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ABSTRACT 

UNCOVERING EXCEPTIONAL PREDICTIONS USING EXPLORATORY 

ANALYSIS OF SECOND STAGE MACHINE LEARNING 

Aneseh Alvanpour 

April 25, 2017 

Nowadays, algorithmic systems for making decisions are widely used to facilitate 

decisions in a variety of fields such as medicine, banking, applying for universities or 

network security. However, many machine learning algorithms are well-known for their 

complex mathematical internal workings which turn them into black boxes and makes 

their decision-making process usually difficult to understand even for experts. 

In this thesis, we try to develop a methodology to explain why a certain 

exceptional machine learned decision was made incorrectly by using the interpretability 

of the decision tree classifier. Our approach can provide insights about potential flaws in 

feature definition or completeness, as well as potential incorrect training data and 

outliers. It also promises to help find the stereotypes learned by machine learning 

algorithms which lead to incorrect predictions and especially, to prevent discrimination in 

making socially sensitive decisions, such as credit decisions as well as crime-related and 

policing predictions. 
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CHAPTER 1  

INTRODUCTION 

 

Most of the work in evaluating the performance of predictive models has focused 

on improving the accuracy of the model rather than interpretability [4]. This led to 

building more complex classifiers such as ensembles [5], support vector machines [6] and 

kernel-based learning methods [7], known as black-box models, which tend to have high 

predictive accuracy, but less interpretability for the users [8] [9, 10]. On the other hand, 

white-box classifiers, such as decision trees, Naïve Bayes, k-nearest neighbors, and 

logistic regression, help the users more in understanding the decisions that made by the 

classifiers. The decision tree classifier is one of the most popular machine learning 

algorithms that can be displayed in the form of if-then rules and visualized as a graphical 

tree in which improve human readability, by reading paths from the root to each leaf. 

This characteristic of decision trees can help the user to trace and explore the 

classification process especially when the classifier makes an incorrect prediction.  

Interpretable models play an important role in explaining predictions [11]. 

However, little work has paid attention to using interpretability to explain incorrect 

predictions. Yet explaining errors in prediction, can provide insights about potential flaws 

in feature definition or completeness, as well as potential incorrect training data and
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outliers. It will also help to find the stereotypes learned by machine learning algorithms 

which lead to incorrect predictions.  

Finding the incorrect stereotypical predictions prevent unfair decisions especially 

when the training data sets are biased regarding the discriminative attributes such as race, 

gender, and religion. This becomes more serious in making socially sensitive decisions 

[12] such as credit decisions, insurance premium computations [13] and predictive 

policing [14]. For instance, several researches show that whites are more likely to use and 

sell drugs but it is the black people who are mostly arrested for drugs. Also although, 

only 13% of people in the US are black, more than 60% of individuals in prisons are 

black [15]. Therefore, we need to be careful about the automated discriminations that can 

be learned by algorithms while learning rules from data.  

In this work, we try to develop a methodology to explain the prediction errors by 

using the interpretability of the decision tree classifier. After the introduction in Chapter 

1, we review the important concepts that have been applied in our methodology and 

related works in Chapter 2, then continue by presenting the methodology in Chapter 3. 

Experimental results are presented in Chapter 4. Finally, Chapter 5 summarizes the 

results. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Predictive model 

Despite many adoptions, most of the machine learning models are black boxes 

which make understanding the reasons behind their predictions more challenging. Such 

understanding provides insight into the model, which makes the model and the prediction 

more trustable. Considering the important role of humans in using the machine learning 

tools, there is always a big concern: if the users do not trust a model or a prediction, they 

will not use it [3]. Regarding this concern, we need to distinguish between two concepts 

of the trust: (1) trusting a prediction and (2) trusting a model, which both stem from how 

much the humans are able to understand the prediction model’s behavior.  

Paying attention to the trust in prediction is important when the model is used to 

make decisions. In some machine learning applications such as medical diagnosis [16] or 

terrorist detection, incorrect predictions cost too much and may cause a disaster. In 

addition to considering trust in prediction, we need to examine the model before applying 

it to real-world problems. In this case, the model should convince the users that it is 

reliable and will perform well in real datasets. 

Figure 2.1 explains how we can trust a predictive model by understanding the 

reason behind it and provides the process of making decision by LIME. The authors in 
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[3] propose LIME, an algorithm that explains the predictions of any classifier in an 

interpretable and faithful manner, by learning an interpretable model locally around the 

prediction. The model has predicted that a patient has the flu and then LIME highlights 

the list of symptoms that led to this prediction by the model either contribute to the flu 

(headache and sneeze) or not (no fatigue). Then a doctor, by using previous knowledge, 

can trust and accept the prediction or refuse it. 

2.2 Interpretability and its challenges 

Traditional evaluation of the performance of predictive machine learning 

algorithms has focused on model accuracy. There are other factors such as complexity, 

performance, extendibility and interpretability which can be used in analyzing and 

comparing different types of machine learning algorithms [17]. According to [3], an 

explanation model represents textual or visual concepts to provide the interpretability: a 

qualitative understanding of the relationship between instances and the prediction results.  

 

Figure 2. 1 The process of making decision by applying LIME algorithm [3] 
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 Several works has been made to underline the need to consider interpretability 

alongside accuracy [18]. For instance, the authors in [19, 20] discuss other factors rather 

than accuracy when two models show a similar accuracy. 

Looking at the literature indicates that due to the subjective nature of the 

interpretability, there is no general agreement about its definition [2]. Many discussions 

have been made about the relation between different terms of interpretability as shown in 

Figure 2.2. 

 

Rüping in [21] argues that an interpretable model should be understandable and 

suggests that interpretability can be correlated to accuracy, understandability and 

efficiency. Other authors use the interpretability as synonym of “understandability” [22, 

23] or “comprehensibility” [19, 24]. The “Mental fit” is another term has been added to 

the interpretability by Feng and Michie [25], which is related to human’s ability to 

understand and test the model. “Explanatory,” “sparsity,” and “transparency” are the 

other terms linked to the interpretability [26]. 

For measuring the interpretability, Bibal and Frénay in [2] suggest that the 

interpretability can be measured by either models or representation. Then, they introduce 

two approaches in comparing the interpretability and representation of the models. First 

Figure 2. 2 Relation between different terms of interpretability [2] 
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one is comparing by mathematical entities which is called mathematical heuristic. This 

approach can compare models with the same type, such as two decision trees. Another 

technique is user-based surveys which users try to estimate the interpretability of models 

by comparing their representations. In [17], the authors conduct a quantitative survey to 

analyze understandability of models from user’s point of view which shows decision tree 

models are more understandable than decision rule models . Then they find a negative 

correlation between the complexity and understandability of the classification models.  

2.3 Decision Trees 

Decision tree learning is a method for approximating discrete-valued target 

functions, in which the learned function is represented by a decision tree [27]. This 

supervised machine learning method, classifies the instances by sorting them down the 

tree, from the root to some leaf nodes. It consists of two type of nodes: 

1. Decision Nodes(leaves): Assign class labels to each instance. 

2. Internal Nodes: Split the instance space into two or more sub-spaces based 

on a certain discrete function of the input attributes values or ranges for numeric ones. 

An instance is classified by starting from the root node, moving down the tree 

branch according to the outcomes of the tests at the internal nodes, until reaching a leaf 

node and assigning a class label. Figure 2.3 presents an example of decision tree taken 

from our experimental results in Chapter 4. The tree classifies high school students as 

drinker or not. 
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Figure 2. 3 The graphical structure of a decision tree classifier 

2.3.1 Decision Tree Learning Algorithms 

Most algorithms that have been developed for learning decision trees are 

variations on a core algorithm that employs a top-down, greedy search through the space 

of possible decision trees. This approach is exemplified by the ID3 algorithm which was 

developed in 1986 by Ross Quinlan and its successors C4.5 [28]and CART [29]. Some 

consist of two conceptual phases: growing and pruning (C4.5 and CART). Other inducers 

perform only the growing phase [30]. 

The C4.5 which is the successor to ID3, has removed the limitation that features 

must be categorical by dynamically defining a discrete attribute (based on numerical 

variables) that partitions the continuous attribute value into a discrete set of intervals. 

Also, it can deal with missing values, when some training data records have unknown 

values. 
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To select the attribute that is most informative in classifying our data we should 

define information gain which measures how well an attribute is in splitting the data. 

Then we need to introduce the Entropy that defines the (im)purity of an arbitrary 

collection of instances. If we put p1 (p0) the proportion of examples of class 1 (0) in the 

given collection of S, then the Entropy is: 

              𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −𝑝1 log2(𝑝1) −  𝑝0 log2(𝑝0)                            (2.1) 

where 𝑝0 = 1 − 𝑝1. 

Therefore, the 𝐺𝑎𝑖𝑛(𝑆, 𝑥𝑗) will be the expected reduction in entropy because of splitting 

on attribute 𝑥𝑗. 

                      𝐺𝑎𝑖𝑛(𝑆, 𝑥𝑗) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −  ∑
|𝑆𝑣|

|𝑆|𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑥𝑗)  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)          (2.2) 

where values( 𝑥𝑗) is the set of all possible values of attribute 𝑥𝑗 , 𝑆𝑣 is a subset of 𝑆 where 

attribute 𝑥𝑗  has the value 𝑣 , and |𝑆𝑣|  is the number of observation in 𝑆𝑣  . The Gain 

criterion was used in ID3 in order to choose an attribute to split at a specific node, while 

C4.5 normalizes the Gain and uses a Gainratio criterion: 

                                       𝐺𝑎𝑖𝑛𝑟𝑎𝑡𝑖𝑜(𝑆, 𝑥𝑗) =
𝐺𝑎𝑖𝑛(𝑆,𝑥𝑗)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑟𝑜𝑚𝑎𝑡𝑖𝑜𝑛(𝑆,𝑥𝑗)
                               (2.3) 

                     𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒓𝒐𝒎𝒂𝒕𝒊𝒐𝒏(𝑺, 𝒙𝒋) = − ∑
|𝑺𝒌|

|𝑺|𝒗 ∈ 𝒗𝒂𝒍𝒖𝒆𝒔 (𝒙𝒋)   𝐥𝐨𝐠𝟐
|𝑺𝒌|

|𝑺|
                   

(2.4) 

SplitInformation is the entropy of S with respect to the values of 𝑥𝑗 . 

Pseudocode for C4.5 algorithm for building decision trees [31]:  
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Table 2. 1 Pseudocode for C4.5 algorithm 

 

*The base cases are the following: 

 All the examples from the training set belong to the same class (a tree leaf labeled 

with that class is returned). 

 The training set is empty (returns a tree leaf called failure). 

