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ABSTRACT

DEVELOPING COMPUTER VISION TECHNOLOGY TO AUTOMATE PITCH ANALYSIS IN

BASEBALL

Mahdi Moalla

April 25, 2017

Lokator is a baseball training system designed to document pitch location while teaching

pitch command, selection and sequencing. It is composed of a pitching target and a smartphone

app. The target is divided into a set of zones to identify the pitch location. The main limitation of

the current system is its reliance on the user’s feedback. After each throw, the pitcher or the coach

needs to identify and report the target’s zone that was hit by the ball by just relying on the naked

eye. The purpose of this thesis is to investigate the possibility of using computer vision technology

to automate the pitch analysis in baseball and improve the usability and accuracy of the Lokator

system. Towards this goal, we have developed, implemented and tested a computer vision-based

software system that adds the following contributions to the Lokator system:

1. Automated and accurate reading of the pitch location on the target.

2. Automated and accurate estimation of the velocity of the ball.

3. Provide contextual information about the pitch, such as vertical movement of the ball which

can indicate late breaking.

4. Replace the target by a catcher and estimate the pitch location using a virtual target.

We have tested the software on a large set of recording. Those recordings are from indoor

and outdoor environments with various illumination conditions and different backgrounds. The

software was also tested on videos with softball pitches. To estimate the accuracy of the software,

the sponsor gave us a set of 15 videos that include a total of 144 pitches along with the hit location
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of each pitch. Another set of 8 videos were provided to measure the accuracy of our software in

terms of speed calculation.
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CHAPTER 1

INTRODUCTION

Humans’ brains extract visual knowledge from the surrounding world that their eyes perceive

at an apparent ease. Visual knowledge includes discerning shapes, identifying objects and humans

and predicting the emotions from facial appearances. The human visual system has been studied

for decades to understand its inner-workings [1].

Computer vision is a subfield of computer science that imitates the brain visual role to gain

high-level information and patterns from visual data such as images and videos [2]. It encompasses

several subjects including object segmentation and recognition, 3D model reconstruction from 2D

images and motion estimation. It aims to automate the tasks that are usually performed by the

human visual system. Computer vision has been considered as a difficult field. Essentially, we

have a reverse problem where we want to recover unknown information given insufficient input. For

example, in the 3D model reconstruction problem, 2D input images lack the depth information on

each point. Researchers have been incorporating physical and probabilistic models to generate valid

solutions.

Over the past few years, computer vision methods has been developed for various problems.

Sample tasks include:

• Optical character recognition (OCR): reading numbers and letters from receipts or number

plates. The characters can be handwritten or printed [3].

• 3D model reconstruction: automated building of 3D models from images to describe monu-

ments and objects. The reconstructed models can be used by robots to obtain a better overview

of the surrounding world [4].

• Faces and objects recognition: These algorithms could be used to improve camera focus,

improve face search relevancy in an image database or detect cars in self-driving vehicles [5,6].

• Visual authentication: This application involves using visual biometrics to login or verify the

identity of people entering secured buildings or using a computer.
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• Motion capture: use of cameras to capture the movement of objects or humans. This task can

be used for different purposes such as monitoring areas for surveillance against intruders or

crimes or explore road traffic.

Computer vision methods have been used in a variety of domains including defense, security,

environment and sports. For instance, ball-based sports exhibit fast motion frequently [7]. This

motion is hard for coaches and trainers to analyze and extract information from it. It is also difficult

for the audience to observe the ball movement. Computer vision can be very useful for these cases.

Coaches and trainers have used computer vision methods to to analyze data to improve

the performance of the athletes. For example, in the single-player sports, different techniques have

been developed to monitor the movement of the athlete and commercial motion-capture systems are

becoming popular. Typically, these systems involve optical markers fixed on the athlete’s clothes

and multiple calibrated cameras. Figure 1.1 shows an example of a motion capture system used for

indoor ski. Markers are attached to the player clothes.

For some other sports, non-intrusive vision-based methods are required. For example, in

tennis, the trajectory of the ball is important. However, it is not feasible to modify the ball. In this

case, a simple camera can be used to track the ball.

(a) Athlete with markers (b) Motion detected by markers

Figure 1.1: Motion capture system with optical markers and multiple cameras

Computer vision methods have also been used for team sports to improve the team’s per-

formance. First, multi-camera systems are used to record the movement of the team players. Then,

2



a computer vision system can be used to extract and analyze information from the videos such as

the position of the players and the formation of the team.

Computer vision has also been applied to analyze sports events in real-time. Solutions in

this category help referee and audience to keep track of the players and provide a real-time coverage

of the game events. Sports analysts can also use it to explain events on TV to the viewers. Football

is a popular case where computer vision is used for the analysis of the players’ movement and the

events during the match and after its end. Figure 1.2 shows an example of football event analysis.

Figure 1.2: Computer vision used for the analysis of a match event in football.

In this thesis, we focus on using computer vision methods for analyzing ball motion in ba-

seball and softball. Baseball involves high-speed motion of the ball that can be hard for a coach to

analyze. The player that throws the ball is called the pitcher. Several computer vision solutions have

been particularly developed for training in Baseball. For instance, Rapsodo [8] is a technology that

gives a full description of a ball pitch metrics such as velocity, spin rate using high-speed cameras

augmented with computer vision technology. Figure 1.3 shows the Rapsodo tracking device.

Figure 1.3: Rapsodo tracking device.

Rapsodo incorporates an additional software that displays a pitch trajectory and metrics

on PC or iPad. However, the Rapsodo system is very expensive and can not be bought by every

3



client. Another system is Athla [9]. It is a pure vision-based technology that estimates the speed of

a baseball pitch. An iPhone is placed at a fixed location from the pitcher as illustrated in figure 1.4.

The device starts capturing external motion using the camera. Once a baseball passes in front of

it, the Athla software estimates its velocity. This application is cheaper than the previous system.

However, it fails when the lighting condition is low. Moreover, it doesn’t give more information

about a pitch such as the trajectory.

Figure 1.4: Athla iPhone placement example.

In this thesis, we describe the computer vision software that we have developed to extend the

functionalities of the Lokator System. Lokator is a baseball and softball training system designed

to document pitch location data while teaching pitch command, selection, and sequencing. The

Lokator system is composed of a pitching target and a smartphone App and is illustrated in Figure

1.5.

