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ABSTRACT 

NOVEL STATISTICAL APPROACHES FOR MISSING VALUES IN 

TRUNCATED HIGH-DIMENSIONAL METABOLOMICS DATA WITH 

A DETECTION THRESHOLD 

Jasmit S Shah 

April 14, 2017 

 

Despite considerable advances in high throughput technology over the last decade, new 

challenges have emerged related to the analysis, interpretation, and integration of high-

dimensional data. The arrival of omics datasets has contributed to the rapid improvement of 

systems biology, which seeks the understanding of complex biological systems. Metabolomics 

is an emerging omics field, where mass spectrometry technologies generate high dimensional 

datasets. As advances in this area are progressing, the need for better analysis methods to 

provide correct and adequate results are required. While in other omics sectors such as 

genomics or proteomics there has and continues to be critical understanding and concern in 

developing appropriate methods to handle missing values, handling of missing values in 

metabolomics has been an undervalued step.  

Missing data are a common issue in all types of medical research and handling missing data 

has always been a challenge. Since many downstream analyses such as classification methods, 

clustering methods, and dimension reduction methods require complete datasets, imputation 
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of missing data is a critical and crucial step. The standard approach used is to remove features 

with one or more missing values or to substitute them with a value such as mean or half 

minimum substitution. One of the major issues from the missing data in metabolomics is due 

to a limit of detection, and thus sophisticated methods are needed to incorporate different 

origins of missingness.  

This dissertation contributes to the knowledge of missing value imputation methods with three 

separate but related research projects. The first project consists of a novel missing value 

imputation method based on a modification of the k nearest neighbor method which accounts 

for truncation at the minimum value/limit of detection. The approach assumes that the data 

follows a truncated normal distribution with the truncation point at the detection limit. The 

aim of the second project arises from the limitation in the first project. While the novel 

approach is useful, estimation of the truncated mean and standard deviation is problematic in 

small sample sizes (N < 10).  In this project, we develop a Bayesian model for imputing missing 

values with small sample sizes. The Bayesian paradigm has generally been utilized in the omics 

field as it exploits the data accessible from related components to acquire data to stabilize 

parameter estimation. The third project is based on the motivation to determine the impact of 

missing value imputation on down-stream analyses and whether ranking of imputation 

methods correlates well with the biological implications of the imputation.  
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CHAPTER 1 

INTRODUCTION 

 

The advent of high-throughput technology to generate massive datasets in biomedical research 

has been on a high rise. Successively, new challenges emerged related to the analysis, 

interpretation, and integration of such data. The diversity of technological advances drives the 

need for efficient analytical methods. Developments in biomedical research within molecular 

biology now allow simultaneous measurements of thousands of cellular components at 

different hierarchical levels, such as genomics, proteomics, transcriptomics, and 

metabolomics. In the “-omics” field, metabolomics is a growing field showing great potential 

in identifying relevant metabolites in biomedical research. It involves the biochemical profiling 

of all the metabolites in a cell, tissue, or organism, and focuses on the best measurement of 

the physiological state of organism’s metabolites (Schmidt, 2004). There has been substantial 

progress in the development of high-throughput methods for metabolomics in the last decade 

with rapid improvements in mass spectrometry (MS)-based methods (Shah et al., 2000), and 

in computer hardware and software that is adept at handling large datasets (Katajamaa and 

Oresic, 2007). A wide range of mass spectrometric techniques have been used in metabolomics 

and the most popular methods used are GC-MS (gas chromatography mass spectrometry), 

LC-MS (liquid chromatography-mass spectrometry) and NMR (nuclear magnetic resonance). 

In spite of the fact that metabolomics has the likelihood of providing understanding to 

numerous biological questions, data generated by mass spectrometry pose some statistical 

challenges. 
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Missing values (MV) are challenging since most statistical analyses require a complete dataset. 

They can occur for several different reasons including equipment malfunction, sample 

contamination, and sporadic missed measurements. Many of the studies will have more than 

one type of MV and appropriately handling MVs is important in the inference for a parameter. 

Based on different statistical techniques, MVs are dealt with differently. A common approach 

is to use the complete case analysis method, i.e. removing cases with missing values for any of 

the variables. The other standard approach is done by filling in (imputing) plausible values for 

the MVs, making more efficient use of the data.  Often a study will have more than one type 

of MV, although they are treated as the same kind. Treating each of these types of MVs 

separately has its advantage. One advantage of imputing one type of MV first computationally 

simplifies the imputation of the rest of the MVs. Another advantage is that treating the MVs 

differently allows the researcher to compute how much variability and how much missing 

information is due to each type of MV. Studies which generate high dimensional data can have 

MVs of all three types, categorized as missing completely at random (MCAR), missing at 

random (MAR) and missing not at random (MNAR) (Details in Missing Values section below) 

and to handle MVs with all the types has been an unexplored area of research.  

Metabolomics  

The ‘omics field has become a popular and hot research area in biomedical studies due to its 

detailed content of the cells, tissues, organs or biofluids provided by high throughput 

technologies. Metabolomics is a relatively new area in the omics field, with the term 

“metabolome,” devised less than two decades ago (Oliver et al. 1998). It is the study of small 

molecules (molecular weight < 1,000 Da) in a biological system using high-throughput 

identification and quantification techniques. These molecules, measured simultaneously 

provide an insight into the functioning of metabolic pathways of the whole biological system 
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for its selected cellular, tissue or organ levels (Fiehn, 2002). Within the omics cascade, 

metabolomics is further down in line from genomics, proteomics, and transcriptomics and is 

believed to easily correlate with the phenotype as the metabolites serve as direct signatures of 

biochemical activity. Metabolomics comprises the qualitative and quantitative analysis of 

metabolites using two approaches: targeted and untargeted metabolomic analysis. Targeted 

metabolomic analysis focuses on quantitative changes in metabolites of interest (e.g., amino 

acids, carbohydrates, steroids, and fatty acids) based on a priori knowledge of the biological 

function or metabolic pathway whereas untargeted metabolomic analysis involves the 

identification and characterization of a vast number of metabolites and their precursors. 

(Sadanala et al., 2012). The two most relevant technical approaches for the generation of 

metabolomic datasets are mass spectrometry (MS) and nuclear magnetic resonance (NMR). 

MS is an analytical method that obtains spectral data in the form of a mass-to-charge ratio 

(m/z) and a relative intensity of the measured compounds (Alonso 2015).  The biological 

sample first needs to be ionized for the peak signals to be generated for each metabolite. The 

ionized compounds from each molecule will then produce different peak patterns that define 

the impression of the original molecule. Before the MS quantification the separation step is 

performed, where the complexity of the biological sample is reduced to allow the MS analysis 

of different sets of molecules at various times. The most common separation methods used 

are liquid and gas chromatography (LC and GC, respectively) (Theodoridis et al., 2011). The 

LC or GC separation techniques is based on the interaction of the different metabolites in the 

sample with the adsorbent materials used in the chromatography, and thus this way, molecules 

with different chemical properties will require different amounts of time to pass through the 

column. NMR is the other primary approach used based on spectroscopic technique. It relies 

on the energy absorption, and re-emission of the atom nuclei due to variations in an external 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507023/#b83-molce-38-7-587
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350445/#B181
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magnetic field (Alonso 2015, Bothwell and Griffin 2011). The quantification of the 

concentrations of molecules are based on the spectral data from NMR, which also provides 

information about its chemical structure.  The spectral peak areas generated by each molecule 

are used as an indirect measure of the quantity of the metabolite in the sample, while the 

pattern of spectral peaks informing on the physical properties of the molecule is used to 

identify the type of metabolite (Alonso 2015).  

 In Figure 1, the conventional pipeline for generating a metabolic profile is shown. The 

typical workflow that is commonly used in high-throughput metabolomic studies starts with 

the processing of the biological samples to produce the metabolic information. Different 

techniques mentioned such as LC-MS, GC-MS or NMR is used for the spectral identification 

and are then processed by various methods. A detailed pre-processing of the spectra data is 

performed using baseline correction, noise reduction, smoothing, peak detection and 

alignment and peak integration. Once the complete set of the metabolic profile has been 

generated, data analysis methods such as univariate and multivariate analyses can be applied 

to study the general structure of the metabolomics data and how different metabolites are 

related to the phenotypic data associated with the samples. 
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Figure 1: The analysis workflow in generating a metabolic profile and the various steps of the 

metabolomic analysis pipeline 
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Missing Values 

MVs are the unobserved values in a data set which can be of various types and may be missing 

for different reasons. The various reasons why missingness occurs could be due to human 

error, equipment malfunction, dropouts, latent variables. MVs in metabolomics generally arise 

due to a number of reasons, such as: (1) limits in computational detection; (2) imperfection of 

the algorithms whereby they fail in the identification of some of the signals from the 

background; (3) low intensity of the signals used; (4) measurement error; and (5) 

deconvolution that may result in false negative during separation of overlapping signals 

(Gromski et al 2014).  MVs can be problematic across many fields, and appropriate methods 

typically need to be considered when analyzing incomplete data. Knowledge about the nature 

of the missing values can help identify the most appropriate method for dealing with missing 

data (Little & Rubin, 2002). MVs are categorized based on a mechanism where it describes the 

relationship between the probability of a value being missing and the other variables in the 

dataset.  Let 𝑌 represent the complete dataset that can be seperated as (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠) where 

𝑌𝑜𝑏𝑠 is the observed values and 𝑌𝑚𝑖𝑠𝑠 is the missing values. Let 𝑅 be an indicator variable 

indicating whether a value is observed or missing, where 𝑅 = 1 denotes a value which is 

observed and 𝑅 = 0 denotes a value which is missing. The matrix 𝑅 stores the location of the 

MVs and its distribution may depend on 𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠), either by design or by coincidence 

and this relation is described by the missing data model, Pr (𝑅|𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠), 𝜑), where 

𝜑 contains the parameters of the missing data model.  The following are the three mechanisms 

of missingness as described in Rubin (1976) and Rubin (1987).  
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The first mechanism of missingness is missing at random (MAR). If the probability of missing 

is the same within groups defined by the observed data, then the data are MAR. This 

mechanism of missingness is given by  

Pr(𝑅 = 0|𝑌, 𝜑) =  Pr (𝑅 = 0|𝑌𝑜𝑏𝑠 , 𝜑) 

That is the probability of missingness is only dependent on the observed data and not the 

unobserved/missing data. A simple example of MAR is a depression survey where male 

subjects are more likely to refuse to fill out the survey, although it does not depend on the 

level of their depression.  

The second mechanism of missingness is missing completely at random (MCAR). If the 

probability of being missing is the same for all cases, then the data are MCAR. This mechanism 

of missingness is given by  

Pr(𝑅|𝑌, 𝜑) =  Pr (𝑅|  𝜑) 

That is the probability of missingness is not dependent on the observed data and the 

unobserved/missing data. A simple example of MCAR is if a set of household income values 

are missing and if the percentages of missing are equal among ethnicity group, gender, and 

educational group, then the missingness is MCAR, a special case of MAR. 

The third mechanism of missingness is missing not at random (MNAR). If neither MCAR nor 

MAR holds, then it is MNAR, where the probability of being missing is dependent on the 

observed and the unobserved/missing data.  

Pr(𝑅 = 0|𝑌, 𝜑) =  Pr (𝑅 = 0|𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠𝑠 , 𝜑) 

One example of MNAR is where subjects with severe depression or side effects from the 

medication are more likely to be missing at the end of the study.  
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Downstream analyses via multivariate methods require a complete dataset. MVs are handled 

differently and thus affects the interpretation and statistical inference. One common approach 

used is case deletion or complete case analysis, wherein this method only completed cases with 

no MVs are included in the analysis. Case deletion leads to a smaller sample size and several 

articles show examples using case removal and results with low power (Harel et al., 2012; 

White & Carlin, 2010). Another approach to handling MVs is via single imputation methods 

where MVs are filled in with plausible values. It is a widely used method and is pretty straight 

forward but also a dangerous way of dealing with missing values. Statistical analysis performed 

on datasets imputed by single imputation method may be biased as the approach does not 

consider the uncertainty of the imputed values. Some of the single imputation methods include 

mean, zero, half minimum and median imputation where the MVs are replaced by the mean, 

zeros, half of the minimum and median of the variable respectively. The magnitude of the 

covariances and correlation also decreases by limiting the variability, and this method often 

causes biased estimates, irrespective of the underlying missing data mechanism (Enders, 2010; 

Eekhout et al., 2012). Other methods in single imputation are based on computation such as 

imputation using k-nearest neighbor (kNN), random forest (RF), Bayesian principal 

component analysis (BPCA), probabilistic principal component analysis (PPCA), and singular 

value decomposition (SVD) imputation. Many of the single imputation methods are 

thoroughly described in Schafer and Graham (2002). Other sophisticated methods of dealing 

with MVs include multiple imputation (Rubin 1987), nonparametric imputation (Wang&Chen 

2009), hot deck imputation (Andridge & Little 2010), weighting techniques (Meng, 1994), 

maximum likelihood (Little and Rubin 2002) via the EM algorithm (Dempster et al 1997) and 

Bayesian analysis (Gelman et al 2003). Most of these methods assume the data is MAR or 

MCAR and none of the methods combine the MNAR mechanism directly. There is noticeable 
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absence in the literature of imputation methods that account for MAR and MNAR 

mechanisms and thus the motivation to develop a method that accounts for both the 

mechanisms.  

Dissertation Outline 

In this dissertation, we develop two novel approaches for imputing MVs which can 

simultaneously handle missing data generated by both MNAR and MAR mechanisms. We 

further investigate the impact of data imputation on statistical analyses. The rest of the 

dissertation is organized as follows. In Chapter 2, we develop a novel missing value imputation 

method based on a modification of the k nearest neighbor method which accounts for 

truncation at the minimum value/limit of detection. The approach assumes that the data 

follows a truncated normal distribution with the truncation point at the detection limit. In 

Chapter 3, we develop a Bayesian model for imputing missing values with small sample sizes. 

The aim of the project arises from the limitation in the previous project. While the novel 

approach is useful, estimation of the truncated mean and standard deviation is problematic in 

small sample sizes (N < 10). The Bayesian paradigm has generally been utilized in the omics 

field as it exploits the data accessible from related components to acquire data to stabilize 

parameter estimation. In Chapter 4, we investigate a comprehensive analysis on the impact of 

missing value imputation on down-stream analyses focusing on differentially expressed 

metabolite detection, classification and clustering analyses. Finally, in Chapter 5 we finish with 

some concluding remarks and potential future research.  
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CHAPTER 21 

TRUNCATION BASED NEAREST NEIGHBOR IMPUTATION FOR 

HIGH DIMENSIONAL DATA WITH DETECTION LIMIT THRESHOLD 

 

2.1 Background 

High throughput technology makes it possible to generate high dimensional data in many areas 

of biochemical research. Mass spectrometry (MS) is one of the important high-throughput 

analytical techniques used for profiling small molecular compounds, such as metabolites, in 

biological samples. Raw data from a metabolomics experiment usually consist of the retention 

time (if liquid or gas chromatography is used for separation), the observed mass to charge 

ratio, and a measure of ion intensity (Taylor, Leiserowitz et al. 2013). The ion intensity 

represents the measure of each metabolite’s relative abundance whereas the mass-to-charge 

ratios and the retention times assist in identifying unique metabolites. A detailed pre-

processing of the raw data, including baseline correction, noise reduction, smoothing, peak 

detection and alignment and peak integration, is necessary before analysis (Want and Masson 

2011). The end product of this processing step is a data matrix consisting of the unique 

features and its intensity measures in each sample. Commonly, data generated from MS have 

many missing values. Missing values (MVs) in MS can occur from various sources both 

technical and biological. There are three common sources of missingness: (Taylor, Leiserowitz 

et al. 2013) i) a metabolite could be truly missing from a sample due to biological reasons, ii) a 

                                                           
1 The text and figures of this chapter were published in BMC Bioinformatics. 2017 Feb 20. 18:114. doi: 
10.1186/s12859-017-1547-6 



  

11 
 

metabolite can be present in a sample but at a concentration below the detection limit of the 

MS, and iii) a metabolite can be present in a sample at a level above the detection limit but fail 

to be detected due to technical issues related to sample processing.  

The limit of detection (LOD) is the smallest sample quantity that yields a signal that can be 

differentiated from the background noise. Shrivastava et al (Shrivastava and Gupta 2011) give 

different guidelines for the detection limit and describe different methods for calculating the 

detection limit. Some common methods (Shrivastava and Gupta 2011)  for the estimation of 

detection limits are visual definition, calculation from signal to noise ratio, calculation from 

standard deviation (SD) of the blanks and calculation from the calibration line at low 

concentrations. Armbruster et al (Armbruster, Tillman et al. 1994) compare the empirical and 

statistical methods based on gas chromatography MS assays for drugs. They explain the 

calculation from SD where a series of blank (negative) samples (a sample containing no analyte 

but with a matrix identical to that of the average sample analyzed) are tested and the mean 

blank value and the SD are calculated, where the LOD is the mean blank value plus 2 or 3 

SDs (Armbruster, Tillman et al. 1994). The signal-to-noise ratio method is commonly applied 

to analytical methods that exhibit baseline noise (Shrivastava and Gupta 2011, Cole, Mills et 

al. 2016). In this method, the peak-to-peak noise around the analyte retention time is measured, 

and subsequently, the concentration of the analyte that would yield a signal equal to a signal-

to-noise ratio (S/N) of three is generally accepted for estimating the LOD (Shrivastava and 

Gupta 2011). 

Missing data can be classified into three categories based on the properties of the causality of 

the missingness (Little and Rubin 2002): “missing completely at random (MCAR)”, “missing 

at random (MAR)” and “missing not at random (MNAR)”. The missing values are considered 
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MCAR if the probability of an observation being missing does not depend on observed or 

unobserved measurements. If the probability of an observation being missing depends only 

on observed measurements then the values are considered as MAR. MNAR is when the 

probability of an observation being missing depends on unobserved measurements. In 

metabolomics studies, we assume that the missing values occurs either as MNAR (metabolites 

occur at low abundances, below the detection limit) or MAR, e.g. metabolites are truly not 

present or are above the detection limit but missing due to technical errors.  The majority of 

imputation algorithms for high-throughput data exploit the MAR mechanism and use 

observed values from other genes / proteins / metabolites to impute the MVs.  However, 

imputation for MNAR values is fraught with difficulty (Karpievitch, Dabney et al. 2012, 

Taylor, Leiserowitz et al. 2013). Using the imputation methods for microarray studies in MS 

omics studies could lead to biased results because most of the imputation techniques produce 

unbiased results only if the missing data are MCAR or MAR (Karpievitch, Stanley et al. 2009). 

