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ABSTRACT 

USING A MULTI VARIATE PATTERN ANALYSIS (MVPA) APPROACH TO 

DECODE FMRI RESPONSES TO FEAR AND ANXIETY 

Sajjad Torabian Esfahani 

April 17, 2017 

 

This study analyzed fMRI responses to fear and anxiety using a Multi 

Variate Pattern Analysis (MVPA) approach. Compared to conventional univariate 

methods which only represent regions of activation, MVPA provides us with more 

detailed patterns of voxels. We successfully found different patterns for fear and 

anxiety through separate classification attempts in each subject’s representational 

space. Further, we transformed all the individual models into a standard space to 

do group analysis. Results showed that subjects share a more common fear 

response. Also, the amygdala and hippocampus areas are more important for 

differentiating fear than anxiety. 

  



iv 
 

TABLE OF CONTENTS 

 
ABSTRACT .......................................................................................................... iii 

INTRODUCTION .................................................................................................. v 

Fear vs. Anxiety ......................................................................................... 9 

METHODS.......................................................................................................... 11 

Participants .............................................................................................. 11 

Procedure - Stimuli .................................................................................. 11 

Scanning Paradigm ................................................................................. 12 

Neuroimaging Methods - Imaging Data Acquisition ................................. 13 

Structural ....................................................................................... 13 

Functional ..................................................................................... 14 

MVPA ....................................................................................................... 14 

RESULTS ........................................................................................................... 17 

DISCUSSION ..................................................................................................... 28 

REFERENCES ................................................................................................... 30 

APPENDIX ......................................................................................................... 35 

CURRICULUM VITA .......................................................................................... 37 

 

 

  



v 
 

LIST OF FIGURES 

Figure 1: Schematic drawing of dividing the two hemispheres. Labeling the right 

and left hemispheres only with specific tasks tells too little about their 

relationship. Adapted from Baars & Gage (2010) ................................................. 2 

Figure 2: A single neuron in the basal ganglia. Horizontal bars mark 50 

micrometers. Adapted from Baars & Gage (2010) ................................................ 3 

Figure 3: Transforming 3D functional volumes into a new configuration with n (= 

number of features) dimensions. Each dimension is a voxel’s intensity. .............. 5 

Figure 4: Independent volumes from category A/B would settle in the vicinity of 

the previously observed red/blue data point. ........................................................ 6 

Figure 5: Fear vs. neutral (red) and anxiety vs. wait (blue) classification results 

for all the 20 subjects. ......................................................................................... 19 

Figure 6: Fear vs. anxiety normalized based on neutral (lime) and based on wait 

(dark green) classification results for all the 20 subjects. ................................... 22 

Figure 7: 3D views of fear vs. neutral (red), anxiety vs. wait (blue), and fear vs. 

anxiety (green) patterns, shared by at least 8 of the individuals. ........................ 23 

Figure 8: 3D views of fear vs. neutral (red), anxiety vs. wait (blue), and fear vs. 

anxiety (green) patterns, shared by at least 10 of the individuals. ...................... 24 

Figure 9: Ventral views of portions of the patterns from the amygdala (top left), 

hippocampus (top right), and ventral visual processing stream (bottom). ........... 25 

 



1 
 

INTRODUCTION 

MultiVariate Pattern Analysis (MVPA) is a new approach for analyzing 

functional magnetic resonance imaging (fMRI) data that was presented for the first 

time in a research article on representations of faces and objects in ventral 

temporal cortex (Haxby et al., 2001). Although the main idea was introduced by 

Haxby et al., it was later at Princeton University that the approach took the name 

Multi-Voxel Pattern Analysis and subsequently Multi-Variate Pattern Analysis 

(MVPA) in order to show its more general applicability. In contrast to the former 

univariate analysis which represents regions of activation, MVPA provides us with 

more detailed and thus more informative patterns of neural responses. These 

patterns – or regions in case of univariate analysis – appear while being situated 

in different conditions from attention-demanding states to rest (Vanhaudenhuyse 

et al., 2010). 

Before MVPA was introduced and developed, researchers could only 

discern activation of regions based on univariate analysis with the general linear 

model (GLM). These models of cortical organization are able to tell whether or not 

specific areas are involved in a particular task. A typical tasks’ goal would be to 

find areas in the brain for various parts of the body. 

