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ABSTRACT 

 
INTRUSION DETECTION AND RESPONSE MODEL FOR MOBILE AD HOC 

NETWORKS 
Sathish Kumar Alampalyam. P 

 May 12’ 2007 

This dissertation presents a research whose objective is to design and develop an 

intrusion detection and response model for Mobile Ad hoc NETworks (MANET).  

Mobile ad hoc networks are infrastructure-free, pervasive and ubiquitous in nature, 

without any centralized authority. These unique MANET characteristics present several 

changes to secure them. 

The proposed security model is called the Intrusion Detection and Response for 

Mobile Ad hoc Networks (IDRMAN). The goal of the proposed model is to provide a 

security framework that will detect various attacks and take appropriate measures to 

control the attack automatically. This model is based on identifying critical system 

parameters of a MANET that are affected by various types of attacks, and continuously 

monitoring the values of these parameters to detect and respond to attacks.     

 This dissertation explains the design and development of the detection 

framework and the response framework of the IDRMAN. The main aspects of the 

detection framework are data mining using CART to identify attack sensitive network 

parameters from the wealth of raw network data, statistical processing using six sigma to 

identify the thresholds for the attack sensitive parameters and quantification of the 

MANET node state through a measure called the Threat Index (TI) using fuzzy logic  
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methodology.  The main aspects of the response framework are intruder identification 

and intruder isolation through response action plans.  

The effectiveness of the detection and response framework is mathematically 

analyzed using probability techniques. The detection framework is also evaluated by 

performance comparison experiments with related models, and through performance 

evaluation experiments from scalability perspective. Performance metrics used for 

assessing the detection aspect of the proposed model are detection rate and false positive 

rate at different node mobility speed. Performance evaluation experiments for scalability 

are with respect to the size of the MANET, where more and more mobile nodes are added 

into the MANET at varied mobility speed.  The results of both the mathematical analysis 

and the performance evaluation experiments demonstrate that the IDRMAN model is an 

effective and viable security model for MANET. 
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         CHAPTER I 

 
                                              INTRODUCTION 

 
1.1  Background 

A Mobile Ad hoc Network (MANET) is a collection of wireless mobile nodes 

forming a temporary network without any established infrastructure or centralized 

authority. In a MANET, each wireless mobile node operates not only as an end-system, 

but also as a router to forward packets. The nodes are free to move about and organize 

themselves into a network. MANET does not require any fixed infrastructure such as 

base stations; therefore, it is an attractive networking option for connecting mobile 

devices quickly and spontaneously. For instance, first responders at a disaster site or 

soldiers in a battlefield must provide their own communications.  A MANET is a possible 

solution for this need to quickly establish communications in a mobile, transient and 

infrastructure-less environment. This is one of many applications where MANET’s can 

be used. Mobile ad-hoc networks are the future of wireless networks. Nodes in these 

networks will generate both user and application traffic and perform various network 

functions. 

In the last decade, wired and wireless computer network revolution has changed 

the computing scenario. The possibilities and opportunities due to this revolution are 

limitless; unfortunately, so too are the risks and chances of attacks due to intrusion by 

malicious nodes [19].  Intrusion is defined as an attack or a deliberate unauthorized 
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attempt to access information, manipulate information, or render a system unreliable or 

unusable [78]. According to [24], Threat can be defined as “the potential possibility of a 

deliberate unauthorized attempt to a)access information, b) manipulate information and c) 

render a system unreliable or unusable”. Authentication mechanisms are designed to 

protect a system from unauthorized access to its  resources and data. However, at present, 

completely preventing breaches of security seems unrealistic, especially in cellular 

Internet, wireless and mobile ad hoc network [8, 20]. A Personal Area Network (PAN) 

level firewall as envisioned for the next generation wireless networks can protect only if 

the users are at home and not when the users are roaming [9]. Even if such a firewall is 

provided, the communication would get fragmented by these ‘check points’ on the 

network, as each firewall needs maintenance of activities like log control, software 

update etc., creating unnecessary overhead. Thus existing technologies like firewalls and 

Virtual Private Network (VPN) sandboxes cannot be directly applied to the wireless 

mobile world. Even if the firewall concept were achieved by creating a private extranet 

(VPN) which extends the firewall protected domain to wherever the user moves, this 

would still lead to inefficient routing. Security is a fundamental concern for mobile 

network based system. Harrison et al [7] identify security as a “severe concern” and 

regard it as the primary obstacle to adopting mobile systems. Until recently, the main 

research focus has been on improving the protocols for multi-hop routing, performance 

and scalability of the ad hoc networks [1]. Though the performance and scalability have 

their place in wireless MANET research, the current and future applications of the ad hoc 

networks has forced the research community to look at dependability and security aspects 

of ad hoc networks.  
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By security we mean protecting nodes from damages due to either voluntary or 

accidental attacks [60]. This protection is provided by predicting an attack by monitoring 

a set of metrics measured from the ad hoc network, and then responding and modifying 

the security of the network based on the vulnerability level at a given time.  Intrusion 

detection is the process of detecting and responding to malicious activity that is aimed at 

attacking the network [24, 25]. Several techniques for detecting intrusions have been 

studied [56, 75, 79]. Network firewalls often implement security policies at the front-end 

to protect computers from malicious attacks [33]. Due to the sophistication of hackers 

and attacks from the insiders, regular intrusion prevention techniques like firewalls, 

encryption, digital signature and authentication fail to detect various attacks. The 

objective of the IDA is to provide another layer of defense not only for authentication 

related attacks but also for sophisticated and internal attacks. An overview of the existing 

IDA techniques can be found in [24, 25, 81].  There are several weaknesses in the current 

IDA applied to MANET [22].  In spite of successful invention of technologies in the field 

of security and cryptography to secure computer network systems, malicious users still 

succeed in attacking the network with devastating effects.  

Security in mobile ad hoc network is essential even for basic network functions 

like routing which are carried out by the nodes themselves rather than specialized routers. 

The intruder in the ad hoc network can come from anywhere, along any direction, and 

target any communication channel in the network. Compare this with a wired network 

where the intruder gains physical access to the wired link or can pass through security 

holes at firewalls and routers. Since the infrastructure-free mobile ad hoc network does 

not have a clear line of defense, every node must be prepared for the adversary. The 

 3



centralized or hierarchical network security solution for the existing wired and 

infrastructure-based cellular wireless networks will not work properly for mobile ad hoc 

networks [1]. Securing the ad hoc networks, like any other field of computers, is based on 

the principle of confidentiality and integrity. These principles exist in every field, but the 

presence of malicious nodes, selfish nodes, covert channels and eavesdroppers in the 

mobile ad hoc network makes this an extremely important and challenging problem [2]. 

In the past several years, there has been a surge of network security research in the field 

of information assurance that has focused on protecting the network using techniques 

such as authentication and encryption. These techniques are applicable in the wired and 

infrastructure-based cellular network. In the case of infrastructure-free mobile ad hoc 

networks these techniques are not applicable [1]. In the infrastructure-free networks, the 

nodes themselves perform basic network functions like routing and packet forwarding. 

Therefore, mobile ad hoc network security is a pressing issue, which needs immediate 

research attention [3, 4, 5, 6]. Providing security services in the mobile computing 

environment is challenging because it is more vulnerable for intrusion and 

eavesdropping. The challenge of mobile ad hoc network security has attracted several 

researchers with the aim of securing mobile ad hoc computer networks. Intrusion 

Detection Approach (IDA) is thus an active research area in the field of mobile ad hoc 

network security [10-18, 24, 25, 63, 65, 68, 70]. 
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1.2 Security Attacks in MANET         

 A MANET can be subjected to active attacks and passive attacks. Active attacks 

refer to the direct attacks by a hostile entity during execution or transmission phase. 

Routing attacks where malicious nodes attack legitimate nodes by means of routing data 

modification and routing table deletion/forging are examples of active attacks. Passive 

attacks refer to the indirect attacks by an entity in the network during collaboration. Some 

of the examples of passive attacks include actions like selfishness, eavesdropping and 

traffic analysis. Attacks like Denial of Service (DoS) can be either active or passive 

attacks depending on the nature of attack and the malicious node. In this section we 

describe some of these attacks.  

Active attack in MANET – Routing attack: 

Routing attack is a significant problem because nodes within the ad hoc network 

themselves performs routing functions and the security concepts are not incorporated in 

most of the routing protocols. Also, routing tables form the basis of network operations 

and any corruption to the routing table may lead to significant adverse consequences.  

Designing a secure ad hoc network routing protocol is a challenge for the 

following reasons: Firstly, routing relies on the trustworthiness of all the nodes involved 

and it is difficult to distinguish selfish nodes from normal nodes. Secondly, rapid 

mobility of nodes that perform the role of routing and network topology makes the design 

of a secure routing protocol more difficult. Active routing attacks differ in their behavior 

depending on the nature of the routing protocol. In the case of link-state routing protocol, 

a router sends information about its neighbors. Hence a malicious router can send 

incorrect updates about its neighbors, or remain silent if the link state of the neighbor has 
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actually changed. However, in the case of distance-vector protocols, routers can send 

wrong and potentially dangerous updates regarding any nodes in the network, since the 

nodes do not have the full network topology. These attacks in case of both link-state and 

distance-vector protocols are very difficult to prevent if the routers exhibit Byzantine 

faults [35].  

           Routing attacks on the mobile ad hoc networks can be reactive routing protocol 

attacks or proactive routing protocol attacks based on the type of protocol used for 

routing. In reactive routing protocol, like on-demand routing protocol, a node attempts to 

discover a route to a destination only when it has a packet to send to that destination. In 

proactive routing protocol, like table-driven routing protocol, entries in the table are 

updated periodically to perform routing. Since both reactive and proactive routing 

protocols exhibit different characteristics in state information, exchange and route 

computation, they are exposed to different types of vulnerabilities, which provide unique 

set of challenges for securing them. In the next section, we identify different types of 

routing protocol attacks in the mobile ad hoc networks.  

The routing attacks can be classified into two general categories: resource-

disruption and resource-consumption attacks. In resource-disruption attack, the attacker 

attempts to cause legitimate data packets to be routed in dysfunctional ways. In a 

resource-consumption attack, the attacker attempts to consume valuable network 

resources, like bandwidth, power or storage. Some of the important and common 

methods of routing attacks are:  

Router Protocol Poisoning: In this attack an intruder causes the disruption by poisoning 

the routing protocol. Securing these attacks is important because the routing protocol 
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forms the basis of network operations, and any corruption of the protocol may lead to 

significant consequences. These attacks on the mobile ad hoc networks can lead to 

looping, congestion, sub optimal routing and partitioning [36]. Thus, they can ultimately 

affect the performance of an ad hoc network. 

Injecting incorrect information in the routing table: In this type of routing attack, 

malicious nodes or an intruder would inject incorrect routing information, which in turn 

would poison the routing tables. These attacks would result in the artificial partitioning of 

the network, and the hosts residing in one partition would not be able to communicate 

with hosts residing in the other partition.   

Routing Loop Attacks: In this attack, intruder or malicious nodes update the routing table 

to create a loop, so that packets can traverse in the network without reaching the 

destination, thereby conserving energy and bandwidth.  

Passive attack in MANET – Selfishness: 

Passive attacks could be caused by selfishness, eavesdropping and traffic analysis. 

In this section we explain selfishness attacks to give an idea of passive attacks. In the 

selfishness attacks, the selfish node abuses constrained resources, such as battery power, 

for its own benefit [38]. They do not intend to directly damage other nodes in the 

network. Attackers may also get hold of a node and modify its behavior to make it 

malicious, so the node would perform selfish attacks in need of resources [6]. These 

attacks have limited effectiveness compared to the routing-table “poisoning” and DoS 

attacks [37]. This is because, the attacks are limited to a part of the network rather than 

the whole network as in the case of routing protocol attacks.  
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Some of the common types of selfish node attacks in mobile ad hoc network are 

packet mistreatment and energy consumption attacks. In this kind of attack, a node in 

mobile ad hoc network does not perform the expected network functions, like packet 

forwarding or routing, and later claims that the transaction or communication never took 

place [37]. It could be deliberate or accidental, due to false repudiation of a transaction or 

due to scarce resources in the mobile ad hoc networks.    

Packet mistreatment or interception:  In this kind of attack, a selfish node does not 

perform the function of packet forwarding. As mentioned earlier, interruption of packets 

may reduce the overall throughput of the network.  In a specialized form of packet 

discarding, selfish nodes do not forward the packets to host destination, but to itself. This 

result in black hole and DoS attacks.    

Energy consumption: In this kind of attacks, nodes try to save significant battery power 

by not performing networking functions such as routing. This is due to the fact that in ad 

hoc network most of the energy is consumed by routing of packets. For instance, 

experiments have shown that if the average hop from source to destination is 5, 

approximately 80% of the available energy is spent in sending packets from source to 

destination by packet forwarding [37]. 

Denial of Service Attack:  

In this attack, a malicious node or attacker could spam other nodes causing 

resource constraints by repeatedly sending packets to another node and may place undue 

burden on the packet handling routines of the recipient.  Nodes can also intentionally 

distribute false or useless information to prevent hosts from completing their tasks 

correctly or in a timely manner. DoS attacks are very easy to generate but are very 
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difficult to detect and hence they are popular type of attack for the hackers. In a typical 

DoS attack, the attacker node spoofs its IP address and uses multiple intermediate nodes 

to overwhelm other nodes with traffic. DoS attacks are typically used to take important 

hosts out of action for a few hours, resulting in unavailability of service for all the users 

served by the host. It can also be used to disrupt the services of the intermediate routers.  

Generally MANET DoS attacks can be categorized into two main types: (a) active 

and (b) passive attacks. 

Active DoS attack can be defined as the direct denial of service attacks on a node by 

another hostile node through packet flooding, packet modification, deletion or forging of 

packets or routing table. Following are some of the common types of active DoS attacks 

by selfish nodes or adversaries: replay of expired routing information, bogus nodes create 

traffic by bombarding the neighboring nodes with the packets, radio jamming, flooding 

centralized resource with the requests, ability to change routing protocol to operate as the 

user wants, Byzantine failure, sleep deprivation torture (Battery Exhaustion) and injecting 

incorrect routing information. 

Passive DoS attack can be defined as the indirect denial of service attacks on an entity by 

another hostile entity during its execution or transmission. These types of attacks are 

possible when a malicious or selfish node does not perform the requested function like 

routing or packet transfer. Some of the other common types of passive DoS attacks are 

“gray hole” attacks, “idle status” attack and snooping. In gray hole attacks, the selfish 

node selectively discard the packets that it needs to forward. The snooping attacks can 

occur from an eavesdropper who can decipher and mistreat the transmitted information. 

In “idle status” passive attack, the selfish node enters into idle status most of the time, 
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such that the neighbors are not even aware of its existence. Only when the node wishes to 

communicate with other nodes, it starts the routing protocol. Though the “idle status” 

behavior could be legitimate behavior, such a selfish node may not adequately contribute 

to the network. 

1.3 Limitations of Intrusion Prevention 

Encryption and Authentication are the existing intrusion prevention methods. 

Intrusion preventive measures such as encryption and authentication can reduce intrusion 

but not eliminate them [18]. Encryption and authentication can defend only the normal 

nodes in MANET but not the malicious nodes or compromised mobile nodes, which most 

of the time carry private keys [18].  

Zhang et al., have explained the following case to illustrate how in spite of several 

intrusion prevention measures like authentication/encryption there are always some weak 

links that one can exploit to break in.  In Summer 2001, an Internet worm called ‘Code 

Red’ has been found to affect Windows-based servers. Organizations rely on firewalls to 

protect their Intranet from these Internet based worms.  However, the Code Red worm 

has been detected within the Intranet. This is due to the reason that more and more 

mobile business persons and researchers carry laptops and they use wireless Internet 

access when they congregate in the public venues (e.g. conferences). Another example to 

strengthen this case: in a recent IETF meeting it was detected that at least 10% of the 

laptops were infected with the ‘Code Red’ worm. When these laptops are integrated back 

in to their organization, one can imagine the impact to their Intranet by these viruses and 

worms thus defeating the purpose of firewalls.  
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This shows that encryption and authentication cannot defend against 

compromised nodes and the fact that such nodes already carry private keys makes the 

network even more vulnerable. The dynamic nature of the ad hoc network also means 

that trust between nodes in the network is virtually non-existent. Without trust, preventive 

measures are unproductive and measures that rely on a certain level of trust between 

nodes are susceptible to attacks themselves. Hence there is the need for intrusion 

detection as it provides a second line of defense.  

1.4 Intrusion Detection Approaches 

 Intrusion detection is defined as the method to identify “any set of actions that 

attempt to compromise the integrity, confidentiality, or availability of a resource” [21]. It 

is pertaining to techniques that attempt to detect intrusion into a computer or a network 

by observation of actions, security logs, or audit data [80]. Audit data are information, 

which any intrusion detection scheme can work on to determine if any intrusion has 

occurred. The audit data may be obtained on the host, in the application or the system log 

file through host based intrusion detection system or from the network through network 

based intrusion detection system. Intrusion Detection Approach (IDA) serves as an alarm 

mechanism for a computer system or network. It detects the security compromises that 

happen to a computer network or system and then issues an alarm message to an entity, 

such as a site security officer so that the entity can take some actions against the 

intrusion. An IDA contains an audit data collection agent, which keep track of the 

activities within the system, a detector which analyzes the audit data and issues an output 

report to the site security officer. 
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 In the context of wireless ad hoc network, we need to identify any malicious 

nodes either from outside the network trying to break in, or nodes inside the network that 

have turned malicious. Malicious nodes can easily disrupt or partition the network using 

the various forms of attacks. Detection of break-ins or attempts is done either manually or 

via software rule based systems that operate on logs or other information available on the 

network. We are interested in using automated systems that can study the audit data via 

certain mechanisms or rules. When working on intrusion detection, some primary 

assumptions are to be made. The first is that the user and program activities are 

observable, that is the information regarding the usage of a system by a user or program 

must be recordable and analyzable. The second and more important is that normal and 

intrusive behaviors have distinct characteristics [18].  IDA systems have different 

classifications explained as follows: 

Anomaly detection vs. misuse detection:  

In order to detect an intrusion attack, one needs to make use of a model of 

intrusion. That is, we need to know what an IDA should look out for. There are basically 

two types of models employed in current IDA: anomaly detection and misuse detection. 

The first model hypothesizes its detection upon the profile of a user’s (or a group 

of users’) normal behavior [77]. It analyzes the user’s current session and compares them 

to the profile representing the user’s normal behavior. It then reports any significant 

deviations to a designated system administrator. As it catches sessions which are not 

normal, this model is referred to as an ‘anomaly’ detection model. Anomaly detection 

bases its idea on statistical behavior modeling and anomaly detectors look for behavior 

that deviates from normal system use. A typical anomaly detection system takes in audit 
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data for analysis. The audit data is transformed to a format statistically comparable to the 

profile of a user. The user’s profile is generated dynamically by the system (usually using 

a baseline rule laid by the system administrator) initially and subsequently updated based 

on the user’s usage. Thresholds are normally always associated to all the profiles. If any 

comparison between the audit data and the user’s profile resulted in deviation crossing a 

threshold set, an alarm of intrusion is declared. This type of detection system is well 

suited to detect unknown or previously not encountered attacks. Our model is based on 

anomaly detection approach. 