Karpievitch et al (Karpievitch, Dabney et al. 2012) discuss several approaches in dealing with 

missing values, considering MNAR as censored in proteomic studies.  

Many statistical analyses require a complete dataset and therefore missing values are commonly 

substituted with a reliable value. Many MV imputation methods have been developed in the 

literature in other -omic studies. For example the significance of appropriate handling of MVs 

has been acknowledged in the analysis of DNA microarray (Troyanskaya, Cantor et al. 2001) 

and gel based proteomics data (Pedreschi, Hertog et al. 2008, Albrecht, Kniemeyer et al. 2010). 

Brock et al (Brock, Shaffer et al. 2008) evaluated a variety of imputation algorithms with 

expression data such as KNN, singular value decomposition, partial least squares, Bayesian 

principal component analysis,  local least squares and least squares adaptive. In MS data 

analysis, a common approach is to drop individual metabolites with a large proportion of 
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subjects with missing values from the analysis or to drop the entire subject with a large number 

of missing metabolites. Other standard methods of substitution include using a minimum 

value, mean, or median value. Gromski et al (Gromski, Xu et al. 2014) analyzed different MV 

imputation methods and their influence on multivariate analysis. The choice of imputation 

method can significantly affect the results and interpretation of analyses of metabolomics data 

(Hrydziuszko and Viant 2011).  

Since missingness may be due to a metabolite being below the detection limit of the mass 

spectrometer (MNAR) or other technical issues unrelated to the abundance of the metabolite 

(MAR), we develop a method that accounts for both of these mechanisms. To demonstrate 

missing patterns, Figure 2 summarizes the distribution of two different metabolites taken from 

Sansbury et al (Sansbury, DeMartino et al. 2014), both of which had missing values. The top 

graph shows that the distribution of the metabolite is far above the detection limit and 

therefore replacing the MV in that metabolite with a LOD value would be inappropriate. 

Similarly, the bottom graph shows that the distribution of the metabolite is near the detection 

limit and therefore replacing the MV with a mean or median value might be inappropriate.  
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Figure 2.  Two examples of metabolite distributions which have missing values (MVs), from 

the myocardial infarction data (Sansbury, DeMartino et al. 2014).  

The black vertical line on each graph shows the minimum value of the data, considered as the 

lower limit of detection (LOD).  The small vertical lines below the x-axis in each case indicate 

the observed values of the metabolites.  The figure on the top shows the distribution of 1,2 

dipalmitoylglycerol, where the observed values are all around 3 standard deviations above the 

LOD.  In this case, the MVs are likely to be MAR or MCAR.  In contrast, the figure on the 

bottom shows the distribution of 7-ketodeoxycholate, which is close to the LOD.  Here, the 

MVs are likely to be below the LOD and hence MNAR.   
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In this work, we develop an imputation algorithm based on nearest neighbors that considers 

MNAR and MAR together based on a truncated distribution, with the detection limit 

considered as the truncation point. The proposed truncation-based KNN method is compared 

to standard KNN imputation based on Euclidean and correlation based distance metrics.  We 

show that this method is effective and generally outperforms the other two KNN procedures 

through extensive simulation studies and application to three real data sets (Sansbury, 

DeMartino et al. 2014, DeFilippis, Chernyavskiy et al. 2016).   

2.2 Methods 

K-Nearest Neighbors (NN) 

KNN is a non-parametric machine learning algorithm. NN imputation approaches are 

neighbor based methods where the imputed value is either a value that was measured for the 

neighbor or the average of measured values for multiple neighbors. It is a very simple and 

powerful method. The motivation behind the NN algorithm is that samples with similar 

features have similar output values. The algorithm works on the premise that the imputation 

of the unknown samples can be done by relating the unknown to the known according to 

some distance or similarity function. Essentially, two vectors that are far apart based on the 

distance function are less likely than two closely situated vectors to have a similar output value. 

The most frequently used distance metrics are the Euclidean distance metric or the Pearson 

correlation metric. Let 𝑋𝑖 , 𝑖 = 1,… , 𝑛  be independent and identically distributed (iid) with 

mean µ𝑋 and standard deviation 𝜎𝑋, and 𝑌𝑖  , 𝑖 = 1, … , 𝑛 be iid with mean µ𝑌 and standard 

deviation 𝜎𝑌. The two sets of measurements are assumed to be taken on the same set of 

observations.  Then the Euclidean distance between the two sample vectors 𝒙 =  〈𝑥1, … , 𝑥𝑛〉 

and 𝒚 = 〈𝑦1, … , 𝑦𝑛〉  is defined as follows: 
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𝑑𝐸(𝒙, 𝒚) =  √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1
 

It is the ordinary distance between two points in the Euclidean space. The correlation between 

vectors 𝒙 and 𝒚 is defined as follows: 

𝑟(𝒙, 𝒚) =  

1
𝑛

∑ 𝑥𝑖𝑦𝑖 − µ̂𝑋µ̂𝑌𝑖

�̂�𝑋�̂�𝑌
 

where µ̂𝑋, µ̂𝑌, �̂�𝑋 ,  and �̂�𝑌 are the sample estimates of the corresponding population 

parameters. If 𝒙 and 𝒚 are standardized (denoted as 𝒙𝑠 and 𝒚𝑠, respectively) to each have a 

mean of zero and a standard deviation of one, the formula reduces to: 

𝑟(𝒙𝑠, 𝒚𝑠) =
1

𝑛
∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

  

When using the Euclidean distance, normalization/re-scaling process is not required for KNN 

imputation because neighbors with similar magnitude to the metabolite with MV are used for 

imputation. In the correlation based distance, since metabolites can be highly correlated but 

different in magnitude, the metabolites are first standardized to mean zero and standard 

deviation one before the neighbor selection and then re-scaled back to the original scale after 

imputation (Brock, Shaffer et al. 2008, Tutz and Ramzan 2015) . The distance used to select 

the neighbors is 𝑑𝐶 =  1 − |𝑟|, where 𝑟 is the Pearson correlation. This distance allows for 

information to be incorporated from both positively correlated and negatively correlated 

neighbors.  During the distance calculation MVs are omitted, so that it is based only on the 

complete pairwise observations between two metabolites.  
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The KNN based on the Euclidean (KNN-EU) or Correlation (KNN-CR) distance metrics do 

not account for the truncation at the minimum value or the limit of detection. In our method, 

we propose a modified version of the KNN approach which accounts for the truncation at 

the minimum value called KNN Truncation (KNN-TN).  A truncated distribution occurs 

when there is no ability to know about data that falls below a set threshold or outside a certain 

set range. Often the general idea is to make inference back to the original population and not 

on the truncated population and therefore inference is made on the population mean and not 

the truncated sample mean. In the regular KNN-CR, the metabolites are standardized based 

on the sample mean and sample standard deviation. In KNN-TN, we first estimate the means 

and standard deviation, and use the estimated values for standardizing. Maximum likelihood 

Estimators (MLE) are estimated for the truncated normal distribution. The likelihood for the 

truncated normal distribution is  

𝐿(𝜇, 𝜎2) =  ∏(
1

𝑃(𝑌 ∈ (𝑎,∞)|𝜇, 𝜎2)
) (

1

√2𝜋𝜎2
) 𝑒

−(𝑦𝑖−𝜇)2

2𝜎2

𝑛

𝑖=1

 

 

Here a is the truncation point and presumed to be known in our case.  Also note that MVs are 

ignored and the likelihood is based only on the observed data (in essence a partial likelihood 

akin to a Cox regression model (Efron 1977, Ren and Zhou 2010).  The log likelihood is then 

𝑙 = ln 𝐿(𝜇, 𝜎2) 

    =  −𝑛 ln(𝑃(𝑌 ∈ (𝑎,∞)|𝜇, 𝜎2)) − 𝑛ln (√2𝜋𝜎2) − 
∑(𝑦𝑖 − 𝜇)2

2𝜎2
 

The 𝑃(𝑌 ∈ (𝑎,∞)|𝜇, 𝜎2) is the part of the likelihood that is specific to the truncated normal 

distribution.  
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We use the Newton-Raphson (NR) optimization procedure to find the MLEs for µ and σ 

(Cohen 1949, Cohen 1950) (for details see the Appendix 1). The sample means and standard 

deviations are used as the initial values for the NR optimization. To accelerate the run-time of 

the algorithm, truncation-based estimation of the mean and standard deviation was done only 

on metabolites that had a sample mean within 3 standard deviations of the LOD. For the 

other metabolites, we simply used the sample means and standard deviations. The runtime for 

one dataset with 50 samples and 400 metabolites and the three missing mechanisms was about 

1.20 minutes on average, which included truncation-based estimation of the mean and 

standard deviation and the three imputation methods. In particular for one individual run on 

50 samples and 400 metabolites with 15% missingness, the runtime was about 1.81 seconds 

for the KNN-EU method, 3.41 seconds for the KNN-CR method and 19.95 seconds for the 

KNN-TN method.  The KNN-TN method runtime was a little longer due to the estimation 

of the means and standard deviations.  

Let 𝑦𝑖𝑚 be the intensity of metabolite 𝑚 (1 ≤ 𝑚 ≤ 𝑀) in sample 𝑖 (1 ≤ 𝑖 ≤ 𝑁). The 

following steps outline the KNN imputation algorithms (KNN-TN, KNN-CR, and KNN-

EU):  

1. Choose a K to use for the number of nearest neighbors. 

2. Select the distance metric: Euclidean (KNN-EU) or correlation (KNN-CR and KNN-

TN) 

3. If using correlation metric, decide whether to standardize the data based on sample 

mean and sample standard deviation (KNN-CR) or the truncation-based estimate of 

the mean and standard deviation (KNN-TN). 
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4. Based on the distance metric and (possibly) standardization, for each metabolite with 

a missing value in sample i find the K closest neighboring metabolites which have an 

observed value in sample i.  

5. For metabolite m with missing value in sample i, calculated the imputed value �̂�𝑖𝑚 by 

taking the weighted average of the K nearest neighbors for each missing value in the 

metabolite.  The weights are calculated as 𝑤𝑘 =  sign(𝑟𝑘) 𝑑𝑘
−1 ∑ 𝑑𝑙

−1𝐾
𝑙=1⁄ , where 

𝑑1, … , 𝑑𝐾 are the distances between metabolite m and each of the K neighbors and 

𝑟1, … , 𝑟𝐾 are the corresponding Pearson correlations.  The multiplication by sign(𝑟𝑘) 

allows for incorporation of negatively correlated metabolites.  The imputed value is 

then �̂�𝑖𝑚 = 
1

𝐾
∑ 𝑤𝑘𝑦𝑖𝑘

𝐾
𝑘=1 . 

6. If using the KNN-CR or KNN-TN approaches, back-transform into the original 

space of the metabolites.  

The steps for the KNN-TN procedure are outlined graphically in Figure 3 (see figure caption 

for detailed explanation).  The graph illustrates the algorithms success at imputing both MAR 

and MNAR values.   
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Figure 3: Steps in the KNN-TN imputation algorithm. 

Step 1 (top left panel): The first step in the KNN-TN procedure is to estimate the mean and 

standard deviation of each metabolite.  Here, the distribution and simulated values for 5 

metabolites (M1-M5) and 20 samples are given.  For each metabolite, observed values are 

given by black stars.  Additionally, M2 has 3 values that are MAR (blue stars), while M3 has 5 

points that are MNAR (below the LOD, red stars) and M4 has 2 points below the LOD (red 

stars).  The estimate mean for each metabolite is indicated by the underlying green vertical 
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dash, while the green horizontal dashed line represents the estimated standard deviation (the 

line extends out +/- 2 standard deviations). 

Step 2 (top right panel):  The second step in the procedure is to transform all the values to 

a common scale, with mean zero and standard deviation of one for each metabolite.  The 

original points are represented in this transformed scale with black stars, with MNAR values 

in red and MAR values in blue. 

Step 3 (bottom left panel):  The next step is to find metabolites with a similar profile on this 

common scale.  In this case, metabolites M1-M3 are highly correlated and M4-M5 are also 

highly correlated.  The two groups of metabolites are also negatively correlated with each 

other, and this information can also be used to aid the imputation process.  The missing values 

are imputed in the transformed space, with weights based on the inverse of the distances 1 −

|𝑟| (𝑟 is the Pearson correlation between the two metabolites).  Contributions from negatively 

correlated metabolites are multiplied by negative one.  The region below the LOD is shaded 

light red. 

Step 4 (bottom right panel): The values are then back-transformed to the original space 

based on the estimated means and standard deviations from Step 1.  Here, we show the three 

metabolites with missing values M2, M3, and M4.  Solid circles represent imputed values for 

MAR (blue circles) and MNAR (red circles).  The region below the LOD is again shaded in 

light red, while the slightly darker shaded regions connect the imputed value with its underlying 

true value.  The imputed values are fairly close to the true values for metabolites M2 and M3, 

while for metabolite M4 the values are further away due to under-estimation of the true 

variance for M4 (c.f. top left panel).   
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Assessment of Performance 

We evaluated the performance of the imputation methods by using the root mean squared 

error (RMSE) as the metric. It measures the difference between the estimated values and the 

original true values, when the original true values are known. The following simulation 

procedure from a complete dataset with no MVs is performed. MVs are generated by 

removing a proportion 𝑝 of values from the complete data to generate data with MVs. The 

MVs are then imputed as �̂�𝑖𝑚 using the given imputation method. Finally, the root mean 

squared error (RMSE) is used to assess the performance by comparing the values of the 

imputed entries with the true values:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛(ℳ) 
∑ (�̂�𝑖𝑚 − 𝑦𝑖𝑚)2

𝑦𝑖𝑚 ∈ ℳ
, 

where ℳ is the set of missing values and 𝑛(ℳ) is the cardinality or number of elements in ℳ.  

Statistical significance of differences in RMSE values between methods was determined using 

multi-factor ANOVA models (with pre-defined contrasts for differences between the 

methods), with main effects for each factor in the simulation study. We further evaluate the 

biological impact of MV imputation on downstream analysis, specifically analyzing differences 

in mean log intensity between groups via the t-test. We evaluate the performances of the MV 

imputation using the metabolite list concordance index (MLCI) (Oh, Kang et al. 2010). By 

applying a selected MV imputation method, one metabolite list is obtained from the complete 

data and another is obtained from the imputed data. The MLCI is defined as:  

𝑀𝐿𝐶𝐼 (𝑀𝐶𝐷 , 𝑀𝐼𝐷) =  
𝑛(𝑀𝐶𝐷 ⋂𝑀𝐼𝐷)

𝑛(𝑀𝐶𝐷)
+ 

𝑛(𝑀𝐶𝐷
𝐶 ⋂𝑀𝐼𝐷

𝐶 )

𝑛(𝑀𝐶𝐷
𝐶 )

− 1 , 
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where 𝑀𝐶𝐷 is the list of statistically significant metabolites in the complete data, 𝑀𝐼𝐷 is the list 

of statistically significant metabolites in the imputed data, and 𝑀𝐶𝐷
𝐶  and 𝑀𝐼𝐷

𝐶  represent their 

complements, respectively.  The metabolite list taken from the complete dataset is considered 

as the gold standard and a high value in MLCI indicates that the metabolite list from the 

imputed data is similar to that from the complete data.  

2.3 Simulation Studies 

We carried out a simulation study to compare the performance of the three different KNN 

based imputation methods. The simulations were conducted with 100 replications and are 

similar in spirit to those used in Tutz and Ramzan, 2015 (Tutz and Ramzan 2015) . For each 

replication we generated data with different combinations of sample sizes 𝑛 and number of 

metabolites 𝑚. Each set of metabolites for a given sample were drawn from a 𝑚 dimensional 

multivariate normal distribution with a mean vector µ and a correlation matrix Σ. We consider, 

in particular, three structures of the correlation matrix: blockwise positive correlation, 

autoregressive (AR) type correlation and blockwise mixed correlation.  

Blockwise correlation 

Let the columns of the data matrix 𝑌(𝑁 X M),  be divided into 𝐵 blocks, where each block 

contains 𝑀/𝐵 metabolites. The partitioned correlation matrix has the form 

∑ = (
Σ11 … Σ1𝐵

⋮ ⋱ ⋮
Σ𝐵1 … Σ𝐵𝐵

) 

The matrices Σ𝑖𝑖 are determined by the pairwise correlations 𝜌𝑤, such that all the components 

have a within block correlation of 𝜌𝑤. The matrices Σ𝑖𝑗 , 𝑖 ≠ 𝑗, are determined by the pairwise 

correlations 𝜌off ; that is, all the components have a between block correlation 𝜌off. The two 
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types of blockwise correlation matrices used in this study are one with all positive correlations 

where the 𝜌𝑤 is positive only and the other is mixed where Σ𝑖𝑖 contains both positive and 

negative correlations. The mixed correlation has the form which is blockwise split in half 

where the diagonal blocks are positively correlated and the off-diagonal blocks are negatively 

correlated. For example, if Σ𝑖𝑖 contained 6 metabolites for any 𝑖, the matrix Σ𝑖𝑖would be: 

∑ = 

(

  
 

1 +
+ 1
+ +

+ −
+ −
1 −

− −
− −
− −

− −
− −
− −

− 1
− +
− +

+ +
1 +
+ 1)

  
 

𝑖𝑖
 

where the + is the positive 𝜌𝑤 and − is the negative 𝜌𝑤 

Autoregressive-type correlation 

The other correlation structure used is the autoregressive type correlation. An AR correlation 

matrix of order one is defined by pairwise correlations 𝜌|𝑖−𝑗|, for metabolites𝑖, 𝑗 = 1,… ,𝑀.  