First, it is worth mentioning that the field of neuroscience no longer believes 

that each brain region is associated with only one task and nothing else. In a study
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by (Kanjlia et al., 2016) as an instance, it was shown that “visual” areas are 

also involved in mathematical thinking. Below, we can also see the common 

mistake of using the simple label “Divided – corpus callosum”. This would again 

consider the two hemispheres as separate areas which tells too little about their 

relationship. We know that the two hemispheres function differently, but clearly 

communicate with each other. For example, the LH is known to be dominant in 

language processing. However, it is shown that the RH contributes to some 

aspects of this processing such as comprehension of natural language, as well 

(Jung-Beeman, 2005). 

 

Figure 1: Schematic drawing of dividing the two hemispheres. Labeling the right and left hemispheres only with 
specific tasks tells too little about their relationship. Adapted from Baars & Gage (2010) 

Second, there are not actual regions that are functioning in different 

conditions. There are, instead, networks of neurons being activated in response to 
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stimuli. But how accurately are we able to capture this neural activity? fMRI uses 

blood-oxygen-level dependent (BOLD) contrast which is caused by the oxygen 

demand of active neurons. This is an indirect measurement, and should be 

coupled with various parameters of neural function to have a better reflection of 

neural activity (Singh, 2012). Besides, fMRI is limited in both temporal and spatial 

resolution. A common voxel (the smallest unit of measurement in fMRI) size in 

functional MRI is 3mm3. Figure 2 depicts a single neuron in the basal ganglia, and 

the horizontal bars mark 50 micrometers. Comparing the available spatial 

resolution and the size of a neuron clearly shows how much data we’re missing 

when looking at an fMRI image. There might be thousands of neurons firing with 

intensity below the threshold that can be captured in a voxel by fMRI. In which 

case, if the majority of neurons in a voxel are firing and we would get signal from 

that area. Otherwise, when we’re not receiving signal from a voxel, we cannot 

come to the conclusion that there are no neurons firing. 

 

Figure 2: A single neuron in the basal ganglia. Horizontal bars mark 50 micrometers. Adapted from Baars & Gage 
(2010) 
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Although we’re limited in the different ways discussed above, this is the best 

accuracy that technology is offering now; and with the same scanning resolution, 

MVPA is a major step towards a more detailed model of cortical organization by 

examining patterns of voxels instead of general regions of activation. 

Regarding the current project, we explain the main idea behind MVPA by 

considering a simple case of having two stimulus categories A and B (fear and 

anxiety stimuli in the current experiment). Subjects are shown instances of two 

categories multiple times, and at the same time, the scanner captures 3D 

functional volumes (a whole brain representation) of their brains (a total of 340 

volumes in this study). Therefore, we will eventually have a set of brain volumes 

with known labels A or B. There are also conditions such as “rest” in between, 

which can act as a control. Each volume consists of a great number of voxels which 

we refer to as dimensions or features in the MVPA process. In other kinds of 

studies, these features can also be single-neuron recordings or local field 

potentials; however, in the current project dimensions or features refer to voxels. 

In our particular study subjects viewed fear and anxiety inducing stimuli, and 

consistent responses across subjects are measured within the following areas: 

temporal occipital fusiform cortex, anterior and posterior divisions of temporal 

fusiform cortex, right and left hippocampus, right and left amygdala, anterior and 

posterior divisions of parahippocampal gyrus, occipital fusiform gyrus, lingual 

gyrus, and intracalcarine cortex. According to this hypothesis, we applied a mask 

containing all the mentioned ROIs (regions of interest) at the beginning of data 

processing. Although we would rather look through the whole brain to have a 
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comprehensive study, masking is an inevitable phase due to common limitations 

in computational resources. 

If we treat brain volumes as data points, we can place them in a multi-

dimensional coordinate system with each dimension being a voxel’s intensity. 

Therefore, we’re transforming the 3D images into a new configuration without 

losing any signal. For example, we have two functional brain volumes, each 

consisting of a pattern of activity with only two voxels (V1 & V2). The patterns are 

distinct since they are evoked by the two different stimulus categories. Here, the 

problem is significantly simplified so that MVPA analysis can be visualized and 

described easier. As depicted in Figure 3, the volumes are now transformed into 

red and blue data points in a 2D space. This response pattern space is also 

referred to as a representational space. 

 

Figure 3: Transforming 3D functional volumes into a new configuration with n (= number of features) dimensions. Each 
dimension is a voxel’s intensity. 

 Now, if we observe independent responses to stimulus category A/B, the 

new volumes would settle in the vicinity of the red/blue data point. This is the main 

idea behind MVPA, and is shown in Figure 4 for more clarification. If responses to 
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anxiety and fear are distinct, we would expect that data points in each category to 

be more correlated with each other than with the points in the opposite category. 

