
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2017 

Performance analysis of organizations as complex systems. Performance analysis of organizations as complex systems. 

William C. Harrington Jr. 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Industrial Engineering Commons 

Recommended Citation Recommended Citation 
Harrington, William C. Jr., "Performance analysis of organizations as complex systems." (2017). Electronic 
Theses and Dissertations. Paper 2725. 
https://doi.org/10.18297/etd/2725 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.library.louisville.edu%2Fetd%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2725
mailto:thinkir@louisville.edu


PERFORMANCE ANALYSIS OF ORGANIZATIONS 

AS COMPLEX SYSTEMS 
 

 

 

 

By 

 

William C. Harrington, Jr. 

B.S.M.E., University of Cincinnati, 2001 

M.B.A., Case Western Reserve University, 2008 

 

 

 

 

A Dissertation 

Submitted to the Faculty of the 

J.B. Speed School of Engineering of the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

 

 

 

 

Doctor of Philosophy 

in Industrial Engineering 

 

 

 

Department of Industrial Engineering 

University of Louisville 

Louisville, KY 

 

 

 

May 2017 

 

 



 

Copyright 2017 by William Charles Harrington, Jr. 

 

 

All rights reserved 
  



 

 

 

 

 



ii 

PERFORMANCE ANALYSIS OF ORGANIZATIONS 

AS COMPLEX SYSTEMS 

 

By 

 

Bill Harrington 

B.S.M.E., University of Cincinnati, 2001 

M.B.A., Case Western Reserve University, 2008 

 

A Dissertation Approved on 

 

 

 

April 14, 2017 

 

 

 

by the following Dissertation Committee: 

 

 

 

_________________________________ 

Dr. Ki-Hwan Bae, PhD 

 

 

 

_________________________________ 

Dr. Jason Saleem, PhD 

 

 

 

_________________________________ 

Dr. William Biles, PhD 

 

 

 

_________________________________ 

Dr. Scott LaJoie, PhD 

  



iii 

DEDICATION 

This dissertation is dedicated to my wife 

Krista Lynn Harrington 

whom I love with all my heart. 

  



iv 

ACKNOWLEDGEMENTS 

 I would like to thank my committee chair, Dr. Ki-Hwan Bae, for his interest and 

guidance in my dissertation.  I would also like to thank the other committee members, Dr. 

Jason Saleem, Dr. William Biles, and Dr. Scott LaJoie for their time and effort reviewing 

this work and providing valuable input for its advancement.  My gratitude is also owed to 

the many leaders and colleagues of my employer, Norton Healthcare, and especially 

Kathleen Exline and Todd Lammert for their continued commitment to my professional 

and personal development.  Special thanks is owed to my parents, William and Dawn, 

and my siblings, Brian and Jessica, for helping to shape my desire for continual learning 

and growth.  Finally, I am grateful for the support and patience of my wife, Krista, and 

our sons, Donovan and Shea, as they are God’s special blessing to me. 

  



v 

ABSTRACT 

PERFORMANCE ANALYSIS OF ORGANIZATIONS 

AS COMPLEX SYSTEMS 

William C. Harrington, Jr. 

April 14, 2017 

 This dissertation provides a method for evaluating the difference in performance 

after an organization makes a change while considering the stochastic nature in which it 

operates.  A procedure that uses simulation to estimate outcomes by adjusting 

controllable parameters and leaving uncontrolled parameters unadjusted is proposed.  As 

healthcare organizations are considered as highly complex systems, a case study 

involving a scheduling tactic change in the mother-baby service line of a hospital is used 

to demonstrate application of this procedure. 

 The goal in the case study was to reduce delays in transitioning care of mother 

patients from the labor and delivery unit to the postpartum care unit.  The Holds Rate 

metric measured delays as the number of mothers deemed to be unintentionally delayed 

from transferring to the postpartum care unit to the total number of deliveries.  While the 

scheduling tactic change did not yield the anticipated result, the proposed procedure was 

used to show that performance would have been worse had the change not been made.  

Hospital leadership chose to keep the solution and target performance was later 

surpassed.  Ultimately, hospital leaders heralded the project as a great success. 
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 The proposed procedure was applied with two different simulation methods.  A 

Monte Carlo simulation model was used to measure Holds Rate and a discrete-event 

simulation model to measure the average delay time experienced by patients waiting to 

be placed in a postpartum bed following delivery.  The results of the procedure with both 

models led to the same conclusion that the scheduling tactic change indeed reduced 

delays in the transitions of care between the two hospital units. 

 The case study demonstrated the validity and applicability of the proposed 

procedure and organizations may benefit from its use as leaders may be more prone to act 

since analysis with the procedure isolates the effects of uncontrolled parameters.  

Isolating these effects to better understand those of controlled parameters can promote an 

organization’s sustainability by advancing knowledge of cause-and-effect relationships.  

Future research with this topic can include application with other simulation methods, 

investigating the impacts of technology advancements, and considering a method of 

analysis using Bayesian inference. 

 



vii 

TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGMENTS .....…....……………………………………………………....iv 

ABSTRACT ..……………………………………………………………………………..v 

LIST OF TABLES  ....………………………………………………………………….viii 

LIST OF FIGURES ...….………………………………………………………………....x 

INTRODUCTION ………………………………………………………………………..1 

LITERATURE REVIEW …....…………………………………………………………...6 

METHODOLOGY ......………………………………………………………………….40 

CASE STUDY ……...…………………………………………………………………...48 

MONTE CARLO SIMULATION MODEL ....………………………….………………63 

DISCRETE-EVENT SIMULATION MODEL ……...…….……………………………89 

CONCLUSIONS  ........………………………………………………..……………….101 

REFERENCES …….…………………………………………………...……………...105 

CURRICULUM VITA …….……………………………………………...…………...111 

  



viii 

LIST OF TABLES 

TABLE           PAGE 

1. Chu et al. (2003) Complexity Generators Mapped to Mother-Baby Service Line 

Properties   …..…………………………………………………………………………..49 

2. Time Period Definitions ……………….………………………………………...50 

3. Listing of Key Variables …...………………………………………..…………..54 

4. Summary of Data Provided for Regression Model Used for the MCS Model .…54 

5. Summary of Data Provided for the DES Model …...……………….…………...57 

6. HRD Values by Weekday and Time Window for the DES Model ....…..………57 

7. Delivery Type and PP LOS Data by Weekday for the DES Model ......………...60 

8. CV Calculation for BL (T0) and IP1 (T1) ….....……………………………….....75 

9. T0′ Parameter Values for the MCS Model ……………………………………....75 

10. Calculation of Y0′ and % Y0′ Improved over Y0 for Holds Rate ……………..….76 

11. T1′ Parameter Values for the MCS Model ……………………………………....79 

12. Calculation of Y1′ and % Y1 Improved over Y1′ for Holds Rate ………………...80 

13. Observed Holds Rate Improvement Values Compared to Procedure-Derived 

Values …………………………………………………………………………………...84 

14. Results of IP2 vs. BL for Holds Rate Using Different Replication Lengths and 

Sample Sizes ....………………………………………………………………………….86 

15. Mean ADT Values by Weekday in IP2 Simulation ....…………………………..93 

16. Table of ωg,h Values ....…………………………………………………………..97



ix 

TABLE           PAGE 

17. Table of Ēg,h Values ....…………………………………………………………..97 

18. Estimated Probabilities of Vaginal Delivery by Weekday for T1′ ………………98 

19. Calculation of Y1′ and % Y1 Improved over Y1′ for ADT ………………………99 

 



x 

LIST OF FIGURES 

FIGURE           PAGE 

1. Graphical depiction of answer to Question #1 …………………………………..41 

2. Graphical depiction of answer to Question #2 …………………………………..41 

3. Process flow diagram of the procedure to answer Question #1 …………………43 

4. Process flow diagram of the procedure to answer Question #2 …………………45 

5. Typical patient flow from delivery in L&D to discharge from PP …...…………48 

6. Boxplot with Two-Sample t Test for Daily Average PP LOS …………………..55 

7. Boxplot of actual daily deliveries vs. simulated daily deliveries from the DES 

model for IP2 ....……………………………………………………………………...….58 

8. Boxplot of actual PP LOS vs. simulated PP LOS from the DES model for IP2 ..61 

9. Lognormal probability plot of D/C to Room Clean Time in IP2 ……….……….62 

10. Best subsets analysis for regression using all values of RS data ………………..64 

11. Two term regression model to fit all values of RS data …………………………65 

12. Residual plots of two term regression model to fit all values of RS data ……….66 

13. Scatterplot of Holds Rate vs. C*B for RS data ………………………………….67 

14. Best subsets analysis for regression using RS data with C*B values >1200 ……67 

15. Selected regression model to fit C*B values >1200 of RS data ………………...68 

16. Residual plots of selected regression model …………………………………….69 

17. Normal probability plot of residuals for selected regression model …………….69 

18. Scatterplot of B vs. C for RS data ……………………………………………….72



xi 

FIGURE           PAGE 

19. Scatterplot of Ai vs. Ai-1 for RS data …………………………………………….72 

20. Simulation output compared to BL Overall Holds Rate (Y0) …………………...73 

21. Histogram of C*B values for IP1 data …………………………………………..74 

22. Baseline performance shift CDF probability for Holds Rate ……………………75 

23. Simulation output compared to IP1 Overall Holds Rate (Y1) …………………...78 

24. Post-change performance shift CDF probability for Holds Rate ….…………….81 

25. Histogram of C*B values for IP2 data …………………………………………..82 

26. Simulation output compared to IP2 Overall Holds Rate (Y1) …………………...83 

27. Basic structure of the DES model ……………………………………………….90 

28. Plot of mean difference from average census by weekday ……………………...93 

29. Simulation output compared to IP2 ADT value (Y1) ……………………………94 

30 Bar graph of θh values …………………………………………………………...97 

31. Distribution of post-change performance shift values for ADT ……………….100 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

Between 2012 and 2013, I led a project for my employer, Norton Healthcare 

(NHC), which involved reducing delays in care transitions for mothers who recently 

delivered in the labor and delivery (L&D) unit.  The amount of time a patient was 

delayed from transferring to the postpartum (PP) care unit was a key factor in 

determining a patient to be unintentionally held.  This project was relevant to patient 

satisfaction, which was measured in the Hospital Consumer Assessment of Healthcare 

Providers and Systems (HCAHPS) surveys.  Any patient rating for the hospital less than 

a 9 on a 0-10 scale is considered unfavorable.  An internal study revealed that patients 

who were held from the PP care unit were 57% more likely to rate the hospital 

unfavorably than other patients.  This result was found to be significant by means of a 

Two-Proportions Test (p = 0.037). 

While improving patient satisfaction was the impetus for the project, there are 

other factors apart from considering patients to be held that impact patient satisfaction.  

For example, how physicians and staff interact with the patients is one such factor.  

Therefore, the scope of the project was to reduce the frequency of patients being held 

from the PP care unit as it was not to directly improve patient satisfaction scores. 
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The targeted goal in reducing delays was not initially achieved after implementing 

process improvements.  However, I suspected that factors outside the control of the 

project team contributed to this performance gap.  The challenge was how to quantify 

what the performance would have been had these conditions been similar to those at the 

start of the project.  I was familiar with Monte Carlo simulation (MCS) and I had applied 

this technique earlier in the project to demonstrate the anticipated impact various 

parameter changes would have on delays.  I used a less-refined version of the method 

discussed in Chapter 3 to demonstrate to hospital leadership that the post-implementation 

performance would have been better if conditions outside the control of the project team 

had not changed.  The analysis allowed leaders to continue their support of the initial 

interventions, which eventually led to the goal being exceeded. 

This experience inspired me to pursue this dissertation topic as I see opportunity 

to use the proposed method to enhance the evaluation of performance in organizations 

and thereby promote more appropriate responses in the presence of environmental 

variability.  I am further hopeful that growth in the availability of electronic data and the 

capability of computing will allow the work of this dissertation to be leveraged for 

practical use. 

 

1.2 Problem Statement 

Organizations are complex systems operating in dynamic environments, often 

with limited control.  For example, a manufacturer may have minimal influence over the 

cost and availability of its resources as well as the price and demand for its end products.  

At the same time, the manufacturer could directly change the design of its products, 
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production methods, marketing tactics, and other aspects that impact how value is created 

and delivered.  Therefore, it may be difficult to determine if a change in performance was 

due to the actions of leadership or due to market forces beyond the firm’s direct control. 

The objective of this dissertation is to provide a method for evaluating the 

difference in performance after an organization makes a change while considering the 

stochastic nature of the environment in which it operates.  There are two possible 

questions that such an organization would want answered: 

 

Question #1: If the post-change approach existed in the baseline, how would the 

baseline (pre-change) performance have differed? 

 

Question #2: If the baseline approach still existed, how would the post-change 

performance have differed? 

 

While the first question may be limiting since the past cannot be altered, it is still 

insightful to know should similar conditions present themselves in the future.  The second 

question, however, is directly actionable as it addresses the current state conditions. 

There are at least two primary benefits for utilizing this type of analysis.  The first 

benefit is to provide a better gauge of performance shift (i.e., the difference in 

performance between two values of interest) between the post-change environment and 

the baseline environment to prevent irrational reaction.  One such irrational reaction 

could be reverting to a prior process even though the new process actually prevented 

performance from further deterioration (referred to as the unfortunate loser condition).  

Another irrational reaction is applauding a new approach while external forces have been 

the primary cause for success and results would have been even better with the prior 

method (referred to as the undeserving winner condition). 
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The second benefit is to challenge the extent to which market forces are deemed 

uncontrollable.  In modeling a real world environment, variables are either deterministic 

or stochastic.  With each stochastic variable, there may be parameters that an 

organization controls.  The sustainability of a firm can be strengthened by identifying 

such parameters and leveraging them to mitigate performance headwinds created by the 

associated stochastic variables.  A key example of this is when a business unit deploys 

scheduling tactics to manage demand.  While the overall level of demand may not be 

directly controlled, although marketing strategies may have some impact, the variation in 

daily demand can be regulated. 

The hypothesis of this research is that organizations can use simulation to 

evaluate the efficacy of a change that has already been made, and that doing so is more 

insightful than simply comparing pre-change and post-change performance.  To validate 

this hypothesis, an actual case study is used. 

 

1.3 Dissertation Organization 

After the introduction provided in Chapter 1, a literature review is provided in 

Chapter 2.  Topics central to this dissertation are discussed, which include understanding 

organizations as complex systems and simulation modeling to assess system 

performance.  Special attention is given to reviewing the presence of complexity and the 

use of simulation in healthcare due to the nature of the case study presented.  In Chapter 

3, the proposed analysis method is detailed.  A step-by-step procedure is provided for 

answering both questions posed in Section 1.2 above.  Both the validity and the 

applicability of this procedure are demonstrated in Chapters 4–6.  To demonstrate 
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validity, an actual case study in hospital operations involving a baseline and two 

improvement periods is discussed in Chapter 4.  To prove the breadth of applicability 

with the procedure, analysis was conducted with MCS in Chapter 5 and discrete-event 

simulation (DES) in Chapter 6.  However, the analysis was restricted in Chapter 6 to only 

answering Question #2 for the comparison between the baseline and second improvement 

period, and this was due to limitations with the availability of data in the baseline and 

first improvement period.  Implications of this topic are discussed in Chapter 7.  While 

the case study illustrates a particular application, the potential for using the proposed 

analysis method and subsequent ramifications go well beyond hospital operations and 

healthcare. 

 

1.4 Software 

Microsoft Excel was used to calculate parameters detailed in Chapter 4 for both 

modeling approaches and to create and run the MCS trials in Chapter 5.  Microsoft Excel 

was also used to calculate values in both Chapters 5 and 6 for Steps 1.7–1.9 and Steps 

2.7–2.9 of the proposed procedure outlined in Chapter 3.  Minitab was used for all 

statistical hypothesis tests (α = 0.05), distribution identification, and regression analyses.  

Arena was used to create and run simulations for the DES approach in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This chapter provides a summary of the literature review performed.  In addition 

to the relevant sections of books, papers reviewed include journal articles and conference 

proceedings accessed from various search engines and databases including Google 

Scholar, Ei Compendex, PubMed, and MEDLINE.  These works cover topics on 

organizational science, complex systems, and simulation modeling with application of 

these topics in healthcare.  Conclusions on current applications of simulation modeling, 

especially those pertaining to healthcare, are made in the final section of this chapter. 

 

2.1 Understanding Organizations as Complex Systems 

Dooley (2002) found that organizations are viewed as complex systems whose 

complexity is a function of its external environment, internal environment, and 

institutional environment.  The author defined organizational complexity to be “the 

amount of differentiation that exists within different elements constituting the 

organization.”  An organization’s complexity is driven by various factors including its 

structure, authority and locus of control, attributes of personnel, products, and 

technologies. 
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Sterman (2001) argued that organizational leaders must be knowledgeable of 

dynamic complexity in order to “understand the sources of policy resistance, and design 

more effective policies.”  Dynamic complexity is the “often counterintuitive behavior of 

complex systems” generated by interactions between agents.  This is contrasted with 

combinatorial complexity, which is the number of components a system possesses or the 

number of options to consider in decision making.  Also, policy resistance is the tendency 

for a system to respond to an intervention in a manner that defeats the aim of the 

intervention.  The author claimed the heuristics humans use to determine cause-and-effect 

relationships “systematically lead to cognitive maps that ignore feedbacks, nonlinearities, 

time delays, and other elements of dynamic complexity.”  Thus, tools are needed to 

understand the workings of dynamic complexity in a system. 

Chu et al. (2003) clarified six generators of complexity for any system, which are 

internal inhomogeneity, adaptivity, nonlinearity, net-like causality, radical openness, and 

contextuality.  With radical openness, the interaction between system and ambience is 

unbound.  Furthermore, there may be more generators of complexity than the six 

discussed.  Therefore, the authors argued that achievement of a unified Theory of 

Complexity is unrealistic. 

Kinsner (2008) reached a similar conclusion by identifying that the degree of 

complexity in a system “appears to be context sensitive, and cannot be defined 

universally, once and for all.”  Various contexts for understanding and defining 

complexity include the system’s structure, dynamics, function, organizational depth, and 

design in its creation.  Also, the authors pointed out that the bounds of system stability 
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change when a perestroika occurs, which is defined as a “phase transition induced by 

changing control parameters or operating conditions of the system.” 

Halley and Winkler (2008) postulated the existence of self-organization in a 

system is the critical factor in determining emergence to be complex rather than simple, 

and a system becomes complex when “complex emergence properties come into being.”  