The second type of model bases its detection upon a comparison of parameters of 

the user’s session and the user’s commands to a rule base of techniques used by attackers 

to penetrate a system. Known attack methods are what this model looks for in a user’s 

behavior. Since this model looks for patterns known to cause security problems, it is 

called a ‘misuse’ detection model. Misuse detection bases its idea on precedence and 

rules, and misuse detectors look for behavior that matches a known attack scenario. A 

typical misuse detection system takes in audit data for analysis and compares the data to 

large databases of attack signatures. The attack signatures are normally specified as rules 

with respect to timing information and are also referred to as known attack patterns. If 

any comparison between the audit data and the known attack patterns described resulted 

in a match, an alarm of intrusion is sounded. This type of detection systems is useful in 

networks with highly dynamic behavioral patterns but like a virus detection system, it is 

only as good as the database of attack signatures that it uses to compare with.  
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Host-based vs. network-based intrusion detection:  

Most IDA take either a network-based or a host-based approach in recognizing 

and detecting attacks. In either case, these products look for specific patterns that usually 

indicate malicious or suspicious intent. An IDA is network-based when it looks for these 

patterns in network traffic. It is host-based when it looks for patterns in the host system 

log files.  

Network-based approach (NIDA) listens to the network, and capture and examine 

individual packets flowing through a network [73]. That is, they use raw network packets 

as the data source. They typically utilize a network adapter running in promiscuous mode 

to monitor and analyze all traffic in real-time as it travels across the network. They are 

able to look at the payload within a packet, to see which particular host application is 

being accessed, and to raise alerts when attacker tries to exploit a bug in such code. 

NIDA are typically host-independent but can also be a software package installed on 

dedicated workstation. A side effect of NIDA is that its active scanning can slow down 

the network considerably [23]. Hence usage of it on an ad hoc network needs to be 

evaluated. Our model is based on NIDA, since it captures and examines the network 

traffic for intrusion detection rather than system information. 

Host-based approach (HIDA) is concerned with what is happening on each 

individual host. They are able to detect actions such as repeated failed access attempts or 

changes to critical system files, and normally operate by accessing log files or monitoring 

real-time system usage. In order for a HIDA to function, clients have to be installed on 

every host in the network. These clients reside on the hosts as processes and perform 

analysis on the audit data gathered locally, at the expense of the already limited resources 
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of the hosts. Hence care has to be taken to ensure that the HIDA client running on a host 

in an ad hoc network does not drain resources more than necessary.  

 Online detection vs. offline detection:  

Intrusion detection systems can further be classified according to the timelines of 

the audit data being gathered and processed. Audit data can be gathered and processed 

while the host is online (connected to the network) or offline (disconnected from the 

network). When a system is performing intrusion detection in online mode, the audit data 

is processed in real-time. A host-based system will gather information about a host as 

long as the host is connected to the network. A network-based system will monitor the 

network traffic of the hosts throughout the time they are connected. Any intrusion 

detected is immediately notified to other hosts. Our model is based on real time online 

detection. By ‘real time’ we mean that threat detection is done at the same rate that the 

network information is captured. By ‘online detection’, we mean that the network 

information is captured and threat is detected when the nodes are connected to the 

network. 

When a system is performing intrusion detection in offline mode, the audit data is 

not processed in real-time but periodically. A host-based system will gather information 

about a host even if it is not connected to the network. Even if the host is connected, 

detection is done as scheduled by the system. A network-based system will monitor the 

network traffic of the hosts periodically as can be in the case of polling. Any intrusion 

detected is still immediately notified to other hosts but a delay is expected. A typical 

technique of an offline intrusion detection system is data mining. 
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1.5 Intrusion Response Approaches 

 In the event an intrusive behavior is detected, it is desirable to take corrective 

action to thwart the attack and to ensure safety of the network. Such counter measures are 

referred to as Intrusion Response Approach (IRA). Although intrusion response 

framework is related and coexists with the intrusion detection framework, it receives 

considerably less attention than IDA owing to the inherent complexity in developing and 

deploying response in an automated fashion. As such, traditionally, triggering an 

intrusion response is left as a part of the administrator’s responsibility.   

 In the context of MANET, we need to identify the intruder and take a proper 

evasive or corrective action to isolate the intruder from the network and protect the 

MANET. We are interested in an automated framework that can identify the intruder 

through the audit data by means of mechanisms or rules. IRA has different classifications 

as listed and is explained as follows:   

Passive response vs. Active response: 

 Passive response systems do not attempt to minimize damage already caused by 

the attack or prevent further attacks. Their main goal is to notify the authority and provide 

the attack information.  

 Active responses on the other hand aim to minimize the damage done by the 

attacker and attempt to locate or harm the intruder. Our model is based on active response 

approach since it identifies the intruder and mitigates the attack by isolating the intruder. 
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Manual response vs. Automatic response: 

 Manual response approaches provide lower degree automation than automatic 

response approaches but they provide higher degree automation compared to notification-

only approach.  

 Automatic responses provide immediate response to the intrusion through 

automated decision making process. Although intrusion detection systems are greatly 

automated nowadays, automatic intrusion response support is still very limited. Our 

model is based on automatic response due to automated decision making process. 

Static response vs. Adaptive response: 

 Majority of the IRA are static due to the reason that the response selection 

mechanism remains the same during the attack period. These systems can be periodically 

upgraded by the administrator; however, such support is manual. Although this approach 

takes a conservative view of the system and environment, it is simple and easy to 

maintain. 

 Adaptive responses on the other hand dynamically adjust response selection to the 

changing environment during the attack time. Adaptation mechanism can be represented 

in several ways: (a) adjustment of system resources devoted to intrusion response such as 

activation of additional IDS, or (b) consideration of success and failure of responses 

previously made by the system. Our approach is based on static response. 

Proactive response vs. Delayed response: 

 Proactive response approach allows to foresee the incoming intrusion before the 

attack has effected the resource. Such prediction is generally hard and often relies on the 

probability measures and analysis of current user/system behavior. Proactive nature of  
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the response also requires that the detection and response frameworks are tightly coupled 

such that responses can be fired as soon as a likelihood of attack is identified. Although 

proactive detection of the attack and early response is a desired feature, it is often hard to 

guarantee 100% correctness of the triggered action. 

 In the Delayed response approach, response action is delayed until the attack has 

been confirmed. Such assurance may be provided through the confidence metrics of IDS. 

Generally the delayed response leaves more time to the attacker, consequently allowing 

more damage to the network. Our approach is based on delayed response since the 

responses are fired as soon as the attack is detected. 

Independent response vs. Cooperative response: 

 Independent response approach handles intrusion independently at the node it was 

detected. A host-based IDS detecting an intrusion on a single machine will trigger a local 

independent response such as terminating a process or shutting down the host etc., 

 Cooperative response approach refers to a set of response systems that combine 

effort to respond to an intrusion. Cooperative approach consists of several independent 

approaches that are capable of detecting and responding to intrusions locally; however 

the final strategy is determined and applied globally.  Since network based IDS are built 

in such a cooperative manner, our model has a cooperative response approach.  
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1.6 Problem Statement and Research Objectives 

 As discussed in the sections above, security is a fundamental concern for 

MANET. To address these security related issues, there is a need for an efficient and 

effective intrusion detection and response framework that could detect and respond to the 

security related attacks at a node level for MANET. This research work attempts to 

address this need. So the problem statement for the dissertation can be stated as follows:  

To design an intrusion detection and response security model, which would detect and 

control the security related attacks at the node level for mobile ad hoc network in 

wireless environment. 

The objective of this research is to develop such an efficient and effective 

intrusion detection and response framework with the following features:  

• Identify the attack sensitive network parameters and their threshold values to 

construct the detection and response models. 

• Detect threat at the node level effectively in the MANET environment. 

• Identify the intruder that caused the threat. 

• Respond to the intruder and attacks, thereby controlling the attack and protecting 

the MANET. 

• Design and construct the MANET intrusion detection and response framework 

such that it is protocol independent. 
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1.7 Research Contribution 

 In this research work we have designed and developed a security model called the 

Intrusion Detection and Response for Mobile Ad hoc Networks (IDRMAN) with the 

following main contributions: 

• Identification of significant attack sensitive parameters through machine learning 

based decision trees concept; identification of their threshold values using six 

sigma concept to differentiate their normal, uncertain and vulnerable states for 

their application in MANET intrusion detection and response. 

• Formulation of the measure called Threat Index for effective Intrusion Detection 

on MANET. Threat Index is computed using fuzzy logic. 

• Intruder identification and response framework model for attack control and 

protection of MANET mobile nodes that are under threat by identifying the 

intruder and subjecting appropriate response plan.  

• Protocol independent infrastructure for protecting the MANET from active 

attacks by measuring critical parameters in the underlying MANET infrastructure. 

The proposed model continuously monitors the online network data and 

efficiently detects the attacks, irrespective of the protocol used in MANET. 
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1.8 Overview of the Dissertation       

 In Chapter II, we summarize the existing security schemes for MANET based on 

security classification. We have also summarized the related work that has been done in 

IDA for MANET.  We have also reviewed the related work done in Intrusion Response 

for MANET. We have also presented a detailed review of two related MANET IDA 

schemes that we have used later for the performance evaluation experiments in order to 

evaluate and compare the performance of the detection aspect of the proposed model. In 

this chapter, we have also listed the security feature requirements of IDA and MANET. 

We also describe the characteristics of MANETs and why they are particularly vulnerable 

to attacks. Finally, in this chapter we have presented the limitations of the existing 

MANET security schemes, MANET IDA’s and MANET IRA’s. While presenting the 

limitations, we have also proposed metrics for the performance evaluation experiments of 

the proposed model in order to quantify the improvements attained in MANET security 

with the proposed model  

 In Chapter III, we describe the detection framework of the Intrusion Detection 

and Response model for Mobile Ad hoc Networks (IDRMAN). This chapter explains the 

concepts of classification trees and six-sigma that are used to identify the attack sensitive 

metrics and their thresholds respectively.  The concepts of fuzzy logic are introduced to 

explain the calculation of the metric called Threat Index (TI) that is used to detect if a 

node is under threat or not. We have also explained the methodology of threshold 

identification for the threat index. An overall algorithm for the detection aspect of the 

model is then presented. Finally the chapter has a proposition that mathematically 

analyzes the metric (Threat Index) used in the detection framework.  
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 In Chapter IV we propose the intruder identification and response operations 

methodology. This chapter presents an overall algorithm for the intruder identification 

and response aspect of the model. In this chapter, we have also stated a proposition that 

evaluates the effectiveness of the response algorithm. Finally, we have explained how the 

proposed Intrusion Detection and Response model can be applied in MANET 

environment for several known attacks.  

Chapter V explains the simulation experiments carried out to demonstrate the 

validity of the intrusion detection and response model described in Chapters III and IV. 

This chapter describes the experiments that were conducted to identify the significant 

network parameters and their threshold values. This chapter then presents the simulation 

experiments and results for the Intrusion Detection and Response aspect of the model 

when AODV and DSDV protocols are used for MANET simulation. Experiments to 

compare the detection aspect of the proposed model with related MANET intrusion 

detection approaches, and experiments to demonstrate the scalability feature of the 

proposed model with respect to the size of the MANET are also presented in this chapter.  

Chapter VI presents the conclusion. This chapter summarizes the work, review 

the contributions and points out the further developments that can be done to this model.  
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CHAPTER II 
 

LITERATURE REVIEW 
 
2.1 Classification and Review of MANET Security Schemes 

 In this section, we classify the MANET security work into four broad categories 

based on the type of attack: authentication, denial of service, selfish node, and routing 

[55]. In ad hoc networks, a mobile node or host may depend on other node(s) to route or 

forward a packet to its destination. The security of these nodes could be compromised by 

an external attacker or due to the selfish nature of other nodes. This would create a severe 

threat of Denial of Service (DoS) and routing attacks where malicious nodes combine and 

deny the services to legitimate nodes. Unlike nodes in a wired network, the nodes of 

MANET may have less processing power as well as battery life and consequently would 

try to conserve resources.  In this scenario, the usual authentication and encryption 

methods would not apply to a MANET the same way they would in a wired network 

[32].  However, both authentication and encryption are even more important in a 

MANET [27, 28]. Steiner et al have developed a Group key Diffie-Hellman (GDH) 

model that provides a flexible solution to group key management. Yi et al [42] have 

developed the MOCA (MObile Certification Authority) protocol that helps manage 

heterogeneous mobile nodes as part of a MANET.  MOCA uses Public Key Infrastructure 

(PKI) technology.   

The impact of authentication attacks is quite widespread and it includes 

unauthorized access, denial of service, masquerading, information leakage, and domain 
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hijacking.  Capkun et al [40] have developed some solutions using a concept that they 

introduce, called Maximum Degree Algorithm (MDA), for preventing denial of service 

due to poor key management. Avoine et al [45] have developed a cryptography-based fair 

key exchange model called Guardian Angel.  This model uses a probabilistic approach 

without involving a trusted third party in key exchange.   

 We noted earlier some of the problems due to selfish nodes not performing their 

role properly in a MANET.  Actions of a selfish node could lead to congestion, lower 

throughput and denial of service.  Buttyan et al [39] have shown by simulation that a 

selfish node does not participate actively in packet forwarding in order to conserve 

electrical energy.  This study shows that typically every node spends 80% of the energy 

in forwarding packets. This work also introduces a special counter called nuglet counter 

that is used to keep track of selfish behavior of nodes. In trying to solve the selfish node 

problem, Michiardi et al [43] have developed a model called CORE (COllaborative 

REputation). Under CORE’s approach, every node monitors the behavior of the 

neighboring nodes for a particular requested function and collects data about the 

execution of that function. If the observed result of the function matches with the 

expected result, then the observation takes a positive value. This mechanism allows a 

node to detect if any of its neighbors are selfish nodes and gradually isolate them. 

 As seen above, the problem of selfish behavior by nodes in a MANET is 

something significant that needs to be addressed.  In a MANET, many nodes try to 

conserve battery life and consequently resort to selfish behavior by dropping packets 

rather than forwarding them as they are supposed to do in a network.  Buchegger, et al 

[44] study the vulnerabilities exposed by selfish nodes in a MANET. Buchegger et al [44] 
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introduce a new protocol called CONFIDANT (Cooperation Of Nodes – Fairness In 

Distributed Ad hoc NETworks) to address this problem. Each node maintains reputation 

indexes about each of its neighbors based on their behavior and use these indexes to 

isolate misbehaving nodes.   

Routing is an important aspect of moving packets around in a network. It is a 

challenging problem because nodes within the ad hoc network themselves performs 

routing function and the security concepts were not incorporated into the routing 

protocols when they were designed. It is important because the routing table forms the 

basis of the network operations and any corruption of routing table may lead to 

significant consequences. Routing attacks in mobile ad hoc network are more challenging 

since routing relies on the trustworthiness of all the nodes involved and  it is difficult to 

distinguish selfish nodes from normal nodes. Basically there are two methods used for 

routing: AODV (Ad hoc On-demand Distance Vector) routing and DSDV (Destination 

Sequenced Distance Vector) routing. These two methods can be classified as reactive and 

proactive respectively since AODV method discovers a route only when needed whereas 

the DSDV method maintains a dynamic routing table at all times.  

A reactive routing method was proposed by Yang et al [49].  In this method, a 

unified network layer prevention method known as Self Organized Security (SOS) 

scheme that uses AODV routing is used. This scheme takes a self-organized approach by 

exploiting full localized design, without assuming any apriori trust or secret association 

between nodes. In this model, each node has a token in order to participate in the network 

operations, and its local neighbors collaboratively monitor it to detect any misbehavior in 

routing or packet forwarding services. Upon expiration of the token, each node renews its 
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token via its multiple neighbors. The period of the validity of a node’s token is dependent 

on how long it has stayed and behaved well in the network. A well-behaving node 

accumulates its credit and renews its token less frequently as time evolves. In essence, 

this security solution exploits collaboration among local nodes to protect the network 

layer without completely trusting any individual node. 

Another reactive scheme, called Techniques for Intrusion-Resistant Ad Hoc 

Routing Algorithms (TIARA) was proposed by Ramanujam et al to detect and eliminate 

DoS [46]. This model presents a new approach for building intrusion resistant ad hoc 

networks in the wake of DoS attacks using wireless router extensions. This approach 

relies on extending the capabilities of existing ad hoc routing algorithms to handle 

intruders without modifying the existing routing algorithms. This scheme proposes a new 

network layer mechanism for detecting and recovering from intruder induced malicious 

faults that work in concert with existing ad hoc routing algorithms and augment their 

capabilities. 

 Hu et al [47] have developed a DSDV-based secure routing method called SEAD 

(Secure Efficient Ad hoc Distance vector). This method uses efficient one-way hash 

functions and does not use symmetric cryptographic operations in the protocol in order to 

support the nodes of limited CPU processing capability and to guard against Denial-of-

Service (DoS) attacks. The primary reason for this is due to the fact that the nodes in an 

ad hoc network are unable to verify asymmetric signatures quickly enough for routing 

protocols to decide on the routing path. 

Routing attacks differ in their execution depending on the nature of the routing 

protocol. In the case of link state routing protocol such as AODV, a router sends 
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information about its neighbors. Hence, a malicious router can send incorrect updates 

about its neighbors or remain silent if the link state of the neighbor has actually changed. 

However, in case of distance vector protocols such as DSDV, routers can send wrong and 

potentially dangerous updates regarding any nodes in the network since the nodes do not 

have the full network topology. Zapata et al [35] studies the behavior of routers in the 

presence of Byzantine faults. They use an On-demand Secure Routing Protocol (OSRP) 

that defines a reliability metric based on past records and use it to select the secure path. 

Reliability metric is represented by a list of link weights where high weights correspond 

to low reliability. Each node in the network maintains its own list, referred to as a weight 

list, and dynamically updates that list when it detects faults. Faulty links are identified 

using a secure adaptive probing technique that is embedded in the normal packet stream. 

These links are avoided using a secure route discovery protocol that incorporates the 

reliability metric.  This protocol achieves these functionality by three successive phases: 

Route discovery with fault avoidance phase whose input is source node's weight list and 

output is the full least weight path from the source node to the destination node, 

Byzantine fault detection phase whose input is the full weight path and output is a faulty 

link and link weight management phase which takes a faulty link as an input and whose 

output is the weight list which in turn is used by the route discovery phase to avoid faulty 

paths. This is a very efficient approach to detect secure routes.  In a related paper, Zapata 

[35] discusses a method for secure ad hoc routing.  

Zhou et al. [54] have an alternative solution for the problems with AODV and 

DSDV routing methods. They have developed a hybrid approach using both AODV and 

DSDV methods.  This method, known as the Key Management Service (KMS), defends 
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routing from denial of service attacks in ad hoc networks by taking advantage of multiple 

routes between nodes. Due to the dynamic changes in topology, the routing protocols of 

ad hoc network need to handle outdated routing information, which is similar to that of 

the compromised routing attacks. The principle here is that as long as there are enough 

proper nodes, the routing protocol would be able to find the routes working around the 

compromised nodes. Thus, if the nodes can find multiple routes, nodes can switch to an 

alternate route when a fault has been detected in the primary route. This method also uses 

replication and new cryptographic schemes, such as threshold cryptography, to build a 

highly secure and highly available key management service, which forms the core of the 

security framework. 

 In addition to the methods discussed above, there are some additional methods 

proposed in the literature to handle various forms of attacks.  For example, the Secure 

Routing Protocol (SRP) by Papadimitratos et al [36] guarantees correct route discovery, 

so that fabricated, compromised, or replayed route replies are rejected or never reach the 

route requester. SRP assumes a security association between the end-points of a path only 

and so intermediate nodes do not have to be trusted for the route discovery. This is 

achieved by requiring that the request along with a unique random query identifier reach 

the destination, where a route reply is constructed and a message authentication code is 

computed over the path and returned to the source. The authors prove the correctness of 

the protocol analytically. 