 

Figure 4: Independent volumes from category A/B would settle in the vicinity of the previously observed red/blue data 
point. 

 We can use the correlation described above as a similarity measure, and 

after learning from existing data, make predictions when new unlabeled brain 

volumes are observed (Norman et al., 2006; Haynes and Rees, 2006; O’Toole et 

al., 2007; Kriegeskorte et al., 2008). This analysis procedure is what we know in 

computer science as machine learning; supervised learning with labels in this 

particular case. In a real problem with a high-dimensional space, it is necessary to 

use feature selection, a form of data reduction – which renders a subspace with 

the most discriminative features – to avoid the curse of dimensionality. Curse of 

dimensionality is a phenomenon that occurs as the number of features increase, 

which subsequently leads to a fast growth in the volume of representational space. 

This results in the available data being sparse, making learning problematic. 
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Therefore, with MVPA we can obtain visual voxel-wise patterns in the brain 

having been trained with machine learning, but also we are able to predict the 

category of new observed volumes without any previous knowledge of stimulus 

category. The dashed line in Figure 4 above is an example of a classifier model 

generated by a support vector machine (SVM). 

In order to obtain response patterns to stimulus categories, we dissect the 

classifier to get the importance (or weights) of features in the dataset. This is 

feasible through so-called sensitivity analyzers that obtain the weights from a 

particular classifier; classifiers hide this information in different places. A bunch of 

classifiers can be used in MVPA analysis such as k-nearest neighbors (k-NN), 

Gaussian Naive Bayes, SVM, etc. However, not all classifiers – k-NN as an 

example – are accompanied with sensitivity analyzers. This has been the main 

reason for using support vector machines in the current study. 

About four years after the idea of MVPA was introduced, the method gained 

momentum in 2005 with two Nature Neuroscience papers (Haynes and Rees, 

2005; Kamitani and Tong, 2005). Kamitani and Tong went beyond and showed 

that MVPA could be used for decoding cognitive states; target of selective attention 

in their particular study. Haynes et al., (2007) also did the same later in their study 

on the intention to perform one task rather than another. Review papers also 

emerged that further elucidated the almost newly born multivariate approach. 

One of the drawbacks of MVPA was between-subject variance of response 

patterns and also the difficulty of perfectly aligning individual subjects to a group 

representational space. All the previously illustrated steps including the model 
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generation are done separately for individuals in their own space. Therefore, 

obtaining population response topographies would be tricky. In 2011, ten years 

after the first MVPA paper came out, this problem was solved with a new proposed 

method called hyperalignment (Haxby et al., 2011). Hyperalignment enabled 

transforming individual representational spaces into a common cortical model 

space. In our first group analysis attempt in the current study, we generated 

separate models in each individual space, and then transformed all the models 

into a common space. In this case, classification is done 20 (number of subjects) 

times independently with each having a total number of 340 data points for training 

and testing. In our second trial, however, we intended to transform all the 

representational spaces (20 × 340 volumes) into a common space without doing 

any individual classification. This helped us to not only have a much larger dataset 

and a better trained model, but also at the same time could tell us to what extent 

there is between-subject variance based on the classification accuracy. In other 

words, getting a relatively accurate result indicates low variance between subjects, 

and vice versa; important to increased understanding of the underlying neural 

processes. Due to limitations in computational resources, we were only able to 

merge and load subjects two by two (20 choose 2 = 190 possible combinations). 

Although this approach would not give us as many data points as concatenating 

all 20 subjects’ data, it enables looking through between-subject variance in pairs, 

as opposed to the total variability. We achieved relatively accurate common 

models by merging one of the subjects with each of the other individuals, resulting 

in 19 different combinations and therefore 19 models. Because of between-subject 



9 
 

variance being greater than within-subject variance, the precision of these models 

were on average less than individual models’ accuracies as we expected. 

Although MVPA has a drawback of being computationally demanding, one 

of its major benefits is the ability to detect fine spatial scaled representational 

distinctions such as the difference between two human faces. Notice that we have 

used the word “drawback” and not disadvantage or problem, as advancing 

technologies require more resources, and the computational need will cause 

MVPA to be less pragmatic at the current time, but will be more pragmatic with 

increased computational power. Unlike MVPA, conventional univariate methods 

are only capable of distinguishing between categories with coarser distinctions. An 

example of such categories would be human faces versus objects. 