As illustrated in Figure 1.5 (a), the target has 10 marked zones displayed with different

colors. These zones are used to quantify pitch related data, such as strikes and other game related

locations. During game training, the pitcher sets the target and uses the smartphone app to get

instructions about which location on the target he needs to aim at. After the pitch, he documents

the pitch location manually (see Figure 1.6). The collected data can then be used to compute a

pitching score and recommend training sequences (bullpen).

The main limitation of the current Lokator system is its reliance on the judgment and ma-

nual input of pitchers. In fact, after throwing each bullpen, the pitcher (or coach) needs to assess

and report which of the 10 zones within the target was hit by the ball just relying on the naked

4



(a) Pitching Target (b) The Lokator Bullpen App

Figure 1.5: Pitching target and current App of the Lokator System

Figure 1.6: Pitch location documentation using the Lokator Bullpen app

eye. Such assessment can have low accuracy, given that a professional baseball pitcher can throw

the ball at velocities that can exceed 90 mph. Thus, the current Lokator system could not be used

effectively and efficiently to document pitch data.

Under this project, instead of relying on the naked eye to decide and manually enter pitch

location, we developed and adapted computer vision methods to automate this task and improve its

accuracy. The main contribution of this thesis is the development of computer vision technology for

the Lokator system to achieve the following goals:

1. Accurate reading of the pitch location on the target.

5



2. Accurate estimation of the velocity of the ball.

3. Provide contextual information about the pitch, such as vertical movement of the ball which

can indicate late breaking.

4. Explore the possibility of the replacing the target by a catcher while keeping the validity of

the developed algorithms.

The remaining of the thesis is organized as follows. Chapter 2 gives an overview of the dif-

ferent techniques used in our software system. Chapter 3 details the developed software algorithms.

Chapter 4 describes the experimental results. Finally, chapter 5 provides conclusions and future

work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we present background material that is relevant to the algorithms used in

this research project.

2.1 Background subtraction

Background subtraction is a common task in computer vision. It is used to capture moving

objects in videos. Several methods have been developed to perform background subtraction. In the

following subsections, we outline three of the most commonly used approaches.

2.1.1 Background subtraction based on frame differencing

Frame differencing is one of the simplest methods for background subtraction. It considers

the first frame as the background (B). Then, for all subsequent frames, an image pixel I(x, y) is

considered to be part of the foreground if

|I(x, y)−B(x, y)| > T, (2.1)

where T is a given threshold. Figure 2.1 shows an example of running background subtraction based

on frame differencing

Figure 2.1: Background subtraction based on frame differencing
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2.1.2 Background subtraction based on mixture of gaussians

In this method, the probability of each pixel’s value is modeled as a weighted sum of adaptive

Gaussian components. The Gaussian components are estimated from the pixel’s values from previous

frames. If a pixel is generated from a single surface using a static lighting, it can be modeled using a

single static Gaussian. If we have dynamic lighting, each pixel can be modeled by a single adaptive

Gaussian. On the other hand, under a more realistic scenario of dynamic lighting with different

surfaces, multiple adaptive Gaussian components are needed [10].

Using a mixture of K gaussian components, the probability of a pixel’s value can be modeled

using:

P (Xt) =

K∑
i=1

wi,tη(Xt, µi,t,Σi,t) (2.2)

The value of K depends on the available memory and computing resources. In (2.2), η is the Gaussian

probability density function:

η(X,µ,Σ) =
1

((2π)n/2|Σ|1/2)
e−

1
2 (X−µ)T Σ−1(X−µ) (2.3)

To avoid costly matrix inversion, the Gaussian covariance matrices are assumed to be diagonal, i.e.,

Σi = σ2I, for i = 1..K. (2.4)

The ith Gaussian is considered to be matching the current pixel’s value if the distance

between them is within 2.5 standard deviation, i.e.,

|Xt − µi| <= 2.5σi (2.5)

After processing each frame, every pixel’s Gaussians are updated using the following two

steps:

• Step 1: Update the Gaussian’s weight using:

ωt = (1− α)ωt−1 + αMk,t (2.6)

where α is the learning rate and Mk,t is 1 for the matching Gaussian and 0 for the remaining

components. In (2.6), α is a constant. Higher values of α implies that the weight of the

matching Gaussian will be dominant in the mixture after few frames. Lower values of α

keeps considerable weights for the non-matching Gaussians after processing a higher number

of frames.
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• Step 2: Update the pixel’ matching Gaussian component using:

µt = (1− ρ)µt−1 + ρXt (2.7)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (2.8)

where ρ = αη(Xt, µt−1, σt−1).

The K Gaussian components of each pixel are divided into foreground and background

distributions. A pixel is considered as foreground if its matching Gaussian is foreground. To decide

between the types of the Gaussians, we use the following steps:

1. Order the K Gaussians in a descending order of w/σ

2. The first B Gaussians are considered as background where:

B = argmin
b

(

b∑
k=1

wk > T ) (2.9)

In (2.9), T is a constant threshold.

The pseudo-code for background subtraction based on mixture of Gaussians is outlined below:

Algorithm 2.1 Background subtraction based on mixture of Gaussians

Inputs: F : video frame.
Outputs: Fg: Resulting foreground.

for each pixel p in F do
Check for a matching Gaussian using (2.5)
if a match is found then

Update the matching Gaussian using (2.7) and (2.8)
else

remove the least probable Gaussian and insert a new one with the current pixel’s value as
a mean, with a high variance and a low weight. The new Gaussian will be the matching
component for p.

end if
Update weights using (2.6)
Classify p’s Gaussians as background or foreground using (2.9)
Classify p as either background or foreground
if p is classified as a foreground pixel then
Fg(p) = 1 [Mark the pixel having the same location as p in the resulting foreground]

else
Fg(p) = 0

end if
end for
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2.1.3 Background subtraction based on kernel density estimation

The Kernel Density Estimation (KDE) is based on a non-parametric estimation [11]. In this

case, the probability of a pixel’s value is defined as:

P (Xt) =
1

F

F∑
i=1

K(Xt −Xt−i) (2.10)

where {Xt−i, i = 1..F} are the set of pixels’ values from the previous F frames that are in the same

location as Xt. In (2.10), K is a kernel function (usually Gaussian).

