0. Then the likelihood for the individuals

aged t0 at study entry is proportional to

L(·|t0) =
K∏
k=1

D
sk,t0
k,t0

I
rk,t0
k,t0

(1−Dk,t0 − Ik,t0)nk,t0
−sk,t0−rk,t0 , (1.5)

where Dk,t0 is the probability that an individual will be detected by the kth screening

exam (at age tk−1) given this person is in the state Sp. When k = 1, 2, . . . , K, Dk,t0

can be calculated by

D1,t0 =β(t0)

∫ t0

0

w(x)Q(t0 − x) dx, (1.6)

Dk,t0 =β(tk−1)

{
k−2∑
i=1

{
[1− β(ti)] · · · [1− β(tk−2)]

∫ ti

ti−1

w(x)Q(tk−1 − x) dx

}

+

∫ tk−1

tk−2

w(x)Q(tk−1 − x) dx

}
, for k = 2, . . . , K.

(1.7)

The likelihood also depends on Ik,t0 , the probability of an individual being incident

during the kth interval (tk−1, tk), it can be calculated by

Ik,t0 =
k−1∑
i=0

{
[1− β(ti)] · · · [1− β(tk−1)]

∫ ti

ti−1

w(x)[Q(tk−1 − x)−Q(tk − x)] dx

}
+

∫ tk

tk−1

w(x)[1−Q(tk − x)] dx, for k = 1, . . . , K.

(1.8)
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For one screening study, the likelihood for all initial age groups is proportional

to

L =
∏
t0

L(·|t0). (1.9)

We can clearly see the likelihood is a function of the three key parameters β(t), w(t)

and q(x). The parametric models for the three key parameters were carefully chosen

as following:

β(t) =
1

1 + exp{−b0 − b1(t− t̄)}
, (1.10)

w(t) = wmax ·
1√

2πσt
exp{−(log t− µ)2/(2σ2)}, t > 0, (1.11)

q(x) =
κxκ−1ρκ

(1 + (xρ)κ)2
, (1.12)

where t̄ is the average age at entry in the study group. The sensitivity β(t) was

associated with age t by a logistic link. The log-normal distribution was used for the

transition probability w(t). As the integral of w(t) over all ages is the lifetime risk

of developing a cancer and should always be less than 1, w(t) is in fact a sub-PDF.

Hence, the upper limit was set to wmax =
∫
w(t)dt. For breast cancer, the upper limit

was set to be 0.2 (Wu et al., 2005a). For the sojourn time, the log-logistic distribution

was adopted, in part due to its convenient survival function Q(x) = [1 + (ρx)κ]−1.

The unknown parameters θ = (b0, b1, µ, σ
2, κ, ρ) were estimated from the likelihood

function described above. Simulations were carried to evaluate the reliability of the

proposed likelihood, and the detailed procedure can be found in Wu et al. (2005b).

Both Markov Chain Monte Carlo (MCMC) estimates and MLEs were obtained. They

applied their model to the HIP female breast cancer study and obtained estimates

for age-dependent sensitivity and transition probability along with the sojourn time.
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1.2.3 Key parameters estimation when sensitivity depends on sojourn time

Wu et al. (2008) argued that the screening sensitivity should be a function of age

at diagnosis and the amount of time spent in the preclinical state, rather than only

depend on the age at diagnosis. Intuitively, as the cancer gets closer to progression

from the preclinical state to the clinical state, it should be easier to catch by a

screening exam than it was previously.

In this way, the sensitivity is modeled as β = β(t, s|S), where t represents an

individual’s age at the screening exam, s is the time duration a person has already

spent in the preclinical state, and S is the sojourn time in Sp (s < S). The probability

that an individual will be diagnosed by the kth screening exam (at age tk−1) given

that this person is in the state Sp with initial age t0 becomes

D1,t0 =

∫ t0

0

w(x)

∫ ∞
t0−x

q(t)β(t0, t0 − x|t) dt dx, (1.13)

Dk,t0 =

k−2∑
i=0

{∫ ti

ti−1

w(x)

∫ ∞
tk−1−x

q(t)

(
k−2∏
j=i

[1− β(tj, tj − x|t)]

)
β(tk−1, tk−1 − x|t) dt dx

}

+

∫ tk−1

tk−2

w(x)

∫ ∞
tk−1−x

q(t)β(tk−1, tk−1 − x|t) dt dx, for k = 2, . . . , K.

(1.14)

The probability that an individual is an incident case during the kth interval (tk−1, tk)

with initial age t0 becomes

Ik,t0 =
k−1∑
i=0

{∫ ti

ti−1

w(x)

∫ tk−x

tk−1−x
q(t)

(
k−1∏
j=i

[1− β(tj, tj − x|t)]

)
dt dx

}

+

∫ tk

tk−1

w(x)[1−Q(tk − x)] dx, for k = 2, . . . , K.

(1.15)
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The sensitivity associated with age, time spent in Sp and sojourn time is

β(t, s|S) =
1

1 + exp[−b0 − b1(t− t̄)]
× s

S
, (1.16)

where t̄ is the average age at entry for the entire study group, S is the sojourn time,

and s is the time a person already spent in preclinical state Sp, s ∈ [0, S]. Clearly,

the sensitivity is increasing in s where the maximum sensitivity is achieved at s = S,

that is, the moment the cancer transitions from preclinical to clinical. When b1 > 0,

the sensitivity is a monotonic increasing function of age t. This method was applied

to breast cancer data, such as HIP (Wu et al., 2008).

Motivated by the fact that age seems to have little effect on the screening

sensitivity in lung cancer, Kim and Wu (2016) treated the sensitivity as a function

of time spent in the preclinical state and the sojourn time for further inference. The

sensitivity was modeled as a ratio of time spent in the preclinical state s to the sojourn

time S, given by

β(s|S) =
1

1 + τ

( s
S

)γ
, τ, γ ≥ 0, (1.17)

where τ is a parameter added to control the overall sensitivity. The parameter γ

reflects the changing rate of sensitivity: when s/S is close to zero, the sensitivity

increases rapidly if γ < 1, while it increases slowly if γ > 1.

The probabilities Dk,t0 and Ik,t0 are the same with Equations 1.13, 1.14 and

1.15. This method combined with the likelihood in Equation 1.5 was applied to the

Johns Hopkins Lung Project data in Kim and Wu (2016).

1.3 Estimation of the lead time distribution

Lead time is the length of time that the diagnosis is advanced by screening. It can

serve as a surrogate measurement on how effective a screening program is. In the

case of cancer, survival time is measured from the time of diagnosis. Hence, an
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earlier detection of the tumor due to screening will cause the patient’s survival to

appear long, even if there is no real effect on mortality. When survival benefit is

compared between the study and the control group, the lead time must be adjusted

by the study group, so accurate estimation of the lead time is necessary.

Many researchers have proposed methods to estimate the lead time (Kafadar

and Prorok, 1994, 1996, 2003; Straatman et al., 1997). Most of these methods as-

sumed that the sojourn time follows an exponential distribution, and due to the

memoryless nature of the exponential random variable, the lead time will follow the

same exponential distribution as well. These publications have provided estimates of

the mean and variance of the lead time under the exponential assumption. We will

focus on three major methods in this section.

1.3.1 Local lead time distribution for the screen-detected cases

Prorok (1982) made a major contribution by deriving the conditional probability

distribution of the lead time, given that one was detected at the i-th screening exam.

Consider a screening program with a total of K screening exams. If an individual

enters the preclinical state Sp during the time interval (ti−1, ti], i = 0, 1, . . . , K − 1,

this person is a member of the ith generation, where t−1 = 0. Prorok (1982) argued

that the lead time distribution at a given screen, say (j + 1)th screen, is a weighted

average of the lead time distributions for all generations potentially detectable at it.

The local lead time PDF for individuals detected in Sp by the (j + 1)th (at time tj)

can be defined by

fDj(l) =

∑j
i=0Dijfij(l)∑j

i=0Dij

, l ≥ 0, j = 0, 1, . . . , K − 1, (1.18)

where fij(l) is the lead time distribution for ith generation who are detected at (j +

1)th screen but not before. This distribution can be interpreted as a weighted-average
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of the lead time distributions for each generation i, with mixing weights Dij. The ith

generation lead time distribution can be calculated by

fij(l) =

∫ ti−ti−1

0
wi(ti − u)Qi(l + u+ tj − ti) du∫ ti−ti−1

0
wi(ti − u)Qi(u+ tj − ti) du

, l ≥ 0, i = 0, 1, . . . , K − 1, j ≥ i,

(1.19)

where wi(·) and Qi(·) are the transition density from S0 to Sp and survival function

of sojourn time for the ith generation, respectively. The u represents the time length

that a person stays in Sp till ti, a random variable.

The weighting factor Dij is the probability that an individual is detected at

(j + 1)th screen given the person belongs to the ith generation. It can be obtained

by

Dij = P (Ei)P (ti)Qvi(tj − ti)f(βij), j ≥ i, (1.20)

where P (Ei) is the probability that an individual belongs to the ith generation. P (ti)

is the probability that an ith generation individual is in Sp at time ti. Qvi(tj − ti)

is the probability that the time length of (τ − ti) for an ith-generation individual

is not less than tj − ti, where τ represents the time point this individual enters Sc.

The term f(βij) takes account of the sensitivities of screens. The derivation of these

probabilities can be found in Prorok (1982) and Prorok (1976).

Simulations were conducted to explore the lead time properties based on the

derived lead time distribution. In the simulation, the sojourn time is assumed to

follow the generalized gamma distribution with the same mean at 2 years and three

different variances, corresponding to the cases of the coefficient of variation to be

larger, smaller and equal to one. Simulation results showed that the local lead time

for the ith screen-detected cases will not change after a certain number (four or five)

of screens, given the screening interval was fixed at 1 year. This suggested a possible

stopping rule when designing the screening programs, since it tended to not yield any

additional benefit in continued screenings. However, this study only focuses on the
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analysis of screen-detected cases whose lead time is positive, and ignored the interval

cases whose lead time is zero.

1.3.2 Global lead time distribution when lifetime is fixed

Wu et al. (2007) rigorously evaluated the lead time distribution based on model

parameters for the whole cohort participating in the screening program, including

both the screen-detected and the interval incident cases. In this way, the proportion

of patients whose lead time is zero can be estimated, together with the distribution

of time of those patients who were detected early by screening. Thus, the lead time

distribution is a mixture of a point mass at zero and a probability density function

of a positive continuous random variable.

Let us consider an initially asymptomatic individual with no history of cancer,

he or she is assumed to take K screening exams at ages t0 < t1 < · · · < tK−1, and T

represents the lifetime, a fixed value. Let D represent true disease status, with D = 1

indicating having cancer and D = 0 indicating no clinical disease in one’s lifetime.

Let L represent the lead time of an individual. The distribution of lead time is a

mixture of the conditional probability P (L = 0|D = 1) and the conditional density

function fL(z|D = 1), for z ∈ (0, T − t0)

P (L = 0|D = 1) =
P (L = 0, D = 1)

P (D = 1)
, (1.21)

fL(z|D = 1) =
fL(z,D = 1)

P (D = 1)
, (1.22)

where P (D = 1) is the probability of developing cancer after age t0, and

P (D = 1) =

∫ t0

0

w(x)[Q(t0− x)−Q(T − x)] dx+

∫ T

t0

w(x)[1−Q(T − x)] dx. (1.23)

P (L = 0, D = 1) is the probability that the lead time is zero, i.e., the collective
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probability of being an interval case,

P (L = 0, D = 1)

=
K∑
j=1

{
j−1∑
i=0

(1− β(ti)) · · · (1− β(tj−1))

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx

}
.