Self-organization is defined as “a dissipative non-equilibrium order at macroscopic 

levels, due to collective, nonlinear interactions between multiple microscopic 

components.”  In other words, a system self-organizes when its agent interactions, which 

may vary disproportionately in scale, result in the system dynamically adapting to its 

environment.  Emergence is “typically described as a property of a system that is not 

reducible to, nor readily predictable from the properties of individual system 

components” and it ranges on a continuum of simple to complex.  To provide examples, 

the authors claimed the emergent properties of an ideal gas as “described by a simple gas 

law equation” are simple while those of an ecosystem are complex.  The authors stated 

that “as systems become more complex” they “have multiple hierarchical levels of self-

organization.” 

Hafez (2010) proposed that the Shannon Communication Model defined in 

Shannon and Weaver (1949) can be applied to quantify the system-environment 

interaction process.  Accordingly, interaction between a system and its environment is 

analogous to communication.  Under this paradigm, the sensors collecting information 

from the environment are synonymous to a communication source, the controller that 

determines actions based on the inputs and desired goals functions as a communication 

channel, and the effectors implementing the actions are similar to a communication 
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destination.  The ability of a complex system to interact with its environment is 

dependent on the amount, quality, and relevance of the information it receives, the 

availability of dependent responses, and its capacity to process information and determine 

responses. 

In continuing this work, Hafez (2012) posited that system complexity can be 

measured by application of the Shannon Communication Model.  The degree of 

complexity present in a system is based on the size of input and output event sets, 

considered to be the available communication resources, and the level of dependency 

between inputs and outputs, known as I/O dependency.  A system is considered to 

approach perfect communication efficiency as its I/O dependency makes increasing use 

of the available communication resources.  However, perfect efficiency is not achieved as 

systems continuously become more complex. 

 Spear (2009) acknowledged that organizations have become more complex as 

technological capabilities have advanced over time.  The author offered the healthcare 

industry as an example where technological growth has resulted in more specialties, 

marking an increase in inhomogeneity, which has raised the level of organizational 

complexity.  Corroboration is provided by Dooley (2002), which stated that “a hospital 

would be considered to have quite great complexity,” and Chu et al. (2003), which 

indicated that the field of medicine imports “the concepts of and insights from the study 

of complex systems.” 

  



10 

2.2 Complexity in Healthcare 

 In 2001, British Medical Journal published a series of four articles on the topic of 

complexity science and its relationship to healthcare.  Plsek and Greenhalgh (2001) 

presented the first article, which showed how a healthcare system can be viewed as a 

complex adaptive system (CAS).  The authors defined a CAS as “a collection of 

individual agents with freedom to act in ways that are not always totally predictable, and 

whose actions are interconnected so that one agent’s actions changes the context for other 

agents.”  Also, ways in which healthcare systems fit the characteristics of a CAS were 

discussed.  Two examples are clinical or administrative staff having personal obligations 

that may conflict with a change in practice hours, thereby creating fuzzy boundaries of 

the system, and care providers having different internal rules for how they choose to 

accommodate patient needs.  These examples respectively exemplify the concepts of 

contextuality and internal inhomogeneity presented by Chu et al. (2003). 

 In the second article, Wilson and Holt (2001) demonstrated how complexity 

science applies to the diagnosis and treatment of patients as well as the promotion of 

healthy lifestyles.  Clinical diagnoses are not always certain and there can be 

disagreement between clinicians, which are conditions that embody the characteristics of 

non-linearity and internal inhomogeneity from Chu et al. (2003).  Also, patients have the 

autonomy of whether or not to follow a treatment plan, which the authors argued 

demands the need for clinicians to understand what attracts patients to healthy or 

unhealthy behaviors.  These interactions between patients and clinicians align with 

definition of self-organization from Halley and Winkler (2008). 
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 The third article is that of Plsek and Wilson (2001), who demonstrated how 

complexity thinking applies to the organization and management of healthcare systems.  

The authors promoted the development of system-level targets and pooled budgets to 

encourage the creativity needed to maximize value in care delivery, as opposed to 

specifying individual targets and budgets for each agency in the continuum of care.  They 

proposed that leadership should set a system framework based on minimum 

specifications that have directional goals, set boundaries, identified resources, and 

established permissions.  The authors suggested, “Leadership inspired by complexity 

theory recognizes that change occurs naturally within the system and that individuals 

engage in this effort for a variety of reasons.”  These prescriptions for healthcare system 

leadership respect the concepts of adaptivity from Chu et al. (2003) and self-organization 

from self-organization from Halley and Winkler (2008). 

 The four-article series concluded with Fraser and Greenhalgh (2001), who 

discussed the need for clinical education to include the development of capability in 

addition to competence.  Capability entails adapting, learning, and improving, which the 

authors argued is essential in healthcare, especially when dealing with atypical patient 

presentations.  The authors claimed that an education process providing concurrent 

performance feedback enhances capability.  They offered an example in the “Norwegian 

continuing medical education system, where doctors in a peer group state learning needs, 

discuss ways forward, take action, and then report back on the feedback from the action.”  

This learning process is described as one where “individuals can achieve more than the 

sum of the parts (non-linear effects in a complex system)” and the authors propose that 

“both content learning and non-linear learning methods are needed.” 
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 Shiell et al. (2008) argued that complex health interventions differ from 

interventions made in complex systems, which may require evaluation approaches to 

account for the dynamic characteristics of complex systems when they are significant.  

Complex interventions, while considered to be complicated by having many components, 

do not alone fit the definitions of system complexity.  Alternatively, complex systems are 

presented as those having properties like interconnectedness and non-linearity.  

Interconnectedness can result in spin-off effects and the potential for stakeholders’ 

concepts of value to change, while non-linearity can be seen in small intermediate 

changes being realized before a phase transition occurs.  The authors provided evidence 

for these concepts in health policy evaluation by citing Siahpush and Scollo (2001), 

which documented the increase in support of public smoking bans after policy 

implementation.  The authors concluded that when the effects of complexity stretch 

beyond the capabilities of existing valuation methods, new approaches become necessary.  

They proposed such approaches should involve data collection that is inclusive of 

potential spin-off effects and modeling techniques that account for non-linear effects and 

extended impacts. 

 

2.3 Simulation Modeling to Assess System Performance 

Kelton et al. (2015) indicated that simulation “involves systems and models of 

them” that are used to mimic real system behavior.  Models “serve as a stand-in for 

studying” systems.  The authors pointed out that systems, including their respective 

models, are often studied to measure performance, improve operation, or even evaluate a 

potential design. 
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Chu et al. (2003) stated a complex system can be modeled provided that (1) 

radical openness, or the interactions with an ambient environment, and (2) contextuality, 

or the sharing of elements with other systems that take part in other causal processes, are 

reducible.  Furthermore, it is possible to represent some systems with more than one type 

of model. 

 Casti (1999) documented that a CAS has agents each making decisions based on 

deterministic functions of available information, yet the aggregate effect may appear to 

be random.  A CAS can be modeled at the agent level provided that the following three 

conditions are true.  First, there are a medium number of agents that is not too large for 

intuition and hand-calculation, and is not too small for statistical aggregation to 

sufficiently answer the study’s questions.  Second, the agents are intelligent and adapt 

their behavior by changing their rules, including generating new rules, on the basis of 

new information.  Third, each agent gets only local information from a relatively small 

portion of the other agents and uses this information to reach a decision on the next 

action. 

 Barbati et al. (2012) provided a thorough review to evaluate the impact of agent-

based models (ABMs) as they are presented in operational research and management 

science literature.  Similar to the models discussed in Casti (1999), ABMs “consist of a 

set of elements (agents) characterized by some attributes, which interact with each other 

through the definition of appropriate rules in a given environment.”  The authors argued 

that an ABM provides a useful heuristic-based solution approach when the problem is of 

large size, has modularity in its domain (i.e., agents make decisions), and when the 

domain changes frequently (i.e., agents constantly modify or adapt their decision rules).  
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Regarding decision paradigms, an ABM consists of either a cooperative or a competitive 

paradigm.  Cooperation-based interaction entails use of planning approaches to manage 

resource constraints so global goals are achieved, while competition-based interaction 

entails negotiation among self-interested agents, thereby hindering the opportunity for 

global optimization.  Common uses of ABMs for optimization include scheduling, 

transportation / logistics, and supply chain planning. 

 In the event that statistical aggregation can sufficiently answer the study’s 

questions, it is possible to use modeling approaches other than an ABM.  Kelton et al. 

(2015) provided three dimensions to classify a simulation model.  First, the model can be 

static or dynamic, where dynamic models are time dependent as they have trials whose 

results are a function of previous trials, while the trials of static models are independent 

from each other.  Second, the elements of the model can be either continuous or discrete, 

where continuous elements are not bound by events that can only occur at separated 

points in time as is the case for discrete elements.  Models can be purely continuous, 

purely discrete, or mixed.  Third, the model can be either deterministic or stochastic, 

where a deterministic model does not have any random inputs like those present in a 

stochastic model.  When statistical aggregation is suitable, stochastic models can be 

applied.  In particular, the authors presented DES as a dynamic and discrete stochastic 

modeling approach that is useful for understanding business operations. 

 Anderson et al. (2006) acknowledged that MCS is historically understood to be a 

static simulation approach while many individuals today take the term to mean any form 

of a stochastic simulation.  The authors presented a hypothetical example of modeling the 

operation of a computer manufacturer using the historical approach for MCS.  In the 
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example, direct labor cost, parts cost, and first-year demand were all randomly generated 

to compute profits in a stochastic model that was static and continuous.  While the 

example could have also been modeled using DES (e.g., order intake fluctuation 

requiring inventory, part expedites, and overtime costs), it demonstrated the ability to 

also use MCS for this type of problem. 

 Another modeling approach is system dynamic (SD) simulation.  Sterman (2001) 

stated that SD modeling and simulation are tools to “design and evaluate new policies 

before implementing them in the real world.”  SD models account for the elements of 

dynamic complexity by incorporating feedback loops and stock and flow structures, 

which can both be shown on causal loop diagrams (CLDs).  Feedback loops can be 

positive (i.e., self-reinforcing) and “amplify whatever is happening in the system” or they 

can be negative (i.e., self-correcting) and oppose changes in the system.  A set of 

interacting model equations is derived from a CLD, with probability factors included for 

elements that have uncertainty and may dynamically change.  The model equations can 

then be used in dynamic simulation to show time delays and nonlinear behavior of the 

system. 

 Halley and Winkler (2008) clarified that modeling a relationship at a system level 

with state variables (e.g., MCS and SD models) may be just as effective at predicting 

system behavior as a component-level model with individual events (e.g., ABMs and 

DES models).  When a system-level model is reasonably as effective at prediction as a 

component-level model, the state variables of the system-level model are identified as 

“real emergent properties.”  The authors pointed out that the PV = nRT relationship of 

modeling the thermodynamic properties associated with a gas is at the system-level and, 
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while possible, component-level models that make the same predictions based on 

molecular dynamics would add negligible value to the analysis of gases in closed vessels. 

Mustafee et al. (2010) included an overview of when each of these four 

simulation techniques is typically applied.  DES was found to be popular for modeling 

queuing systems.  MCS is typically applied when computation of an exact value for a 

response variable is “impossible or infeasible” using fixed values of input variables or by 

using deterministic algorithms.  SD is used to analyze the “behavior of complex systems 

over time” with the core assumption that changing one part of a system “will impact all 

other parts of an interrelated system.”  Finally, agent-based simulation (ABS) is well-

suited for modeling when assumptions at an agent interaction level do not infer obvious 

results at a system level. 

 

2.4 Simulation Modeling in Healthcare: An Overview 

There exists a multitude of examples where simulation has been applied to better 

understand healthcare, which affirms the previous comments on complexity in this field.  

Five literature review articles are discussed in this section.  The following three sections 

(i.e., 2.5–2.7) contain a sample of articles from journals and conference proceedings that 

cover a diverse range of topics pertaining to simulation in healthcare.  These papers are 

directly associated with the operations of healthcare facilities or supporting tools such as 

clinical science and economic evaluation, which may impact the decisions made within 

healthcare operations.  Also, Section 2.8 discusses barriers to implementing 

recommendations from simulation models in healthcare given that such implementation 



17 

is rarely documented, which is a topic discussed in four of the five literature review 

articles in this section. 

 Jun et al. (1999) provided a literature review focused primarily on works 

published between the mid-1970’s and 1997 of simulation applied to the operational 

needs of health care clinics.  Topics addressed included patient flow, resource allocation, 

and other future opportunities for improvement.  The authors found patient flow is 

addressed through scheduling and patient routing, and resource allocation has covered 

sizing and planning of beds, rooms, and staff.  While the authors identified that use of 

DES in healthcare grew over the time period reviewed, there was little evidence of 

recommendations from simulations being successfully implemented.  Future 

opportunities presented by the authors included complex multi-facility studies, leveraging 

optimization techniques with simulation, more user-friendly simulation software, and 

addressing implementation issues.  Finally, an observation of this journal article is that it 

is referenced by all four of the other literature review articles showcased. 

 Fone et al. (2003) reviewed 182 papers published between 1980 and 1999 

covering topics relating to computer simulation of stochastic systems with individuals in 

a population health or health service delivery setting.  The authors used an appraisal 

method adopted from a prior published format that first screened each paper, then 

assessed its validity, and finally evaluated its overall results and findings.  Papers were 

categorized into five topic groups.  Articles related to hospital scheduling were found to 

be the most prevalent, but tend to be of poorer quality as compared to those for screening 

patients.  A key deficit of hospital scheduling articles is that “very few papers reported 

that models had been implemented.”  In fact, the authors were “unable to reach any 
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conclusion on the value of modeling in health care because the evidence of 

implementation was so scant.”  However, an increasing trend in the “numbers of quality 

papers published in medical or health services research journals” was found.  Regarding 

simulation methodology, the authors reveal that DES was the most commonly used 

modeling approach, while MCS prevails in cancer screening studies. 

 Brailsford et al. (2009) searched roughly 10,000 articles and methodically 

identified 342 articles for full review that pertain to simulation and modeling in 

healthcare contexts.  These articles were published between 1952 and 2007 and are 

categorized by nine different attributes with subsequent analysis.  This effort supported a 

broader aim of developing a user guide to suggest appropriate modeling methods relative 

to problem type in healthcare.  While forms of modeling beyond simulation were 

considered, simulation was noted as “dominant in planning and system / resource 

utilization.”  Despite a growing trend with almost 50% of all modeling articles and over 

60% of simulation articles published between 2000 and 2007, fewer than 10% of studies 

had their findings implemented regardless of modeling method.  However, a significant 

number of studies’ findings have been discussed with client organizations.  Furthermore, 

the authors found evidence of unpublished modeling work in healthcare performed by 

business consultants and employed analysts based on commercial and promotional 

literature.  Regarding funding of published studies, academia was the dominant source 

under any modeling method while commercial funding sources were primarily restricted 

to simulation studies. 

 Mustafee et al. (2010) queried papers published between 1970 and 2007 listed in 

the ISI Web of Science® database with simulation in the healthcare context.  After initial 
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screening, 201 papers published between 1988 and 2007 were reviewed for 

categorization by simulation technique and topic, profiling of key attributes (e.g., authors, 

publication year, etc.), and strategic importance of papers and authors.  Strategic 

importance was determined via a five-stage co-citation analysis.  The authors found MCS 

to be the most commonly used simulation method followed by DES, SD, and ABS.  

Regarding applications, MCS was mainly used for health economics and evaluation of 

health interventions, DES was often applied for problems concerned with patient flow 

and resource scarcity, and SD was used for broad scale modeling of health systems and 

policy.  The authors could not comment on the application trends for ABS as only two of 

the papers used this method, which were both published in 2006.  The use of simulation 

in healthcare was observed as a growing trend due to the steady increase in publications 

between 2000 and 2007.  Regarding key significant publications, the authors identified 

five turning point articles, three of which are included in this Chapter 2 with Jun et al. 

(1999) being one and the other two being discussed in the following pages. 

 Günal and Pidd (2010) provided a review of articles published between 1965 and 

2009 that discussed DES modeling in healthcare with a focus on patient flows through 

hospitals and their departments.  Articles were classified by hospital area of application 

and accident and emergency (A&E) units were the most popular application for DES, 

with a variety of modeling objectives mentioned.  Inpatient units and outpatient clinics 

were other popular areas for modeling.  Inpatient models tended to focus on “patient 

flows to hospital beds, bed occupancy, and length of stay (LOS)” while outpatient models 

were mostly concerned with scheduling and capacity planning.  Despite other areas like 

operating rooms and critical care units having been modeled, there were very few 
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examples of whole hospital DES models and most studies were unit specific, which the 

authors found to potentially neglect interactions with other units.  The authors also 

identified long project cycle times, project cost, and determining the appropriate model 

accuracy as factors that continue to serve as “barriers to the successful implementation of 

simulation.”  While generic modeling software exists, the vast majority of articles focus 

on models developed for very specific applications, and the authors conclude this lack of 

genericity has resulted in case studies that seldom lead to common insights or general 

theory. 

 

2.5 Simulation Modeling in Healthcare: DES Models for Operations 

 This section provides an assortment of papers demonstrating the use of DES to 

model healthcare operations.  Applications have included a variety of surgical, inpatient, 

and ambulatory care environments.  Five papers discuss models developed and a sixth 

article relates to the use of modeling software designed for the healthcare industry. 

The earliest healthcare operations simulation paper reviewed is Schmitz and 

Kwak (1972).  The authors used DES to determine how many new operating rooms (OR) 

and recovery rooms (RR) were needed to accommodate an expected increase in surgical 

volume.  Also, a method was detailed for forecasting the volume increase, which was 

based on a 144 bed expansion of the medical-surgical (M/S) unit.  The forecast assumed 

that expansion of the M/S unit would result in full bed utilization and that increased 

surgical demand would have the same case mix as the prior year.  Simulation was then 

used to determine the number of OR’s and RR’s needed such that delays would not occur 

once surgery began.  The only stochastic variable in the model was the type of surgery 
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performed, which was determined based upon generating a single random exponential 

number (REN) from a single uniform random number (URN) for each event.  Surgical 

duration, whether or not a RR is used, and time spent in the RR were all based on the 

REN and were unique values for each surgical case type.  Other variables like transfer 

time from an OR to an RR, and make-ready times for OR’s and RR’s are all constant 

values regardless of case type.  Additional daily surgical volumes were fixed at 27 cases 

per day, “which was the predicted new surgical load due to the increased bed 

compliment.”  Despite the limited amount of simulated values, the authors claimed that 

the method applied was “extremely accurate” once actual observation of the constructed 

department was possible. 