To account for small motion of the background, we maximize the probability of each pixel’s

value over a small neighborhood N(X). Thus, instead of using (2.10) to estimate the probability of

each pixel, we use

PN (X) = max
y∈N(x)

P (X|Dy) (2.11)

where P (X|Dy) is calculated in the same way as in (2.10) except that it is using the pixels’ values

that are in the same location as y. A pixel is considered as background pixel if:

PN (X) > T1 (2.12)

where T1 is a constant threshold.

2.2 Kalman filter

Kalman filter is a common algorithm that has been used in various domains including control

systems and signal processing. Kalman filter estimates the state of a system in case of missing or

inaccurate measurements [12]. It can also predict the next state of a system. A system is modeled

as a discrete-time process with the following stochastic difference equation:

xk = Axk−1 +Buk + wk (2.13)

where A is the state transition matrix, B is the control matrix, uk is a control vector and wk is the

process noise. We also have the measurements:

zk = Hxk + vk (2.14)

where H is a matrix that transforms the state space to the measurement space and vk is the

measurement noise. Both wk and vk are assumed to have a Gaussian distribution with a zero mean,

i.e.,

w ≈ η(0, Qk) (2.15)

10



v ≈ η(0, Rk) (2.16)

Qk is the covariance matrix of the process noise and Rk is the covariance matrix of the measurements

noise. Kalman filter estimates the state space using two steps:

1. Prediction Operation: Predicts the current state of the system using the previous state.

x̂ = Ax̂k−1 +Buk (2.17)

P̂k = AP̂k−1A
T +Qk (2.18)

where Pk is the covariance matrix of the estimation error.

2. Correction operation: Uses the current measurement to correct the current predicted state

Gk = PkH
T (HPkH

T +Rk)−1 (2.19)

x̂k = x̂k +Gk(zk −Hkxk) (2.20)

P̂k = (I −GkHk)P̂k (2.21)

The matrix Gk is called the Kalman gain.

2.3 Expectation-Maximization algorithm

Expectation-Maximization (EM) is an unsupervised learning algorithm. It estimates the

data distribution as a mixture of Gaussians [13, 14]. The number of components K is an input

parameter to the algorithm. Given a set of d-dimensional feature vectors (x1, ...., xN ) that are

sampled from a mixture of Gaussians distribution, Their probability is expressed as:

P (x) =
K∑
i=1

wigi(x), (2.22)

gi(x) = η(x, µi,Σi) =
1

((2π)n/2|Σi|1/2)
e−

1
2 (X−µi)

T Σ−1
i (X−µi) (2.23)

where η is a Gaussian probability distribution with mean µi and covariance matrix Σi. In

(2.22), wi is the weight of component i and satisfies the constraint:

K∑
i=1

wi = 1 (2.24)

The EM algorithm estimates the distributions’ parameters iteratively. An iteration is com-

posed of two interleaved steps:
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• Expectation step (E): The likelihood that the kth data sample is generated from the ith mixture

component is calculated using:

αk,i =
wigi(xk)∑K
j=1 wjgj(xk)

(2.25)

• Maximization step (M): The new distributions’ parameters are calculated using the new like-

lihood coefficients using:

wi =
1

N

N∑
j=1

αj,i (2.26)

µi =

∑N
j=1 αj,ixj∑N
j=1 αj,i

(2.27)

Σi =

∑N
j=1 αj,i(xj − µi)(xj − µi)T∑N

j=1 αj,i
(2.28)

Figure 2.2 illustrates the result of executing EM on a sample 2-dimensional data. The green

dots in figure 2.2(a) correspond to the data samples. The two initial components are shown in red

and in blue. Figure 2.2(b) shows the result of running the E step for the first time. Each point

has a probability of being generated from one of the two components which is depicted by its color.

Figure 2.2(c) shows the results after running the M step where the two components are updated to

match the new likelihood coefficients. Figure 2.2(d) and 2.2(e) show the results of E and M steps

after the next iteration. Finally, figure 2.2(f) shows the results after convergence as it can be seen.

The two components fit the input data.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Illustration of the EM algorithm. (a) Original data and initial components. (b) Results
after the first E step. (c) Results after the first M step. (d) Results after the second E step. (d)
Results after the second M step. (f) final results after convergence.
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2.4 Template matching

Template matching is a general purpose technique that is used to find a template image T

within a source image I. The template image and the sub-image in the target location do not need

to be pixel-wise equally. Template matching works by sliding the template image over the source

image and calculating a score value for each location. The location that has the highest value will

be selected. Figure 2.3 shows an example of template matching.

Figure 2.3: Template matching example

A simple score function is:

S(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))2 (2.29)

Another score function uses normalized cross-correlation coefficients [15]:

R(x, y) =

∑
x′,y′(T (x′, y′)− T )(I(x+ x′, y + y′)− I)

σTσI
(2.30)

where I and T are the averages of the source and template images and σI and σT are their standard

deviation.
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CHAPTER 3

DEVELOPING COMPUTER VISION TECHNOLOGY TO

AUTOMATE PITCH ANALYSIS IN BASEBALL

In this chapter, we will present the developed software. We will start with the overall

structure of the software. After that, we will describe the target detection and zones recognition

method. The next part deals with detecting and tracking the ball. The final part details the speed

estimation method.

3.1 Structure of the developed software

The developed software is composed of 4 main parts. Figure 3.1 highlights the structure of

the software. The input data are video files that contain recording of successive pitches. The first

frame is used to locate the target using template matching and recognize the zones. After that, the

software enters in a loop that has three parts. The first part detects the first appearance of the

ball in the scene. The second part tracks the ball until it reaches the target. It also deals with the

case when the ball bounces off the ground. The final part continues tracking the ball around the

target. This component also takes into account the different possible scenarios. Once the iteration

of the loop is completed, we clear its context and return to the first part. The software ends its

executions once all the video frames are processed. To develop the software, we used C++ with

the OpenCV library [16]. OpenCV is a software library. It is used to accelerate the development

of computer vision and image processing applications while targeting production systems. It also

includes machine learning primitives.
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Figure 3.1: Flowchart of the developed software
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3.2 Target detection

To locate the target, we use the template matching technique described in section 2.4. Using

one of the video recordings, we manually locate the target and extract its image. Figure 3.2 shows

the target template that we extracted and used for all for our experiments.