(1.24)

The joint probability density function fL(z,D = 1) when z ∈ (0, T − t0) is

fL(z,D = 1) =β(t0)

∫ t0

0

w(x)q(t0 + z − x) dx, if T − t1 < z ≤ T − t0, (1.25)

fL(z,D = 1) =

j−1∑
i=1

β(ti)

{
i−1∑
r=0

(1− β(tr)) · · · (1− β(ti−1))

∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
+ β(t0)

∫ t0

0

w(x)q(t0 + z − x) dx,

if T − tj < z ≤ T − tj−1, for j = 2, 3, . . . , K.

(1.26)

The validity of the probability calculation can be proved by

P (L = 0|D = 1) +

∫ T−t0

0

fL(z|D = 1)dz = 1. (1.27)

It is clear that the lead time distribution depends on the three key parameters: the

sensitivity β(·), the transition probability w(·) and the distribution of sojourn time

q(·). The method was applied to the HIP study and the posterior predictive dis-

tribution of the lead time was estimated using MCMC posterior samples. Bayesian

inference was made to explore the lead time properties with different screening inter-

vals (6, 9, 12, 18 and 24 months), given the initial screening age t0=50 and lifetime

T=80. Later, this method was applied to various cancer screening studies, including

breast, lung, and colon cancer (Wu et al., 2007, 2011, 2009a).
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1.3.3 Global lead time distribution when lifetime is a random variable

Wu et al. (2012) extended the lead time distribution by allowing the lifetime T to be

a random variable, which is more realistic. The lead time distribution when T is a

random variable can be obtained by

P (L = 0|D = 1, T ≥ t0) =

∫ ∞
t0

P (L = 0|D = 1, T = t)fT (t|T ≥ t0) dt, (1.28)

fL(z|D = 1, T ≥ t0) =

∫ ∞
t0+z

fL(z|D = 1, T = t)fT (t|T ≥ t0) dt, z ∈ (0,∞),

(1.29)

where P (L = 0|D = 1, T = t) and fL(z|D = 1, T = t) can be calculated by Equa-

tions 1.21 and 1.22, and fT (t|T ≥ t0) = fT (t)/P (T ≥ t0) is the conditional lifetime

distribution. The validity of this mixed probability distribution can be proved by

P (L = 0|D = 1, T ≥ t0) +

∫ ∞
0

fL(z|D = 1, T ≥ t0)dz = 1. (1.30)

The actuarial life table from the United States Social Security Administration was

used to estimate the lifetime distribution fT (t|T ≥ t0) (see http://ssa.gov/OACT/

STATS/table4c6.html). The life table provides the conditional probability of death

within one year from age 0 to age 119, denoted as bN = P (T < N + 1|T ≥ N), N =

0, 1, . . . , 119. The conditional density can be approximated by

fT (t = t0 +N |T ≥ t0) = (1− at0+N)
N∏
i=1

at0+i−1, ∀N = 1, 2, . . . , 120− t0, (1.31)

where aN = 1 − bN . The final lifetime distribution was approximated by a step

function, fT (t|T ≥ t0) ≈ fT (t = t0 +N |T ≥ t0), for any t ∈ (N,N + 1).

Because the lifetime T is random, the number of screening exams K = d(T −

t0)/∆e is a function of T , hence it is also a random variable, with ∆ as the screening
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interval. We can see the final distribution of the lead time is a weighted average of

different lengths of lifetimes. Additional simulations were done in Kendrick et al.

(2015).

17



CHAPTER 2

ESTIMATION OF THE THREE KEY PARAMETERS

2.1 The National Lung Screening Trial Study

In 2002, the National Cancer Institute launched the National Lung Screening Trial

(NLST), a randomized clinical trial that screened a high-risk population with either

low-dose helical (spiral) computed tomography (CT) or standard chest X-ray (X-ray).

The purpose of the study was to evaluate whether low-dose CT screening reduces lung

cancer mortality comparing to chest radiography among high-risk individuals. NLST

enrolled approximately 54,000 male and female current or former heavy smokers (with

a smoking history of at least 30 pack-years, and at most 15 years since quitting if for-

mer smokers) aged 55 to 74 years between August 2002 and April 2004. Participants

were randomized to two study arms in equal proportions: CT or X-ray. Participants

were offered screening exams annually for 3 years, with the first screening performed

soon after study entry. 15,537 male and 10,769 female participants in CT arm and

15,396 male and 10,634 female participants in X-ray arm had first screening exam. If

any of the exam results was abnormal, then the screen was considered positive and

more diagnostic tests should be done, such as biopsy. The median follow-up time was

6.5 years, the final results revealed participants in CT arm had a 15 to 20 percent

lower lung cancer mortality than participants who received standard chest X-rays.

The data we used are with the same format as shown in Table 1.2, including the

This chapter estimated the three key parameters using NLST data, which follows Liu et al.
(2015).
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number of participants in each screening exam, the number of screening detected and

confirmed cancer cases, and the number of interval-incident cases, stratified by initial

age.

Our study will focus on evaluating lung cancer screening using only CT arm

data in NLST. The reason is 1). CT screening is the most current screening modal-

ity, commonly known with higher sensitivity. 2). There is little literature on the

estimation of the three key parameters and lead time distribution in CT scan.

2.2 Method

Let the time variable t represents the participant’s age. Then let β(t) represents the

sensitivity of the screening. Define w(t)dt as the probability of a transition from S0

to Sp during (t, t + dt). Let q(x) be the probability density function of the sojourn

time in Sp, and let Q(z) =
∫∞
z
q(x) dx be the survival function of the sojourn time in

the preclinical state Sp.

For an initially asymptomatic heavy smoker of age t0, who has no history of

lung cancer, and suppose that the person plans to undergo K screening exams at

ages t0 < t1 < · · · < tK−1, where ti = t0 + i for annual screening exams in NLST

study. Define the ith screening interval as the time interval between the ith and the

(i+ 1)th screening exams, that is, (ti−1, ti), i = 1, 2, , K− 1. We let t−1 ≡ 0. For each

screening exam, let ni,t0 be the total number of individuals in this cohort examined

at the ith screening, si,t0 is the number of cases detected at the ith screening exam,

and ri,t0 is the number of cases diagnosed in the clinical state Sc within the interval

(ti−1, ti), which is the interval cases.

For NLST data, the age of participants enrolled was between 55 to 74 at the

study entry and three annual screening exams were offered (K = 3). Hence, the
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likelihood function for all groups based on Equations 1.5 and 1.9 is

L =
74∏

t0=55

3∏
k=1

D
sk,t0
k,t0

I
rk,t0
k,t0

(1−Dk,t0 − Ik,t0)nk,t0
−sk,t0−rk,t0 , (2.1)

where Dk,t0 is the probability that an individual will be detected by the kth screening

exam (at age tk−1) given this person is in the state Sp. Ik,t0 is the probability of an

individual being incident during the kth interval (tk−1, tk). These two probabilities

can be calculated as in Equations 1.6, 1.7 and 1.8, respectively.

The parametric models for the three key parameters were chosen as following:

β(t|b0, b1) =
1

1 + exp{−b0 − b1(t− t̄)}
, (2.2)

w(t|µ, σ2) = 0.3 · 1√
2πσt

exp{−(log t− µ)2/(2σ2)}, t > 0, σ > 0, (2.3)

q(x|λ, α) = αλxα−1 exp (−λxα), λ > 0, α > 0, (2.4)

Q(x|λ, α) = exp (−λxα), λ > 0, α > 0, (2.5)

where t̄ is the average age at entry in the study group, in this data, t̄ = 61.4 years.

We also associate the sensitivity β with age t by a logistic link. As mentioned before,

if b1 > 0, then β(t) will be a monotone increasing function of age t. The log-normal

distribution was chosen for w(t) with an upper limit of 30%. According to the NIH

SEER database, the lifetime risk of lung cancer for the general population is about 7%

for both genders (NCI, 2015). Since participants in NLST were heavy smokers, the

risk would be higher than that, besides the fact that not all people in the preclinical

state will progress into clinical cancer. This research proposes 30% as a reasonable

upper limit for w(t). A more detailed description of the parametric models can be

found in Wu et al. (2005a, 2011). We choose a different sojourn time distribution

than Wu et al. (2005a), where the previous research used log-logistic, and we use

Weibull distribution here, both share the same property of mathematical simplicity,
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and both are stable with two parameters. However, Weibull is more flexible in that

the nth moments always exist.

2.3 Application

The six unknown parameters θ = (b0, b1, µ, σ
2, λ, α) were estimated based on CT arm

data. The data were split into three groups: male, female and overall. Theoretically,

the parameters have a domain of either (−∞,+∞) or (0,+∞). The practical meaning

of these parameters will limit them to a finite range. As was described in Wu et al.

(2005a), the range for each parameter can be identified as: 0 < b0 < 4, −0.1 < b1 <

0.1, 4.0 < µ < 4.5, 0.01 < σ2 < 0.05, 0.01 < λ < 0.5, and 1.5 < α < 4.0.

Markov Chain Monte Carlo (MCMC) was used to draw posterior samples with

non-informative Uniform priors. We partitioned the posterior simulation into three

sub-chains, sampling the posterior for (b0, b1), (µ, σ2) and (λ, α) separately. That is,

there are three sampling steps for updating (b0, b1), (µ, σ2) and (λ, α) in each iteration.

Two simulations were carried out with different initial values that were over dispersed

with respect to the target distribution. Each simulation was run for 130,000 iterations,

with 30,000 burn-in steps, and after the burn-in steps, the posteriors were sampled

every 200 steps, providing 500 posterior samples for the parameter vector θ. The 500

posterior samples from each of the two chains were pooled for the analysis, giving a

total of 1000 posterior samples for θ. The MCMC trace and the posterior density of θ

are plotted using the final 1000 posterior samples for θ of 3 groups: overall, male and

female groups. Figure 2.1 shows the MCMC trace for of overall group, the MCMC

trace for males and females are similar to Figure 2.1 and we omit here. Figures 2.2,

2.3 and 2.4 show the density plots for three groups, respectively. Bayesian output

diagnosis showed that the chains had converged. The posterior estimates for six

parameters and the standard deviations are listed in Table 2.1.

The age-dependent Bayesian estimates of the sensitivity β and the transition
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density w(t) for each group are listed in Table 2.2. Figures 2.5, 2.6 and 2.7 show

posterior quantiles of sensitivity and transition probability for each group. From

Equation 2.2, we can see β(t) will be monotonic increasing with age t if b1 > 0.