Fear vs. Anxiety. The extended amygdala is a region that comprises 

portions of the amygdala and the bed nucleus of the stria terminalis (BST) (Alheid 

and Heimer, 1988). It has been shown that this region plays a decisive role in fear 

and anxiety conditions while encountering learned and unlearned threats (Calhoon 

and Tye, 2015; Fox et al., 2015; Janak and Tye, 2015; Tovote et al., 2015; Gungor 

and Pare, 2016; Oler et al., 2016). Furthermore, it has been demonstrated that 

regulation of phasic and sustained responses to these threats take place in 

different parts of the extended amygdala (Davis et al., 1997, 2010; Davis, 1998, 

2006; Walker et al., 2003, 2009; Grillon, 2008; Walker and Davis, 2008). Examples 

of threats with phasic and sustained responses would be the delivery of a shock 

and a dark room, respectively. An earlier version of this model suggested a strict 

functional segregation between the central nucleus of the amygdala (Ce) and BST, 
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with Ce involved in phasic and BST in sustained responses. In the revised version, 

however, the Ce responds to both kinds of threat. Specifically, projections from the 

medial portion contributes to phasic responses while more sustained responses 

are mediated by projections from the lateral division of the Ce to the lateral division 

of the BST. Here, we look through responses to fear and anxiety with a multivariate 

pattern analysis approach.
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METHODS 

Participants 

A total of 20 young adults (16 females) participated in the study (mean age 

= 20.2, standard deviation = 1.88). All participants were healthy, right handed, with 

normal or corrected-to-normal vision and hearing, and had no disclosed history of 

neurological or psychiatric disorders. Participants were recruited through on-

campus flyers and an online research participation system (Sona Systems), and 

were paid for their participation. Written informed consent was obtained prior to 

experimental sessions and all experimental protocols were approved by University 

of Louisville’s Institutional Review Board prior to data collection. No participants 

were excluded from any analyses. 

Procedure - Stimuli 

 Red triangles and blue squares were used as cues to predict the 

presentation of a fearful face with an aversive sound or a neutral face with a neutral 

sound, respectively. Images of fearful and neutral faces (male and female) were 

acquired from the Chicago Face Database (Ma, Correl & Wittenbrink, 2015). Audio 

clips of aversive human screams (7 male, 7 female), along with neutral noises of 

conversational chatter and nature sounds (running water) were found on the 

internet. All audio clips were edited to 2 seconds in length and normalized for 

loudness. During scanning, visual stimuli were projected onto a mirror at the back
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of the scanner bore and auditory stimuli was presented binaurally through 

headphones. 

Scanning Paradigm 

 Since fear can be defined as a direct or immediate threat, while anxiety 

tends to be more ambiguous or diffuse, the present study aimed to manipulate the 

“if” and “when” a threatening stimulus would occur, in order to differentiate the 

neural mechanisms of fear and anxiety. This was done by presenting the 

participants with a probability that a threatening stimulus would occur for each trial 

(“if”), as well as manipulating the waiting time between cue presentation and 

stimulus onset (“when”). 

 For the fear condition, a “100%” within a red triangle was displayed for 

500ms. After this cue, a fearful face and human scream was immediately 

presented (2000ms), followed by an inter-trial interval of 500ms (4 seconds total). 

In the anxiety condition, probabilities inside a red triangle cue included 80%, 60%, 

40%, and 20% and were presented for 500ms. Trials were formulated such that 

within the presentation of each probability, threatening stimuli did occur that 

percentage of the time, and across all anxiety trials, threatening stimuli occurred 

50% of the time. Additionally, the anxiety condition included a variable anticipatory 

period before stimulus onset which ranged from 500-5000ms, during which time 

participants viewed a blank black screen. Following stimulus presentation (2 

seconds), any additional time was incorporated into the inter-trial interval for a total 

trial length of 8 seconds. In the instances when threatening stimuli did not occur in 
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the fear and anxiety conditions, a neutral face and nature noises were instead 

presented. 

 The fear and anxiety conditions were both matched with control conditions. 

In the neutral condition, a “100%” was presented within a blue square, and a 

neutral face and conversational chatter immediately followed. The “wait” condition 

was cued with probabilities of 60% or 20% shown within a blue square, followed 

by the same variable waiting period ranging from 500-5000ms before stimulus 

onset. For the trials in which a neutral face and conversational chatter did not 

occur, a neutral face and nature noises were presented. 

 The study was run in a hybrid mini block design, which consisted of mini 

blocks of 16 seconds (4 trials of fear/neutral per block, or 2 trials of anxiety/wait 

per block) and were presented in pseudo-random order. 

 After scanning, participants rated all faces using a seven-point Likert scale 

to assess valence (1 = Extremely pleasant and 7 = Extremely Unpleasant, with 4 

= Neutral). Behavioral data were analyzed using SPSS (Version 24.0.0.0; SPSS, 

INC.). A probability level of p < 0.05 was considered statistically significant. 