The combinations used were (𝑁 [Samples] X 𝑀 [Metabolites]) =  20 X 400, 50 X 400,

and 100 X 900. The means of the metabolites are assumed to be different and are generated 

from a Uniform(−5,5) distribution. The metabolites within each block were strongly 

correlated with 𝜌𝑤 = 0.7, but nearly uncorrelated with metabolites in other blocks,  𝜌off =

0.2. In the AR type correlation 𝜌 = 0.9. For the degree of missing, three levels were studied: 

9% missing, 15% missing and 30% missing. Missing data were created based on the two kinds 

of missingness, MNAR and MAR (technically the latter are generated by MCAR, though a 

MAR mechanism can be exploited for imputation since the metabolite values are highly 

correlated). Within each level of missing, a one-third and two-third combination was used to 

create both MNAR and MAR. We looked at the scenario where MNAR is greater than MAR 
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and vice versa. For example in 9% missing, we considered 6% as MNAR and 3% as MAR and 

then considered 6% as MAR and 3% as MNAR. Data below the given MNAR percent was 

considered as missing and the MAR percent was randomly generated in the non-missing data. 

The datasets with missing values were passed through a cleaning process where metabolites 

with more than 75% missing observations were eliminated individually. Throughout, the 

number of neighbors K used for imputation was set to 10. We evaluated three K’s (K=5, 10 

and 20) and found consistency in K=10 as it gave the best RMSE values. 

2.4 Real Data Studies 

Myocardial Infarction Data 

We used the in vivo metabolomics data on myocardial infarction (MI). The data consists of 

two groups, MI vs control, 5 samples in each group and 288 metabolites. Adult mice were 

subjected to permanent coronary occlusion (myocardial infarction; MI) or Sham surgery. Adult 

C57BL/6J mice from The Jackson Laboratory (Bar Harbor, ME) were used in this study and 

were anesthetized with ketamine (50 mg/kg, intra-peritoneal) and pentobarbital (50 mg/kg, 

intra-peritoneal), orally intubated with polyethylene-60 tubing, and ventilated (Harvard 

Apparatus Rodent Ventilator, model 845) with oxygen supplementation prior to the 

myocardial infarction. The study was aimed to examine the metabolic changes that occur in 

the heart in vivo during heart failure using mouse models of permanent coronary ligation. A 

combination of liquid chromatography (LC) MS/MS and gas chromatography (GC) MS 

techniques was used to measure the 288 metabolites in these hearts. The MS was based on a 

Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass spectrometer, which consisted 

of an electrospray ionization source and linear ion trap mass analyzer. The cases had 220 

metabolites with complete values, 6 metabolites with complete missing and 62 metabolites had 
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4.8% missing values whereas the controls had 241 metabolites with complete values, 7 

metabolites with complete missing and 40 metabolites had 7.8% missing values. The LOD for 

this dataset is considered as the minimum value of the dataset as commonly used in untargeted 

metabolomics. Details of the experiments are described in Sansbury et al (Sansbury, 

DeMartino et al. 2014).   

Atherothrombotic Data 

We used the human atherothrombotic myocardial infarction (MI) metabolomics data. The 

data was identified between two groups, those with acute MI and those with stable coronary 

artery disease (CAD). Acute MI was further stratified into thrombotic (Type1) and non-

thrombotic (Type2) MI. The data was collected across four time points and for the context of 

this research we used the baseline data only. The three groups, sCAD, Type1 and Type2 had 

15, 11, and 12 patients with 1032 metabolites. The sCAD had 685 metabolites with complete 

values, 39 metabolites with complete missing, and 308 metabolites had 10.2% missing, the 

Type1 group had 689 metabolites with complete values, 43 metabolites with complete missing 

and 300 metabolites had 9.8% missing whereas the Type2 group had 610 metabolites with 

complete values, 66 metabolites with complete missing and 356 metabolites had 12.3% 

missing. The LOD for this dataset is considered as the minimum value of the dataset as 

commonly used in untargeted metabolomics. Plasma samples collected from the patients were 

used and 1032 metabolites were detected and quantified by GC-MS and ultra-performance 

(UP) LC-MS in both positive and negative ionization modes. Details of the experiment are 

described in DeFilippis et al (DeFilippis, Chernyavskiy et al. 2016). 

African Race Data 
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We used the African Studies data which is publicly available on The Metabolomics 

WorkBench. This data is available at the NIH Common Fund's Data Repository and 

Coordinating Center (supported by NIH grant, U01-DK097430) website 

(http://www.metabolomicsworkbench.org), where it has been assigned a Metabolomics 

Workbench Project ID: PR000010. The data is directly accessible from The Metabolomics 

WorkBench database .  The data was collected to compare metabolomics, phenotypic and 

genetic diversity across various groups of Africans. The data consisted of 40 samples; 25 

samples from Ethiopia and 15 samples from Tanzania and 5126 metabolites. For the purpose 

of this study we made sure we had a complete dataset in order to compare the methods. The 

complete datasets created were two datasets based on the country; Ethiopia dataset (25 

samples by 1251 metabolites) and Tanzania dataset (15 samples by 2250 metabolites).  

Due to small sample sizes in metabolomics datasets, we used a simulation approach originally 

designed to resemble the multivariate distribution of gene expression in the original microarray 

data (Parrish, Spencer Iii et al. 2009). Since our Myocardial Infarction and Atherothrombotic 

data had missing values we first imputed missing values based on the KNN-CR method and 

then used the simulation method to simulate 100 datasets. For the African Race data we started 

with a complete dataset. The different groups were considered as independent datasets and 

the imputation was done on them separately. We used the similar mechanism for missingness 

and screening as used in the simulation studies, with sample sizes of 25 and 50 for the 

myocardial infarction dataset, 50 and 100 for the human atherothrombotic dataset and 15 and 

25 for the Tanzania and Ethiopia data sets, respectively, from the African race study. 

2.5 Results 

Simulation Results 
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In this section, we present the results of the simulation studies comparing the performance 

measures of KNN-TN, KNN-CR and KNN-EU. Figures 4, 5 and 6 plot the distribution of 

the RMSE values for KNN-TN, KNN-CR and KNN-EU by correlation type and percent 

missing for sample sizes 20, 50, and 100, respectively. Tables 1, 2 and 3 show the average 

RMSE results of the different simulation settings based on the 100 replications. Since the 

pattern of results was similar regardless of whether the percent MNAR was less than the 

percent MAR, results are shown for percent MNAR > percent MAR only.  As can be seen 

from the tables and figures, the results consistently show that the KNN-TN method 

outperforms both the KNN-CR and KNN-EU methods. ANOVA modeling of the RMSE 

values shows statistically significant differences between the KNN-TN method and KNN-CR 

/ KNN-EU methods for all three cases, and significant effects for the other two factors 

(percent missing and correlation type) as well (Tables 4-6).  To visualize how our method 

works we selected a simulated dataset from N = 50 and M = 400 with 15% missing (10% 

below the LOD and 5% MAR) and compared the true missing values with KNN-TN, KNN-

CR and KNN-EU. Figure 7 demonstrates that our imputation method imputes values below 

the limit of detection whereas the Euclidean or correlation based metrics are less accurate for 

these values. The figure is reproducible with our included example script in Supplemental File 

5.  We further compared the three methods with standard imputation methods in 

metabolomics (zero, minimum and mean imputation methods) and all three KNN imputation 

algorithms outperformed the standard methods. The results for the simulation studies are 

shown in Tables 7-9 where we see the average RMSE range was from 4.0 to 5.8. 
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Figure 4:  Boxplots of root mean squared error for KNN-TN, KNN-CR and KNN-EU for 

100 datasets, 20 samples by 400 metabolites.  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. The three correlation structure used was i) only positive correlation 0.7, ii) AR(1) 

correlation 0.9 and iii) mixed correlation 0.7.   
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Figure 5: Boxplots of root mean squared error for KNN-TN, KNN-CR and KNN-EU for 

100 datasets, 50 samples by 400 metabolites. 

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. The three correlation structure used was i) only positive correlation 0.7, ii) AR(1) 

correlation 0.9 and iii) mixed correlation 0.7. 
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Figure 6: Boxplots of root mean squared error for KNN-TN, KNN-CR and KNN-EU for 

100 datasets, 100 samples by 900 metabolites 

 Total missing was considered at 9%, 15% and 30% and within each missing MNAR is 

greater than MAR. The three correlation structure used was i) only positive correlation 0.7, 

ii) AR(1) correlation 0.9 and iii) mixed correlation 0.7.   
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Figure 7:  Comparison of the true missing values with missing values imputed from the three 

methods based on a single simulated dataset (N = 50 X M = 400).  

The values for the first 20 metabolites are shown. The x-axis represents the metabolites, and 

the y-axis represents the intensity values. The open black circles represent observed values, 

while the black stars represent missing observations.  Blue triangles, red squares, and green 

diamonds represent missing values imputed by KNN-TN, KNN-CR and KNN-EU, 
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respectively. The region below the LOD is shaded in light red.  In most cases, the KNN-TN 

algorithm is able to impute missing values below the LOD better than the other two methods 

(e.g., metabolites 1, 3, 4, 7, 8, 12, and 13).  In other cases, the KNN-TN imputations are similar 

to KNN-CR (e.g. for metabolite 5, for which the missing below the LOD was too high and 

the NR algorithm was unable to converge).    
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MNAR/MAR 

DATA CORR KNN-TN KNN-CR KNN-EU 

6% / 3% DATA 1 POS 0.7 1.214 
(0.042) 

1.321 
(0.041) 

1.450 
(0.051)  

DATA 2 AR(1) 0.9 1.210 
(0.046) 

1.334 
(0.039) 

1.576 
(0.050)  

DATA 3 MIX 0.7 1.341 
(0.048) 

1.462 
(0.041) 

1.629 
(0.053) 

10% / 5% DATA 1 POS 0.7 1.238 
(0.057) 

1.325 
(0.055) 

1.413 
(0.053)  

DATA 2 AR(1) 0.9 1.251 
(0.049) 

1.350 
(0.048) 

1.523 
(0.043)  

DATA 3 MIX 0.7  1.392 
(0.050) 

1.495 
(0.052) 

1.601 
(0.050) 

20% / 10% DATA 1 POS 0.7  1.165 
(0.056) 

1.226 
(0.060) 

1.280 
(0.051)  

DATA 2 AR(1) 0.9  1.172 
(0.055) 

1.241 
(0.057) 

1.382 
(0.048)  

DATA 3 MIX 0.7  1.315 
(0.056) 

1.385 
(0.059) 

1.457 
(0.054) 

 

Table 1: Average RMSE of 100 datasets, 20 samples by 400 metabolites for KNN-TN, 

KNN-CR and KNN-EU.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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MNAR/MAR DATA CORR KNN-TN KNN-CR KNN-EU 

6% / 3% DATA 1 POS 0.7 0.992 
(0.037) 

1.159 
(0.028) 

1.421 
(0.033)  

DATA 2 AR(1) 0.9 0.970 
(0.050) 

1.156 
(0.029) 

1.539 
(0.033)  

DATA 3 MIX 0.7 1.071 
(0.044) 

1.266 
(0.027) 

1.593 
(0.029) 

10% / 5% DATA 1 POS 0.7 1.062 
(0.039) 

1.197 
(0.038) 

1.402 
(0.034)  

DATA 2 AR(1) 0.9 1.056 
(0.045) 

1.210 
(0.038) 

1.502 
(0.029)  

DATA 3 MIX 0.7 1.184 
(0.044) 

1.339 
(0.041) 

1.580 
(0.034) 

20% / 10% DATA 1 POS 0.7 0.969 
(0.043) 

1.072 
(0.043) 

1.258 
(0.036)  

DATA 2 AR(1) 0.9 0.983 
(0.047) 

1.100 
(0.046) 

1.361 
(0.034)  

DATA 3 MIX 0.7 1.110 
(0.046) 

1.229 
(0.045) 

1.439 
(0.034) 

 

Table 2: Average RMSE of 100 datasets, 50 samples by 400 metabolites for KNN-TN, KNN-

CR and KNN-EU. 

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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MNAR/MAR DATA CORR KNN-TN KNN-CR KNN-EU 

6% / 3% DATA 1 POS 0.7 0.882 
(0.030) 

1.099 
(0.019) 

1.364 
(0.018)  

DATA 2 AR(1) 0.9 0.852 
(0.033) 

1.092 
(0.019) 

1.488 
(0.014)  

DATA 3 MIX 0.7 0.909 
(0.031) 

1.147 
(0.019) 

1.530 
(0.018) 

10% / 5% DATA 1 POS 0.7 0.965 
(0.029) 

1.133 
(0.026) 

1.344 
(0.022)  

DATA 2 AR(1) 0.9 0.959 
(0.033) 

1.145 
(0.027) 

1.453 
(0.018)  

DATA 3 MIX 0.7  1.043 
(0.027) 

1.236 
(0.025) 

1.521 
(0.022) 

20% / 10% DATA 1 POS 0.7 0.870 
(0.024) 

1.000 
(0.024) 

1.197 
(0.021)  

DATA 2 AR(1) 0.9  0.878 
(0.030) 

1.028 
(0.026) 

1.308 
(0.016)  

DATA 3 MIX 0.7  0.960 
(0.027) 

1.110 
(0.027) 

1.368 
(0.021) 

 

Table 3: Average RMSE of 100 datasets, 100 samples by 900 metabolites for KNN-TN, KNN-

CR and KNN-EU.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.   
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Table 4: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for 20 samples by 400 metabolites. 

Contrast Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.094 0.002815 33.303 <2e-16 *** 

KNN-EU – KNN-TN 0.224 0.002815 79.519 <2e-16 *** 

 

Table 4 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for 20 samples by 400 metabolites. 

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 22.752 11.376 3189.4 <2e-16 *** 

Percent Missing  2 6.574 3.287 921.6 <2e-16 *** 

Correlation Type 2 12.333 6.166 1728.8 <2e-16 *** 

Residuals 2693 9.605 0.004   

 

Table 4 b. ANOVA table giving the significance of the three factors in the simulation study 

for 20 samples by 400 metabolites. 

Table  
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Table 5: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for 50 samples by 400 metabolites. 

 Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.148 0.002517 58.72 <2e-16 *** 

KNN-EU – KNN-TN 0.224 0.002517 163.23 <2e-16 *** 

 

Table 5 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for 50 samples by 400 metabolites.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 77.95 38.98 13672 <2e-16 *** 

Percent Missing  2 5.83 2.92 1023 <2e-16 *** 

Correlation Type 2 9.71 4.85 1703 <2e-16 *** 

Residuals 2693 7.68 0.00   

 

Table 5 b. ANOVA table giving the significance of the three factors in the simulation study 

for 50 samples by 400 metabolites. 
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Table 6: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for 100 samples by 900 metabolites. 

 Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.186 0.002278 81.60 <2e-16 *** 

KNN-EU – KNN-TN 0.473 0.002278 207.60 <2e-16 *** 

 

Table 6 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for 100 samples by 900 metabolites.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 102.18 51.09 21877 <2e-16 *** 

Percent Missing  2 6.55 3.27 1402 <2e-16 *** 

Correlation Type 2 5.35 2.67 1145 <2e-16 *** 

Residuals 2693 6.29 0.00   

 

Table 6 b. ANOVA table giving the significance of the three factors in the simulation study 

for 100 samples by 900 metabolites. 
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MNAR/MAR DATA CORR Zero Min Mean 

6% / 3% DATA 1 POS 0.7 5.568 
(0.164) 

5.490 
(0.172) 

5.539 
(0.172)  

DATA 2 AR(1) 0.9 5.561 
(0.148) 

5.482 
(0.152) 

5.531 
(0.152)  

DATA 3 MIX 0.7 5.565 
(0.159) 

5.583 
(0.171) 

5.626 
(0.168) 

10% / 5% DATA 1 POS 0.7 5.118 
(0.143) 

5.507 
(0.137) 

5.118 
(0.145)  

DATA 2 AR(1) 0.9 5.127 
(0.154) 

5.066 
(0.154) 

5.131 
(0.154)  

DATA 3 MIX 0.7 5.240 
(0.145) 

5.169 
(0.143) 

5.229 
(0.146) 

20% / 10% DATA 1 POS 0.7 4.133 
(0.149) 

4.224 
(0.142) 

4.251 
(0.156)  

DATA 2 AR(1) 0.9 4.134 
(0.140) 

4.229 
(0.133) 

4.251 
(0.145)  

DATA 3 MIX 0.7 4.226 
(0.132) 

4.306 
(0.123) 

4.335 
(0.130) 

 

Table 7: Average RMSE of 100 datasets, 20 samples by 400 metabolites for zero, minimum 

and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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MNAR/MAR DATA CORR Zero Min Mean 

6% / 3% DATA 1 POS 0.7 5.604 
(0.131) 

5.520 
(0.136)  

5.569 
(0.138)  

DATA 2 AR(1) 0.9 5.607 
(0.124) 

5.526 
(0.128) 

5.570 
(0.127)  

DATA 3 MIX 0.7 5.688 
(0.115) 

5.602 
(0.119) 

5.651 
(0.119) 

10% / 5% DATA 1 POS 0.7 5.183 
(0.136) 

5.113 
(0.130) 

5.176 
(0.135)  

DATA 2 AR(1) 0.9 5.181 
(0.127) 

5.109 
(0.118) 

5.176 
(0.121)  

DATA 3 MIX 0.7 5.295 
(0.127) 

5.209 
(0.119) 

5.279 
(0.124) 

20% / 10% DATA 1 POS 0.7 4.179 
(0.144) 

4.256 
(0.133) 

4.294 
(0.147)  

DATA 2 AR(1) 0.9 4.182 
(0.136) 

4.256 
(0.126) 

4.294 
(0.137)  

DATA 3 MIX 0.7 4.279 
(0.135) 

4.338 
(0.124) 

4.387 
(0.137) 

 

Table 8: Average RMSE of 100 datasets, 50 samples by 400 metabolites for zero, minimum 

and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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MNAR/MAR DATA CORR Zero Min Mean 

6% / 3% DATA 1 POS 0.7 5.607 
(0.083) 

5.522 
(0.087) 

5.570 
(0.086)  

DATA 2 AR(1) 0.9 5.608 
(0.073) 

5.524 
(0.075) 

5.571 
(0.076)  

DATA 3 MIX 0.7 5.694 
(0.085) 

5.607 
(0.089) 

5.654 
(0.089) 

10% / 5% DATA 1 POS 0.7 5.194 
(0.104) 

5.121 
(0.097) 

5.186 
(0.100)  

DATA 2 AR(1) 0.9 5.194 
(0.096) 

5.110 
(0.091) 

5.185 
(0.092)  

DATA 3 MIX 0.7 5.311 
(0.091) 

5.219 
(0.084) 

5.291 
(0.088) 

20% / 10% DATA 1 POS 0.7 4.191 
(0.091) 

4.266 
(0.085) 

4.305 
(0.089)  

DATA 2 AR(1) 0.9 4.188 
(0.088) 

4.266 
(0.083) 

4.303 
(0.087)  

DATA 3 MIX 0.7 4.286 
(0.092) 

4.345 
(0.087) 

4.394 
(0.094) 

 

Table 9: Average RMSE of 100 datasets, 100 samples by 900 metabolites for zero, minimum 

and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.   
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Real Data Simulations Results 

We conducted a simulation study based on the real datasets to further validate our results. 