In our cases, b1 is greater than but is also closed to 0 in all cases. We did a Bayes

hypothesis test for H0 : b1 ≤ 0 versus H1 : b1 > 0. For the overall group which includes

both genders, the posterior probability of a positive slope is P (b1 > 0|Data) = 0.532;

For males group, this posterior probability is P (b1 > 0|Data) = 0.513; for females,

this posterior probability is 0.651. Hence, the evidence of age effect is not significant

in all groups. The age-dependent transition probability is a sub-PDF from our model

construction. The posterior density curve of the transition probability could be seen

from Figures 2.5, 2.6 and 2.7. The transition probability is not a monotone function

of age, having a single maximum around age 70 for both males and females. The

posterior mean sojourn time is 1.48 years for CT overall, 1.44 years for CT male

and 1.62 years for CT female, with a posterior median of 1.47 years for CT overall,

1.41 years for CT male and 1.58 years for CT female, respectively. The 95% highest

posterior density interval is (1.22, 1.77) for overall, (1.11, 1.78) for males and (1.21,

2.04) for females. The standard error for the sojourn time is 0.144 for CT overall,

0.185 for CT male and 0.221 for CT female.
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Table 2.1: Bayesian posterior estimates for the 6 parameters in NLST data CT arm

Mean SD 2.5% 50% 97.5%

Overall

b0 3.263 0.503 2.154 3.339 3.963

b1 0.002 0.053 -0.094 0.005 0.094

µ 4.271 0.008 4.255 4.270 4.288

σ2 0.022 0.002 0.018 0.022 0.027

λ 0.270 0.053 0.163 0.275 0.370

α 2.703 0.496 1.899 2.643 3.822

Male

b0 2.923 0.622 1.705 2.950 3.939

b1 0.002 0.058 -0.095 0.003 0.096

µ 4.268 0.010 4.249 4.268 4.288

σ2 0.021 0.003 0.016 0.020 0.026

λ 0.306 0.079 0.140 0.312 0.452

α 2.713 0.601 1.715 2.672 3.903

Female

b0 3.247 0.516 2.182 3.330 3.968

b1 0.017 0.054 -0.091 0.026 0.096

µ 4.276 0.014 4.248 4.275 4.303

σ2 0.026 0.004 0.019 0.026 0.034

λ 0.194 0.059 0.090 0.189 0.330

α 2.983 0.562 1.945 2.948 3.934
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Table 2.2: Bayesian posterior estimates of β and w(t) for each group

Age
Sensitivity β Transition density w(t)

Median Mean SD Median Mean SD

Overall

55 0.9642 0.9551 0.0306 0.0030 0.0030 3.07× 10−4

60 0.9657 0.9581 0.0238 0.0066 0.0066 3.86× 10−4

65 0.9642 0.9587 0.0220 0.0101 0.0100 5.63× 10−4

70 0.9616 0.9570 0.0256 0.0114 0.0114 6.01× 10−4

75 0.9613 0.9529 0.0343 0.0102 0.0102 3.96× 10−4

Male

55 0.9484 0.9360 0.0461 0.0029 0.0029 4.01× 10−4

60 0.9496 0.9398 0.0369 0.0067 0.0067 4.95× 10−4

65 0.9497 0.9396 0.0385 0.0104 0.0104 7.16× 10−4

70 0.9495 0.9355 0.0497 0.0118 0.0118 7.74× 10−4

75 0.9506 0.9274 0.0678 0.0105 0.0105 5.07× 10−4

Female

55 0.9601 0.9499 0.0337 0.0034 0.0034 4.98× 10−4

60 0.9641 0.9563 0.0255 0.0065 0.0065 5.76× 10−4

65 0.9665 0.9599 0.0228 0.0094 0.0094 7.75× 10−4

70 0.9666 0.9610 0.0256 0.0104 0.0104 8.31× 10−4

75 0.9710 0.9596 0.0332 0.0096 0.0095 6.00× 10−4
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Figure 2.1: The MCMC trace plots of the parameters θ = (b0, b1, µ, σ
2, λ, α) using

CT arm overall group in NLST data
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Figure 2.2: The posterior density plots of the parameters θ = (b0, b1, µ, σ
2, λ, α) using

CT arm overall group in NLST data
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Figure 2.3: The posterior density plots of the parameters θ = (b0, b1, µ, σ
2, λ, α) using

CT arm male group in NLST data
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Figure 2.4: The posterior density plots of the parameters θ = (b0, b1, µ, σ
2, λ, α) using

CT arm female group in NLST data
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Figure 2.5: Posterior quantiles (5%, 50% and 95%) of sensitivity and transition prob-
ability for CT overall group
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Figure 2.6: Posterior quantiles (5%, 50% and 95%) of sensitivity and transition prob-
ability for CT male group
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Figure 2.7: Posterior quantiles (5%, 50% and 95%) of sensitivity and transition prob-
ability for CT female group

2.4 Discussion

In this project, the three key parameters (screening sensitivity, the transition prob-

ability density and the sojourn time distribution) were estimated using Bayesian

approach. The estimation was based on the NLST CT arm data.

For lung cancer screening, little research has been done in estimating the three

key parameters. For instance, Jang et al. (2013) estimated the three key parameters

using the Johns Hopkins Lung Project (JHLP) control group data. The control

group was only administered X-ray screenings, and the estimated sensitivity was

56.8%. Kim and Erwin (2012) estimated the sensitivity as 79.9% using the JHLP

study group data, in which both X-ray and sputum cytology were used. By using
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Mayo Lung Project (MLP) male heavy smokers data, Wu et al. (2011) estimated the

sensitivity of exams combined X-rays and sputum cytology was 89.4%. The screening

sensitivity of sputum cytology as a supplement to the chest X-ray was 86.64%, which

was estimated using the Lung Cancer Screening Program at the Memorial Sloan-

Kettering Cancer Center (MSKC-LCSP) data (Chen et al., 2014).

Compared with these previous results, the sensitivity estimated in this study

is around 95% for all the groups, which is much larger. This confirms that CT scan

improves the lung cancer screening sensitivity compares to X-rays. In addition, it

seems that the sensitivity of lung cancer screening using CT scan does not depend

on the age of patients. Pinsky et al. (2015) and Aberle et al. (2013) reported the

sensitivity was 93.5% and 94.4% for the NLST CT arm, respectively, which is also

close to our estimation of sensitivity.

The transition probability from disease-free to preclinical state has a peak

around age 70 for both men and women. The transition probability also has a single

maximum around age 70 in Chen et al. (2014). The “SEER Fast Fact Stats” (NCI,

2015) shows that the highest percent of new lung cancer cases is in 65-74 age group.

Our results are consistent with that fact.

In the MLP study, the mean sojourn time was 2.2 years (Wu et al., 2011),

the mean sojourn time for male heavy smokers in MSKC-LCSP data was about 3.35

years. The posterior mean sojourn in this study is around 1.5 years for both gender

groups in this study. The sojourn time is relatively short compares to other studies,

it may be caused by the fact that the estimated sensitivity and sojourn time are

correlated using this likelihood.

In summary, this project focuses on the estimation of the three key parame-

ters: sensitivity, sojourn time distribution and transition probability density from the

disease-free to the preclinical state. It lays a foundation for the estimation of other

interesting terms, such as lead time, over diagnosis, long term outcomes in the future,
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because all these interesting terms can be expressed as a function of the three key

parameters.
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CHAPTER 3

ESTIMATION OF THE LEAD TIME DISTRIBUTION

3.1 Method

The lead time distribution when human lifetime is fixed and considered as a random

variable were derived in Wu et al. (2007) and Wu et al. (2012), respectively. They are

both functions of the there key parameters. The distribution of lead time consists of

a point mass at zero and a positive continuous probability density. Because the lead

time will be zero for the interval incident cases and it will be greater than zero for the

screen-detected cases. In this project, a persons lifetime T is considered as a random

variable, and the number of screenings K = d(T − t0)/∆e is a function of T , hence

it is also random. The derived probability formulae for lead time when lifetime is

random can be found in Section 1.3.3. From Equations 1.28 and 1.29, when lifetime

is a random variable, the distribution of lead time is a weighted average distribution

of different lengths of lifetimes.

The 1000 posterior samples of the six unknown parameters obtained in the

first project are used to estimate the lead time distribution. We use 1000 Bayesian

posterior samples θ∗i in the inference for the lead time distribution, where θ∗i is one

of the posterior samples generated using MCMC, and i = 1, 2, . . . , 1000. Then the

posterior predictive distribution of lead time is

fNLSTL (l) ≈ 1

n

n∑
i=1

fNLSTL (l|θ∗i ), (3.1)
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where fNLSTL (l|θ∗i ) is the mixture distribution defined by Equations 1.28 and 1.29.

3.2 Application

To obtain the projected lead time distribution for cohorts with different initial screen-

ing ages and different future schedules, we conducted simulations with different set-

tings. For each gender, we assumed that there are four cohorts of initially asymp-

tomatic individuals, with initial age t0=55, 60, 65, and 70, respectively; Then within

each cohort, we examined four different future screening intervals at ∆=12, 18, 24,

and 30 months. We present simulation results of these 16 scenarios for both men and

women.

Table 3.1 and Table 3.2 present the Bayesian predictive inference for the lead

time in years and the probability of no-early-detection (P0) and early-detection (1-P0)

for men and women, respectively. The probability that the lead time is zero (P0) and

its corresponding 95% C.I., the probability that the lead time is positive (1-P0) and its

corresponding standard deviation are reported as percentages. The mean lead time

(EL) in years was estimated by EL = 0 × P (L = 0|D = 1, T ≥ t0) +
∫∞

0
zfL(z|D =

1, T ≥ t0) dz =
∫∞

0
zfL(z|D = 1, T ≥ t0) dz. To measure the location and the spread

for the distribution of lead time greater than zero, we estimated the median and

divided it over the interquartile range (Med/IQR), where IQR is the first quartile

subtracted from the third quartile.

For both genders, simulation results show a clear trend that the probability

of no-early-detection will increase as the screening time interval increases within the

same age group. For example, if a 60-year-old man begins to take CT screening

exams annually (i.e., ∆=12 months) and assuming that he will develop lung cancer

at some point in his lifetime, the chance that he will not be detected early by the

regular screening exams is 11.65%. However, this probability of no-early-detection

will increase to 36.35% if the exams are biennial (i.e., ∆=24 months). Across the
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age groups, although the probability of no-early-detection does not seem to have

significant differences, it tends to decrease as the initial screening age increases with

the same screening interval. In addition, for all 16 scenarios of different initial ages

and screening intervals, the probabilities of no-early-detection for men are larger than

that for women. It seems that men have smaller chances to be detected early by CT

screening exam than women do.