Figure 3.2: Image of the target template that we extracted from one od the video recordings

OpenCV provides several score functions for template matching including the normalized

cross-correlation based function. We have compared few methods. We found that the normalized

cross-correlation approach is the most effective and has the best results. However, the template

matching technique has a limitation. If the distance from the camera to the target changes, the

apparent target size will change and the algorithm may fail to detect the target. To overcome

this limitation and make the matching scale invariant, we perform a multi-scale search for the best

region that matches the template. Specifically, we scale independently the height and the width of

the target by a factor ranging from 50% to 200% by an increment of 5% and we repeat the search for

the best matching region. Figure 3.3 illustrates an example where single-scale template matching

failed to correctly identify the target whereas multi-scale template matching succeeded in detecting

it correctly.
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(a) (b)

Figure 3.3: Target detection example where multi-scale template matching solved the problem of
height/width ratio mismatch. (a) Results of single-scale template matching. In this case, half of
zone 8 will be missed. (b) Results of multi-scale template matching

3.3 Zones recognition

Zones recognition proved to be a hard task. Our approach has evolved as we encountered

several challenges. Our initial approach attempted to explore the fact that zone boundaries are

the brightest pixels (white) in the image. Thus, we simply threshold the image of the target to

identify the brightest pixels, then identifying line segments in the thresholded image. Even though

this approach can tolerate a small amount of noise and few disconnected edges, it can fail when

the noise level increases drastically due to significant variation in illumination or target distortion.

Target distortion can be caused by wrinkles or when the ball, traveling at high speed, gets colse to

the target. Sample scenarios where our approach has failed to separate and label the different zones

are illustrated in the following figures.

In Figure 3.4(a), we show a sample image where the pitching target appears to be too

bright. The thresholded image is displayed in Figure 3.4(b). As it can be seen, even though too

many bright pixels where selected, some edge pixels (e.g. separating zones 1 and 2 and 3) are

missing. Decreasing the threshold will cause more non-edge pixels to be selected. On the other

hand, increasing the threshold will cause more edge pixels to be missed.
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(a) (b)

Figure 3.4: (a) Sample image of a target that appears to be too bright. (b) Resulting image after
thresholding the one in (a).

In Figure 3.5(a), we show a sample image from the other extreme condition where the

pitching target appears to be too dark. The thresholded image is displayed in Figure 3.5(b). As it

can be seen, even with a relatively low threshold (that generates too many non-edge pixels), many

zone edges are missing. Consequently, the different zones cannot be identified for this sample.

(a) (b)

Figure 3.5: (a) Sample image of a target that appears to be too dark. (b) Resulting image after
thresholding the one in (a).

Another factor that seems to affect the reliability of the zone detection is the way the target

is attached to the frame. If the target is not flat (i.e. has wrinkles), its image will be distorted and

detecting the zones’ boundaries becomes more challenging. Figure 3.6(a) displays a sample image of

a wrinkled target. Figure 3.6(b) displays the thresholded image. As it can be seen, distortion in the

target has created many strong edges making it impossible to isolate the zones’ boundaries based

on edges only.
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(a) (b)

Figure 3.6: (a) Sample image of a target that is not attached properly to the frame. (b) Resulting
image after thresholding the one in (a).

To address all of the above issues, we have designed, developed, and tested an alternative

algorithm to detect and identify the different pitching target zones. Instead of thresholding the

target image then identifying edges (i.e. bright edges), we use an unsupervised learning approach

to cluster the different pixels of the target according to their color distributions. In particular, we

use the Expectation-Maximization (EM) algorithm to cluster all pixels of the target based on their

3-dimensional colors (Red, Green, and Blue). Each cluster, characterized by an average color and a

covariance matrix, will correspond to pixels that share similar colors. Since different zones can have

the same color (e.g., both zones 7 and 8 are yellow), we need an additional step to split clusters that

combine multiple zones into sub-clusters. We use the fact that pixels from different zones cannot

belong to the same connected component since a white edge separates all zones and there are no

white zones. Thus, after clustering, each cluster is analyzed to identify its connected components.

Finally, we consider each connected component of neighboring pixels that belong to the same cluster

to be part of the same target zone. Figure 3.7 uses a sample target image to illustrate the steps of

our new and improved approach to detect the target zones.
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(a) (b) (c)

Figure 3.7: Illustration of the EM-based approach to detect target zones. (a) Image of original
target. (b) clusters obtained after applying the EM algorithm (we used 7 clusters). Notice that
zones 7 and 8 were assigned to the same cluster. (c) Zone 8 (shown in red) was detected as one
connected component.

So far, our approach ensures that regions from different zones cannot be combined into

the same connected component. However, it is likely that some zone are partitioned into multiple

connected components. Thus, a post-processing step is needed to merge all adjacent connected

components that have similar colors. First, we create a model target that assigns a unique color and

label to each region. This needs to be done only once and will change only if the target design or size

changes (it may need to be adapted if the location of the camera with respect to the target changes

significantly). Figure 3.8 displays the model target that we have created based on the current video

collection.

Figure 3.8: Model of the target zones

Each pixel from a connected component will be part of a zone in the model target. To label

each connected component, we calculate the membership percent of its pixels to each region and we

select the region that has the highest percentage. Figure 3.9 illustrates the labeling process where
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the blue color outlines the connected component and the red color outlines a model target region.

In this case, the connected component will be mapped to the region 1.

Figure 3.9: Illustration of our labeling process of the connected components. Blue outlines a con-
nected component and red outlines model target regions. In this case, the connected component will
be labeled as zone 1.

After extensive testing to optimize the parameters of the proposed zone detection algorithm,

we found that our algorithm is more robust when a large number of clusters are used for the EM

clustering component (currently we use 30 clusters). This will make the EM more sensitive to color

variations. Thus, the identified clusters can distinguish between the different colors even when the

illumination varies significantly. Moreover, the large number of clusters will cause some clusters to

be dedicated to the white edges separating the zones. Thus, connected components are not likely

to mix pixels from different zone. The downside of using a large number of clusters is that some

regions may get partitioned into a large number of connected component. However, our mapping

using the target model will assign the same zone number to all connected components. Figure 3.10

illustrates the detected zones for the 3 cases (shown in Figures 3.4-3.6) where the old approach has

failed.
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(a) (b) (c)

Figure 3.10: Robustness of the new zone detection approach to: (a) over illumination, (b) under
illumination, and (c) target deformation. These are the 3 cases shown in figures 3.4-3.6 where the
old approach fails.