 Another preventive solution for DoS attacks in ad hoc wireless networks is 

proposed by Luo et al [50]. In this solution they distribute the functionality of 

authentication servers, thus enabling each node in the network to collaboratively self-
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secure themselves. This is achieved by using the certificate-based approach. This scheme 

supports ubiquitous security for mobile nodes, scales to network size, and is robust 

against adversary break-ins. In this method centralized management is minimized and the 

nodes in the network collaboratively self-secure themselves. This scheme proposes a 

suite of fully distributed and localized protocols that facilitate practical deployment. It 

also features communication efficiency to conserve the wireless channel bandwidth and 

independency from both the underlying transport layer protocols and the network layer 

routing protocols. 

 The ARIADNE method developed in Europe is another important secure on-

demand routing protocol.  Developed by Hu et al [51], ARIADNE (Alliance of Remote 

Instructional Authoring and Distributed Networks for Europe) prevents attackers from 

tampering with uncompromised routes consisting of uncompromised nodes. It is based on 

Dynamic Source Routing (DSR) approach and relies on symmetric cryptography only. 

ARIADNE protocol is designed in three stages: The first stage presents a mechanism that 

enables the target to verify the authenticity of the Route Request. Second stage presents a 

key management protocol that relies on synchronized clocks, digital signatures, and 

standard MAC (Message Authentication Code) for authenticating data in Route Requests 

and Route Reply. The final stage presents an efficient per-hop hashing technique to verify 

that no node is missing from the node list in the Request. Hu et al present simulations that 

show that the performance is close to DSR without optimizations. 

 Marti et al [53] have taken another variation on the DSR method. This method 

shows increased throughput in mobile ad hoc networks by complementing DSR with a 

watchdog for detection of denied packet forwarding and a pathrater for trust management 
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and routing policy rating that every path uses, thus enabling nodes to avoid malicious 

nodes in their routes as a detective and reactive protection measure. This reaction does 

not punish malicious nodes that do not cooperate, but actually relieves them of the burden 

of forwarding for others while having their messages forwarded, and it allows nodes to 

use better paths and thus increase their throughput. 

 The traditional Secure Routing Protocol (SRP) is well suited for a wired network.  

In developing a similar protocol for MANETs, Yi et al [52] propose a new routing 

technique called Security-Aware ad hoc Routing (SAR) that incorporates security 

attributes as parameters into ad hoc route discovery. SAR enables the use of security as a 

negotiable metric to improve the relevance of the routes discovered by ad hoc routing 

protocols.  Ad hoc routing protocols enable nodes in ad hoc networks communicate with 

their neighbors through Route REQuest (RREQ) packets and Route REPly (RREP) 

packets. In SAR, the security metrics are embedded into RREQ packets. Intermediate 

nodes receive these packets with particular security level and process these packets or 

forward the packets depending on the security level of the intermediate node. If it cannot 

provide required security level, RREQ packets are dropped. Otherwise RREP packets are 

sent back to the source from destination or intermediate nodes.  This approach, though 

resource intensive is a useful alternative for preventing attacks. 

 So far we have looked at research that addresses authentication, denial of service, 

selfish node and routing protocol attacks in a MANET.  One of the main requirements in 

a MANET is for each node to let other nodes know of their presence and readiness to 

participate in the MANET.  In a wireless local area network, an Access Point (AP) is 

used to let the mobile nodes communicate with other nodes on the network.  In a 
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MANET, there is no Access Point and so each node must know the other nodes that 

participate in the MANET.  One way to let the other nodes know of their presence, a 

mobile node sends out beacon signals. Binkley et al [48] propose an authenticated routing 

protocol to address link security issues in this regard. This proposal also reduces the DoS 

threats like replay attacks caused by an Address Resolution Protocol (ARP) or ad hoc 

routing protocol spoof, which would destroy a link-layer route to a host. This protocol 

transmits beacons similar to that of mobile IP agents. When a host node or agent receives 

the transmitted beacons, they authenticate them and if it is authentic, they add the MAC-

to-IP address binding contained in the beacon into their table of authentic bindings.  

Another security scheme proposed by Kong et al [57] and Luo et al [29] supports 

ubiquitous security services for mobile hosts through threshold secret sharing mechanism 

where they distribute certificate authority functions. These methods are based on RSA 

cryptography and provide distributed localized certificate services like certificate issuing, 

renewal and revocation. These methods employ localized certification schemes to enable 

ubiquitous services. This model uses RSA system key pair denoted by {Sk, Pk} where Sk 

is the system secret/private key and is used to sign certificates for all entities in the 

network. Pk is the system public key which verifies the certificate signed by Sk. In this 

scheme, Sk is shared among network entities but not visible or known by any component 

in the network, except at the boot strapping phase. Each entity Vi also maintains a secret 

share Pvi and a RSA personal public and private key pair {ski, pki} besides the system key 

pair. Thus, it uses the concept of threshold secret sharing and updating each entity’s 

secret share periodically to further enhance robustness against break-ins. This scheme 

scales to network size and is robust against break-ins. In the threshold secret sharing 
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mechanism each entity holds a secret share and multiple entities in a local neighborhood 

jointly provide complete services.  

There are several open issues in the models that were reviewed. The important 

among them are explained as follows: The GDH method needs further study for the 

detection and resolution of inconsistent certificates, improvement of certificate graph 

models and enhancing the use of existing PKI infrastructure. The MOCA method uses a 

unicast approach that only exploits information in the local routing cache. One useful 

extension would be to devise a way for a node to browse neighboring nodes’ routing 

tables. This would help in avoiding flooding. The CORE method considers only attacks 

from selfish nodes but not from active intruders.  Hence one has to extend this method for 

intruder attacks as well. The solution for attack by selfish nodes presented in the nuglets 

method is focused just on packet forwarding attacks. Application-level issues like mutual 

provision of information services in an ad hoc network have to be addressed in order to 

better utilize the nuglet counter.  The CONFIDANT method assumes that nodes are 

authenticated and that no node can pretend to be another in order to get rid of a bad 

reputation. This assumption could lead to misplaced trust in systems. The Guardian 

Angel method is not a comprehensive security scheme since it does not take into account 

the attacks like packet forwarding and denial of service or routing attacks, which are 

commonplace today. The summary of all the methods presented above to address the 

security issues related to MANET is illustrated in Table 2.1.  
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Table 2.1 Classification of attacks and security schemes in  MANET 
Type of attack  

Method Authentic
ation 

Routing Selfish DoS 
 

Open Issues 

GDH [40] Yes No No No Mechanism for certificate issues 
MOCA [42] Yes Yes No No Does not use the support of PKI 
CORE [43] No No Yes No Considers only selfish node 

attack 
Nuglets [39] Yes  Yes Yes No Scheme is not generalized 
CONFIDANT  [44] No Yes Yes No Assumes nodes are authenticated 
Guardian Angel [45] Yes No Yes No Does not support varied attacks 
TIARA [46] Yes Yes No Yes Not a generalized scheme 
SEAD [47] Yes Yes No Yes Packet forwarding 
Beacon [48] Yes Yes No No Scalability and Key 

Management 
SOS [49] Yes Yes  No Yes Scalability issues  
SRP  [36] Yes Yes No Yes Unfair utilization of resources 
ARIADNE [51] Yes Yes No Yes Not optimized 
SAR [52] Yes Yes No No Packet mistreatment attacks 
OSRP [35] Yes Yes No No Fixed but not adaptive threshold 
WatchDog/Pathrater 
[52]  

No Yes No No Assumes no apriori relationship 

2.2 Review of Intrusion Detection Approaches in MANET 

  The following are some of the popular IDA models for MANET that we studied 

in our literature survey. Kachirski and Guha proposed an IDS model which is efficient 

and bandwidth-conscious [63]. It targets intrusion at multiple levels and fits the 

distributed nature of IDA for MANET. The method has clusters and the IDA on cluster 

head employs independent detection decision-making after gathering information from 

other nodes. It utilizes mobile agent for communication among various nodes. This model 

provides a framework to work with multiple types of audit data. It is expandable, 

meaning, if the IDA needs to work with new types of audit data, it can do so by just 

incorporating extra agents that can monitor the new type of audit data. Unfortunately, its 

performance is not verified by any implementation. Once its performance is proved to be 
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on an acceptable level, this framework can serve as a generic and expandable architecture 

for commercial products, since having a possibility to add in more functionality is an 

important property for successful products. Because it utilizes the cluster heads, it is 

supposed to make the MANET more efficient by limiting the resources usage for IDA 

purposes to only a few nodes. Such a framework can be applied in an environment where 

the security requirement is medium and efficiency requirement is high. Also, it may 

easily be expanded for multi-layered MANET. 

       IDS model for wireless mobile ad hoc networks proposed by Zhang and Lee 

implements local and collaborative decision making with anomaly detection [18].  In this 

approach, individual IDA agents can work by themselves and also collaborate in decision 

making. Each IDA agent runs on a node and monitors local activities.  If a node detects 

local intrusion with strong evidence, then the node concludes that intrusion has happened 

and initiates an alarm response. However, if the evidence is not strong enough but needs 

investigation in a wider area in the network, then the IDA agent can start collaboration 

procedure which is a distributed consensus algorithm. This model provides a framework 

that fits the distributed nature of MANET. It also works with multiple types of audit data. 

If the IDA needs to work with new types of data, it can add in more data collection 

module in the IDA agent. It uses data mining as the local intrusion detection mechanism. 

The data mining is supposed to be superior in terms of both detection rate and false alarm 

rate.   Also, because this IDA does not use mobile agents for communication, it can be 

designed for high security need, if it can find an effective way to protect from Byzantine 

nodes. This framework is designed for flat MANET. In a large multi-layered MANET, it 

can work in a subsection of the MANET. 
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Huang and Lee have proposed a cluster-based scheme in which a cluster head is 

elected by a group of nodes in a neighborhood (citizen nodes) and the head node monitor 

the citizen nodes [64]. Once the cluster head is elected, the other nodes need to transmit 

the features they obtain locally to the cluster head. This IDA uses anomaly detection 

implemented with data mining as its detection technique [64]. This model improves the 

efficiency of MANET by limiting the resources usage for IDA purposes to only a few 

nodes. The implementation proves it can also achieve satisfactory level of detection rate. 

Such a  framework can be applied in environments where the security requirement is 

medium but efficiency requirement is high. Also, it may easily be expanded for multi-

layered MANET [75]. 

Patrick and Camp have designed architecture for ad hoc networks, where each 

node runs a local IDA [65]. Each node detects intrusion locally and uses external data to 

confirm the detection. The nodes use mobile agents to communicate and collaborate. This 

model provides a scalable architecture by using mobile agents. If the IDA needs more 

functionality, it can just incorporate more mobile agents with new tasks. It is supposed to 

reduce network traffic for intrusion detection purpose. However, since this architecture 

relies heavily on the use of mobile agents, it incurs computational complexity in creating 

and managing all the agents. This architecture needs an implementation to verify its 

performance. 

Bo, Wu and Pooch have proposed an IDA model which uses collaboration 

mechanism with anomaly detection [58].   In this model, a network is divided into logical 

zones. Each zone has a gateway node and individual nodes. Individual nodes have an 

IDA agent to detect intrusion activities individually. Once an individual node detects 
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intrusion, it generates an alert message. Gateway node aggregates and correlates the alerts 

generated by the nodes in its zone. An algorithm is used to aggregate the alerts based on 

the similarities in the attributes of the alert [75]. Only gateway nodes utilize the alert to 

initiate an alarm [58].   This method does not use mobile agents but has gateway nodes, 

which work just like a cluster head. This architecture can be applied in environment 

where the requirement for IDA performance and security is high and MANET resources 

are generally available. 

Guha et al., have proposed a model that utilizes cluster with cluster head and 

employs the independent decision making module [67]. It also utilizes the mobile agent 

for communication among nodes. The intrusion detection engine is a case-based agent 

designed with the principle of artificial intelligence. This model can automatically 

construct anomaly model but has high computational costs.  

Huang et al., have proposed a detection algorithm scheme that uses the statistics 

of packets, namely, the relation between different features such as the correlation 

between the number of packets dropped and the percentage of change in routing table 

[68]. This algorithm can be used as an intrusion detection engine in other IDA 

architectures. This model has low overhead, but was designed only for one routing 

protocol-OLSR and needs modification for other protocols. 

Tseng et al., have proposed an IDS system where the normal behavior of critical 

objects in the network is constructed with the normal specification first. Then the actual 

behavior is compared to the normal specification [69]. It uses distributed network 

monitor to trace the request-reply flow in the routing protocol. The network monitor runs 

a specification based detection algorithm to make decisions [76, 77]. This model is novel 
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with no conventional local detection mechanism, but has low efficiency since packet is 

checked at each hop.  

Neighborhood Watch, an IDS protocol proposed by Sowjanya and Shah has two 

neighboring nodes of which one node is used to ensure that the packets are not modified 

while traveling in the network [70]. This is done by comparing the information in each 

packet at each hop. It has two modes: passive mode - to protect a single host and active 

mode - to collaboratively protect the nodes in a cluster. In active mode, a cluster head 

starts a voting algorithm to determine whether intrusion really happens.   

Puttini et al., have proposed an IDS architecture where information in the 

management information base (MIB) is used as input data [71]. It also uses mobile agent 

and a collaborative decision making mechanism. This model is distributed and efficient 

in use, with high scalability and can detect attack at multiple levels, but has security, 

computational cost and management problems related to mobile agents. 

IDS Model proposed by Brutch and Ko is a statistical anomaly detection 

algorithm [72]. It works by first assuming that the audit trail generated from a host has 

been converted to a canonical audit trail (CAT) format. It then uses a CAT file to 

generate session vectors representing the activities of the users’ sessions. These session 

vectors are then analyzed against specific types of intrusive activities to calculate 

“anomaly scores”. If the scores cross some thresholds, warnings reports are generated. 

The algorithm analyzes a session vector in three steps: 1) it calculates a Bernoulli vector, 

2) it calculates the weighted intrusion score, and 3) it calculates the suspicion quotient. 

The Bernoulli vector is generated from the session vectors as well as some threshold 

vectors. It is a simple binary vector in which the values in the vector are set to one if the 
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corresponding arbitrary counts fall outside the threshold for a particular user group. The 

weighted intrusion score is generated for a particular session and for a particular intrusion 

type. It can be used to assign a suspicion value to the session. This suspicion value, or 

suspicion quotient, for a session is determined by what percentage of random sessions 

have a weighted intrusion score less than or equal to the weighted intrusion score of the 

current session. It describes how closely a session resembles the intrusion type as 

compared to all other sessions. The Haystack algorithm gets its name by being the 

algorithm implemented in the IDA called Haystack. Haystack is a host-based system, 

which attempts to detect several types of intrusions: attempted break-ins, masquerade 

attacks, penetration of the security system, leakage of information, denial of service, and 

malicious use. It was initially developed for use in the US military network.  This 

algorithm is designed for use in a secured wired military network. If in a wireless ad hoc 

environment, it requires a designated node to act as a central administrator and all the 

other nodes to allow the central administrator to retrieve audit trails from them. The 

central administrator can be pre-designated by the human initiator of the ad hoc network 

or can be assigned by programming. The audit trails requested can be submitted by the 

nodes themselves or by the mobile agents allowed to run on the nodes.  

   An IDS approach, Indra, proposed by Janakiraman et al., is a distributed intrusion 

detection scheme based on sharing information between trusted peers in a network to 

guard the network as a whole against intrusion attempts [74]. It is a detection tool that 

takes a proactive and P2P approach to network security. The basic idea behind this model 

is cross monitoring or simply called “neighborhood watch”, and is very simple. In this 

method, the hosts on the P2P network join together to form some sort of an immune 
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system where each host distributes information on attempted attacks among the interested 

peers in the network. Such information is usually gathered by the intended victim of an 

attack and by notifying its adjacent hosts, an alarm can be sounded. This allows the 

system to react proactively or retroactively. When an alarm is sounded, subsequent 

attacks to other hosts are repelled straightaway as the adjacent hosts would have 

forewarned other hosts. Alternatively, it is also possible for hosts in the network to detect 

other hosts as being under attack. This is effective if the network is a shared medium but 

the same effect can be achieved by having Indra installed on network gateways or on a 

machine attached to a “snoop” port of a network switch. The functionality of this model 

is achieved by a set of daemons. Each interested host on the network runs a special 

security daemon, which watches out for intrusion, attempts and also enforces access 

control based on its memory of earlier attempts. Other daemons that belong to different 

classes help to look out for suspicious activities, aggregate the warning notifications, or 

communicate with other hosts. These daemons could be configured by the system 

administrator for different levels of security. Though the scheme is easy to understand, 

there are practical difficulties at the levels of communication, trust and policy. Indra has 

gone on to address these issues.  In Indra, trust is an important issue. This is especially 

true in an intrusion detection system that lacks a centralized trusted authority to provide 

digital certificates. That is, a network without a certification authority (CA) will not have 

its host nodes trusting one another for the information-sharing idea in this model to work. 

This model requires a certain level of trust between hosts so that the daemons running on 

the hosts can trust the messages received from other hosts. Unfortunately, a wireless ad 

hoc network is one such network where trust is virtually non-existent. In the wireless ad 
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hoc environment, a host is supposed to trust no other host except itself. This poses a 

problem when trying to deploy this model as the intrusion detection scheme in the ad hoc 

network. This model also tries to address the trusting issue. The usual decentralized 

alternate to central CA is the web-of-trust model. In the prototype version of this model, 

certificates for hosts are obtained from trusted key servers for certifying among peers, but 

variants of the web-of-trust model are used in real situations. Communication in this 

model is done with the use of daemons between trusted hosts. Therefore, all the hosts and 

subsequent hosts joining into the wireless ad hoc network will need to have the various 

daemons running before they are allowed to operate in the network. So far, this model 

has been investigated on several networks and models of communication. In general, this 

model can be deployed on any peer-to-peer network as long as mechanisms which 

provide a node to propagate information to a randomized subset of its neighbors, or to 

create multicast trees are present.  Policy in a wireless ad hoc network, regardless of the 

intrusion detection scheme employed, has to be pre-defined and agreed upon by the hosts 

joining the network. Alternatively, all these can be set as a pre-condition for hosts 

belonging to the network.  

  Most of the surveyed models use packets and network traffic related information 

such as updates in routing table or request-reply flow in the network. Among the ones 

that use packets related information, IDS approach proposed in [67, 69] uses the 

information inside the packets header directly, such as network address or port number. 

Other models using packet or network traffic related information mainly use statistical 

data processes from packet information, such as the statistics of the number of packets 

received and sent or the statistics of change in routing table. IDS Model as described in 
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[68] utilizes the statistics derived from packet or traffic related statistics, for instance, the 

correlation between the number of packets dropped and the percentages of updates in 

routing table. Intrusion Detection approaches illustrated in [18, 63] allow the IDA to 

work on different types of audit data or the possibility to adapt to different types of audit 

data. This property is valuable and should be an important consideration for the future 

design of IDA. Most of the architectures detect only the fact that an intrusion happens. 

Some models go further to obtain more information, such as the type of attack and the 

location of the intruder. For instance, Zone based IDA can detect both the type and 

location of the attack [58]. 

Some of the intrusion detection models utilize cluster head or gateway nodes [63, 

64, 67, 70]. The advantage of cluster head is that some of the resource consuming 

computation, such as intrusion detection, can be carried out only on some nodes of the 

network. Therefore, most other nodes can focus on the real work of network traffic. The 

cluster head usually collects information from cluster member to make the detection 

decision. In some methods, the original input data is further processed or formatted 

before it is sent to the cluster head. By doing this, the network traffic for transferring such 

data is reduced. The computation on the cluster head can also be reduced because the 

incoming data from member nodes is already formatted for the IDA use. The security 

communication between the cluster head and its member nodes should receive attention 

of research. 