 Dexter et al. (1999) discussed use of DES to derive an OR scheduling strategy 

that maximizes OR utilization.  Simulating OR suites allowed the research team to gather 

a substantial amount of data and generate statistically meaningful findings, as decades or 

more of real world samples would have been required due to the presence of auto-

correlation in successive OR utilization measurements.  The model included five input 

parameters that required 216 combinations of discrete values to determine significant 

factors, and the average delay in patients being scheduled for surgery was found to have 

the greatest impact on OR utilization in an inverse relationship.  Eleven questions 

addressing the concerns of key stakeholders (i.e., patients, surgeons, anesthesiologists, 

OR managers, etc.) were formulated to evaluate alternative strategies for managing 

varying objectives that may have conflicted with one another.  For example, a key 

concern for patients was extensive delays to having surgery, while OR utilization was a 

substantial concern for hospital leaders due to high staffing costs that were relatively 



22 

fixed.  The authors proposed a three-part scheduling strategy that first allocated block 

times (i.e., specified time windows for surgery) to surgeons based on the expected time 

needed for elective cases.  Second, patients were scheduled into the first available open 

block provided it fell within four weeks of the request.  Third, patients who were not 

assigned to an open block within four weeks of the request were then scheduled in an 

overflow time outside of a block.  The proposed strategy involved shifting the locus of 

control for scheduling “from the surgeon and patient to the OR suite,” which presented a 

barrier to implementation. 

 Swisher and Jacobson (2002) shared a DES model developed to recommend 

operational parameter settings for a two-physician family practice healthcare clinic based 

on the results of simulation optimization to maximize clinic effectiveness (CE).  CE is a 

multi-attribute variable “constructed on a monetary scale” that considers clinic profit, 

patient satisfaction, and staff satisfaction.  A two-physician clinic was selected for the 

study “due to their prevalence, especially among those clinics that do not have an existing 

network or hospital affiliation.”  A fractional factorial experimental design was applied to 

identify four significant parameters out of the six considered.  Afterward, the authors 

applied a two-stage optimization technique in the model, which first eliminated any 

statistically non-optimal solutions and then presented optimal solution alternatives that 

maximized CE for further evaluation.  Clinical decision-maker(s) were involved in the 

study presented, but there was no evidence presented of the model being used to make 

operational decisions. 

 Ahmed and Alkhamis (2009) proposed a method using system simulation 

combined with optimization to maximize throughput in an emergency department (ED) 
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by considering different staffing distributions across functional roles (e.g., doctors, 

nurses, etc.).  A DES model was nested in the optimization model to quantify average 

throughput and delays.  The optimization model used a two-phase approach where Phase 

I identified feasible and near-feasible solution alternatives to be evaluated in Phase II, 

which identified the optimal solution from the alternatives.  The optimization model had 

a mix of stochastic and deterministic functions between the objective and constraints with 

patient arrival rates and process service times as the stochastic variables.  Despite the 

model finding an optimal solution that improved service performance while not 

exceeding current costs, hospital management had concerns over the impact to staffing 

distribution efficiency and overall individual waiting time.  Unfortunately, there was no 

evidence of any recommendations being implemented. 

 The final paper reviewed that documents a healthcare operations study using DES 

is Thorwarth et al. (2009), which showed how DES was used to validate an analytical 

model for assessing utilization in the flexible workload environment of an ED.  The 

workload was flexible since nurses managed a variety of separate tasks for a several 

patients during the same timeframe.  The analytical model could be used to predict 

utilization based on patient interarrival time, service time, the number of staff, and the 

number of tasks, where utilization was the product of activity utilization and staff 

utilization.  The results of the analytical model were compared to those of the simulation 

model and differences were “ultimately due to the variability caused by random arrival 

rates.”  The authors determined that system instability, which was represented in high 

utilization and ever growing wait times, occurred when the longest service rate was 

greater than the arrival rate and when the number of staff was less than the number of 



24 

tasks.  While there was no evidence that the model had been used by operational decision 

makers, the authors proposed that it could have been used to vary staffing levels such that 

utilization would not exceed 85% as studies were cited to show the costs of excessively 

high utilization.  These costs included occupational burnout, absenteeism, higher error 

rates, and increased patient mortality risk.  The model was limited due to its 

simplification of only considering nursing staff and that it did not account for service rate 

variation, however the authors contended that decision makers could “still use the model 

to achieve a greater transparency” of conditions critical to system operation. 

 Regarding software for modeling operations with DES, Harrell and Lange (2001) 

showcased MedModel, a simulation software specifically designed for healthcare 

operations.  The authors argued that specialized simulation software was necessary for 

the healthcare industry due to its unique issues.  Process flows in healthcare operations 

were described as complex due to variable pathways, multiple tasks that may be repeated, 

and other forms of operational variety.  For example, the software employs patient 

identity numbers to match split entities (e.g., when a lab is processed while a patient 

flows to radiology for a test).  MedModel also allows for a number of queue management 

rules and representative logic allows for resources to be preempted, given that both of 

these functions are important in healthcare as priorities are often based on patient acuity.  

Program logic also supports resources being used for a wide variety of tasks or situations, 

flexible shift patterns, and both bidirectional and unidirectional pathways.  Finally, 

MedModel was designed so model code could be programmed in a menu-driven logic 

builder with a user-friendly interface.  Despite such efforts to make the software 
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functional and user-centered in its design, the authors did not provide any real world 

applications of the software. 

 

2.6 Simulation Modeling in Healthcare: Other Models for Operations 

 This section reviews papers on the use of simulation methods for modeling 

healthcare operations other than DES alone.  These include MCS and SD modeling, 

which can also be used in conjunction with DES.  Two papers covered modeling 

applications and another two discussed modeling approaches. 

 Harrison et al. (2005) shared the development of a simulation model to calculate 

bed occupancy of a hospital’s medical division while accounting for variability in 

admissions and transitions of care between three stages that may all exist in the same 

unit.  In their review, Günal and Pidd (2010) classified this model as a “Monte Carlo 

model rather than a DES model,” while detailed inspection revealed that the model was 

dynamic and system state variables were simulated rather than event-level variables.  The 

authors found that the model had at least five areas of application for hospital 

administrators.  The areas of application included identifying abnormal bed demand 

levels and contributing factors, determining target occupancy rates, assessing the impact 

of growth or expansion, understanding the impact of short-term vs. long-term occupancy, 

and evaluating tactics to smooth variability.  Regarding its breadth of application, the 

model was formulated in a way that produced generic equations for any hospital to use, 

thereby contributing knowledge that is broadly applicable in healthcare.  Regarding the 

model’s validity, admission and transition parameters for stochastic input variables were 

derived and validated using actual hospital data along with the final model output 
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showing “no statistically significant difference” when compared to actual occupancy 

data.  The authors concluded that understanding the “variability in the number of beds 

occupied is essential to improving the management and increasing the efficiency of 

hospitals” and that “smoothing out the variation in discharge rates may be more effective 

than smoothing the variations in admission” based on the various model results.  

However, no evidence of the model being used or key findings being implemented was 

provided. 

 Brailsford et al. (2004) discussed the creation of an SD model consisting of both 

qualitative and quantitative phases to simulate the flow of admissions to hospital wards 

from various pathways and identify bottlenecks in the broader healthcare system of 

Nottingham, England.  SD modeling was applied due to the size of the system being 

modeled and computational efficiency concerns associated with large scale DES models, 

whereas a DES model was used to investigate patient routing options within the A&E 

unit.  The SD model was validated by having the key stakeholders of the project’s 

Steering Group be engaged with its qualitative structure and by having its quantitative 

output for bed occupancies compared to actual data that was not part of the model’s 

construction.  Data in the model consisted of patient encounter information and arrival 

rates through two sources channeled to seven sectors before inpatient admission, however 

the “quality and level of data were variable.”  Stakeholders benefited from the qualitative 

phase by gaining a complete view of the system and gathering insights on system 

interactions impacting their respective components.  The quantitative phase yielded value 

by demonstrating the impacts and effectiveness of different interventions aimed at 

improving flows by reducing emergency admissions and the Steering Group was “keen to 
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suggest alternative scenarios for testing.”  The study had been conducted jointly “with a 

health and social care community” that valued the system-level approach to development.  

The authors claimed that both the “process and findings of this independent inquiry” 

appeared to have favorably impacted local efforts to solve emergency care access 

problems. 

 Regarding the use of SD, Taylor and Lane (1998) contrasted the value of SD 

simulation to understanding and solving problems in healthcare with that of traditional 

simulation approaches.  A detailed comparison between SD and DES is provided to 

highlight these differences.  While the authors acknowledged that the stages of 

developing an SD model are similar in their respective scopes and challenges as other 

modeling approaches, SD models provide some advantages.  Specifically, SD adds 

unique value in its ability to model both the physical and information delays associated 

with dynamic complexity and to capture organizational complexity “through the explicit 

representation of intangibles and the distinction between perceived and actual values.”  

However, the authors stated that SD is limited in considering detailed complexities, 

whereas “DES primarily concentrates on detail complexity.”  A hypothetical example of 

addressing waiting times for coronary heart disease (CHD) treatment was provided where 

both DES and SD are used for different purposes.  The DES model focused on changes to 

treatment strategies and localized decisions to impact queues within hospital, while the 

SD model was concerned with the “feedback processes underlying changes to waiting” 

including treatment effectiveness.  The authors concluded that “no single modeling 

approach can offer a panacea to management problems” and “it is important to 

acknowledge the limitations of a method and to understand its scope.” 
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 Regarding the use of SD and DES together, Chahal and Eldabi (2008) argued that 

both detailed operations and environmental interactions need to be understood to make 

effective and sustainable decisions in healthcare systems, which were viewed as complex 

and adaptive.  The authors proposed using a hybrid approach that applies both discrete-

event simulation (DES) and system dynamics (SD) for each mode of governance 

presented.  In a top-down mode where leadership at the strategic level set targets and 

passes them down to operational management, a hierarchical method can be used.  This 

starts with strategic level decisions represented in an SD model that are then passed to a 

DES model to validate operational feasibility via a cycle of output from one model being 

used as input to another.  In a network partnership mode where pathways for patient care 

span a network of independent service providers, a process–environment method can be 

used.  This functions similar to the hierarchical method, but starts with process changes 

being represented in a DES model.  Finally, in a quasi-market mode where strategic 

leadership and operational providers are bound by contracts, an integrated method can be 

used with elements represented in either model.  Similar to Taylor and Lane (1998), the 

authors found that DES is effective for modeling detailed operations, while SD is 

effective for capturing dynamic complexities from interaction between system 

components, so the two modeling methods can complement each other. 

 

2.7 Simulation Modeling in Healthcare: Models beyond Operations 

 In this section, seven papers are reviewed that discussed modeling a variety of 

topics in the fields of clinical science, health economics, and healthcare accreditation.  

These papers provide examples of DES, MCS, and SD models.  Three papers that used 



29 

DES are presented first, followed by two papers that used MCS and then another two 

papers that used SD modeling. 

 Barth-Jones et al. (2000) demonstrated the use of DES to validate that 

retrospective partner trial (RPT) study designs are accurate and have significant statistical 

power in estimating human immunodeficiency virus (HIV) vaccine effectiveness 

parameters provided sufficiently large sample sizes are used.  Standard vaccine trial 

design is only capable of detecting Vaccine Effects on Susceptibility (VES), where 

susceptibility is the risk of becoming infected.  However, RPT and DES designs can 

additionally evaluate Vaccine Effects on Infectiousness (VEI), where infectiousness is the 

ability of an infected individual to transmit the disease to other individuals.  Both VES 

and VEI are important for reducing transmissibility and the study showed a >90% chance 

that an RPT design would have found a vaccine that reduces transmissibility by 81.25% 

to be efficacious.  However, a standard vaccine trial design would have a ~50% chance of 

rejecting the same vaccine due to its low VES value.  DES was used to find that HIV 

infection risk varies among individuals due to epidemic transmission dynamics as it 

provides perfect information with all events being known.  RPT study design, however, 

has incomplete information as partners may not be remembered or may not be contacted.  

Despite this concern with RPT design, the authors found that it has sufficient statistical 

power when partner data is randomly missing based on comparisons with DES study 

results. 

Cooper et al. (2002) detailed the development of a model depicting the treatment 

and subsequent disease states and interventions for coronary heart disease (CHD) patients 

who have had a coronary event.  The model used DES to simulate the next event type 
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(i.e., disease state or intervention) and time following the current event.  Past surveys and 

studies were used to define model data used for time-to-event parameters and event type 

probabilities with assumptions and extrapolations having been made when desired 

prognostic factors were not “broken down sufficiently.”  The main difficulties the authors 

encountered in gathering model data were discrepancies between studies using different 

approaches to acquire data, patient and other factor or result categories being excluded 

from studies, complete absence of desired data, and diagnostic coding errors or 

limitations jeopardizing the quality of data.  Patient Oriented Simulation Technique 

(POST) software, which allows for more than one future event to be prescribed to patient 

entities with the possibility of events taking place in parallel, was used to write 

simulation code.  The simulation showed a 50% increase in angiogram referrals and 

doubling bypass grafts and angioplasties had negligible effect on rates for myocardial 

infarctions and CHD-related deaths.  The authors planned to continue model development 

through refinement of the parameters and they concluded that initial results pointed to 

higher volumes of revascularizations having minimal impact on myocardial infarction 

and death rates. 

Babad and Sanderson (2002) is the second turning point article from Mustafee et 

al. (2010) featured in this chapter.  In their work, the authors described the process of 

developing the primary prevention strategy component of a model for assessing the 

economic impacts of various Coronary Heart Disease (CHD) management approaches.  

The model, which was still under development during publication, used DES to simulate 

the time between events that trigger “changes in risk factors and/or changes in disease 

status” for “individual members of populations” serving as model entities.  The model 
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data used to define time-to-event parameters were based on past surveys and studies.  

While some desired data elements were not available, the authors planned to include such 

data in future versions of the model.  Other parameters defining probabilities of patient 

behavior in response to prescribed treatment and treatment effectiveness were based on 

estimates gathered from literature review.  Regarding model setup, it was designed for 

users to specify or confirm parameters prior to running the model, which allowed for 

various intervention strategies to be evaluated.  To run the model, simulation routines 

established “specifically for modelling healthcare systems” were applied and flags were 

set when non-fatal disease events occur, which triggered the treatment model component 

described in Cooper et al. (2002).  Regarding validation, the authors mentioned a 

forthcoming paper that would provide details on testing for technical accuracy and 

consistencies in the model pertaining to “the feasible range of parameter values” and the 

“model’s results with observed data.” 

 Zenios et al. (1999) investigated alternative methods for allocating cadaveric 

kidneys with the aim of identifying the method that best balances efficient allocation and 

equitable allocation, especially in terms of racial equity.  Four alternatives were evaluated 

against two efficiency measures, which were patient survival and quality-adjusted life 

expectancy, and two equity measures, which were waiting time and likelihood of 

transplantation.  The current allocation strategy at the time, which was the point system 

used by the United Network of Organ Sharing (UNOS), was considered along with three 

other allocation methods.  These were a first-come first-transplant (FCFT) system, an 

efficiency-based algorithm, and a distributive efficiency algorithm, which mimicked the 

efficiency-based algorithm except that race was not considered in prioritization.  The 
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authors described using an MCS model to simulate the “operations of a single organ 

procurement organization” and generate results from a 10-year simulation run length, 

which was found to be sufficient from the sensitivity analysis performed.  The model 

contained five internal models, which simulated arrival rates for candidates and donors, 

patient outcomes while waiting for transplantation and following such treatment, and the 

decision-making for organ allocation.  Data for model parameters were gathered from 

UNOS and United States Renal Data System (USRDS) reports and sensitivity analysis of 

model parameters did not change qualitative findings.  The distributive efficiency 

algorithm was found to provide the greatest benefits overall without penalizing African-

Americans.  Thus, the authors concluded the development of “evidence-based policies 

that simultaneously improve health outcomes for all patients with end-stage renal 

disease” is possible. 

 Kahn et al. (2007) described how cohort data from a clinical database was used in 

an MCS study to analyze changes in the Standardized Mortality Ratio (SMR) from 

increasing the out-of-hospital transfer rate.  SMR compares the hospital’s mortality rate 

to an expected value based on severity of illness and case mix with any value over one 

indicating an elevated mortality rate.  The study was performed using a final cohort of 85 

Intensive Care Units (ICUs) and the data gathered contain seven discharge locations, 

including dead, with two being considered as transfers to other care centers.  The MCS 

model applied an algorithm that adds a uniformly distributed random number to each 

patient’s scaled risk of hospital death score in order to identify upper percentile patients 

for transfer.  Simulations were performed at transfer increases of 2% and 6% above 

baseline, where all patients who were not originally transferred but selected by the 



33 

algorithm were recoded as a living transfer discharge, including those who were 

originally coded as dead.  Subsequently, “SMR was recalculated” along with transfer 

bias, which is defined as “the difference between the mean simulated SMR and the 

original SMR.”  The study found that increasing out-of-hospital transfers causes “a 

significant downward bias in the SMR at both 2% and 6% above baseline” and an ICU 

could significantly improve its SMR rank.  The authors argued in their conclusion that 

the “transfer bias presents an important limitation to the SMR” and “uncritical use of the 

SMR to benchmark ICU performance is likely to misinform rather than provide 

meaningful information about ICU quality.” 

 Banz et al. (2003) discussed a study to evaluate three vaccination strategies for 

varicella (or chickenpox) in Germany against the current strategy at the time, which only 

administered vaccines to high risk groups and was also known as a “no vaccination” 

strategy.  The study used a model, referred to as economic varicella vaccination tool for 

analysis (EVITA), to assess the economic impacts of each vaccination strategy from both 

societal and payer perspectives.  While not explicitly identified as such, EVITA could be 

classified as an SD model based on its structure and operation.  The authors described 

EVITA as being an “age-structured deterministic model based on a set of differential 

equations” where “probabilities at each chance node determine the flow of patients 

through the simulation tool.”  In the model, the population was “divided into 1-year age 

cohorts” from age 0 to 70 and a time-step dt of one year was used for a simulation length 

of 30 years.  Probabilities of infection, or annual attack rates, were set for five age 

categories and probabilities were also set for other factors including vaccination 

coverage, vaccine efficacy, and clinical outcomes.  In addition to a base case, best and 
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worst case scenarios were developed by simultaneously varying parameters that had 

“considerable uncertainty and high sensitivity” with vaccination coverage and various 

costs.  The various cost discount rates were identified as having the highest sensitivity.  