Table 10, 11, and 12 show the results of the in vivo myocardial infarction data, human 

atherothrombotic data, and publicly available African Race data.  In all cases the KNN-TN 

and KNN-CR results are substantially better than the KNN-EU results, with RMSE means 

more than two standard deviations below the means for KNN-EU (p-value < 0.05 for 

KNN-TN vs. KNN-EU contrast, Tables 13 - 15).  The difference between KNN-TN and 

KNN-CR is much smaller by comparison, with statistically significant differences only for 

the Atherothrombotic and African Race data sets.  However, in every case the mean RMSE 

for KNN-TN is below that for KNN-CR. Tables 13 – 15 show that significant differences in 

RMSE values exist according to the other factors in the simulation study (percent missing, 

group, and sample size) as well.  We further compared the three methods the standard 

imputation methods in metabolomics (zero, minimum and mean imputation methods) and 

all three KNN imputation algorithms outperformed the standard methods. The results for 

the real data are shown in Tables 16-18 where we see the average RMSE range was from 2.2 

to 7.2. The t-test analysis and the MLCI values are shown in Table 4. A higher value of 

MLCI indicates that the metabolite list from the imputed data is similar to that from the 

complete data and from the tables KNN-TN and KNN-CR have the highest values, whereas 

the KNN-EU, Zero, Minimum and Mean imputation methods have lower MLCI indexes.  

Differences in mean MLCI values between KNN-TN and KNN-CR were not statistically 

significant (Tables 19-21), whereas KNN-TN was significantly better than the other four 

methods in all cases except for the African Race data (where mean imputation and all KNN 

imputation methods were roughly equivalent and better than zero and minimum value 

imputation). 
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MNAR/MAR SAMPLE 
SIZE 

GROUP KNN-TN KNN-CR KNN-EU 

6% / 3% 25 CASES 
0.613 

(0.072) 
0.619 

(0.071) 
0.786 

(0.075) 

 25 CONTROLS 
0.436 

(0.054) 
0.441 

(0.054) 
0.607 

(0.047) 

 50 CASES 
0.597 

(0.045) 
0.602 

(0.046) 
0.776 

(0.048) 

 50 CONTROLS 
0.415 

(0.032) 
0.420 

(0.031) 
0.600 

(0.028) 

10% / 5% 25 CASES 
0.632 

(0.099) 
0.637 

(0.101) 
0.810 

(0.087) 

 25 CONTROLS 
0.416 

(0.052) 
0.419 

(0.050) 
0.555 

(0.044) 

 50 CASES 
0.607 

(0.073) 
0.610 

(0.073) 
0.809 

(0.069) 

 50 CONTROLS 
0.409 

(0.034) 
0.412 

(0.034) 
0.556 

(0.029) 

20% / 10% 25 CASES 
0.610 

(0.108) 
0.612 

(0.107) 
0..701 
(0.091) 

 25 CONTROLS 
0.381 

(0.059) 
0.389 

(0.058) 
0.498 

(0.048) 

 50 CASES 
0.586 

(0.083) 
0.586 

(0.081) 
0.699 

(0.071) 

 50 CONTROLS 
0.370 

(0.053) 
0.381 

(0.053) 
0.499 

(0.041) 

 

Table 10:  Average RMSE of 100 simulations using the in vivo myocardial infarction dataset 

for KNN-TN, KNN-CR and KNN-EU.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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MNAR/MAR SAMPLE 
SIZE 

GROUP KNN-TN KNN-CR KNN-EU 

6% / 3% 50 sCAD 
1.145 

(0.047) 
1.171 

(0.046) 
1.410 

(0.052) 

 50 TYPE1 
1.255 

(0.054) 
1.273 

(0.053) 
1.555 

(0.057) 

 50 TYPE2 
1.266 

(0.051) 
1.279 

(0.050) 
1.567 

(0.055) 

 100 sCAD 
1.083 

(0.048) 
1.109 

(0.041) 
1.403 

(0.053) 

 100 TYPE1 
1.183 

(0.048) 
1.199 

(0.041) 
1.531 

(0.053) 

 100 TYPE2 
1.183 

(0.048) 
1.191 

(0.041) 
1.531 

(0.053) 

10% / 5% 50 sCAD 
1.146 

(0.045) 
1.168 

(0.045) 
1.337 

(0.050) 

 50 TYPE1 
1.262 

(0.059) 
1.280 

(0.057) 
1.490 

(0.059) 

 50 TYPE2 
1.296 

(0.048) 
1.315 

(0.047) 
1.531 

(0.051) 

 100 sCAD 
 1.075 
(0.031) 

1.095 
(0.031) 

1.330 
(0.034) 

 100 TYPE1 
1.171 

(0.039) 
1.189 

(0.038) 
1.460 

(0.041) 

 100 TYPE2 
1.189 

(0.040) 
1.207 

(0.038) 
1.490 

(0.040) 

20% / 10% 50 sCAD 
 1.120 
(0.049) 

1.140 
(0.049) 

1.210 
(0.047) 

 50 TYPE1 
 1.261 
(0.061) 

1.282 
(0.061) 

1.398 
(0.059) 

 50 TYPE2 
1.354 

(0.058) 
1.373 

(0.058) 
1.484 

(0.054) 

 100 sCAD 
 1.033 
(0.035) 

1.053 
(0.035) 

1.198 
(0.034) 

 100 TYPE1 
1.153 

(0.041) 
1.176 

(0.041) 
1.372 

(0.041) 

 100 TYPE2 
1.246 

(0.037) 
1.266 

(0.037) 
1.451 

(0.036) 
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Table 11: Average RMSE of 100 simulations using the human atherothrombotic dataset for 

KNN-TN, KNN-CR and KNN-EU.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.  
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MNAR/MAR SAMPLE 
SIZE 

DATASET KNN-TN KNN-CR KNN-EU 

6% / 3% 15 Tanzania 
0.695 

(0.050) 
0.711 

(0.051) 
0.772 

(0.049) 

 25 Ethiopia 
0.575 

(0.029) 
0.592 

(0.029) 
0.701 

(0.033) 

10% / 5% 15 Tanzania 
0.659 

(0.052) 
0.674 

(0.053) 
0.728 

(0.050) 

 25 Ethiopia 
0.556 

(0.029) 
0.574 

(0.029) 
0.665 

(0.031) 

20% / 10% 15 Tanzania 
0.577 

(0.049) 
0.588 

(0.049) 
0..627 
(0.051) 

 25 Ethiopia 
0.507 

(0.026) 
0.520 

(0.027) 
0.599 

(0.028) 
 

Table 12: Average RMSE of 100 simulations using the African Race dataset for KNN-TN, 

KNN-CR and KNN-EU. 

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR. 
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Table 13: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for Myocardial dataset. 

 Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.005 0.00275 1.737 0.0825 

KNN-EU – KNN-TN 0.152 0.00275 55.333 <2e-16 *** 

 

Table 13 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for Myocardial dataset.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 17.95 8.98 1979.08 <2e-16 *** 

Percent Missing  2 1.88 0.94 207.76 <2e-16 *** 

Group 1 37.82 37.82 8339.65 <2e-16 *** 

Sample Size 1 0.14 0.14 31.56 2.08e-08 

Residuals 3593 16.30 0.00   

 

Table 13 b. ANOVA table giving the significance of the four factors for the Myocardial 

dataset. 
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Table 14: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for Atherothrombotic dataset. 

 Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.019 0.00239 479.375 <2e-16 *** 

KNN-EU – KNN-TN 0.240 0.00207 9.261 <2e-16 *** 

 

Table 14 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for Atherothrombotic dataset.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 64.25 32.13 8330.9 <2e-16 *** 

Percent Missing  2 1.65 0.82 213.6 <2e-16 *** 

Group 2 27.07 13.54 3510.5 <2e-16 *** 

Sample Size 1 5.99 5.99 1554.0 <2e-16 *** 

Residuals 5392 20.79 0.00   

 

Table 14 b. ANOVA table giving the significance of the four factors for the 

Atherothrombotic dataset. 
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Table 15: Specific differences in RMSE for the imputation methods and ANOVA results for 

the factors for African Race dataset. 

 Estimate Std. Error t Value P Value 

KNN-CR – KNN-TN 0.015 0.002532 5.941 3.4e-09 *** 

KNN-EU – KNN-TN 0.087 0.002532 34.523 <2e-16 *** 

 

Table 15 a. Specific differences in RMSE values for the KNN-CR and KNN-EU methods 

compared to the KNN-TR method for African Race dataset. 

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 2 2.621 1.3103 681.4 <2e-16 *** 

Percent Missing  2 3.478 1.7388 904.2 <2e-16 *** 

Group 1 3.054 3.054 1588.2 <2e-16 *** 

Residuals 1794 3.450    

 

Table 15 b. ANOVA table giving the significance of the four factors for the African Race 

dataset. 
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MNAR/MAR SAMPLE 
SIZE 

GROUP Zero Min Mean 

6% / 3% 25 CASES 
4.530 

(0.175) 
3.454 

(0.116) 
3.474 

(0.117) 

 25 CONTROLS 
4.213 

(0.213) 
3.234 

(0.103) 
3.246 

(0.097) 

 50 CASES 
4.556 

(0.139) 
3.506 

(0.090) 
3.528 

(0.092) 

 50 CONTROLS 
4.256 

(0.158) 
3.328 

(0.069) 
3.339 

(0.068) 

10% / 5% 25 CASES 
4.908 

(0.173) 
3.262 

(0.093) 
3.297 

(0.094) 

 25 CONTROLS 
4.704 

(0.203) 
3.046 

(0.082) 
3.058 

(0.088) 

 50 CASES 
4.921 

(0.142) 
3.282 

(0.087) 
3.315 

(0.089) 

 50 CONTROLS 
4.742 

(0.124) 
3.098 

(0.053) 
3.118 

(0.053) 

20% / 10% 25 CASES 
6.053 

(0.169) 
2.091 

(0.076) 
2.949 

(0.077) 

 25 CONTROLS 
5.879 

(0.158) 
2.796 

(0.051) 
2.803 

(0.053) 

 50 CASES 
6.050 

(0.117) 
2.916 

(0.057) 
2.960 

(0.056) 

 50 CONTROLS 
5.900 

(0.112) 
2.821 

(0.037) 
2.842 

(0.040) 

 

Table 16:  Average RMSE of 100 simulations using the in vivo myocardial infarction dataset 

for zero, minimum and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.  
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MNAR/MAR SAMPLE 
SIZE 

GROUP Zero Min Mean 

6% / 3% 50 sCAD 
5.437 

(0.084) 
4.331 

(0.066) 
4.363 

(0.067) 

 50 TYPE1 
5.608 

(0.087) 
4.543 

(0.080) 
4.580 

(0.082) 

 50 TYPE2 
5.652 

(0.093) 
4.547 

(0.094) 
4.588 

(0.093) 

 100 sCAD 
5.429 

(0.053) 
4.329 

(0.045) 
4.362 

(0.046) 

 100 TYPE1 
5.569 

(0.057) 
4.463 

(0.058) 
4.500 

(0.059) 

 100 TYPE2 
5.629 

(0.062) 
4.504 

(0.061) 
5.542 

(0.062) 

10% / 5% 50 sCAD 
5.876 

(0.081) 
4.066 

(0.051) 
4.117 

(0.052) 

 50 TYPE1 
5.988 

(0.083) 
4.188 

(0.073) 
4.245 

(0.077) 

 50 TYPE2 
6.056 

(0.070) 
4.216 

(0.066) 
4.273 

(0.068) 

 100 sCAD 
5.891 

(0.052) 
4.079 

(0.035) 
4.131 

(0.036) 

 100 TYPE1 
6.013 

(0.055) 
4.216 

(0.056) 
4.270 

(0.059) 

 100 TYPE2 
6.066 

(0.051) 
4.216 

(0.056) 
4.273 

(0.057) 

20% / 10% 50 sCAD 
7.001 

(0.064) 
3.519 

(0.041) 
3.581 

(0.042) 

 50 TYPE1 
7.141 

(0.070) 
3.613 

(0.052) 
3.686 

(0.056) 

 50 TYPE2 
7.206 

(0.070) 
3.716 

(0.052) 
3.801 

(0.057) 

 100 sCAD 
7.019 

(0.048) 
3.550 

(0.032) 
3.612 

(0.034) 

 100 TYPE1 
7.152 

(0.050) 
3.638 

(0.046) 
3.711 

(0.050) 

 100 TYPE2 
7.207 

(0.043) 
3.705 

(0.041) 
3.786 

(0.046) 
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Table 17:  Average RMSE of 100 simulations using the human atherothrombotic dataset for 

zero, minimum and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.  
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 MNAR/MAR SAMPLE 
SIZE 

GROUP Zero Min Mean 

6% / 3% 15 Tanzania 
4.114 

(0.167) 
2.752 

(0.078) 
2.764 

(0.078) 

 25 Ethiopia 
4.022 

(0.131) 
2.673 

(0.055) 
2.685 

(0.053) 

10% / 5% 15 Tanzania 
4.567 

(0.173) 
2.570 

(0.074) 
2.579 

(0.075) 

 25 Ethiopia 
4.535 

(0.114) 
2.489 

(0.048) 
2.499 

(0.050) 

20% / 10% 15 Tanzania 
5.862 

(0.119) 
2.293 

(0.052) 
2.288 

(0.057) 

 25 Ethiopia 
5.813 

(0.108)  
2.255 

(0.035) 
2.249 

(0.037) 

 

Table 18: Average RMSE of 100 simulations using the African Race dataset for zero, minimum 

and mean imputation methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR 
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Table 19: Specific differences in MLCI for the imputation methods and ANOVA results for 

the factors for Myocardial Infarction dataset. 

Contrast Estimate Std. Error t Value P Value 

Zero – KNN-TN -0.511 0.0046 -96.82 <2e-16 *** 

Min – KNN-TN -0.152 0.00527 -28.75 <2e-16 *** 

Mean – KNN-TN -0.038 0.00527 -7.23 5.8e-13 

KNN-CR – KNN-TN -0.002 0.00527 -0.41 0.679 

KNN-EU – KNN-TN -0.024 0.00527 -4.42 1.03e-05 

 

Table 19 a. Specific differences in MLCI values for the Zero, minimum, mean, KNN-CR and 

KNN-EU methods compared to the KNN-TR method for the Myocardial Infarction data.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 5 118.71 23.742 2846.5 <2e-16 *** 

Percent Missing  2 8.81 4.407 528.4 <2e-16 *** 

Sample Size 1 3.18 3.178 381.0 <2e-16 *** 

Residuals 3591 29.95 0.008   

 

Table 19 b. ANOVA table giving the significance of the three factors in the simulation study 

for Myocardial Infarction data.  
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Table 20: Specific differences in MLCI for the imputation methods and ANOVA results for 

the factors for Atherothrombotic dataset. 

Contrast Estimate Std. Error t Value P Value 

Zero – KNN-TN -0.295 0.0044 .-58.47 <2e-16 *** 

Min – KNN-TN -0.112 0.0050 -22.12 <2e-16 *** 

Mean – KNN-TN -0.036 0.0050 -7.17 8.9e-13 

KNN-CR – KNN-TN -0.001 0.0050 0.25 0.803 

KNN-EU – KNN-TN -0.017 0.0050 -3.36 0.0008 

 

Table 20 a. Specific differences in MLCI values for the Zero, minimum, mean, KNN-CR and 

KNN-EU methods compared to the KNN-TR method for the Atherothrombotic data.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 5 39.67 7.93 1037.9 <2e-16 *** 

Percent Missing  2 2.08 1.04 136.1 <2e-16 *** 

Sample Size 1 3.10 3.10 405.0 <2e-16 *** 

Residuals 3591 27.45 0.01   

 

Table 20 b. ANOVA table giving the significance of the three factors in the simulation study 

for Atherothrombotic data.  
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Table 21: Specific differences in MLCI for the imputation methods and ANOVA results for 

the factors for African Race dataset. 

Contrast Estimate Std. Error t Value P Value 

Zero – KNN-TN -0.239 0.0080 -24.523 <2e-16 *** 

Min – KNN-TN -0.139 0.0097 -14.214 <2e-16 *** 

Mean – KNN-TN -0.008 0.0097 -0.849 0.396 

KNN-CR – KNN-TN -0.001 0.0097 0.052 0.958 

KNN-EU – KNN-TN -0.003 0.0097 -0.262 0.795 

 

Table 21 a. Specific differences in MLCI values for the Zero, minimum, mean, KNN-CR and 

KNN-EU methods compared to the KNN-TR method for the African Race data.  