Most of the methods in our review, except the model proposed in [69], utilize 

anomaly detection. The anomaly detection is more suitable than misuse detection in 

MANET. In MANET, the anomaly detection has a weakness: the profile of normal 
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behavior needs to be updated periodically. This places a heavy burden on the limited 

network resources.   

All the architectures need some form of communication between the IDA running 

on different nodes. The communication can be done with mobile agents. Some of the 

models in our review utilize mobile agents [63, 65, 67, 71]. The objective of using mobile 

agents is to reduce the network traffic and leave more resources for the real work of 

network. However, such architectures, where the mobile nodes allow the mobile agents to 

carry out computation on them, also open the door for attacks. Therefore, the security 

mechanism that protects nodes from malicious code is very important [26, 31]. And such 

mechanism may make the mobile agents less powerful and efficient, which is just one of 

the important considerations for using mobile agents [22]. Also, mobile agent 

management, such as the creation, migration, operation and termination of mobile agents, 

is also quite challenging [30]. Those architectures, which do not use mobile agents, rely 

on network protocols to exchange data and collaborate in intrusion decision making [61, 

62]. Such protocols need to be secure and robust [59]. At the same time, such 

communication uses lot of the bandwidth resources which is very limited in MANET [1]. 

Some of the Intrusion Detection architectures utilize collaborative decision-making in 

intrusion detection [18, 58, 70, 71]. Others use independent decision making. The 

objective of using collaborative decision-making is to include information from different 

nodes in the decision making so as to make more accurate decisions.  The collaborative 

decision making has some weaknesses in terms of security. It is more easily 

compromised under the attacks such as denial of service and spoofed intrusion. 
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In the mobile agents based global distributed and modular secure architecture 

[58], the intrusion detection approach is provided by local IDS (LIDS) entities. These 

entities are located on each node of the mobile ad hoc network (MANET) and collaborate 

with other LIDes through the use of mobile agents. Due to the lack of the centralization 

in MANET, some of the tasks required for the intrusion detection processes should be 

executed in a distributed and cooperative manner. Mobile agents are an alternative to the 

client-sever distribution model. Mobile agents can provide a first element of response to 

the problem of the scalability for the global intrusion detection process. When a node 

joins the network, it does so with running LIDS and a mobile agent platform. It can 

therefore immediately take part in the global cooperative intrusion detection process. This 

modular architecture is divided into three main processes: data collection, detection 

algorithm design and alert management. Each of the elements in the model: Sensor, 

Analyzer and Manager are related with one of the intrusion detection processes. A sensor 

collects data from a data source, an analyzer processes the collected data for detecting 

signs of events that might have security concerns and the manager stands for the 

management interface of the whole process, besides doing alert correlation and response 

initiation. Activities monitored by the sensor in the data source may be mapped in events 

which are passed to the analyzer where they are submitted to the hybrid (misuse and 

anomaly detection) intrusion detection algorithm. When the analyzer finds events with 

relevant security concerns, alert are generated to the manager. All raw data collection and 

pre-processing is performed locally in the same LIDS. While executing all raw data 

collection and abstraction locally, node detects attacks against some of its neighbors. 

Thus, whenever some (high level) message needs to be processed remotely, a mobile 
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agent is dispatched to the remote node carrying the data and possibly the code needed for 

the remote message processing. Mobile agents are created, received (from a remote host) 

and managed in the mobile agent framework. These mobile agent platforms should also 

provide security services (e.g. server authentication, agent and server code integrity, 

access control to local resources, etc) related to agent activities.  

Data mining algorithms implemented on each mobile node can be used to analyze 

audit data and thereafter generate intrusion detection models. Data mining generally 

refers to the process of extracting useful models from large repositories of data [64]. 

There are several algorithms proposed in the literature that are particularly useful for 

mining audit data for anomaly detection. Classification is the process by which a data 

item is mapped into one of the several predefined categories. The classification 

algorithms normally produce “classifiers” that can be in the form of decision trees or 

rules. Sufficient “normal” and “abnormal” audit data must be gathered before a 

classification algorithm can be applied to learn a classifier that can categorize new unseen 

audit data as belonging to the normal class or the abnormal class. Sequence analysis 

involves the analysis of frequent sequential patterns of audit data in order to gain insight 

into the temporal and statistical nature of many attacks as well as the normal behavior of 

users and programs. The statistical information collected can then be incorporated into 

intrusion detection models. 

2.3 Review of Intrusion Response Approaches in MANET  

 Although intrusion response component is related and coexist with the intrusion 

detection framework, it receives considerably less attention than detection framework 

owing to the inherent complexity in developing and deploying response in an automated 
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fashion [125]. Most of the security models generate an alarm informing the administrator, 

who then decides the response. However, it is desirable that the response consists of an 

automated corrective action to protect the network from an identical future attack.  

 There are few IDA models that provide the integrated detection and response 

feature. Zhang et al., in their framework have explained that local response module 

triggers action local to the mobile node and the global response module coordinates 

actions among neighboring nodes, such as the IDS agents in the network electing a 

remedy work [18]. They have also explained that the type of response depends on the 

type of intrusion, the type of protocols, applications and the confidence in the evidence 

with examples. However, they have not provided any implementation details regarding 

the intrusion response aspect of the model. Similarly, there is no documentation on the 

simulation or experimental results on the response aspect of the model. However, there is 

a detailed explanation on the experimental results of the detection framework of the 

model. Thus, even though the idea of integrated detection and response model seems 

feasible, it appears that the implementation and simulation have not been conducted. 

Similarly, few related IDA models propose response actions/frameworks for responding 

to the attacks once it is detected [119-124]. However the response system incorporating 

all those actions is not implemented. 

 There are few intrusion prevention approaches described in the literature for 

MANET security. Puttini et al., have proposed a secure routing protocol that combines a 

certificate based authentication service with intrusion detection model to provide 

preventive and corrective protections for MANET [71]. Bhargava et al., have proposed a 

security model for AODV routing protocol to prevent attacks in MANET [118].  
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 2.4 Requirements of IDA for MANET 

                  IDA for MANET must work with localized and partial audit data. In MANET, the 

audit data is always localized and partial because MANET does not have a fixed 

infrastructure such as firewall or gateway like in wired network to collect complete and 

global audit data [18]. It is more difficult for IDA in MANET to distinguish between 

normal and intrusion traffic. In wireless network, there is often no clear line between 

normal/abnormal activities. In wireless network the connection is not stable and mobile 

nodes can join and leave the network at any time. For instance, a node, which is 

temporarily out of synchronization, may send packets that could be considered packets of 

attack activities [18].  IDA should utilize minimum resources. The wireless network does 

not have stable connection, and the physical resources of the network and the devices, 

such as bandwidth and power are limited.  Disconnection can happen at any time [18].   

In addition, the communication between nodes for IDA purpose should not use much 

bandwidth resources.  

                  Encryption in communication for wireless mobile networks is difficult to achieve. 

The communication between IDA on different nodes must be secure to not allow 

attackers gain the access to such communication. However, encryption in MANET is a 

difficult task itself. In wired network, because of the requirement of physical connection 

for access, this problem is less obvious. IDA cannot assume any node is secure. Unlike in 

a wired network, MANET nodes can be very easily compromised. Therefore, in 

cooperative algorithm, the IDA must not assume that any node can be fully trusted. IDA 

must address high false alarm rate problem. It is difficult to obtain enough audit data to 

make an intrusion detection decision, because the bandwidth of MANET is much 
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restricted compared with wired network. As a result, IDA in MANET can easily result in 

either having too much false alarm or missing many attacks [57]. 

            Thus, the most important requirement feature is to find an appropriate architecture 

of IDA that will fit the mobile and ad hoc nature of the wireless network. Also, finding a 

way to effectively use the audit data source in wireless network with anomaly detection is 

also very important. As mentioned earlier, the audit data in wireless network is often 

partial and local. Another requirement of the security model is to find a way to effectively 

distinguish attack traffic from normal traffic, especially the normal traffic that seems 

abnormal due to factors such as poor network connections. Otherwise, the IDA will have 

a high false alarm rate [18]. 

                   Levente Buttyan identified the requirements of IDA for MANET as follows [5]: 

• IDA must be truly distributed, which means IDA must detect intrusion on each 

node, but nodes can collaborate in making decision on whether to issue an alarm. 

• IDA should be able to deal with local and partial audit data; IDA may need to 

sense anomaly happened on other hops [18, 53, 58].  

• IDA should be able to deal with the problem that there is no clear line between 

normal/abnormal; IDA need to obtain high detection rate and low false alarm.  

• Given the resources constraints on wireless network, IDA should not consume too 

much resource, including power. Therefore, IDA should have run-time efficiency. 

 

 

 

 

 47



2.5 Review of Related MANET IDA Schemes for Performance 
      Evaluation with the Proposed Model 

  Two related models - Integration of Mobility and Intrusion Detection for Wireless 

Ad hoc Networks (MIDWAN) by Sun et al., and Cooperative Intrusion Detection System 

for Ad hoc Networks (CIDSAN) by Huang and Lee are chosen for the detailed review 

and performance evaluation experiments with the proposed model. MIDWAN is chosen 

because, as per our literature survey, this model appears to be the latest anomaly 

detection based IDA for MANET in the literature [58]. The second model, CIDSAN is 

also an anomaly-based model [64]. This appears to be the latest model as referenced by 

Sun et al., in their manuscript [58]. This model by Huang and Lee is an improvement of 

their earlier work with Zhang [18]. Since the proposed model is based on anomaly 

detection approach, misuse detection based IDA and Mobile Agent based IDA are not 

chosen for this detailed related model review and performance evaluation 

experimentations. 

Related Scheme 1: MIDWAN by Sun et al.: 

  MIDWAN is based on Markov Chain based Anomaly detection model for 

MANETs. In this model, each node includes a local IDS agent. The internal structure of 

the IDS agent is shown in the Figure 2.1. The data collection module is responsible for 

collecting security related data from various audit sources and preprocesses them to the 

input format required by detection engines. The detection engine then uses the data to 

perform intrusion detection tasks locally. A Markov Chain based anomaly detection 

algorithm is used as the local detection model. 
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Figure 2.1 Related IDA for MANET -MIDWAN Proposed by Sun et al. 

 The Local Aggregation and Correlation Engine (LACE) locally aggregate and 

correlate detection results from different detection engines in the IDS agent. The Global 

Aggregation and Correlation Engine (GACE) aggregate and correlate the alert 

information from a wider area in order to make a better decision. The intrusion response 

module handles the generated alarms. 

 They have implemented a Markov Chain based anomaly detection approach for 

MANET IDS. Specifically they construct a Markov Chain from the discretized routing 

table changes. Using the immediate previous w consecutive events (the routing table 

changes), also known as from_state, they predict the transition probability of the next 

state, to_state. This transition probability is then used to calculate the distance and 

classify the observed activities. 
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MIDWAN Simulation Experimentation: 

 Three mobility models, the Random Waypoint model (RW), the Random 

Drunken model (RD), and the Obstacle Mobility (OM) Model are used by Sun et al., in 

their performance evaluation experiments. Since a node’s moving speed is one of the 

most commonly used metrics in measuring the performance of MANETs, the speed could 

be used to reflect MANET dynamics. The larger the moving speed, the more dynamic the 

MANET is. Hence they have measured the IDS performance under varying speeds. 

 Simulation was performed by Sun et al., using GloMoSim to evaluate the 

performance of their IDS using different metrics. The following are the parameters that 

were used in the simulation. Number of nodes was set to 30 within an area of 1000 x 500 

sq m. CBR traffic by source destination pairs are used to generate traffic. The speed was 

varied from 0 m/s to 50 m/s. At each mobility level, they have run the simulation for 100 

minutes to get the normal data, and collect the normal data from all nodes to generate a 

normal data trace. For each trace they have collected PCR and PCH feature every 3 

seconds after a warm up period of 300 seconds.  

 They then simulate the routing disruption attack scenario in GloMoSim. The 

following threat model has been implemented in the DSR protocol. In order to effectively 

disrupt the routing logic, a node compromised by an attacker actively sends falsified 

Routing REPly (RREP) packets into the network. Purpose here is to effectively disrupt 

the routing logic of the victims or the whole network. Using RREP packets the attacker 

induces the victim to form a short path to itself, resulting in routing black-hole attacks. 
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The metrics that they have used for performance evaluation are: 

False Positive Ratio: It is defined as the percentage of decisions in which normal data are 

flagged as anomalous. 

Detection Ratio: It is defined as the total number of detections divided by the number of 

victims in the anomalous data. 

 To investigate the impact of different mobility models, they have collected the 

same amount of training data, test data, and abnormal data at different mobility levels and 

they have used the same procedure to build the classifier. 

MIDWAN Results:  

 The results that they obtained for the above mentioned metrics is given below. 

The results of the performance evaluation comparing our proposed model with the related 

models are discussed in Chapter 5. 

False Positive Ratio:  

 In general as speed increases the false positive rate increases for all the mobility 

models. Their model resulted in false positive rate of about 10% at 5 m/s but it increases 

significantly to about 25% at about 20m/s and increase further at mobility levels higher 

than 20m/s. 

Detection Ratio: 

 They have observed that the detection ratio decreases with the increase of the 

speed for each of the mobility model used. Their model has detection rate of about 97% 

until 10 m/s. As speed increases the detection rate slightly falls to 90% at 40 m/s. They 

have also observed that the overall detection ratio of the RD model is simiar to RW 

model and OM model. 
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Related Scheme 2: CIDSAN by Huang and Lee: 

CIDSAN model proposes a cluster-based detection scheme where periodically, 

fairly and randomly a node is elected as the ID monitoring agent for a cluster of 

neighboring MANET nodes. Compared to a model where each node is its own ID agent, 

in this scheme the responsibility of detection is shared among nodes in the cluster. 

A cluster is defined as a group of nodes that are close to each other. The criterion 

of ‘close’ is that a node in the cluster, the clusterhead, has all other members, known as 

citizens, in its 1-hop vicinity. As a special case, a node that cannot be reached by anyone 

else forms a single node cluster (SNC). The size of the cluster is defined as the number of 

nodes in the cluster and is denoted as Sc. 

 It is essential that the clusterhead assignment be fair and secure. By fairness, 

authors mean that every node should have a fair chance to serve as a clusterhead.  

Fairness has two components, fair election, and equal service time. Assuming that every 

node is equally eligible, fair election implies randomness in election decision, while 

equal service time can be implemented by periodical fair re-election. By security the 

authors mean that none of the nodes manipulate the selection process to increase (or 

decrease) the chances of it (or another node) being selected as clusterhead. Obviously if 

randomness of the election process can be guaranteed, then security is also guaranteed. 

 The authors have also proposed techniques to guarantee the fairness and security 

of the election process. First, each node i contributes a random value Ri to the input. Then 

a common selection function is used by all nodes to compute an integer from 0 to Sc-1 

from a total of Sc inputs.  The output of the selection function must have a uniform 

distribution in [0, Sc-1]. The selection function they use is a simple XOR function. ie., f 
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(R0, R1, R2, … RSc-1)  =(⊕ Ri MOD Sc). XOR function assures that as long as one input 

is random, the output is random. The random values are fully exchanged within the 

cluster and the selection function is computed in a distributed manner on each node to 

decide the cluster head. This ensures that the same cluster head be computed by all 

cluster members. 
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     Figure 2.2 Related IDA for MANET - CIDSAN Proposed by Huang et al., 

 As shown in the Figure 2.2, all nodes are in an INITIAL state. They temporarily 

assume themselves as Single Node Clusters, so that they do intrusion detection for 

themselves, just as in the per-node based approach.  Then initial clusterhead setup is 

performed using clique computation and cluster head computation steps. 

Clique Computation Step: 

 A clique is defined as a group of nodes where every pair of members can 

communicate via a direct wireless link. It can be noted that the definition of clique is 

stricter than the definition of cluster. However, the clique requirement can be relaxed 

after the clusterhead has been computed. That is, only the clusterhead needs to have 

direct links with all members. After this step every node is aware of its clique members. 
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Clusterhead computation Step: 

 The purpose of this step is to randomly select one node in the clique as the 

clusterhead based on the techniques explained earlier. Once the clusterhead is 

determined, it copies the clique member list to its citizen list. 

Cluster Valid Assertion Step: 

 All nodes should perform this step periodically when they are in DONE state. 

There are two parts in this step. 

a. Since the network topology tends to change in MANET, connections between 

the elected clusterhead and its citizen nodes may be broken from time to time. 

If a link between a citizen Z and clusterhead H has been broken, Z will check 

if it is in another cluster. If not, it enters LOST state and activates the Cluster 

Recovery step. Also, Z is removed from H’s citizen list. If there are no more 

citizens in it list, H becomes a citizen if it belongs to another cluster. 

Otherwise, H enters LOST state and activates the Cluster Recovery Step. 

b. Even if no membership change has occurred, the clusterhead cannot function 

forever because it is neither fair in terms of service, nor secure.  Hence a 

mandatory re-election timeout, Tr is enforced. Once the Tr expires, all nodes in 

the cluster enters the INITIAL state and start a new clusterhead setup round.  

Cluster Recovery Step: 

 In the case that a citizen loses its connection with previous clusterhead or 

clusterhead loses all its citizens, it enters LOST state and initiates the Cluster Recovery 

Step to re-discover a new clusterhead. 
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 The authors further discuss that since clusters can overlap, a node can belong to 

multiple clusters. In that case a node in the multiple clusters should perform the 

Clusterhead Computation Protocol for each of its clusters independently. In the 

Clusterhead Computation Step, the authors assume that the topology remains static 

during computation. In mobile environment, this assumption does not always hold. A 

remedy is for each cluster member to monitor the neighborhood actively. Once a link is 

broken, a REPAIR message is broadcast by both ends of the link, and all other nodes in 

the cluster will be aware of that. All nodes in the cluster then re-enter INITIAL state and 

start a new clusterhead setup round by initiating the Clique Computation step. 

The authors also discuss that a malicious node has a 1/Sc chance to be elected as 

the clusterhead. It can then launch certain attacks without being detected. If this chance is 

not acceptable, multiple rounds of clusterhead computation can be used to elect multiple 

clusterheads, each running separate IDS to monitor the cluster. In the extreme case, IDS 

could be run on each node. Thus there is a tradeoff between efficiency and security. 

Anomaly Detection: 

 Authors believe that a strong feature correlation exists in normal behavior, and 

that such correlation can be used to detect deviations caused by abnormal (intrusive) 

activities. They have developed a cross-feature analysis anomaly detection approach that 

explores the correlations between each feature and all other features. 

This approach computes a classifier Ci for each fi using {f1, f2,…fi-1, fi+1,…fL} 

where {f1, f2,…fi-1, fi+1,…fL} is the feature set.  Ci can be learned from a set of training 

data. It predicts the most likely value of fi based on the values of other features.  
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They have solved the anomaly detection problem i.e., whether a record is normal 

or not, as follows. Given a record x = <v1, v2,…, vL>, first apply each Ci to compute 

pi(vi|v1, v2,…vL), i.e., the probability of vi given the values of other features. Then 

compute the average probability Σi pi / L and compare it with a threshold. An alarm is 

raised if it is lower than the threshold because it implies the record is highly unlikely.  

The authors have defined a total of 141 features in their study. These features 

capture the basic view of network topology and routing operations, as well as traffic 

patterns and statistics. They have conducted experiments using the ns-2 simulator and 

summarized results for AODV protocol.  

In their experiments they have implemented different types of intrusions like 

sleep deprivation using malicious flooding, denial-of-service, selfishness using packet 

drop and routing loop using spoofing. They have also designed and implemented rules to 

detect the attack type in the anomaly detection model. They have used Random Waypoint 

model as the Node mobility model. They have varied Mobility speed from 5 m/s to 40 

m/s. The number of connections has been selected to be 10 within 500 x 1500 sq.m area.  