 The attribute list is empty (returns a leaf labeled with the most frequent class or the 

disjunction of all the classes). 

CART [29] is very similar to C4.5, but it supports numerical target variables 

(regression) and does not compute rule sets. CART constructs binary trees using the 

feature and threshold that yield the largest information gain at each node. 

2.3.2 Interpreting Decision Trees 

Decision trees are one of the most popular machine learning algorithms in the domains in 

which there is a need to explain the prediction results for the user [32], due to the 

following features: 

Algorithm C4.5 

1. Check for any base cases*  

2. For each attribute A  

3. Find the normalized information gain from splitting on A  

4. Let A_best be the attribute with the highest normalized information gain  

5. Create a decision node that splits on A_best  

6. Recur on the sub-lists obtained by splitting on A_best, and add those nodes as children of 

node. 
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1. Having a graphical structure, which makes it easy for the users to follow the path 

from the root to the desired node. 

2. Providing a subset of features, so the user can focus more on the relevant features, 

which are closer to the root of the tree.  

3.  Providing individual explanations for each instance of training data. [33, 34] 

2.4 K-Nearest Neighbors 

The k-nearest neighbor classifier is one of the distance-based learnings that classifies a 

data record based on the k most similar data (neighbors) in the training data set. The 

distance metric can be Euclidean distance for continues values and Hamming distance for 

discrete values. Although, the nearest neighbor classifier is one of the simplest machine 

learning algorithms, it requires a large computing power when calculating the distance of 

a data record to its neighbors. Also, this problem will be more challenging when the 

training data set is noisy [35]. In the example shown in Figure 2.4, the goal is to assign a 

class label to the unknown data record x based on the two existed classes. 

 

Figure 2. 4 An example of nearest neighbors 
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2.5 Some applications for Interpretable models 

Despite considering the predictive accuracy metrics as the main factor while 

evaluating models [4], there are other domains of applications in which  the 

interpretability of the prediction is important for the users. For these applications, we 

should provide a model which is acceptable for the users like credit scoring [36], 

medicine [37] and bioinformatics [9]. This need becomes more serious when the model 

provides an unexpected prediction. In that case, the user asks good explanations from the 

system which highlights the crucial role of the interpretability of the model. 

Medical domains, because of having critical context [38], require decision making 

to be always supported by explanations [37, 39] [40]. The necessity of explaining and 

justifying the decision when diagnosing a new patient is the main goal of Lavrac in her 

paper [41]. Also, she talks about the decision tree classifier which is easy to understand 

and can be used to support diagnosis without using the computer.  

Bioinformatics is another application in which interpretability of models has an 

important role. The authors of [42] believe that the comprehensibility of discovered 

knowledge is required in bioinformatics because the discovered knowledge needs to be 

interpreted by biologist rather than accepting it blindly as a black-box. The paper 

introduces a data mining approach to generate a set of comprehensible rules by applying 

C4.5 algorithms which predict whether a protein has post-synaptic activity. According to 

their results, predicting the function of proteins based on their primary sequences is one 

of the challenges in bioinformatics due to the complex relationship between protein 

sequences and their functions. The rules were analyzed based on both their accuracy and 



 

12 

 

unexpectedness. The ones which are surprising could be more interesting for the biologist 

in determining novel insights. 

Model comprehensibility and accuracy are also the key factors in building a 

successful credit scoring system. An expert in this field cannot trust a complex scorecard 

because of its low comprehensive explanation. Therefore, these black box predictive 

models cannot be very helpful in credit decision making. [1] investigates the performance 

of many classifiers in predicting and distinguishing between good and bad payers as 

represented in Figure 2.5 and 2.6 from [1] for German Credit dataset.  Also, [43] 

discusses the difficulty of prediction in financial problems and tries to uncover the 

valuable patterns by applying Genetic Algorithms.  

 

 

 

Figure 2. 5 unrestricted Bayesian network classifier learned using Markov Chain Monte for 

credit scoring in German credit dataset [1] 
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2.6 Prediction Errors Analysis 

Analyzing and learning from errors in prediction, which are concerns in many 

works [6], mostly have been applied in detecting and predicting incorrect predictions in 

order to minimize its cost or in building a more accurate prediction model. Yet, less work 

directly focuses on how to explain the prediction errors. For this purpose, we need 

models which are able to explain the reasons behind the predictions. 

One of the known examples in detecting misclassification is in spam classification 

when the classifier makes mistakes in distinguishing between spam and non-spam emails. 

In that case, we examine the instances in which the algorithm made errors on them to find 

out a systematic pattern to help us build new features and attributes to avoid these 

mistakes in the features. For example, usually, most of the spam emails are pharmacy 

emails or phishing ones. So, looking at them will help us to understand what features are 

useful to assign them correctly to a class [44].  

Figure 2. 6 Rules Extracted by Neurorule for German Credit dataset [1] 
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Another work in analyzing the prediction errors is [45] which presents a general-

purpose biologically plausible computational model, called SELP (Surprise → Explain 

→ Learn → Predict). They use predictive coding which learns from only prediction 

errors and surprises in streaming data, unlike the traditional algorithms which 

continuously analyze all the data.  

Applying interpretability of classifiers in explaining the classification process, 

especially for understanding the misclassification, is the goal of [46]. They design and 

implement a Visual Data Mining system for classifying remotely sensed images (VDM-

RS). Their proposed system provides two views; one of them is the decision tree 

classifier which provides tracing and discovering of the classification steps and 

understanding how a sample has been classified correctly or even finding in which step it 

has been misclassified. 

2.7 Automated decision making and discrimination 

Nowadays, algorithmic systems for making decisions are widely used to facilitate 

decisions in a variety of fields such as medicine, banking, education or predictive 

policing [13]. However, these automated decisions can be very sensitive when applied to 

socially sensitive personal information such as demographics. The mining algorithms are 

trained from datasets which may be biased regarding a certain group such as women or 

minorities. Therefore, there is always a need to make sure that using data mining methods 

for socially sensitive decision making do not lead to discrimination and unfair treatment 

against a group of people due to their gender, age, religious or ethnicity [12].  
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Automated discrimination can happen as a direct result of data analytics. These 

unfair treatments can occur unintentionally; for instance, considering a neighborhood as a 

factor of ethnicity. For example, looking at demographic data related to the people who 

are living in certain area and frequently getting credit denial, we can find that they all 

related to the same ethnic minority [47]. Also, Lowry, in her paper [48], mentions another 

example regarding automatically discriminating decisions against female and minority 

applicants of St. George’s Hospital Medical School in the 1980s.   

The discovery and prevention of automated discrimination has been moderately 

discussed in the literature [49] [14, 50-52]. 

2.8 Credit risk prediction 

Repayment of the loan and interest is very important for the lending institutions 

because late or incomplete paying off the borrowed money will reduce their profits and 

will affect their services for new customers. When a bank receives a loan application, 

based on the applicant’s profile, the bank should decide whether or not to grant a loan to 

a customer. In this regard, there are two types of risks associated with the bank’s decision 

[53]: 

1. Not approving the loan to a good credit risk customer, who is more likely 

to pay off the loan, leads to loss of business to the bank. 

2. Approving the loan to a person with a bad credit risk, who is not able to 

repay the loan on time or in full amount, may harm the financial interests of the bank. 
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Therefore, financial institutions and banks are always investigating more accurate 

methods to analyze their customer’s credit information. Machine learning is one of the 

approaches in the field used for credit-risk evaluation by building an intelligent decision 

system to distinguish between good and bad payers based on the information provided for 

the applications.  

An intelligence credit scoring system should be able to provide a clear insight to 

the experts about why and how an applicant has been chosen as good or bad [36]. One 

way that a bank can provide experts and customers a meaningful information about the 

logic for this algorithmic decision system and the consequences of such processing is 

applying a decision tree classifier.  The graphical representation provided by this 

classifier makes it easy to follow the logic of decisions for the users, particularly the 

rejected applicants. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction 

This chapter will describe a methodology to help investigate reasons for incorrect 

predictions. In Phase 1, we will build a predictive model to find possible stereotypes 

learned by the decision tree classifier. Then, Phase 2, will detect the incorrect 

stereotypical predictions and the possible reasons behind them. 

3.2 Discussion 

Our work is divided in two phases, Phase 1 and Phase 2. In Phase 1, we build our 

classification model by applying a decision tree classifier on the entire training data set to 

obtain the initial prediction results and the important features. We divide our dataset into 

training and testing with splitting ratio of 0.7 for training and 0.3 for testing.  

Then, in Phase 2, based on the predicted results, we create a new training data set 

from the testing data in Phase 1, called “Predicted as Class 1” which consists of only 

records that have been predicted as “Class 1”. In the same way, we extract another 

training data subset for those that has been predicted as “Class 2” with the class name 

“Predicted as Class 2”. New labels are then assigned by comparing prediction results 

from Phase 1 with the true class labels. If the prediction and true class label are the same, 

the new label will be “correct”. Otherwise, we will assign the new label, “incorrect”. In 
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Phase 2, we learn a decision tree classifier again on the newly labeled subset, separately. 

Hence, by following the paths within the decision trees from both phases, for the records 

that have been labeled incorrectly in Phase 1 (with new label “incorrect” in Phase 2) and 

have the same predicted label (“incorrect”) in Phase 2, we try to determine which 

attribute is responsible for the incorrect prediction.  

In each phase, we determine the optimal depth of decision trees and the minimum 

number of misclassified data records before learning our predictive model. Finding the 

optimal depth will avoid the overfitting and hence, considering irrelevant attributes in 

making decisions. 

 We continue our investigations by finding similar data records to the 

misclassified ones, among neighbors with the same and different actual class labels by 

using k nearest neighbors. Exploring shared characteristics promises to help find which 

features are the red flags and need to be considered when making decisions. 

Moreover, the “important features” provided by the decision tree classifier are 

extracted to explore the possible key roles they may have in describing incorrect 

predictions. 

 In the next chapter, we present our experimental results which illustrate, in detail, 

how we apply this methodology to two real datasets. 
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Figure 3. 1 Proposed methodology 
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CHAPTER 4  

EXPERIMENTS 

4.1 Introduction 

In this chapter, we apply the methodology presented in Chapter 3 to two real datasets, 

Student Alcohol Consumption and German Credit, to explore the predictive rules after learning 

the decision tree classifier and describe which attributes can explain the incorrect predictions. 

4.2 Discussion 

4.2.1 Case study 1 

Research showed that there are high rates of using alcohol among college students 

and young adults. These students are more likely to experience school problems such has 

higher absences and failing courses, legal problems such as arrests for drinking and 

driving, abuse of other drugs, etc. In our work, we use a real student alcohol consumption 

dataset to find out what are the potential attributes in categorizing addicted students from 

others. 