 Df Sum Sq Mean Sq F value  P Value 

Imputation Method 5 15.39 3.079 216.1 <2e-16 *** 

Percent Missing  2 1.06 0.530 37.2 <2e-16 *** 

Residuals 1792 25.53 0.014   

 

Table 21 b. ANOVA table giving the significance of the three factors in the simulation study 

for Myocardial Infarction data.  
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2.6 Discussions 

The objective of this study was to develop an approach for imputing missing values in data 

generated by mass spectrometry.  When metabolites occur at low abundance, below the 

detection limit of the instrumentation, we can consider it as missing not at random. In contrast, 

missing values resulting from technical errors are considered missing at random.  To this end, 

we introduce an extension to the KNN imputation algorithm which handles truncated data, 

termed KNN-TN.  To our knowledge, this is the first proposal approach which can 

simultaneously handle missing data generated by both MNAR (falling below the LOD) and 

MAR mechanisms.  Since MNAR is involved and is due to the detection limit, we consider 

the detection limit as a truncation point and assume that the metabolite follows a truncated 

normal distribution. Therefore the mean and standard deviation are estimated from the 

truncated normal distribution and used to standardize the metabolites in the KNN imputation 

algorithm. The simulation results show that the proposed method performs better than KNN 

based on correlation or Euclidean measures when there is missing data due to a threshold 

LOD.  

In our simulations we evaluated three different data set sizes: small (20 samples by 400 

metabolites), medium (50 samples by 400 metabolites) and large (100 samples by 900 

metabolites).  As the sample size increased, the RMSE was lower for the different missing 

percentages. The LOD was calculated based on the missing percentage. For instance in 9% 

missing (where 6% was considered as MNAR) the 6% quantile for the complete data was 

considered as the LOD where we considered everything below that value as missing.  For the 

simulation studies, the results shown in the tables are based on when the MNAR percentage 

is greater than the MAR percentage (e.g. for 9% total missing, 6% is MNAR and 3% is MAR). 

However the results were similar when the MAR percentage was greater than the MNAR 
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percentage, with KNN-TN outperforming both KNN-CR and KNN-EU. In our results, 

when MNAR is greater than MAR we typically observed the RMSE was greatest at 15% MVs 

whereas it was lowest at 30% MVs. This counter-intuitive result is likely due to the fact that in 

the cleaning process (which removes metabolites with >75% MVs) we are removing more 

metabolites whose values are concentrated near the LOD. For example in the case of 50 

samples by 400 metabolites, after screening we reduced the metabolites to an average of about 

387 metabolites for 15% missing and 345 metabolites for 30% missing.  When the MAR was 

greater than MNAR, the RMSE increased with the increase in MV percentage.  

Troyanskaya et al. (Troyanskaya, Cantor et al. 2001) evaluated a number of different missing 

value imputation methods and suggested the KNN method to be more robust and sensitive 

compared to the other methods. In another study by Brock et al (Brock, Shaffer et al. 2008), 

they compared the KNN based on two different neighbor selection metrics, Euclidean and 

Correlation and concluded that the correlation based neighbor selection performed better than 

the Euclidean neighbor selection in most of the cases.  In this study we focused on enhancing 

the KNN method specifically for imputing values when there is missing due to an LOD.  

Future studies will evaluate how these methods compare to other imputation algorithms in 

this setting.  

Recently, several studies have investigated imputation for MS data (Hrydziuszko and Viant 

2011, Gromski, Xu et al. 2014, Taylor, Ruhaak et al. 2016). Taylor et al. (Taylor, Ruhaak et al. 

2016) evaluated seven different imputation methods (half minimum, mean, KNN, local least 

squares regression, Bayesian principal components analysis, singular value decomposition and 

random forest) and its effects on multiple biological matrix analyses, more specifically on the 

within-subject correlation of compounds between biological matrices and its consequences on 
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MANOVA results. They concluded that no imputation method was superior but the mean 

and half minimum performed poorly. Gromski et al (Gromski, Xu et al. 2014) looked at five 

different imputation methods (zero, mean, median, KNN and random forest) and its influence 

on unsupervised and supervised learning. Their results recommended that random forest is 

better than the other imputation methods and it provided better results in terms of 

classification rates for both principal components-linear discriminant analysis and partial least 

squares-discriminant analysis. Hrydziuszko et al. (Hrydziuszko and Viant 2011) suggested the 

need of missing value imputation as an important step in the processing pipeline. They used 

metabolomics datasets based on infusion Fourier transform ion cyclotron resonance mass 

spectrometry and compared eight different imputation methods (predefined value, half 

minimum, mean, median, KNN, Bayesian Principal Component Analysis, Multivariate 

Imputation, and REP). Based on their findings, KNN performed better than the other 

methods.   

We included a preliminary investigation of the impact of MV imputation on downstream 

statistical analysis of metabolomics data.  While the KNN-TN method was significantly better 

than four other imputation algorithms (zero imputation, minimum value imputation, and 

KNN-EU imputation) in two of three data sets, it was no better than KNN-EU imputation.  

Further, on the African Race data set there was no significant difference between any of the 

KNN imputation algorithms and mean imputation, though all were better than zero and 

minimum value imputation. Although this result is somewhat disappointing, a more 

comprehensive study of all potential downstream analyses is needed to fully determine, 

whether the improved imputation accuracy of the KNN-TN method translates into better 

downstream statistical analysis, and the characteristics of data sets for which more advanced 

imputation algorithms offer a decided advantage (Oh, Kang et al. 2010).   
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In some cases (high percent missing or small sample size) the variability of the RMSE for 

KNN-TN is higher than or similar to that for KNN-CR. This is directly related to the 

estimation of the mean and variance for the truncated normal distribution, which can be 

difficult when there are excessive amounts of missing data.  In fact, for sample sizes less than 

20 there is little to no gain in using KNN-TN over KNN-CR, unless the missing percentage 

is below the values evaluated in this study (data not shown).  To stabilize the estimation of 

these parameters, one possibility is to again borrow information from metabolites having 

similar intensity profiles.  This is akin to the empirical Bayes approach used to fit linear models 

and generalized linear models in microarray and RNA-seq studies (Smyth , Smyth 2005, 

Robinson, McCarthy et al. 2010, Anders and Huber 2012).   Our future research will explore 

this possibility for improving the KNN-TN algorithm.    

A related limitation is the reliance on the normality assumption for estimating the truncated 

mean and standard deviation. In our simulation study we investigated data from a normal 

distribution, whereas in many cases metabolite data will be non-normally distributed. In these 

cases we suggest to first transform the data to normality, then impute the values and lastly 

transform back. As seen in our real datasets, the metabolites are not normally distributed and 

we log transform them to approximately achieve normality prior to imputation.  

The likelihood used in our KNN-TN method is based solely on the observed metabolite data.  

The full data likelihood would include missing data as well.  This is difficult to specify in the 

current situation as the mechanism by which the MVs were generated (e.g., MNAR, MAR, or 

MCAR) is unknown.  It is possible to improve the algorithm by incorporating these MVs 

directly into the likelihood function, but ancillary information (e.g., from metabolites 
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determined to be neighbors) is necessary to inform the system regarding the missingness 

mechanism (e.g., via the EM-algorithm). 

2.7 Conclusions 

In conclusion, the experimental results reveal that compared with KNN based on correlation 

and Euclidean metrics, KNN based on truncation estimation is a competitive approach for 

imputing high dimensional data where there is potential missingness due to a truncation 

(detection) threshold. Results based on both real and simulated experimental data show that 

the proposed method (KNN-TN) generally has lower RMSE values compared to the other 

two KNN methods and simpler imputation algorithms (zero, mean, and minimum value 

imputation) when there is both missing at random and missing due to a threshold value.  

Assessment based on concordance in statistical significance testing demonstrate that KNN-

TN and KNN-CR are roughly equivalent and generally outperform the other four methods.  

However, the approach has limitations with smaller sample sizes, unless the missing 

percentage is also small. Lastly, even though this study is based on metabolomic datasets our 

findings are more generally applicable to high-dimensional data that contains missing values 

associated with an LOD, for instance proteomics data and  delta-CT values from qRT-PCR 

array cards (Warner, Mukhopadhyay et al. 2014). 
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CHAPTER 3 

BAYESIAN APPROACH FOR IMPUTATION OF MISSING VALUES 

WITH APPLICATION TO HIGH DIMENSIONAL DATA WITH 

DETECTION LIMIT THRESHOLD 

 

3.1 Background 

In many typical high throughput studies, a large number of features 

(genes/proteins/transcriptomes/metabolites) are measured quantitatively from biological 

samples, e.g. from humans or animals. Metabolomics is the most downstream field in the 

omics cascade and provides vital information about metabolic pathways and significant 

biomarkers related to a certain phenotype. Since metabolites are downstream products, they 

are very sensitive to various biological states, and can potentially be more readily used for early 

disease detection than other molecular information, as well as provide contemporaneous 

information for a variety of other studies (Xi et al 2015). In most MS studies, the number of 

features (𝑝) is much larger than the number of samples (𝑛). Because of this large 𝑝 and 

small 𝑛, one of the obstacles is to avoid over-fitting the data. Bayesian methods have become 

widespread in numerous scientific fields, and this rapid rise in popularity is partially attributable 

to the decrease in the cost of computational assets that are needed to estimate more complex 

models (Daniel 2016, Dunson, 2001). There have been several Monte Carlo simulation studies 

and recent methodologies that have illustrated the benefits of Bayesian methods over 

frequentist maximum likelihood (ML) methods with small sample sizes (Daniel 2016, Depaoli 
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& van de Schoot, 2015, Depaoli and Clifton Dunson, 2000, McNeish & Stapleton, 2016). 

Bayesian statistics is used mainly when complex models cannot be estimated using 

conventional statistics (Depaoli and Schoot 2016), and many complex models require Bayesian 

methods to improve convergence problems (Depaoli & Clifton, 2015). It is not necessarily 

based on large samples and can produce practical results with moderate to small samples, 

especially when strong prior information is available. Also with the prior distribution, one can 

utilize the un(certainty) about a parameter and update this knowledge (Depaoli and Schoot 

2016).  

Many studies have noted the use of Bayesian methods over frequentist methods to better 

accommodate small sample sizes due to the promise of not using sample size adjustments 

(Doron & Gaudreau, 2014, Kliem, Kröger, & Kosfelder, 2010, Stenling, Ivarsson, Johnson, & 

Lindwall, 2015). Consistency and asymptotic normality are necessary properties for inference 

based on the Maximum Likelihood (ML) estimation, a common frequentist approach. These 

properties require large sample sizes, and thus, ML estimates in smaller sample sizes can be 

quite poor (Lee & Song, 2004; McNeish & Stapleton, 2014).  

In this work, we develop a Bayesian model for imputing missing values with small sample 

sizes. The model is based on data augmentation, a common estimation technique in missing 

value problems (Tanner and Wong 1987). It has been widely used as an alternative to the EM 

algorithm (Dempster et al 1977) and maximum likelihood estimation. The most commonly 

used approach for fitting hierarchical models to data is based on the Bayesian paradigm (Lele 

et al, 2007, Link et al 2002, Clark 2005, Clark and Gelfand 2006). Computing the Bayesian 

posterior distribution for models became feasible with the advent of the Markov chain Monte 
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Carlo (MCMC) algorithms (Lele et al 2007). We develop an MCMC algorithm to estimate the 

posterior distribution of the parameters in our models.  

3.2 Methods 

We develop a Bayesian model and MCMC algorithm for estimating the posterior distribution 

of the parameters in our model via a Gibbs sampler. The idea in Gibbs sampling is to generate 

posterior samples by sweeping through each variable (or block of variables) to sample from 

its conditional distribution with the remaining variables fixed to their current values. The 

algorithm below shows the general framework for the Gibbs sampler.  

Gibbs sampler algorithm  

Intialize 𝑥(0) ~ 𝑞(𝑥) 

for iteration 𝑖 = 1,2, … ,𝑀 DO 

𝑥1
(𝑖)

 ~ 𝑝(𝑋1 = 𝑥1|𝑋2 = 𝑥2
(𝑖−1)

, 𝑋3 = 𝑥3
(𝑖−1)

, … , 𝑋𝑁 = 𝑥𝑁
(𝑖−1)

) 

𝑥2
(𝑖)

 ~ 𝑝(𝑋2 = 𝑥2|𝑋1 = 𝑥1
(𝑖), 𝑋3 = 𝑥3

(𝑖−1)
, … , 𝑋𝑁 = 𝑥𝑁

(𝑖−1)
) 

   … 

𝑥𝑁
(𝑖)

 ~ 𝑝(𝑋𝑁 = 𝑥𝑁|𝑋1 = 𝑥1
(𝑖), 𝑋2 = 𝑥2

(𝑖), … , 𝑋𝑁−1 = 𝑥𝑁−1
(𝑖) ) 

End iteration 

This process continues until convergence is attained, and the sampling is not done directly 

from the full posterior distribution but rather sweeping through all the posterior conditionals, 

one variable block at a time. MCMC algorithms are typically run for a large number of 

iterations assuming convergence to the target posterior is achieved. The theory of MCMC 

guarantees that the stationary distribution of the samples generated is the target joint posterior 

that we are interested in. Due to the impact of initial values, the samples simulated based on 

this algorithm at early iterations may not necessarily be representative of the actual posterior 
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distribution. It is common to discard these early samples, and the discarded iterations are often 

referred to as the “burn-in” period. However, there are several limitations to Gibbs sampling. 

First, even if we have the full posterior joint density function, it may not be possible to derive 

the conditionals for each variable in the model. Secondly, if we have the posterior conditionals 

for each variable, it might be that they are not a known form, and therefore, there is not a 

direct method to generate samples. The Metropolis-Hastings (MH) algorithm simulates 

samples from a probability distribution by making use of the full joint density function and a 

proposal distribution for each variable of interest. Unlike Gibbs samples, the MH algorithm 

doesn’t require the ability of generating samples from all the full conditional distributions, but 

a proposal or candidate distribution is chosen given the current value of the random variables. 

The algorithms below shows the general framework for the MH algorithm. 

Metropolis-Hastings algorithm 

Initialize 𝑥(0) ~ 𝑞(𝑥) 

for iteration 𝑖 = 1,2, … ,𝑀 DO 

   Propose: 𝑥𝑐𝑎𝑛𝑑~𝑞 (𝑥𝑖| 𝑥(𝑖−1)) 

   Acceptance Probability: 

 𝛼 (𝑥𝑐𝑎𝑛𝑑| 𝑥(𝑖−1)) = min {1,
𝑞(𝑥(𝑖−1)|𝑥𝑐𝑎𝑛𝑑) 𝜋(𝑥𝑐𝑎𝑛𝑑)

𝑞(𝑥𝑐𝑎𝑛𝑑|𝑥(𝑖−1)) 𝜋(𝑥(𝑖−1))
} 

   𝑢 ~ Uniform(𝑢;  0,1) 

   if 𝑢 <  𝛼 then 

 Accept the proposal: 𝑥(𝑖) = 𝑥𝑐𝑎𝑛𝑑 

   else 

   Reject the proposal: 𝑥(𝑖) = 𝑥(𝑖−1) 

   end if 

  End Iteration 
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The Bayesian paradigm historically has been proven to stabilize parameter estimation by 

borrowing information available from similar features (/ proteins/metabolites). Let 

𝑌𝑖 ~ 𝑁(𝑋𝑖𝛽, Σ), where 𝑌𝑖𝑗 is the intensity of metabolite 𝑗 (1 ≤ 𝑗 ≤ 𝑀) in the sample 

𝑖 (1 ≤ 𝑖 ≤ 𝑁) and 𝑋𝑖 is the design matrix for the sample. The vector of the mean parameters 

𝛽 will contain the mean value of each metabolite, as well as group/treatment differences as 

determined by the design matrix. As M is much larger than N, we adopt a lower-dimensional 

structure on the covariance matrix Σ with autoregressive correlation structure. The Σ is a 

function of 𝑝 + 1 parameters having a structured form Σ =  Σ (𝜎1
2, … , 𝜎𝑀

2 , 𝜌). We develop a 

robust approach which allows for both MVs due to MNAR (missing below the LOD 

threshold 𝜉) and MAR (missing for a different reason). The MNAR framework requires 

specification of the missing data mechanism (MDM). Letting 𝑅𝑖𝑗 be equal to 0 if 𝑌𝑖𝑗 is missing 

and 1 if 𝑌𝑖𝑗 is observed, our MDM has the form  

 Pr(𝑅𝑖𝑗 = 0 |𝑌𝑖𝑗) = {
𝛼, 𝑌𝑖𝑗 > 𝜉

1, 𝑌𝑖𝑗 ≤ 𝜉
  . 

If the value of 𝑌𝑖𝑗 is less than the threshold, it will always be seen to as missing (due to MNAR), 

and if 𝑌𝑖𝑗 > 𝜉, then 𝑌𝑖𝑗 may be missing with probability 𝛼 (due to MAR). We use non-

informative priors. A conjugate normal prior with large variance for the regression 

coefficients 𝛽 is used, along with a hierarchical structure for the metabolite-specific variances 

to allow sharing across metabolites and stabilization of estimates. The priors for the 

parameters are as follows:  

 𝛼 ~ Uniform (0,1) 

 𝛽 ~ MVN(0, 1002) 
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 log(𝜎𝑗
2)~ Normal (𝜆1, 𝜆2) 

 𝜆1~ Normal (a, b) 

 𝜆2~ Inv Gamma (c, d) 

 𝜌 ~ Uniform (0,1) 

Combining the data likelihood, MDM and prior distributions, the full joint density is 

proportional to  

 𝑃(𝑅𝑖𝑗 , 𝑌𝑖𝑗 , 𝛽, 𝛼, 𝜎𝑗
2)  ∝ ∏ {(1 − 𝛼)𝑅𝑖𝑗 𝐼(𝑌𝑖𝑗>𝜉) ∗ 𝛼(1−𝑅𝑖𝑗)𝐼(𝑌𝑖𝑗>𝜉)}𝑖𝑗  ×  

 ∏ {|Σ|−
1

2 ∗ 𝑒𝑥𝑝 {−
1

2
(𝑌𝑖 − 𝑋𝑖𝛽)′|Σ|−1(𝑌𝑖 − 𝑋𝑖𝛽)}}𝑖  × 

 𝑒𝑥𝑝 {−
1

2
𝛽′Ω−1

𝛽} ×  𝐼(0 <  𝛼 < 1)  × ∏ {(𝜎2)−𝜆1−1 ∗ exp {
−𝜆2

𝜎𝑗
2 }}𝑗  ×

   𝐼(0 <  𝜌 < 1)  ×  
1

√2𝑏2
exp {−

1

2𝑏2
(𝜆1 − 𝑎)} × 

𝑑𝑐

Γ(𝑐)
𝜆2

𝑐−1 exp {−
𝑑

𝜆2
}  

Based on MCMC Gibbs sampling from the above joint density, we can obtain full conditional 

distributions for each parameter. 