They have used AODV used as the MANET protocol. 

They have used trace data of normal runs for training the anomaly detection 

models. They then run the attacks and collect the trace data for evaluating the models. 

For example, if total running time is 10000 seconds, and the sampling rate by which the 

feature values are computed is 5 seconds, then the trace data has 2000 data points or 

events. 

Each event is labeled as normal or abnormal according to when and for how long 

an attack is running (and how long the effect lasts). While evaluating an anomaly 
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detection model, they compute how many abnormal events are correctly identified (ie. the 

detection rate) and how many normal events are incorrectly identified as anomalies (ie., 

false alarm rate). 

In their experiments an anomaly detection model computes features and detects 

anomalies on each node locally. As long as one detector (on one node) identifies an 

abnormal event, they count it as an anomaly alert (true detection or false alarm) for the 

MANET. The intuition is that when there is an intrusion, they need to have at least one 

node that detects the anomaly. 

CIDSAN Simulation Experimentation: 

 The authors conducted experiments with different mobility rates using ns-2. They 

have used Detection Rate and False Positive rate metrics to compare cluster based and 

per node based detection models.  

CIDSAN Results: 

 They have found that the detection accuracy metric of cluster based approach 

(84%) is a little less compared to per node based approach (89%). Also the performance 

of cluster based approach is more sensitive to mobility compared to per node based 

approach. This is due to the reason that in a highly dynamic scenario, it is more likely 

that the correlation among route and location related features are not as regular as that in 

a per-node based scheme. However, even under a reasonably high mobility level (40 

m/s), the detection rate is still higher than 80%. Similarly, false positive rate metric of 

cluster based approach (5%) is a little more compared to per node based approach (less 

than 1%). It has to be noted that the detection and false positive rate metric results for all 

their simulated intrusions follow the similar patterns.   
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2.6 Limitations of the Existing Related Schemes 

Limitations of existing Mobile Ad hoc Network security schemes: 

The scheme GDH needs further exploration of mechanisms for the detection and 

resolution of inconsistent certificates, improvement of certificate graph models and 

making use of existing PKI infrastructure [40]. Scheme MDA does not provide 

authentication of the participants. In addition, more formal arguments need to be 

developed to support optimality claims [41]. Unicast approaches by the scheme MOCA 

only exploit information in the local routing cache. One potential extension is to let a 

node browse into neighboring nodes’ routing tables. For example, a node may be short of 

one or two cached routes and that would lead to flooding. If the node has a way to peek 

into the neighbors’ routing tables and find a couple of new cached routes, it can avoid 

flooding. Potential overhead for this approach would be the extra communication 

required between neighbors to exchange the information in routing tables. Whether the 

benefit would surpass the overhead is an interesting question to investigate [42]. All the 

unicast based approaches in the MOCA protocol do not take into account the direction of 

Certification REQuests (CREQs). At a worst case, all the MOCAs picked by its unicast 

approach could reside on one side of the network from the requesting node. Then it is 

possible that all the CREQs are sent into one direction sharing the same next hop nodes, 

potentially causing unnecessary contention. This leads to a failure or at least delayed 

responses. One possible solution for such a scenario is to utilize the next hop field in the 

cached routing table entries. For example, by selecting a set of MOCAs with all the 

different next hops, one can expect to have a spatial load balancing effect in that each 

CREQ will go out in different directions [42]. The scheme CORE considers only attacks 
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from selfish nodes but not from active intruders.  Hence the scheme needs to be extended 

and tested for intruder attacks as well. Also there is no definition of formal method to 

analytically prove robustness of CORE [43]. The solution for attack by selfish nodes, 

presented in Nuglets model is focused just on packet forwarding attacks. This model also 

does not address application-level issues like mutual provision of information services in 

an ad hoc network [39].  The CONFIDANT protocol assumes that nodes are 

authenticated and that no node can pretend to be another in order to get rid of a bad 

reputation [44].  The Guardian Angel model is not a comprehensive security scheme and 

does not take into account the attacks like packet forwarding and denial of service or 

routing attacks [45]. 

The SEAD approach does not incorporate mechanisms to detect and expose nodes 

that advertise routes but do not forward packets [47].  In the Beacon scheme, scalability 

is an issue if there are large numbers of nodes compared to the available bandwidth. The 

proposed model assumes all nodes in a network share a symmetric key used only for 

beacon authentication. In addition to problems with scalability, every agent and mobile 

node at the site has to know the network authentication key. The symmetric keys might 

be replaced with public key cryptography. Public-key signature and verification of 

beacons and Mobile-IP registration messages is feasible, even though transmitting such a 

signature requires more link bandwidth. Every node can possess its own key and simply 

sign its beacons and registrations. The distribution of certificates such that mobile nodes 

and agents can verify a beacon is again a higher-level problem [48]. SOS model provides 

fully localized design, easy support of dynamic node membership, limited intrusion 

tolerance capacity and decreasing overhead over time. While these characteristics are 
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appealing, this scheme also has limitations as this is achieved at the increased 

computational overhead (associated with asymmetric cryptography primitives) compared 

with other hash function based designs [49]. In the TRUST model when a new node 

enters the system, it assumes that the node already has an initial certificate. This results in 

the problem of registering users. Also when two ad hoc networks merge, this model does 

not provide mechanisms for nodes originated from different networks to certify and 

authenticate each other [50]. In SRP model, fair utilization of network resources is an 

issue. Possible ways to dismay nodes from broadcasting at the highest possible rate is still 

an issue [36]. Since the ARIADNE model does not possess the optimizations of DSR, the 

resulting protocol is less efficient than the highly optimized version of DSR that runs in a 

trusted environment [51]. An important aspect of OSRP scheme is that the algorithm can 

be used to detect a fault. However, it is difficult to design such a scheme that is resistant 

to a large number of adversaries. The method suggested in this paper uses a fixed 

threshold scheme. This scheme does not explore other methods, such as adaptive 

threshold or probabilistic schemes which may provide superior performance and 

extensibility. Also this scheme does not provide means of protecting routing against 

traditional denial of service attacks [35]. The Watchdog and Pathrater model assumes that 

there are no apriori trust relationships. Performance of model is bound to suffer when 

trusted node lists in ad hoc networks are also taken into account. Also, in this model, all 

the simulations are based on Constant Bit Rate (CBR) data with no reliability 

requirements. The analysis should be extended to explain how the routing extensions 

perform with TCP flows common to network applications [53]. 
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Limitations of existing Intrusion Detection and Intrusion Response Approaches: 

 The misuse detection systems use patterns of known attacks to match and identify 

those intrusions [66]. Although it can accurately and efficiently detect instances of known 

attacks, it lacks the ability to adapt in detecting new type of attacks. The anomaly 

detection systems on other hand detect intrusions by finding deviations from the 

established user profiles. Anomaly detection should detect new types of intrusions but it 

could have higher false positive rate [67]. Traditionally, IDA are developed using expert 

knowledge of the system and attack methods [68]. Due to the complexity of modern 

network system and sophistication of attackers, expert knowledge engineering is often 

very limited and unreliable [18]. Some IDA schemes are very sensitive to the data 

representation. For instance, these schemes may fail to generalize an unseen data if the 

representation contains irrelevant information. In some instance, it has been observed that 

training of IDA requires a noise-free data (the data that is labeled ‘normal’) [63]. It has 

been observed that the existing IDA performs poorly in detection as well as the false 

positive rates at higher mobility rates [58, 64, 72]. It has recently been observed that 

Denial of Service (DoS) attacks are targeted even against the IDA [18]. Thus, IDA 

themselves needs to be protected. An IDA should also be able to distinguish an attack 

from an internal system fault.  

 The identification of intruder and appropriate response techniques to protect 

MANET still represents a challenging issue. The need to coordinate intrusion detection 

and response techniques and the need to respond and control the identified attacks 

effectively, require further research. It can be noted that though the response concepts are 

explained in the existing intrusion detection models, implementation details and results 
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for the response framework are not provided to demonstrate and validate their response 

techniques. Also according to our literature review, we observe that none of the existing 

models has proposed an intrusion control approach for MANET, such that detection and 

response are done continuously to protect the MANET.   

   To summarize, the related existing MANET intrusion detection and intrusion 

response approaches suffer from one or more of the following limitations: 

• Lower detection rate when mobility is used as a parameter. 

• Higher false positive rate when mobility is used as a parameter. 

• Appropriate response techniques to protect MANET after threat detection. 

The current schemes thus have practical problems in intrusion detection and real 

time response. The proposed Intrusion Detection and Response model for Mobile Ad hoc 

Networks (IDRMAN) security model addresses many of these limitations. To 

demonstrate that the proposed approach does have these features and performs better in 

terms of the above proposed metrics, we conducted performance evaluation experiments 

comparing the proposed approach with the related existing intrusion detection approaches 

using these metrics. These experiments and results are explained in Chapter 5.  
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CHAPTER III 
 

IDRMAN SECURITY MODEL – DETECTION FRAMEWORK 
 

3.1 Overview of IDRMAN 

Intrusion Detection and Response model for Mobile Ad hoc Networks 

(IDRMAN) detects an attack and responds to the detected attack. An attack is detected by 

identifying the set of network parameters that will be affected during an attack, 

identifying the thresholds for these parameters, continuously monitoring these 

parameters, quantifying the network vulnerability by applying fuzzy logic on the 

measured values of the network parameters and comparing the quantified values against 

the reference thresholds of the threat detection metric. The set of network parameters that 

will be affected during an attack are referred to as significant parameters and are 

identified using data mining techniques. The thresholds for these significant parameters 

are identified using Six Sigma methodology. The network vulnerability level is quantified 

into a numerical value called the Threat Index (TI) computed using Fuzzy logic. Based 

on the threat level indicated by TI, the response mechanism is invoked (which is 

explained in Chapter 4) which then identifies the intruder and responds to the attack.  

This chapter is organized as follows: The rationale and the architecture of the 

IDRMAN model are presented in Sections 3.2 and 3.3 respectively. Sections 3.4 through 

3.6 explain the IDRMAN detection framework in detail.  Mathematical analysis to 

validate TI metric is presented in Section 3.7. 
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3.2 Rationale of IDRMAN 

The IDRMAN model seeks to detect and respond to intrusive behavior by 

identifying and analyzing network parameters that deviate from a predicted norm during 

an attack. It is a Statistical-Based Intrusion Detection (SBID) system which is based on 

the premise that intrusions can be detected by inspecting a system's audit trail data for 

anomaly, and that the audit trail data is noticeably different when an intrusion occurs. 

Before unusual activity can be detected, SBID systems require a characterization of 

system activity that is considered "normal". Any sequence of system events deviating 

from the “normal” profile by a statistically significant amount is flagged as an intrusion 

attempt [75]. Based on this, in our model, we identify network parameters which are 

affected during attacks, and characterize their values when the system is normal without 

any attack. Our philosophy is that, by identifying and continuously monitoring critical 

network parameters that are affected by various types of attacks, we could measure the 

relative change in parameter values from the “normal” values and detect an attack. Once 

an attack is detected, proper level of protection measures could be applied and hence, 

nodes causing these attacks could be blocked from accessing the system or the network. 

To strengthen our premise of using network parameters as the audit data to detect 

and respond to intrusion, we explain three different attacks and their effect on the 

network parameters in the following paragraphs of this section.  

DoS attack - Bombardment of packets by an intruder node on MANET host node:   

In a type of DoS attack, an intruder bombards packets on a MANET host node 

servicing multiple mobile nodes. In this attack model, the intruder creates huge traffic in 

the link between the intruder and the host resulting in the quick exhaustion of the 
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MANET hosts’ precious resources. This kind of DoS attack results in the inability of the 

host node to serve the other genuine nodes in MANET fairly. 

 

 
Figure 3.1 DoS Attack 

 
DoS attack is depicted in Figure 3.1, where node B is a host node and C is the 

intruder. The intruder node C creates a huge traffic resulting in the exhaustion of the node 

B’s resources. This results in the inability of node B to serve genuine nodes A, D, E and 

F fairly. Thus, DoS attacks on the mobile ad hoc networks can lead to network 

performance degradation. Some of the critical parameters with respect to MANET that 

are affected by this type of DoS attacks are: 

Packet Drop: Due to DoS attacks, packets in the link may be dropped due to exhaustion 

of the hosts’ resources.   

Queue Length: The inability of the host to service the request from other nodes because 

of DoS attacks results in increase in queue length on the links between the host and other 

nodes.  

Energy consumption: The bombardment of packets due to traffic and servicing them 

result in the consumption of significant battery power (a constrained resource in 

MANET) in the link between intruder and host.  
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genuine nodes fairly 
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Active attack: ‘Poisoning’ routing table by intruder causing routing loop:   

In this kind of attack, an intruder injects incorrect routing information, which in 

turn poisons the routing table or protocol [89]. The intruder may also update the routing 

table to create a loop, so that packets traverse in the network without reaching the 

destination [84].  

 

B C 

A D 

E 
  

Intruder updates routing table so that 
the packets are routed from B to D 
instead of C and hence the packets from 
A never reach C. 

Figure 3.2 Routing Loop Attack 
 

In the MANET shown in Figure 3.2, let us assume that packets are supposed to 

traverse from source node A to destination node C. However, the intruder updates the 

routing table so that the packets traverse from B to D instead of C, and hence the packets 

from A never reach C.  This also causes congestion on domains served by nodes A, D 

and E, due to the bombardment of packets whose actual destination was C. Thus the 

attack can lead to network performance degradation. Some of the critical parameters of 

mobile ad hoc networks that are affected by this type of active routing attacks are: 

Throughput: Due to the poisoning of routing protocol or table, packets may never reach 

the destination. Thus, there is a relative increase in the number of lost packets from the 

genuine nodes during the attack.  

Total number of packets dropped due to no routing information: Due to poisoning of the 

routing protocol or table, packets may be dropped from the network for want of routing 

information. The drop count of packets from genuine nodes increases due to the attack. 
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Passive attack: Packet discarding by selfish nodes:  

It has been demonstrated that statistically over 60% of the resources are taken up 

by packet routing function at the nodes [6].  If a node has turned selfish, it does not route 

to conserve energy, thus affecting other nodes on the ad hoc network. A selfish node 

simply does not perform its intended function of forwarding the packet to a proper 

destination node and routes all packets to itself and later discards them. The motivation in 

these attacks by selfish nodes is to save significant battery power, instead of performing 

networking functions such as packet forwarding and routing.  

C 

B 

 
Figure 3.3 Packet Mistreatment Attack 

Selfish Node B discards 
the packet from A and 
forwards to itself instead of 
forwarding to C, and hence 
the packets from A never 
reach C. A 

 As shown in Figure 3.3, the packets are supposed to traverse from source node A 

to destination node C. However, selfish node B discards the packets from A and hence 

the packets from A never reach C. This results in ‘black hole’ attacks. This in turn may 

also result in DoS or deadlock issues that result in performance degradation. Some of the 

critical parameters that are affected by this kind of passive attack with respect to ad hoc 

networks are:  

Throughput:  Due to packet mistreatment by selfish nodes, packets do not generally reach 

host nodes. This results in packet loss, and hence a significant decrease in the 

measurement of throughput for the destination host nodes.  

Packet drop rate: Packets are discarded by selfish nodes and hence there is a significant 

increase in the packet drop rate for the collaborating selfish nodes in ad hoc network. 
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Energy consumption: Since battery power is a constrained resource in mobile ad hoc 

networks, the selfish nodes discard packets to save battery power by means of techniques 

like sleep deprivation [6].  Hence, there will be a relative decrease in the measurement of 

power or energy consumed for group of selfish nodes within the network.  

These examples of different attacks clearly indicate that for both active and 

passive attacks, the network parameters are significantly affected and deviate from their 

normal levels. Thus identifying the appropriate network parameters for each attack, and 

continuously monitoring them will be an effective method to detect and respond to 

intrusions. 

3.3 Architecture of IDRMAN  

The proposed IDRMAN model uses a feedback control scheme that is analogous 

to the human biological model wherein an attack is detected by measuring body 

parameters like temperature, blood sugar and blood pressure level and comparing them 

against their normal values. Once an attack on the body is detected, it is treated to bring 

the body to the normal state. Similarly, in this security model various parameters of an ad 

hoc node or a set of ad hoc nodes are monitored. If these parameters change rapidly in a 

given time frame, the appropriate threat is detected, intruder is identified and a corrective 

action is taken. The challenge here is the identification of critical parameters and their 

threshold values to predict the intrusion accurately and efficiently in mobile ad hoc 

networks. 
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The basic framework of the model is shown in Figure 3.4 and is explained as 

follows. 
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Figure 3.4 Feedback Control Model of IDRMAN  

In the Figure 3.4, MANET is represented as a function: f(x1(t), x2(t),…xn(t), v1(t), 

v2(t)…vn(t), m1(t), m2(t),…mn(t), k(t), u(t)), where xn(t) represents the significant attack 

sensitive network parameters, vn(t) represents the network parameters which are not 

significant in representing the node vulnerability, mn(t) represents the mobility 

parameters, k(t) represents the attack and u(t) represents the control input.  xn
’(t) 

represents the modified values of the significant attack sensitive network parameter due 

to the influence of the attack k(t) and the control input u(t). TI for a node is calculated by 

the detection framework from the attack sensitive network parameters, xn
’(t) using fuzzy 

logic. The computed Threat Index TI(t) is compared with the threshold values of the 

Threat Index TI’. The Threat Index thresholds (TI’) are obtained with the help of the 

training dataset where the state of each record is labeled. Data records collected from 
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simulation environment with and without attack are used as training dataset for 

identifying the Threat Index thresholds. As shown in Figure 3.4, the training data is 

derived from the MANET and is used in the identification of significant parameters and 

the thresholds of these parameters and the threat index. If the computed TI(t) of a node is 

greater than or equal to vulnerable state threshold reference TI’, the node is identified to 

be under threat. Upon detecting that a node is under threat, the neighboring nodes are 

subjected to the response and protection algorithm in the response framework. This 

response algorithm identifies the intruder and sends the control signal u(t) to isolate the 

intruder from the MANET. The control signal u(t) varies depending upon the type of the 

intrusion. The different types of control actions are explained in Chapter 4. This control 

signal reconfigures the MANET and modifies f(x1
’(t+1), x2

’(t+1),…xn
’(t+1)) such that 

TI(t+1) reaches the steady normal state. It should however be noted that f(x1
’(t+1), 

x2
’(t+1),…xn

’(t+1)) also depend on any new attack k(t+1).  

Since IDRMAN is online control based model, we need to determine the optimal 

response time in order for the online controller to work properly. The desired minimum 

response time can be estimated based on the various computation tasks in the intrusion 

detection algorithm and intrusion response algorithm. Based on the time complexity 

analysis, the intrusion detection and response algorithm’s time complexity is turned out 

to be O(N3). The response time also depends on the speed of the processor. If a processor 

execute 1 billion instructions per second, for O(N3) algorithm, it will take one second for 

N = 1000. Here N indicates that there are 1000 nodes and each node has 1000 

neighboring nodes and there are 1000 parameters to analyze. Thus the minimum response 
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time threshold in the model can be set depending on number of Nodes in MANET and 

the number of significant parameters and speed of the processor. 

The proposed security model is distributed and cooperative, where every node in 

the wireless mobile ad hoc network participates in intrusion detection and response. Each 

node is responsible for detecting signs of intrusion locally and independently, but 

neighboring nodes can collaboratively investigate in a broader range. The proposed 

model works by propagating the intrusion detection state information among neighboring 

nodes and the local node as depicted in the Figure 3.5. 
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  Figure 3.5 Distributed Intrusion Detection and Response System (IDRS) 

The need for the cooperative and distributed intrusion detection/response arises 

because mobile ad hoc networks are dynamic and they typically lack a central entity. 

