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Abstract

The human brain underlies the complex cognitive processes of the mind, however, this is
dependent upon the physiological processes of the body in order to receive adequate
energy, oxygen, and blood flow. Therefore, physical measurements such as body mass
index (BMI) and indices of cognitive functioning, such as intelligence, may be related via
common neural features. Current analyses assessed morphometric differences in cortical
and subcortical grey matter regions, white matter structural integrity, and resting-state
functional activation in order to determine what combinations of neural variables predict
BMI and intelligence (Wechsler Abbreviated Scale of Intelligence; WASI) with the best
degree of accuracy. Data for eighty-five subjects was obtained from the Nathan Kline
Institute, in connection with the 1000 Functional Connectomes neuroimaging database.
Behavioral results indicated a negative correlation between BMI and WASI scores.
Neural analyses revealed that increased BMI predicted changes in a frontolimbic network
comprised of the anterior cingulate cortex, amygdala, and uncinate fasciculus, as well as
increased cortical surface area of the left fusiform gyrus. These results indicate a
relationship of BMI with emotional decision-making and visual recognition processes.
Whereas, increased WASI scores predicted increased thickness and volume of prefrontal
and parietal cortices, which reflect brain regions involved in the fronto-parietal
attentional network. As well, increased WASI scores also related to a functional network
that included increased activation of the postcentral gyrus and posterior hippocampal
complex, regions involved with attention and memory. Taken together, these results
indicate that BMI and intelligence are behaviorally anticorrelated, yet mediated by
separate neuroanatomical substrates that associate with a variety of cognitive functioning
measures.
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Introduction

Dating back millennia, philosophers such as Socrates and Aristotle have debated
the relationship between the mind and the body. How does one relate physical matter to
the mental processes that allow us to think and to feel? Current philosophers and
scientists still debate and investigate this same dilemma in order to understand the
underlying basis of consciousness. However, today we also recognize the importance of a
neural link between the mind and the body, thereby extending the mind-body relationship
to a mind-brain-body connection.

Understandably, the brain is considered to be the most complex organ in the
human body. It is the culmination of multiple structural and functional neural features
that allows for an efficient cognitive system to operate. The field of cognitive
neuroscience has consistently studied the relationship between the brain and behavior in
an effort to better understand the importance and utilization of different brain regions
and, more importantly, wide spread neural networks. During the last two decades
researchers have also come to increasingly acknowledge the inter-reliance and
dependency of the brain and body. The human brain underlies the complex cognitive
processes of the mind, however, this is dependent upon the physiological processes of the
body in order to receive adequate energy, oxygen, and blood flow.

There are two main questions that the present study is aimed to address. First,
how do physiological measures of the body and cognitive measures of the mind influence
brain structure and function? Second, how do common neural features help explain the
relationship between cognitive functioning and body physiology? We therefore examine

the association between a general indicator of body health and a general indicator of



cognitive functioning in order to demonstrate the importance of a neural connection
between the two measures. Few studies have pursued such a comprehensive brain-mind-
body investigation to understand cognitive functioning, yet we argue that such an
approach may elucidate important relationships and reveal interactions that otherwise
would be overlooked.

How do physiological measures of the body influence brain structure and function?

In order to analyze the relationship between the body and brain, most studies
investigate the effects of physiological dysfunction and the corresponding associations
with neural features. Research concerning obesity best exemplifies this, since weight gain
is known to accompany a wide range of health complications, including high blood
pressure and cholesterol levels, arthritis, diabetes, and cancer (Mokdad et al., 2003;
Kopelman 2007). Obesity induces heightened inflammation among adipocytes, which
subsequently causes metabolic, immune and other homeostatic physiological processes to
lose their normal functioning (Greenberg & Obin, 2006; Lee & Lee, 2014).