Neuroimaging Methods - Imaging Data Acquisition 

 Structural. All structural MRI images were acquired using a Siemens 3-T 

Skyra MR scanner located at the University of Louisville School of Medicine. A 20-

channel head coil was used for radiofrequency transmission and reception. 

Participants were given earplugs to reduce scanner noise, and were additionally 

given headphones to receive instructions and auditory stimuli. Foam padding was 
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added to limit motion if additional room remained within the head coil, and a piece 

of folded tape was placed over the participant’s forehead as a reminder to remain 

still throughout the scan. Structural images were obtained via a T1-weighted 

magnetization-prepared rapid gradient-echo sequence (MPRAGE) in 208 sagittal 

slices. Imaging parameters were as follows: echo time (TE) = 2.26ms, repetition 

time (TR) = 1700ms, flip angle = 9.0˚, field of view (FoV) = 204 mm, and voxel size 

= 0.8 × 0.8 × 0.8 mm. Scan parameters were consistent for all imaging sessions 

associated with this study. 

 Functional. Functional blood oxygenation level-dependent (BOLD) images 

were collected using gradient-echo T2*-weighted echoplanar imaging (TR = 

3000ms; TE = 30ms; multi-band accelerator factor = 2; FoV = 192mm; 78 

transverse slices, 1.5mm slice thickness, 1.5 × 1.5 × 1.5mm voxels, flip angle = 

90˚). Slices were oriented obliquely along the AC-PC line. 

MVPA 

 There are several software packages available that facilitate the use of 

MVPA including the must have Python 2.x and NumPy, and additional packages 

such as SciPy, NiBabel, IPython, FSL, AFNI, scikit-learn, Shogun, LIBSVM, R and 

RPy, and matplotlib that provide more functionality. Although these packages can 

be installed on various operating systems, an easier way is to use NeuroDebian’s 

virtual machine which provides many popular neuroscience packages (Hanke et 

al., 2010). All the mentioned packages are parts of PyMVPA, a Python-based 

MVPA toolbox (www.pymvpa.org) (Hanke et al., 2009). By using Python, this 

toolbox benefits from the many existing machine learning libraries. Around the 

http://www.pymvpa.org/
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same time that PyMVPA was developed, the Princeton MVPA toolbox 

(http://code.google.com/p/princeton-mvpa-toolbox/) was created using Matlab. 

 We used linear support vector machines (Linear SVM) in this study to 

categorize fMRI responses. In order to find the patterns for different conditions in 

the brain, we got classifiers’ results about the importance of features (weights) in 

the dataset. In PyMVPA, support vector machines are one of the classifiers that 

are accompanied with so-called sensitivity analyzers. A sensitivity analyzer is an 

object that knows how to get the weights from a particular classifier type; each 

classification algorithm hides them in different places. SVM and k-nearest 

neighbors (kNN) were two classifiers that we utilized in this study. Not only do 

SVMs come with sensitivity analyzers (which is the main reason we used this 

classifier) but also we got more accurate classification results with it compared to 

kNN. 

Our data for each subject was obtained in one run (named as “chunks” in 

MVPA analysis) consisting of 48 blocks of “rest”, 13 blocks of “wait”, 6 blocks of 

“fear”, 6 blocks of “neutral”, 25 blocks of “dummy”, and 19 blocks of “anxiety”. There 

were 340 samples or brain volumes in total with each block containing a different 

number of samples. One way to prepare the data for classification is to average all 

the samples within each block and do leave-one-block-out cross-validation. We did 

not take this approach because this way, we would only have 48 + 13 + 6 + 6 + 25 

+ 19 = 117 samples which were not enough for our training purposes. Instead, we 

took every single sample and fed them into the SVM classifier for training, i.e. 

leave-one-sample-out cross-validation. Our study was not initially designed for 

http://code.google.com/p/princeton-mvpa-toolbox/
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subsequent MVPA analysis, and that made the training process tricky. If we 

instead had multiple runs for each subject like the Haxby et al., (2001) study, we 

could easily leave runs (or chunks) out and cross-validate the models.
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RESULTS 

In the first phase of our analysis, we classified fear versus neutral and 

anxiety versus wait for all the individuals separately in their own space. Model 

accuracies for fear vs. neutral ranged from 56.9% to 87.7% with a mean of 73.99% 

and standard deviation of 8.97%. For anxiety vs. wait, they ranged from 59.1% to 

80% with a mean of 68.08% and standard deviation of 4.96%. Intensity 

normalizations were done based on neutral and wait conditions, respectively. 