3.4 Ball detection

3.4.1 Background subtraction methods experiments

We have tested the different background subtraction methods that we have discussed in

the second chapter. First, We have implemented and experimented with the frame differencing

approach. We found out that this approach is very sensitive to small random motions (e.g. wind)

and other discontinuities within the image frame. Figure 3.11 displays such an example. As it can be

seen in Figure 3.11 (b), using a small threshold (T=32), results in many false positive examples (i.e.

non-moving objects identified as foreground). On the other hand, as illustrated in Figure 3.11(c),

using a large threshold (T=64), the moving ball was missed as no foreground pixels were identified.

We have concluded that the frame differencing method is not robust and cannot be used in this

application.
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(a)

(b)

(c)

Figure 3.11: Sample results using frame differencing for ball detection. (a) sample frame from one
of the video collection. (b) foreground objects detected using a small threshold (T = 32), and (c)
no foreground pixels detected when T = 64
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The method of the background subtraction based on Mixture of Gaussians (MoG) approach

is implemented in OpenCV. We found out that this approach outperforms the frame differencing

approach. It is reliable when the background is static. However, for dynamic background (e.g.,

moving camera, tree motion due to wind, etc. ) the mixture of Gaussian approach results in many

false positive. Figure 3.12 displays typical results of the background subtraction based on MoG for

video with static background. As it can be seen in Figure 3.12(b), in this case, this approach can

detect the moving ball correctly with no false positives.

(a)

(b)

Figure 3.12: Sample results using Mixture of Gaussians for ball detection. (a) sample frame from
one of the video collection with static background. (b) Detected foreground pixels correspond to the
moving ball

Figure 3.13 displays typical results of the background subtraction based on MoG for video

with dynamic background (moving camera). As it can be seen in Figure 3.13(b), in this case, this

approach can detect the moving ball correctly but it has also identified several false positives.
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(a)

(b)

Figure 3.13: Sample results using Mixture of Gaussians for ball detection. (a) sample frame from
one of the video collection with dynamic background (moving camera). (b) Detected foreground
pixels correspond to the moving ball and many other false positives

We have also implemented and tested the method of background subtraction that is based

on kernel density estimation. In Figure 3.14, we compare the performance of the MoG and KDE

approaches for the case of dynamic background. As it can be seen, KDE is more robust and

outperforms the MoG approach. However, KDE approach is computationally expensive. It uses a

considerable amount of time to process each frame. In our experiments, KDE took 400ms to process

one frame where MoG takes only 3ms.
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(a)

(b)

(c)

Figure 3.14: Comparison of the MoG and KDE background subtraction approaches for video with
dynamic background. (a) sample frame from one of the video collection with dynamic background
(moving camera). (b) Detected foreground pixels using MoG correspond to the moving ball and
many other false positives. (c) Detected foreground pixels using KDE correspond to the moving ball
with no false alarms.
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3.4.2 Foreground subtraction

The problem of motion noise is present in different videos and it is caused by different causes

including dynamic background (e.g., moving camera, tree motion due to wind) or moving entities

such as cars or birds. We developed a new method that can handle the motion noise while keeping

the frame processing time low.

Since we are using a high frame rate recording, objects moving at a speed that is much slower

than the ball will appear to be static between two consecutive frames. This is in contrast to the

faster moving ball that will exhibit a small position shift between consecutive frames. Thus, after

our background subtraction step, we subtract the foreground pixels between 2 consecutive frames

and use the following simple rules:

1. If a moving object (detected as foreground after background detection step) is not detected

in at least 3 continuous frames (after subtracting consecutive frames), it is removed from the

foreground.

2. If the moving object has not moved more than a predefined number of pixels, it is removed

from the foreground.

The figure 3.15 shows an example of a car moving in the background. This object will appear in the

foreground after background subtraction. Using rule 1 above, the car, highlighted using the white

rectangle, is identified as a slowly moving object and will not be considered for further processing.
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(a)

(b)

(c)

Figure 3.15: Illustration of the proposed approach to identify and remove slowly moving objects.
(a) Original video frame. (b) Resullts of simple background subtraction. A connected component
of the car will be detected. (c) Result of forground subtraction. The connected component of the
car is small and will not be detected
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3.5 Ball tracking

Ball tracking has been improved gradually since the beginning of the project. The first

issue that we encountered is that the ball may not be detected in some frames. The background

subtraction algorithm may fail to detect the ball. In these cases, Kalman filter can be used to predict

the position of the ball and maintain a smooth path. Figure 3.16 shows an example where the ball

is missed but Kalman filter continues to give a good prediction of the next position ball.

Figure 3.16: The ball is missed in the red box due to the white building (same color as the ball) but
Kalman filter predicted smoothly the next locations of the ball. In the blue box, the software was
again able to detect the ball twice.

Different scenarios could also appear while tracking the ball as is illustrated in the figure

3.1. The first scenario is when the ball bounces off the ground. Naturally, the ball’s distance to the

ground decreases gradually as it travels towards the target. As a result, if we detect that the ball

position is getting higher than the previous positions before reaching the target, we will assume that

it has hit the ground and bounced off. In this case, we will report this as an invalid pitch, go back

to component 2 in figure 3.1 and wait for the next pitch. Figure 3.17 shows an example of a ball

bounce detection.
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Figure 3.17: An example of a pitch where the Ball bounce off the ground. The algorithm stopped
tracking the ball after detecting that it started getting higher.

Once the ball reaches the target area, it triggers component 4 as illustrated in figure 3.1.

This component analyzes the ball motion and position in more details to detect if the ball (a) hits

the target, (b) hits the target frame, (c) misses the target and passes in front of it, or (d) misses the

target and disappears behind it. Our algorithm to detect these scenarios is outlined below:

a) Ball hits the target: when the ball hits the target, it will cause it to deform, i.e., many of its

pixels will start moving in between frames. However, this motion should be distinguished from

minor motions that can be caused by wind or by ball moving too close to it and at a high speed.