The key finding of the study was that a strategy to vaccinate children between 12 and 18 

months of age or another strategy that also vaccinates adolescents between 11 and 12 

years of age are both substantially more effective that the current strategy or one that only 

vaccinates adolescents.  However, this finding assumed vaccination coverage rates of 

75% or more and the authors also concluded coverage rates below 50% could cause the 

average age of infection to increase, which results in worse outcomes and higher costs. 

 The third and final turning point article from Mustafee et al. (2010) presented in 

this chapter is Hammerschmidt et al. (2003).  In the paper, the authors presented the 

efforts to validate the EVITA model proposed in Banz et al. (2003) as “the acceptance of 

models is highly dependent on their validity.”  Five validation methods were discussed 

and the authors were able to apply four of the five methods, which the authors used to 

collectively validate the model.  EVITA was said to meet descriptive validity as Module 

1, which was “an age-structured, deterministic model” leading up to the point of 

infection, was “based on an established and peer-reviewed model.”  Module 2 of EVITA, 

which “describes the course of varicella and its potential complications as well as the 

associated health-care resource utilization,” was found to meet descriptive validity.  The 

authors held this claim since the “data and development” were “reviewed by a German 

expert panel and deemed to provide an adequate picture of the course of varicella and its 

clinical management in Germany.”  Technical validity was proven by applying extreme 

values to generate outcomes that would have been expected and face validity was shown 
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as the model produced a result similar to that of prior literature for vaccination coverage 

levels required to eliminate varicella when the same assumptions were made.  

Convergent validity was demonstrated by “comparing the results of other models with the 

result of the EVITA model” and finding similar results when accounting for parameter 

differences.  However, the authors could not assess predictive validity since “no data are 

available on the effects of universal varicella vaccination in Germany.” 

 

2.8 Simulation Modeling in Healthcare: Barriers to Implementation 

As previously mentioned, four of the five literature review articles presented in 

Section 2.5 indicated that recommendations from simulation models in healthcare are 

rarely documented as being implemented.  The next three papers have discussed barriers 

to such implementation. 

 Sanchez et al. (2000) provided a compilation of submitted statements from the 

authors for a panel discussion at the 2000 Winter Simulation Conference.  The intent of 

the discussion was to identify key issues that need to be addressed for simulation to be 

effective in healthcare, and the authors represented the healthcare industry, consulting, 

and academia.  Many of statements made were shared amongst the authors and they 

acknowledged that simulation can help healthcare leaders understand processes so that 

realistic financial performance targets can be set with operational plans to achieve them.  

However, healthcare models often have conflicting objectives when “the opinions of 

hospital managers clash with those of medical personnel.”  Other barriers to effective 

modeling include lack of available data and the extensive time often required to observe 

healthcare processes in developing a representative model.  Data availability and integrity 
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is of critical concern as “small variations in some distribution parameters, or (worse) a 

change in the distribution itself, usually leads to significant changes in model results” and 

possibly different conclusions.  The authors recommended that both operational and 

clinical leadership be engaged in projects for these barriers to be addressed and for key 

model recommendations to be supported for implementation. 

 Eldabi and Paul (2001) argued that traditional simulation modeling approaches do 

not focus on problem formulation and structuring, which are key to understanding 

problems, and that problem definition is paramount to modeling healthcare problems.  

The authors proposed a modeling approach that demands iterative communication 

between various stakeholders and the model itself during model development, which 

helps to ensure that objectives and constraints are properly expressed.  The approach is 

referred to as a Modeling Approach that is Participatory Iterative for Understanding 

(MAPIU) and it consists of an initialization stage and a processing stage.  Initialization 

classifies stakeholders as problem owners, experts, and actual users in order to “ease the 

process of collecting the right information based on the needs of the problem owners for 

a given problem.”  The processing stage entails modeling, communication, and deriving 

information, which are parallel components that evolve during the modeling process.  An 

example of using MAPIU to model the decision making process for liver transplant 

allocation is provided with stakeholders being health economists, who are classified as 

problem owners and actual users, and clinicians, as experts.  These stakeholders have 

differing views regarding the method for liver allocation, which drives iteration through 

the processing stage components to reach a final model.  The authors concluded that 

MAPIU features of stakeholder participation and iterative processing aim to address the 
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challenges associated with “lack of understanding of the healthcare process by the 

concerned people,” conflicting objectives, and intercommunication difficulties. 

 Brailsford (2005) discussed the obstacles to successfully implementing 

recommendations from simulation models in healthcare environments and offered insight 

to why these obstacles exist.  The author presented an example of a successful 

implementation effort, which addressed meeting demand for emergency care in 

Nottingham, England as documented in Brailsford et al. (2004), which was reviewed in 

Section 2.6.  Factors for success with the example are identified as “impetus for the 

project” coming from the client, a “charismatic and enthusiastic local sponsor” chairing a 

Steering Group that was involved in model development, a multi-disciplinary research 

team, and a high priority on data collection.  Regarding barriers to implementing 

recommendations from any project, the author defined such challenges pertaining to 

culture, cost, data, incentives, and the level of specificity required.  Recommendations 

were made for academia and practitioners, modeling software developers, and healthcare 

providers.  Academia and practitioners were advised to address problems critical to 

hospitals and patients, identify “enthusiastic and powerful” project sponsors, create multi-

disciplinary teams, and balance “user-friendliness with scientific rigor and validity” in 

models.  Developing models that can be easily tailored for various hospitals by 

identifying the “basic components of all patient flow systems” was an additional 

challenge that was also extended to software developers and MedModel is cited as such 

an attempt, which was presented in Section 2.5 with Harrell and Lange (2001).  Finally, 

the author encouraged healthcare providers to pool resources with partners and work 
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together, overcome “cultural issues and resistance to change,” and implement “robust, 

practical data collection systems.” 

 

2.9 Observations of Existing Literature 

The literature shared in this chapter has put forth a number of concepts relevant to 

this dissertation.  First, organizations can be viewed as complex systems and their 

complexities can be defined in a myriad of contexts.  Also, healthcare organizations are 

recognized as having great complexity. 

Regarding simulation, a system can be modeled as long as its complexity is 

reducible, and there are multiple approaches to system modeling and simulation.  The 

literature focuses on models used to evaluate potential system designs and how 

performance would differ from the current state.  There does not appear to be use of 

simulation to evaluate current or past performance or the effectiveness of a new system 

design that is already implemented.  In healthcare, such use is even less likely due to the 

lack of implementation associated with simulation study recommendations.  In fact, in 

gathering papers for the literature review, a search in Google Scholar used the phrases 

“simulation performance analysis organizations” and “model performance analysis 

organizations” to see if any papers address the two questions posed in Chapter 1.  Google 

Scholar was used due to the breadth of its search capabilities, but none of the papers 

sampled had titles or abstracts covering this interest. 

Regarding performance analysis, current health economic valuation approaches 

do not utilize modeling techniques that account for non-linear effects and extended 

impacts from interconnected system components.  Therefore, problems may exist in some 
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models that prevent them from being used for assessing effectiveness of changes made.  

Also, metrics may be chosen as performance indicators without consideration of all the 

influencing factors, and this may be especially true for healthcare quality measures.  

Given that healthcare organizations are identified as being highly complex and that their 

performance metrics may have many influencing factors, a case study in healthcare 

operations seems appropriate in validating an approach to answering the two questions 

posed in Chapter 1.  Chapter 3 presents the methodology proposed to answer these two 

questions. 
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CHAPTER 3 

METHODOLOGY 

 

 

The proposed method seeks to answer the two questions posed in Chapter 1 using 

simulation.  These questions, which are restated below, are graphically depicted in 

Figures 1 and 2. 

 

Question #1: If the post-change approach existed in the baseline, how would the 

baseline (pre-change) performance have differed? 

 

Question #2: If the baseline approach still existed, how would the post-change 

performance have differed? 

 

The solid line in Figure 1 shows the actual performance between time T0 and T1, 

while the dashed line indicates performance between T0 and T1 if the post change 

approach were in place during T0.  The estimated value for Y0′ is better than Y0, which 

indicates that performance would have been improved in T0 had the change been in place.  

Conversely, in Figure 2, the dashed line demonstrates performance between T0 and T1 if 

the change had not been in place during T1, while the solid line is the same as that of 

Figure 1.  Y1 is better than the estimated value for Y1′, which indicates that performance 

in T1 would have been worse had the change not been in place.  While this example 

shows that actual performance has benefited from the change, this will not always be the 

case.
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Figure 1: Graphical depiction of answer to Question #1 

 

 

Figure 2: Graphical depiction of answer to Question #2 
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In order to answer these questions, a procedure is developed as the central focus 

of this research.  This procedure involves using a modeling approach that applies factor 

values that are derived from statistical aggregation in simulations to develop statistical 

distributions of comparison values that are then analyzed.  This procedure first begins 

with an analysis of the baseline as described in Step 0.1 below: 

Step 0.1 Identify a representative model linking the performance metric (response 

variable) to the input variables (factors), of which at least one needs to be 

stochastic in nature. 

 

Question #1 above can be answered with the approach outlined as follows: 

 

Step 1.1 Use simulation to develop a distribution of the response variable based on 

the model. 

 

Step 1.1.1 Identify distributions of factors in the baseline data. 

 

Step 1.1.2 Use simulation to develop a distribution of the response using the 

model from Step 0.1 and the factor distributions from Step 1.1.1. 

 

Step 1.2 Determine the probability of the baseline performance observation along 

with the cumulative distribution function (CDF) for the distribution found in Step 

1.1.2.  Record this as the baseline CDF probability. 

 

Step 1.3 If necessary, repeat Step 0.1 to identify any new relationship between the 

response and the factors following the change made.  If the model from Step 0.1 

is still valid, continue using that model. 

 

Step 1.4 Use simulation to develop a distribution of the response using the model 

from Step 1.3 and factor values from Step 1.4.1 and Step 1.4.2.  Record these as 

T0′ factor values. 

 

Step 1.4.1 For factors that have been influenced by the change, identify the 

new values or distributions from the post-change data.  Apply these to the 

simulation as this is necessary to reflect the new method. 

 

Step 1.4.2 For factors that have not been influence by the change, leave 

values or distributions as they were in the baseline. 

 

Step 1.5 Determine the simulated baseline value (Y0′) based on the baseline CDF 

probability from Step 1.2 and the distribution found in Step 1.4. 
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Step 1.6 Compare the simulated baseline (Y0′) from Step 1.5 to the actual baseline 

performance observed (Y0).  Express the performance shift (Δ0′/0) in % Y0′ 

improved over Y0 performance terms based on the desired direction of Δ0′/0 as 

defined in Equation (1). 

 

    ⁄  {
(      )   ⁄                                        

(      )   ⁄                                        
  (1) 

 

Step 1.7 Repeat Steps 1.1–1.6 to develop a distribution of comparison values. 

 

Step 1.8 If a targeted performance shift was set, determine the probability of the 

targeted performance shift along with the CDF for the distribution found in Step 

1.7.  Record this as the baseline performance shift CDF probability.  If a targeted 

performance shift was not established, review the distribution of comparison 

values from Step 1.7 and analyze the results. 

 

Step 1.9 Estimate the probability that the targeted performance shift would have 

been achieved in the baseline by subtracting the baseline performance shift CDF 

probability from one. 

 

A process flow diagram of the procedure to answer Question #1 is shown in Figure 3. 

 

Figure 3: Process flow diagram of the procedure to answer Question #1 
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Question #2 above can be answered with the approach outlined as follows: 

 

Step 2.1 If necessary, repeat Step 0.1 to identify any new relationship between the 

response and the factors following the change made.  If the model from Step 0.1 

is still valid, continue using that model. 

 

Step 2.2 Repeat Step 1.1 with the post-change data. 

 

Step 2.2.1 Identify distributions of factors in the post-change data. 

 

Step 2.2.2 Use simulation to develop a distribution of the response variable 

using the model from Step 2.1 and the factor distributions from Step 2.2.1. 

 

Step 2.3 Determine the probability of the post-change performance observation 

along with the CDF for the distribution found in Step 2.2.2.  Record this as the 

post-change CDF probability. 

 

Step 2.4 Use simulation to develop a distribution of the response using the model 

from Step 0.1 and factor values from Step 2.4.1 and Step 2.4.2.  Record these as 

T1′ factor values. 

 

Step 2.4.1 For factors that have been influenced by the change, leave values 

or distributions as they were in the baseline. 

 

Step 2.4.2 For factors that have not been influenced by the change, identify 

the new values or distributions from the post-change data.  Apply these to 

the simulation as this is necessary to reflect the post-change environment. 

 

Step 2.5 Determine the simulated post-change value (Y1′) based on the post-change 

CDF probability from Step 2.3 and the distribution found in Step 2.4. 

 

Step 2.6 Compare the actual post-change performance observed (Y1) to the 

simulated post-change (Y1′) from Step 2.5.  Express the performance shift (Δ1/1′) 

in % Y1 improved over Y1′ terms based on the desired direction of Δ1/1′ as defined 

in Equation (2). 

 

    ⁄  {
(      )    ⁄                                        

(      )    ⁄                                        
  (2) 

 

Step 2.7 Repeat Steps 2.1–2.6 to develop a distribution of comparison values. 

 

Step 2.8 If a targeted performance shift was set, determine the probability of the 

targeted performance shift along with the CDF for the distribution found in Step 

2.7.  Record this as the post-change performance shift CDF probability.  If a 

targeted performance shift was not established, review the distribution of 

comparison values from Step 2.7 and analyze the results. 
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Step 2.9 Estimate the probability that the targeted performance shift would have 

been achieved in the post-change environment by subtracting the post-change 

performance shift CDF probability from one. 

 

A process flow diagram of the procedure to answer Question #2 is shown in Figure 4. 

 

Figure 4: Process flow diagram of the procedure to answer Question #2 
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The possibility of needing to develop a new model is raised in Steps 1.3 and 2.1.  

Such a need depends on the modeling approach and the changes made.  In a regression-

based model, factor values beyond the range observed in the baseline would require new 

model formulation according to the assumptions associated with the use of regression 

models as stated by Montgomery (2013).  Regarding a DES model, a structural change in 

the system would require a new model to be developed.  For example, if two process 

steps are coupled into one step, then a queue is eliminated. 

The term CDF probability is used in several of the procedure’s steps.  As Devore 

(1995) indicated, CDF probability is the location of a particular value in the outcome 

distribution, a figure that is measured from zero to one.  The CDF probability can also be 

thought of as the chance that the particular value of interest is greater than a randomly 

selected value in the outcome distribution. 

In Step 1.2, the baseline CDF probability is calculated using the distribution of 

possible performance values given the distributions of the inputs during T0 and the actual 

performance metric value of T0 (Y0).  The baseline CDF probability is used in Step 1.5 to 

estimate the value of the performance metric in T0 if the input parameters affected by the 

change were in place during T0 while considering the same CDF probability associated 

with Y0.  This metric is referred to as Y0′ and the altered state of T0 is referred to as T0′. 

In Step 2.3, the post-change CDF probability is calculated using the distribution 

of possible performance values given the distributions of the inputs during T1 and the 

actual performance metric value of T1 (Y1).  The post-change CDF probability is used in 

Step 2.5 to estimate the value of the performance metric in T1 if the input parameters 

affected by the change were not in place during T1 while considering the same CDF 
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probability associated with Y1.  This metric is referred to as Y1′ and the altered state of T1 

is referred to as T1′. 

In Step 1.8, the baseline performance shift CDF probability is calculated using the 

distribution of comparison values found in Step 1.7 and the targeted performance shift 

value if one was established.  A targeted performance shift is defined as the minimal 

amount of improvement required in the performance metric value for the change 

implemented to be considered a success.  In Step 1.9, the baseline performance shift CDF 

probability is subtracted from one to estimate the probability that the targeted 

performance shift would have been achieved in the baseline. 

In Step 2.8, the post-change performance shift CDF probability is calculated using 

the distribution of comparison values found in Step 2.7 and the targeted performance shift 

value if one was established.  In Step 2.9, the post-change performance shift CDF 

probability is subtracted from one to estimate the probability that the targeted 

performance shift would have been achieved in the post-change environment. 

Chapter 4 details the case study that Chapters 5 and 6 both use to demonstrate the 

analysis procedure outlined in this Chapter 3.  Chapters 5 and 6 also reveal that this 

procedure can be applied using different simulation methods to model the same 

environment and reach similar conclusions. 
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CHAPTER 4 

CASE STUDY: 

MOTHER-BABY THROUGHPUT IMPROVEMENT PROJECT 

 

 

The case study presented involves an improvement project in the mother-baby 

service line at then-named Norton Suburban Hospital (NSH) in Louisville, KY.  The 

project’s key metric was the Holds Rate, which is defined as the ratio of mothers 

considered to be unintentionally delayed (i.e., held) from transferring to the postpartum 

(PP) care unit to the total number of deliveries (i.e., births).  The project goal was to 

reduce the Holds Rate by 15% as holding patients was correlated to lower satisfaction 

scores.  Figure 5 shows the typical patient flow from delivery to discharge. 

 

Figure 5: Typical patient flow from delivery in L&D to discharge from PP 
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The mother-baby service line is itself an organization within the hospital.  There 

are many different agents including administrators, nurses, obstetricians, pediatricians, 

anesthesiologists, and environmental services staff all working together to serve the 

mother and infant patients and their families.  The mother-baby service line has 

properties matching the six generators of complexity identified by Chu et al. (2003) as 

shown in Table 1. 

Table 1: Chu et al. (2003) Complexity Generators Mapped to Mother-Baby Service Line Properties 

Complexity Generator Property of a Mother-Baby Service Line 

Internal inhomogeneity 

Different classes of autonomous agents are present (e.g., 

obstetricians, pediatricians, L&D nurses, PP nurses, staff, 

leadership, etc.). 

Adaptivity 
Agents of the care delivery system can adapt to dynamics 

(e.g., physicians protect interests of only their patients). 

Nonlinearity 
Interactions of scheduling with Holds Rate are nonlinear as 

utilization has a nonlinear impact on queue time. 

Net-like causality 

When a delivered mother is held from a PP unit, the PP care is 

delivered in another place that is not designed for PP care.  