4.2.1.1 Student Alcohol Consumption dataset 

4.2.1.1.1 Phase 1 

The Student Alcohol Consumption dataset is provided by Fabio Pagnotta, Hossain 

Mohammad Amran in UCI Machine Learning Repository [54] and it related to their 

research about finding the correlation between alcohol usage and the socio-
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demographics, study time, and other behavioral attributes for Portuguese secondary 

school’s students in two datasets, student-mat.csv (students who have Math course) and 

student-por.csv (students who have Portuguese language course). In our thesis, we only 

use the Math course. This data set consists of 395 instances with 32 attributes with no 

missing values. Tables 4.1 and 4.2 provide more details about the attributes and their definitions. 

 

Table 4. 1 Summary of the Student Alcohol Consumption Data Set information[55] 

 Instances Attributes Missing values 

Data 395 32 0 

 

Table 4. 2 Student Alcohol Consumption Data Set’s Attribute Definition 

Nr. Attributes Definition 

1 school student's school (binary: "GP" - Gabriel Pereira or "MS" - Mousinho da 

Silveira) 

2 sex student's sex (binary: "F" - female or "M" - male) 

3 age student's age (numeric: from 15 to 22) 

4 address student's home address type (binary: "U" - urban or "R" - rural) 

5 famsize family size (binary: "LE3" - less or equal to 3 or "GT3" - greater than 3) 

6 Pstatus parent's cohabitation status (binary: "T" - living together or "A" - apart) 

7 Medu mother's education (numeric: 0 - none,  1 - primary education (4th grade), 2 – 

5th to 9th grade, 3 – secondary education or 4 – higher education) 

8 Fedu father's education (numeric: 0 - none,  1 - primary education (4th grade), 2 – 

5th to 9th grade, 3 – secondary education or 4 – higher education) 

9 Mjob mother's job (nominal: "teacher", "health" care related, civil "services" (e.g. 

administrative or police), "at_home" or "other") 

10 Fjob father's job (nominal: "teacher", "health" care related, civil "services" (e.g. 

administrative or police), "at_home" or "other") 

11 reason reason to choose this school (nominal: close to "home", school "reputation", 

"course" preference or "other") 

12 guardian student's guardian (nominal: "mother", "father" or "other") 

13 traveltime home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 

min. to 1 hour, or 4 - >1 hour) 

14 studytime weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 

4 - >10 hours) 

15 failures number of past class failures (numeric: n if 1<=n<3, else 4) 

16 schoolsup extra educational support (binary: yes or no) 

17 famsup family educational support (binary: yes or no) 

18 paid  extra paid classes within the course subject (Math or Portuguese) (binary: yes 

or no) 

19 activities  extra-curricular activities (binary: yes or no) 
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20 nursery attended nursery school (binary: yes or no) 

21 higher wants to take higher education (binary: yes or no) 

22 internet Internet access at home (binary: yes or no) 

23 romantic with a romantic relationship (binary: yes or no) 

24 famre quality of family relationships (numeric: from 1 - very bad to 5 - excellent) 

25 freetime free time after school (numeric: from 1 - very low to 5 - very high) 

26 goout going out with friends (numeric: from 1 - very low to 5 - very high) 

27 Dalc workday alcohol consumption (numeric: from 1 - very low to 5 - very high) 

28 Walc weekend alcohol consumption (numeric: from 1 - very low to 5 - very high) 

29 health current health status (numeric: from 1 - very bad to 5 - very good) 

30 absences  number of school absences (numeric: from 0 to 93) 

31 G1 first period grade (numeric: from 0 to 20) 

32 G2 second period grade (numeric: from 0 to 20) 

33 G3 final grade (numeric: from 0 to 20, output target) 

34 Alc Alcohol consumption between week (numeric: from 1 - very low to 5 - very 

high) 

 

Following [55] which is related to this dataset, we create a new attribute “Alc” 

which is a combination of two attributes “Walc,” weekend alcohol consumption, and 

“Dal,” workday alcohol consumption. 

𝑨𝒍𝒄 = (𝑾𝒂𝒍𝒄 ∗ 𝟐 + 𝑫𝒂𝒍𝒄 ∗ 𝟓)/𝟕                                                   (4.1) 

 

After rounding the value, the result will be an integer between 1 and 5. Hence, we create 

a new attribute (new_target) which categorizes students to “Nondrinker” if “Alc” is less 

than 3 (1 and 2) and “drinker” if “Alc” equals 3, 4 or 5. Then in preprocessing, we 

convert “Nondrinker” to 0 and “drinker” to 1. 

The next step is to divide our dataset into training and testing with splitting ratio of 0.7 for 

training and 0.3 for testing.  

Before starting the classification, we try to find the optimal depth of the decision 

tree classifier which has the minimum number of incorrect predictions. It will help 

prevent overfitting: when the accuracy of the decision tree on the training data set is 
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higher than the testing data. To find efficient parameters, we use “GridSearchCv” 

provided by “scikit-learn” which exhaustively considers all possible combinations of 

parameter values and chooses the best ones. According to the Table 4.3 and 4.4, we 

decide to choose the Max_depth=2 which has the best accuracy and the minimum 

number misclassified records. 

Table 4. 3 Phase 1’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score 

D.T depth Accuracy score 

1 0.82 

2 0.85 

3 0.85 

4 0.85 

5 0.84 

6 0.82 

7 0.81 

8 0.80 

9 0.83 

10 0.79 

11 0.80 

 

 
Figure 4. 1 Phase 1’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score 
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Table 4. 4 Phase 1’s D.T. Classifier, Comparing Classification Results with different Depths 

 accuracy_score Roc_auc_score F1 

score 
Number of 

Misclassified records  

Decision Tree Classifier with 

Max_depth=2 
 0.8319 0.7197 0.5454 20 

Decision Tree Classifier with 

Max_depth=3 
0.7983 
 

0.7706 
 

0.2941 
 

24 

Decision Tree Classifier with 

Max_depth=4 
0.8067 
 

0.7846 
 

0.3783 23 

 

Now we fit the D.T. classifier with max_depth= 2 to the training and testing data 

sets with splitting ratio of 0.7 for training and 0.3 for testing to predict whether a student 

is a drinker or not. The classification results are shown in Table 4.5. According to the 

confusion matrix shown in Figure 4.2, we have 20 misclassified data records: 10 

“drinker” students which has been predicted as “nondrinker” and 10 “nondrinker” 

students that has been predicted to “drinker”. 

Table 4. 5 Phase 1’s D.T. Classifier’s Classification results with Max_depth=2 

 accuracy_score Roc_auc_score F1 

score 

D.T. Classifier with 

Max_depth=2 
 0.8319 0.7197 0.5454 
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Figure 4. 2 Phase 1’s D.T. Classifier’s confusion matrix with max_depth=2 

 

Also, the “important features” provided by decision tree classifier with max_depth=2 are 

“goout”, “sex” and “absences” that have greater effects on predictions. (Table 4.6) 

 

Table 4. 6 Phase 1’s D.T. Classifier’s Important Features 

features Degree of importance 

goout 0.5566 

sex_F 0.3923 

absences 0.0510 

 

As it mentioned before, the decision tree’s graphical structure and if-then rules 

make it easy for general users to understand the prediction results. For example, in Figure 

4.3 by following the path includes node 0, node 4, and then node 6, the user will find that 

if a student goes out frequently with friends and is a male, he is more likely to be a 

“drinker”, which is expected and does make sense. 
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Figure 4. 3 Phase 1’s D.T. diagram with Max_depth=2 

 
 

Table 4. 7 Phase 1’s D.T. Classifier’s rules with Max-depth=2 
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Learning Decision Tree on Testing Data (unseen data) to find the paths: 
 

After fitting the Decision Tree Classifier to the training dataset, we can use the 

decision_path() function from scikit-learn to find the nodes that were reached by each 

record in our testing dataset on the path from the root to leaf. This method converts 

testing data set which has 119 rows to a matrix of 119* 7, where 7 is the total number of 

nodes in the classifier model. By following the path for each specific record, we can find 

the attributes which caused the classifier to predict a class label incorrectly. 

 

Table 4. 8 Number of misclassified data for testing data set in Phase 1 

Number of misclassified data in Phase 1  20 

Number of misclassified data ending in “Node 2”  8 

Number of misclassified data ending in “Node 6”  10 

Number of misclassified data ending in “Node 5”  2 

 

Table 4. 9 Number of test records that go through each node * in the model 

Node 

 

 

* 

indicates 

a leaf 

node 

Number 

of 

records 

that 

passes 

through 

each 

node in 

testing 

data 

Number of 

Misclassified 

records from 

True Class 

“drinker”, 

which ends 

in node 2 

Number of 

Misclassified 

records from 

True Class 

“drinker”, 

which ends 

in node 6 

Number of 

Misclassified 

records from 

True Class 

“not 

drinker”, 

which ends 

in node 5 

Path 

from 

Phase 

1 

 

(See 

Table 

4.10 

for 

each 

path) 

Index of Misclassified 

records 

0 119      
1 77      

2* 77 8   0,1,2 '369','384','228','392','393, 

'41’,'249','89' 
3* 0      
4 42      

5* 22   2 0,4,5 ‘318’, ‘61’ 

6* 20  10  0,4,6 '304’,'161','172','354','6','307', 

'277', '242','351', '347' 
 * refers to the decision nodes (leaves) in Figure 4.3. 
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Analyzing and Visualizing misclassified records in Decision Tree Classifier from 

Phase 1: 

To learn more about the misclassified data records, we extract and display them in Tables 

4.11-13. According to Table 4.9, we have eight misclassified data records that follow the 

Path 0, 1, 2 which indicates that students who do not go out frequently with friends and 

do not have many absences in their courses, are more likely to be nondrinkers. Among 

them, three students are with actual class label “drinker” and five students are with actual 

class label “nondrinker” (Table 4.10). To have a better visualization, we only show some 

of important attributes in this part. 