The conditional densities are:  

 𝑃(𝛼 |… ) ~ Beta(Σ𝑖𝑗[(1 − 𝑅𝑖𝑗)𝐼(𝑌𝑖𝑗 > 𝜉)] + 1, Σ𝑖𝑗[𝑅𝑖𝑗𝐼(𝑌𝑖𝑗 > 𝜉)] + 1) 

 𝑃(𝛽 |… ) ~ MVN ((Σ𝑖𝑋𝑖
′Σ−1𝑋𝑖 + Ω−1)−1(Σ𝑖𝑋𝑖

′Σ−1𝑌𝑖), (Σ𝑖𝑋𝑖
′Σ−1𝑋𝑖 + Ω−1)−1) 

 𝑃(𝜆1| … ) ~ Normal (
𝜆2𝑎+ 𝑏 ∑ log𝜎𝑗

2

𝜆2+𝑏𝑝
,

𝑏𝜆2

𝜆2+𝑏𝑝
) 

 𝑃(𝜆2| … ) ~ Inv Gamma (𝑐 +
𝑀

2
 ,   

𝑑+∑(log𝜎𝑗
2−𝜆1)2

2
) 
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The conditional densities for 𝜎𝑗
2 and 𝜌 are not in the closed form but are proportional to  

 𝑃(𝜎𝑗
2 | … )   ∝  ∏(𝜎𝑗

2 | 𝜆1, 𝜆2) × ∏ 𝑓(𝑌𝑖|
𝑁
𝑖=1 𝑋𝑖𝛽, Σ(𝜎𝑗

2 , … )) 

 𝑃(𝜌| … )   ∝  ∏ 𝑓(𝑌𝑖|
𝑁
𝑖=1 𝑋𝑖𝛽, Σ(𝜌,… )  × I(0 <  𝜌 < 1) 

These parameters are sampled using MH steps with the proposal distributions 

 𝜎𝑗
2 ~ log Normal (log(𝜎𝑗

2)(𝑖−1), ℎ)  

 𝜌 ~TruncNormal (𝜌(𝑖−1), 𝑘) I (0 <  ρ < 1) 

where (𝜎𝑗
2)(𝑖−1) and 𝜌(𝑖−1) represent the values of the parameters at the previous 

iteration(𝑖 − 1).  The values of ℎ and 𝑘 are determined by trial and error so that the proposed 

value is accepted 25%-45% of the time. 

The MCMC sampler depends on data augmentation designed for our MDM to handle the 

MVs in our data. In each iteration of the Markov chain, the missing 𝑌𝑖𝑗s are imputed based on 

values of all current model parameters. The proposed MDM assures simple and efficient 

conjugate sampling for this step. For each missing 𝑌𝑖𝑗 , an indicator variable 𝑍𝑖𝑗 is introduced 

which determines whether 𝑌𝑖𝑗 will be below the LOD threshold 𝜉  (𝑍𝑖𝑗 = 1) or above the 

threshold (𝑍𝑖𝑗 = 0). Conditional on the parameter values and the values of 𝑌𝑖(𝑗′) for the other 

metabolites 𝑗′, 𝑍𝑖𝑗 is sampled according to  

Pr(𝑍𝑖𝑗 = 1)

=  

∫ (2𝜋�̃�𝑗
2)

−1/2
𝑒𝑥𝑝 {

−1
2�̃�𝑗

2 (𝑦 − 𝜇𝑖𝑗)
2
}

𝜉

−∞
 𝑑𝑦

∫ (2𝜋�̃�𝑗
2)

−1/2
𝑒𝑥𝑝 {

−1
2�̃�𝑗

2 (𝑦 − 𝜇𝑖𝑗)
2
}

𝜉

−∞
 𝑑𝑦 + 𝛼 ∫ (2𝜋�̃�𝑗

2)
−1/2

𝑒𝑥𝑝 {
−1
2�̃�𝑗

2 (𝑦 − 𝜇𝑖𝑗)
2
}

∞

𝜉
 𝑑𝑦

 , 
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where 𝜇𝑖𝑗 and �̃�𝑗
2 represent the usual formulas for the conditional mean and variance for 𝑌𝑖𝑗 

given the 𝑌𝑖(𝑗′)s in the multivariate normal distribution.  

 𝜇𝑖𝑗 =  𝜇𝑖𝑗 + Σ12Σ22
−1(𝑌𝑖(𝑗′) − 𝜇𝑖(𝑗′))  and �̃�𝑗

2 = Σ11 − Σ12Σ22
−1Σ21 

As the integrals required are all probabilities under the normal distribution, this can be 

efficiently evaluated. Given 𝑍𝑖𝑗 , the value of the missing 𝑌𝑖𝑗 is imputed by 

 𝑍 = 1: 𝑌𝑖𝑗 ~ Truncated Normal (𝜇𝑖𝑗, �̃�𝑗
2)𝐼(−∞, 𝜉) 

 𝑍 = 0: 𝑌𝑖𝑗 ~ Truncated Normal (𝜇𝑖𝑗, �̃�𝑗
2)𝐼(𝜉,∞) 

Our MCMC scheme iterates between the above steps for a 2300 iterations after a burn-in of 

200 iterations.  Inference is based on either the posterior sample of model parameters.  

Alternatively, one or more completed data sets can be formed using the sampled MVs which 

can be analyzed using existing (frequentist) methodology. 

3.3 Simulation Studies 

We evaluated the performance of the methods by first evaluating the estimation error. We 

compared the bias and the MSE for the 𝛽 regression coefficients based on the Bayesian 

method and other standard approaches such as zero, mean and minimum imputation. For the 

standard approaches a general linear regression was fit to estimate the 𝛽. We further explored 

the null hypothesis significance testing, where the primary goal is to determine whether a 

particular “null” value of a parameter can be rejected.  We compare the Bayesian approach to 

a general t-test under the alternative imputation choices. The above algorithm produces full 

Bayesian posterior samples, and we need to perform inference on the intercept and treatment 

effects. Typically, the main interest is differential expressed metabolites between the groups. 



  

71 
 

The design matrix is chosen such that this is represented as the decision between 𝛽𝑗 =

0 or 𝛽𝑗 ≠ 0  for some j.  We then form 100(1 − 𝛼)% equal tail credible intervals and check 

if it contains zero or not.  We can obtain a “Bayesian p-value” by taking the largest 𝛼 such that 

the 100(1 − 𝛼)% CI contains zero, that is, the narrowest CI that contains zero. We then 

evaluate the power, type1 error and the area under the ROC curve (AUC) using the p-values 

from each test to analyze differentially expressed metabolites.  

The simulations were conducted with 100 replicated datasets and are similar in spirit to those 

used in Tutz and Ramzan (2015) . For each replication we generated data with sample sizes 

𝑛 =10 belonging to 2 groups of 5 samples and number of metabolites 𝑚 = 225. The first 100 

metabolites were differentially expressed whereas the remaining 125 were not differentially 

significant. The correlation matrix of metabolites within samples was considered to be 

autoregressive (AR) type correlation, where an AR correlation matrix of order one is defined 

by pairwise correlations 𝜌|𝑖−𝑗|, for metabolites 𝑖, 𝑗 = 1,… ,𝑀.  

The means of group 1 metabolites generated from a Uniform(−5,5) distribution. The 

differentially expressed metabolites (100 out of 225) are one unit larger in group 2. In the AR 

type correlation, the correlation 𝜌 = 0.8 and the variance was 1. For the degree of missing, 

three levels were studied: 9% missing, 15% missing and 30% missing. Missing data were 

created based on the two kinds of missingness, MNAR and MAR. Technically, the latter are 

generated by MCAR, though a MAR mechanism can be exploited for imputation since the 

metabolite values are highly correlated. Within each level of missing, a one-third and two-third 

combination was used to create both MNAR and MAR. For example in 9% missing, we 

considered 6% as MNAR and 3% as MAR. Data below the given MNAR percentile was 

considered as missing and the MAR percent was randomly generated in the non-missing data. 
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The datasets with missing values were passed through a cleaning process where metabolites 

with more than 50% missing observations were eliminated individually.  

3.4 Results 

In this section, we present the results of the simulation studies comparing the performance of 

the Bayesian method with the three standard approaches. Table 22 shows the average bias and 

MSE based on 100 replications. We consider the accuracy for the intercept, treatment effect 

across the differentially expressed metabolites (real value =1) and the treatment effect across 

the non-differentially expressed metabolites (real value =0).  As can be seen, the results show 

that the MSE for the Bayesian method is lower compared to the other methods for the 

intercepts and the treatment effects. Table 23 shows the average power, type1 error and the 

AUC based on the Bayesian method and the standard approaches. The power and AUC for 

the Bayesian method is higher compared to the other methods whereas the Type 1 error is not 

lower than the compared methods. Figures 8 and 9 plots the distribution of the Bias and MSE 

values for Bayes, zero, mean and minimum by percent missing for the intercepts, significant 

treatment effect and non-significant treatment effect. Figure 10 plots the results from the 

hypothesis testing as the distribution of power, type 1 error and AUC by percent missing.  
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MNAR 
(MAR) 

β Bias MSE Bias MSE Bias MSE Bias MSE 

  Bayes Zero Min Mean 

6%  
(3%) 

Int 0.008 
(0.095) 

0.203 
(0.039) 

0.115 
(0.093) 

0.438 
(0.065) 

-0.137 
(0.099) 

0.404 
(0.068) 

0.145 
(0.097) 

0.484 
(0.076)  

S.TE  -0.026 
(0.192) 

0.406 
(0.123) 

-0.160 
(0.170) 

0.610 
(0.129) 

-0.063  
(0.195) 

0.838 
(0.191) 

-0.156 
(0.171) 

0.622 
(0.133)  

NS.TE  

 
0.017 

(0.137) 
0.386 

(0.098) 
0.014 

(0.126) 
0.480 

(0.094) 
0.005 

(0.145) 
0.714 

(0.144) 
0.038 

(0.129) 
0.506 

(0.097) 

10%  
(5%) 

Int 0.014 
(0.096) 

0.206 
(0.038) 

0.074 
(0.098) 

0.442 
(0.065) 

-0.240 
(0.103) 

0.554 
(0.088) 

0.141 
(0.102) 

0.503 
(0.082)  

S.TE  -0.033 
(0.192) 

0.409 
(0.122) 

-0.176 
(0.175) 

0.644 
(0.162) 

-0.094 
(0.199) 

1.06 
(0.241)  

-0.168 
(0.178) 

0.636 
(0.161)  

NS.TE  

 
0.015 

(0.134) 
0.388 

(0.102) 
0.022 

(0.130) 
0.494 

(0.097) 
0.032 

(0.162) 
0.907 

(0.180) 
0.051 

(0.130) 
0.505 

(0.097) 

20%  
(10%) 

Int 0.019 
(0.094) 

0.214 
(0.041) 

-0.083 
(0.093) 

0.470(
0.064) 

-0.460 
(0.101) 

0.867 
(0.144) 

0.115 
(0.099) 

0.501 
(0.079)  

S.TE  -0.036 
(0.188) 

0.422 
(0.131) 

-0.193 
(0.169) 

0.688 
(0.161) 

-0.135 
(0.193) 

1.282 
(0.277) 

-0.173 
(0.179) 

0.586 
(0.138)  

NS.TE  

 
0.016 

(0.137) 
0.403 

(0.099) 
0.010 

(0.115) 
0.555  

(0.100) 
0.006 

(0.142) 
1.099 

(0.193) 
0.068 
(0.121) 

0.505 
(0.088) 

 

Table 22: Average Bias and MSE of 100 datasets, 100 samples by 225 metabolites for Bayes, 

zero, minimum and mean methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.  Simulation standard deviation in parentheses. 
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MNAR 
(MAR) 

 Bayes 
CI 

Zero Min Mean 

6%( 3%) Power 0.335 
(0.108) 

0.205 
(0.065) 

0.210 
(0.065) 

0.209 
(0.062)  

Type1 Error 0.048 
(0.034) 

0.038 
(0.019) 

0.034 
(0.016) 

0.038 
(0.019)  

AUC 0.770  
(0.050) 

0.692 
(0.037) 

0.709 
(0.032) 

0.698 
(0.036) 

10%( 5%) Power 0.329 
(0.110) 

0.192 
(0.065) 

0.177 
(0.065) 

0.198 
(0.062)  

Type1 Error 0.050 
(0.034) 

0.039 
(0.019) 

0.032 
(0.016) 

0.040 
(0.019)  

AUC 0.766  
(0.050) 

0.678 
(0.037) 

0.674 
(0.032) 

0.687 
(0.036) 

20%( 10%) Power 0.314 
(0.108) 

0.155 
(0.065) 

0.126 
(0.065) 

0.173 
(0.062)  

Type1 Error 0.046 
(0.034) 

0.036 
(0.019) 

0.022 
(0.016) 

0.040 
(0.019)  

AUC 0.759  
(0.050) 

0.649 
(0.037) 

0.625 
(0.032) 

0.668 
(0.036) 

 

Table 23: Average power, type 1 error and AUC of 100 datasets, 100 samples by 225 

metabolites for Bayes, zero, minimum and mean methods.  

Total missing was considered at 9%, 15% and 30%, and within each missing, MNAR was 

greater than MAR.  
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Figure 8:  Boxplots of Bias for Bayes, Zero, Minimum and Means for 100 datasets, 10 samples 

by 225 metabolites.  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. 
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Figure 9: Boxplots of MSE for Bayes, Zero, Minimum and Means for 100 datasets, 10 samples 

by 225 metabolites.  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. 
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Figure 10: Boxplots of Power, Type1 Error and AUC for Bayes, Zero, Minimum and Means 

for 100 datasets, 10 samples by 225 metabolites.  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. 
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3.5 Discussion 

In this work, we have proposed a Bayesian methodology to impute MVs, especially when the 

sample size is small. When metabolites occur at low abundance, below the detection limit of 

the instrumentation, we can consider it as missing not at random. In contrast, missing values 

resulting from technical errors are considered missing at random. To this end, we introduce a 

Bayesian model that incorporates the data augmentation that models imputing MVs handling 

the truncated data. Since MNAR is due to the detection limit, we consider the detection limit 

as a truncation point and assume that the metabolite follows a truncated normal distribution. 

The simulation results show that the proposed method performs better than standard 

approaches when there is missing data due to a threshold LOD.  

In our simulations we evaluated only one size dataset which had small samples (10 samples by 

225 metabolites). The LOD was calculated based on the missing percentage. For instance in 

9% missing (where 6% was considered as MNAR) the 6% quantile for the complete data was 

considered as the LOD where we considered everything below that value as missing.  The 

results shown in the tables are based on when the MNAR percentage is greater than the MAR 

percentage (e.g. for 9% total missing, 6% is MNAR and 3% is MAR). In the cleaning process 

(which removes metabolites with >50% MVs in each group) we are removing more 

metabolites whose values are concentrated near the LOD. For example in our case, after 

screening we reduced the metabolites to an average of about 207 metabolites for 15% missing 

and 186 metabolites for 30% missing out of the original 225. We included analysis looking at 

estimation efficiency (bias and MSE) and the impact on hypothesis testing whether metabolites 

have a significant treat effect or not.   
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An important limitation to our methodology is the reliance on the normality assumption for 

modeling the metabolite abundance. In our simulation study we investigated data from a 

normal distribution, whereas in many cases metabolite data may be non-normally distributed. 

In these cases we suggest to first transform the data to normality, then impute the values and 

lastly transform back. Hypothesis testing and inference may also be performed on 

transformation scale.  

3.6 Conclusions 

In conclusion, the simulation results reveal that compared with standard approaches such as 

zero, mean and min imputation, the Bayesian method is a coherent approach for imputing 

high dimensional data where there is missingness partially due to a truncation (detection) 

threshold. Results based on simulated data show that the Bayesian method generally has lower 

MSE values compared to the other three simpler imputation algorithms (zero, mean, and 

minimum value imputation) when there is both missing at random and missing due to a 

threshold value.  Assessment based on hypothesis testing also demonstrates that the Bayesian 

method generally outperforms the other three methods.  However, the approach has a 

computation expense due to the extensive iterations usage in MCMC algorithms. Even though 

this study is based on metabolomic datasets, our findings are more generally applicable to 

other types of high-dimensional data that contains missing values associated with an LOD, for 

instance proteomics data and  delta-CT values from qRT-PCR array cards (Warner, 

Mukhopadhyay et al. 2014). 
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CHAPTER 4 

BIOLOGICAL IMPACT OF IMPUTATION METHODS ON 

DOWNSTREAM ANALYSES 

4.1 Background 

High-throughput technologies, such microarrays or mass spectrometry (MS) suffer from 

missing values (MV) due to various experimental reasons. The issues posed by MVs are well-

known in statistical data analysis literature (Little and Rubin, 2002). Standard downstream 

statistical methods have been developed to analyze complete data sets, where the rows 

represent the cases and the columns represent the variables measured. Although in many 

applications, these data matrices are not complete where variables for some cases cannot be 

measured technical problems, or the measurements are not reliable or obtainable for certain 

samples. Typically in high-throughput technology the missing values occur in a large number, 

e.g in metabolomics studies MVs are reported to comprise around 10–40% of data (Armitage 

et al, 2015) and thus it is not practical to simply remove samples with MVs as this can lead to 

selection bias.  