First, we compute the sum of the differences of the pixels’ values in the target window between

the current frame and the frame at the end of component 3 (i.e., before we detect that ball is

close to the target). Figure 3.18 displays the difference between 2 consecutive frames of all pixels

within the target. In Figure 3.18 (a), the ball did not hit the target yet, as a result, only pixels

that correspond to the moving ball have changed. On the other hand, in figure 3.18 (b) the ball

has just hit the target and as a result most of its pixels have moved. Next, we detect the number

and areas of connected components in the image of differences. The idea is that if the difference is

caused by the moving ball only, we should get only one or a few connected components with small

areas. On the other hand, major target deformation will results in a large number of connected

components or few components with very large areas. Thus, our algorithm will decide that the

ball has hit the target if the sum of differences exceeds a threshold, the number of connected

components is more than 3, or the sum of the areas of the connected components exceeds a

threshold. In this case, the target zone will be identified and reported.
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(a) (b)

Figure 3.18: Comparison of the pixels’s difference in the target window (a) before and (b) after the
ball hits the target.

b) Ball hits the target frame: If the ball’s path reverses direction, we detect the instance the ball

bounces back and report this as an invalid pitch due to ball hitting the frame. Figure 3.19

displays an example of this scenario.

Figure 3.19: A sample pitch where the ball hits the frame.

c) Ball passes the target without hitting it: If we detect that the ball has moved away from the

target region without hitting the target or its frame (cases a) and b) above), then we assume

that the pitch has missed the target completely and report it as invalid.

d) Ball cannot be detected any longer:If the ball cannot be detected in several consecutive frames,

then we assume that it has disappeared behind the target and report it as invalid. We should

note here that, due to the non-uniform background (target frame with colors similar to the ball’s

color), we may miss detecting the ball in few frames. In order to avoid a premature decision
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that the ball has passed behind the target, we require that the ball goes undetected for several

consecutive frames. Figure 3.20 shows an example where the ball disappeared behind the target.

Figure 3.20: A sample pitch where the ball has disappeared behind the target

A flowchart of our algorithm to analyze the ball motion and position as it approaches the target is

displayed in Figure 3.21. The 4 different scenarios discussed above are highlighted in orange.
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Figure 3.21: A flowchart of our algorithm to analyze the ball motion and position as it approaches
the target to decide if the ball hits the target, hits the target frame, misses the target and passes in
front of it, or misses the target and disappears behind it.
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3.6 Speed estimation

One of the tasks of this project is to estimate the speed of the ball as soon as it appears in

the frame. To compute the speed of the ball we need to identify two parameters: (1) the distance

traveled by the ball in a fixed number of frames, and (2) the temporal resolution of the video

recording, i.e., the number of frames per second. The latter one can be extracted from the video

header and is typically 240 frames per second. The number of pixels traveled by the ball can be easily

computed using the position of the ball detected at each frame. The main challenge is converting the

distance from pixels to physical distance. That is, identifying the pixel’s spatial resolution. First,

the conversion needs to be accurate as a small deviation can cause a large error in the estimated

speed. Second, due the camera position, the resolution decreases as the ball travels. Figure 3.22

illustrates this fact by showing the trajectory of the ball for a sample pitch. As it can be seen, the

size of the ball decreases gradually as it travels towards the target. Since the ball’s size is fixed, this

indicates a change in the spatial resolution.

Figure 3.22: Trajectory of a sample pitch. The decrease in the size of the ball as it travels towards
the target indicates a decrease in the spatial resolution (as the ball moves farther from the camera).

To address the non-constant pixel resolution issue, we assumed that the camera position and

angle will be fixed and performed a calibration experiment. The sponsor provided us with recordings

that included a stick, with a tick marker each 1 foot, in the background. Figure 3.23 displays one

video frame with this setting.
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Figure 3.23: Setting used for calibration to learn the pixels spatial resolution at different locations.

Using multiple videos with this setting, we measure the length (in pixels) of each 1 foot

section on the stick. Then, we plot this length versus the distance of the 1-foot segment’s center

from the left edge of the frame (we call this the x-coordinate of the section center). Figure 3.24(a)

displays the collected measurements. As it can be seen, the resolution decreases (1-foot segment

appears shorter) as we move to the right side (i.e., x-coordinate increases). More importantly, the

decrease fits a linear pattern. To characterize this pattern, we fit a linear regression model and learn

its parameters. The learned linear model is displayed in Figure 3.24 (b). This model can be used to

estimate the dynamic pixel resolution at any location within the frame. We should note here that

we have verified that the vertical distance is not significant enough to affect the resolution, and thus

will be ignored.

(a) (b)

Figure 3.24: Learning the variation of the spatial resolution. (a) Length (in pixels) of 1 foot section
versus its distance (in pixels) from the left edge of the image. (b) Linear model fit to the data in
(a).
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Once the system is calibrated, we use the first N frames (typically N = 10) after the ball

appears on the view. For each frame, we compute the distance traveled in pixels, then convert this

to actual distance using the learned regression model and the position of the first ball to map from

foot length to number of pixels. The sum of all N distances is then converted to speed using the

temporal resolution (frames/sec) of the video recording.

We evaluated our approach on a video collection where an upper and a lower speed limits

are provided. We found that the estimated speed is usually similar to the upper speed limit. Figure

3.25 shows an example of comparison between the true speed limits and the estimated speed.

Figure 3.25: Comparison of the true speed limits and the estimated speed in one video example

3.7 Vertical displacement

This requested feature focuses on the difference of the vertical position of the ball between

its first appearance in front of the camera and once it hits the target. We used the same approach in

speed computation. We calculate the vertical displacement in number of pixels between the highest

and the lowest position and we convert it to meters. The sponsor provided us videos with a vertical

stick. Figure 3.26 shows a video frame with this setup.
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Figure 3.26: Vertical stick used to map a foot length to number of pixels.

We found that the vertical resolution (number of pixels per foot) is almost the same for

all the sections of the stick. We extracted the mapping constant (usually 60 pixels per foot) from

one section and we used it to calculate the vertical displacement. Figure 3.27 shows an example of

calculated displacement.

Figure 3.27: Example of calculated vertical displacement. The red lines show the highest and lowest
positions of the ball. The obtained distance is equal 1.93 feet which is equal to 0.58 meter.

3.8 Using a catcher instead of a pitching target

Under this task, we investigated the possibility of replacing the target with a catcher and

estimate the zones that would have been hit if a pitching target was there. The target is provided

in the first few frames of the video then replaced. New problems arise with the catcher replacement.

First, we can not use the perturbation of the target to detect the hit anymore. Moreover, the catcher
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hand can be moving in the same time as the ball is approaching which makes the distinction between

the ball and the catcher’s gloves hard. To solve this issue, we used a different method for tracking

the ball. First, we save a copy of the ball sub-image once it appears in front of the camera. After

that, once the ball is getting near to the catcher, we apply multi-scale template matching algorithm,

using the saved ball patch as a template, to locate its next position. In every frame, we threshold

the scores obtained from template matching to detect if the ball has disappeared and if it was caught

by the catcher.