Table 4. 10 Phase 1’s D.T. Classifier’s paths and rules that lead to misclassification 

Phase 1, 
Decision Tree 

Classifier 
Path 

 
Rule that causes 

misclassification 

Number of test data 

records that were 

misclassified by this 

rule 

 Number of test data 

records that were 

classified correctly by this 

rule 

Path 0, 1, 2 if ( goout <= 3.5 ) { 

   if ( absences <= 26.5 ) { 

       return nondrinker 

8 69 

Path 0,4,5 if ( goout > 3.5 ) { 
  if ( sex_M <= 0.5 ) { 

              return nondrinker 

2 18 

Path 0, 4, 6 if ( goout > 3.5 ) { 
  if ( sex_M > 0.5 ) { 

              return drinker 

10 12 
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Table 4. 11 Misclassified records which end at node 2 (“goout” <= 3.5 and “absences” <= 26.5) 

  

Table 4. 12 Misclassified records which end at node 5(“goout” > 3.5 and “sex_M” <= 0.5) 

 

 

 

 

 

 

Column1 sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

Nondrinker F 17 3 4 at_home services father 1 3 0 yes no 3 4 0 11 11 10 3

Drinker F 16 1 1 services services father 4 1 0 yes no 5 5 6 10 8 11 5

Nondrinker sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

F 18 4 4 other teacher father 3 2 0 no no 2 2 10 14 12 11 3

M 21 1 1 other other other 1 1 3 no no 5 3 3 10 8 7 3

M 18 3 2 services other mother 3 1 0 no no 4 1 0 11 12 10 3

M 15 4 4 teacher other other 1 1 0 no no 4 3 8 12 12 12 3

M 16 0 2 other other mother 1 1 0 no no 3 2 0 13 15 15 3

Drinker sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

M 18 4 2 other other father 2 1 1 no yes 4 3 14 6 5 5 4

M 18 2 1 at_home other mother 4 2 0 yes yes 3 2 14 10 8 9 4

M 16 4 4 teacher health mother 1 2 0 no yes 1 3 18 8 6 7 4



 

 

3
0

 

 

Nonrinker sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

M 19 3 3 other other other 1 2 1 yes yes 4 4 20 15 14 13 1

M 15 3 2 other other mother 2 2 2 no yes 4 4 6 5 9 7 2

M 17 4 4 teacher other mother 1 2 0 yes yes 4 4 0 13 11 10 2

M 17 4 3 services other mother 2 2 0 yes no 5 5 4 13 11 11 2

M 16 2 2 other other mother 1 2 0 no yes 4 4 0 12 12 11 1

M 19 4 4 teacher services other 2 1 1 no yes 3 4 38 8 9 8 1

M 18 4 4 teacher services mother 2 1 0 yes yes 2 4 22 9 9 9 2

M 17 3 3 health other mother 2 2 0 no yes 5 4 2 13 13 13 2

M 16 4 3 teacher other mother 1 1 0 yes no 4 5 0 6 0 0 1

M 18 4 3 teacher other mother 1 3 0 no yes 4 5 0 10 10 9 2

Table 4. 13 Misclassified records which end at node 6(“goout” > 3.5 and “sex_M” > 0.5) 
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4.2.1.1.2 Phase 2 

 

In this Phase, we split the test data set from Phase 1 into two subsets, “Predicted as 

a drinker”, for which the decision tree classifier from Phase 1 has predicted them as 

“drinker” and “Predicted as a nondrinker” for those that have been predicted as 

“nondrinker” by the decision tree classifier from Phase 1. Then for each subset, we create 

a new class label by comparing the predicted labels with the true labels. So, for the data 

set “Predicted as a drinker”, the new label (“new_target”) is “correct” if the real target 

(before applying the decision tree classifier) is “drinker” and the predicted value (after 

applying the decision tree classifier) is still a “drinker”. Otherwise, it should be 

“incorrect.” Similarly, for the subset “Predicted as a nondrinker”, if the person is really a 

“nondrinker” and the classifier has predicted them as a “nondrinker”, the new label is 

“correct”; otherwise, the new label is “incorrect”. 

Table 4. 14 Phase 1’s Prediction results for Testing data set 

Data Instances Attributes 
Test Dataset from Phase 1 119 58 
Records Predicted as drinker 22 58 
Records Predicted as nondrinker 97 58 

 

Table 4. 15 Phase 1’s Prediction results as “drinker” for Testing data set 

Data Instances Attributes 
Test data Predicted as drinker 22 58 
Records Predicted as drinker correctly 12 58 
Records Predicted as drinker incorrectly 10 58 

 

Table 4. 16 Phase 1’s Prediction results as “nondrinker” for Testing data set 

Data Instances Attributes 
Test data Predicted as nondrinker 97 58 
Records Predicted as nondrinker correctly 87 58 
Records Predicted as nondrinker incorrectly 10 58 
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Building the D.T. Classifier for the subset of data that was predicted as 

“nondrinker”: 

After Splitting the subset of data that was predicted as “nondrinker”, as shown in 

Table 4.17, we apply “GridSearchCv” to find the optimal depth for D.T. and the 

minimum number of misclassified records. According to Table 4.18, the confusion matrix 

report for both max_depth= 1 and max_depth=2 are the same. Therefore, to have a better 

and deeper view of the decision tree classifier, we decide to choose max_depth=2 to 

continue working. 

Table 4. 17 Splitting the Subset of data that was Predicted as “nondrinker” to training and 

testing data set 

 Instances Attributes Missing values 

Predicted as nondrinker 97 58 0 
Training Data_3 (70% from row 1) 67 

 
58 0 

Testing Data_3 (30% from row 1) 30 
 

58 0 

 

 

Table 4. 18 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy 

Score for the subset of data that was predicted as “nondrinker” in Phase 1 

D.T. depth Accuracy score 
1 0.8656 
2 0.8656 
3 0.8507 
4 0.8507 

5 0.8507 

1 0.8656 
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Figure 4. 4 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score for 

the subset that was predicted as “nondrinker” in Phase 1 

 

Table 4. 19 Phase 2’s D.T. Classifier, Comparing Classification Results with different Depths 

for the subset that was predicted as “nondrinker” in Phase 1 

 accuracy_score Roc_Auc_score F1 

score 
Number of 

Misclassified records 
Decision Tree Classifier with 

Max_depth=1 
0.9 0.625 0.4 3 

Decision Tree Classifier with 

Max_depth=2 
0.9 0.552 

 
0.4 3 

Decision Tree Classifier with 

Max_depth=3 
0.866 

 
0.552 

 
0.333 

 
4 

Learning the D.T. on Training Data_3 (the training data of the subset that was 

predicted as “nondrinker”) and then the prediction results are shown in Figure 4.5 as a 

confusion matrix. Indeed, Phase 2 predicts if Phase 1’s prediction is incorrect. The data 

records for which their real value was “incorrect” in Phase 1 and they have been predicted 

to “incorrect” in Phase 2 can help us to find the rules that lead to incorrect predictions 

(incorrect stereotypical predictions). Here there is only one instance with this condition 

and we call it record “A” (Figure 4.5). For further exploration, we will go through the 

paths that led to predictions in Phase 1 and Phase 2 for data record “A”. 
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Figure 4. 5 Phase 2’s D.T. Classifier, Confusion_matrix with max_depth=2 for the subset of 

data that was predicted as “nondrinker” in Phase 1 

Phase 2’s D.T. Classifier’s Important features for the subset of data that was predicted as 

“nondrinker” in Phase 1 with max_depth= 2: 

Here the decision dree classifier chooses attributes “traveltime” and “Fedu” 

(Father education) as the important ones in making predictions. These features may hold 

the key to explaining and fixing incorrectly classified stereotyped data records. (Table 

4.20) 

Table 4. 20 Phase 2’s D.T. Classifier’s Important features for the subset of data that was 

predicted as “nondrinker” in Phase 1 with max_depth= 2 

Features Degree of importance 

traveltime 0.5179 

Fedu 0.4820 

Fjob_health 0.0000 

Medu 0.0000 

absences 0.0000 

 

Decision tree extracted rules for data predicted as “nondrinker” in Phase 1, with 

max_depth=2: 

Table 4.21 and Figure 4.6 display the graphical prediction results and decision rules 

generated be the decision tree classifier for this subset of data.  
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Table 4. 21 Phase 2’s D.T. Classifier’s rules with Max_depth=2 for the subset of data that was 

predicted as “nondrinker” in Phase 1 

 
 
Decision Tree diagram for the subset of data was predicted as “nondrinker” in Phase 1, 

with max_depth=2: 

 

 
Figure 4. 6 Phase 2’s D.T. diagram with Max_depth=2 for the subset of data that was predicted 

as “nondrinker” in Phase 1 

Analyzing and Visualizing the records that have label “incorrect” in Phase 2 and 

have been predicted as “incorrect” by the Phase 2 Decision Tree Classifier: 

Table 4.22 displays more information about data record “A” and its attributes. 



 

 

3
6

 

Table 4. 22 The record of data that predicted as “nondrinker” with class label “incorrect” from Phase 1, which has been predicted to class label 

“incorrect” in Phase 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Drinker sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

F 16 1 1 services services father 4 1 0 yes no 5 5 6 10 8 11 5
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Table 4. 23 Phase 2’s D.T. Classifier’s paths and rules that lead to misclassification for the 

subset of data that was predicted as “nondrinker” in Phase 1 

  
Rules that lead to misclassification 

Number of test 

data records 

misclassified by 

this rule 

 Number of test    

data records 

classified 

correctly by this 

rule 

Path 0, 1, 2 if ( traveltime <= 3.5 ) { 

   if ( Fedu <= 3.5 ) { 

       return correct 

2 22 

Path 0,4 
 

 

if ( traveltime > 3.5 )  
   return incorrect 

1 0 

 

Building a Phase 2’s D.T Classifier for the subset of data that was predicted as “drinker” by 

D.T from Phase 1 : 

 

Table 4. 24 Splitting the Subset of data that was Predicted as “drinker” to training and testing 

data set 

 Instances Attributes Missing values 

Predicted as drinker 22 58 0 

Training Data_4 (70% from row 1) 15 
 

58 0 

Testing Data_4 (30% from row 1) 7 
 

58 0 

 

 

Finding the optimal Depth for the subset of data that was predicted as “drinker” in 

Phase 1:  
 

According to Table 4.25 which shows the results of searching the best accuracy 

score and minimum number of misclassified data records by applying “GridSearchCv” to 

Training Data_4, both max_depth= 1 and max_depth=2 generate the same accuracy 

scores. So, to have a better and deeper view of decision tree classifier we decide to 

choose max_depth=2 to continue working. 
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Table 4. 25 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score for 

the subset of data that was predicted as “drinker” in Phase 1 

D.T depth Accuracy score 

1 0.4666 

2 0.4666 

3 0.4666 

4 0.4000 

5 0.4000 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing Classification results with different depth of tree Phase2: 
 

Table 4. 26 Phase 2’s D.T. Classifier, Comparing Classification Results with different Depths 

for the subset of data that was predicted as “drinker” in Phase 1 

 accuracy_score Roc_auc_score F1 

score 
Number of 

Misclassified 

records  

Decision Tree 

Classifier with 

Max_depth=1 

0.4285 0.45 0.5 4 

Decision Tree 

Classifier with 

Max_depth=2 

0.5714 0.7 0.5714 
 

3 

Decision Tree 

Classifier with 

Max_depth=3 

0.5714 0.7 0.5714 
 

3 

Figure 4. 7 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score for 

the subset of data that was predicted as “drinker” in Phase 1 
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Phase 2’s D.T Confusion_matrix with max_depth=2 for data predicted as “drinker” in 

Phase 1: 

 

 
Figure 4. 8 Phase 2’s D.T. Classifier’s Confusion matrix with max_depth=2 for the subset of 

data that was predicted as “drinker” in Phase 1 

Phase 2’s Decision Tree Classifier’s Important features for data predicted as “drinker” 

during Phase 1: 

Table 4. 27 Phase 2’s D.T. Classifier’s Important features for the subset of data that was 

predicted as “drinker” in Phase 1 with max depth= 2 

features Degree of importance 

G2 0.4000 

Medu 0.3333 

G1 0.2666 

Fjob_other 0.0000 

absences 0.0000 

 

These important features may hold the key to understanding the basis for the 

incorrect stereotypical predictions from Phase 1. 