The probability density curves of the lead time for men and women are shown

in Figure 3.1 and Figure 3.2, respectively. For initial screening age t0= 55, 60, 65

and 70, four curves represent four different screening intervals (∆=12, 18, 24 and

30 months). For men and women with the same initial screening age and screening

interval, the mean lead time appears longer for women than for men. For both

genders, the mean lead time becomes shorter as screening interval increases within

initial age group. In other words, if the screening exams are more frequent, the lead

time will be longer. This result matches with the trend for the probability of lead

time is zero. That is, the increase in the mean lead time when screening interval

decreases is due partly to the smaller point mass at zero of the lead time. However,

the mean lead time seems stable across different initial age groups, which implies the

length of lead time may only relate to gender and screening interval.
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Table 3.1: A projection of the lead time distribution for men by initial screening age
age and screening interval

∆ (months) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR
Age at initial screen t0=55

12 11.80 (7.86, 16.98) 88.20 (2.34) 0.87 (0.69) 0.94
18 24.42 (18.07, 31.03) 75.58 (3.29) 0.68 (0.68) 0.94
24 37.06 (28.68, 45.34) 62.94 (4.34) 0.55 (0.66) 0.83
30 47.41 (37.92, 55.62) 52.59 (4.66) 0.45 (0.64) 0.83

Age at initial screen t0=60
12 11.65 (7.28, 17.76) 88.35 (2.61) 0.86 (0.68) 0.94
18 23.98 (17.14, 31.20) 76.02 (3.59) 0.68 (0.68) 0.83
24 36.35 (27.67, 45.06) 63.65 (4.54) 0.55 (0.66) 0.83
30 46.49 (36.73, 54.86) 53.51 (4.83) 0.46 (0.64) 0.83

Age at initial screen t0=65
12 11.58 (6.70, 19.16) 88.42 (3.12) 0.85 (0.68) 0.94
18 23.53 (16.19, 32.29) 76.47 (4.12) 0.67 (0.67) 0.83
24 35.51 (26.17, 45.14) 64.49 (4.92) 0.55 (0.65) 0.83
30 45.31 (34.90, 54.44) 54.69 (5.11) 0.46 (0.63) 0.94

Age at initial screen t0=70
12 11.66 (6.19, 21.83) 88.34 (3.97) 0.82 (0.67) 1.06
18 23.14 (15.02, 34.52) 76.86 (4.97) 0.66 (0.66) 0.83
24 34.55 (24.56, 45.82) 65.45 (5.53) 0.54 (0.65) 0.94
30 43.86 (32.82, 54.44) 56.14 (5.57) 0.46 (0.62) 0.81
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Table 3.2: A projection of the lead time distribution for women by initial screening
age age and screening interval

∆ (months) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR
Age at initial screen t0=55

12 6.89 (4.06, 10.73) 93.11 (1.73) 1.06 (0.73) 1.17
18 16.88 (11.28, 23.55) 83.12 (3.09) 0.85 (0.74) 0.95
24 28.85 (20.06, 38.55) 71.15 (4.63) 0.69 (0.73) 0.94
30 39.84 (28.97, 50.17) 60.16 (5.42) 0.57 (0.71) 0.94

Age at initial screen t0=60
12 6.76 (3.91, 10.68) 93.24 (1.76) 1.05 (0.72) 1.17
18 16.53 (10.92, 23.18) 83.47 (3.13) 0.85 (0.73) 0.95
24 28.26 (19.41, 37.85) 71.74 (4.65) 0.69 (0.73) 0.94
30 39.06 (27.92, 49.33) 60.94 (5.44) 0.58 (0.71) 0.85

Age at initial screen t0=65
12 6.65 (3.72, 10.56) 93.35 (1.87) 1.03 (0.72) 1.05
18 16.13 (10.41, 22.92) 83.87 (3.23) 0.84 (0.73) 0.94
24 27.54 (18.52, 37.16) 72.46 (4.71) 0.69 (0.72) 0.94
30 38.03 (26.98, 48.14) 61.97 (5.47) 0.58 (0.71) 0.85

Age at initial screen t0=70
12 6.58 (3.49, 11.20) 93.42 (2.10) 1.01 (0.72) 1.06
18 15.74 (9.95, 22.72) 84.26 (3.45) 0.82 (0.72) 0.94
24 26.71 (17.58, 36.35) 73.29 (4.82) 0.68 (0.71) 0.85
30 36.79 (25.86, 46.84) 63.21 (5.53) 0.58 (0.70) 0.75
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Figure 3.1: The sub-PDF curves of the lead time for males: Four curves represent-
ing different screening intervals are plotted for t0 = 55 (upper left panel), t0 = 60
(upper right panel), t0 = 65 (bottom left panel) and t0 = 70 (bottom right panel),
respectively. The area under the curve is 1− P0.
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Figure 3.2: The sub-PDF curves of the lead time for females: Four curves represent-
ing different screening intervals are plotted for t0 = 55 (upper left panel), t0 = 60
(upper right panel), t0 = 65 (bottom left panel) and t0 = 70 (bottom right panel),
respectively. The area under the curve is 1− P0.
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3.3 Discussion

In this project, we estimated the lead time distribution when lifetime T is a random

variable for lung cancer screening using CT. When lifetime is treated as a random

variable, the lead time distribution is a weighted average of lead time under different

lifetime lengths. We explored the relation of lead time by gender for several initial

screening ages and different screening intervals.

We compared our results to the simulation results using the MLP data in

Wu et al. (2011). The participants of MLP were all male heavy smokers, and they

took a screening test every four months. Each test includes a chest X-ray and a

three-day pooled sputum cytology sampling. The authors made inference on lead

time distribution while the initial screening age t0 was set at 45 years and human

lifetime was fixed to 75 year. The simulation results showed the probability of no-

early-detection was 32.74% for men with an annual screening interval (i.e. ∆=12

months). Although we did not present the simulation results for initial age t0=45, the

probability of no-early-detection is 11.81% for men with an annual screening interval

and initial screening age t0=55 years, which is much smaller than 32.74%. Therefore,

it seems that lung cancer screening using CT will result in more early-detected cases

than a chest X-ray and a three-day pooled sputum cytology sampling do. We also

compared the lead time estimates to the lead time distribution estimated using the

JHLP data (Jang et al., 2013). In the JHLP study, a projection of the lead time

distribution was obtained for male smokers received screening exam using X-ray. To

estimate the lead time distribution, the human lifetime was considered as a random

variable in the JHLP study, as well as in this NLST study. For initial screening

age t0=60, the probability of no-early-detection is 46.54% if the screening exams are

given annually, and it was 59.97% if the screening exams are offered biennially. For the

NLST CT arm, this probability is 36.36% and 46.49% for annual and biennial exams,
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respectively. The dramatic decrease in probability of no-early-detection in screening

using CT may demonstrate that lung cancer screening using CT is more effective than

using X-ray and X-ray combined with pooled sputum cytology sampling.

The lifetime distribution was calculated based on the actuarial life table 2013

published in 2016 from the United States Social Security Administration (SSA) (SSA,

2016). Some may argue that we should use the lifetime reports from the same year

when the NLST study underwent to better represent the study participants. In fact,

the life table does not change much over the years, so we just use the recent published

data to obtain the lifetime distribution. Furthermore, some may also say we need to

use the lifetime distribution for lung cancer population instead of using the one for

the general population. However, the cancer population is small and there is no such

source for us to obtain the life table, so we just use the whole population data to

estimate the lifetime time distribution.
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CHAPTER 4

ESTIMATION OF THE LEAD TIME DISTRIBUTION FOR
INDIVIDUALS WITH SCREENING HISTORY

In previous studies, it is assumed that a person has no screening history before enter-

ing the study. However, participants aged 55 and over may already have at least one

prior lung cancer screening exam in the past and look healthy. In the third project,

we extend the models of lead time distribution developed in Wu et al. (2007) and Wu

et al. (2012).

4.1 Method

Lead time distribution for individuals with screening history can be derived as fol-

lowing. We define D as a binary random variable with D = 1 indicating a person

develops (clinical) cancer before death and D = 0 indicating the person is cancer

free before death. The time variable t represents a person’s age, and T represents a

person’s lifetime. If a person already had K1 screening exams, we define this event as

HK1 =


An individual had screening exams at age t0 < t1 < · · · < tK1−1,

no cancer was detected,

and the person is asymptomatic at his or her current age

 .
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4.1.1 Lead time distribution for individuals with screening history when T is fixed

Suppose an individual has received K1 screening exams, and he or she will continue

with K screenings. To derive this lead time distribution, we need to calculate two

parts of the mixture distribution as in Equations 1.21 and 1.22. That is, the con-

ditional probability P (L = 0|D = 1, HK1 , T = tK1+K) and conditional probability

density fL(z|D = 1, HK1 , T = tK1+K). When the lifetime T = tK1+K is a fixed value,

the distribution of lead time is

P (L = 0|D = 1, HK1 , T = tK1+K) =
P (L = 0, D = 1, HK1|T = tK1+K)

P (D = 1, HK1|T = tK1+K)
, (4.1)

fL(z|D = 1, HK1 , T = tK1+K) =
fL(z,D = 1, HK1|T = tK1+K)

P (D = 1, HK1 |T = tK1+K)
. (4.2)

The following probability will be calculated separately, P (D = 1, HK1|T = tK1+K),

P (L = 0, D = 1, HK1|T = tK1+K) and fL(z,D = 1, HK1|T = tK1+K). P (D =

1, HK1 |T = tK1+K) is the probability that a person develops clinical cancer after K1

screening exams given lifetime T = tK1+K . P (L = 0, D = 1, HK1|T = tK1+K) is the

probability that an individual being an interval case after K1 exams given lifetime

T = tK1+K . They can be calculated by

P (D = 1, HK1|T = tK1+K)

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)[Q(tK1 − x)−Q(T − x)] dx

+

∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(T − x)] dx+

∫ T

tK1

w(x)[1−Q(T − x)] dx.

(4.3)

P (L = 0, D = 1, HK1|T = tK1+K) = IK1+K,K1+1 + IK1+K,K1+2 + · · ·+ IK1+K,K1+K ,

(4.4)
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where

IK1+K, j =

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx, for j = K1 + 1, · · · , K1 +K.

(4.5)

fL(z,D = 1, HK1 |T = tK1+K)

=

j−1∑
i=K1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
, if T − tj < z ≤ T − tj−1,

for j = K1 + 1, . . . , K1 +K.

(4.6)

We have proved that this mixed probability distribution is valid since

P (L = 0|D = 1, HK1 , T = tK1+K) +

∫ T−tK1

0

fL(z|D = 1, HK1 , T = tK1+K) dz ≡ 1.

(4.7)

The detailed derivation and proof can be found in Appendix.

4.1.2 Lead time distribution for individuals with screening history when T is a ran-

dom variable

When lifetime T is a random variable, the lead time distribution when T is greater

than the current age tK1 can be obtained by

P (L = 0|D = 1, HK1 , T ≥ tK1) =

∫ ∞
tK1

P (L = 0|D = 1, HK1 , T = t)fT (t|T ≥ tK1) dt,

(4.8)
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fL(z|D = 1, HK1 , T ≥ tK1)

=

∫ ∞
tK1

+z

fL(z|D = 1, HK1 , T = t)fT (t|T ≥ tK1) dt, z ∈ (0,∞),
(4.9)

where P (L = 0|D = 1, HK1 , T ≥ tK1) and fL(z|D = 1, HK1 , T ≥ tK1) were given

in Equations 4.1 and 4.2, respectively. Again, the conditional lifetime distribution

density fT (t|T ≥ tK1) can be estimated using the actuarial life table, as shown in

Equation 1.31.

4.2 Simulation Study

Screening for breast, lung, colon and cervical cancers are recommended by the USP-

STF (2016), each of these cancers has different screening methods, and the sensitiv-

ities for these screening methods are not the same. In addition, the speed of cancer

grows and spreads may also vary for different disease, which means the length of

sojourn time in preclinical state is different. To explore the characteristics of newly

developed lead time distribution for different cancer diseases and different screening

schedules, simulations were done under each of the combinations of following settings:

1. Three different initial screening ages: t0 = 56, 60 and 64 years.

2. Two different screening sensitivities: β = 0.7 and 0.9.

3. Three different mean sojourn time: MST = 2, 5 and 10 years.

For a given initial screening age t0, we examined the lead time distribution for

four current ages tK1 with four years interval. That is, we conducted simulations by

setting tK1 = 60, 64, 68 and 72 when t0 = 56, tK1 = 64, 68, 72 and 76 when t0 = 60,

and tK1 = 68, 72, 76 and 80 when t0 = 64. For each combination of initial screening

ages, sensitivities, mean sojourn times and current ages, we considered four screening

schedules in the past and in the future with intervals (∆1,∆2) = (1, 1), (2, 1), (1, 2)

and (2, 2). For example, (∆1,∆2) = (1, 2) means that the individual received annual
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screening exams in the past and will take screening exams biennially in the future.

We did not consider gender effect in this simulation study and only used lifetime table

for males.