This is not ideal for patient care and other risks may 

propagate. 

Radical openness 

Changes in system can impact other business decisions or 

patient preferences, but this is reducible as a relatively stable 

environment existed in the time periods observed. 

Contextuality 

Obstetricians and pediatricians working have office practice 

hours away from the hospital, but this is reducible as the LOS 

in PP (PP LOS) is fairly predictable. 

 

Another aspect that illustrates the complexity present in the mother-baby service 

line is the presence of self-organization as defined by Halley and Winkler (2008).  This 

can be evidenced by interactions between physicians and patients being nonlinear due to 

emotions, which can be overwhelming in nature.  For example, there may be 

disagreement between an obstetrician and the laboring patient on when cesarean delivery 

is needed during a prolonged attempt at vaginal delivery. 
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Data was collected and analyzed over four separate time periods, as defined in 

Table 2.  The time periods are not adjacent and the specific reasons supporting this 

approach are discussed in the following paragraphs. 

Table 2: Time Period Definitions 

Name Duration Considerations 

Regression Study 

(RS) 

115 consecutive days 

between 1Q 2012 and 2Q 

2012 

None 

Baseline (BL) 
63 consecutive days between 

1Q 2012 and 2Q 2012 

A portion of the regression study 

selected to be same length as IP2 

Improvement Period 1 

(IP1) 

63 consecutive days between 

4Q 2012 and 1Q 2013 

L&D scheduling tactic change 

was implemented and selected to 

be same length as IP2 

Improvement Period 2 

(IP2) 

63 consecutive days between 

2Q 2013 and 3Q 2013 

New EHR implementation 

complete and ends with start of 

construction work 

 

The first time period, Regression Study (RS), was a period of time longer than the 

others as this data was used to establish the regression equation to estimate daily Holds 

Rate values in the MCS model.  Routine data collection mostly consisted of counting the 

daily numbers of deliveries and holds.  All other data collection for the project was ad 

hoc and sometimes cumbersome.  The project team used the data for RS to develop a 

causal model to predict Holds Rate via regression as understanding cause and effect was 

the focus of project work during the early phases of the project. 

Baseline (BL) is a portion of RS that was selected to be the same length as 

Improvement Period 2 (IP2), which was nine full weeks (i.e., Sunday through Saturday).  

Improvement Period 1 (IP1) was also the same length as IP2, as keeping all time periods 

used in the comparative analysis the same length reduced the impact of sample size on 

standard deviation, and this was a key parameter in the analysis.  Devore (1995) detailed 

the relationship between sample size and standard deviation. 
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IP1 began with the implementation of a scheduling tactic change in L&D, which 

is viewed as a perestroika event and ended with the implementation of a new electronic 

health record (EHR) system.  Implementing the new EHR system was disruptive and it 

took users some time to adjust.  Also, data was not captured for time stamps needed to 

determine PP LOS in IP1.  This was due to the difficulty of retrieving the time stamp data 

and administrative resources were preoccupied with preparation for conversion to the 

new EHR system.  PP LOS and all related metrics for IP1 are estimated for purposes of 

the analyses in Chapter 5. 

IP2 began following a period for users to adjust to the new EHR system and 

ended with the start of a new construction project, which temporarily reduced the number 

of rooms for PP.  IP2 also included the on-boarding of a new PP nurse manager who, 

with the assistance of her staff, refined the checklist used to coordinate events leading up 

to patient discharge.  While nurses routinely used the checklist to more effectively 

manage shift hand-off communication, this checklist did not impact PP LOS or its 

variation. 

A major benefit with the new EHR system used in IP2 was the enhanced reporting 

capabilities.  The new system not only made it possible to capture PP LOS for IP2, but 

also enabled the team to study the time it takes to clean and prepare a PP room for the 

next patient following a discharge.  Another advantage was that the delay between 

delivery and transfer to the PP room could be calculated. 

In IP1, the project goal of reducing the Holds Rate by 15% was not achieved 

while the goal was exceeded in IP2.  Chapter 5 details how the procedure was applied to 

assess Holds Rate performance by answering Questions #1 and #2 for both improvement 
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periods using an MCS model.  Regression was used to develop the simulation equation 

for MCS.  This approach was necessary due to the judgment involved in determining the 

hold status of a patient, which is discussed below and is viewed as difficult to define 

entirely by a deterministic algorithm. 

Chapter 6 shows how the procedure was used with a DES model to assess transfer 

delay performance by answering Question #2 for IP2 since this was the only comparison 

with sufficient data to support the analysis.  Since the system involved a queue between 

L&D and PP, DES was applied as a simulation technique to validate that the scheduling 

tactic change indeed reduced delays in the care transitions. 

The two modeling approaches, MCS and DES, were applied to demonstrate the 

generality of the procedure.  The observations from Mustafee et al. (2010) on MCS and 

DES applications support both approaches as being acceptable simulation techniques. 

Dependent variables for the MCS model were the number of holds (Holds) and 

Holds Rate.  Holds were tabulated on a daily basis as the number of patients considered 

to be held from the PP care unit based on a nurse’s judgment, which included assessing 

factors related to clinical care and patient-family satisfaction.  For instance, a study IP2 

data revealed that 21.5% of patients who waited over three hours to be transferred to a PP 

room were logged as a hold, which implies factors other than queue time influenced this 

judgment.  However, delay in transferring the patient still had a substantial influence on 

nurses’ judgment as only 1.7% of patients who waited three hours or less for transfer to 

the PP room were logged as a hold. 

Holds Rate is defined as the ratio of Holds to Daily Deliveries, with Daily 

Deliveries being the number of newborns delivered in a day.  The regression model, 
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which was a component of the MCS model, was used to directly calculate Holds Rate and 

then Holds was calculated by multiplying Holds Rate by Daily Deliveries.  Holds Rate 

was also calculated over a 63 day simulation run length and the 63 Day Holds Rate was 

the output of each simulation run. 

The DES model was used to calculate the time each patient spent waiting to be 

transferred to her bed in the PP care unit following delivery (Delay Time).  Delay Times 

were averaged over a 63 day simulation replication length following a 7-day warm-up 

period and the 63 Day Average Delay Time (ADT) was the output of each replication. 

Several key independent variables were considered in each model.  For the 

regression model, Daily Deliveries and the PP LOS associated with the PP discharges for 

each day (Days D-C PP LOS) are considered.  These variables were also measured over a 

two-day interval.  For the DES model, independent variables existed at a more granular 

level than the regression model and were used to describe patient deliveries, patient stays, 

or the hospital.  Patient delivery variables included the Hourly Rate of Deliveries (HRD), 

Delivery Type (i.e., vaginal or cesarean), and whether a delivery was Single Birth or 

Lastborn Twin as all multiple deliveries were twins in IP2.  Patient stay variables 

included time required to care for a mother immediately after delivery (L&D Post-

Delivery Care Time), the time to transport a patient from L&D to PP (Patient Transport 

Time), and time for a PP room to be cleaned following the stay (D-C to Room Clean 

Time).  The Number of PP Rooms was the only hospital variable and it reflected the 

hospital’s ability to accommodate patient care in the PP care unit.  Table 3 summarizes 

the key variables considered in each model. 

  



54 

Table 3: Listing of Key Variables (2 Days are day and prior day) 

Variable Name 

(regression code) 
Variable Type Model(s) 

Holds Rate Dependent MCS Model 

Holds Dependent MCS Model 

Delay Time Dependent DES Model 

Daily Deliveries (A) Independent / Stochastic Regression (for MCS) 

Days D-C PP LOS (B) Independent / Stochastic Regression (for MCS) 

2 Days Deliveries (C) Independent / Stochastic Regression (for MCS) 

2 Days D-C PP LOS (D) Independent / Stochastic Regression (for MCS) 

Hourly Rate of Deliveries Independent / Stochastic DES Model 

Delivery Type Independent / Stochastic DES Model 

Single Birth or Lastborn Twin Independent / Stochastic DES Model 

L&D Post-Delivery Care Time Independent / Stochastic DES Model 

PP LOS Independent / Stochastic DES Model 

Patient Transport Time Independent / Stochastic DES Model 

D-C to Room Clean Time Independent / Stochastic DES Model 

Number of PP Rooms Independent / Deterministic DES Model 

 

Table 4 provides data by time period for the regression model.  Analysis to 

develop the model revealed that the interaction term of Days D-C PP LOS (B) and 2 

Days Deliveries (C), or C*B, was the only significant term.  Chapter 5 provides a detailed 

discussion of the regression analysis completed for Step 0.1. 

Table 4: Summary of Data Provided for Regression Model Used for the MCS Model 

 

Time Period

(days)

Total No. 

of Holds

Total No. 

of 

Deliveries

Overall 

Holds 

Rate

Daily 

Deliveries

μ  / σ

Distribution 

of Daily 

Deliveries

Daily 

Discharges

μ  / σ

Distribution of 

Daily Discharges

Daily Average

PP LOS (days)

μ  / σ

Distribution of 

Daily Average

PP LOS

Daily Days D-C

PP LOS

μ  / σ

Distribution

of Daily Days

D-C PP LOS

RS

(115)
88 1560 5.64% 13.57 / 4.84

Normal

p = 0.127
34.58 / 11.99

Normal

p = 0.388

BL

(63)
46 849 5.42% 13.48 / 5.17

Normal

p = 0.173

13.78 / 4.89

3.65 / 0.67

Normal

Transformed

(Box-Cox λ  = 0.5)

p = 0.289

2.54 / 0.24

0.93 / 0.10

Normal

Transformed

(Box-Cox λ  = 0)

p = 0.794

34.90 / 12.28
Normal

p = 0.612

IP1

(63)
45 851 5.29% 13.51 / 4.94

Normal

p = 0.346

13.29 / 4.27

3.57 / 0.60

Normal

Transformed

(Box-Cox λ  = 0.5)

p = 0.504

2.53 / 0.27

0.92 / 0.11

Normal

Transformed

(Box-Cox λ  = 0)

p = 0.896

33.16 / 11.15
Normal

p = 0.392

IP2

(63)
28 854 3.28% 13.56 / 4.74

Normal

p = 0.050

13.52 / 4.25

3.63 / 0.59

Normal

Transformed

(Box-Cox λ  = 0.5)

p = 0.593

2.56 / 0.27

0.93 / 0.10

Normal

Transformed

(Box-Cox λ  = 0)

p = 0.158

34.61 / 11.22
Normal

p = 0.127

α  = 0.05

Note: Shaded area contains simulated data for IP1, which was generated using data from BL and IP2

Values after transformation (distributions selected to be most appropriate fit over all 3 time periods for comparative analysis)

Per Two-Sample t Test, Daily Avg PP LOS for BL and IP2 found to be same

Not used in regression analysis
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As indicated in Table 4, data was not captured for Daily Average PP LOS during 

IP1.  However, data for this figure was captured in both BL and IP2.  Furthermore, Daily 

Average PP LOS was tested for stability between these time periods.  Figure 6 shows the 

spread of the normal transformed data (Box-Cox λ = 0), and this type of distribution is 

also known as a lognormal distribution.  In Figure 6, the vertical lines represent the first 

and fourth quartiles, the shaded rectangles represent the second and third quartiles, and 

asterisks signify outlier data points. 

 

Figure 6: Boxplot with Two-Sample t Test for Daily Average PP LOS (LN = Box-Cox  = 0) 

A Two Sample t-Test was used to compare the mean value of the normal 

transformed data for BL to that of IP2.  Also, equal variances were assumed as an F-Test 

showed no significant difference (p = 0.666).  The Two-Sample t-Test found that the BL 

mean did not significantly differ from the IP2 mean (p = 0.747), so stability between the 

time periods was demonstrated with these results.  Therefore, IP1 is assumed to have the 

same distribution as the other two time periods, which was normal transformed (Box-Cox 

λ = 0) with transformed mean of 0.93 and standard deviation of 0.10. 
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Daily Average PP LOS data was simulated for IP1 in order to include it in the 

analysis.  Values for the natural log of Daily Average PP LOS were randomly generated 

using the mean and standard deviation parameters, 0.93 and 0.10, respectively, for a 

lognormal distribution.  The simulated data had a mean of 0.92 and standard deviation of 

0.11.  Daily Average PP LOS values were attained by converting each simulated value, 

and this permitted Daily Days D-C PP LOS (measured in patient days) to be assessed. 

In the DES model, each newborn baby enters the system as an entity upon 

delivery.  If the baby is from a single birth or if the baby is the lastborn of a multiple 

birth, then the entity converts to a mother and enters the queue for being transferred to a 

PP room.  Based on the delivery type and weekday of delivery, the mother’s PP LOS is 

determined and she exits the system upon discharge.  However, the PP room is 

technically occupied until it is clean and available for the next patient.  Therefore, the 

DES model has a single resource type, the PP room, which is seized by the entity, the 

patient encounter, until the PP room is clean. 

While other factors could have been incorporated in the DES model, they are not 

necessary due to statistical aggregation.  For instance, human resources like nurses, 

physicians, and room cleaning staff are not included.  This is due to the fact that the 

distributions of PP LOS and D-C to Room Clean Time inherently account for the 

availability of these resources.  Chapter 6 provides a detailed discussion of the DES 

model developed for Step 0.1. 

Table 5 provides data by time period for the DES model.  As shown, data is not 

provided for IP1.  This is due to the absence of delivery time stamp data needed for 

calculating the HRD values required by the DES model.  Also, data was not available for 
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other elements of the DES model in BL due to the limitations of the EHR used during 

that time period.  Table 5 indicates the data not available for BL in the sections shaded in 

gray.  As a result, analysis with the DES model was limited to Question #2 for the IP2 vs. 

BL comparison. 

Table 5: Summary of Data Provided for the DES Model 

 

The rate of deliveries in each time period followed a non-homogenous Poisson 

process (NHPP).  As Hopp and Spearman (2008) indicated, a Poisson distribution is often 

found to reasonably approximate counts of entity arrivals per unit of time.  HRD data in 

BL and IP2 are provided in Table 6. 

Table 6: HRD Values by Weekday and Time Window for the DES Model 

 

Time 

Period

(days)

Avg. 

Delay 

Time 

(hours)

Hourly Rate 

of Deliveries

Delivery 

Type Prob.: 

Vaginal / 

Cesarean

Multiple 

Births Prob. 

(ε )

/ % Twins

Prob. of 

Single Born 

or Lastborn 

Twin (ψ )

L&D Post-

Delivery 

Care Time 

(hours)

Distribution 

of

L&D Post-

Delivery 

Care Time

Patient 

Transport 

Time 

(hours)

Distribution 

of

Patient 

Transport 

Time

PP LOS 

(hours)

μ  / σ

D-C to 

Room Clean 

Time 

(hours)

μ  / σ

Distribution 

of

D-C to 

Room Clean 

Time

No. 

of PP 

Rms.

BL

(63)

Varies by day 

and shift

(See Table 6)

Varies by day 

and shift

(See Table 7)

Min: 0.67

Mode: 1.5

Max: 2.0

Triangular 

based on 

estimates

Min: 0.33

Mode: 0.33

Max: 0.50

Triangular 

based on 

estimates

Varies by 

delivery type 

and weekday

(See Table 7)

47

IP2

(63)
2.64

Varies by day 

and shift

(See Table 6)

Varies by day 

and shift

(See Table 7)

3.28% / 100%
98.36%

(See Eqn. (3))

Min: 0.67

Mode: 1.5

Max: 2.0

Triangular 

based on 

estimates

Min: 0.33

Mode: 0.33

Max: 0.50

Triangular 

based on 

estimates

Varies by 

delivery type 

and weekday

(See Table 7)

1.73 / 1.27

0.34 / 0.64

Lognormal 

(See Fig. 9)
47

Data only available in IP2 due to enhanced data collection capability of new EHR, so analysis limited to Question #2 

α  = 0.05

Values after transformation

Ē S 2 Ē S 2 Ē S 2 Ē S 2 Ē S 2 Ē S 2 Ē S 2

1 0.167 0.143 0.250 0.250 0.194 0.161 0.472 0.542 0.361 0.466 0.361 0.409 0.444 0.425

2 0.278 0.263 0.361 0.294 0.194 0.161 0.500 0.486 0.556 0.425 0.472 0.485 0.250 0.250

3 0.333 0.286 0.972 0.885 0.833 0.943 0.889 1.016 1.000 0.571 0.722 0.549 0.472 0.485

4 0.333 0.286 0.722 0.606 0.667 0.571 0.861 0.809 1.139 1.094 0.861 0.809 0.583 0.364

5 0.417 0.421 0.611 0.644 0.694 0.675 0.750 0.821 0.806 0.904 0.611 0.473 0.500 0.543

6 0.389 0.359 0.500 0.486 0.861 0.637 0.528 0.599 0.694 0.675 0.667 0.686 0.306 0.218

1 0.278 0.263 0.278 0.263 0.389 0.359 0.250 0.193 0.639 0.694 0.306 0.275 0.278 0.378

2 0.250 0.250 0.556 0.540 0.472 0.371 0.500 0.486 0.472 0.485 0.611 0.473 0.389 0.302

3 0.306 0.390 0.833 0.600 1.083 0.993 0.722 0.492 0.889 0.444 0.694 0.504 0.417 0.364

4 0.583 0.650 0.694 0.561 0.639 0.637 0.667 0.686 0.806 0.618 1.139 0.694 0.556 0.540

5 0.361 0.352 0.611 0.644 0.667 0.857 0.639 0.523 0.833 0.771 1.083 1.050 0.472 0.599

6 0.194 0.275 0.444 0.368 0.500 0.600 0.639 0.466 0.556 0.597 0.528 0.656 0.500 0.371

THU FRI SAT

BL

IP2

Values approximate to a Poisson Distribution

Time 

Period

Time 

Window

SUN MON TUE WED
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Devore (1995) stated that a property of a Poisson distribution is that variance (σ
2
) 

and mean (μ) are equivalent, and this condition was not exactly met with the data in 

Table 6 for values of sample variance (S
2
) and those of sample mean (Ē).  Regression 

equations with y-intercepts of zero were developed for time window mean HRD values to 

predict variance values, and none of the assumptions for regression analysis defined in 

Montgomery (2013) were violated.  The slope in the regression equation for BL was 

0.9339 with an R
2

adj value of 0.9710, and the slope for IP2 was 0.8808 with an R
2

adj value 

of 0.9520.  Since the slopes and R
2

adj values were each close to one, mean was found to 

be a significant predictor of variance in both time periods. 