Extracting rules for Phase 2’s Decision Tree Classifier trained on data predicted as  

“drinker” in Phase 1: 
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Table 4. 28 Phase 2’s D.T. Classifier’s rules with Max_depth=2 for the subset of data that was 

predicted as “drinker” in Phase 1 

 
 
Phase 2’s Tree Diagram for Decision Tree Classifier for data that was predicted as 

“drinker” during Phase 1: 

 
Figure 4. 9 Phase 2’s D.T. diagram with max depth=2 for the subset of data that was predicted 

as “drinker” in Phase 1 

In this step, according to the confusion matrix, we have two records for which 

their real value was “incorrect” and they have been predicted to “incorrect” (Figure 4.8). 

if ( Medu <= 3.5 ) { 

   if ( G1 <= 5.5 ) { 

       return incorrect ( 1 examples ) 

   } 

   else { 

       return correct ( 8 examples ) 

   } 

} 

else { 

   if ( G2 <= 11.5 ) { 

       return incorrect ( 4 examples ) 

   } 

   else { 

       return correct ( 2 examples ) 

   } 

} 
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We will visualize these examples in Table 4.29. These two records have been predicted 

as a drinker in Phase 1 because their “goout” is greater than 3.5 and they are males ( 

sex_M > 0.5). Then in Phase 2, because of having “Medu” > 3.5 and G2 <= 11.5, the 

model predicts them as a label of “incorrect”. 

 

 

 



 

    

 

4
2

 

Table 4. 29 The records of data that predicted as “drinker” with class label “incorrect” from Phase 1, which has been predicted to class label 

“incorrect” in Phase 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Nondrinker sex age Medu Fedu Mjob Fjob guardian traveltime studytime failures activities nursery freetime goout absences G1 G2 G3 Alc

M 18 4 4 teacher services mother 2 1 0 yes yes 2 4 22 9 9 9 2

M 18 4 3 teacher other mother 1 3 0 no yes 4 5 0 10 10 9 2
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4.2.1.1.3 Analyzing the results 

 

Table 4.30 shows student “A” among her neighbors who all traverse the same path in 

Phase1’s D.T because they go out a lot with friends and are females and, like A, have 

been predicted to be “nondrinker”. The only difference is their real label: A was really a 

“drinker” but A1, A2 and A3 were really “nondrinkers”. Looking at their similarity in 

going through the same path in Phase 1, we can understand how our model has learned to 

predict A, like A1, A2 and A3, as a “nondrinker”. Their different decision tree paths in 

Phase 2 indicate how A is suspected to be a “drinker” in reality. As Table 4.30 shows, she 

spends a long time (more than 1 hour) getting home from school. This time may be spent 

with peers without parent supervision and possibly lead to drinking more alcohol. 

The next table, Table 4.31, displays information related to record A and her neighbors 

who are all drinkers in reality but have been predicted incorrectly as “nondrinker”. In 

Phase 1, their D.T paths followed two rules which caused the prediction “nondrinker”; 

one path says, if a student goes out frequently with friends but is a female, she is more 

likely to be a “nondrinker,” and another one says having not too much hanging out with 

friends and not many absences in classes, counts for being a “nondrinker”. Both rules 

make sense and are expected.  

Record A and A’3 both have been predicted incorrectly as “nondrinkers” and our model 

in Phase 2 succeed to detect this wrong prediction. Their path in Phase 2 tells us which 

attributes may have misled the model in Phase 1, namely, having high “traveltime” to get 

back home from school, for both students, as shown in Table 4.31. 
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Analyzing Table 4.33 and 4.34, provides us with the same information as we got above. 

Table 4.33 helps us to find B’s neighbors, B1, B2 and B3, which are all “drinkers” and 

have been predicted correctly as “drinkers” (with probability %60), which led our Phase 

1 model to treat record B like them and forecast it as a “drinker”. All nearest neighbors, 

B1, B2 and B3, frequently go out with their friends and are Male. So, they are more 

likely to be a “drinker”. Moreover, the model in Phase 2 indicates that the prediction 

made in Phase 1 was correct to considered them as “drinker”. But the path in Phase 2 

explains that because they have highly educated mothers and not very weak performances 

in their second period grade, G2, they should be predicted as “nondrinker”. This example 

may illustrate the importance of family (for example educated parents) on child 

discipline.  

Other records with the same characteristic as record B, which have been classified 

incorrectly as “drinker” in Phase 1, are listed in Table 4.34. The rule that has incorrectly 

predicted students B’1, B’2 and B’3 to be “drinkers” in Phase 1 says the male students 

who like going out a lot with friends have characteristics of “drinkers”. These students’ 

paths in Phase 2 show the incorrect predictions for those who have an educated mother 

and not a very low grade in second period exam (G2) is wrong and need to be corrected.  

From all these experiments, we saw how analyzing the D.T. path traversed by data that 

has been classified incorrectly can help explain the misclassifications based on certain 

features’ conditions that are shared by these misclassified records. We can check the 

common and expected rules, for example being predicted as “nondrinker” for a student 

who goes out a lot with friends but is a female and being forecasted to be “drinker” for a 

male student who hangs out frequently with friends. These common rules that can lead to 
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wrong predictions exemplify stereotypes that are learned by classifiers. Incorrect 

stereotypical predictions could be corrected in a second phase, in our example, by 

considering the parents’ education for students who have been incorrectly predicted as a 

“drinker” and the time spent getting back home from school for students who have been 

predicted as a “nondrinker”.  

Going out more frequently with friends is one of the main concerns of parents who worry 

about their children becoming addicted to alcohol. Our study shows that a classification 

model easily learns such common stereotypical rules; however, this is not enough to 

predict whether a student is a drinker or not. For example, for female students, going out 

a lot is not enough to categorize them as “drinker”, and we need to check another 

attribute for them. Record A’3 is the one that showed the importance of having long 

“traveltime” between school and home. This female student does not go out a lot with 

friends and does not have a lot of absences in her classes, which misleads the prediction 

model to judge her as a “nondrinker”; but paying attention to the long time that she 

spends getting home from school uncovers this incorrect prediction and corrects her label 

as a “drinker”. The important role played by the time that a student spends after school to 

get home in predicting addiction to alcohol is illustrated in record A, which emphasizes 

that spending a long time to come back home from school is the rule condition that put 

her correctly in the drinker category. 
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Table 4. 30 Nearest Neighbors of data record A, in training data set, from true class 

“nondrinker” and predicted as a nondrinker in Phase 1 

 

Table 4. 31 Nearest Neighbors of data record A, in training data set, from true class “drinker” 

and predicted as a nondrinker in Phase 1 

 

 

 

 

 

 

 

Index 

of 

data 

recor

ds 

Tempo

rary 

name 

Distance 

from A 

Real 

Label in 

Phase 1 

Predicte

d Label 

in Phase 

1 

Probabili

ty to be 

in class 

nondrink

er, 

(Phase 1) 

Probabil

ity to be 

in class 

drinker, 

(Phase 

1) 

D.T 

Path 

fro

m 

Pha

se 1 

Real 

Label 

in 

Phase 

2 

Predict

ed 

Label 

in 

Phase 2 

D.T 

Path 

in 

Pha

se 2 

61 A 0 drinker 

Nondrin

ker 

0.833 0.166 0,4,5 

incorre

ct 

incorre

ct 

0,4 

284 A1 5.5 
Nondrin

ker 

Nondrin

ker 
0.833 0.166 0,4,5 correct correct 

0,1,2 

 

204 A2 5.9 
Nondrin

ker 

Nondrin

ker 
0.833 0.166 0,4,5 correct correct 0,1,2 

283 A3 6 
Nondrin

ker 

Nondrin

ker 
0.833 0.166 0,4,5 correct correct 0,1,2 

Index 

of 

data 

recor

ds 

Tempora

ry name 

Distan

ce 

from 

A 

Real 

Label 

in 

phase 

1 

Predicted 

Label in 

phase 1 

Probabili

ty to be in 

class 

nondrink

er, phase 

1 

Probabili

ty to be 

in class 

drinker, 

phase 1 

Path 

fro

m 

phas

e 1 

Real 

Label 

in 

phase 2 

Predict

ed 

Label 

in 

phase 2 

Path 

in 

phas

e 2 

61 A 0 

drink

er 

Nondrink

er 

0.83 0.17 0,4,5 

incorre

ct 

incorre

ct 

0,4 

41 A’1 8.6 
drink

er 

Nondrink

er 
0.95 0.05 

0,1,2 

 

incorre

ct 
correct 

0,1,3 

 

318 A’2 9.48 
drink

er 

Nondrink

er 
0.83 0.17 

0,4,5 incorre

ct 
correct 0,1,3 

228 A’3 10.29 
drink

er 

Nondrink

er 
0.95 0.05 0,1,2 

incorre

ct 

incorre

ct 
0,4 
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Table 4. 32 Rules and Paths for Tables 4.30 and 4.31 

 

Nearest Neighbors of data record B, in the training data set, from predicted as drinker 

during Phase 2. 