In the simulation, the parametric models of the transition probability and the

sojourn time are the same with aforementioned Equations 2.3 and 2.4. µ and σ2 were

decided based on the mode of the log-normal distribution, here we let the mode be

70, as most of the cancer cases are diagnosed around age 70 years. For different mean

sojourn time, we chose different values of λ. The values of the unknown parameters

in the simulation were chosen as shown in Table 4.1.

Table 4.1: Values of unknown parameters in simulation study

Parameter Settings Value

Sensitivity N/A Sensitivity is a fixed value 0.7 or 0.9

Transition Probability
µ The mode of the log-normal

distribution is set to be 70

4.4

σ2 0.16

Sojourn Time
λ

MST=2 0.1963

MST=5 0.0314

MST=10 0.0079

α α is a fixed value 2

Simulation results for MST = 2, 5 and 10 are shown in Tables 4.2-4.4, respec-

tively. In each table, we report the probability of lead time is zero P0 as percentages.

When the lead time is positive, we also report the mean lead time EL and its stan-

dard deviation, the median of lead time and the mode of lead time in years. As I

mentioned in previous sections, P0 stands for the probability that the person is not

early-detected by the screening exams. Longer lead time means the person benefits

more from the screening program since the treatments and interventions can be given

earlier.

Intuitively, the length of lead time highly depends on the length of sojourn

time. Usually, the longer sojourn time will lead to a longer lead time. We can
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also see this from our simulation results. For example, the probability of no-early-

detection P0 is 20.23% and the mean lead time is 1.11 for an individual who started

biennial screening exam at age 56 and will begin screening annually from current age

tK1 = 64, given that MST= 2 and β = 0.7. The probability P0 decreases to 6.87% and

the mean lead time increases to 3.29 when MST= 5. The probability P0 decreases to

only 3.82% and the mean lead time increases to 5.92 when MST= 10.

For different sensitivities, it is clear that larger screening sensitivity will result

in higher probability of early-detection (1−P0). The probability of no-early-detection

P0 is smaller and the mean lead time is also longer for β = 0.9 compared to β = 0.7.

By examining three different initial screening ages t0, we want to see if the

initial screening age affects the lead time distribution given a person looks healthy

at current age, or if the length of screening history has any influence on the lead

time distribution given the same current age. However, we found that the lead time

distribution tends to be the same for different t0 if the current age tK1 is fixed. To

illustrate, simply look at the results of tK1 = 68 and tK1 = 72. Because we ran

simulations of tK1 = 68 and tK1 = 72 for all three initial screening ages, and we can

compare the results of these two current ages separately across three initial screening

age groups. In Tables 4.2-4.4, the results of (t0, tK1) =(56, 68), (60, 68) and (64, 68)

are almost the same. It is also true when tK1 = 72. This indicates that the screening

initial age does not seem to affect the lead time distribution too much as long as the

person still looks healthy at current age. Figure 4.1 shows the density plots of the

lead time is positive for tK1 = 68 and tK1 = 72. In the figure, each curve actually

represents the density of three different initial screening ages (t0 = 56, 60 and 64),

because the curves overlap each other and we can only observe four curves in each

panel.

The probability of no-early-detection P0 is slightly increasing with a partici-

pant’s current age given that all other factors are the same, which means the younger
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participants will benefit more from the screening program. This increasing is more

obvious in the simulation when MST is larger. For example, in Table 4.3, the prob-

ability P0 is 17.21% and the mean lead time is 2.80 for an individual who started

annual screening exam at age 56, and will begin screening biennially from current age

tK1 = 60, given the screening sensitivity β = 0.7. The probability P0 slightly goes

up to 20.19% and the mean lead time becomes 2.36 when the individual’s age is 72.

Figure 4.2 gives percentages of P0 and P1 (1 − P0), we can see P0 increases as tK1

increases for all screening schedules. Since the results are the same for different t0,

we put results of all tK1 together in the bar plots regardless of t0.

For a given combination of sensitivity, initial age and current age, we can

compare the results of different screening schedules. For the cases with the same ∆1

but different ∆2, the lead time distribution tends to be very similar. For example,

we can compare the results of (∆1,∆2) = (1, 1), (1, 2) and (2, 1). It is easy to see

that the results for (∆1,∆2) = (1, 1) are significantly different from the results for

(∆1,∆2) = (1, 2), but the results for (∆1,∆2) = (1, 1) and (∆1,∆2) = (2, 1) are very

close. We can also see this from the PDF curves of lead time when MST = 2, 5

and 10, as shown in Figures 4.3-4.5, respectively. As the results are similar, we only

present curves of t0 = 56 and β = 0.7 for different tK1 and MST. The PDF curves for

lead time with same future screening interval ∆2 almost overlap each other for given

initial screening age, current age, sensitivity and mean sojourn time.

However, we can still find a trend that larger ∆1 will result in smaller P0 and

longer mean lead time if ∆2 remains the same, and it is more obvious when MST is

longer. In Table 4.4, the probability P0 is 9.19% and the mean lead time is 5.58 for an

individual whose initial screening age t0 = 56 and current age tK1 = 60 with screening

schedules (∆1,∆2) = (1, 2) given the screening sensitivity β = 0.7. The probability

P0 decreases to 8.64% and the mean lead time increases to 5.63 if the individual’s

past screening interval ∆1 = 2. We can see the trend more clearly in Figure 4.6.
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Table 4.2: A projection of the lead time distribution for individuals with screening
history by current age and screening intervals, with MST=2

(∆1,∆2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1
= 60

(1,1) 20.10 1.14 (1.05) 1.25 0.85 10.32 1.33 (1.04) 1.35 0.95
(2,1) 20.02 1.13 (1.04) 1.25 0.75 10.05 1.32 (1.04) 1.35 0.95
(1,2) 41.26 0.76 (0.97) 1.15 0.35 28.00 0.95 (1.01) 1.15 0.45
(2,2) 40.69 0.76 (0.96) 1.15 0.35 27.08 0.96 (1.00) 1.15 0.45

initial screening age t0 = 56, current age tK1
= 64

(1,1) 20.34 1.12 (1.04) 1.25 0.75 10.45 1.31 (1.03) 1.35 0.95
(2,1) 20.23 1.11 (1.03) 1.25 0.65 10.10 1.30 (1.03) 1.35 0.95
(1,2) 41.34 0.75 (0.96) 1.15 0.15 28.09 0.94 (1.00) 1.15 0.45
(2,2) 40.63 0.75 (0.96) 1.05 0.15 26.96 0.94 (0.99) 1.15 0.45

initial screening age t0 = 56, current age tK1
= 68

(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.03) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 56, current age tK1
= 72

(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 60, current age tK1
= 64

(1,1) 20.34 1.12 (1.04) 1.25 0.75 10.45 1.31 (1.03) 1.35 0.95
(2,1) 20.23 1.11 (1.03) 1.25 0.65 10.10 1.30 (1.03) 1.35 0.95
(1,2) 41.34 0.75 (0.96) 1.15 0.15 28.09 0.94 (1.00) 1.15 0.45
(2,2) 40.63 0.75 (0.96) 1.05 0.15 26.96 0.94 (0.99) 1.15 0.45

initial screening age t0 = 60, current age tK1
= 68

(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.02) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 60, current age tK1
= 72

(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 60, current age tK1
= 76

(1,1) 21.77 1.01 (0.99) 1.15 0.45 11.22 1.20 (1.00) 1.25 0.65
(2,1) 21.46 1.00 (0.98) 1.15 0.15 10.49 1.18 (0.99) 1.15 0.65
(1,2) 41.77 0.69 (0.91) 1.05 0.15 28.55 0.87 (0.95) 1.05 0.15
(2,2) 40.43 0.70 (0.91) 0.95 0.05 26.38 0.88 (0.94) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.02) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 72
(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 21.77 1.01 (0.99) 1.15 0.45 11.22 1.20 (1.00) 1.25 0.65
(2,1) 21.46 1.00 (0.98) 1.15 0.15 10.49 1.18 (0.99) 1.15 0.65
(1,2) 41.77 0.69 (0.91) 1.05 0.15 28.55 0.87 (0.95) 1.05 0.15
(2,2) 40.43 0.70 (0.91) 0.95 0.05 26.38 0.88 (0.94) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 22.60 0.95 (0.96) 1.05 0.15 11.68 1.13 (0.97) 1.15 0.45
(2,1) 22.15 0.94 (0.95) 1.05 0.15 10.71 1.12 (0.96) 1.15 0.15
(1,2) 41.88 0.66 (0.88) 0.95 0.05 28.68 0.82 (0.92) 1.05 0.15
(2,2) 40.21 0.66 (0.88) 0.95 0.05 25.97 0.84 (0.92) 0.95 0.05
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Table 4.3: A projection of the lead time distribution for individuals with screening
history by current age and screening intervals, with MST=5

(∆1,∆2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1
= 60

(1,1) 6.47 3.44 (2.50) 3.35 2.45 2.77 3.72 (2.48) 3.45 2.75
(2,1) 6.44 3.42 (2.50) 3.35 2.45 2.55 3.71 (2.47) 3.45 2.75
(1,2) 17.21 2.80 (2.49) 2.95 1.85 8.81 3.21 (2.48) 3.15 2.25
(2,2) 16.73 2.80 (2.49) 2.95 1.85 8.09 3.23 (2.47) 3.15 2.25

initial screening age t0 = 56, current age tK1
= 64

(1,1) 6.95 3.31 (2.46) 3.25 2.15 3.00 3.59 (2.44) 3.35 2.45
(2,1) 6.87 3.29 (2.46) 3.15 2.15 2.72 3.58 (2.44) 3.35 2.45
(1,2) 17.93 2.69 (2.44) 2.85 1.45 9.31 3.09 (2.44) 3.05 1.95
(2,2) 17.28 2.70 (2.44) 2.85 1.45 8.38 3.12 (2.43) 3.05 1.95

initial screening age t0 = 56, current age tK1
= 68

(1,1) 7.64 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.51 3.12 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.05 2.56 (2.38) 2.75 1.15 8.79 2.97 (2.38) 2.85 1.95

initial screening age t0 = 56, current age tK1
= 72

(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 60, current age tK1
= 64

(1,1) 6.96 3.31 (2.46) 3.25 2.15 3.00 3.59 (2.44) 3.35 2.45
(2,1) 6.90 3.28 (2.46) 3.15 2.15 2.72 3.58 (2.44) 3.35 2.45
(1,2) 17.93 2.69 (2.44) 2.85 1.45 9.31 3.09 (2.44) 3.05 1.95
(2,2) 17.29 2.69 (2.44) 2.85 1.45 8.38 3.12 (2.43) 3.05 1.95

initial screening age t0 = 60, current age tK1
= 68

(1,1) 7.64 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.51 3.12 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.05 2.56 (2.38) 2.75 1.15 8.79 2.97 (2.38) 2.85 1.95

initial screening age t0 = 60, current age tK1
= 72

(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 60, current age tK1
= 76

(1,1) 9.84 2.65 (2.23) 2.55 0.15 4.42 2.90 (2.22) 2.65 1.45
(2,1) 9.50 2.64 (2.23) 2.55 0.15 3.71 2.92 (2.23) 2.65 0.15
(1,2) 21.85 2.14 (2.17) 2.35 0.15 12.13 2.47 (2.19) 2.45 0.15
(2,2) 20.35 2.17 (2.18) 2.35 0.05 10.01 2.55 (2.20) 2.45 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 7.65 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.54 3.11 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.06 2.55 (2.38) 2.75 1.15 8.78 2.97 (2.38) 2.85 1.95

initial screening age t0 = 64, current age tK1 = 72
(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 9.84 2.65 (2.23) 2.55 0.15 4.42 2.90 (2.22) 2.65 1.45
(2,1) 9.50 2.64 (2.23) 2.55 0.15 3.71 2.92 (2.23) 2.65 0.15
(1,2) 21.85 2.14 (2.17) 2.35 0.15 12.13 2.47 (2.19) 2.45 0.15
(2,2) 20.35 2.17 (2.18) 2.35 0.05 10.01 2.55 (2.20) 2.45 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 11.58 2.32 (2.08) 2.25 0.15 5.29 2.55 (2.08) 2.35 0.15
(2,1) 11.06 2.32 (2.09) 2.25 0.05 4.31 2.58 (2.09) 2.35 0.05
(1,2) 23.94 1.86 (2.01) 2.05 0.05 13.67 2.17 (2.04) 2.15 0.15
(2,2) 21.98 1.91 (2.02) 2.05 0.05 10.87 2.26 (2.05) 2.15 0.05
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Table 4.4: A projection of the lead time distribution for individuals with screening
history by current age and screening intervals, with MST=10