The Poisson assumption for HRD values in IP2 was further tested by comparing 

the simulated daily delivery values of the DES model created for IP2 to the to those 

actually observed.  Due to the limitation of data available for BL, such a model was not 

created for BL.  Figure 7 shows the spread of both data sets where the vertical lines 

represent the first and fourth quartiles, the shaded rectangles represent the second and 

third quartiles, and asterisks signify outlier data points. 

 

Figure 7: Boxplot of actual daily deliveries vs. simulated daily deliveries from the DES model for IP2 
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A Two Sample t-Test was used to compare the mean value of the simulation to 

that value of the actual IP2 data since both data sets were normally distributed.  Also, 

equal variances were assumed as an F-Test showed no significant difference (p = 0.459). 

The Two-Sample t-Test found that the simulation mean value of 13.57 did not 

significantly differ from the actual mean value of 13.56 (p = 0.986), so HRD values were 

determined to reasonability fit Poisson distributions. 

Multiple Births Probabilities were documented in Table 5 since it is the mother 

who is delayed from receiving a PP room.  Multiple Births Probabilities were not 

captured in BL as the data set did not include patient identifiers for mothers as did the 

data set for IP2.  Since all multiple births in IP2 were twins, Multiple Births Probability 

(ε) for IP2 is the probability that the newborn is a twin.  The calculation for the 

probability that a newborn is a single born or a lastborn twin (ψ) can be calculated using 

Equation (3). 

   (    )     ⁄        (3) 

Where: 

                         

                                                                 

                                         

As stated in Table 5, parameter values for L&D Post-Delivery Care Time and 

Patient Transport Time were based on estimates, which were provided by nursing leaders 

as data were not available.  Also, Kelton et al. (2015) recommended use of a triangular 

distribution when practitioner estimates become necessary due to lack of data. 

Table 7 provides information on the delivery type probabilities by weekday and 

PP LOS parameters by delivery type and weekday of delivery.  These parameters were 
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assessed by weekday due to the scheduling tactic change, which limited scheduled 

deliveries by delivery type on a daily basis as part of reducing the overall scheduled 

deliveries allowed per day. 

Table 7: Delivery Type and PP LOS Data by Weekday for the DES Model 

 

A lognormal distribution was applied in the DES model to simulate PP LOS 

values as only positive values are present in a lognormal distribution and PP LOS must 

be positive.  Half of delivery type and weekday combinations had PP LOS data that fit a 

lognormal distribution as indicated in the columns titled “p-value Fit with LN Dist.” in 

Table 7.  Also, lognormal distribution probability plots of the combinations that did not 

show statistical fit still demonstrated graphical fit with lognormal distributions. 

The lognormal assumption for PP LOS was further tested in the DES model for 

IP2 by comparing the distribution from the same simulation replication used for Figure 7 

to the distribution of the actual data.  Figure 8 shows the spread of both data sets where 

the vertical lines represent the first and fourth quartiles, the shaded rectangles represent 

the second and third quartiles, and asterisks signify outlier data points. 

PP LOS 

(Hours): 

Ē

PP LOS 

(Hours): 

S

p-value

Fit with

LN Dist.

% Vaginal

% of Week's 

Vaginal 

Deliveries

Number 

Vaginal 

Deliveries

PP LOS 

(Hours): 

Ē

PP LOS 

(Hours): 

S

p-value

Fit with

LN Dist.

% Cesarean

% of Week's 

Cesarean 

Deliveries

Number 

Cesarean 

Deliveries

SUN 50.47 16.17 < 0.005 68.12% 8.74% 47 83.67 17.99 0.054 31.88% 7.07% 22

MON 50.28 12.35 < 0.005 57.72% 13.20% 71 75.29 14.33 0.083 42.28% 16.72% 52

TUE 48.61 8.04 0.005 58.87% 13.57% 73 81.44 18.19 0.121 41.13% 16.40% 51

WED 50.12 8.53 0.248 66.67% 17.84% 96 79.50 14.03 0.147 33.33% 15.43% 48

THU 49.69 10.27 < 0.005 62.20% 18.96% 102 77.37 15.11 < 0.005 37.80% 19.94% 62

FRI 49.16 8.61 0.084 60.90% 15.06% 81 79.51 15.28 0.031 39.10% 16.72% 52

SAT 49.64 9.59 < 0.005 73.91% 12.64% 68 86.78 19.12 0.986 26.09% 7.72% 24

Total 49.68 10.32 < 0.005 63.37% 100.00% 538 79.55 16.10 < 0.005 36.63% 100.00% 311

SUN 49.97 7.99 0.367 70.42% 9.16% 50 84.87 16.49 0.122 29.58% 6.93% 21

MON 51.13 9.08 0.032 62.60% 14.10% 77 80.70 26.43 < 0.005 37.40% 15.18% 46

TUE 50.08 13.15 < 0.005 60.74% 15.02% 82 82.09 21.61 0.010 39.26% 17.49% 53

WED 48.37 8.32 0.078 68.03% 15.20% 83 77.41 21.79 0.075 31.97% 12.87% 39

THU 50.40 9.35 0.139 62.84% 17.03% 93 82.13 17.18 0.018 37.16% 18.15% 55

FRI 49.44 8.21 0.392 60.26% 17.22% 94 78.72 20.23 < 0.005 39.74% 20.46% 62

SAT 53.98 14.37 0.006 71.28% 12.27% 67 85.38 24.95 0.098 28.72% 8.91% 27

Total 50.38 10.35 < 0.005 64.31% 100.00% 546 81.08 21.38 < 0.005 35.69% 100.00% 303

Note: Data for delivery type was missing from the EHR report on five deliveries in IP2

α  = 0.05

IP2

Time 

Period
Day

Vaginal Cesarean

BL
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Figure 8: Boxplot of actual PP LOS vs. simulated PP LOS from the DES model for IP2 

A Mood’s Median Test was used to compare the median PP LOS values of both 

data sets since they were not normally distributed and contained outliers.  The simulated 

median value of 57.16 hours did not significantly differ from the actual median value of 

54.83 hours (p = 0.058) and the spread of the data in Figure 8 was considered to be 

similar, so the lognormal assumption for PP LOS was accepted. 

Figure 9 shows the data for D-C to Room Clean Time graphically fit a lognormal 

distribution between the 1
st
 and 99

th
 percentiles (i.e., CDF probabilities) of the IP2 

distribution.  Additional testing was not performed to further validate the lognormal 

assumption due to the relatively small impact of D-C to Room Clean Time in the DES 

model. 
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Figure 9: Lognormal probability plot of D/C to Room Clean Time in IP2
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CHAPTER 5 

MONTE CARLO SIMULATION MODEL 

 

 

This Chapter 5 showcases use of the procedure proposed in Chapter 3 using 

Monte Carlo simulation as defined by Anderson et al. (2006).  Questions #1 and #2 were 

addressed to determine the impact on Holds Rate for the case study detailed in Chapter 4. 

The regression equation used by the MCS model was derived first to complete 

Step 0.1.  Next, a detailed explanation of Steps 1.1–1.6 is provided to demonstrate how a 

single performance shift value was calculated.  Subsequently, Steps 1.7–1.9 were 

completed to develop distributions of performance shift values and estimate the 

probability that target performance would have been achieved in the baseline to answer 

Question #1.  This process was repeated for Steps 2.1–2.6 and for Steps 2.7–2.9 to 

answer Question #2.  Results are provided for all time periods and this Chapter 5 ends 

with a discussion of the analysis.  Questions #1 and #2 are restated below. 

 

Question #1: If the scheduling rules of the IP1 and IP2 time periods existed in the 

BL time period, how would the Holds Rate have differed in the BL time period? 

 

Question #2: If the scheduling rules of the BL time period still existed in the IP1 

and IP2 time periods, how would the Holds Rate have differed in the IP1 and IP2 

time periods? 
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5.1 Model Description for BL, IP1, and IP2 

The regression equation was derived using the daily values of data summarized in 

Table 4 for the RS time period.  As shown in Table 3 and discussed in Chapter 4, four 

variables were considered, but only the interaction term between B and C was found to be 

significant.  Variables A and C represented incoming demand to the PP unit, while B and 

D were indicators of PP room utilization.  These variables were considered for the 

regression modeling process as both incoming demand and utilization of capacity are 

generally known to be drivers of queue length and time spent in queue.  Figure 10 

provides the best subsets analysis that was performed to start the regression modeling 

process. 

  

Figure 10: Best subsets analysis for regression using all values of RS data 
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 As shown in Figure 10 with the red arrow, the subset chosen for further analysis 

was the model using C*B and (C*B)
2
 as terms.  These terms were chosen due to the high 

adjusted R
2
 value with fewer variable terms as compared with other model subset 

options.  Figure 11 plots the fitted line of the regression model initially considered. 

 

Figure 11: Two term regression model to fit all values of RS data 

 However, this model was found to be inadequate as indicated by the residual plots 

shown in Figure 12.  A model’s adequacy must be supported by normally distributed 

residuals that are independent in time order and have constant variance at fitted values as 

indicated by Montgomery (2013).  While the residuals appeared to adhere to the 

independence assumption in the residual vs. order plot, this model violated the normality 

assumption as illustrated by the normal probability plot and the histogram.  Regarding 

variance of the residuals, the residual values appeared to be positively skewed in the 

residual vs. fit plot indicating that variance was not constant. 
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Figure 12: Residual plots of two term regression model to fit all values of RS data 

 Upon further evaluation of Figure 11, the curved nature of the fitted regression 

line appeared to be inappropriate as Holds Rate values tended to be zero with lower C*B 

values.  Figure 13 displays only three data points below 1200 in C*B value had a non-

zero Holds Rate, where the vertical dashed line demarks 1200 in C*B value.  

Furthermore, values of C*B above 1200 appeared to be positively correlated with higher 

Holds Rate values as shown in Figure 13. 
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Figure 13: Scatterplot of Holds Rate vs. C*B for RS data 

 The best subsets analysis was repeated for the BL data using only C*B values 

greater than 1200.  In Figure 14, the red arrow points to the model selected for further 

evaluation.  This model was selected as it is linear and the non-linear alternatives each 

violated the normality assumption associated with the distribution of the residuals. 

 

Figure 14: Best subsets analysis for regression using RS data with C*B values >1200 

 Figure 15 shows the fit of the regression line among the BL data with C*B values 

greater than 1200.  The linear model was the best fit found over this range of data with 
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the C*B term being statistically significant as p = 0.000 for the regression term in the 

associated Analysis of Variance (ANOVA). 

 

Figure 15: Selected regression model to fit C*B values >1200 of RS data 

Figure 16 confirms the model’s adequacy as none of the assumptions defined in 

Montgomery (2013) were violated since normal distribution, time ordered independence, 

and constant variance of the residuals were all supported.  Figure 17 further validates the 

normality assumption associated with the distribution of the residuals as p = 0.251 for the 

normality test.  Figure 17 plots the residuals for the 27 C*B values above 1200 in the RS 

data (N = 27), with the X-axis being residual value and the Y-axis being CDF probability.  

The middle line, which is straight, is the plot of a normal distribution and the curved lines 

represent the upper and lower confidence intervals.  As shown, all but one residual value 

fell within the confidence intervals. 
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Figure 16: Residual plots of selected regression model 

 

 

Figure 17: Normal probability plot of residuals for selected regression model 
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 Based on the regression analysis, a two-stage MCS model was developed.  C*B 

values were used by determining 2 Days Deliveries (C) and Days D-C PP LOS (B), 

where 2 Days Deliveries (C) was the summation of Daily Deliveries (A) for the subject 

day and one day prior.  This model is expressed in Equations (4) – (7). 

Notations: 

                  

                          

    Holds Rate for day   

    2 Days Deliveries for day   

    Days D C PP LOS for day   

    Daily Deliveries for day   

    Holds for day   (rounded to the nearest integer) 

    63 Day Holds Rate for 63 day period   

    The subset of days contained in 63 day period  , where periods are non overlapping 

Regression Model: 

    {
                                                                          

                (     )                   
  (4) 

                           (5) 

                      (6) 

   ∑       
∑       

⁄                 (7) 

In Equation (4), the Holds Rate (qi) is calculated for each day based on the 

regression equation, which yields positive qi values for any C*B value that is at least 

1,271.  Therefore, qi is forced to zero for any C*B value below 1,271.  Bi values are the 

total time that all patients (mothers) discharged on day i stayed in the hospital following 

delivery.  For example, if 20 patients discharged with an average PP LOS of 3.5 days per 
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patient, then the Bi value for that day would be 70 Days D-C PP LOS.  Ci values are the 

summation of the number of deliveries for day i (Ai) and the prior day’s value (Ai-1) as 

defined by Equation (5).  Equation (6) is used to calculate the total number of Holds (hi) 

for each day by multiplying that day’s qi value by its Ai value and rounding the output 

value to the nearest integer.  In order to determine the 63 Day Holds Rate (Qj) for each 63 

day period j, the summation of hi for days i   Ij is divided by the summation of Ai for 

days i   Ij as defined by Equation (7). 

As shown in Figure 18, Days D-C PP LOS (B) and 2 Days Deliveries (C) were 

independent of one another due to a weak correlation coefficient that is statistically 

insignificant.  The Pearson correlation coefficient is also referred to as the correlation 

coefficient and an absolute value below 0.5 is considered to be weak according to Devore 

(1995).  Also, Ci values were derived by adding successive Ai values from Equation (5), 

so the data was investigated for autocorrelation.  Autocorrelation between successive Ai 

values is defined by Equation (8), which was derived from the formula for sample 

correlation coefficient as documented in Devore (1995). 

        
 

 ∑ (       )  (∑      )(∑    )

√ ∑     
 

  (∑      ) √ ∑   
 

  (∑    ) 
               (8) 

Where: 

        
                                                     

                             (   ) 

Correlation was weak and statistically insignificant between successive Ai values 

as displayed in Figure 19.  Furthermore, there is no graphical evidence of any nonlinear 

relationship in Figure 18 or Figure 19.  Therefore, Ci and Bi values could be 

independently created for simulation by randomly generating values for Ai and Bi. 



72 

 

Figure 18: Scatterplot of B vs. C for RS data 

 

 

Figure 19: Scatterplot of Ai vs. Ai-1 for RS data 
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5.2 Question #1: Experimental Design Demonstrated for IP1 vs. BL 

 The proposed analysis procedure for answering Question #1 begins with Step 1.1, 

thus a simulation of Qj values was conducted using BL parameters as defined in Table 4.  

The distribution of Qj values for T0 from the simulation is depicted in Figure 20, with the 

red line marking the BL Overall Holds Rate (Y0). 

 

Figure 20: Simulation output compared to BL Overall Holds Rate (Y0) 

A normal transformed (Box-Cox λ = 0.5) was found to adequately represent the 

distribution of 50 simulated Qj values for T0 with a very strong fit (p = 0.855).  As seen in 

Figure 20, the observed result was located near the center of the simulation distribution, 

which was 58.48% of the cumulative normal transformed distribution in Step 1.2.  

Therefore, the baseline CDF probability associated with BL was 0.5848. 
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 Figure 21 shows that the factor values of C*B in IP1 fell within the range used to 

develop Equation (4).  Thus, identifying a new relationship for Step 1.3 was unnecessary. 

 

Figure 21: Histogram of C*B values for IP1 data 

Step 1.4 was accomplished using 50 simulation replications to generate Qj values 

by applying Equations (4) – (7) and randomly generating values for Bi and Ai.  As shown 

in Table 2, the scheduling rules changed in IP1.  Subsequently, the variability of volumes 

in the L&D and PP units was reduced in IP1.  This impact was measured by each 

variable’s coefficient of variation (CV), which is defined as the standard deviation 

divided by the mean value of a random variable as documented by Hopp and Spearman 
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Table 8: CV Calculation for BL (T0) and IP1 (T1) 

 

 Since the scheduling rules introduced in IP1 were intended to reduce the 

variability of volumes in the L&D and PP units, the respective CV’s associated with A 

and B were determined to be factors influenced by the change (i.e., controlled 

parameters).  However, overall delivery volumes and subsequent demand for PP care 

were not controlled by scheduling.  Therefore, standard deviation values of A and B were 

deemed to be affected by the scheduling tactic change, whereas mean values of A and B 

were not.  Table 9 outlines the parameter values for T0′. 

Table 9: T0′ Parameter Values for the MCS Model 

 

  

Parameter Value Distribution / Comments

T0 Mean Daily Total Deliveries (A) 13.48 Normal (See Table 4 for BL)

T0 Stdev Daily Total Deliveries (A) 5.17 Normal (See Table 4 for BL)

T0 CV (A) 0.3839 Mean / Stdev

T0 Mean Days D-C PP LOS (B) 34.89 Normal (See Table 4 for BL)

T0 Stdev Days D-C PP LOS (B) 12.28 Normal (See Table 4 for BL)

T0 CV (B) 0.3520 Mean / Stdev

T1 Mean Daily Total Deliveries (A) 13.51 Normal (See Table 4 for IP1)

T1 Stdev Daily Total Deliveries (A) 4.94 Normal (See Table 4 for IP1)

T1 CV (A) 0.3658 Mean / Stdev

T1 Mean Days D-C PP LOS (B) 33.16 Normal (See Table 4 for IP1)

T1 Stdev Days D-C PP LOS (B) 11.15 Normal (See Table 4 for IP1)

T1 CV (B) 0.3364 Mean / Stdev

Parameter Value Distribution / Comments

T0' Mean Daily Total Deliveries (A) 13.48 Normal (uncontrolled, same as BL)

T0' Stdev Daily Total Deliveries (A) 4.93 Normal (calculated as CV is controlled parameter)

T0' CV (A) 0.3658 Controlled in IP1

T0' Mean Days D-C PP LOS (B) 34.89 Normal (uncontrolled, same as BL)

T0' Std Dev Days D-C PP LOS (B) 11.74 Normal (calculated as CV is controlled parameter)

T0' CV (B) 0.3364 Controlled in IP1
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 The parameter values in Table 9 were used in the 50 simulation replications to 

generate Qj values that were used along with the baseline CDF probability to determine 

Y0′.  The distribution of simulated Qj values for T0′ was found to be normal transformed 

(Box-Cox λ = 0.5) with a strong fit (p = 0.576).  The baseline CDF probability and the 

inverse of the CDF for the normal transformed distribution were used together to 

calculate a transformed Y0′ value (Y0′
t
).  The transformed Y0′ value was squared to find 

Y0′ in Step 1.5.  Subsequently, Y0 was compared to Y0 in Step 1.6 of the analysis.  Table 

10 details the values pertinent to the calculations for Steps 1.5 and 1.6. 