Downstream analyses via multivariate methods require a complete dataset. MVs are handled 

differently and thus affects the interpretation and statistical inference. The most common 

approach used in handling MVs is case deletion, wherein this method only completed cases 

with no MVs are included in the analysis. This method leads to a smaller sample size which 

results in low power (White & Carlin, 2010; Harel et al., 2012). The other widely used approach 

is via single imputation methods where MVs are filled in with plausible values. It is a straight 
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forward method but also a dangerous way of dealing with missing values. Statistical analysis 

performed on datasets imputed by single imputation method may be biased as the approach 

does not consider the uncertainty of the imputed values. The common single imputation 

methods include mean, zero, half minimum and median imputation where the MVs are 

replaced by the mean, zeros, half of the minimum and median of the variable respectively. The 

magnitude of the covariances and correlation also decreases by limiting the variability, and this 

method often causes biased estimates, irrespective of the underlying missing data mechanism 

(Eekhout et al., 2012; Enders, 2010). Other single imputation methods that have been 

developed recently include the k-nearest neighbor (kNN), random forest (RF), Bayesian 

principal component analysis (BPCA), probabilistic principal component analysis (PPCA), and 

singular value decomposition (SVD) imputation (Schafer and Graham, 2002). 

Within the microarray arena, there is noticeable presence of MV imputation methods and 

downstream analysis. In a recent comparative study by Brock et al (2008), eight MV imputation 

methods were investigated on different datasets and concluded that no single best MV 

imputation method exists but BPCA, LLS and LSA performed among the best. There is 

limited noticeable literature in the comparison of MV imputation methods in metabolomics. 

Gromski et al (2014), analyzed different MV imputation methods and their influence on 

multivariate analysis. They looked at five MV imputation methods: zero, mean, median, KNN, 

and Random Forest (RF) imputation and their influence on unsupervised and supervised 

learning and the final impact on the final output in terms of biological interpretation. Their 

results showed that the imputation methods have a considerable effect on the classification 

accuracy. Based on the data, they recommend that RF is better than the other methods as the 

classification rates for both supervised methods outperforms the other imputation methods. 

Another study by Hrydziuszko et al. (2011) summarized that the choice of imputation method 
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can significantly affect the results and interpretation of analyses of metabolomics data. They 

compared eight common MV imputation methods (substitution with a small predefined value, 

half minimum, mean, median, KNN, BPCA, multivariate imputation, REP (MV is substituted 

with average intensity of nearest peaks from the raw measurements of technical replicates)) 

and their impact on univariate and multivariate analysis. They concluded that the treatment of 

missing data is a very important step in data processing and suggest that KNN method imputes 

the most reliable values and is preferred method over the other methods. Armitage et al. (2015) 

tested four MV imputation methods (median, KNN, half minimum and zero) on different 

statistical tests and concluded that KNN was the best approximation for the real missing data.  

There is noticeable absence in the literature of a comprehensive study of how the MV 

imputation methods affect the different downstream analyses in metabolomics such as 

biomarker detection, classification and cluster analysis. We perform a comprehensive and 

systematic evaluation to examine the biological impact of MV imputation in the three areas of 

downstream analyses: biomarker detection, classification and cluster analysis. To our 

knowledge, this is the first comprehensive evaluation study to focus on all three major 

downstream analyses.  

4.2 Methods 

To perform a comprehensive comparison and evaluation, we included six MV imputation 

methods and three major downstream analyses were considered; differential abundance, 

classification and clustering. 

MV imputation methods 

We included six MV imputation methods for evaluation:  zero, minimum, mean, KNN-CR, 

KNN-TN, and KNN-EU. 
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Downstream analyses methods 

We consider the three major types of downstream analyses to evaluate the biological impacts 

of MV imputation methods; differential abundance (DA) metabolite detection, classification 

and metabolite clustering. The specific methods evaluated are described below. 

DA metabolite detection 

We included the moderated t-test (limma), moderated t-test with fold-change (TREAT), and 

the standard t-test analysis. Smyth (2004) proposed an empirical Bayes (eBayes) approach 

which is a moderated version of the t-test that averages between the per-feature sample 

variance and a global (pooled) estimate of the variance. The TREAT method (McCartthy et al 

(2009)) is an extension to the eBayes method which tests whether differences in feature 

expression are above a given threshold.  

Classification analysis 

We included support vector machines (SVM), partial least squares discriminant analysis (PLS-

DA) and k nearest neighbors (KNN).  

Metabolite clustering analysis 

We included K-means, hierarchical clustering and self-organizing maps (SOM) (Kohonen, 

2001). Since the number of clusters K usually cannot be determined for a given dataset, we ran 

metabolite clustering using different choices of K, such as K = 10 and 15. 

Assessment measures 

We evaluated the performance of the imputation methods by using the root mean squared 

error (RMSE) as the metric on log transformed data. It measures the difference between the 
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estimated values and the original true values, when the original true values are known. The 

following simulation procedure from a complete dataset (CD) with no MVs is performed. 

MVs are generated by removing a proportion 𝑝 of values from the complete data to generate 

data with MVs (MD). The MVs are then imputed as �̂�𝑖𝑚 (where 𝑦𝑖𝑚 is the intensity of 

metabolite 𝑚 (1 ≤ 𝑚 ≤ 𝑀) in sample 𝑖 (1 ≤ 𝑖 ≤ 𝑁)) using the given imputation method 

(ID). Finally, the root mean squared error (RMSE) is used to assess the performance by 

comparing the values of the imputed entries with the true values:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛(ℳ) 
∑ (�̂�𝑖𝑚 − 𝑦𝑖𝑚)2

𝑦𝑖𝑚 ∈ ℳ
, 

where ℳ is the set of missing values and 𝑛(ℳ) is the cardinality or number of elements in ℳ. 

Metabolite list concordance index (MLCI) for DA metabolite detection 

Suppose CD, MD and ID are obtained using the imputation methods and by applying a 

selected DA metabolite detection method (eBayes, TREAT, and t-test ), we obtain a 

metabolite list from CD and another metabolite list from ID. The MLCI is defined as:  

𝑀𝐿𝐶𝐼 (𝑀𝐶𝐷 , 𝑀𝐼𝐷) =  
𝑛(𝑀𝐶𝐷 ⋂𝑀𝐼𝐷)

𝑛(𝑀𝐶𝐷)
+ 

𝑛(𝑀𝐶𝐷
𝐶 ⋂𝑀𝐼𝐷

𝐶 )

𝑛(𝑀𝐶𝐷
𝐶 )

− 1 , 

where 𝑀𝐶𝐷 is the list of statistically significant metabolites in the complete data, 𝑀𝐼𝐷 is the list 

of statistically significant metabolites in the imputed data, and 𝑀𝐶𝐷
𝐶  and 𝑀𝐼𝐷

𝐶  represent their 

complements, respectively.  The metabolite list taken from the complete dataset is considered 

as the gold standard and a high value in MLCI indicates that the metabolite list from the 

imputed data is similar to that from the complete data. MLCI is correspondent to the Youden 

Index (Youden, 1950), which is defined as the sensitivity + specificity − 1. 
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 Youden Index (YI)  

We employ YI as a measure to evaluate the impact of MVs in classification. YI is defined as 

sensitivity + specificity − 1. We can directly calculate the YI of the prediction result from each 

imputed data because we know the true class labels of the samples in this supervised learning. 

We expect a good MV imputation method to generate a high YI. 

Adjusted Rand Index (ARI) 

The ARI (Hubert, 1985) is commonly used to evaluate the similarity between any two 

clustering results. Similar to MLCI we use the clustering result from the complete data as the 

gold standard and compare it with the imputed data clustering result. A higher ARI value 

indicates higher similarity between any two clustering results and that the MV imputation 

procedure leads to a smaller impact on the metabolite clustering analysis.  

 

Figure 11: Schematic illustration of the research design 
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4.3 Real Data Studies 

Atherothrombotic Data 

We used the human atherothrombotic myocardial infarction (MI) metabolomics data. The 

data was identified between two groups, those with acute MI and those with stable coronary 

artery disease (CAD). Acute MI was further stratified into thrombotic (Type1) and non-

thrombotic (Type2) MI. The data was collected across four time points and for the context of 

this research we used the baseline data only. The three groups, sCAD, Type1 and Type2 had 

15, 11, and 12 patients with 1032 metabolites. The sCAD had 685 metabolites with complete 

values, 39 metabolites with complete missing, and 308 metabolites had 10.2% missing, the 

Type1 group had 689 metabolites with complete values, 43 metabolites with complete missing 

and 300 metabolites had 9.8% missing whereas the Type2 group had 610 metabolites with 

complete values, 66 metabolites with complete missing and 356 metabolites had 12.3% 

missing. The LOD for this dataset is considered as the minimum value of the dataset as 

commonly used in untargeted metabolomics. Plasma samples collected from the patients were 

used and 1032 metabolites were detected and quantified by GC-MS and ultra-performance 

(UP) LC-MS in both positive and negative ionization modes. Details of the experiment are 

described in DeFilippis et al (DeFilippis, Chernyavskiy et al. 2016). 

Due to small sample sizes in metabolomics datasets, we used a simulation approach originally 

designed to resemble the multivariate distribution of gene expression in the original microarray 

data (Parrish, Spencer Iii et al. 2009). Since our Atherothrombotic data had missing values we 

first imputed missing values based on the KNN-CR method and then used the simulation 

method to simulate 100 datasets. The different groups were considered as independent 

datasets and the imputation was done on them separately. We used the similar mechanism for 
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missingness and screening as used in the simulation studies, with sample sizes of 25 and 50 

for the human atherothrombotic dataset. For each simulation, we selected all the metabolites, 

and artificially generated a total of 60 differentially expressed metabolites with varying effect 

sizes between the two study groups (10 metabolites each with effect sizes 0.5, 1.0, 1.5, 2.0, 3.0, 

and 4.0). Sample sizes of 25 and 50 per group were evaluated, and a total of 100 simulations 

were conducted for each scenario. We used the generated simulated datasets for the three 

downstream analyses. For the DA, the p-Values from each method were adjusted based on 

the Benjamini–Hochberg (Benjamini Y et al (1995)) method to maintain an overall false-

discovery rate of 0.05. Overall MLCI was estimated based on the mean of the 100 simulations. 

For the clustering analysis we clustered the metabolites based on 10 and 15 clusters.  

 

4.4 Results 

We conducted a simulation study based on the real datasets to further validate our results. 

Tables 24 (a-c) show the results of the MLCI based on the three DA metabolite detection test 

on the sCAD group of the human atherothrombotic data for the three different missing 

mechanism and two different sample sizes. Based on the table, we can see that KNN-TN 

performs little better than the rest of the imputation methods and the results seem consistent 

with the two sample sizes (25 and 50) and three missingness (9%, 15% and 30%). Table 25 (a-

c) show the results of the ARI based on the three clustering methods on the sCAD group of 

the human atherothrombotic data for the three different missing mechanism and two different 

sample sizes. Table 26 (a-c) show the results of the YI based on the three classification 

methods on the sCAD group of the human atherothrombotic data for the three different 

missing mechanism and two different sample sizes. Figures 11, 12 and 13 plot the distribution 



  

88 
 

of the MLCI, ARI and YI for KNN-TN, KNN-CR, KNN-EU, Zero, Mean and Min by 

percent missing for the different methods used in each analyses for sample sizes 25. 
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Table 24: Average MLCI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU 

SAMPLE 
SIZE 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 eBayes 
0.346 

(0.081) 
0.844 

(0.065) 
0.693 

(0.087) 
0.887 

(0.051) 
0.900 

(0.048) 
0.863 

(0.060) 

25 t-test 
0.366 

(0.083) 
0.845 

(0.063) 
0.701 

(0.082) 
0.888 

(0.050) 
0.901 

(0.046) 
0.865 

(0.059) 

25 TREAT 
0.433 

(0.113) 
0.731 

(0.098) 
0.683 

(0.097) 
0.817 

(0.085) 
0.832 

(0.088) 
0.756 

(0.093) 

50 eBayes 
0.377 

(0.078) 
0.883 

(0.052) 
0.750 

(0.069) 
0.915 

(0.045) 
0.927 

(0.041) 
0.898 

(0.051) 

50 t-test 
0.377 

(0.078) 
0.883 

(0.053) 
0.750 

(0.071) 
0.915 

(0.046) 
0.927 

(0.041) 
0.898 

(0.051) 

50 TREAT 
0.492 

(0.108) 
0.768 

(0.082) 
0.748 

(0.085) 
0.853 

(0.074) 
0.870 

(0.072) 
0.787 

(0.081) 

 

Table 24a. Average MLCI of 100 simulations using the human atherothrombotic dataset 

sCAD group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 9%. 
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SAMPLE 
SIZE 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 eBayes 
0.249 

(0.067) 
0.811 

(0.071) 
0.612 

(0.080) 
0.854 

(0.060) 
0.866 

(0.058) 
0.833 

(0.066) 

25 t-test 
0.266 

(0.068) 
0.81 

(0.070) 
0.614 

(0.074) 
0.854 

(0.059) 
0.867 

(0.056) 
0.833 

(0.065) 

25 TREAT 
0.363 

(0.103) 
0.665 

(0.102) 
0.585 

(0.105) 
0.772 

(0.087) 
0.793 

(0.080) 
0.697 

(0.102) 

50 eBayes 
0.312 

(0.077) 
0.851 

(0.054) 
0.689 

(0.075) 
0.880 

(0.045) 
0.896 

(0.042) 
0.868 

(0.050) 

50 t-test 
0.312 

(0.076) 
0.851 

(0.052) 
0.687 

(0.074) 
0.880 

(0.044) 
0.895 

(0.043) 
0.869 

(0.049) 

50 TREAT 
0.443 

(0.109) 
0.700 

(0.082) 
0.659 

(0.094) 
0.807 

(0.072) 
0.833 

(0.070) 
0.724 

(0.080) 

 

Table 24b. Average MLCI of 100 simulations using the human atherothrombotic dataset 

sCAD group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 15%. 
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SAMPLE 
SIZE 

Test Zero Mean Min KNN-
TN 

KNN-
CR 

KNN-
EU 

25 eBayes 
0.231 

(0.063) 
0.719 

(0.075) 
0.499 

(0.083) 
0.779 

(0.067) 
0.797 

(0.065) 
0.756 

(0.070) 

25 t-test 
0.229 

(0.061) 
0.717 

(0.075) 
0.509 

(0.087) 
0.779 

(0.069) 
0.795 

(0.067) 
0.754 

(0.075) 

25 TREAT 
0.359 

(0.100) 
0.485 

(0.101) 
0.423 

(0.118) 
0.671 

(0.101) 
0.689 

(0.101) 
0.540 

(0.114) 

50 eBayes 
0.276 

(0.066) 
0.784 

(0.066) 
0.601 

(0.077) 
0.836 

(0.051) 
0.854 

(0.050) 
0.825 

(0.056) 

50 t-test 
0.274 

(0.066) 
0.784 

(0.066) 
0.601 

(0.078) 
0.837 

(0.051) 
0.853 

(0.050) 
0.825 

(0.057) 

50 TREAT 
0.417 

(0.099) 
0.551 

(0.095) 
0.516 

(0.102) 
0.733 

(0.087) 
0.756 

(0.085) 
0.598 

(0.092) 

 

Table 24c. Average MLCI of 100 simulations using the human atherothrombotic dataset 

sCAD group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 30%. 
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Table 25: Average ARI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU 

SAMPLE 
SIZE (K) 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 (10) kMeans 
0.373 

(0.032) 
0.620 

(0.086) 
0.628 

(0.088) 
0.644 

(0.097) 
0.635 

(0.105) 
0.654 

(0.113) 

25 (10) hClust 
0.248 

(0.053) 
0.501 

(0.073) 
0.432 

(0.082) 
0.520 

(0.078) 
0.520 

(0.080) 
0.494 

(0.079) 

25 (10) SOM 
0.453 

(0.012) 
0.776 

(0.029) 
0.805 

(0.019) 
0.815 

(0.029) 
0.846 

(0.031) 
0.792 

(0.029) 

25 (15) kMeans 
0.290 

(0.025) 
0.597 

(0.077) 
0.571 

(0.050) 
0.624 

(0.070) 
0.629 

(0.076) 
0.604 

(0.067) 

25 (15) hClust 
0.224 

(0.039) 
0.475 

(0.064) 
0.399 

(0.053) 
0.495 

(0.058) 
0.511 

(0.066) 
0.475 

(0.062) 

25 (15) SOM 
0.421 

(0.013) 
0.728 

(0.026) 
0.757 

(0.019) 
0.773 

(0.026) 
0.805 

(0.027) 
0.748 

(0.026) 

50 (10) kMeans 
0.442 

(0.028) 
0.670 

(0.082) 
0.666 

(0.083)  
0.684 

(0.096) 
0.688 

(0.106) 
0.687 

(0.096) 

50 (10) hClust 
0.277 

(0.065) 
0.510 

(0.079) 
0.450 

(0.066) 
0.515 

(0.078) 
0.522 

(0.084) 
0.505 

(0.078) 

50 (10) SOM 
0.501 

(0.011) 
0.780 

(0.023) 
0.851 

(0.019) 
0.823 

(0.024) 
0.855 

(0.024) 
0.796 

(0.024) 

50 (15) kMeans 
0.365 

(0.029) 
0.613 

(0.070) 
0.599 

(0.056) 
0.623 

(0.082) 
0.617 

(0.071) 
0.622 

(0.065) 

50 (15) hClust 
0.261 

(0.050) 
0.495 

(0.065) 
0.435 

(0.059) 
0.496 

(0.087) 
0.510 

(0.072) 
  0.484 
(0.060) 

50 (15) SOM 
0.469 

(0.011) 
0.731 

(0.021) 
0.792 

(0.019) 
0.786 

(0.020) 
0.818 

(0.022) 
0.750 

(0.022) 

 

Table 25a. Average ARI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. K is the cluster size, K = 

10 and 15 and the Sample size was 25 and 50 samples. Total missing was considered at 9%. 
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SAMPLE 
SIZE (K) 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 (10) kMeans 
0.329 

(0.022) 
0.611 

(0.078) 
0.621 

(0.075) 
0.629 

(0.102) 
0.688 

(0.106) 
0.618 

(0.087) 