(∆1,∆2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1
= 60

(1,1) 3.43 6.32 (4.41) 5.95 3.95 1.47 6.60 (4.39) 6.05 4.25
(2,1) 3.38 6.32 (4.44) 5.95 3.95 1.24 6.66 (4.41) 6.15 4.25
(1,2) 9.19 5.58 (4.42) 5.45 2.85 4.48 6.07 (4.39) 5.75 3.85
(2,2) 8.64 5.63 (4.44) 5.45 2.85 3.78 6.17 (4.41) 5.75 3.85

initial screening age t0 = 56, current age tK1
= 64

(1,1) 4.00 5.87 (4.23) 5.45 3.65 1.73 6.13 (4.21) 5.65 3.75
(2,1) 3.82 5.92 (4.26) 5.55 3.65 1.44 6.22 (4.24) 5.65 3.75
(1,2) 10.31 5.15 (4.23) 5.05 2.65 5.14 5.61 (4.21) 5.25 2.65
(2,2) 9.52 5.25 (4.26) 5.15 2.65 4.24 5.75 (4.23) 5.35 3.25

initial screening age t0 = 56, current age tK1
= 68

(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.55 5.38 (4.04) 5.05 2.95 1.72 5.67 (4.02) 5.15 3.15
(1,2) 11.79 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.74 4.76 (4.03) 4.65 0.15 4.84 5.23 (4.01) 4.85 2.65

initial screening age t0 = 56, current age tK1
= 72

(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.54 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.20 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 60, current age tK1
= 64

(1,1) 4.00 5.86 (4.23) 5.45 3.65 1.73 6.13 (4.21) 5.65 3.75
(2,1) 3.93 5.87 (4.27) 5.45 3.65 1.44 6.21 (4.24) 5.65 3.75
(1,2) 10.27 5.15 (4.23) 5.05 2.65 5.14 5.61 (4.21) 5.25 2.65
(2,2) 9.55 5.21 (4.26) 5.05 2.65 4.21 5.74 (4.23) 5.35 3.25

initial screening age t0 = 60, current age tK1
= 68

(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.56 5.38 (4.05) 4.95 2.95 1.72 5.67 (4.02) 5.15 3.15
(1,2) 11.79 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.74 4.76 (4.03) 4.65 0.15 4.84 5.23 (4.01) 4.85 2.65

initial screening age t0 = 60, current age tK1
= 72

(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.54 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.20 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 60, current age tK1
= 76

(1,1) 7.38 3.99 (3.37) 3.65 0.15 3.33 4.21 (3.35) 3.75 0.15
(2,1) 6.86 4.08 (3.43) 3.75 0.05 2.59 4.34 (3.41) 3.85 0.15
(1,2) 16.11 3.42 (3.31) 3.45 0.15 8.76 3.78 (3.32) 3.55 0.15
(2,2) 14.29 3.57 (3.38) 3.55 0.05 6.62 3.98 (3.38) 3.65 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.70 5.32 (4.05) 4.95 0.15 1.71 5.66 (4.03) 5.15 3.15
(1,2) 11.73 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.76 4.72 (4.02) 4.55 0.15 4.80 5.22 (4.01) 4.85 0.15

initial screening age t0 = 64, current age tK1 = 72
(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.55 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.19 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 7.38 3.99 (3.37) 3.65 0.15 3.33 4.21 (3.35) 3.75 0.15
(2,1) 6.86 4.08 (3.43) 3.75 0.05 2.59 4.34 (3.41) 3.85 0.15
(1,2) 16.11 3.42 (3.31) 3.45 0.15 8.76 3.78 (3.32) 3.55 0.15
(2,2) 14.30 3.57 (3.38) 3.55 0.05 6.62 3.98 (3.38) 3.65 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 9.38 3.26 (2.97) 3.05 0.05 4.29 3.47 (2.96) 3.05 0.15
(2,1) 8.67 3.35 (3.03) 3.05 0.05 3.28 3.60 (3.02) 3.15 0.05
(1,2) 19.09 2.76 (2.89) 2.85 0.05 10.72 3.08 (2.91) 2.85 0.15
(2,2) 16.76 2.92 (2.97) 2.85 0.05 7.86 3.28 (2.99) 2.95 0.05
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Figure 4.1: The PDF curves of the lead time for tK1 = 68 and tK1 = 72 with
different t0: 12 curves representing different screening schedules and different initial
screening age t0 are plotted for tK1 = 68 (upper panel) and tK1 = 72 (bottom panel),
respectively. Curves with the same t0 overlap each other, and only one curve for each
t0 shows. β = 0.7, MST = 2.
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Figure 4.2: The bar plots of percentage changes for P0 and P1 with different tK1 :
Six bars representing different current ages are plotted for each of the four screening
schedules, (∆1,∆2) = (1, 1) (upper left panel), (∆1,∆2) = (2, 1) (upper right panel),
(∆1,∆2) = (1, 2) (bottom left panel) and (∆1,∆2) = (2, 2) (bottom right panel).
β = 0.7, MST = 5, any t0.
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Figure 4.6: The bar plots of percentage changes for P0 with different ∆1 and the same
∆2: Bars grouped by six different current ages are plotted for two future schedules,
∆2 = 1 (upper panel) and ∆2 = 2 (bottom panel). β = 0.7, MST = 10, any t0.
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4.3 Application

We then applied 1000 Bayesian posterior samples generated from the NLST data

(Project 1) to the extended lead time distribution for individuals with screening

history. In Project 2, we obtained the lead time distribution for 16 scenarios, and we

followed the same strategy to obtain the projected lead time distribution for cohorts

with different current ages and different past and future schedules.

For each gender, we assumed that there are four cohorts of initially asymp-

tomatic individuals, with current age tK1 = 60, 64, 68 and 72, respectively. Then

within each cohort, we examined four different screening schedules (∆1,∆2) = (1, 1),

(2, 1), (1, 2) and (2, 2), which are the same with the simulation study. We assumed

the initial screening age t0 = 56 for all scenarios, since the simulation study showed

the initial screening age has no significant influence on the lead time distribution. We

present our results of these 16 scenarios for both men and women.

Table 4.5 and Table 4.6 present the Bayesian predictive inference for the prob-

ability of no-early-detection (P0), the probability of early-detection (1− P0) and the

lead time in years for men and women, respectively. The probability that the lead

time is zero (P0) and its corresponding 95% C.I., the probability that the lead time is

positive (1−P0) and its corresponding standard deviation are reported as percentages.

We also report median over the interquartile range (Med/IQR).

Coinciding with our expectations, for both genders, we can see the results of

(∆1,∆2) = (1, 1) and (2, 1) are very similar, the same for results of (∆1,∆2) = (1, 2)

and (2, 2). The future screening schedule plays an more important role than the past

screening schedule regarding the lead time distribution. To compare with the lead

time results for individuals with no history, we also add the projected lead time for

individual with no history with corresponding future screening intervals. For example,

in Table 4.5, the probability P0 is 11.83% and the mean lead time is 0.87 years for
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screening schedules (∆1,∆2) = (1, 1), and P0 is 11.67% and the mean lead time is

0.86 for (∆1,∆2) = (2, 1) given the person’s current age tK1 = 60. The probability P0

is 11.65% and the mean lead time is 0.86 years if the person’s future screening interval

is 1 year given the person took the first screening test at age 60. We also present

the sub-PDF curves of lead time is positive for men and women in Figure 4.7 and

Figure 4.8, respectively. In each figure, four panels represent four different current

ages (tK1 = 60, 65, 70 and 75). In each panel, six curves are the lead time density for

six different screening intervals ((∆1,∆2) = (1, 1), (1,2), (-,1), (2,1), (2,2) and (-,2)).

The sub-PDF curves of lead time for the same future screening interval ∆2 almost

overlap each other given the same current age.

Like the simulation study, we also find a trend that larger ∆1 will result in

smaller P0 if ∆2 is the same. In Table 4.5, the probability P0 is 11.83% for current

age tK1 = 60 with screening schedules (∆1,∆2) = (1, 1), and it decreases to 11.67%

if the individual’s past screening interval ∆1 = 2.

For both genders, it is obvious that the probability P0 increases and the mean

lead time decreases as the future screening interval ∆2 increases within the same age

group. Across the age groups, the probability P0 and mean lead time does not seem

to have significant differences. To illustrate, let us see the lead time density curves

of men and women in Figure 4.9 and Figure 4.10, respectively. Four panels represent

four different screening schedules, and four curves represent four current ages in each

panel. In each panel, the curves do not differentiate too much except the left tail.

In addition, the projected lead time is significantly affected by gender. Com-

paring to women, men have larger P0 and shorter mean lead time given the same

age and the same screening schedule. It seems that men have smaller chances to be

detected early by CT screening exam than women do.
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Table 4.5: A projection of the lead time distribution for men with screening history
by current age and screening intervals with initial screening age t0 = 56

(∆1,∆2) (years) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR

current age tK1 = 60

(1,1) 11.83 (7.37, 17.93) 88.17 (2.66) 0.87 (0.69) 1.06

(2,1) 11.67 (7.28, 17.79) 88.33 (2.62) 0.86 (0.68) 0.94

(-,1) 11.65 (7.28, 17.76) 88.35 (2.61) 0.86 (0.68) 0.94

(1,2) 36.91 (28.21, 45.48) 63.09 (4.49) 0.54 (0.66) 0.83

(2,2) 36.30 (27.59, 44.99) 63.70 (4.53) 0.54 (0.66) 0.83

(-,2) 36.35 (27.67, 45.06) 63.65 (4.54) 0.55 (0.66) 0.83

current age tK1 = 64

(1,1) 11.86 (6.93, 19.12) 88.14 (3.04) 0.86 (0.68) 0.94

(2,1) 11.62 (6.82, 18.83) 88.38 (3.00) 0.85 (0.68) 0.94

(-,1) 11.58 (6.82, 18.77) 88.42 (2.99) 0.85 (0.68) 0.94

(1,2) 36.60 (27.69, 45.84) 63.40 (4.72) 0.55 (0.66) 0.83

(2,2) 35.68 (26.67, 45.19) 64.32 (4.78) 0.54 (0.65) 0.83

(-,2) 35.68 (26.42, 45.11) 64.32 (4.83) 0.55 (0.66) 0.83

current age tK1 = 68

(1,1) 12.00 (6.47, 20.89) 88.00 (3.62) 0.85 (0.68) 0.94

(2,1) 11.66 (6.42, 20.48) 88.34 (3.59) 0.84 (0.68) 0.94

(-,1) 11.61 (6.39, 20.48) 88.39 (3.58) 0.83 (0.67) 0.94

(1,2) 36.31 (27.09, 46.40) 63.69 (5.08) 0.54 (0.65) 0.83

(2,2) 35.01 (25.60, 45.55) 64.99 (5.18) 0.54 (0.65) 0.83

(-,2) 34.96 (25.23, 45.45) 65.04 (5.26) 0.54 (0.65) 0.94

current age tK1 = 72

(1,1) 12.29 (6.07, 23.67) 87.71 (4.43) 0.83 (0.68) 0.94

(2,1) 11.84 (5.96, 23.35) 88.16 (4.43) 0.81 (0.67) 0.94

(-,1) 11.77 (5.96, 23.33) 88.23 (4.43) 0.81 (0.67) 1.06

(1,2) 36.04 (26.18, 47.83) 63.96 (5.60) 0.54 (0.65) 0.83

(2,2) 34.34 (24.37, 46.75) 65.66 (5.78) 0.54 (0.64) 0.94

(-,2) 34.22 (23.88, 46.78) 65.78 (5.89) 0.54 (0.64) 0.81
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Table 4.6: A projection of the lead time distribution for women with screening history
by current age and screening intervals with initial screening age t0 = 56