Although obesity can be classified based on a variety of measurements, the World
Health Organization (WHO) has used body mass index (BMI) as a “crude population
measure of obesity,” which is calculated as kilograms per square meter and therefore
incorporates both the height and weight of an individual (Keys et al., 1972). Typically,
those with a BMI less than 18.5 are considered to be underweight, 18.5 — 24.99 normal or
healthy, 25 — 29.99 overweight, and those with a BMI greater than or equal to 30 obese.

With such a wide range of health implications, it is not surprising that obesity has
significant relationships with both brain structure and function. Previous studies

examining this relationship show that high BMI measurements predict smaller whole



brain and total grey matter volume (Gunstad et. al., 2008; Boyle et. al 2015). Obese
individuals also tend to show reduced cortical thickness in frontal (dorsal anterior
cingulate cortex — dACC — and medial orbitofrontal cortex) and parietal (posterior
parietal cortex) regions, when compared to non-obese controls (Hassenstab et al., 2012;
Marques-Iturria et al., 2013). Furthermore, obesity is associated with reduced fractional
anisotropy (FA) — a measure of white matter structural integrity — in the corpus callosum
and fornix (Stanek et al., 2011), as well as differences in cognitive control and reward
networks when assessed with functional magnetic resonance imaging (fMRI) during
resting-state (Kullmann et al., 2012; Lips et al., 2014).

It is worth emphasizing, however, that BMI is an indirect measure of body
physiology and therefore is limited in its ability to truly classify an individual as
overweight or obese. It is useful then to also investigate individual variations in neural
features across a broad range of BMI measures, as opposed to grouping all individuals in
either high or low BMI, in order to determine correlational relationships with the brain.
Regarding specific brain morphometry, a recent study found that increased BMI predicts
decreased cortical thickness in the left lateral occipital cortex and the right ventromedial
prefrontal cortex — vmPFC (Medic et al., 2016). Similarly, increases in BMI over a one-
year period correlate with decreases in cortical volume of the superior and middle frontal
gyri among female adolescents (Yokum et al., 2012). Regarding white matter structural
integrity, increasing BMI also predicts decreasing FA and structural integrity of the
corpus callosum and fornix (Xu et al., 2013). Therefore, even when looking at individual
differences in BMI, including those with a healthy BMI range, similar negative

relationships as group analyses are observed between BMI and brain morphometry.



How do cognitive measures of the mind influence brain structure and function?

Intelligence is arguably one of the most notable measures of cognitive
functioning, given its long history of association with social status, education, and a wide
variety of other performance measures (Neisser et al., 1996; Gottfredson, 1998). Charles
Spearman first introduced the concept of general intelligence (g) to explain how
individuals could consistently display high levels of cognitive ability on multiple
different assessments (Spearman, 1904). This also set the stage for the intelligence
quotient (IQ), a number that quantifies performance on these tests and therefore functions
to measure one’s intellectual ability.

Just as BMI serves as a general indicator of the body, intelligence also serves as a
general indicator of the mind. The evolution of the human brain is closely tied to
increases in intelligence as an indicator of progressively more complex and integrated
cognitive functioning (Roth & Dicke, 2005). As well, intelligence scores can increase
within an individual following training with working-memory tasks (Jaeggi et al., 2008;
Au et al., 2015), emphasizing its representation of dynamic cognitive ability that can be
enhanced over time.

In regards to a neural relationship, increasing intelligence generally has a positive
association with whole brain grey and white matter volume (Gignac et al., 2003; Haier et
al., 2004). Increasing intelligence is also generally associated with broad increases in
cortical thickness across frontal and parietal regions (Menary et al., 2013), as well as
increased functional connectivity in neural networks incorporating these same regions
(Song et al., 2007). These findings seem to contrast with the effects of increasing BMI,

especially in regard to structural differences. This raises the possibility that higher



cognitive functioning ability, such as increasing intelligence, may associate with lower
BMI.

How do common neural features help explain the relationship between cognitive
functioning and body physiology?