Hence, each node responds based on the intrusion reports from other nodes in a 

distributed manner [90].   
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3.4 The IDRMAN Detection Framework Mechanism 

The Intrusion Detection Metric -Threat Index: 

The IDRMAN detection framework quantifies an attack or vulnerability with a  

metric known as Threat Index (TI). Threat Index (TI) is the metric used by the detection 

framework to detect if the node is under attack or not. Threat Index is a number, which 

takes values between 1 and 10. When there is no attack, the network is in the normal state 

(NS) and this is indicated by the TI range from 1 to 4; when there is an attack, the 

network is in the vulnerable state (VS) and is indicated by the TI range from 7 to 10; the 

intermediate state of the network between normal and vulnerable state is referred to as the 

uncertain state (US) which is indicated by the TI range from 4 to 7. The TI thresholds, (4, 

7) for the uncertain and vulnerable state are obtained by means of TI threshold training 

algorithm on the training data. TI at any instant of time is computed by applying fuzzy 

logic on the measured values of the significant parameters at that time. By comparing the 

computed TI with the TI thresholds, the node is classified as being in the normal, 

uncertain or vulnerable state and this classification detects the attack. 

 The Threat Index resembles as well as differs from the metric known as 

Vulnerability Index (VI), which is proposed in the literature to represent the state of the 

wired Internet node.  VI metric was proposed by Qu et al., in their work to detect the 

vulnerability of the Internet node [96]. TI resembles VI in that both analyze and quantify 

the vulnerability of a node/network. They both detect attack points in the network and 

examine how critical network components behave during an attack. Both TI and VI are 

calculated through network metrics and system state characterization of those metrics by 

means of threshold values. However, they are different in that, while fuzzy logic is used 
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to calculate TI, VI is evaluated using max-plus computing, minus-plus and division-plus 

computing vector functions. Using fuzzy logic for TI aids the multivariate input analysis 

by easily and readily combining inputs from widely varying sources [102]. Also, TI is 

applied to evaluate vulnerability for the MANET node, while VI is applied to evaluate 

vulnerability of the node in Internet. As illustrated in Figure 3.4, TI is controlled through 

feedback control mechanism by referencing the actual TI value calculated by the 

estimator (detector) with the TI threshold value TI’, which is not the case in VI. Another 

point for difference between TI and VI is that, for TI, significant attack sensitive network 

parameters are identified through classification trees methodology with the help of 

training dataset while for VI the selection of metrics is arbitrary and is based on user 

experience.   

Steps in Threat Index Computation - Theory and Illustration:  

Each step of the threat detection framework, whose objective is to calculate the 

Threat Index to detect an attack, is explained below with theory and illustration. 

Step 1: Log/Data Fetch:  

            In this step, the raw ad hoc network data is collected from MANET and fed to the 

detection framework on a real time basis. This step pre-processes the collected data from 

MANET to make it suitable for threat index evaluation as well as intruder identification. 

This framework fetches data for both training as well as testing. The training data is used 

to identify significant parameters and thresholds of those parameters. The testing data is 

used to perform the actual detection based on the training. 
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Step 2: Identification of Significant parameters/Threat metrics:  

This section provides the theoretical foundation of using data mining to identify 

the significant parameters for the IDRMAN. These significant parameters are used in 

both the detection and response framework in our model [97]. The measured values of 

these significant parameters are used to calculate TI in the detection mechanism and to 

identify the intruder in the response mechanism. 

 Traditionally, Intrusion Detection Approaches (IDA) are designed using expert 

knowledge of the system and attack methods [10]. Due to the complexity of modern 

network systems and sophistication of attackers, expert knowledge engineering is often 

very limited and unreliable [12]. One of the problems in the existing IDA is the 

computational overhead, which sometimes can be unacceptably excessive. Analyzing 

system logs requires large memory and processor resources. Usually an IDA is trained 

over this huge amount of system audit information, which increases the complexity of 

intrusion detection algorithms dramatically [11]. Long term training and testing is not 

suitable for the requirements of real-time detection and response, which may further limit 

the practical use of an IDA. The problem gets worse when the input audit information 

involves a high dimensionality of the data. Most of the existing algorithms assume a low 

dimensionality of the data. Another issue is the noise-tolerance performance of IDA. 

Some IDA schemes are very sensitive to the data representation. For instance these 

schemes may fail to generalize an unseen data if the representation contains irrelevant 

information. In some instance, it has been observed that training of IDA requires a noise 

free data (the data that is labeled ‘normal’) [10]. An IDA should also be able to 

distinguish an attack from an internal system fault. 
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 Thus, current IDA has practical problems in intrusion detection and they are also 

limited in the dimension of the input variables and in selecting qualitative and 

quantitative variables that can be used to predict the intrusion efficiently and accurately. 

To address the limitations of the existing approaches and to overcome the challenges in 

efficiently detecting the attacks, there is a need for intrusion detection approach based on 

statistics and machine learning concepts. CART is one such tool based on the data mining 

concepts. Data mining is defined as “the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data [95].”  Data mining automatically 

sifts large complex data, searching for and isolating significant patterns and relationships. 

The discovered knowledge is then used to generate reliable predictive models for 

detecting threats and attacks [10]. Data mining could be integrated with the intrusion 

detection system very well [12]. Many existing intrusion detection systems are 

constructed by manual encoding of expert security knowledge that makes the changes in 

these systems slow and expensive [15]. A data-mining framework can be used for 

adaptively building intrusion detection systems by utilizing the auditing programs to 

extract an extensive set of features that describe each network connection or host session. 

Data mining approaches like CART can be used to learn the rules that accurately capture 

the behavior of intrusions and normal activities. These rules can be then used for 

intrusion detection. The association rules and the frequent episodes that are computed 

from audit data can be used to uncover important attack sensitive parameters. CART is 

also an excellent tool in being pre-processing complement to other data analysis 

techniques. For example, CART's outputs (predicted values) can be used as inputs to 
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improve the predictive accuracy of fuzzy logic, neural nets, threshold evaluation and 

logistic regression. 

The main application of CART and data mining in the proposed model is to 

identify the significant attack sensitive network parameters from the wealth of raw 

network data. Due to CART, our model performs the variable selection and the intrusion 

detection efficiently with low false positive rate and with less processing, training and 

testing time. Due to the identification of significant attack sensitive network parameters, 

the results indicate that the model performs better as the dimension of the input data 

decreases, without compromising detection accuracy, a feature essential for on-line real 

time detection of the resource constraint networks [84]. 

Analysis of experimental results using the DARPA benchmark dataset shows that 

the CART approach performs better compared to related models like random projection 

and principal component analysis. Experimental results indicate that the proposed 

security model using the CART methodology can be used to identify the significant 

parameters, which then can be used for evaluating vulnerability and detect intrusion out 

of raw network data efficiently [84].   

In our model, the number of significant parameters used in the threat detection 

and intruder identification is decided by the variable importance tool in CART. If the 

variable importance for a network parameter is identified as 100%, it is selected for the 

threat detection and intruder response. For instance, in our experimentation, PL, QL and 

EC are selected since their importance is identified as 100% in the CART variable 

importance table. Variable importance is based on the contribution of predictors during 

the construction of the tree. Importance of a variable is determined by playing a role in 
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the tree construction, either as a main splitter or as a surrogate. The following paragraphs 

explain in detail, the concept of variable importance identification from a dataset using 

classification trees with an example. 

Classification Trees: 

Let Y1,Y2,…Yn, O be random variables where Yi has domain Dom(Yi) and O has 

domain Dom (O) = {1,…,J}. Here Y1,…, Yn are the predictor attributes and n is the 

number of predictor attributes. O is the class label. J denotes the number of class labels, 

which are 1, 2,…,J. i.e, J represents the set of possible values that the class label, O can 

have in its domain, Dom(O). It does not have any relation to any other subscript used. C, 

denotes a classifier function which is simply a mapping from inputs to outputs. However, 

we restrict the classifier function to have a particular structure as explained below: 

Classifier C is a function, C: Dom(Y1) x … x Dom (Yn)  Dom (O). Let S = 

Dom(Y1) x … x Dom (Yn) x Dom (O) be the set of events. i.e. it is the set of allowable 

input-output pairs. Here x represents the cartesian product or cross product. Thus, S is the 

cartesian product of the domains of all inputs and output. This kind of formalization 

allows one to explain what happens in the input-output space. The underlying assumption 

is that classification generates datasets according to probability distribution µ over the set 

of events S.  

To explain the function C and probability µ, with respect to the simulation 

scenario used in the thesis, let us consider the dataset, D that has the records sourced from 

the MANET subjected to security attack as shown in Figure 5.3. The network parameters 

in the dataset form the random variables, Y1,Y2,…Yn. Here domain Dom(Yi) represents 

the range of possible values of the MANET parameter, Yi.  1<i<n, is the number of 
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predictor attributes and Y1,…,Yn represents the predictor attributes. Let O be the class 

label that represents the attack. Hence Dom(O) contains range of possible predicted 

attacks. For example, let Y1,Y2,Y3,Y4 be four MANET parameters that denotes Number of 

collisions, Queue Length, Energy Consumption and Packet Loss respectively. Let O be 

the class label that represent an attack say DoS, Masquerade, Authentication etc.,. Then 

the set of events, S can be represented as Dom(QL) x Dom(NC) x Dom(EC) x Dom(PL) 

x Dom (Attacks). In this scenario, function C takes the network parameters, Yi as the 

input to predict the output attack, O. The classifier function C for this MANET scenario 

can be represented mathematically as 

C: Dom(QL) x Dom(NC)x Dom(EC) x Dom(PL)  Dom (Attacks).         (3.1)   

 In this MANET scenario, the probability µ over the set of events, S: Dom (QL) x 

Dom (NC) x Dom (EC) x Dom (PL) x Dom (Attacks) represents the likelihood that these 

MANET parameters would predict the output class, i.e the attack using the classifier C. 

For a given classifier, C, and a given probability measure, µ over S, the 

Misclassification rate (generalization error) of the classifier C is a function: 

MCµ(C)=µ[C(Y1,…,Yn) ≠ O].  For a given training dataset, D, of N independent 

identically distributed samples from S, sampled according to probability distribution µ, a 

classifier C, is a function that minimizes the misclassification rate (generalization error) 

function: MCµ(C) [87].  

Misclassification Rate, MCµ(C) could be evaluated through test sample estimate 

and resubstitution estimate explained as follows. Let us divide dataset D into D1 and D2. 

Let C be the classifier constructed using the training dataset D1, and let D2 be an 
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independent testing dataset with N tuples. Using these assumptions, we can quantify the 

misclassification rate MCµ(C) of C by means of resubstitution estimate R(C, D2) [126].    

Let di be a tuple such that di ∈ D2 and di = {Yi1, Yi2, …Yim}. Here Yij are the 

random variables that make up D2. Let Odi = C (di) be the class label predicted by C for 

di.  If the true class O’di of di is different from Odi then di is said to be misclassified by C. 

Then resubstitution estimate R(C, D2) of C with respect to D2 is the fraction of the 

number of tuples in D2 misclassified by C. 

 Thus, R(C, D2) = | {di ∈ D2 and C misclassifies di} | / |D2| =    ∑
=
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where 1{A} = {1 if A is True; 0 if A is false}. 

Then MCµ(C) = R(C, D2) =            (3.2) ∑
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As an example, let there be 100 records in Testing Dataset D2, whose fields 

consists of DoS attack sensitive parameters like QL, NC, EC, PL and other network 

parameters. Let the classifier C, trained using Dataset D1 identify 4 records as Normal 

when the true label is DoS. Similarly let C identify 4 records as DoS when the true label 

is Normal. Then as per equation 3.2, 

MCµ(C) = R(C, D2)= |{d ∈ D2 and C misclassifies d}|/|D2| = =8/100.  ∑
=

≠×
N

i
Odc

idi
N

1
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In general, the classifier construction problem is very hard to solve if we allow the 

classifier to be an arbitrary function. Arguments rooted in statistical learning theory [116] 

suggest that we have to restrict the function of classifier to have a particular structure in 

order to solve this problem. Hence, we restrict the function to a decision tree structure. 
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A decision tree is a special type of classifier. It is a directed acyclic graph, T, in 

the form of a tree. The root of the tree, Root(T) does not have any incoming edges. Every 

other node has exactly one incoming edge and may have zero or more outgoing edges. A 

node Ŧ, without outgoing edges is a leaf node, while those with outgoing edges are called 

internal nodes. Each leaf node is labeled with one class label, while each internal node, Ŧ, 

is labeled with one predictor attribute YT, where YT Є {Y1,…, Yn} is called the split 

attribute. Let the label of the node Ŧ be denoted by Label(Ŧ). Each edge (Ŧ, Ŧ’) from an 

internal node Ŧ, to one of its children Ŧ’ has a predicate q(Ŧ, Ŧ’) associated with it, where 

q(Ŧ, Ŧ’) involves only the splitting attribute YT of node n. A set of predicates Q is non-

overlapping, if the conjunction of any two predicates in Q evaluates to false. A set of 

predicates Q is exhaustive if the disjunction of all predicates in Q evaluates to true. Let 

the splitting predicates of Ŧ  are the set of predicates QŦ on the outgoing edges of an 

internal node Ŧ. Splitting criteria of Ŧ, denoted by crit(Ŧ),  is the combined information of 

splitting attribute and splitting predicates. For a given decision tree T, we can define the 

associated classifier in the following recursive manner: 

 

C(y1,…, yn, Ŧ) =      Label (Ŧ); if Ŧ is a leaf node.                                                         (3.3) 

                                 C(y1,…, yn, Ŧj); if Ŧ is an internal node  

and  Ŧj is children node of Ŧ, yi is label of Ŧ, and  q(Ŧ,  Ŧj) (yi) = true 

DT (y1…, yn) =    C(y1,…, yn, Root(Ŧ))                                                                          (3.4) 

As per the above definitions, if the tree T is a well-formed decision tree, then the 

function DT() is also a well defined classifier which can be called as a decision tree 

classifier or classification tree. Thus, for a given dataset D = {ω1,…, ωN}, where ωi are 
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independent identically distributed random samples from a probability distribution µ over 

S, a classification tree T that minimizes the misclassification rate, MCµ(DT) needs to be 

constructed. 

 Following Figure 3.6 illustrates the classification tree induction schema. 

 

 

 

 

 

 

  

BuildTree(I/P: Node Ŧ, dataset D, split selection method, O/P: classification tree T for D). 

1. Apply V to D to find the split attribute X for node Ŧ. 

2. Let n be the number of children for Ŧ. 

3. if (Ŧ splits) 

        Partition D into D1,…, Dn and label node Ŧ with split attribute X. 

        Create children nodes Ŧ1,…,Ŧn of Ŧ and label the edge(Ŧ, Ŧi) with predicate q(Ŧ, Ŧi) 

        for each i Є{1,…n} 

              BuildTree(Ŧi, Di, V) 

        end for each 

    else 

         Label T with the majority class label of D 

  Figure 3.6 Classification Tree Induction Schema Algorithm 

 A classification tree is usually constructed in two phases. In the first phase - 

growth phase, an overly large classification tree is constructed from the training data. 

Most classification tree construction algorithms grow the tree top-down in the greedy 

way as shown in the above algorithm, which takes split selection method as an argument.  

The most popular split selection method that has been widely used for the classification 

tree construction is the Gini index rule. 

Gini rule is used as a measure of how well splitting rule separates classes in the 

parent node. Gini index, originally proposed by Breiman et al is given by the equation 3.5 

[88].  

            (3.5) ∑
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Where  is the relative frequency of class j at node t; this index measures the impurity 

of node and has a maximum value, when records are equally distributed among all 

classes, which implies the least interesting information. The minimum value of (0.0) 

indicates all records belong to one class, implying the most interesting information. The 

equation 3.6 computes the quality of split, when a node p is split into k partition 

(children). 
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 Here k is number of children nodes, ni is the number of records at child i and n is 

the number of records at node p.  

 In the second phase, pruning is used to generate a sequence of simpler and 

simpler trees, each of which is a candidate for the appropriately-fit final tree. In the 

pruning phase, the final size of the tree T is determined with the goal to minimize an 

approximation of  misclassification rate, MCµ(DT) where DT is a decision tree classifier or 

classification tree and µ is a probability distribution and is calculated as defined earlier.  

 Pruning is the process of removing leaves and branches to improve the 

performance of the decision tree when it moves from the training data (where the 

classification is known) to real-world applications (where the classification is unknown -- 

it is what one is trying to predict).  The tree-building algorithm makes the best split at the 

root node where there are the largest number of records and hence, a lot of information. 

Each subsequent split has a smaller and less representative population with which to 

work.  Towards the end, idiosyncrasies of training records at a particular node display 

patterns that are peculiar only to those records. These patterns can become meaningless 
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and sometimes harmful for prediction if one tries to extend rules based on them to larger 

populations. As in our example, say the classification tree is trying to predict the attack 

type and it comes to a node containing one record ‘X’ with an anomaly and several other 

records. Classification algorithm can decrease the diversity at that node by a new rule that 

states that “records like ‘X’ are tall and thus classify the training data. In a wider universe 

this rule is not really helpful. Pruning methods solve this kind of problem. They let the 

tree grow to maximum size, and then remove smaller branches that fail to generalize. 

Also, since the tree is grown from the training data set, when it has reached full structure 

it usually suffers from over-fitting (i.e. it is "explaining" random elements of the training 

data that are not likely to be features of the larger population of data). This results in poor 

performance on real life data. Therefore, it has to be pruned using the validation data set.  

 

 

 

 

 

 

Example to illustrate the application of decision trees for parameter identification: 
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Queuelength (QL)  > 1157 QL  <= 1157 

Packet Drop (PD) > 208 

PD <= 208

 

Figure 3.7 Example for Classification Trees 

Let us consider the following example to explain the concept of classification 

trees as used in the thesis. Let us consider a dataset for training that has the records 

sourced from the network that is subjected to security attack.  At the beginning, all of the 

records in the training set are together in one big box. The algorithm then systematically 

tries breaking up the records into two parts, examining one variable at a time and splitting 

the records on the basis of a dividing line in that variable (say, Queuelength  > 1157 or 

Queuelength <= 1157).  The objective is to attain as homogeneous set of labels (say, 

"DoS", “Masquerade”, “black hole” “unauthorized access” or "normal") as possible in 

each partition.  This splitting or partitioning is then applied to each of the new partitions. 

The process continues until no more useful splits can be found. 

The process then starts with a training dataset consisting of pre-classified records. 

Pre-classified means that the target field, or dependent variable, has a known class or 

label ("DoS" or "Normal" for example). The goal is to build a tree that distinguishes 

HstSvcCt  (HS) > 500 Energy 
Consumption 
(EC) > 2  Joules 

EC <= 2 Joules

HS <= 500

Blackhole

DoS 
Unauthorized Access

Normal

Masquerade 
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among the classes. For simplicity, let us assume that there are only two target classes and 

that each split is binary partitioning. The splitting criterion easily generalizes to multiple 

classes, and any multi-way partitioning can be achieved through repeated binary splits. 

To choose the best splitter at a node, the algorithm considers each input field in turn.  In 

essence, each field is sorted. Then, every possible split is tried and considered, and the 

best split is the one which produces the largest decrease in the diversity of the 

classification label within each partition (this is just another way of saying "the increase 

in homogeneity").  This is repeated for all fields, and the winner is chosen as the best 

splitter for that node.  The process is continued at the next node and, in this manner, a full 

tree is generated. The most important application of the classification trees in this 

dissertation is to identify the significant splitters (say, Queuelength, Packet Drop, Energy 

Consumption) that is used to distinguish classes (say, “DoS”, “Masquerade”, “Black 

Hole”, “Unauthorized Access”, “Normal”) efficiently. 