(∆1,∆2) (years) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR

current age tK1 = 60

(1,1) 6.87 (3.94, 10.93) 93.13 (1.81) 1.06 (0.72) 1.17

(2,1) 6.78 (3.91, 10.73) 93.22 (1.77) 1.05 (0.72) 1.17

(-,1) 6.76 (3.91, 10.68) 93.24 (1.76) 1.05 (0.72) 1.17

(1,2) 28.69 (19.83, 38.26) 71.31 (4.64) 0.69 (0.73) 0.94

(2,2) 28.15 (19.39, 37.77) 71.85 (4.63) 0.69 (0.73) 0.94

(-,2) 28.26 (19.41, 37.85) 71.74 (4.65) 0.69 (0.73) 0.94

current age tK1 = 64

(1,1) 6.84 (3.82, 10.98) 93.16 (1.90) 1.05 (0.72) 1.17

(2,1) 6.69 (3.74, 10.68) 93.31 (1.85) 1.04 (0.72) 1.17

(-,1) 6.67 (3.74, 10.60) 93.33 (1.84) 1.04 (0.72) 1.05

(1,2) 28.44 (19.38, 37.99) 71.56 (4.65) 0.69 (0.73) 0.94

(2,2) 27.63 (18.76, 37.18) 72.37 (4.65) 0.69 (0.72) 0.94

(-,2) 27.69 (18.71, 37.29) 72.31 (4.69) 0.69 (0.72) 0.94

current age tK1 = 68

(1,1) 6.85 (3.70, 11.24) 93.15 (2.06) 1.04 (0.72) 1.17

(2,1) 6.64 (3.59, 10.99) 93.36 (2.00) 1.03 (0.72) 1.05

(-,1) 6.60 (3.59, 10.96) 93.40 (1.99) 1.02 (0.72) 1.17

(1,2) 28.20 (19.36, 37.59) 71.80 (4.68) 0.69 (0.72) 0.94

(2,2) 27.06 (18.24, 36.58) 72.94 (4.69) 0.69 (0.72) 0.94

(-,2) 27.06 (18.00, 36.61) 72.94 (4.77) 0.68 (0.72) 0.94

current age tK1 = 72

(1,1) 6.92 (3.57, 12.24) 93.08 (2.31) 1.03 (0.72) 1.17

(2,1) 6.63 (3.39, 11.78) 93.37 (2.26) 1.00 (0.72) 1.06

(-,1) 6.59 (3.39, 11.63) 93.41 (2.25) 1.00 (0.71) 1.06

(1,2) 27.97 (19.11, 37.41) 72.03 (4.76) 0.69 (0.72) 0.94

(2,2) 26.45 (17.74, 35.99) 73.55 (4.78) 0.68 (0.71) 0.94

(-,2) 26.39 (17.20, 36.03) 73.61 (4.90) 0.68 (0.71) 0.75
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Figure 4.7: The sub-PDF curves of the lead time for men with screening history by
screening intervals when t0 = 56: Six curves representing different screening schedules
are provided for each of the four current ages, tK1 = 60 (upper left panel), tK1 = 64
(upper right panel), tK1 = 68 (bottom left panel) and tK1 = 72 (bottom right panel).
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Figure 4.8: The sub-PDF curves of the lead time for women with screening history by
screening intervals when t0 = 56: Six curves representing different screening schedules
are provided for each of the four current ages, tK1 = 60 (upper left panel), tK1 = 64
(upper right panel), tK1 = 68 (bottom left panel) and tK1 = 72 (bottom right panel).
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Figure 4.9: The sub-PDF curves of the lead time for men with screening history
by current age when t0 = 56: Four curves representing different current ages are
provided for each of the four screening schedules, (∆1,∆2) = (1, 1) (upper left panel),
(∆1,∆2) = (2, 1) (upper right panel), (∆1,∆2) = (1, 2) (bottom left panel) and
(∆1,∆2) = (2, 2) (bottom right panel).
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Figure 4.10: The sub-PDF curves of the lead time for women with screening history
by current age when t0 = 56: Four curves representing different current ages are
provided for each of the four screening schedules, (∆1,∆2) = (1, 1) (upper left panel),
(∆1,∆2) = (2, 1) (upper right panel), (∆1,∆2) = (1, 2) (bottom left panel) and
(∆1,∆2) = (2, 2) (bottom right panel).
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4.4 Discussion

In this project, we derived the lead time distribution for individuals with screening

history. Simulation study was done to investigate the effect of a person’s screening

history on the lead time distribution. We also estimated the projected lead time

distribution for different ages and screening schedules considering screening history

using the NLST CT arm data.

In this simulation study, we found a small trend that larger past screening

interval ∆1 will result in larger chance of early-detection and longer mean lead time

if the individual’s future screening interval is decided. In the NLST application, we

can also find this trend. But for a given current age, the length of screening history

does not really affect the lead time distribution too much. This indicates the current

age is more important to the lead time distribution than the initial screening age,

since the person still looks healthy at current age.

However, the influence of a person’s screening history on the lead time distri-

bution is not as much as we thought. We may note that, the person who has lead time

is under the assumption that he or she will develop clinical cancer during the lifetime.

This fact may explain why the lead time distribution is more related to the current

age. In addition, our model is relatively simple, the sensitivity is not age-dependent

or depends on the sojourn time. The screening history may play an important role

on lead time distribution when other model applied.
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CHAPTER 5

FUTURE WORK

In this dissertation, we estimated the three key parameters of lung cancer screening

using the NLST data, then used these parameters to make inference of the lead

time distribution for individuals without or with screening history. In the future

we will develop an R package to implement the three key parameters and lead time

distribution estimation and make it available for other researchers.

As the inference of lead time and other terms (e.g. over-diagnosis, long term

outcomes and etc.) all depend on the three key parameters, it is important to accu-

rately estimate them. Another possible future plan would be to adjust the likelihood

function and change parametric models of the three key parameters.

In addition, we can also explore the effect of a person’s screening history on

lead time distribution when the sensitivity depends on the sojourn time, or under

other model assumptions.
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APPENDIX

The derivation of the conditional probabilities

(1) P (D = 1, HK1 |T = tK1+K)

= P (entered Sp in (0, t0), and not detected by first K1 exams)

+ P (entered Sp in (t0, t1), and not detected by first K1 − 1 exams)

+ · · ·+ P (entered Sp in (tK1−1, tK1)) + P (entered Sp after tK1)

=

∫ T

tK1

∫ t0

0
w(x)q(t− x) dx dt · (1− β0) · · · (1− βK1−1)

+

∫ T

tK1

∫ t1

t0

w(x)q(t− x) dx dt · (1− β1) · · · (1− βK1−1)

+ · · ·+
∫ T

tK1

∫ tK1

tK1−1

w(x)q(t− x) dx dt+

∫ T

tK1

∫ t

tK1

w(x)q(t− x) dx dt

= (1− β0) · · · (1− βK1−1)

∫ t0

0
w(x)[Q(tK1 − x)−Q(T − x)] dx

+ (1− β1) · · · (1− βK1−1)

∫ t1

t0

w(x)[Q(tK1 − x)−Q(T − x)] dx

+ · · ·+
∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(T − x)] dx+

∫ T

tK1

w(x)[1−Q(T − x)] dx

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)[Q(tK1 − x)−Q(T − x)] dx

+

∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(T − x)] dx+

∫ T

tK1

w(x)[1−Q(T − x)] dx.

(2) To calculate P (L = 0, D = 1, HK1 |T = tK1+K), if a person’s lead time is 0, it

means this is an interval case, the disease shows symptoms between two screening exams.
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Then we sum the probabilities of being interval cases after age tK1 .

P (L = 0, D = 1, HK1 |T = tK1+K) = IK1+K,K1+1 + IK1+K,K1+2 + · · ·+ IK1+K,K1+K . (A.1)

The probability of being an interval case in (tK1 , tK1+1) is

IK1+K,K1+1 = P (entered Sp in (0, t0), and be an interval case in (tK1 , tK1+1))

+ P (entered Sp in (t0, t1), and be an interval case in (tK1 , tK1+1))

+ · · ·+ P (entered Sp in (tK1−1, tK1), and be an interval case in (tK1 , tK1+1))

+ P (entered Sp after tK1 , and be an interval case in (tK1 , tK1+1))

=

∫ tK1+1

tK1

∫ t0

0
w(x)q(t− x) dx dt · (1− β0) · · · (1− βK1)

+

∫ tK1+1

tK1

∫ t1

t0

w(x)q(t− x) dx dt · (1− β1) · · · (1− βK1)

+ · · ·+
∫ tK1+1

tK1

∫ tK1

tK1−1

w(x)q(t− x) dx dt · (1− βK1) +

∫ tK1+1

tK1

∫ t

tK1

w(x)q(t− x) dx dt

= (1− β0) · · · (1− βK1)

∫ t0

0
w(x)[Q(tK1 − x)−Q(tK1+1 − x)] dx

+ (1− β1) · · · (1− βK1)

∫ t1

t0

w(x)[Q(tK1 − x)−Q(tK1+1 − x)] dx

+ · · ·+ (1− βK1)

∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(tK1+1 − x)] dx

+

∫ tK1+1

tK1

w(x)[1−Q(tK1+1 − x)] dx

=

K1∑
i=0

(1− βi) · · · (1− βK1)

∫ ti

ti−1

w(x)[Q(tK1 − x)−Q(tK1+1 − x)] dx

+

∫ tK1+1

tK1

w(x)[1−Q(tK1+1 − x)] dx.

Then we obtain

IK1+K, j =

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx, for all j = K1 + 1, · · · ,K1 +K.

(A.2)
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(3) For fL(z,D = 1, HK1 |T = tK1+K), we consider it piecewisely. When T − tj <

z ≤ T − tj−1, the detection must occur at or before tj−1, with j = K1 + 1, · · · ,K1 + K.