Overweight and obese individuals show poorer performance on intelligence and
executive functioning tests, as compared to other adults in a normal BMI range (Gunstad
et al., 2007; Kanazawa, 2014). Furthermore, it has also been shown that a relationship
between increased BMI and decreased cortical thickness in the right superior frontal
gyrus is mediated by reduced cognitive control (Lavagnino et. al., 2016). Perhaps a
similar brain-mind-body connection can be made between BMI and intelligence.

Therefore, the present study sought to investigate the relationship between BMI (a
general measure of the body) and intelligence (a general measure of the mind) and
subsequently explore a wide variety of neural features that may help explain this
relationship. We assessed cortical and subcortical grey matter morphometry as well as the
integrity of various white matter tracts in order to identify morphometric features that
relate to BMI and intelligence measures. In addition, we analyzed behaviorally relevant
intrinsic connectivity networks using resting-state fMRI analysis. It was hypothesized
that BMI and intelligence would show a negative relationship with one another, as a
primary consequence of contrasting associations with cortical structures and divergent
effects on intrinsic resting-state networks.

Methods
The data used in this investigation were obtained from the 1000 Functional

Connectomes Project (FCP) database. The FCP was created in 2009 and works with the



International Neuroimaging Data-Sharing Initiative (INDI) to provide public access to
large datasets, all of which include resting-state fMRI data. The Nathan Kline Institute
Rockland Sample (NKI-RS) is a prospectively shared dataset that offers data from
individuals between 4 to 85 years old and includes a wide range of phenotypic
information for all of their subjects, as well as anatomical (MPRAGE), diffusion
weighted imaging (DWI), and resting-state fMRI scans.
Participants

A total of 85 adults (55 males, 30 females), 18-59 years of age (M = 33.5, SD =
11.0) were included in this study. Two subjects were missing total IQ scores and one
subject was missing a BMI measurement. In order to increase power in the neural
analyses, these individuals were provided with the average scores of the sample.
Neuroimaging data from all individuals were used in the surface-based morphometry,
TBSS white matter, and resting-state fMRI analyses. One subject was removed from the
FIRST subcortical analysis due to unsatisfactory subcortical segmentation.
Behavioral Assessments

Of primary interest for this study were BMI measurements and scores on the
Wechsler Abbreviated Scale of Intelligence (WASI). BMI is calculated by dividing the
weight of an individual by the square of their height and is therefore reported in kg/m”.
The World Health Organization (WHO) considers a BMI of less than 18.5 as
underweight, 18.50 — 24.99 as normal, 25.00 — 29.99 as overweight, and anything above
30 as obese.

The WASI-II is an abbreviated measure of cognitive intelligence and is comprised

of four main subtests given in the following order: block design, vocabulary, matrix



reasoning, and similarities, (Wechsler, 2011). Block design and matrix reasoning form
the perceptual reasoning index (PRI), whereas vocabulary and similarities form the verbal
comprehension index (VCI). During the block design test subjects must recreate a two-
dimensional geometric design using cubes, thereby testing fluid intelligence and visual
perception. Similarly, the matrix reasoning test also evaluates fluid and visual
intelligence by requiring examinees to complete a matrix by selecting the appropriate
choice among a set of options. In contrast, the vocabulary test measures verbal,
crystallized intelligence and does so by instructing the examinee to define a word or
concept that is presented to them, whereas the similarities test evaluates similar abilities
by requiring the subject to describe the relationship between two objects or concepts. The
NKI Rockland Sample data included a full WASI score, as well as scores on each
individual subtest. Correlational analyses were assessed with SPSS 22.0 software (IBM
Corp, Somers, NY, USA) in order to determine the relationship between BMI and WASI
scores, while controlling for age.
Imaging Data Acquisition

Scans were acquired using a Siemens Tim Trio 3T scanner with a 12-channel
head coil. Imaging parameters for structural MRI images were as follows: voxel size 1.0
x 1.0 x 1.0 mm, repetition time (TR) 2500ms, echo time (TE) 3.5ms. Imaging parameters
for diffusion images were as follows: voxel size 2.0 x 2.0 x 2.0 mm, TR 10000ms, TE
91ms, b-value 1000 s/mm?®. Imaging parameters for functional MRI images were as
follows: voxel size 3.0 x 3.0 x 3.0 mm, TR 2500ms, TE 30ms, 260 volumes.
For more information, visit http://fcon_1000.projects.nitrc.org/indi/pro/nki.html.