25 (10) hClust 
0.226 

(0.041) 
0.481 

(0.068) 
0.381 

(0.089) 
0.484 

(0.076) 
0.490 

(0.073) 
0.482 

(0.074) 

25 (10) SOM 
0.396 

(0.013) 
0.718 

(0.022) 
0.764 

(0.019) 
0.759 

(0.025) 
0.787 

(0.027) 
0.739 

(0.023) 

25 (15) kMeans 
0.256 

(0.020) 
0.531 

(0.061) 
0.520 

(0.052) 
0.577 

(0.077) 
0.577 

(0.072) 
0.552 

(0.059) 

25 (15) hClust 
0.206 

(0.036) 
0.454 

(0.054) 
0.341 

(0.057) 
0.460 

(0.061) 
0.466 

(0.052) 
0.452 

(0.062) 

25 (15) SOM 
0.373 

(0.012) 
0.666 

(0.022) 
0.702 

(0.016) 
0.698 

(0.023) 
0.722 

(0.026) 
0.687 

(0.022) 

50 (10) kMeans 
0.407 

(0.026) 
0.634 

(0.084) 
0.648 

(0.080) 
0.647 

(0.090) 
0.655 

(0.100) 
0.611 

(0.081) 

50 (10) hClust 
0.253 

(0.063) 
0.490 

(0.071) 
0.397 

(0.076) 
0.500 

(0.087) 
0.506 

(0.079) 
0.495 

(0.079) 

50 (10) SOM 
0.454 

(0.011) 
0.723 

(0.022) 
0.807 

(0.020) 
0.774 

(0.023) 
0.809 

(0.031) 
0.744 

(0.022) 

50 (15) kMeans 
0.360 

(0.028) 
0.531 

(0.056) 
0.534 

(0.058) 
0.577 

(0.069) 
0.591 

(0.082) 
0.533 

(0.065) 

50 (15) hClust 
0.239 

(0.047) 
0.463 

(0.058) 
0.357 

(0.061) 
0.474 

(0.067) 
0.485 

(0.061) 
0.466 

(0.057) 

50 (15) SOM 
0.422 

(0.011) 
0.664 

(0.019) 
0.729 

(0.017) 
0.705 

(0.021) 
0.736 

(0.025) 
0.684 

(0.019) 

 

Table 25b. Average ARI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. K is the cluster size, K = 

10 and 15 and the Sample size was 25 and 50 samples. Total missing was considered at 15%. 
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SAMPLE 
SIZE (K) 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 (10) kMeans 
0.216 

(0.017) 
0.545 

(0.058) 
0.554 

(0.060) 
0.548 

(0.065) 
0.569 

(0.069) 
0.553 

(0.058) 

25 (10) hClust 
0.199 

(0.044) 
0.472 

(0.092) 
0.289 

(0.094) 
0.465 

(0.083) 
0.470 

(0.080) 
0.453 

(0.090) 

25 (10) SOM 
0.352 

(0.014) 
0.652 

(0.020) 
0.699 

(0.020) 
0.679 

(0.023) 
0.701 

(0.036) 
0.686 

(0.020) 

25 (15) kMeans 
0.154 

(0.015) 
0.517 

(0.069) 
0.448 

(0.037) 
0.525 

(0.068) 
0.535 

(0.065) 
0.528 

(0.062) 

25 (15) hClust 
0.169 

(0.032) 
0.443 

(0.075) 
0.266 

(0.079) 
0.434 

(0.078) 
0.455 

(0.069) 
0.436 

(0.071) 

25 (15) SOM 
0.338 

(0.014) 
0.583 

(0.021) 
0.634 

(0.016) 
0.611 

(0.022) 
0.638 

(0.034) 
0.618 

(0.023) 

50 (10) kMeans 
0.292 

(0.019) 
0.543 

(0.062) 
0.593 

(0.063) 
0.579 

(0.077) 
0.604 

(0.079) 
0.567 

(0.059) 

50 (10) hClust 
0.231 

(0.052) 
0.470 

(0.079) 
0.298 

(0.087) 
0.487 

(0.0.85) 
0.502 

(0.079) 
0.471 

(0.087) 

50 (10) SOM 
0.407 

(0.012) 
0.651 

(0.017) 
0.725 

(0.020) 
0.694 

(0.019) 
0.740 

(0.003) 
0.683 

(0.018) 

50 (15) kMeans 
0.377 

(0.016) 
0.883 

(0.066) 
0.750 

(0.047) 
0.915 

(0.064) 
0.927 

(0.066) 
0.898 

(0.072) 

50 (15) hClust 
0.377 

(0.039) 
0.883 

(0.069) 
0.750 

(0.075) 
0.915 

(0.078) 
0.927 

(0.069) 
0.898 

(0.072) 

50 (15) SOM 
0.492 

(0.012) 
0.768 

(0.018) 
0.748 

(0.018) 
0.853 

(0.019) 
0.870 

(0.032) 
0.787 

(0.018) 

 

Table 25c. Average ARI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. K is the cluster size, K = 

10 and 15 and the Sample size was 25 and 50 samples. Total missing was considered at 30%. 
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Table 26: Average YI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. 

SAMPLE 
SIZE 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 kNN 
0.214 

(0.336) 
0.607 

(0.349) 
0.607 

(0.152) 
0.643 

(0.233) 
0.732 

(0.168) 
0.643 

(0.222) 

25 SVM 
0.875 

(0.144) 
0.964 

(0.094) 
0.982 

(0.047) 
1.000 

(0.000) 
1.000 

(0.000) 
0.964 

(0.061) 

25 PLS-DA 
0.321 

(0.313) 
0.786 

(0.213) 
0.768 

(0.112) 
0.875 

(0.144) 
0.893 

(0.112) 
0.929 

(0.098) 

50 kNN 
0.395 

(0.237) 
0.748 

(0.172) 
0.504 

(0.151) 
0.798 
(0.95) 

0.773 
(0.161) 

0.739 
(0.159) 

50 SVM 
0.924 

(0.065) 
1.000 

(0.000) 
0.958 

(0.044) 
0.983 

(0.044) 
1.000 

(0.000) 
0.992 

(0.022) 

50 PLS-DA 
0.605 

(0.158) 
0.983 

(0.029) 
0.933 

(0.086) 
0.992 

(0.022) 
0.992 

(0.022) 
0.983 

(0.044) 

 

Table 26a. Average YI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 9%. 
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SAMPLE 
SIZE 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 kNN 
0.312 

(0.189) 
0.734 

(0.141) 
0.375 

(0.275) 
0.703 

(0.188) 
0.781 

(0.160) 
0.562 

(0.222) 

25 SVM 
0.766 

(0.182) 
0.984 

(0.044) 
0.953 

(0.065) 
0.969 

(0.088) 
1.000 

(0.000) 
0.969 
(0.28) 

25 PLS-DA 
0.234 

(0.279) 
0.812 

(0.211) 
0.766 

(0.156) 
0.922 

(0.133) 
0.891 

(0.141) 
0.891 

(0.141) 

50 kNN 
0.279 

(0.188) 
0.772 

(0.192) 
0.507 

(0.206) 
0.750 

(0.160) 
0.794 

(0.104) 
0.787 

(0.109) 

50 SVM 
0.831 

(0.228) 
0.993 

(0.021) 
0.956 

(0.052) 
0.971 

(0.044) 
0.985 

(0.042) 
0.963 

(0.062) 

50 PLS-DA 
0.566 

(0.241) 
0.971 

(0.044) 
 0.956 
(0.052) 

0.993 
(0.021) 

0.978 
(0.044) 

0.971 
(0.044) 

 

Table 26b. Average YI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 15%. 
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SAMPLE 
SIZE 

Test Zero Mean Min KNN-
CR 

KNN-
TN 

KNN-
EU 

25 kNN 
0.050 

(0.230) 
0.612 

(0.260) 
0.388 

(0.253) 
0.725 

(0.194) 
0.788 

(0.156) 
0.700 

(0.179) 

25 SVM 
0.625 

(0.220) 
0.900 

(0.165) 
0.875 

(0.132) 
0.975 

(0.079) 
1.000 

(0.000) 
0.962 

(0.084) 

25 PLS-DA 
0.388 

(0.190) 
0.788 

(0.196) 
0.625 

(0.177) 
0.900 

(0.129) 
0.862 

(0.138) 
0.875 

(0.156) 

50 kNN 
0.153 

(0.222) 
0.747 

(0.194) 
0.400 

(0.179) 
0.800 

(0.206) 
0.800 

(0.136) 
0.794 

(0.147) 

50 SVM 
0.812 

(0.067) 
0.982 

(0.028) 
0.935 

(0.070) 
0.971 

(0.064) 
0.988 

(0.025) 
0.982 

(0.040) 

50 PLS-DA 
0.347 

(0.153)  
0.976 

(0.041) 
0.865 

(0.092) 
0.994  

(0.019) 
0.994 

(0.019) 
0.976 

(0.074) 

 

Table 26c. Average YI of 100 simulations using the human atherothrombotic dataset sCAD 

group for Zero, Min, Means KNN-TN, KNN-CR and KNN-EU. Total missing was 

considered at 30%. 
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Figure 12: Boxplots of MLCI for KNN-TN, KNN-CR, KNN-EU, Zero, Mean and Min for 

100 datasets, Sample size = 25.  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. The three differential abundance tests used were EBayes, TTest and TREAT. 
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Figure 13: Boxplots of ARI for KNN-TN, KNN-CR, KNN-EU, Zero, Mean and Min for 

100 datasets, Sample size = 25 and K = 15  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. The three clustering algorithm used were KMeans, HClust and SOM. 
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Figure 14: Boxplots of YI for KNN-TN, KNN-CR, KNN-EU, Zero, Mean and Min for 100 

datasets, Sample size = 25  

Total missing was considered at 9%, 15% and 30% and within each missing MNAR is greater 

than MAR. The three classification algorithms used were KNN, SVM and PLS-DA. 
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4.5 Discussions 

The objective of this study was to evaluate the impact of MV imputation method on 

commonly performed downstream analyses. Although several prior studies have investigated 

the impact of MV imputation on individual analysis only, there has been no extensive analysis 

approach on the impact of MVs. Our investigation on the MVs imputation the RMSE measure 

was found to be the lowest with the KNN-TN method from the previous studies. In 

evaluating the biological impact of MV imputation on downstream analyses commonly carried 

out after MVs, we found that for detection of DA metabolites, the KNN-TN performed well 

compared to the other methods.  In contrast for classification analysis, the impact of MV 

imputation was mixed. Overall, KNN-TN performed best in most cases, but KNN-CR or 

KNN-EU performed better in some cases. While DA metabolite detection and classification 

presented different results, the impact on clustering was also mixed where KNN-TN 

performed the best in most of the cases among the different methods. Our selection of 

biological impact measures for the effect of MV imputation on downstream analyses was 

motivated by choosing a measure that is both comprehensive and intuitive. The MLCI and YI 

were selected because they capture both the sensitivity and specificity of the result in a single 

measure, and the adjusted Rand index is a well-known and widely used measure of 

concordance between two clustering partitions. The primary analysis in our study is based on 

the downstream analysis of the logged data, a typical practice before analysis.  

4.6 Conclusions 

Based on the results, we conclude by highlighting the results from our study. Prior to deciding 

which imputation algorithm to use for MVs in metabolomics data, it is helpful for investigators 

to know which areas of downstream analysis are even impacted by MV imputation. The 

experimental results reveal that compared with KNN based on correlation and Euclidean 
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metrics, KNN based on truncation estimation is a competitive approach for all the three 

different downstream analyses. Results based on real data simulations show that the proposed 

method (KNN-TN) generally has higher MLCI, ARI and YI values compared to the other 

two KNN methods and simpler imputation algorithms (zero, mean, and minimum value 

imputation) when there is both missing at random and missing due to a threshold value.   
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

 

This dissertation consisted of three research projects. The first project was a novel approach 

for MV imputation method based on truncated normal distribution with the nearest neighbors 

approach. The means and standard deviations of the metabolites were first estimated based 

on the truncated normal distribution with the LOD as the truncation point using the Newton 

Raphson algorithm. We conducted extensive simulation studies and real data set simulations 

to show that the proposed method outperforms from the standard approaches. With the 

parametric model, small sample size was a bottleneck and thus led to the second project where 

we employed data augmentation with a Bayesian model based on MCMC. The initial results 

on the Bayesian model show that with small samples the Bayesian model performs well 

compared to the other standard methods. We further evaluated the impact of MV imputation 

methods on three different downstream analyses; DA metabolite detection, classification and 

clustering.  We conducted a comprehensive study to examine the impact on MV imputation 

methods and based on the results the KNN-TN method performs better or similar to KNN-

CR but performs better compared to other methods. Detection of DA metabolites was the 

most sensitive analysis to the choice of imputation method while classification was the least 

sensitive and clusterting was intermediately affected.   

The success of a MV imputation algorithm cannot be solely measured by its accuracy in 

imputing the underlying true values; its impact on downstream statistical inference is arguably 



  

104 
 

of greater importance. Further, the choice of an optimal imputation algorithm may depend on 

the underlying structure of the data. In the future studies, we want to extend and perform 

extensive simulations and extend the performance of MV imputation methods to other 

existing methods such as random forest, local least squares estimation etc. While previous 

studies have investigated the downstream impact of MV imputation in metabolomics, they 

have generally done so based on only a single imputation pass (Gromski et al and Hrydziuszko 

et al). By using multiple simulated datasets and more real datasets, we want to provide a more 

definite answer to the question of biological impact of missing value imputation in 

metabolomics. With the Bayesian framework, we want to extend the model to different 

correlation structures and evaluate more simulated data combinations and also apply on real 

datasets. We further want to specifically investigate how robust the Bayes method does by 

only using MNAR and comparing it with minimum imputation and then only using MAR and 

comparing it with the mean imputation. The impact of our novel approaches in project 1 and 

project 2 is limited without open-source software to implement them. We want to provide 

users with a robust package and user-friendly interface for missing value imputation in 

metabolomics studies. To permit multiple developers of the software, R packages will be 

hosted and developed on GitHub (https://github.com/) or RForge (https://r-forge.r-

project.org/).  
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APPENDIX 

Details of NR Procedure 

For notational convenience we define the probability 𝑃(𝑌 ∈ (𝑎,∞)|𝜇, 𝜎2) as  

𝜁(𝜇, 𝜎2) =  ∫
1

√2𝜋𝜎2

∞

𝑎

𝑒
−(𝑦−𝜇)2

2𝜎2 𝑑𝑦 

Interchanging differentiation and integration, the first derivatives of the above equation 

with respect to 𝜇 and 𝜎 are 

𝜁′𝜇 =  ∫ 𝑒
−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× 
(𝑦 − 𝜇)

𝜎3√2𝜋
 𝑑𝑦, and 

𝜁′𝜎 =  ∫ 𝑒
−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× ( 
(𝑦 − 𝜇)2

𝜎4√2𝜋
−

1

𝜎2√2𝜋
)  𝑑𝑦 

Using the above derivatives, the gradient (G) (first partial derivative) with respect to the 

parameters is  

𝑮 =  

[
 
 
 
𝜕𝑙

𝜕𝜇
𝜕𝑙

𝜕𝜎]
 
 
 

=  [
𝑔1

𝑔2
] =

[
 
 
 
 −𝑛

𝜁′
𝜇

𝜁
−

1

𝜎2
(𝑛𝜇 − ∑𝑦𝑖)

−𝑛
𝜁′𝜎
𝜁

−
𝑛

𝜎
+

∑(𝑦𝑖 − 𝜇)2

𝜎3 ]
 
 
 
 

 

 

The second derivatives for the Hessian are 
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𝜁′′𝜇(𝜇, 𝜎2) =
𝜕2𝜁

𝜕2𝜇
=   ∫ 𝑒

−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× (
(𝑦 − 𝜇)2

𝜎5√2𝜋
−

1

𝜎3√2𝜋
)𝑑𝑦,   

𝜁′′
𝜎
(𝜇, 𝜎2) =

𝜕2𝜁

𝜕2𝜎
=   ∫ 𝑒

−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× (
(𝑦 − 𝜇)2

𝜎7√2𝜋
−

5(𝑦 − 𝜇)2

𝜎5√2𝜋
+

2

𝜎3√2𝜋
)𝑑𝑦, and 

𝜓′′
𝜇,𝜎

(𝜇, 𝜎2) =
𝜕2𝜓

𝜕𝜇𝜕𝜎
=   ∫ 𝑒

−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× (
(𝑦 − 𝜇)3

𝜎6√2𝜋
−

3(𝑦 − 𝜇)

𝜎4√2𝜋
)𝑑𝑦 

𝜁′′
𝜇,𝜎

(𝜇, 𝜎2) =
𝜕2𝜁

𝜕𝜇𝜕𝜎
=   ∫ 𝑒

−(𝑦−𝜇)2

2𝜎2

∞

𝑎

× (
(𝑦 − 𝜇)3

𝜎6√2𝜋
−

3(𝑦 − 𝜇)

𝜎4√2𝜋
)𝑑𝑦 

Using the equations above and taking the derivatives, the Hessian matrix is 

𝑯 = 

[
 
 
 
𝜕𝑔1

𝜕𝜇

𝜕𝑔1

𝜕𝜎
𝜕𝑔2

𝜕𝜇

𝜕𝑔2

𝜕𝜎 ]
 
 
 

=  

−𝑛
𝜁𝜁′′𝜇 − (𝜁′

𝜇
)2

𝜁2
−

𝑛

𝜎2
−𝑛

𝜁𝜁′′
𝜎|𝜇

− 𝜁′
𝜇
𝜁′

𝜎

𝜁2
+

2(𝑛𝜇 − ∑𝑦𝑖)

𝜎3

−𝑛
𝜁𝜁′′𝜇|𝜎 − 𝜁′

𝜇
𝜁′

𝜎

𝜁2
+

2(𝑛𝜇 − ∑𝑦𝑖)

𝜎3
−𝑛

𝜁𝜁′′
𝜎

− (𝜁′
𝜎
)
2

𝜁2
+

𝑛

𝜎2
−

3(𝑛𝜇 − ∑𝑦𝑖)

𝜎4
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