Table 4. 33 Nearest Neighbors of data record B, in training data set, from true class “drinker” 

and predicted as “drinker” in Phase 1 

Index 

of 

data 

recor

ds 

Tempora

ry name 

Distan

ce 

from 

A 

Real 

Label in 

Phase 1 

Predict

ed 

Label 

in 

Phase 1 

Probabili

ty to be 

in class 

nondrink

er, (Phase 

1) 

Probabil

ity to be 

in class 

drinker, 

(Phase 1) 

D.T 

Path 

fro

m 

phas

e 1 

 

Real 

Label 

in 

Phase 

2 

Predict

ed 

Label 

in 

Phase 2 

D.T 

Path 

in 

Pha

se 2 

347 B 0 

Nondrin

ker 

drinker 0.40 
0.60 

0,4,6 

incorre

ct 

incorre

ct 

0,4,5 

330 B1 5.2 drinker drinker 0.40 0.60 0,4,6 correct correct 0,1,3 

250 B2 6.3 drinker drinker 0.40 0.60 0,4,6 correct correct 0,1,3 

125 B3 7.8 drinker drinker 0.40 0.60 0,4,6 correct correct 0,1,3 

  

Table 4. 34 Nearest Neighbors of data record B, in training data set, from true class 

“nondrinker” and predicted as a “drinker” in Phase 1 

Index 

of 

data 

recor

ds 

Tempora

ry name 

Distan

ce 

from 

A 

Real 

Label in 

Phase 1 

Predict

ed 

Label 

in 

Phase 1 

Probabili

ty to be 

in class 

nondrink

er, 

(Phase 1) 

Probabil

ity to be 

in class 

drinker, 

(Phase 1) 

D.T 

Path 

fro

m 

Pha

se 1 

Real 

Label 

in 

Phase 

2 

Predict

ed 

Label 

in 

Phase 2 

D.T 

Path 

in 

Pha

se 2 

347 B 0 Nondrin

ker 

drinker 0.40 0.60 0,4,6 incorre

ct 

incorre

ct 

0,4,5 

Record names Phase/predicted class Path Rules 

A, A1, A2, A3,A’2 1/predicted as a nondrinker 0,4,5 

if (goout > 3.5) 

if (sex_M <= 0.5)  

            return nondrinker 

A’1, A’3  0,1,2 

if (goout <= 3.5) 

if (absences <= 26.5) 

return nondrinker 

A, A’3 2/predicted as a nondrinker 0,4 
if (traveltime > 3.5) 

return incorrect 

A1, A2, A3  0,1,2 

if (traveltime <= 3.5) 

if (Fedu <= 3.5) 

return correct 

A’1, A’2  0,1,3 

if (traveltime <= 3.5) 

if (Fedu >= 3.5) 

return correct 
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172 B’1 4.8 Nondrin

ker 

drinker 0.40 0.60 0,4,6 incorre

ct 

incorre

ct 

0,4,5 

354 B’2 7.48 Nondrin

ker 

drinker 0.40 0.60 0,4,6 incorre

ct 

incorre

ct 

0,4,5 

161 B’3 9.84 Nondrin

ker 

drinker 0.40 0.60 0,4,6 incorre

ct 

incorre

ct 

0,1,2 

 

Table 4. 35 Rules and Paths for Tables 4.33 and 4.34 

Records name Phase/class Path Rules  
B,B1,B2,B3, 

B’1,B’2,B’3 
1/predicted as drinker 

  

0,4,6 if ( goout > 3.5 ) { 
   if ( sex_M > 0.5 ) { 

               return drinker 
B ,B’1,B’2 2/predicted as drinker 0,4,5 if ( Medu > 3.5 )  

    if ( G2 <= 11.5 )  

        return incorrect 
B1,B2,B3  0,1,3 if ( Medu <= 3.5 )  

    if ( G1 > 5.5 )  

        return correct 
B’3  0,1,2 if ( Medu <= 3.5 )  

    if ( G1 <= 5.5 )  

        return incorrect 
 

Table 4. 36 Summary of the results for Student Alcohol dataset 

Misclassified 

data record 

Real Label 

in phase 1 

Predicted 

Label in 

phase 1 

Reasons for 

prediction in Phase 1 

Reasons which 

can explain 

incorrect 

prediction in 

Phase 1 

A drinker nondrinker  Frequently 

going out with 

friends 

 Female  

 Long travel 

time to get 

home 

A’3 drinker nondrinker  Not frequently 

going out with 

friends 

 A few absences 

in their courses 

 Long travel 

time to get 

home 

B nondrinker drinker  Frequently 

going out with 

friends 

 Male 

 Highly 

educated 

mother 

 Not very 

weak 

performanc

e in their 

grades 
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Our results for male students also confirm that hanging out a lot with friends is not a 

sufficient factor for being a “drinker” because we have some real drinkers and real 

nondrinkers who all go out a lot to meet their friends. Here, the role of having educated 

parents in the family, particularly mothers, is more important than course grades. We can 

see for instance, that record B, although has been misclassified in Phase 1 as a drinker, 

was correctly classified in phase 2 because of the educated mother. Another example 

illustrating the impact of parents’ education for nondrinking children was B1, B2 and B3 

who are male drinkers, go out a lot with peers, and have less educated mothers. 

As discussed above, our analysis shows that an educated mother plays an important role 

in preventing alcohol addiction for male teenagers. According to our study, the girls who 

spend more than one hour in their trip from school to home are more likely to be drinkers.  

Validating the experimental results 

As we have mentioned before, the important features may have the key for explaining 

and fixing the misclassified stereotype data records. Here, we investigate this hypothesis 

by comparing the important features in each phase and finding their relation with the 

features that helped us to explain the misclassified records. 

The important feature in “scikit-learn” is calculated by “Gini importance” or “mean 

decrease impurity" which is the (normalized) total reduction of the criterion brought by 

that feature. The higher, the more important the feature. 

Tables 4.37-39 show the attributes which are important in making decisions by decision 

trees in Phase 1 and Phase 2 for each predicted class. As we can see “traveltime” and 

“Medu,” which helped us to explain the reason behind incorrect predictions, are 
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important features chosen by decision trees to make predictions. Hence, this finding 

supports our hypothesis about the role of important features in explaining the prediction 

results. 

Phase 1’s important features 

Table 4. 37 Phase 1’s D.T. Classifier’s Important features 

attribute importance 

goout         0.556622 

sex_M   0.392336 

absences    0.051042 

 

Phase 2’s important features for the subset of data that was predicted as 

“nondrinker” in Phase 1  

Table 4. 38 Phase 2’s D.T. Classifier’s Important features for the subset of data that was 

predicted as “nondrinker” in Phase 1 

attribute importance 

traveltime      0.517902          

Fedu   0.482098 

 

Phase 2’s important features for the subset of data that was predicted as “drinker” 

in Phase 1  

Table 4. 39 Phase 2’s D.T. Classifier’s Important features for the subset of data that was 

predicted as “drinker” in Phase 1 

attribute importance 

G2             0.400000 

Medu           0.333333 

G1             0.266667 

 

To further investigate, we compare the performance of the decision tree classifier for 

each Phase, in two parts, before pruning the tree and after it, and for each part, we include 

all features and then important features only. According to Table 4.40, repeating the 

classification process only with important features has improved the classification results 

in Phase 1, as we expected. Also, having the same results in Table 4.41, for decision trees 
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after pruning indicates our model is strong enough. Therefore, instead of considering all 

the features, we can apply our model only on the important features and get the same 

results. 

Table 4. 40 Comparing Classification results before Decision Tree tuning parameter for 

Phase 1 

 With all features With important features  

Accuracy score 0.7142 0.7563 

Roc_auc score 0.5260 0.6220 

F1 score 0.2272 0.3829 

 

Table 4. 41 Comparing Classification results after Decision Tree tuning parameter for 

Phase 1 

 With all features With important features  

Accuracy score  0.8319 0.8319 

Roc_auc score  0.7197 0.7197 

F1 score  0.5454 0.5454 

 

Repeating the process by censoring and changing some attributes: 

To find out whether our model can detect and explain misclassified records, we repeat 

our methodology one time with removing one of the attributes and another time with 

changing its real value. Based on the important features of the original dataset from Phase 

1, we found that the attribute “goout” has a key role in our prediction results. So, we 

remove this attribute and repeat all the steps. Interestingly, the model still has predicted 

the record “A” incorrectly as “nondrinker”. This time the model says because “A” is a 

“Female” with a lot of “freetime” after school and not too many absences, she should be 

“nondrinker” which is an incorrect prediction. However, Phase 2 reveals, because she has 

not gone to the nursery school and has a father as her guardian, she definitely is a 

“drinker”. 
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Another instance from data records that were predicted as “drinker” incorrectly is “B’3” 

who is a “Male” with a low grade in “G2” (second period exam) and not having any 

extra-curricular activities. So the model predicts him incorrectly as “drinker” in Phase 1, 

while Phase 2 shows he should be a “nondrinker” because of his high “studytime”. 

The next step is changing the value of the attribute “goout” and repeating the 

explorations. We change all the records that have high “goout” (with rank 5 and 4) to the 

ones with less “goout”. Again, “A” and “B” have been predicted incorrectly and our 

model is still able to explain this misclassification. According to the decision tree paths 

from Phase 1, “A” is “nondrinker” because she does not go out a lot with friends (this 

value has been reversed by us in this step). But Phase 2 indicates that because she spends 

a long time going from school to home, she should be a “drinker” which is true. For “B” 

also, changing its “goout” value from a person who goes out a lot to one who does not, 

does not prevent our model from detecting and revealing the reasons behind its incorrect 

prediction. 

In summary, removing or changing the attributes does not affect our model in finding and 

interpreting the incorrect prediction results. It uses other attributes or changes the logic 

for choosing and splitting the decision areas of the decision tree classifier to detect and 

explain incorrect predictions. 

4.2.2 Case study 2 

4.2.2.1 German credit dataset 

This dataset classifies people by a set of attributes as “good” for customers with 

low risk in loan repayment and “bad” for those who have high risk for late or incomplete 
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loan repayment. Each row represents a previous customer, with each column representing 

an attribute, such as age or employment status, and a final column in which the 

customer’s credit risk has been labeled (either 1 for “Good”, or 2 for “Bad”). (Tables 

4.42-43) 

Table 4. 42 German Credit dataset attributes 

 Attributes Definition  

1 Status of existing checking account  

 
A11 …< 0 DM 

  A12  0 <= ... < 200 DM 

  A13 ... >= 200 DM / salary assignments for at least 1 

year 

  A14  no checking account 

2 Duration   in month 
3 Credit history  A30  no credits taken/ all credits paid back duly  

  A31  all credits at this bank paid back duly 

  A32 existing credits paid back duly till now 

  A33  delay in paying off in the pas 

  A34  critical account/ other credits existing (not at this 

bank) 
4 Purpose A40  car (new) 

  A41  car (used) 

  A42   furniture/equipment 

  A43  radio/television 

  A44  domestic appliances 

  A45  repairs 

  A46  education 

  A47 (vacation - does not exist?) 