Surface-Based Morphometry (SBM)



Cortical reconstruction and volumetric segmentation was performed with the
Freesurfer image analysis suite, which is documented and freely available for download
online (http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are
described in prior publications (Dale, Fischl, & Sereno, 1999). Briefly, this processing
includes motion correction and averaging (Reuter, Rosas, & Fischl, 2010) of volumetric
T1-weighted images, removal of non-brain tissue using a hybrid watershed/surface
deformation procedure (Ségonne et al., 2004), automated Talairach transformation,
intensity normalization (Sled, Zijdenbos, & Evans, 1998), tessellation of the gray matter
white matter boundary, automated topology correction (Fischl, Liu, & Dale, 2001;
Segonne, Pacheco, & Fischl, 2007), and surface deformation following intensity
gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines the transition to the other tissue class
(Dale et al., 1999; Dale & Sereno, 1993; Fischl & Dale, 2000). Once the cortical models
are complete, a number of deformable procedures are performed for further data
processing and analysis including surface inflation (Fischl, Sereno, & Dale, 1999),
registration to a spherical atlas which utilizes individual cortical folding patterns to match
cortical geometry across subjects (Fischl, Sereno, Tootell, & Dale, 1999), parcellation of
the cerebral cortex into units based on gyral and sulcal structure (Desikan et al., 2006;
Fischl et al., 2004), and creation of a variety of surface-based data including maps of
cortical volume, surface area, thickness, curvature, sulcal depth, and local gyrification
index. The resulting probability maps were input into a general linear model (GLM)
evaluating regressions between all voxels and BMI or WASI scores, controlling for age

and whole-brain intracranial volume (ICV). Vertex-wise threshold was set at p <.001
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level. Cluster-wise threshold was corrected for at p <.05 level using permutation testing
with Monte Carlo simulation.
FIRST Subcortical Vertex Analysis

Anatomical imaging data was segmented into subcortical regions, using FSL’s
FMRIB Integrated Registration and Segmentation Tool (FIRST; FSL v5.0.9,
http://www.fmrib.ox.ac.uk/fsl/first/index.html), which is a model-based segmentation
tool that allows for parcellation of several subcortical brain structures from high
resolution T1- weighted images of the brain (Patenaude, 2007; Patenaude, Smith, &
Kennedy, 2007, 2008). Importantly, this tool enables an unbiased approach to
segmentation of the regions, which are notoriously hard to manually trace due to their
small structure size.

Automated segmentation of 15 subcortical structures (Brain Stem and bilateral:
Accumbens, Amygdala, Caudate, Hippocampus, Putamen, Pallidum, and Thalamus) was
performed using FIRST (FSL v5.0.9) which uses a Bayesian probabilistic approach. The
shape and appearance models in FIRST are constructed from a library of manually
segmented images. The manually generated labels are parameterized as surface meshes
and then modeled as a point distribution. Using the learned models, FIRST searches
through shape deformations that are linear combinations of the modes of variation to find
the most probable shape instance given the observed intensities from the input image.
Using T1 images, the segmentation was performed with two-stage affine transformation
to standard space of MNI 152 at 1-mm resolution (Morey et al., 2009; Woolrich et al.,
2009). The first stage utilized a standard 12 degrees of freedom registration to the

template and the second stage applied 12 degrees of freedom registration using an
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MNI152 subcortical mask to exclude voxels outside the subcortical regions. Default
settings for boundary correction and number of modes (iterations) were used, which are
tuned to be optimal for each structure. All segmentations were then visually inspected by
two independent viewers to ensure satisfactory segmentation of all structures of interest.
Volume was also extracted for each structure. Shape and volume regressions were then
performed to investigate differences in localized shape on a per-vertex basis and total
volume of a structure, with BMI and WASI scores. All analyses included age and ICV as
nuisance covariates. FSL’s randomise tool was used to calculate statistics from the image
output after 5000 permutations (Winkler et al., 2014) and threshold-free cluster
enhancement (TFCE), with significance set at p < 0.05.
Tract-Based Spatial Statistics (TBSS) Analysis