(a)

(b)

Figure 3.28: Example of ball catch. The location of the hand corresponds to the zone 2. The blue
box corresponds to the saved ball patch. (a) trajectory of the ball until it is caught by the catcher.
(b) Zone corresponding to the location of the caught ball.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we will discuss the experimental results obtained from running the developed

software on a video dataset.

4.1 Pitch accuracy results

4.1.1 Test datasets

The test datasets include 15 videos provided by the sponsor. Each video recording contains

multiple pitches. The hit location on the target is provided and used to evaluate the results of our

software. Table 4.1 summarizes the datasets.

TABLE 4.1

Test dataset summary

Video settings duration N frames/sec N pitches
1 d1 = 25, d2 = 20 16 min 240 10
2 d1 = 25, d2 = 30 23 min 240 10
3 d1 = 25, d2 = 30 22 min 240 11
4 d1 = 35, d2 = 20 20 min 240 10
5 d1 = 35, d2 = 20 21 min 240 14
6 d1 = 35, d2 = 30 18 min 240 12
7 d1 = 35, d2 = 30 21 min 240 14
8 d1 = 20, d2 = 20 12 min 240 19
9 d1 = 30, d2 = 35 8 min 240 5
10 d1 = 30, d2 = 35 8 min 120 11
11 d1 = 30, d2 = 35 16 min 240 4
12 d1 = 30, d2 = 35 14 min 240 8
13 d1 = 30, d2 = 35 8 min 120 10
14 d1 = 25, d2 = 25 11 min 240 7
15 d1 = 20, d2 = 20 16 min 240 9

In table 4.1, the settings column describes the location of the camera relative to the target

as illustrated in figure 4.1. d1 and d2 are measured in feet.
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Figure 4.1: Illustration of the camera location settings.

In all our experiments, we use a 3.5 GHz 6-core processor. The processing of each video frame

takes between 10 and 30 ms. The memory size is not issue since we process the video incrementally

one frame at a time.

4.1.2 Pitch inter-class accuracy

To measure the pitch accuracy, we defined 4 classes that identify all possible outcomes:

• HZ: A zone is hit within the target.

• BB: The ball bounced off the ground.

• FH: The target frame is hit.

• NH: The ball went beyond the target without touching it.

Tables 4.2 through 4.16 illustrate the pitches inter-class confusion matrix for each video in

the test dataset. For each conflict, we will explain the reason for the misdetection.
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TABLE 4.2

Video 1

Truth
HT BB FH BT

HT 8 100 %
BB
FH 1 100 %
BT 1 100 %

TABLE 4.3

Video 2

Truth
HT BB FH BT

HT 9 100 %
BB
FH
BT 1 100 %

TABLE 4.4

Video 3

Truth
HT BB FH BT

HT 9 1 90 %
BB
FH 1 100 %
BT

TABLE 4.5

Video 4

Truth
HT BB FH BT

HT 9 100 %
BB 1 100 %
FH
BT

TABLE 4.6

Video 5

Truth
HT BB FH BT

HT 9 2 81 %
BB 1 100 %
FH 1 1 50 %
BT

TABLE 4.7

Video 6

Truth
HT BB FH BT

HT 11 100 %
BB
FH
BT 1 100 %

TABLE 4.8

Video 7

Truth
HT BB FH BT

HT 10 1 90 %
BB 1 100 %
FH 2 100 %
BT

TABLE 4.9

Video 8

Truth
HT BB FH BT

HT 8 100 %
BB
FH 1 100 %
BT

TABLE 4.10

Video 9

Truth
HT BB FH BT

HT 4 100 %
BB
FH
BT 1 100 %

TABLE 4.11

Video 10

Truth
HT BB FH BT

HT 10 100 %
BB
FH 1 100 %
BT

TABLE 4.12

Video 11

Truth
HT BB FH BT

HT 4 100 %
BB
FH
BT

TABLE 4.13

Video 12

Truth
HT BB FH BT

HT 4 100 %
BB 2 100 %
FH
BT 1 1 50 %

TABLE 4.14

Video 13

Truth
HT BB FH BT

HT 7 100 %
BB 2 100 %
FH
BT 1 100 %

TABLE 4.15

Video 14

Truth
HT BB FH BT

HT 5 100 %
BB 2 100 %
FH
BT

TABLE 4.16

Video 15

Truth
HT BB FH BT

HT 6 1 85 %
BB 1 100 %
FH 1 0 %
BT

Figure 4.2 illustrates one incorrectly detected pitch from the video 3. In this case, the ball

hit the lower part of the frame and continued upward. It did not stop moving forward. As a result,

the pitch was not detected as a frame hit. Instead, our algorithm detected it as hitting the purple

zone containing the U letter.
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Figure 4.2: Incorrectly detected pitch. Ball hits the lower frame and proceeded to hit the target.
Our software detected it as hitting zone U

In the video 5, all the incorrectly detected pitches are actually ball bounces. In all these

cases, the bounce is very near to the target. In fact, using a 2-D view of a real 3-D scene, it is

hard to distinguish between a ball within the the target frame and a ball close to the frame. As a

result, most of the ball bounces close to the target are missed. Figure 4.3 shows an example of a

misclassified pitch. In this case, the pitch is detected as a frame hit.

Figure 4.3: A sample pitch from video 5 where the ball was incorrectly classified as hitting the target
frame. In this case, the ball bounces off the ground, very close to the target frame.

In this video, we have a pitch that hit the target. However, the software detected as it went

beyond the target. Actually, if we see the video, we find that the ball hit the purple zone and went

between the target and the frame. Figure 4.4 shows a set a images illustrating the movement of the

ball.

Figure 4.4 displays a pitch from video 12 as ’NH’. By examining the different steps that
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led the algorithm to misclassify this pitch, we observe the ball hits the purple zone and then went

between the target and the frame.

(a) (b)

(c) (d)

Figure 4.4: Ball hits the purple zone and went between the target and the frame. (a) the ball hits
the purple zone. (b) the ball disappears behind the cage of the target. (c) the ball returns. (d) the
ball disappears between the target and the frame

Figure 4.5 illustrates the software output for the same pitch. The result of the prediction

phase of the Kalman filter was outside the target rectangle. As a result, the pitch was detected as

beyond the target rectangle.