Table 10: Calculation of Y0′ and % Y0′ Improved over Y0 for Holds Rate 

 

 A distribution of 50 comparison values was developed in Step 1.7 by repeating 

Steps 1.1–1.6.  Also, each simulation applied common random numbers (CRN) as part of 

a variance reduction technique shared in Kelton et al. (2015).  This distribution was found 

to be normal (p = 0.392).  As shown in Figure 22, the baseline performance shift CDF 

probability was one, or 100% of the cumulative normal distribution, in Step 1.8.  The 

targeted performance shift of 15% is represented by the lower specification limit (LSL) 

since the targeted performance shift represents the minimal amount of improvement 

required.  Any value below the LSL is counted to the parts per million (PPM) total, where 

Variable Value

BL CDF Probability 0.5848

Mean Qj
t for T0' 20.92%

Stdev Qj
t for T0' 3.92%

Y0'
t Using BL CDF Probability 21.76%

Step 1.5 Y0' Using BL CDF Probability 4.73%

BL Holds Rate (Y0) 5.42%

Step 1.6 % Y0' Improved over Y0 12.6%
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PPM is a measure of how many trials (parts) are expected to be non-conforming out of 

one million trials. 

 

Figure 22: Baseline performance shift CDF probability for Holds Rate 

 In order to complete Step 1.9, the result of Step 1.8 was subtracted from one.  

Thus, there is a probability of zero that the actual Holds Rate performance observed 

during BL (Y0) could have been at least 15% lower had the L&D schedule been managed 

in BL as it was in IP1 (Y0′).  However, further review of the information presented in 

Figure 22 indicated that Holds Rate performance could have been at least 9% lower in 

BL had the L&D scheduled been managed as it was in IP1.  These statements provided 

the answer to Question #1 and it was substantiated by the distribution found in Step 1.7, 

which is shown in Figure 22. 
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5.3 Question #2: Experimental Design Demonstrated for IP1 vs. BL 

The proposed analysis procedure for answering Question #2 begins with Step 2.1, 

which is identical to Step 1.3.  As shown in Figure 21 and discussed in Section 5.2, the 

factor values of C*B in IP1 fell within the range used to develop Equation (4).  Thus, 

identifying a new relationship for Step 2.1 was unnecessary. 

To complete Step 2.2, a simulation of Qj values was conducted using IP1 

parameters as defined in Table 4.  The distribution of Qj values for T1 from the simulation 

is depicted in Figure 23, with the red line marking the IP1 Overall Holds Rate (Y1). 

 

Figure 23: Simulation output compared to IP1 Overall Holds Rate (Y1) 
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and was 74.44% of the cumulative normal transformed distribution in Step 2.3.  

Therefore, the post-change CDF probability associated with IP1 was 0.7444. 

Step 2.4 was accomplished using 50 simulation replications (Qj values) applying 

Equations (4) – (7) and randomly generating values for Bi and Ai.  As discussed in 

Section 5.2, the scheduling rules changed in IP1 and the variability of volumes in the 

L&D and PP units was reduced as intended.  Accordingly, the respective CV’s for A and 

B were determined to be factors influenced by the change (i.e., controlled parameters), 

while overall delivery volumes and subsequent demand for PP care were not controlled 

by scheduling.  Therefore, standard deviation values of A and B were to be affected by 

the scheduling tactic change, while mean values of A and B were not.  Table 11 outlines 

the parameter values for T1′. 

Table 11: T1′ Parameter Values for the MCS Model 

 

 The parameter values in Table 11 were used in the 50 simulation replications to 

generate Qj values used along with the post-change CDF probability to determine Y1′.  

The distribution of simulated Qj values for T1′ was found to be normal transformed (Box-

Cox λ = 0.5) with a strong fit (p = 0.651).  The post-change CDF probability and the 

inverse of the CDF for the normal transformed distribution were used together to 

calculate a transformed Y1′ value (Y1′
t
).  The transformed Y1′ value was squared to find 

Parameter Value Distribution / Comments

T1' Mean Daily Total Deliveries (A) 13.51 Normal (uncontrolled, same as IP1)

T1' Stdev Daily Total Deliveries (A) 5.19 Normal (calculated as CV is controlled parameter)

T1' CV (A) 0.3839 Controlled in BL

T1' Mean Days D-C PP LOS (B) 33.16 Normal (uncontrolled, same as IP1)

T1' Std Dev Days D-C PP LOS (B) 11.67 Normal (calculated as CV is controlled parameter)

T1' CV (B) 0.3520 Controlled in BL
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Y1′ in Step 2.5.  Subsequently, Y1 was compared to Y1′ in Step 2.6 of the analysis.  Table 

12 details the values pertinent to the calculations for Steps 2.5 and 2.6. 

Table 12: Calculation of Y1′ and % Y1 Improved over Y1′ for Holds Rate 

 

 A distribution of comparison values was developed in Step 2.7 with 50 repetitions 

of Steps 2.1–2.6.  Also, each simulation applied common random numbers (CRN) as part 

of a variance reduction technique shared in Kelton et al. (2015).  This distribution was 

found to be normal with a very strong fit (p = 0.988).  As shown in Figure 24, the post-

change performance shift CDF probability was 0.9999, or 99.99% of the cumulative 

normal distribution, in Step 2.8.  The targeted performance shift of 15% is represented by 

the lower specification limit (LSL) since the targeted performance shift represents the 

minimal amount of improvement required.  Any value below the LSL is counted to the 

parts per million (PPM) total, where PPM is a measure of how many trials (parts) are 

expected to be non-conforming out of one million trials. 

Variable Value

IP1 CDF Probability 0.7444

Mean Qj
t for T1' 21.01%

Stdev Qj
t for T1' 5.27%

Y1'
t Using IP1 CDF Probability 24.47%

Step 2.5 Y1' Using IP1 CDF Probability 5.99%

IP1 Holds Rate (Y1) 5.29%

Step 2.6 % Y1 Improved over Y1' 11.7%
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Figure 24: Post-change performance shift CDF probability for Holds Rate 

 In order to complete Step 2.9, the result of Step 2.8 was subtracted from one.  

Thus, there is a probability of 0.0001 that the actual Holds Rate performance observed 

during IP1 (Y1) could have been at least 15% lower than it would have been had the L&D 

schedule been managed in IP1 as it was in BL (Y1′).  However, further review of the 

information presented in Figure 24 indicated that Holds Rate performance could have 

been at least 9% lower in IP1 than if the L&D scheduled had been managed as it was in 

BL.  These statements provided the answer to Question #2 and it was substantiated by the 

distribution found in Step 2.7, which is shown in Figure 24. 
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fell within the range used to develop Equation (4).  Thus, identifying a new relationship 

for Steps 1.3 and 2.1 was unnecessary. 

 

Figure 25: Histogram of C*B values for IP2 data 

 In IP2, the Overall Holds Rate (Y1) was only 3.28%, which marked a 39.48% 

improvement over the BL Overall Holds Rate (Y0).  However, as shown in Figure 26, the 

observed result was located to the left of the simulation distribution’s center, with a post-

change CDF probability of 0.3166.  The baseline CDF probability associated with BL 

was 0.5348, so the amount that the IP2 Overall Holds Rate (Y1) improved over the BL 

Overall Holds Rate (Y0) appeared to be caused by more than the scheduling tactic change 

alone.  As will be shown, the proposed procedure addressed this concern by using the 

baseline CDF probability to answer Question #1 and by using the post-change CDF 

probability to answer Question #2.  As stated in Chapter 3, a CDF probability is a 
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measure of chance, and using these CDF probabilities isolates the chance associated with 

each time period under analysis. 

 

Figure 26: Simulation output compared to IP2 Overall Holds Rate (Y1) 

 Table 13 details the observed Holds Rate improvement versus those values 

determined by following the proposed procedure.  As shown, the difference in 

performance shift from BL to IP1 compared to that from BL to IP2 was much smaller 

using the results from the proposed procedure as compared to the observed results.  These 

results indicated that uncontrolled factors influencing the Holds Rate in IP1, including 

those attributed to chance, contributed a negative effect.  Conversely, the uncontrolled 

factors in IP2 made a positive impact.  However, the difference in performance caused by 

the controllable factors, which are variation in Daily Deliveries and the PP LOS 

associated with the PP discharges for each day (Days D-C PP LOS), had a more 

consistent and positive impact between IP1 and IP2. 
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Table 13: Observed Holds Rate Improvement Values Compared to Procedure-Derived Values 

 

 As shown in Table 13, 50 sample comparisons were made from the proposed 

procedure to assess %Y0′ Improved over Y0 and to assess %Y1 Improved over Y1′ for 

both time period comparisons.  This yielded a statistical power of 1.00 for each One-

Sample t Test performed when seeking to detect a difference in the mean value for 

performance shift of 1%.  This 1% value was chosen since the sample mean values of 

each time period comparison were more than two percentage points different than the 

targeted performance shift of 15%.  Thus, there was a probability of one to conclude that 

the mean was greater than 15% (i.e., reject H0) when indeed the mean was greater than 

15% (i.e., H0 is false).  In the IP2 vs. BL comparison, the p-value of each One-Sample t 

Test was 0.000, thereby indicating a probability of zero to conclude that mean 

performance shift was greater than 15% (i.e., reject H0) when indeed it was no different 

than 15% (i.e., H0 is true).  However, in the IP1 vs. BL comparison, the p-value of each 

One-Sample t Test was 1.000, thereby indicating a probability of one to conclude that the 

mean performance shift was greater than 15% (i.e., reject H0) when indeed it was no 

different than 15% (i.e., H0 is true).  These observations, combined with the Probability 

Target Achieved values in Table 13, led to the conclusion that target performance for 

Time Period 

Comparison

Y0

(Observed)

Y1

(Observed)

%Y1 Improved over Y0

(Observed Performance Shift)

%Y0' Improved over Y0

(Procedure for Question #1)

%Y1 Improved over Y1'

(Procedure for Question #2)

IP1 vs. BL 5.42% 5.29% 2.40%

Ē  = 11.07%

S  = 0.66%

n  = 50 comparisons

Prob. Target Achieved = 0.0000

Ē  = 11.58%

S  = 0.85%

n  = 50 comparisons

Prob. Target Achieved = 0.0000

IP2 vs. BL 5.42% 3.28% 39.48%

Ē  = 20.12%

S  = 0.59%

n  = 50 comparisons

Prob. Target Achieved = 1.0000

Ē  = 21.09%

S  = 0.98%

n  = 50 comparisons

Prob. Target Achieved = 1.0000

H a  for One-Sample t Test is µ  > 15% (targeted performance shift)

α  = 0.05, Power = 1.00 (β  = 0.00)
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Holds Rate was not achieved in the IP1 vs. BL comparison and it was exceeded in the IP2 

vs. BL comparison. 

 A sample size of 50 comparisons was used for each time period analysis though a 

smaller sample size could have been used.  Also, each simulation run consisted of 50 

replications, while fewer replications would have been sufficient.  While a sample size 

(n) requirement is determined by the statistical power achieved, estimating the error of 

the simulation sample mean relative to the population mean (γ) is an objective approach 

to determining the number of replications (m) needed in each simulation run.  Law (2007) 

provided mathematical relationships for the method of estimating γ to determine the 

required value of m as expressed in Equations (9) – (12). 
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 In Equation (9), the population mean (μ) is unknown despite the simulation 

sample mean based on m replications being known, which is denoted as Ē(m). Therefore, 

γ cannot be directly calculated in Equation (9), so Equations (10) and (11) are necessary. 

In Equation (10), δ(m, α) is the confidence interval half-length for μ based on m 

replications and α, and Equations (5) and (6) are used together in an iterative process to 

determine the required m to achieve an adjusted relative error (γ′) that results in a 

sufficient γ. A larger m results in longer simulation run times, but also yields a smaller γ 

and a tighter confidence interval, which is denoted in Equation (12) as I(α, γ). 

 To demonstrate the impact of m and n on γ′, γ, and statistical power, values of m 

and n were varied in an analysis of %Y1 Improved over Y1′ for IP2 vs. BL as documented 

in Table 14.  Case I is the same comparison made for IP2 vs. BL and Question #2 in 

Table 13.  Min γ′ is the minimal value of γ′ required to satisfy Equation (11) for all 

comparisons with simulations of replication length m and sample size n listed.  Min γ was 

calculated by algebraic conversion of Equation (11). 

Table 14: Results of IP2 vs. BL for Holds Rate Using Different Replication Lengths and Sample Sizes 

 

Case
Replications

(m )

Samples

(n )
Min γ' Min γ

%Y1 Improved over Y1'

(Procedure for Question #2)

Case I 50 50 0.1428 0.1666

Ē  = 21.09%

S  = 0.98%

Actual Power = 1.0000

Case II 30 30 0.2116 0.2683

Ē  = 21.43%

S  = 1.45%

Actual Power = 0.9794

Case III 25 30 0.2238 0.2883

Ē  = 21.23%

S  = 1.19%

Actual Power = 0.9978

Case IV 20 30 0.2920 0.4125

Ē  = 21.50%

S  = 1.35%

Actual Power = 0.9897

Case V 20 20 0.2506 0.3344

Ē  = 21.24%

S  = 1.30%

Actual Power = 0.9932

α  = 0.05, Target Power = 0.95 (β  = 0.05)

H a  for One-Sample t Test is µ  > 15% (targeted performance shift)



87 

 The probability that the target was achieved was one for each case in Table 6.  

Also the actual statistical power of the One-Sample t-Test performed in each case was 

approximately one while the p-value of each One-Sample t-Test was zero.  Therefore, 

there was near certainty in correctly concluding that the mean value for performance shift 

was greater than 15% in each case.  Fairly large values of Min γ were obtained without 

sacrificing the actual statistical power associated with the comparison made in Step 2.9, 

and this was attributed to the relatively small standard deviation associated with the 

comparison values as a result of using the CRN variance reduction technique. 

In Table 6, the five cases presented show that varying m and n impact Min γ (γ′).  

Cases II–IV have n fixed at 30, and the values of Min γ (γ′) are inversely related to m, 

which was expected based on Equations (10) and (11) since δ(m,α) increases as m 

decreases when all other parameters are held constant.  Also, n impacts Min γ (γ′) as 

shown in Cases IV and V, and this is due a larger sample size allowing for a broader 

range of γ (γ′) values. 

 

5.5 Discussion 

As mentioned in Section 5.4, uncontrolled factors influencing the Holds Rate in 

IP1 contributed a negative effect, while those in IP2 made a positive impact.  Though not 

indicative of the targeted performance shift of 15% being achieved, the results of the 

proposed procedure for the IP1 vs. BL comparison were nearly five times greater than the 

observed performance shift of IP1 vs. BL.  Thus, the scheduling tactic change was more 

effective than the observed performance showed.  As stated in Section 1.1, a less-refined 

version of the proposed procedure demonstrated to hospital leadership that the change 
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was more effective than what was observed in the Holds Rate data.  This analysis allowed 

leaders to continue their support of the scheduling tactic change.  Thus, the proposed 

procedure can allow organizations to quantitatively assess the effectiveness of a change 

while accounting for unfavorable influence from the uncontrolled environment. 

Alternatively, the results in Table 13 for IP2 vs. BL show that the observed 

performance far exceeded the targeted performance shift of 15%.  However, the proposed 

procedure yielded results much closer to that goal.  Therefore, the proposed procedure 

can allow organizations to quantitatively assess the effectiveness of a change while 

accounting for favorable influence from the uncontrolled environment. 

The new scheduling rules reduced the CV’s of Daily Deliveries and Days D-C PP 

LOS by up to 5% in IP1 and 8% in IP2.  This reduction allowed the flow of patients into 

the system to be smoothed.  Patients were less likely to be held as indicated by the results 

of the analysis with the proposed procedure, and this correlates to higher patient 

satisfaction.  Nurses and physicians were burdened less than they were in BL on peak 

days of volume in L&D and PP due to the smoothed patient flow. In fact, both the 

hospital’s chief administrative officer (CAO) and the System Vice President (SVP) of 

Women’s Services at NHC have heralded this project as successful. 
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CHAPTER 6 

DISCRETE-EVENT SIMULATION MODEL 

 

 

This Chapter 6 provides an example of the procedure proposed in Chapter 3 being 

applied using discrete-event simulation.  Only Question #2 was addressed to determine 

the impact on ADT for the case study detailed in Chapter 4, and this was due to the 

limitations of data available prior to the new EHR being implemented. 

A DES model was developed to complete Step 0.1.  Next, a detailed explanation 

of Steps 2.1–2.6 is provided to demonstrate how a single performance shift value was 

calculated.  Subsequently, Steps 2.7–2.8 were completed to develop a distribution of 

performance shift values and estimate the mean change in performance.  Step 2.9 was not 

performed since no targeted performance shift was set.  Results are provided for the IP2 

vs. BL comparison made in Step 2.8 and this Chapter 6 ends with a discussion of the 

analysis.  Question #2 is restated below. 

 

Question #2: If the scheduling rules of the BL time period still existed in the IP2 

time period, how would ADT have differed in the IP2 time period? 
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6.1 Model Description for BL and IP2 

Figure 27 depicts the basic structure of patient flow for BL and IP2, and a DES 

model was implemented using Arena.  In the model, entities flowed through the model 

such that PP bed assignment and duration of PP bed seizure were accurately captured. 

 

Figure 27: Basic structure of the DES model 

 First, entities arrive in the model as newborn deliveries.  Since the mother is 

assigned a PP bed, the newborn entity is represented as a mother patient.  This is 

accomplished immediately following the Delivery step as the probability of the 

newborn being a singleton (i.e., single birth) or lastborn twin is applied in the 

subsequent decision point.  The entity exits the model if it is a firstborn twin so as 

to only allow the mother to move forward since she is associated by proxy with 

the lastborn twin.  Following delivery, each mother waits to have a PP bed 

assigned to her.  The mother entity then seizes the PP bed resource when 

departing this queue despite not yet being transported to the PP unit.  The PP bed 

is seized before transport as each mother patient has claim to her assigned PP bed 

at this point. 
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 If a mother happens to wait less than two hours to seize a PP bed, then more time 

is added to the delay so post-delivery care is finished before transporting the 

patient since such care can take from 40 minutes to two hours.  Post-delivery care 

includes activities such as weighing the baby, cutting the umbilical cord, and 

placental expulsion.  It is possible for a mother entity to wait just under two hours 

and then incur an additional two hours of post-delivery care, but the impact of this 

on the results was negligible.  However, each mother entity is delayed at least 40 

minutes from being transported to her PP bed in the model, and this reflects the 

actual process.  Transporting each mother to her PP bed includes conducting a 

nursing hand-off. 