Voxelwise statistical analysis of diffusion data was carried out using TBSS
(Smith, 2006), a tool provided by FSL (Smith, 2004). First, diffusion weighted images
were corrected for eddy-current-induced distortions. Fractional anisotropy (FA) images
were then created by fitting a tensor model to the raw diffusion data using FSL’s
Diffusion Toolbox (FDT), and then brain-extracted using BET [Smith 2002]. All
subjects' FA data were then aligned into a common space using the nonlinear registration
tool FNIRT [Andersson 2007, 2007], which uses a b-spline representation of the
registration warp field [Rueckert 1999]. Next, the mean FA image was created and
thinned to create a mean FA skeleton, which represents the centres of all tracts common
to the group. Each subject's aligned FA data was then projected onto this skeleton and the
resulting data fed into voxelwise cross-subject statistics at p<.001. We then tested for

individual differences relating to BMI and WASI using FSL's randomise permutation-
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testing tool, with 5000 permutations controlling for age and using TFCE to correct for
multiple comparisons.
Functional Analysis

Resting-state fMRI data was assessed using independent components analysis
(ICA), via FSL’s MELODIC (Multivariate Exploratory Linear Optimized Decomposition
into Independent Components) tool, version 3.14 (Beckmann & Smith, 2004). This
separates the functional activation into a set of spatiotemporal components, which can
then be analyzed as intrinsic networks of interest. Using FSL, resting-state fMRI scans
were motion corrected, brain extracted, and set through a smoothing process. The
functional data was first registered to subject-specific anatomical volumes, followed by
registration to MNI152 standard space.

Multi-session temporal concatenation identified common spatial patterns among
the subjects, while accounting for the inconsistency of the temporal responses. The total
number of output components was set to 30, which were statistically compared to seven
popular resting-state networks (Yeo et al., 2011). 12 components were considered to
represent distinct networks after showing significant spatial correlations (Pearson’s r >
0.207, p=.05) with the reference networks.

The set of spatial maps from the group-average analysis were then used to
generate subject-specific versions of the spatial maps, and associated timeseries, using
dual regression (Beckmann, 2009; Filippini, 2009). First, for each subject, the group-
average set of spatial maps was regressed (as spatial regressors in a multiple regression)
into the subject's 4D space-time dataset. This resulted in a set of subject-specific

timeseries, one per group-level spatial map. Next, those timeseries were regressed (as
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temporal regressors, again in a multiple regression) into the same 4D dataset, resulting in
a set of subject-specific spatial maps, one per group-level spatial map. We then tested for
individual differences relating to BMI and WASI using FSL's randomise permutation-
testing tool, with 5000 permutations controlling for age and using TFCE to correct for
multiple comparisons.

Results

Behavioral Results

The correlation between full WASI score and BMI was negatively correlated (r =
-0.288, p = 0.008), such that increased intelligence was related to decreased BMI (Figure
1). This same negative relationship was also found for each subtest, however, only

significant for the vocabulary and similarities tests (Table 1).
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Figure 1: shows the correlation of BMI and full WASI scores across all subjects. Table I reports the
correlation coefficient and significance for this relationship, as well as for the relationship between BMI
and each WASI subtest.
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Body Mass Index (BMI) Results

Surface-Based Morphometry (SBM)