  A48  retraining 

  A49  business 

  A410  others 

5 Credit amount   
6 Savings account/bonds A61  ... < 100 DM 

  A62 100 <= ... < 500 DM 

  A63  500 <= ... < 1000 DM 

  A64   ... >= 1000 DM 

  A65 unknown/ no savings account 

7 Present employment since A71  unemployed 

  A72  ... < 1 year 

  A73 1 <= ... < 4 years 

  A74  4 <= ... < 7 years 

  A75  . .. >= 7 years 

    
8 Installment rate in percentage of   
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disposable income 
9 Personal status and sex A91 male : divorced/separated 
  A92  female : divorced/separated/married 
  A93  male : single 
  A94 male : married/widowed 
  A95 female : single 
10 Other debtors / guarantors A101   none 
  A102  co-applicant 
  A103  guarantor 
11 Present residence since   

12 Property A121 real estate 

  A122 if not A121 : building society savings 

agreement/ life insurance 

  A123  if not A121/A122 : car or other, not in attribute 6 

  A124   unknown / no property 

    

13 Age   in years 

14 Other installment plans A141  bank 

  A142  stores 

  A143  none 

15 Housing A151   rent 

  A152  own 

  A153 for free 

16 Number of existing credits at this 

bank 

  

17 Job A171 unemployed/ unskilled - non-resident 

  A172 unskilled - resident 

  A173 skilled employee / official 

  A174 management/ self-employed/  

highly qualified employee/ officer 

18 Dependents  Number of people being liable to provide 

maintenance for 

19 Telephone A191  none 

  A192 yes, registered under the customer's name 

20 Foreign worker A201  yes 

  A202 no 

21 Creditability (Class label) good 0 

  bad 1 

 

 

Table 4. 43 German Credit dataset information 

 Instances Attributes Missing values Default label 

good 

Default label 

bad 

Data 1000 20 0 700 300 
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4.2.2.1.1 Phase 1 

 

After applying the decision tree classifier to the divided datasets with ratio of 0.7 

for training and 0.3 for testing, the best accuracy score will be reached by building the 

decision trees with depth=3 but it makes the F1 score of the subsets of data in Phase 2 to 

zero (Table 4.44). So, to avoid this situation and to have a better and deeper view, we 

choose depth=5 to continue our work. After learning the decision trees, the confusion 

matrix results is calculated and presented in Table 4.45. 

Table 4. 44 Phase 1’s D.T. for German credit data, Finding the Optimal Depth and Best 

Accuracy Score 

 

 

 

 

 

Table 4. 45 Phase 1’s D.T. Classifier’s Confusion matrix with max_depth=5 for German 

credit dataset 

 accuracy_score Roc_auc_score F1 

score 

D.T. Classifier with 

Max_depth=5 
0.69 0.66 0.35 

 

D.T depth Accuracy score 

1 0.70 

2 0.70 

3 0.72 

4 0.71 

5 0.70 

6 0.69 

7 0.69 
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Figure 4. 10 Phase 1’s D.T. Classifier’s Confusion matrix with max_depth=5 for German 

credit dataset 

Table 4. 46 Phase 1’s D.T’s top important features for German credit dataset 

features Degree of importance 

checkin_acc_A14 0.259394 

credit_amount 0.145334 

duration 0.136960 

other_parties_A101 0.079646 

credit_history_A34 0.068615 

age 0.044485 

saving_acc_A61 0.041987 

 

 

 

 

 

 

 

 



 

    

 

5
7

 

 

 

 

 

Figure 4. 11 Phase 1’s D.T’s diagram for German credit dataset with max depth=5 
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4.2.2.1.2 Phase 2 

 

In this Phase, all the steps such as the ratio of splitting the testing data from Phase 

1 (0.7 for training dataset and 0.3 for testing dataset) into two subsets, “Predicted as 

good” and “Predicted as bad”, choosing a new label, learning the decision tree classifier 

by considering the best accuracy score and sufficient depth to extract meaningful rules, 

has been repeated for the German credit dataset. The results are shown in the following 

tables and figures. 

Building the D.T. Classifier for the subset of data that was predicted as “bad”: 

According to Table 4.47, the best accuracy score will reach by building the 

decision trees with depth=1 but to have a better and deeper view, we choose depth=5 to 

continue our work.  

Table 4. 47 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score for 

the subset of data that was predicted as “bad” in Phase 1 for German credit data 

 

 

 

 

 

Table 4. 48 Phase 2’s D.T. Confusion matrix report for the subset of data that was predicted as 

“bad” in Phase 1 for German Credit data 

 accuracy_score Roc_auc_score F1 

score 

D.T. Classifier with max-

depth= 5 

0.5882 0.7307 0.6315 

 

 

D.T depth Accuracy score 

1 0.69 

2 0.55 

3  0.57 

4 0.60 

5 0.64 

6 0.67 
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Figure 4. 12 Phase 2’s D.T. Confusion matrix report for the subset that was predicted as “bad” 

in Phase 1 for German credit data 

Table 4. 49 Important features for the subset of data that was predicted as “bad” in Phase 1 for 

German credit data 

features Degree of importance 

credit_amount 0.2721 

property_A124 0.2211 

age 0.1404 

personal_status_A91 0.1168 

duration 0.1031 

purpose_A40 0.0773 

saving_acc_A64 0.0687 

 

Building the D.T. Classifier for the subset of data that was predicted as “good”: 

Table 4.50 shows that the best accuracy score will reach by building the decision 

trees with depth=2 but to have a better and deeper view, we choose depth=5 to continue 

our work.  
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Table 4. 50 Phase 2’s D.T. Classifier, Finding the Optimal Depth and Best Accuracy Score for 

the subset of data that was predicted as “good” in Phase 1 for German credit data 

 

 

 

 

Table 4. 51 Phase 2’s D.T. Confusion matrix report for the subset of data that was predicted as 

“good” in Phase 1 for German Credit data 

 accuracy_score Roc_auc_score F1 

score 

D.T. Classifier with max-

depth=5 
0.6351 0.6608 0.40 

 

 

Figure 4. 13 Phase 2’s D.T. Confusion matrix report for the subset of data that was predicted as 

“good” in Phase 1 for German Credit data 

Table 4. 52 Important features for the subset of data that was predicted as “good” in Phase 1 for 

German credit data 

features Degree of importance 

checkin_acc_A14 0.1986 

age 0.1880 

D.T depth Accuracy score 

1 0.75 

2 0.77 

3  0.75 

4 0.75 

5 0.73 

6 0.73 
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credit_amount 0.1564 

duration 0.1285 

personal_status_A93 0.0870 

inst_rate 0.0711 

purpose_A43 0.0649 

 

          

 

Figure 4. 14 Phase 2’s D.T’s path for data record H 
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4.2.2.1.3 Analyzing the results 

 

Table 4.53 summarizes the reasons behind the incorrect predictions for data 

records D and H. For example data record D, with true class “bad”, has been classified as 

“good” loan payer in Phase 1, because he has a checking account and his credit amount is 

more than 2249. Phase 2 reveals that it took a long time for him to pay off his previous 

loans. He had a loan to buy a radio or television but he has paid it in 42 months. Also, the 

amount of his credit should be more to be considered as “good” payer. Therefore, to 

decide about granting a loan to the applicants that have some credit amounts but which 

not very high, we need to pay attention to their previous loan’s history and how long it 

took for them to repay the loan completely.  

Another misclassified data record is H with true class “good” but which has been 

classified as “bad” customer. Phase 1 says that because this person does not have a 

Figure 4. 15 Phase 2’s D.T’s path for data record D 
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checking account and an installment plan such as bank or store, and has a co-applicant, 

he is more likely to be a “bad” payer. Although, Phase 2 explains that because he is older 

than 24 years and has a real estate as his property, the prediction in Phase 2 was incorrect. 

Table 4. 53 Summary of the results for German Credit dataset 

Misclassified 

data record 

Real 

Label in 

phase 1 

Predicted 

Label in 

phase 1 

Reasons for 

prediction in 

Phase 1 

Reasons which 

can explain 

incorrect 

prediction in 

Phase 1 

D bad good  Having a 

checking 

account 

 Having 

credit 

amount 

more than 

2249 

 Long pay 

off 

 Having 

credit 

amount 

less than 

5058 

H good bad  Having no 

checking 

account 

 Having no 

installmen

t plan 

 Having co-

applicant 

 Having 

real estate 

as 

property 

 Is older 

than 24 

 

For more investigations, we look at the neighbors for data records D and H. Table 

4.54 shows that there are more records, with the same true class, near data record D that 

have the same attributes and have been classified incorrectly. Also, based on the 

information in Table 4.55 we can see that considering the purpose of loan and critical 

credit history can lead to correct predictions even for those customers who do not have a 

checking account or any installment plan such as bank or store. Another point is to be 

more careful about the definition of attribute checking account= A14 (having no checking 
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account) because it does not specify whether it talks about having no checking account 

only at this bank or others. 

Table 4. 54 Nearest Neighbors of data record D, in training data set, from true class 

“bad” and predicted as “good” in Phase 1 

 

Table 4. 55 Nearest Neighbors of data record D, in training data set, from true class 

“good” and predicted as “good” in Phase 1 

Index 

of 

data 

recor

ds 

Tempor

ary 

name 

Distan

ce 

from 

A 

Rea

l 

Lab

el in 

pha

se 1 

Predict

ed 

Label 

in 

phase 1 

Probabili

ty to be 

in class 

nondrink

er, phase 

1 

Probabil

ity to be 

in class 

drinker, 

phase 1 

Path from 

phase 1 

Real 

Label 

in 

phase 

2 

Predict

ed 

Label 

in 

phase 2 

Path 

in 

phase 

2 

639 D 0 bad good 0.53 0.47 

0,1,17,25,2

6,28 

incorr

ect 

incorre

ct 

0,1,9,

10 

35 D’1 85 bad good 0.52 0.47 
0,1,17,25,2

6,28 

incorr

ect 

incorre

ct 

0,1,9,

10 

181 D’2 121 bad good 0.52 0.47 

0,1,17,25,2

6,28 

incorr

ect 

incorre

ct 

0,1,9,

10 

320 D’3 376 bad good 0.52 0.47 
0,1,17,25,2

6,28 

incorr

ect 

incorre

ct 

0,1,2,

3,4 

Index 

of 

data 

recor

ds 

Tempo

rary 

name 

Distance 

from A 

Real 

Label in 

Phase 1 

Predicte

d Label 

in Phase 

1 

Probabili

ty to be 

in class 

nondrink

er, 

(Phase 1) 

Probabil

ity to be 

in class 

drinker, 

(Phase 

1) 