Table 1 contains all the accuracies together with confusion matrices. 

Table 1 

Model accuracies and confusion matrices for fear vs. neutral (left) and anxiety vs. 

wait (right). 

Subject 
Accuracy 

(%) 

Confusion 

Matrix 

Accuracy 

(%) 

Confusion 

Matrix 

1 75.4 [
26 10
6 23

] 67.0 [
34 16
22 43

] 

2 83.1 [
27 6
5 27

] 67.8 [
36 17
20 42

] 

3 86.2 [
27 4
5 29

] 65.2 [
33 17
23 42

] 

4 83.1 [
26 5
6 28

] 70.4 [
33 11
23 48

] 
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5 81.5 [
26 6
6 27

] 63.5 [
31 17
25 42

] 

6 67.7 [
21 10
11 23

] 70.4 [
38 16
18 43

] 

7 61.5 [
18 11
14 22

] 69.6 [
37 16
19 43

] 

8 73.8 [
24 9
8 24

] 61.7 [
32 20
24 39

] 

9 72.3 [
23 9
9 24

] 70.4 [
36 14
20 45

] 

10 73.8 [
20 5
12 28

] 59.1 [
30 21
26 38

] 

11 60.0 [
16 10
16 23

] 80.0 [
43 10
13 49

] 

12 69.2 [
21 9
11 24

] 69.6 [
37 16
19 43

] 

13 86.2 [
25 2
7 31

] 71.3 [
35 12
21 47

] 

14 87.7 [
27 3
5 30

] 62.6 [
30 17
26 42

] 

15 61.5 [
19 12
13 21

] 69.6 [
38 17
18 42

] 

16 72.3 [
21 7
11 26

] 64.3 [
36 21
20 38

] 

17 56.9 [
18 14
14 19

] 60.9 [
32 21
24 38

] 

18 78.5 [
24 6
8 27

] 73.9 [
37 11
19 48

] 
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19 76.9 [
23 6
9 27

] 71.3 [
37 14
19 45

] 

20 72.3 [
20 6
12 27

] 73.0 [
40 15
16 44

] 

 

The following chart displays model accuracies for fear and anxiety in 

adjacent red and blue bars for better comparison. It is apparent that fear is more 

easily differentiated from neutral than anxiety is from wait. 

 

Figure 5: Fear vs. neutral (red) and anxiety vs. wait (blue) classification results for all the 20 subjects. 

We classified fear versus anxiety afterwards, once with normalizing based 

on neutral, and the second time based on wait since all volumes have to be 

normalized based on the same condition in each classification trial. The two sets 

of results were very close with minimums of 55.7% and 56.8%, maximums of
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86.4% and 86.4%, means of 72.06% and 72.50%, and standard deviations 

of 7.74% and 7.48%. All the model accuracies with confusion matrices are listed 

in Table 2. 

Table 2 

Model accuracies and confusion matrices for fear vs. anxiety with normalization 

based on neutral (left) and based on wait (right). 

Subject 
Accuracy 

(%) 

Confusion 

Matrix 

Accuracy 

(%) 

Confusion 

Matrix 

1 68.2 [
50 22
6 10

] 69.3 [
51 22
5 10

] 

2 77.3 [
51 15
5 17

] 72.7 [
49 17
7 15

] 

3 73.9 [
54 21
2 11

] 75.0 [
53 19
3 13

] 

4 83.0 [
48 7
8 25

] 84.1 [
50 8
6 24

] 

5 73.9 [
49 16
7 16

] 75.0 [
50 16
6 16

] 

6 78.4 [
52 15
4 17

] 75.0 [
50 16
6 16

] 

7 67.0 [
50 23
6 9

] 70.5 [
50 20
6 12

] 

8 71.6 [
48 17
8 15

] 70.5 [
48 18
8 14

] 

9 75.0 [
52 18
4 14

] 75.0 [
52 18
4 14

] 

10 69.3 [
50 21
6 11

] 71.6 [
51 20
5 12

] 
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11 73.9 [
53 20
3 12

] 75.0 [
54 20
2 12

] 

12 85.2 [
52 9
4 23

] 85.2 [
52 9
4 23

] 

13 73.9 [
48 15
8 17

] 75.0 [
49 15
7 17

] 

14 86.4 [
55 11
1 21

] 86.4 [
55 11
1 21

] 

15 58.0 [
42 23
14 9

] 60.2 [
44 23
12 9

] 

16 55.7 [
40 23
16 9

] 56.8 [
42 24
14 8

] 