Regressions with cortical grey matter morphometry indicate that increased BMI

predicted decreased cortical thickness in the left anterior cingulate cortex (ACC) and part

of the ventromedial prefrontal cortex (vmPFC), as well as increased surface area in the

left fusiform gyrus (Figure 2), suggesting that increased body mass had both an increased

and decreased effect on cortical morphometry.
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Figure 2: shows that increased BMI is associated with decreased cortical thickness in the left ACC and

increased cortical surface area in the left fusiform gyrus
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FIRST Subcortical Vertex Analysis

Subcortical morphometry results showed that increased BMI related to increased
bilateral globus pallidus and right amygdala volumes (Figure 3; Right Amygdala r =
0.330, p = 0.002; Right Globus Pallidus r = 0.268, p = 0.015; Left Globus Pallidus not
shown; r = 0.349, p = 0.001), indicating that increased body mass related to increased

size of subcortical structures.
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Figure 3: shows the spatial location of the amygdala and globus pallidus in the right
hemisphere, as well as a closer look at the specific vertex changes of the right amygdala when
assessed with BMI. The right amygdala and bilateral globus pallidus showed significant shape
differences and increased volume with increased BMI.

TBSS White Matter Analysis

Examination of indicators of white matter integrity showed that increased BMI
predicted increased FA in the left uncinate fasciculus (Figure 4), indicating increased
body mass related to increased structural integrity of the uncinate fasciculus. The
uncinate fasciculus connects subcortical structures, such as the amygdala, with ventral

frontal cortical regions, including the subgenual ACC and vimPFC.
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Figure 4: provided from left to right are coronal, sagittal, and axial views of a standard
anatomical brain image. The average white matter skeleton for all subjects is shown in green,
with the highlighted red area in the left hemisphere indicating a significant increase of FA in the
uncinate fasciculus with increased BMI (p < 0.02).

Wechsler Abbreviated Scale of Intelligence (WASI) Results

Surface-Based Morphometry (SBM)

Cortical grey matter morphometry results showed that increased scores on WASI
subtests related to broad increases in thickness and volume of frontal, parietal and visual
cortex. The block design and similarities tests predicted increased cortical thickness and
volume in the left superior parietal lobule and secondary visual (prestriate) cortex,
whereas increased block design and vocabulary scores also predicted increased volume in

the left inferior frontal gyrus (parsorbitalis) and left frontal pole (Figure 5).
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Figure 5: shows that increased WASI similarities scores related to increased volume in the left superior
parietal lobule and also increased thickness in the left visual cortex. Whereas, increased vocabulary scores
predicted increased volume in the left frontal pole and increased block design scores predicted increased
volume in the left inferior frontal gyrus and increased thickness in the left superior parietal lobule.
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Resting-State Functional Activation

To assess functional attributes related to BMI and WASI, we examined resting
state functional connectivity using ICA. Results indicated that similarities and vocabulary
subtest scores showed positive relationships with certain brain regions associated with a
functional connectivity component representing the default mode network (DMN). This
suggests that subjects with higher intelligence scores were more likely to represent
certain regions of this functional network. Specifically, increased intelligence scores
predicted increased activation of the supplementary motor (SMA), motor and
somatosensory areas, as well as the bilateral posterior hippocampal complex (Figure 6;

Similarities p < 0.02; Vocabulary p < 0.03).

Similarities
Vocabulary

Motor and

Somatosensory Areas

Posterior Hippocampal
Complex

Figure 6: shows significant activation of areas associated with the WASI similarities (red) and
vocabulary (blue) subtests. These include the supplementary motor area (SMA), motor and
somatosensory areas, and the posterior hippocampal complex.
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Discussion