Figure 4.5: Path of the incorrectly detected pitch illustrated in figure 4.4. The ball disappeared
between the target and the frame and the software Kalman filter predicted a position that went
beyond the target.
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4.1.3 Evaluation of the zone identification component

If the ball hits the target, our software detects the zones that are hit. In this section, we report

the accuracy of the zone identification component of our software. The zones annotation provided by

the sponsor usually include only one zone per pitch. However, zones can be very narrowed and many

pitches hit multiple zones. To handle these cases, the developed software reports three zones that

have the highest percentages of pixels from the ball. For evaluation purposes, we put an additional

constraint that the reported percentages in one zone have to be higher than 30% to report that zone

as being hit. Figure 4.6 shows an example where the ball hits the border between zone 7 and the

purple zone. In this pitch, zone 7 was reported as hit with a percentage of 63% and the purple zone

is reported with 36%.

Figure 4.6: Ball hit the border between zone 7 and the purple zone

Table 4.17 reports the accuracy of our zone identification component. Figure

Figure 4.7: Illustration of the unnumbered zones R, U and P

We should note that most of the misclassifications reported in table 4.17 are the results of

the ball hitting multiple zones. For example, zone 5 was detected in one case as zone 1 and zones 9

44



and 10 were detected few times as the red zone that surrounds them.

TABLE 4.17

Zones confusion matrix

Truth
Measured 0 1 2 3 4 5 6 7 8 9 10 R U P Accuracy

0 3 100 %
1 4 1 80 %
2 1 1 50 %
3 6 100 %
4 7 100 %
5 1 100 %
6 2 100 %
7 22 100 %
8 5 100 %
9 5 100 %
10 2 100 %
R 3 2 17 77 %
U 5 100 %
P 1 1 1 22 88 %

4.2 Evaluation of the speed estimation component

The speed computation was based on fixing the camera location and estimating the image

pixel’s real size. The sponsor provided us with 8 videos recordings where the ball speed was estimated

using a radar. For each pitch, the ball’s speed was estimated at two locations providing a minimum

and a maximum speed. 3 out of the 8 video have only the maximum speed provided. These videos

contained a measuring stick with markings on each 1-foot section. Section 3.6 described our proposed

method for speed calculation. By evaluating the accuracy of the speed calculation, we found that

the computed values are usually close to the true speed upper limit captured by the radar. Figure

4.8 compares the speed reported by our software to the true speed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Comparison of the calculated speed for all pitches of the 8 videos with ground truth.
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To quantify the accuracy of our method, we calculated the mean and standard deviation of

the difference between computed values and the true upper limit values for all the pitches in the

dataset. We found that the mean error is 0.7544 and the standard deviation of the error is 2.7054.

As a result, we can report that the measured speed can have a maximum error of ±3.5 mph.

4.3 Target replacement results

The final task of this project was to replace the target with a catcher and check if we can

adapt the developed algorithms to keep the same results quality as in the target case. By using the

method described in section 3.8, the software was able to predict the target zone associated with

the ball catch in different cases. Figures 4.9 and 4.10 show examples of ball catch.

(a) (b)

Figure 4.9: System performance when a catcher is used. (a) Path of the ball and its position when
caught by catcher. The red square indicates the position of the target (before it was replaced by the
catcher). (b) Replacing the catcher with a virtual target to read the hit zone

(a) (b)

Figure 4.10: Another example of system performance when a catcher is used. (a) Path of the ball
and its position when caught by catcher. The red square indicates the position of the target (before
it was replaced by the catcher). (b) Replacing the catcher with a virtual target to read the hit zone
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CHAPTER 5

CONCLUSIONS AND POTENTIAL FUTURE WORK

5.1 Conclusions

In this thesis, we developed a computer vision based software system that automates the

pitch analysis in baseball. The new software is designed to work with the Lokator pitching target

to automate the following tasks:

1. Accurate reading of the pitch location on the target.

2. Accurate estimation of the velocity of the ball.

3. Provide contextual information about the pitch, such as vertical movement of the ball which

can indicate late breaking.

4. Replace the target by a catcher and estimate the pitch location using a virtual target.

The input to the software are video files (recorded by an iPhone) that contain recordings

of successive pitches. The target is located by applying multi-scale template matching. Identifying

the different zones within it proved to be a challenging task due to several factors such as wind,

illumination variation and target distortion. We solved this task by applying unsupervised learning

methods on the pixels‘ colors and spatial locations.

To detect the ball while it is moving, we used background subtraction based on mixture

of Gaussians. Motion noise is frequently present in the videos either due to dynamic background

(e.g., moving camera, tree motion due to wind) or moving entities such as cars or birds. To filter

this effect, we developed a technique based on subtracting consecutive foregrounds to eliminate slow

motion. In some frames, depending on the background variation, the ball can be missed. In these

cases, Kalman filter is used to predict the position of the ball and maintain a smooth path. As

the ball approaches the target, several possible scenarios can arise including: ball bounces off the

ground, Ball hits the frame and bounces back, ball passes the target without hitting it or ball hits

one of the target zones. We have developed algorithms that can detect all of the above cases.
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To compute the speed of the ball, the major challenge was the conversion from distance

in pixels to a physical distance. Due to the camera location, the pixel resolution decreases as the

ball travels towards the target. To address this issue, we fixed the camera position and angle and

performed a calibration experiment by using a stick, with a tick marker each 1 foot. We found that a

foot length in pixels decreases in a linear pattern. We used linear regression to fit its parameters. A

similar approach was used to compute the vertical displacement. A vertical stick is used to calculate

the vertical resolution but we found out that the vertical resolution does not vary significantly.

The final task was the investigation of the replacement of the target with a catcher and

estimate the zones that would have been hit if a pitching target was there. New problems arose and

different algorithm needed to be developed to identify the instant the ball caught.

We performed several testing experiments. To measure the pitch location accuracy, the

sponsor provided us a set of recordings along with the true hit location for each pitch. The software

was able to report correct results except some special cases. The sponsor also provided us a set of

videos for measuring the accuracy of velocity computation. The software reports a speed that is

within ±3.5 mph from the maximum true speed.

5.2 Potential future work

• Currently, we use only one camera. A possible improvement is to use two cameras and perform

3-D modeling.

• we can use another camera to focus on the pitcher and analyze the motion of his arms and

correlate this info with the pitch location on the virtual target.
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