17 67.0 [
51 24
5 8

] 65.9 [
52 26
4 6

] 

18 70.5 [
49 19
7 13

] 75.0 [
50 16
6 16

] 

19 68.2 [
44 16
12 16

] 70.5 [
45 15
11 17

] 

20 64.8 [
51 26
5 6

] 61.4 [
49 27
7 5

] 

 

Figure 6 visualizes the closeness of the two model accuracies for each 

subject. As mentioned above, the only difference between these pairs of models 

is the conditions on which data is normalized. 
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Figure 6: Fear vs. anxiety normalized based on neutral (lime) and based on wait (dark green) classification results for 
all the 20 subjects. 

 In the group analysis phase, we transformed all individual models for fear 

vs. neutral, anxiety vs. wait, and fear vs. anxiety normalized based on wait to a 

standard space with 1mm3 resolution. Although fear vs. anxiety models with 

normalization based on both neutral and wait conditions were at hand, we used 

the latter due to slightly higher accuracies. In order to visualize the response 

patterns associated with these models, they were then projected back to 3D brain 

volumes, binarized, and added together, enabling us to see all the voxels that were 

activated at least once by one of the individuals. So if a voxel is on in the final 

result, it could be because of more than one (up to 20) subject sharing that voxel 

in their response patterns. We limited this accumulated pattern by accepting voxels 

that were activated in at least 8 (Figure 7) or at least 10 (Figure 8) of the individual 

patterns. Red/blue/green patterns represent voxels that are most discriminative for 

distinguishing between fear vs. neutral/anxiety vs. wait/fear vs. anxiety conditions. 
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Figure 7: 3D views of fear vs. neutral (red), anxiety vs. wait (blue), and fear vs. anxiety (green) patterns, shared by at 
least 8 of the individuals. 
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Figure 8: 3D views of fear vs. neutral (red), anxiety vs. wait (blue), and fear vs. anxiety (green) patterns, shared by at 
least 10 of the individuals.  
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Further, we captured ventral views of the patterns to look through portions 

of them inside the amygdala, hippocampus, and ventral visual processing stream. 

 

Figure 9: Ventral views of portions of the patterns from the amygdala (top left), hippocampus (top right), and ventral 
visual processing stream (bottom).  
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Our final attempt was to merge functional data of individuals and do 

classification on a larger number of data points which are originally brain volumes. 

Because of memory limitations as mentioned before, we merged subjects into 

pairs and could not go further. In particular, after transforming all the individual 

data into a 2mm3 standard space, we merged the first subject with each of the 

other 19. A 2mm3 space was used because we ended up having data larger than 

memory capacity of the NeuroDebian machine. Table 3 contains fear vs. neutral 

model accuracies and confusion matrices for all the 19 combinations. Here we 

used leave-two-samples-out (sample 1 of the first subject & sample 1 of the second 

subject) cross-validation which results in 340 iterations. 

Table 3 

Model accuracies and confusion matrices for fear vs. neutral for 19 pairs of 

subjects, all compared to the first subject. 

Subjects 
Accuracy 

(%) 

Confusion 

Matrix 
Subjects 

Accuracy 

(%) 

Confusion 

Matrix 

1 & 1 -- -- 1 & 11 68.5 [
41 18
23 48

] 

1 & 2 69.2 [
45 21
19 45

] 1 & 12 65.4 [
41 22
23 44

] 

1 & 3 70.0 [
43 18
21 48

] 1 & 13 66.9 [
42 21
22 45

] 

1 & 4 65.4 [
40 21
24 45

] 1 & 14 72.3 [
45 17
19 49

] 

1 & 5 66.9 [
41 20
23 46

] 1 & 15 63.8 [
39 22
25 44

] 
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1 & 6 63.1 [
40 24
24 42

] 1 & 16 66.9 [
41 20
23 46

] 

1 & 7 70.8 [
43 17
21 49

] 1 & 17 66.9 [
43 22
21 44

] 

1 & 8 70.0 [
44 19
20 47

] 1 & 18 70.8 [
46 20
18 46

] 

1 & 9 63.1 [
36 20
28 46

] 1 & 19 63.1 [
40 24
24 42

] 

1 & 10 61.5 [
38 24
26 42

] 1 & 20 60.8 [
38 25
26 41

] 

 

In a similar way, we can classify other possible combinations and compare 

between-subject variabilities with one another and also with within-subject 

variance of each individual.