This study was the first, to our knowledge, to investigate the relationship between
BMI and intelligence via a neural connection by examining cortical, subcortical and
white matter structural integrity, as well as resting-state functional activation. Such a
comprehensive cortical and subcortical morphometric structural and functional
connectivity approach allowed for a deeper understanding of the neural mechanisms that
underlie a mind-body relationship. Behaviorally, BMI and intelligence were negatively
correlated, such that increased BMI predicted decreased WASI scores. Regarding their
relationship with structural brain features, both measures seemed to relate primarily with
frontal cortical gray matter regions, albeit in opposite directions. Surprisingly, there were
few functional results from the resting-state data that related to these structural findings,
suggesting that task-based functional imaging during an intelligence MR task may be
needed to further clarify the observed effects on grey and white matter structures and
their relationship to BMI and cognition. Nonetheless, the study findings do present
evidence for neural factors that may be responsible for the relationship between BMI and
intelligence, while also suggesting other measures of cognitive functioning that may be
mediating these effects.
BMI

The structural results relating to BMI revealed morphometric alterations in a
network that consists of the ACC, uncinate fasciculus (UF), and amygdala. Although
there were hemispheric differences in these findings — left ACC and left UF in contrast to
the right amygdala — these three structures nonetheless comprise a frontolimbic network

that is involved in regulating emotion and reward processing (Bush et al. 2000; Botvinick
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et al., 2004; Etkin et al. 2006; Petrides & Pandya, 2007; Ghashghaei et al., 2007; Wang et
al., 2009). More specifically, the ACC and subgenual regions that are considered the
vmPFC send projections to the amygdala through the UF. These projections are
considered to form control afferents that ultimately provide inhibitory control over
emotional response (Depue et al., 2015).

Interestingly, BMI has been linked with both impulsive behavior and a variety of
emotional effects on eating behavior. Previous research shows that a positive relationship
exists between BMI and emotion-driven impulsivity among adolescents, such that
increases in BMI predict higher levels of both positive and negative urgency (Delgado-
Rico et al., 2012). Furthermore, higher BMI is positively linked to appetitive behaviors
that include food responsiveness and emotional over-eating (Hunot et al., 2016).
Similarly, overweight and obese individuals are also more likely to represent emotion-
and stress-related eating habits (Ozier et al., 2008), as well as overeating during
emotional periods (Davis et al., 2004). Changes in this frontolimbic network that
incorporates the ACC, UF, and amygdala may ultimately help explain these differences
in behavior.

It is unclear, however, the specifics to which these structural changes are related
to the negative relationship between BMI and intelligence. Perhaps most relevant to
understanding the negative correlation is our finding in the ACC, since the reduced
thickness in this region also extended to parts of the vimPFC. These frontal cortical
regions are highly involved in both decision-making (Kennerley & Walton, 2011) and
inhibitory control (Li & Shinha, 2008; Munakata et al., 2011), both of which may

influence intelligence in some manner. Decision-making processes show a positive
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relationship with general intelligence (Danner et al., 2011; Shivapour et al., 2012) and it
is also argued that intellectual ability relies on inhibitory control to activate task-relevant
information and suppress task-irrelevant information (Dempster, 1991). Therefore,
thinning of the ACC may provide the first clue as to how increasing BMI ultimately
relates to decreases in general intelligence, via effects on other measures of cognitive
functioning.

Furthermore, our finding of increased surface area in the left fusiform gyrus with
increased BMI is rather interesting, given that previous studies also show a negative
relationship between BMI and volume in this same region (Taki et al., 2008; Walther et
al., 2010). This may suggest that the decreasing volume is accompanied by a general
increase in surface area. Though the fusiform gyrus is most notable for its role in facial
recognition (McCarthy et al., 1997), it has also been shown to be involved with networks
that orient attention (Hopfinger et al., 2000) and also specifically direct attention to food
stimuli (LaBar et al., 2001; Uher et al., 2006). Interestingly, high BMI does predict a
greater attentional bias for food stimuli and switching attention to the most appetizing
food (Yokum et. al. 2011). Increasing BMI therefore seems to be related to differences in
a visual-attentional system, which may also mediate the negative relationship between
BMI and intelligence.