Step 3 - Identification of thresholds for the significant parameters: 

In order to perform the threat detection, intruder identification and response 

operations, we need to identify the normal, uncertain and vulnerable states for the 

significant network parameters that have been identified in Step 2. Six-sigma concept is 

used to calculate the Upper Control Limit (UCL) and Lower Control Limit (LCL) values 

in order to differentiate the normal, uncertain and vulnerable state of the significant 

network parameters. These thresholds are used in the fuzzy membership functions 

applied for calculating the Threat Index (explained in Step 5). In the response framework 

these threshold values for the significant parameters are used to update the counters and 

flag the intruder for response actions (explained in Chapter 4). A similar approach of 
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setting the width of UCL and LCL for calculating thresholds to differentiate normal state 

from abnormal state of network node is proposed in [105]. 

Six-sigma is a data driven approach used to measure quality and is a methodology 

for eliminating defects [83]. Six-sigma is used in the model to achieve extremely low 

failure rates in intrusion detection. Since six-sigma is six standard deviation, in theory, a 

six sigma would be approximately two failures per billion attempts. In practice, due to a 

drift of plus or minus 1.5, six sigma status means less than 3.4 failures per million. This is 

an extremely low rate of failure. Here failure refers to the defect in the intrusion 

detection. Please note that the six-sigma model is being used only for obtaining the 

thresholds of the significant parameters. Also, the six sigma concept is used only from the 

statistical variability point of view and not from the enterprise point of view. So the 

issues like management aspect and tracing aspect which are applicable for the enterprise 

application do not come in to picture in our model It has been demonstrated that six 

sigma methodologies, integrated with rigorous statistics, can be flexible, powerful and 

successful without being either overly simplistic or inordinately cumbersome [83]. 

The equations that are used to calculate upper and lower control limit values to 

differentiate normal state, uncertain state and vulnerable state for significant attack 

sensitive parameters are given below. The upper and lower control limits for the 

significant parameters are computed using the training data sourced from MANET. 

Theoretical control limits of UCL and LCL for uncertain state are represented as: 

            UCLus = 
N
σµ 3

+             (3.7) 
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                              LCLus =
N
σµ 3

−                     (3.8) 

Theoretical control limits of UCL and LCL for vulnerable state are represented as: 

            UCLvs = 
N
σµ 6

+          (3.9) 

                              LCLvs =
N
σµ 6

−                   (3.10) 

Here µ represents the mean of the N data items, (σ)2 represents the variance which 

is the average of the square of the distance between each point in a total population (N) 

and the mean (µ), and σ represents the standard deviation, which is the square root of the 

variance. 

When the lower control levels are negative and if those negative values do not 

make sense for a particular parameter (For eg. packet drop and queue length can never be 

practically negative), only UCLus and UCLvs are considered to determine the thresholds 

for the normal, uncertain and vulnerable state. Here values greater than or equal to UCLvs 

correspond to the vulnerable state. The values smaller than or equal to UCLus correspond 

to the normal state, and values between UCLvs and UCLus correspond to the uncertain 

state.  

If the lower control levels are not negative or if the negative values are relevant 

for a particular parameter, then both LCLus and LCLvs are considered in addition to UCLus 

and UCLvs for determining the thresholds. Here values greater than UCLvs or smaller than 

LCLvs correspond to the vulnerable state. The values between LCLus and UCLus 
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correspond to the normal state, and values between UCLvs and UCLus or between LCLvs 

and LCLus correspond to the uncertain state. The relationship between LCL and UCL 

with VS, US and NS is illustrated in the Figure 3.8. 
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Example to illustrate the six sigma methodology for threshold identification: 

The example below explains how the six-sigma methodology is used to calculate 

the threshold values for the significant parameters in this dissertation. 

 Let us consider the DoS attack for which network parameters, PD (Packet Drop), 

Queue Length (QL) and Energy Consumption (EC) are identified as significant 

parameters through the classification trees methodology described in Step 2.  The training 

 88



data sourced from the MANET is used to compute average µ and standard deviation σ for 

these attack sensitive network parameters. The LCL and UCL of these parameters for the 

uncertain and vulnerable state are then calculated using the equations 3.7 to 3.10 and are 

shown in the Table 3.1.  

         Table 3.1 UCL and LCL values of significant parameters  

Parameter  µ  σ UCLvs UCLus LCLus LCLvs  
Packet Drop (PD) 29.5294 171.4791 208.6336 119.0815 -60.0227 -149.5747 
Queue Length (QL) 154.307 960.6954 1157.721 656.0145 -347.3991 -849.1059 
Energy Consumption 

(EC) Joules 
0.6852 1.2532 1.9941 1.3397 0.8953 -0.6237 

 

As shown in Table 3.1, LCL values for PD, QL and EC are negative and UCL 

values are positive. Since the negative values do not make sense for PD, QL and EC, 

values greater than or equal to UCLvs correspond to the vulnerable state. The values 

between UCLvs and UCLus correspond to the uncertain state. Values less than or equal to 

UCLus correspond to the normal state. Hence for PD, values greater than or equal to 208 

will represent the vulnerable state. Values of PD between 119 and 208 will represent the 

uncertain state and values of PD less than or equal to 119 will represent the normal state. 

For QL, values greater than or equal to 1157 will represent the vulnerable state. Values of 

QL between 656 and 1157 will represent the uncertain state and values of QL less than or 

equal to 656 will represent the normal state. For EC, values greater than or equal to 

1.9941 joules will represent the vulnerable state. Values of EC between 1.9941 and 

1.3397 will represent the uncertain state and values of EC less than or equal to 1.3397 

will represent the normal state. These threshold values are used to obtain the fuzzy 

relationships of the network parameters with the membership functions as explained in 

Step 5. 
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Step 4 - Methodology to set the TI thresholds from the Training Data: 

 We have set the TI metric to be a number between 1 and 10, where 10 represents 

the highest threat (Most Vulnerable State) and 1 represents the lowest threat (Most 

Normal State) to the node. For the value of TI to make sense, we need to classify which 

number indicates which state of the node – normal state, uncertain state, vulnerable state. 

So we need to identify uncertain state threshold (P1) and vulnerable state threshold (P2) 

for TI from this range of 1 to 10, such that values of TI less than the uncertain state 

threshold (P1) indicate a node is in normal state, TI values greater than the vulnerable 

state threshold (P2) indicate a node is in vulnerable state and TI values between the 

uncertain state threshold (P1) and the vulnerable state threshold (P2) indicate a node is in 

the uncertain state.   

 Once obtained, these TI thresholds are used for the following purposes in the 

proposed model: First purpose is to assign outputs (Yj) in the fuzzy rule(explained in Step 

5) and the second purpose is to identify the node state as being normal, uncertain or 

vulnerable by comparing the computed TI with these thresholds.  

 Since P1 and P2 are the integers values between 1 and 10 and P2 should be greater 

than P1, 45 combinations of P1 and P2 are possible. The following brute force search 

algorithm is applied on the training sample space S to search for the pair (P1, P2) that 

gives the correct classification of TI. 

 

Algorithm: 

            The algorithm for the TI threshold training is illustrated in the Figure 3.9. 
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1. Let there be N records in the training sample space S, where each record consists of the  

    following elements:{x1, x2,…xm, Outcome Label}. Here x1, x2,…xm represent the 

    values of the significant parameters and ‘Outcome Label’ represents ‘Normal’, 

   ‘Uncertain’ and ‘Vulnerable’ to indicate the true state. 

2. For each of the possible pair (P1, P2) where P2 > P1 and 1<=P1<=10 and 1<=P2<=10 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

Figure 3.9 TI Threshold Training Algorithm 

 Based on the experimentation explained in Chapter 5, the TI threshold training 

algorithm resulted in the pair (4, 7) having the highest count. Hence, the TI threshold for 

the uncertain state of the network, P1, is chosen to be 4, and the TI threshold for 

vulnerable state of the network, P2, is chosen to be 7. 

Step 5 - TI Evaluation using Fuzzy logic based methodology: 

 TI is evaluated using fuzzy logic and continuously measured values of the 

significant network parameters.  Fuzzy logic is one of the heuristic approaches for threat 
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evaluation. One of the active areas of fuzzy logic applications is fuzzy expert control 

system. Fuzzy expert control systems are systems that use common sense rules and 

natural language statement instead of hard-boundary. Fuzzy control systems have several 

important characteristics that suit intrusion detection well. They are summarized as 

follows: 

• Fuzzy systems can readily combine inputs from widely varying sources. 

• It is easy, flexible, fast and accurate in design and implementation. 

• Fuzzy logic is a very natural approach to represent human thinking [85]. 

• It is suitable for both linear and nonlinear systems. 

• It allows for imprecise mathematical models and measuring sensors 

• It is more robust, accurate and flexible than classical controllers [102]. Fuzzy 

logic may radically affect computer security as a relatively new paradigm. 

• It can be used in trusted system analysis and design, in measuring the security of 

the systems, and in representing the imprecise human world of policies and 

inference [103]. 

Fuzzy intrusion detection system is an effective and flexible system compared to 

the existing distributed intrusion detection systems. Fuzzy logic enables efficiency, 

scalability, effectiveness, robustness, and adaptability to changing methods of attacks 

[103]. In addition, fuzzy logic is an excellent complement to other data analysis 

techniques. For example, outputs (predicted values) of data mining can be used as inputs 

to improve the predictive accuracy of fuzzy logic. Fuzzy logic can be integrated with the 

intrusion detection system very well [104]. Using the fuzzy logic as the detection 

mechanism, produces an effective detection mechanism that minimizes false alarm rates, 
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and helps to tolerate the legitimate variations in behavior that occur when the system 

users perform tasks that they do not ordinarily do. 

 A good anomaly-based intrusion detection system should be able to perform 

correlation analysis of multiple metrics (input network parameters), anomalous behavior, 

and the threat value evaluation. Such a correlation can be addressed by a set of fuzzy 

variables and rules, which if properly constructed, can help the system formulate an 

accurate threat evaluation, while allowing flexible detection for legitimate variation in 

behaviors. The proposed fuzzy representation enables the proposed protocol to do this 

correlation accurately and effectively. The fuzzy concepts used to evaluate Threat Index 

are described as below. 

Mamdani Fuzzy Rule Based Model:  

Mamdani fuzzy-rule based systems constitute a linguistic description in both the 

antecedent parts and the consequent parts. Each rule is a description of a condition-action 

statement that may be clearly interpreted by the users. To describe a mapping from input 

U1× U2 × …× Un (where × is the Cartesian product) to output W, the linguistic rule 

structure of Mamdani models is as follows: Ri: IF x1 is Ai1 and … and xn is Ain THEN y is 

Ci, i = 1, …, L. Where, L is the number of fuzzy rules, xj ∈ Uj, j = 1, 2, …, n, are the 

input variables, y is the output variable, and Aij and Ci are linguistic variables or fuzzy 

sets for xj and y respectively. Aij and Ci are characterized by membership functions
 

 and , respectively. Inputs are of the form: x1 is A’1, x2 is A’2,…, xr is A’n. 

where A’1, A’2,…, A’n are fuzzy subsets of U1, U2,… Un, which are the universe of 

disclose (or the domain of interest) of inputs. The snapshot of sample Mamdani based 

fuzzy model simulated in MATLAB is attached in Appendix F.  
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Fuzzification: 

 The first step in the design of a fuzzy logic evaluation system is the fuzzification 

of the input and output linguistic variables.  

Fuzzy Rule Base: 

 The second step in the design of a fuzzy logic evaluation system is to convert the 

designer’s knowledge of the process into a set of if-then rules that relate input to output. 

Generically, it can be stated in the following form:  If X is x then Y is y Where X and Y 

are linguistic variables and x and y are their linguistic values. The rule base defines a set 

of imprecise dependencies between the two linguistic variables. This is the module that 

determines the rule. The rules in the rule base are verified for the following mathematical 

properties:  

• Completeness  
• Consistency  
• Continuity  and 
• Interaction. 
 

Defuzzification: 

 The third and last step in the design of a fuzzy logic control system is to defuzzify 

the results of the rule base to produce a crisp control action. This provides the 

mathematical basis to proactively respond to failures and to control at much higher 

speeds. Consider the example of a simple fuzzy system with two fuzzy rules as shown in 

the following Figure 3.10. 

 

 

                    Input x1 =10                     Input x2=1 
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   Figure 3.10 Example for Defuzzification 

Here, the first rule is “IF x1 is small and x2 is small, then TI=0.3 x1+ x2 “ and 

second rule is “IF x1 is large and x2 is large, then TI = 0.4 x1 + 2 x2“ where x1 and x2 are 

the input metrics and TI is the output Threat Index.   For the given input vector (x1, x2) = 

(10, 1), membership values are calculated for each rule. The first rule has membership 

values, 0.6 and 0.3, for the given input values. For the min operator, as per Mamdani 

model, the rule strength for the first rule is min (0.6, 0.3) = 0.3. Similarly the outputs and 

rule strengths are calculated for each rule. The output for each rule for the input metric 

vector (10, 1) is 4, and 6 respectively and the rule strength for the second rule is min (1.0, 

0.6) = 0.6. Therefore, the final system output is 

 TI = y*=∑ wiyi / ∑ wi   = (0.3 * 4 + 0.6 * 6) / (0.3 + 0.6) = 5.33 (approx) 

Design of Antecedent Parts and Design of Fuzzy Inference System: 

Once the vulnerability metrics and their normal, uncertain and vulnerable state 

values are designed, the membership function and the fuzzy rules can be designed.  A 

sample set of fuzzy rules is shown below. 

  If Vulnerability metric is low then TI state is normal (rule 1) 

  If Vulnerability metric is medium then TI state is uncertain (rule 2) 

IF 
and 

1 1

THEN TI=0.3 x1 +  x2

THEN TI=0.4 x1 + 2 x2IF 
and 

1 1

x1

x1

Rule 1 

0.6 0.3 

x2

x2

Rule 2 
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  If Vulnerability metric is high then TI state is vulnerable (rule 3) 

Here the vulnerability metrics are antecedent parts and antecedent parts need to be 

designed to partition an input space as shown in the following Figure 3.11. 

Rule 3 

Input Vulnerability 
Metric 2 

Rule 2 

Rule 1 

   Figure 3.11 Fuzzy Rules and Vulnerability Metrics 

Input Vulnerability Metric 1 

Fuzzy systems allow overlapping rule areas to shift from one control rule to 

another. The degree of this overlapping is defined by membership functions. The 

overlapping can be optimized by proper fuzzy training. Such optimization takes care of 

the multivariate input analysis effectively. 

Optimization of the Membership Functions Using Fuzzy Training: 

For a fuzzy variable, x with universe of discourse [0, Ux] and three fuzzy sets NS, 

US, and VS, the membership functions are as shown in Figure 3.12. In this figure, nsx and 

vsx are initialized with the threshold values computed in Step 3. usx is initialized to be the 

average of nsx and vsx. The membership function optimization problem is the 

determination of the optimized nsx, usx and vsx points for the fuzzy variable, x.  
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Figure 3.12 Membership Functions for a Fuzzy Variable 
 
 The membership function optimization methodology works by increasing or 

decreasing the membership value of each fuzzy set based on the multivariate input 

training data. The concept here is to increase/decrease the membership values by 

modifying the slope. This is achieved by multiplying vsx with decrease_ratio in order to 

shift vsx value to the left; nsx is multiplied with increase_ratio in order to shift nsx to the 

right, and for usx, it is shifted either left or right depending on the input values.  

Figure 3.13 shows the membership functions for fuzzy variable, x after vsx is shifted to 

left by multiplying vsx with decrease_ratio 

 

       Figure 3.13 Membership Functions for a Fuzzy Variable by Shifting vsx to Left                          
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0
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0.4
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0.8

NS US VS1

µ(x) 

Input or output fuzzy variable, x
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Figure 3.14 shows the membership functions for fuzzy variable, x after nsx is 

shifted to right by multiplying nsx with increase_ratio. 

 

   Figure 3.14 Membership Functions for a Fuzzy Variable by Shifting nsx to Right 

 Due to the triangle rule, value of usx must always be greater than nsx and lower 

than vsx. The triangle rule is given by: nsx < usx < vsx. This rule is taken care by checking 

the result of multiplication and making sure the above rule is preserved before assigning 

the new values to nsx, usx and vsx.  

 In our membership function optimization methodology, the increase_ratio and 

decrease_ratio were selected to be 1.03 and 0.97 respectively. This is due to the reason 

that the selected training data is not continuous, and so we cannot choose values less than 

3% and keep increasing or decreasing it. Also, the decrease/increase ratio cannot be in a 

very large range say (say 60% or 40%). This is because the range between nsx and usx is 

set to 50% and the range between usx and vsx is set to 50% as usx is initialized to be the 

average of nsx and vsx. The use of 3% for increment/decrement ratio also means that the 

membership function optimization methodology needs around 15 steps to make nsx = usx 

(the maximum value for nsx using triangle rule), and around 15 steps to make vsx = usx 

(the minimum value for vsx using triangle rule). To summarize, in recommending values 

0 nsx usx vsx Ux 
0

0.2

0.4

0.6

0.8

NS US VS
1

 µ(x ) 

Input or output fuzzy variable, x
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for increment/decrement ratio, it is necessary to ensure that a single variation of the 

triangle points (nsx, usx, and vsx) does not result in large variation in the membership 

functions. In our case it takes a maximum of 15 intervals to increase from nsx to usx or to 

decrease from vsx to usx.  

Also, in our fuzzy membership function optimization methodology, it is not 

necessary to optimize all input variables at once. For example, it is not necessary that if 

one wants to optimize EC membership functions, one should optimize PD membership 

functions also at the same time. Only if the value of the input variable is 20% lesser than 

nsx or 20% greater than vsx, the optimization of its membership functions is considered. 

This is due to the reason that as per our testing performed by varying percentages to the 

variables in the training data, values less than 10% generated too narrow values for 

membership function optimization and values greater than 30% generated too far values 

for membership function optimization. MATLAB code which implements our fuzzy 

training methodology to generate optimized FIS from the training data are attached in the 

Appendix C. Thus, normalization of TI (security level) from the arbitrary fuzzy sets is 

performed with the help of multivariate fuzzy membership function optimization 

algorithm. This algorithm identifies the optimized membership function points of all the 

input significant parameters by training them together. These trained and optimized 

membership function points normalize the input parameters though they are in multi 

dimensional space and hence generate the normalized output TI.  

Design of consequent parts: 

They can be designed to express the output as constant values, say TI = 1 to 3 for 

normal state, TI = 4 to 6 for uncertain state and TI = 7 to 10 for vulnerable state.  
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Formal Analysis: 

Let   X ={x1, x2 … xn}                               (3.11) 

represent a sample space of the attack sensitive network parameters. For a sample space 

of objects defined as X = {xi}, the fuzzy set A in X is a set of ordered pairs defined as:  

A={(xi,µj(xi)),xЄX}                                                                              (3.12) 

The above set of ordered pairs in the area of fuzzy logic can be formally represented as: 

A={x1/µj(x1) + x2/µj(x2) + x3/µj(x3) + … + xn/µj(xn)}                           (3.13) 

 In the above equation 3.13, ‘+’ and ‘/’ are purely syntactic symbols and do not 

denote arithmetic operations. In the above expressions, µj represents the grade of 

membership of xi. Each attack sensitive network parameter has a grade of membership 

corresponding to its normal, uncertain and vulnerable threshold ranges. The grade of 

membership indicates the level of participation of the metric in a particular threshold 

range. The grades of membership are defined as µNS for the normal threshold range, µUS 

for the uncertain threshold range and µVS for the vulnerable threshold range. The values 

of membership function µj (xi) are real numbers in the interval [0, 1].  The membership 

function values can be computed using many different schemes. In this model, we have 

used trapezoidal and triangular membership function for fuzzy variables. 