28 
 

DISCUSSION 

The main goal of this study was to determine whether fear and anxiety 

emotions have distinct neural correlates, using a MVPA approach. We successfully 

found different patterns for the two conditions through classification attempts on 

individuals and combining their results. Moreover, we tried merging subjects and 

then classifying conditions to see if we could get more accurate models and also 

to examine the variance between subjects. 

As results showed, models that classified fear & neutral conditions were 

more accurate compared to anxiety & wait. This indicates that fear is relatively 

more distant from its control condition – and therefore better distinguishable – than 

anxiety from wait. Next, we classified fear versus anxiety to see how different their 

response patterns are. Models with 72% average accuracy were achieved, through 

which the most discriminatory features between fear and anxiety were found. We 

combined all the individual fear vs. neutral models as well as anxiety vs. wait and 

fear vs. anxiety to reach general grouped models. These models were eventually 

visualized in red, blue, and green colors respectively. 

The amygdala and hippocampus areas contained more of voxels in red 

which indicates their importance for differentiating fear. Moreover, we observed a 

significant number of red voxels in the whole inferotemporal (IT) cortex, showing 

that subjects share a more common fear response. None of the colors were
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dominant in the ventral visual processing stream. This type of analysis 

would not be possible with conventional univariate methods. 

In our last step, we measured the variance between the first subject and 

each of the other subjects by classifying data containing combinations of them. As 

explained before, a well-differentiating classifier would show lower between-

subject variance. Although classification accuracies were fairly above chance, they 

couldn’t reach the precision of individual models because of within-subject 

variance being lower than between-subject variance. 

Finally, we propose a way on how to consider the different models of neural 

responses which vary in the level of precision; the multivariate and univariate 

models in particular. As discussed, MVPA provides us with more informative 

models with which we have deeper views into patterns of voxels. However, the 

brain can still be viewed as a set of regions, and be examined through univariate 

models. Hence, these models should not just get discarded after the advent of 

MVPA. So even though the two kinds of analysis offer different scales, they are 

both true representations of the same thing and should coexist; no single model 

can explain the data completely. Therefore, we suggest maintaining all the model 

types, but with different probabilities attached to each type. These probabilities 

actually indicate how well each model type explains the data, resulting in a stable 

general model. Bayesian program learning (BPL) which was introduced by Lake, 

B. M. et al., (2015) also suggests the same idea.
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APPENDIX 

import mvpa2 

from mvpa2.suite import * 

anxiety_fname = os.path.join('prefiltered_func_data_mcf.nii.gz') 

mask_fname = os.path.join('ME_MVPA_IT.nii.gz') 

attr_fname = os.path.join('attributes.txt') 

attr = SampleAttributes(attr_fname) 

fds = fmri_dataset(samples=anxiety_fname, 

targets=attr.targets, chunks=attr.chunks, 

mask=mask_fname) 

detrender = PolyDetrendMapper(polyord=1, chunks_attr='chunks') 

detrended_fds = fds.get_mapped(detrender) 

zscorer = ZScoreMapper(param_est=('targets',['wait'])) 

zscore(detrended_fds, param_est=('targets',['wait'])) 

fds=detrended_fds 

 

fds.sa['blocktype'] = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 

77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 

107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 

120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 

133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 

159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 

172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 

198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 

211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 

224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 

237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 

250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 

263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 

276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 

289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 

302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 

315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 

328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340 ] 

 

fds = fds[fds.sa.targets != 'rest'] 

fds = fds[fds.sa.targets != 'dummy']
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fds = fds[fds.sa.targets != 'neutral'] 

fds = fds[fds.sa.targets != 'wait'] 

clf = LinearCSVMC() 

fsel = SensitivityBasedFeatureSelection( 

OneWayAnova(), 

FixedNElementTailSelector(500, mode='select', tail='upper')) 

fclf = FeatureSelectionClassifier(clf, fsel) 

cvte = CrossValidation(fclf, NFoldPartitioner(attr = 

'blocktype'), 

enable_ca=['stats']) 

results = cvte(fds) 

print np.round(cvte.ca.stats.stats['ACC%'], 1) 

print cvte.ca.stats.matrix 

 

sensana = fclf.get_sensitivity_analyzer() 

cv_sensana = RepeatedMeasure(sensana, 

ChainNode((NFoldPartitioner(attr = 'blocktype'), 

Splitter('partitions', 

attr_values=(1,))))) 

sens = cv_sensana(fds) 

sens_comb = sens.get_mapped(maxofabs_sample()) 

'imghdr' in fds.a 

nimg = map2nifti(fds,sens_comb) 

nimg.to_filename('fear_vs_anxiety_wait_pattern.nii.gz')
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