 Once the mother arrives to her PP bed, her weekday of delivery and method of 

delivery are determined due to their impacts on PP LOS.  The probability of 

vaginal delivery is based on the weekday of delivery.  The duration of time in the 

PP unit is measured by subtracting the entity’s time between delivery and being 

transported to the PP bed from the entity’s PP LOS.  Time in the PP unit accounts 

for various clinical and non-clinical activities, which include the mother’s 

recovery, vaccinations, circumcision as requested, hearing screens, lactation 

consults, governmental documentation, and a car seat test. 

 After completion of her time in the PP unit, the mother is discharged and the 

entity turns into a room cleaning need.  The time to clean the PP room includes 

the response time of environmental services staff to the cleaning request in 

addition to the time spent cleaning the room. Upon the PP room being cleaned, 

the PP bed is released for a future use in the model. 
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Aside from the model’s structure, the model involved steady-state simulation 

since the mother baby service line continuously operated.  Thus, prior to completing 

Steps 0.1 and 2.1, a warm-up period needed to be established with a duration that allowed 

for stabilization to occur as indicated by Kelton et al. (2015).  Both the number of 

occupied PP beds and the average delay time between delivery of a singleton or last born 

twin and the mother being placed into a PP bed (ADT) were examined to determine the 

appropriate number of days in the simulation needed for the warm-up period.  Only IP2 

data was used for this assessment since not all required data points were available to 

make such an assessment for BL. 

The number of occupied PP beds was counted at every midnight in the simulation 

following the start, which is consistent with the method for measuring census level at 

Norton Healthcare. Daily delivery volumes fluctuated by weekday, as did census levels 

routinely throughout each week.  Therefore, census level values needed to be compared 

by weekday in order to assess when steady-state was reached in the simulation.  The 

difference between each day’s census and the average census for that weekday over the 

weeks remaining in each simulation replication was measured to identify stability.  Mean 

differences across 50 replications were plotted over simulation days in Figure 28, and the 

results indicated mean differences approached zero. 
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Figure 28: Plot of mean difference from average census by weekday in IP2 simulation 

Mean ADT values were calculated over 50 replications to measure delays 

between mother’s delivery and her placement in a PP bed.  Due to delivery volumes 

fluctuating by weekday, mean ADT values were also analyzed by weekday as shown in 

Table 15.  The mean ADT value for only Sunday of Week 1 was identified to be lower 

than all of those values of the remaining weeks. 

Table 15: Mean ADT Values by Weekday in IP2 Simulation 

 

Based on the trends observed in Figure 28 and Table 15, a warm-up period of 

seven days was determined to be sufficient for stability to be achieved in the model. 

While a shorter warm-up period of four or five days could have been considered, seven 
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Week # SUN MON TUE WED THU FRI SAT

1 1.73 1.80 1.83 2.19 2.33 3.30 3.20

2 2.33 1.78 1.82 2.02 2.44 3.43 3.64

3 2.18 1.78 1.86 2.23 2.17 2.72 2.93

4 2.06 1.79 1.76 1.85 2.10 3.05 2.98

5 2.04 1.79 1.81 2.13 2.49 3.20 3.20

6 1.85 1.77 1.80 2.36 2.02 2.89 2.69

7 2.44 1.80 1.91 2.22 2.48 3.07 2.84

8 2.23 1.83 1.97 2.13 2.20 2.57 2.90

9 2.51 1.76 1.79 1.81 2.04 3.36 3.47

10 2.61 1.77 1.78 2.31 2.64 3.36 3.58
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days allowed for additional assurance that individual replications would achieve steady-

state prior to output data being reported. 

 

6.2 Question #2: Experimental Design Demonstrated for IP2 vs. BL 

After having developed a suitable model for both BL and IP2 to fulfill the 

requirements of Steps 0.1 and 2.1, the proposed analysis procedure for answering 

Question #2 advanced to Step 2.2.  To complete Step 2.2, a simulation of ADT values 

was conducted using IP2 parameters as defined in Tables 5–7.  The distribution of ADT 

values for T1 from the simulation is depicted in Figure 29, with the red line marking the 

IP2 ADT value (Y1). 

 

Figure 29: Simulation output compared to IP2 ADT value (Y1) 

A normal transformed distribution which used Equation (13) in the Johnson 

transformation (JT) method was found to adequately represent the distribution of 125 
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simulated ADT values for T1 with acceptable fit (p = 0.083).  The number of simulation 

replications (m = 125) was determined using Equations (9) – (12) and a relative error γ 

equal to 0.10.  This target value of γ was selected since a One Sample t-Test and 

statistical power calculation were not practical as a targeted performance shift was not 

specified for ADT.  Also, the lack of a targeted performance shift for ADT resulted in the 

analysis being terminated at Step 2.8.  The value of m was incremented by 25 until an 

acceptable value was found for all simulation samples used in the analysis to answer 

Question #2.  Min γ at 125 replications was 0.0845, so the target γ of 0.10 was achieved.  

As seen in Figure 29, the observed result was 74.83% of the cumulative normal 

transformed distribution in Step 2.3.  Therefore, the post-change CDF probability 

associated with IP2 was 0.7483. 

          (
        

        
)      (13) 

 Where: 

    T value of ADT  

   ADT value to be transformed    

   Minimum value of ADT across all replications 

   Maximum value of ADT across all replications 

In Step 2.4, 125 simulation replications (ADT values) were used and all 

parameters of the DES model had the same values as those of IP2 with the exception of 

HRD values and weekday delivery type probabilities.  The scheduling tactic change 

limited scheduled deliveries by delivery type on a daily basis as part of reducing the 

overall scheduled deliveries allowed per day.  Thus, HRD values and probabilities of 

vaginal delivery by weekday were considered as factors influenced by the change (i.e., 

controlled parameters), while other parameters were not. 
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Equation (14) was used to estimate HRD parameters for T1′ that reflected the 

volume variability of BL in an NHPP since volume variability was controlled by the 

scheduling tactic change.  Also, the process needed to have a value for overall mean daily 

deliveries equal to that of IP2 as overall delivery volume was deemed to be an 

uncontrolled parameter. 

 ̅    
           

 
       (14) 

Where: 

   Index for time window    

   Index for weekday    

 ̅     HRD parameter for use in time window   on weekday   in        

   Mean of daily deliveries for     

    Proportion of deliveries occurring on weekday   in BL 

      Proportion of deliveries in                            in BL 

   Scaling factor for weekdays per week (7) 

   Number of hours per time window ( ) 

 In Equation (14), the mean daily deliveries for IP2 (μ = 13.56) were multiplied by 

a scaling factor (τ = 7) to determine the mean volume of weekly deliveries in IP2.  The 

mean volume of weekly deliveries in IP2 was multiplied by the proportion of deliveries 

that occurred on weekday h (θh) in BL to estimate the mean daily deliveries for weekday 

h in T1′.  The estimate of mean daily deliveries for weekday h was multiplied by the 

proportion of deliveries for weekday h that occurred during time window g on weekday h 

in BL (ωg,h) to estimate the mean amount of deliveries that occurred during time window 

g on weekday h in T1′.  Finally, the estimate of the mean amount of deliveries that 

occurred during time window g on weekday h was divided by the number of hours per 
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time window (ρ = 4) to estimate the HRD parameter for use in time window g on 

weekday h in T1′ (Ēg,h).  Values of θh are shown in Figure 30 and values of ωg,h are shown 

in Table 16.  Table 17 provides the Ēg,h values calculated using Equation (14). 

 

Figure 30: Bar graph of θh values 

 

Table 16: Table of ωg,h Values 

 

 

Table 17: Table of Ēg,h Values 

 

  

Time 

Window SUN MON TUE WED THU FRI SAT

1 0.087 0.073 0.056 0.118 0.079 0.098 0.174

2 0.145 0.106 0.056 0.125 0.122 0.128 0.098

3 0.174 0.285 0.242 0.222 0.220 0.195 0.185

4 0.174 0.211 0.194 0.215 0.250 0.233 0.228

5 0.217 0.179 0.202 0.188 0.177 0.165 0.196

6 0.203 0.146 0.250 0.132 0.152 0.180 0.120

SUN MON TUE WED THU FRI SAT

1 0.168 0.252 0.196 0.475 0.363 0.363 0.447

2 0.280 0.363 0.196 0.503 0.559 0.475 0.252

3 0.335 0.978 0.839 0.894 1.006 0.727 0.475

4 0.335 0.727 0.671 0.866 1.146 0.866 0.587

5 0.419 0.615 0.699 0.755 0.811 0.615 0.503

6 0.391 0.503 0.866 0.531 0.699 0.671 0.307

Time 

Window

Ē
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 Probabilities of vaginal delivery by weekday for T1′ were estimated with data 

from Table 7.  First, the total Number of Vaginal Deliveries in IP2 was multiplied by the 

% of Week’s Vaginal Deliveries for each weekday in BL and rounded to the nearest 

integer to estimate the Number of Vaginal Deliveries for each weekday in T1′.  This 

operation was done since the scheduling tactic change affected the distribution of 

deliveries across weekdays for each delivery type.  This estimate for each weekday was 

then divided by the summation of the total Number of Vaginal Deliveries in IP2 and the 

total Number of Cesarean Deliveries in IP2 to calculate the Estimated Probability of 

Vaginal Delivery by weekday for T1′.  Table 18 provides the Estimated Probability of 

Vaginal Delivery by weekday for T1′. 

Table 18: Estimated Probability of Vaginal Delivery by Weekday for T1′ 

 

The parameter values in Tables 17 and 18 were used with all other parameter 

values from IP2 to generate ADT values for T1′.  The ADT values for T1′ were found to 

be normal transformed using Equation (13) with acceptable fit (p = 0.061), and this 

distribution was used along with the post-change CDF probability to determine Y1′.  The 

post-change CDF probability and the inverse of the CDF for the normal transformed 

distribution were used together to calculate a transformed Y1′ value (JT Value of Y1′).  

The transformed Y1′ value was used in a routine using Excel Solver to calculate Y1′ in 

Day

Estimated 

Prob. of 

Vaginal 

Delivery

Estimated 

Vaginal 

Deliveries

Estimated 

Cesarean 

Deliveries

SUN 69.57% 48 21

MON 58.54% 72 51

TUE 59.68% 74 50

WED 67.36% 97 47

THU 63.41% 104 60

FRI 61.65% 82 51

SAT 75.00% 69 23

Total 64.31% 546 303
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Step 2.5.  Subsequently, Y1 was compared to Y1′ in Step 2.6 of the analysis.  Table 19 

details the values pertinent to the calculations for Steps 2.5 and 2.6. 

Table 19: Calculation of Y1′ and % Y1 Improved over Y1′ for ADT 

 

 A distribution of comparison values (Δ1/1′ values) was developed in Step 2.7 with 

32 repetitions of Steps 2.1–2.6 to generate 32 sample observations.  Samples were 

increased in the increment of 16 as simulation runs in Arena were made with 2,000 

replications each to generate 16 samples of 125 replications each.  A target γ of 0.10 was 

selected for the mean value of Δ1/1′, and Equations (9) – (12) were applied by substituting 

n in place of m in the equations.  The target γ was achieved after generating 32 samples, 

which resulted in a γ value of 0.0759. 

Each simulation applied common random numbers (CRN) as part of a variance 

reduction technique shared in Kelton et al. (2015).  This distribution was found to be 

normal with a very strong fit (p = 0.754).  As shown in Figure 31, the mean value of Δ1/1′ 

was 10.742%, with a 95% confidence interval of (9.984%, 11.499%).  Also, the 

comparison values from the simulation ranged between 6.691% and 15.917%, and this 

indicates that the scheduling tactic change reduced ADT from what it would have been if 

the scheduling tactics from BL were still in use in IP2.  These statements provided the 

Variable Value

IP2 CDF Probability 0.7483

Mean JT Value of ADT for T1' -0.2330

Stdev JT Value of ADT for T1' 0.8750

JT Value of Y1' Using IP2 CDF Probability 0.3526

Step 2.5 Y1' Using IP2 CDF Probability 2.88

IP2 ADT (Y1) 2.64

Step 2.6 % Y1 Improved over Y1' 8.2%
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answer to Question #2 and it was substantiated by the distribution of Step 2.7 as shown in 

Figure 31. 

 

Figure 31: Distribution of post-change performance shift values for ADT 

 

6.3 Discussion 

The analysis presented in this Chapter 6 demonstrates that the scheduling tactic 

change was effective in reducing delays in the transitions of care between L&D and PP.  

This conclusion corroborates with the conclusion in Chapter 5 that the scheduling tactic 

change successfully reduced the Holds Rate in IP2 as compared to BL given the 

definition of Holds Rate provided in Chapter 4, which validates both findings between 

the MCS model and DES model.  This observation confirms that this procedure can allow 

similar conclusions to be reached using different methodologies to analyze the same 

environment. 
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CHAPTER 7 

CONCLUSIONS 

 

 

 The objective of this dissertation is to provide a method for evaluating the 

difference in performance after an organization makes a change while considering the 

stochastic nature of the environment in which it operates.  The literature review of 

Chapter 2 identified that simulation is an effective approach to analyze systems with 

stochastic variables and that organizations can be viewed as complex systems.  

Furthermore, models discussed in literature have been used to evaluate potential system 

designs and there does not appear to be use of simulation to evaluate current or past 

performance or the effectiveness of a new system design that is already implemented.  

The procedure proposed in Chapter 3 was developed as a means for meeting the objective 

of this dissertation and it contributes an understanding of how simulation can be used to 

analyze the performance of organizations as complex systems.  Specifically, this 

dissertation work advances the ability to assess the impact a change has made on the 

performance of an organization with a quantitative approach that uses simulation to 

account for the influence of stochastic variables and uncontrolled parameters. 

The validity of the procedure was demonstrated in Chapters 5 and 6 with the case 

study introduced in Chapter 4.  In Chapter 5, the scheduling tactic change of the case 

study was assessed to be more effective than the observed performance shift of
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IP1 vs. BL based on the results of the procedure.  The uncontrolled environment of the 

mother-baby service line, which included nursing judgment on factors related to clinical 

care and patient-family satisfaction, presented unfavorable influence on the Holds Rate in 

the IP1 vs. BL comparison.  Conversely, the procedure was used to show that this 

uncontrolled environment provided favorable influence in the IP2 vs. BL comparison 

since the scheduling tactic change was assessed to be less effective than the observed 

performance shift of IP2 vs. BL indicated.  However, the results of the procedure in both 

comparisons led to the conclusion that the scheduling tactic change had a reducing effect 

on the Holds Rate. 

In Chapter 6, the analysis using the procedure demonstrated that the scheduling 

tactic change was effective in reducing delays in the transitions of care between L&D and 

PP.  This conclusion indicated that convergent validity was achieved between the DES 

models and MCS models in using the procedure since determining a patient to be held 

involves judging the transition of care to be unintentionally delayed. 

Regarding applicability of the procedure, Chapter 5 demonstrated that the 

procedure can allow organizations to quantitatively assess the effectiveness of a change 

while accounting for unfavorable or favorable influence from the uncontrolled 

environment.  In addition, Chapters 5 and 6 together showed that the procedure can be 

used with different simulation methods to reach similar conclusions.  Furthermore, the 

case study demonstrated that using this procedure can enable leadership to better 

understand the efficacy of a change, which can allow leaders to remain patient with a 

change when uncontrolled conditions are unfavorable.  In the case study, insights gained 
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from use of the procedure promoted the key understanding leaders had of the project’s 

success relative to the dynamics of its environment. 

It is also possible that meeting the objective with this procedure may yield 

additional advantages with risk taking and achievement.  Reeve (1997) stated that 

situations involving the opportunity for achievement occur when a person knows that the 

performance attributed to him or her will lead to an evaluation, favorable or unfavorable, 

that may serve as the basis for assessing personal competency.  Furthermore, Atkinson 

(1957, 1964) asserted that achievement behaviors are guided by both a tendency to 

approach success and a tendency to avoid failure.  In this assertion, the perception of the 

probability of success is paramount to taking a risk, aside from intrinsic motives and 

extrinsic incentives associated with that risk.  Also, Burger (1985) posited that one’s 

desire to establish control influenced the degree of persistence with confronting a difficult 

task (i.e., a situation that involves a lower probability of success).  Thus, in complex 

environments where organizations have limited control, the probability of success may be 

perceived as being low, especially by decision-makers with low desire for control, and 

this may lead to performance stagnation due to inaction.  However, use of the proposed 

procedure allows for performance to be assessed independent of uncontrollable 

parameters and this form of assessment may favorably affect the perception decision-

makers have of the probability of success.  This benefit, along with an accurate 

understanding of risk associated with a proposed change in deciding whether to 

implement it, would serve to promote performance growth. 

The case study presented in this dissertation applied the proposed procedure using 

an MCS model and a DES model.  As stated in Chapter 2, other simulation methods 
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exist.  Applying this procedure using other simulation models may advance research 

related to the objective of this dissertation.  For example, an ABS model may be used to 

further understand how dynamic complexity in the broader environment affects 

uncontrollable parameters of agents’ decision-making behaviors. 

Another opportunity for future research is to study the impact of technology in 

addressing Questions #1 and #2.  For instance, parameters once considered to be 

uncontrollable may later be viewed as being controllable with the advent of new 

technology.  Also, the ability to measure and study more parameters may improve as new 

means of data technology emerge. 

While there may be other opportunities for future research in this topic, a final 

proposal for research is to investigate other means of addressing Questions #1 and #2.  

For example, the proposed procedure in Chapter 3 and the case study analyses of 

Chapters 5 and 6 applied frequentist inference while an approach using Bayesian 

inference could be explored. 

Aside from further research, opportunities exist in the application of the proposed 

procedure.  As mentioned in Chapter 1, irrational reaction to observed performance can 

take place when uncontrolled external forces overshadow the impact of the change being 

assessed in either the form of the unfortunate loser condition or the undeserving winner 

condition.  The ability of the proposed procedure to provide an assessment of 

performance that isolates the impacts of these external forces can potentially enable an 

organization to better understand the cause-and-effect relationships of its actions and 

thereby leverage this knowledge to become more sustainable. 
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