D.T 

Path 

fro

m 

Pha

se 1 

Real 

Label 

in 

Phase 

2 

Predict

ed 

Label 

in 

Phase 2 

D.T 

Path 

in 

Pha

se 2 

639 D 0 bad good 0.53 0.47 

0,1,1

7,25,

26,2

8 

incorre

ct 

incorre

ct 

0,1,9

,10 

910 D1 84 good good 0.67 0.33 

0,32,

46,4

7,48,

50 

correct correct 

0,14,

15,1

9,20 

459 D2 225 good good 0.67 0.33 

0,32,

46,4

7,48,

50 

correct correct 

0,14,

15,1

9,20 

306 D3 441 good good 1.00 0.00 

0,32,

33,3

4,35,

37 

correct correct 

0,14,

15,1

9,20 
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Table 4. 56 Rules and Paths for Tables 4.54 and 4.55 

 

 

 

 

 

 

Record 

names 
Phase/predicted class Path Rules 

D, D’1, 

D’2, D’3 
1/predicted as good 0,1,17,25,26,28 

 
if ( checkin_acc_A14 <= 0.5 ) 
   if ( duration > 22.5 )  
    if ( saving_acc_A61 > 0.5) 
      if ( duration <= 47.5 )  
        if ( credit_amount > 2249.0 ) 
           return good 

D1, D2  0,32,46,47,48,50 

 
if ( checkin_acc_A14 > 0.5 ) 
 if ( inst_plans_A143 > 0.5 )  
 if ( credit_history_A34 <= 0.5 )  
  if ( other_parties_A102 <= 0.5 )  
      if ( credit_amount > 4367.5 )  
                return good 

D3  0,32,33,34,35,37 

if ( checkin_acc_A14 > 0.5 ) 
 if ( inst_plans_A143 <= 0.5 )  
    if ( purpose_A49 <= 0.5 )  
           if ( age <= 25.5 )  
               if(present_emp_since_A74>0.5)  
                 return good 

D, D’1, 

D’2 
2/predicted as good 0,1,9,10 

if ( checkin_acc_A14 <= 0.5 ) 
      if ( duration > 33 ) 
      if ( credit_amount <=5058.5 )  
                return incorrect 

D’3  0,1,2,3,4 

 

if ( checkin_acc_A14 <= 0.5 )  
   if ( duration <= 33.0 )  
       if(personal_status_A93<=0.5)  
           if ( purpose_A43 <=0.5)  
              return incorrect  

D1, D2, 

D3 
 0,14,15,19,20 

if ( checkin_acc_A14 > 0.5 ) 
   if ( inst_plans_A141<= 0.5 )  
      if ( age >23.5 )  
         if ( saving_acc_A62 <= 0.5) 
              return correct 
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The information for data record H and its neighbors has been shown in Tables 

4.57 and 4.58. Looking at its neighbors with the same true class, the data record H’1 has 

same characteristics and followed the same path. Another interesting point is about data 

records H3 and H’2. Despite their different true classes, they both has been predicted to 

the same label; H3 correctly and H’2 incorrectly. It explains because the data record H’2 

has the same attributes as real “bad” customers the decision tree classifier in Phase 1, has 

predicted it incorrectly to the opposite class.  

Table 4. 57 Nearest Neighbors of data record H, in training data set, from true class “bad” and 

predicted as “bad” in Phase 1 

Inde

x of 

data 

recor

ds 

Tempor

ary 

name 

Dista

nce 

from 

A 

Rea

l 

Lab

el 

in 

Pha

se 1 

Predic

ted 

Label 

in 

Phase 

1 

Probabi

lity to 

be in 

class 

nondrin

ker, 

(Phase 

1) 

Probabi

lity to 

be in 

class 

drinker

, (Phase 

1) 

D.T Path 

from phase 

1 

 

Real 

Label 

in 

Phase 

2 

Predic

ted 

Label 

in 

Phase 

2 

D.T Path 

in Phase 

2 

916 H 0 
goo

d 
bad 0.00 1.00 

0,32,46,47,

51,52 

incorr

ect 

incorr

ect 

0,1,9,11,1

2 

900 H1 223 bad bad 0.00 1.00 
0,1,2,10,11,

12 

correc

t 

correc

t 

0,1,9,11,1

3,15 

951 H2 703 bad bad 0.23 0.77 
0,1,17,25,2

6,27 

correc

t 

correc

t 
0,1,9,10 

191 H3 996 bad bad 0.25 0.75 
0,1,17,18,1

9,21 

correc

t 

correc

t 
0,16 

 

Table 4. 58 Nearest Neighbors of data record H, in training data set, from true class “good” and 

predicted as “bad” in Phase 1 

Inde

x of 

data 

recor

ds 

Tempor

ary 

name 

Dista

nce 

from 

A 

Rea

l 

Lab

el in 

Pha

se 1 

Predic

ted 

Label 

in 

Phase 

1 

Probabil

ity to be 

in class 

nondrin

ker, 

(Phase 

1) 

Probabi

lity to 

be in 

class 

drinker, 

(Phase 

1) 

D.T Path 

from Phase 

1 

Real 

Label 

in 

Phase 

2 

Predic

ted 

Label 

in 

Phase 

2 

D.T 

Path in 

Phase 2 

916 H 0 goo

d 

bad 0.00 1.00 0,32,46,47,

51,52 

incorr

ect 

incorr

ect 

0,1,9,11

,12 

688 H’1 95 goo

d 

bad 0.00 1.00 0,32,46,47,

51,52 

incorr

ect 

incorr

ect 

0,1,9,11

,12 

50 H’2 515 goo

d 

bad 0.25 0.75 0,1,17,18,1

9,21 

incorr

ect 

incorr

ect 

0,1,9,11

,12 
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464 H’3 898 goo

d 

bad 0.00 1.00 0,32,33,41,

45 

incorr

ect 

incorr

ect 

0,1,9,11

,12 

  

Table 4. 59 Rules and Paths for Tables 4.57 and 4.58 

Records name Phase/class Path Rules  

H, H’1 1/predicted as bad 0,32,46,47,51,52 if ( checkin_acc_A14 > 0.5 ) 
  if ( inst_plans_A143 > 0.5 )  
   if ( credit_history_A34 <= 0.5 )  
     if ( other_parties_A102 > 0.5 )  
       if ( age <= 44 ) 
          return bad 

H’2,H3  0,1,17,18,19,21 if ( checkin_acc_A14<=0.5) 
   if ( duration > 22.5 )  
    if(saving_acc_A61<=0.5) 
      if(credit_history_A32<=0.5) 
        if ( job_A172 > 0.5 ) 
           return bad 

H’3  0,32,33,41,45 if ( checkin_acc_A14 > 0.5 ) 
  if ( inst_plans_A143<=0.5 )  
    if ( purpose_A49 >0.5 ) 
     if ( personal_status_A93 > 0.5 )               
return bad 

H1  0,1,2,10,11,12 if ( checkin_acc_A14<=0.5) 
   if ( duration <= 22.5 )  
        if(credit_history_A34>0.5) 
           if(other_parties_A101<=0.5)  
               if ( inst_rate <= 3.5 ) 
                   return bad 

H2  0,1,17,25,26,27 if ( checkin_acc_A14 <= 0.5 ) 
   if ( duration > 22.5 )  
    if ( saving_acc_A61 > 0.5) 
      if ( duration <= 47.5 )  
        if ( credit_amount <= 2249.0 ) 
           return bad 

H, H’1, H’2, 

H’3 

2/predicted as bad 0,1,9,11,12  

if ( property_A124 <= 0.5 )  
   if ( credit_amount > 1302.0 )  
       if ( age > 24.5 ) 
          if ( purpose_A40 <=0.5 ) 
           return incorrect 

H1  0,1,9,11,13,15 if ( property_A124 <= 0.5 )  
   if ( credit_amount > 1302.0 )  
       if ( age > 24.5 ) 
          if ( purpose_A40 >0.5 ) 
             if ( duration >14 ) 
               return correct 

H2  0,1,9,10 if ( property_A124 <= 0.5 )  
   if ( credit_amount > 1302.0 )  
       if ( age <= 24.5 ) 
               return correct 

H3  0,16 if ( property_A124 > 0.5 ) 
   return correct 
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CHAPTER 5  

CONCLUSION 

 

 

Interpretable models provide brief and convincing prediction results and play an 

important role in communicating with experts. They also help make the complex machine 

learning algorithms more trustable for the users. Many classification models have been 

evaluated for their comprehensibility and interpretability such as Decision Tables, Naïve 

Bayes, and Nearest Neighbors but decision trees have special characteristics that make 

them more popular interpretable and understandable models. In this thesis, we tried to use 

the interpretability of decision tree models to investigate the common rules that can lead 

to wrong predictions. These rules exemplify stereotypes that can be learned by classifiers. 

Our methodology to investigate some reasons behind the incorrect predictions, 

was conducted in two Phases. Phase 1 produced the initial prediction results and the 

important features, while Phase 2 revealed which attributes are more responsible for 

incorrect predictions. We used the decision tree classifier to find incorrectly predicted 

data records and to analyze the features by following the tree paths for data that have 

been classified incorrectly. Then we analyzed the k-nearest neighbors of a misclassified 

sample, to find which attributes are the same among incorrectly predicted records and 

their neighbors. 
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In the experimental part, in Chapter 4, we applied the presented methodology to 

two datasets from UCI machine learning repository, the Student Alcohol Consumption 

and the German credit dataset, to explore the predictive rules after applying the decision 

tree classifier and then analyzing the neighborhood of misclassifies samples. In the first 

case study with the Student Alcohol Consumption dataset, we explored which attributes 

are more important in predicting some students incorrectly as “drinker” or “nondrinker”, 

and hence, finding some stereotypes that can lead to wrong predictions. These incorrect 

stereotypical predictions could be corrected in the second phase; in our example, by 

considering the parents’ education for students who have been incorrectly predicted as 

“drinker” and the time they spent getting home from school for students who have been 

predicted as “nondrinker”. Also, we found that removing or changing the attributes does 

not affect our methodology in finding and explaining the possible flaws in a data set. In 

the second case study, after applying our methodology we found that to decide whether to 

a loan to the applicants that have some credit amounts but that are not very high, we need 

to pay attention to their previous loan history and how long it took for them to repay the 

loan completely. Also, if a customer does not have a checking account and an installment 

plan such as bank or store, and has a co-applicant, which are the typical attributes for a 

“bad” payer, we should look at her/his age and properties. 

For future work, we will apply our methodology to bigger datasets and with different 

interpretable algorithms to further incorrect algorithmic decisions. Also, we plan to 

extend our work to detect potential automatic discriminating decisions against certain 

groups such as minorities which can happen in data analysis. 
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