When T − tK1+1 < z ≤ T − tK1 , we have

fL(z,D = 1, HK1 |T = tK1+K) = P (entered Sp in (0, t0), and detected at tK1)

+ P (entered Sp in (t0, t1), and detected at tK1)

+ · · ·+ P (entered Sp in (tK1−1, tK1), and detected at tK1)

=

∫ t0

0
w(x)q(tK1 + z − x) dx · (1− β0) · · · (1− βK1−1) · βK1

+

∫ t1

t0

w(x)q(tK1 + z − x) dx · (1− β1) · · · (1− βK1−1) · βK1

+ · · ·+
∫ tK1

tK1−1

w(x)q(tK1 + z − x) dx · βK1

= βK1

{
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)q(tK1 + z − x) dx

+

∫ tK1

tK1−1

w(x)q(tK1 + z − x) dx

}
.
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In general, when T − tj < z ≤ T − tj−1,

fL(z,D = 1, HK1 |T = tK1+K)

= P (detected at tK1) + P (detected at tK1+1) + · · ·+ P (detected at tj−1)

= βK1

{
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)q(tK1 + z − x) dx

+

∫ tK1

tK1−1

w(x)q(tK1 + z − x) dx

}

+ βK1+1

{
K1∑
i=0

(1− βi) · · · (1− βK1)

∫ ti

ti−1

w(x)q(tK1+1 + z − x) dx

+

∫ tK1+1

tK1

w(x)q(tK1+1 + z − x) dx

}

+ βj−1

{
j−2∑
i=0

(1− βi) · · · (1− βj−2)

∫ ti

ti−1

w(x)q(tj−1 + z − x) dx

+

∫ tj−1

tj−2

w(x)q(tj−2 + z − x) dx

}

=

j−1∑
i=K1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
.

(A.3)

The validity of the lead time distribution

To verify this is a valid probability distribution, we will prove that

P (L = 0|D = 1, HK1 , T = tK1+K) +

∫ T−tK1

0
fL(z|D = 1, HK1 , T = tK1+K) dz ≡ 1, (A.4)

that is equivalent to prove

P (L = 0, D = 1, HK1 |T = tK1+K) +

∫ T−tK1

0
fL(z,D = 1, HK1 |T = tK1+K) dz

≡ P (D = 1, HK1 |T = tK1+K).
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Proof:

P (L = 0, D = 1, HK1 |T = tK1+K)

= IK1+K,K1+1 + IK1+K,K1+2 + · · ·+ IK1+K,K1+K =

K1+K∑
j=K1+1

IK1+K, j

=

K1+K∑
j=K1+1

{
j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx

}

=

K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

K1+K∑
j=K1+1

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx

=

K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj−1 − x) dx

−
K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

+

K1+K∑
j=K1+1

∫ tj

tj−1

w(x) dx−
K1+K∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

=

K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj−1 − x) dx

−
K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx+

∫ T

tK1

w(x) dx

−
K1+K∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

= A − B + C − D.
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For the integration of the pdf,

∫ T−tK1

0
fL(z,D = 1, HK1 |T = tK1+K) dz

=

K1+K∑
j=K1+1

∫ T−tj−1

T−tj
fL(z,D = 1, HK1 |T = tK1+K) dz

=

K1+K∑
j=K1+1

∫ T−tj−1

T−tj

j−1∑
i=K1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
dz

=

K1+K∑
j=K1+1

j−1∑
i=K1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)

∫ T−tj−1

T−tj
q(ti + z − x) dz dx

+

∫ ti

ti−1

w(x)

∫ T−tj−1

T−tj
q(ti + z − x) dz dx

}
(swap dx and dz)

=

K1+K∑
j=K1+1

j−1∑
i=K1

βi{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx

+

∫ ti

ti−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx

}

=

K1+K−1∑
i=K1

K1+K∑
j=i+1

βi{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx

+

∫ ti

ti−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx

}
(swap sum of i and j)

=

K1+K−1∑
i=K1

βi

i−1∑
r=0

(1− βr) · · · (1− βi−1)×

K1+K∑
j=i+1

∫ tr

tr−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx

+

K1+K−1∑
i=K1

βi

K1+K∑
j=i+1

∫ ti

ti−1

w(x)[Q(T − tj + ti − x)−Q(T − tj−1 + ti − x)] dx
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=

K1+K−1∑
i=K1

βi

i−1∑
r=0

(1− βr) · · · (1− βi−1)×


K1+K∑
j=i+1

∫ tr

tr−1

w(x)Q(T − tj + ti − x) dx

−
K1+K∑
j=i+1

∫ tr

tr−1

w(x)Q(T − tj−1 + ti − x) dx


+

K1+K−1∑
i=K1

βi×
K1+K∑
j=i+1

∫ ti

ti−1

w(x)Q(T − tj + ti − x) dx−
K1+K∑
j=i+1

∫ ti

ti−1

w(x)Q(T − tj−1 + ti − x)] dx


=

K1+K−1∑
i=K1

βi

i−1∑
r=0

(1− βr) · · · (1− βi−1)×


K1+K∑
j=i+1

∫ tr

tr−1

w(x)Q(T − tj + ti − x) dx

−
K1+K−1∑

l=i

∫ tr

tr−1

w(x)Q(T − tl + ti − x) dx

}
(change index j − 1→ l)

+

K1+K−1∑
i=K1

βi ×


K1+K∑
j=i+1

∫ ti

ti−1

w(x)Q(T − tj + ti − x) dx

−
K1+K−1∑

l=i

∫ ti

ti−1

w(x)Q(T − tl + ti − x) dx

}
(change index j − 1→ l)

=

K1+K−1∑
i=K1

βi

i−1∑
r=0

(1− βr) · · · (1− βi−1)

{∫ tr

tr−1

w(x)Q(ti − x) dx−
∫ tr

tr−1

w(x)Q(T − x) dx

}

+

K1+K−1∑
i=K1

βi

{∫ ti

ti−1

w(x)Q(ti − x) dx−
∫ ti

ti−1

w(x)Q(T − x) dx

}

=

K1+K−1∑
j=K1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

{∫ ti

ti−1

w(x)Q(tj − x) dx

−
∫ ti

ti−1

w(x)Q(T − x) dx

}
(only i and r left, change index i→ j, r → i)

+

K1+K−1∑
i=K1

βi

{∫ ti

ti−1

w(x)Q(ti − x) dx−
∫ ti

ti−1

w(x)Q(T − x) dx

}
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=

K1+K−1∑
j=K1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑
j=K1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

K1+K−1∑
i=K1

βi

∫ ti

ti−1

w(x)Q(ti − x) dx−
K1+K−1∑
i=K1

βi

∫ ti

ti−1

w(x)Q(T − x) dx

= E − F + G − H.

80



Compare to P (L = 0, D = 1, HK1 |T = tK1+K) = A − B + C − D, we have

E − B =

K1+K−1∑
j=K1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

= βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

= βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(βj − 1)

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

= βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1+K−1∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)(1− βj)
∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx.
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Hence,

A − B + E =

K1+K∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tj−1 − x) dx

+ βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1+K−1∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)(1− βj)
∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
l=K1

l∑
i=0

(1− βi) · · · (1− βl)
∫ ti

ti−1

w(x)Q(tl − x) dx (change index j − 1→ l)

+ βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1+K−1∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)(1− βj)
∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1∑
i=0

(1− βi) · · · (1− βK1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
l=K1+1

l∑
i=0

(1− βi) · · · (1− βl)
∫ ti

ti−1

w(x)Q(tl − x) dx

+ βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1+K−1∑
j=K1+1

j−1∑
i=0

(1− βi) · · · (1− βj−1)(1− βj)
∫ ti

ti−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx
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=

K1∑
i=0

(1− βi) · · · (1− βK1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+ βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(1− βj)
∫ tj

tj−1

w(x)Q(tj − x) dx (change index back l→ j)

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

= (1− βK1)

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+ (1− βK1)

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+ βK1

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(1− βj)
∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

= (1− βK1)

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(1− βj)
∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx.
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Then we have

A − B + E + G = (1− βK1)

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(1− βj)
∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

K1+K−1∑
i=K1

βi

∫ ti

ti−1

w(x)Q(ti − x) dx

= (1− βK1)

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

(1− βj)
∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

K1+K−1∑
j=K1+1

βj

∫ tj

tj−1

w(x)Q(tj − x) dx+ βK1

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx (change index i→ j)

=

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx.
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We also have

−F = −
K1+K−1∑
j=K1

βj

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

(−βj)
j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

(1− βj − 1)

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

(1− βj)
j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

j−1∑
i=0

(1− βi) · · · (1− βj−1)(1− βj)
∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

{
j∑
i=0

(1− βi) · · · (1− βj)
∫ ti

ti−1

w(x)Q(T − x) dx− (1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx

}

−
K1+K−1∑
j=K1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
j=K1

j∑
i=0

(1− βi) · · · (1− βj)
∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

(1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx
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=

K1+K−1∑
j=K1

j∑
i=0

(1− βi) · · · (1− βj)
∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−2∑
l=K1−1

l∑
i=0

(1− βi) · · · (1− βl)
∫ ti

ti−1

w(x)Q(T − x) dx (change index j − 1→ l)

−
K1+K−1∑
j=K1

(1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx

=

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

K1+K−2∑
j=K1

j∑
i=0

(1− βi) · · · (1− βj)
∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−2∑
l=K1

l∑
i=0

(1− βi) · · · (1− βl)
∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

(1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx

=

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

(1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx.
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Then

−F − H =

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

(1− βj)
∫ tj

tj−1

w(x)Q(T − x) dx−
K1+K−1∑
i=K1

βi

∫ ti

ti−1

w(x)Q(T − x) dx

=

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K−1∑
j=K1

∫ tj

tj−1

w(x)Q(T − x) dx

=

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
∫ tK1+K−1

tK1−1

w(x)Q(T − x) dx.
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From above, we have

P (L = 0, D = 1, HK1 |T = tK1+K) +

∫ T−tK1

0
fL(z,D = 1, HK1 |T = tK1+K) dz

= C + (A − B + E + G − D) − F − H

=

∫ T

tK1

w(x) dx+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1+K−1∑

i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1+K∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

+

K1+K−1∑
i=0

(1− βi) · · · (1− βK1+K−1)

∫ ti

ti−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx−
∫ tK1+K−1

tK1−1

w(x)Q(T − x) dx

=

∫ T

tK1

w(x) dx+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx−
K1+K∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx−
∫ tK1+K−1

tK1−1

w(x)Q(T − x) dx
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=

∫ T

tK1

w(x) dx+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

+

K1+K−1∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx−
K1+K−1∑
j=K1+1

∫ tj

tj−1

w(x)Q(tj − x) dx

−
∫ tK1+K

tK1+K−1

w(x)Q(tK1+K − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx−
∫ tK1+K−1

tK1−1

w(x)Q(T − x) dx

=

∫ T

tK1

w(x) dx+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx

+

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx−
∫ T

tK1−1

w(x)Q(T − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx.
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On the other side of the equation,

P (D = 1, HK1 |T = tK1+K)

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)[Q(tK1 − x)−Q(T − x)] dx

+

∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(T − x)] dx+

∫ T

tK1

w(x)[1−Q(T − x)] dx

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx−
∫ tK1

tK1−1

w(x)Q(T − x) dx

+

∫ T

tK1

w(x) dx−
∫ T

tK1

w(x)Q(T − x) dx

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(tK1 − x) dx

−
K1−1∑
i=0

(1− βi) · · · (1− βK1−1)

∫ ti

ti−1

w(x)Q(T − x) dx

+

∫ tK1

tK1−1

w(x)Q(tK1 − x) dx+

∫ T

tK1

w(x) dx−
∫ T

tK1−1

w(x)Q(T − x) dx

=P (L = 0, D = 1, HK1 |T = tK1+K) +

∫ T−tK1

0
fL(z,D = 1, HK1 |T = tK1+K) dz.

This finishes the proof.
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