There are certainly limitations with the results of this study, especially regarding
the use of BMI as a body measurement. The common critique of BMI is its indirect
measure of internal body physiology and therefore cannot be used as a direct assessment
of physical health. Critical findings point towards BMI not accurately assessing certain

populations, such as highly athletic individuals who are in peak physical health yet would
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clinically classify as overweight or obese based on BMI (Prentice & Jebb, 2001). For this
reason, it is important to note that BMI does not necessarily indicate a particular health
state for an individual, but instead provides a quick method for predicting the risk of
developing specific diseases that accompany increased fat or stress on the body. Despite
these criticisms, BMI correlates better with visceral fat area and insulin sensitivity when
compared to body adiposity index (BAI), another popular indirect measure of body fat
(Hung et al., 2012; Suchanek et al., 2012). Furthermore, BMI also shows positive
correlations with cholesterol and blood pressure, emphasizing the importance of this
measurement in assessing risk for the development of serious health complications
(McAdams et al., 2007).

Nonetheless, future studies pursuing a brain-mind-body approach can certainly
benefit from using more direct measures of body physiology. Additionally, since other
measures of cognitive functioning may mediate the intelligence —BMI relationship, more
consideration should be placed on also assessing measures such as attention or inhibitory
control.

Intelligence

Our structural findings relating to intelligence were primarily localized to the left
prefrontal and parietal cortices, which reflect brain regions involved in a fronto-parietal
attentional network. This network is considered to be the largest neural network that
elicits top-down control for executive function during goal directed behavior (Corbetta &
Shulman, 2002). Therefore, this finding supports a structural relationship between
intelligence and attention, which is further validated by evidence showing a positive

correlation between these two cognitive measures (Schweizer et. al., 2005). Lateralization

23



to the left hemisphere for these structural relationships with intelligence also seems to be
in line with previous research demonstrating the importance of the left hemisphere for
verbal skill and spatial reasoning (Langdon & Warrington, 2000; Vallesi 2012), which
are tested for on the WASI.

Interestingly, these structural findings relating to increased intelligence only show
increased thickness and volume in frontal and parietal regions, contrasting with the
decreased ACC thickness found with BMI. Increases in thickness and volume in these
prefrontal regions have been linked to greater executive function and performance on
cognitive control tasks (Burzynska et al., 2012; Ehrlich et al., 2012; Yuan & Raz, 2014).
This again points to a differential relationship that BMI and intelligence may have with
regions involved in attention and decision-making.

Finally, resting-state analysis showed that increased WASI scores (vocabulary
and similarities) predicted increased recruitment of a component representing the default
mode network. Within this component, however, the positive correlation was primarily
driven by increased activation in the pre-SMA, primary motor and somatosensory cortex,
as well as the posterior hippocampal complex. These findings are not surprising, as
sensory-motor integration is a major component of top-down attentional control linking
cognition to behavioral output. Furthermore, the posterior hippocampus is specifically
known to be involved with working memory and conceptual representations (Fanselow &
Dong, 2010; Sheldon & Levine, 2016), which are cognitive abilities necessary for high

performance on an intelligence test.
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Conclusion

Taken together, these results primarily indicate that BMI and intelligence are
behaviorally anticorrelated, yet mediated by separate neuroanatomical substrates.
Furthermore, the BMI-brain and intelligence-brain findings both suggest an attentional
and decision-making system at play that might be mediating the BMI-intelligence
relationship. Increased BMI was related to significant changes in a frontolimbic network
consisting of the ACC and also cortical changes in the fusiform gyrus, suggesting effects
on inhibitory control and attention. Increased WASI scores, however, predicted broad
increases of cortical thickness and volume of a fronto-parietal attentional network, as
well as functional recruitment of regions involved within this same network and working-
memory processing. Considering previous research and the present study, increased BMI
may very well have a negative influence on cortical structure and subsequently cause
decreases in a wide variety of cognitive functioning abilities, including intelligence.
However, decreased intelligence may also adversely affect attention, such that individuals
have a more difficult time resisting/inhibiting the temptation of food, which may then
lead to BMI increases. Thus, the casual nature of this negative relationship between BMI

and intelligence still remains unclear.
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