 Fuzzy system in our model uses linguistic variables to describe input and output 

to perform a fuzzy operation on the inputs for generating the output. Since this model is 

based on a Mamdani type of fuzzy controller [103], it uses composition based inference 

mechanism, which combines all rules into an aggregated system output and determines 

the final non-fuzzy control value. This model uses a Centroid method with min operator 
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for defuzzification, where the final system output, Threat Index (TI), using the fuzzy 

logic is expressed as [103]:  TI = 
∑

∑

=

=

m

j
j

m

j
jj

w

yw

1

1                   (3.14)        

Here, yj indicates the output value associated with the particular rule j in the fuzzy set; 

The output yj takes its values from the threshold values of TI for normal, uncertain and 

vulnerable states. Here “m” indicates the number of rules and wj indicates the rule 

strength for rule j in the fuzzy set.  

Rule strength illustrates how active or reliable a rule is in the fuzzy set. Rule strength is 

calculated as:  

                                            wj = min(µj (xi))                      (3.15) 

where i Є {1, 2,…n}, and n is number of network parameters for each rule. If there are k 

membership values possible for the network parameters and if n is the number of network 

parameters, then m = kn rules are possible and 1<= j <= m.   

 Since all the significant parameters that are selected have equal importance (as 

explained in Step 2), they are equally weighted in the TI calculation. 

Example to illustrate fuzzy logic methodology for TI evaluation to detect threat: 

 The network parameters, Packet Drop (PD), Queue Length (QL) and Energy 

Consumption (EC) are identified as the significant parameters for a DoS attack 

(explained in Step 2) The threshold ranges for the normal state (NS), uncertain state(US) 

and vulnerable state(VS) of these network parameters were identified in Step3 and are 

listed again below for reference.  

For the Packet Drop(PD) parameter, PD<=119 represents normal state, 

119<PD<208 represents uncertain state and PD>=208 represents vulnerable state. For the 
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Queue Length (QL) parameter, QL<=656 represents normal state, 656<QL<1157 

represents uncertain state and QL>=1157 represents vulnerable state. For the Energy 

Consumption (EC) parameter, EC<=1.33 joules represents normal state, 1.33<EC<1.99 

joules represents uncertain state and EC>=1.99 joules represent vulnerable state. 

 The next step is to formulate the fuzzy relation of these three attack sensitive 

network parameters with the grade of membership. Figure 3.15 below represents the 

fuzzy relation of PD with the membership functions.  

           

Figure 3.15 Fuzzy Model for Packet Drop Metric 

The Figure 3.15 shows two trapezoidal and one triangular shaped fuzzy set. We 

have used the triangular membership functions shown in Figures 3.12 through 3.17 due to 

the reason that the parametric and functional descriptions of these membership functions 

are efficient. In these membership functions, the designer needs only to define three 

parameters; nsx, vsx and usx. Here nsx, usx, and vsx are the normal state, uncertain state 

and vulnerable state threshold values. It has been proven that triangular MFs can 

approximate any other membership function [127]. This function is specified by three 

parameters (a, b, c) as follows: 
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where a = nsx, b = vsx, c = vsx and xin is the input to the fuzzy system of type fuzzy 

variable x. 

The first trapezoid represents the fuzzy set µNS(PD) = {1.0/>=0;<=119, 0.0/163}. 

This fuzzy set indicates that membership function µNS of PD is 1 for the value of PD from 

0 to 119, and the membership function µNS of PD is 0 when the value of PD is 163. The 

second fuzzy set is a triangle and represents the fuzzy set µUS (PD) = {0.0/119, 1.0/163, 

0.0/208}. The third fuzzy set is a trapezoid and represents that µVS(PD) = {0.0/163, 

1.0/>=208}. 

The fuzzy relation of QL with the membership functions is represented in      
Figure 3.16.             

                                              

                          Figure 3.16 Fuzzy Model for Queue Length Metric 

 The Figure 3.16 shows two trapezoidal and one triangular shaped fuzzy set. The 

first trapezoid represents the fuzzy set µNS(QL) = {1.0/>=0;<=656, 0.0/906}. This fuzzy 

set indicates that membership function µNS of QL is 1 for the value of QL from 0 to 656, 

and the membership function µNS of QL is 0 when the value of QL is 906. The second 

fuzzy set is a triangle and represents the fuzzy set µUS (QL) = {0.0/656, 1.0/906, 
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0.0/1157}. The third fuzzy set is a trapezoid and represents that µVS(QL) = {0.0/906, 

1.0/>=1157}. 

 The fuzzy relation of EC with the membership functions is represented in         
Figure 3.17. 

                  
   Figure 3.17 Fuzzy Model for Energy Consumption Metric 

 The Figure 3.17 shows two trapezoidal and one triangular shaped fuzzy set. The 

first trapezoid represents the fuzzy set µNS(EC) = {1.0/>=0;<=1.33, 0.0/1.66}. This fuzzy 

set indicates that membership function µNS of EC is 1 for the value of EC from 0 to 1.33 

joules, and the membership function µNS of EC is 0 when the value of EC is 1.66 joules. 

The second fuzzy set is a triangle and represents the fuzzy set µUS (EC) = {0.0/1.33, 

1.0/1.66, 0.0/1.99}. The third fuzzy set is a trapezoid and represents that µVS(EC) = 

{0.0/1.66, 1.0/>=1.99}. 

 Next we assign values to the output parameter yj. As explained in Step4, the 

uncertain state and vulnerable state thresholds for TI are 4 and 7 respectively. These 

thresholds are used to assign the values to the output yj. The implication relation “VS PD” 

 “VS TI”, “VS QL”  “VS TI”, “VS EC”  “VS TI”, “NS PD  “NS TI” and so on 

is used in arriving at the output for each rule.  
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 The next step is to formulate all the combination of rules possible for this system. 

Since the system has 3 network parameters and 3 grades of membership for each 

parameter, i.e. n=3 and k=3 as per the notations used in the description, m =kn= 33 = 27; 

So 27 combinations of rules are possible. The rules and their associated output are as 

below:  

 

 Rule 1: If PD is NS and QL is NS and EC is NS; threat index of the rule y1 is NS     
 Rule 2: If PD is NS and QL is NS and EC is US; threat index of the rule y2 is NS     
 Rule 3: If PD is NS and QL is NS and EC is VS; threat index of the rule y3 is NS     
 Rule 4: If PD is NS and QL is US and EC is NS; threat index of the rule y4 is NS     
 Rule 5: If PD is NS and QL is US and EC is US; threat index of the rule y5 is US     
 Rule 6: If PD is NS and QL is US and EC is VS; threat index of the rule y6 is US     
 Rule 7: If PD is NS and QL is VS and EC is NS; threat index of the rule y7 is NS     
 Rule 8: If PD is NS and QL is VS and EC is US; threat index of the rule y8 is US     
 Rule 9: If PD is NS and QL is VS and EC is VS; threat index of the rule y9 is VS    
 Rule 10: If PD is US and QL is NS and EC is NS; threat index of the rule y10 is NS     
 Rule 11: If PD is US and QL is NS and EC is US; threat index of the rule y11 is US     
 Rule 12: If PD is US and QL is NS and EC is VS; threat index of the rule y12 is US     
 Rule 13: If PD is US and QL is US and EC is NS; threat index of the rule y13 is US     
 Rule 14: If PD is US and QL is US and EC is US; threat index of the rule y14 is US     
 Rule 15: If PD is US and QL is US and EC is VS; threat index of the rule y15 is US     
 Rule 16: If PD is US and QL is VS and EC is NS; threat index of the rule y16 is US     
 Rule 17: If PD is US and QL is VS and EC is US; threat index of the rule y17 is US     
 Rule 18: If PD is US and QL is VS and EC is VS; threat index of the rule y18 is VS     
 Rule 19: If PD is VS and QL is NS and EC is NS; threat index of the rule y19 is NS     
 Rule 20: If PD is VS and QL is NS and EC is US; threat index of the rule y20 is US     
 Rule 21: If PD is VS and QL is NS and EC is VS; threat index of the rule y21 is VS     
 Rule 22: If PD is VS and QL is US and EC is NS; threat index of the rule y22 is US     
 Rule 23: If PD is VS and QL is US and EC is US; threat index of the rule y23 is US     
 Rule 24: If PD is VS and QL is US and EC is VS; threat index of the rule y24 is VS     
 Rule 25: If PD is VS and QL is VS and EC is NS; threat index of the rule y25 is VS     
 Rule 26: If PD is VS and QL is VS and EC is US; threat index of the rule y26 is VS     
 Rule 27: If PD is VS and QL is VS and EC is VS; threat index of the rule y27 is VS     
  
 Now, let us consider that at some point in time, network parameter PD takes a 

value of 174, parameter QL takes a value of 843 and the parameter EC takes the value of 

1.8 Joules. With the framework developed above, we can calculate the TI and determine 
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the node vulnerability for this scenario by applying equation 3.14. The rule strength for 

this scenario can be calculated using the membership functions shown in Figure 3.15, 

3.16 and 3.17. Table 3.2 shows the values obtained using these fuzzy relations.  

       Table 3.2 Calculation of rule strength 
Rule Number (j) µj (PD) µj (QL) µj(EC) Rule Strength, wj ,           

min(µj(PD)µj(QL) µj(EC))

Output, 
yj  

wjyj

1 0 0.25 0 0 1 0 
2 0 0.25 0.4 0 1 0 
3 0 0.25 0.6 0 1 0 
4 0 0.75 0 0 1 0 
5 0 0.75 0.4 0 4 0 
6 0 0.75 0.6 0 4 0 
7 0 0 0 0 1 0 
8 0 0 0.4 0 4 0 
9 0 0 0.6 0 7 0 

10 0.75 0.25 0 0 1 0 
               11 0.75 0.25 0.4 0.25 4 1 

12 0.75 0.25 0.6 0.25 4 1 
13 0.75 0.75 0 0 4 0 
14 0.75 0.75 0.4 0.4 4 1.6 
15 0.75 0.75 0.6 0.6 4 2.4 
16 0.75 0 0 0 4 0 
17 0.75 0 0.4 0 4 0 
18 0.75 0 0.6 0 7 0 
19 0.25 0.25 0 0 1 0 
20 0.25 0.25 0.4 0.25 4 1 
21 0.25 0.25 0.6 0.25 7 1.75 
22 0.25 0.75 0 0 4 0 
23 0.25 0.75 0.4 0.25 4 1 
24 0.25 0.75 0.6 0.25 7 1.75 

               25 0.25 0 0 0 7 0 
26 0.25 0 0.4 0 7 0 
27 0.25 0 0.6 0 7 0 

 

Here,  = 11.5 and = 2.5 and hence, from equation 3.14, TI = 4.6. 

Comparing the TI calculated with the TI thresholds (explained in Step 4), this value of 

4.6 for the TI indicates that the node is in uncertain state (US) and is not under attack. 

Thus, the Threat Index calculated by applying fuzzy logic indicates the state of a node 

and can be used to detect intrusions/threat.  
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3.5 Intrusion Detection Algorithm for the Model 

 The detection framework mechanism explained in Section 3.4 can be summarized 

as an algorithm shown in the Figure 3.18. 

 

 

 

 

 

 

 

 

 
 

 

 

1. Identify the significant parameters, X= {xi; 1<i<n}, using the CART data mining 

technique.  

2. Calculate the threshold values for the significant parameters, X identified in step 1 

using six-sigma methodology.  

3. Set the threshold ranges for the Threat Index, TI using TI threshold training algorithm 

4. From the MANET, continuously measure the values of these parameters identified in 

step1, on all the links where the node whose TI is to be evaluated is the destination 

node. For each parameter, compute their average. 

5. For each node in the MANET, calculate Threat Index (TI) using the average 

parameter values obtained in 4 above.  

6. Compare the calculated TI with the TI threshold to detect if the network is under 

attack. 

7. For each node that is under threat (abnormal TI) invoke intruder identification and 

response algorithm (explained in Chapter 4). 

 

Figure 3.18 Intrusion Detection Algorithm Used in IDRMAN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 107



3.6 Example to Illustrate the Detection Framework Mechanism 

 This section illustrates the detection framework methodology with an example. 

Let us consider the MANET shown in Figure 3.19. Let the node N1 be the destination 

node and M1,j be the neighboring source nodes to N1. 

 

N1

M1,1
M1,2

M1,3

M1,4

Node under threat 

Neighboring nodes for N1M1,j

N1
M1,5

 

 

 

 

Figure 3.19 MANET Node Under Threat with Neighboring Nodes  

 Let us assume that node M1,2 is malicious and creates a DoS attack at 200 ms on 

N1 by bombarding packets and generating traffic on the link between M1,2 and N1. Using 

CART (Step 2 of Section 3.4), the significant parameters for DoS attack were found to be 

PD, QL and EC. At 200ms, let the values of the significant parameters for DoS attack on 

all links to N1 (where N1is the destination node) be as shown in the Table 3.3. 

  Table 3.3 Values of significant parameters during attack 
 

Values of parameters 
at 200 ms 

M11 to N1 M12 to N1 M13 to N1 M14 to N1 M15 to N1 Average 

PD 155 2000 20 20 20 443 
QL 120 12000 120 120 120 2496 
EC (Joules) 1.300045 3.920767 2.327486 2.363686 2.611764 2.5047496 

 
 
 From the above table, it is seen that at 200ms, the average values of the 

significant parameters for Node N1 are, 443 for PD, 2496 for QL and 2.5 for EC. 

 108



These average values are then fed to the fuzzy logic based TI framework to compute TI. 

Using Table 3.1 for the thresholds of the significant parameters (explained in Step 3 of 

Section 3.4) , and the TI thresholds obtained in Step 4 of Section 3.4, the TI evaluated by 

the fuzzy logic based detection framework (explained in Step 5 of Section 3.4) turns out 

to be 8.14. This is greater than the vulnerable TI threshold of 7 and hence indicates that 

the node N1 is under attack.   

3.7 Mathematical Analysis to demonstrate that TI is a good metric  

In this section, we mathematically analyze the accuracy of the detection metric. 

We use probability techniques to derive the mean squared error that results when the 

Threat Index metric is used in estimating a node’s vulnerability. 

Since identification of the vulnerable state is the most important aspect to 

recognize an attack, the vulnerable state threshold P2 plays a vital role in determining the 

accuracy of the detection technique. So we only consider the probability distributions 

with respect to P2 for our analysis. 

The Figure 3.20 shows the probability distributions of TI for normal and 

vulnerable truth values. The probability distribution is obtained by comparing the Truth 

state of the node with the threat state indicated by the TI computed using fuzzy logic. 

Table 3.4 and Table 3.5 show the experimentally obtained values for PN(TI) and PV(TI) 

respectively from which the probability distribution of Figure 3.20 is obtained. 
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Table 3.4 PN(TI) values obtained from the experimental results 

TI PN(TI) 
1 0.00
2 0.00
3 0.77
4 0.23
5 0.00
6 0.00
7 0.00
8 0.00
9 0.00

10 0.00
 

Table 3.5 PV(TI) values obtained from the experimental results 

TI PV(TI) 
1 0.00
2 0.00
3 0.00
4 0.05

4.4 0.05
6.4 0.10

7 0.00
8 0.80
9 0.00

10 0.00
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Figure 3.20 Probability distribution of TI for normal and vulnerable truth values 
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The curve PV(TI) represents the probability distribution of TI for vulnerable nodes 

and the curve PN(TI) represents the probability distribution of TI for normal nodes. As 

shown in Figure 3.20, for the probability distribution PN(TI), the shaded area after the TI 

threshold (P2) is the error region. This is because, though in reality it belongs to the 

normal area, it will be perceived as vulnerable due to the TI threshold P2.  Similarly, for 

the probability distribution PV(TI) the shaded area before the TI threshold P2 will be the 

error region.  

The shaded region in the Figure 3.20 represents the total error, Z, due to both the 

distributions.  By the law of total probability [114, 115], 

 P(Z) = P(Z/N).P(N) + P(Z/V).P(V) where Ω=∪VN  and        (3.16) Θ=∩VN

Here the symbols, ∪ and ∩ represent the union and intersection set operation. Symbols, 

Ω and Θ indicate the universal set and the null set respectively. P(N) and P(V) represent 

the probability of occurrence of normal node and vulnerable node in the MANET.  

P(Z/V) represents the probability of error given that the node is vulnerable and P(Z/N) 

represents the probability of error given that the node is normal. 

Proposition: Threat Index (TI) computed using fuzzy logic based on significant network 

parameters and threshold values captures the node vulnerability, such that the mean 

squared error given by E[(TI-Truth)2] is approximately equal to zero for all values of 

Truth, where Truth is the unknown reality to be estimated using TI.  

Proof: Threat Index estimates the truth, which could be that a node is under attack, or 

that a node is in the normal state without an attack. As explained in the previous sections, 

P2 represents the vulnerable state threshold value of the Threat Index.  If a node’s TI is 

>= P2 and <=10, then the node is categorized to be under attack, i.e. in the vulnerable 
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state, and if TI < P2, the node is not under attack. Since TI is discrete, by applying 

equation 3.16, Mean Square Error (MSE) is given by 

    MSE =                     (3.17) )(.)()()(.)()(
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In equation 3.17, PN(i) and PV(i) represent the experimentally obtained values for the 

probability of detection of normal node and vulnerable node respectively when the 

MANET is simulated normal without any attacks and when the MANET is simulated to 

be under attack by malicious nodes. Here ‘i’ represents the TI and takes values from 1 to 

P2 for the error in the distribution of vulnerable nodes and values from P2 to 10 for the 

error in the distribution of normal nodes. Since in reality only a small percentage of the 

nodes in the MANET are malicious, the probabilities P(V) and P(N) are assumed to be 

0.1 and 0.9 respectively [106-111]. The threshold P2, as explained in Section 3.4, takes a 

value of 7.  Substituting the values of P2, P(V), P(N), PV(i) and PN(i) in equation 4, the 

value of the MSE obtained is 0.075, which is approximately equal to 0. Thus the Threat 

Index computed using fuzzy logic has the mean squared error approximately equal to 0 

for all values of Truth.  
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CHAPTER IV 

 
           IDRMAN SECURITY MODEL – RESPONSE FRAMEWORK 
 

4.1 Overview of the Chapter  

This chapter explains the response and protection framework in the IDRMAN 

model.  The response and protection mechanism gets triggered when an attack is detected 

by the detection framework (explained in Chapter 3). The significant parameters 

identified by the CART methodology and the thresholds for these significant parameters 

identified by the six sigma technique in the detection framework are used by the response 

and protection framework as well. When the detection framework detects an attack, each 

neighboring source node to the node under threat is examined by the response 

framework, and different action plans are initiated based on the identification of the 

nature of the neighboring nodes. 

This chapter is organized as follows: Section 4.2 describes the general 

architecture of the response framework. Sections 4.3 through 4.5 explain the IDRMAN 

response mechanism. Section 4.6 provides mathematical analysis of the effectiveness of 

the response mechanism. Section 4.7 highlights the applications of IDRMAN. 

4.2 Architecture of IDRMAN Response Framework  

Figure 4.1 shows the architecture of the response framework. The main modules 

of the response model are:  

1. Significant parameters monitoring module 
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2. Reputation management mechanism module 

3. Response action execution module 

Monitoring significant parameters is the starting point of the response framework 

architecture. “Monitor Significant Parameter” block in the response framework monitors 

significant parameters in each network node in a distributed and cooperative manner and 

feeds the collected observation to the “Reputation Management Mechanism” block. 

“Reputation Management Mechanism” block then updates the node’s reputation rating 

counter. The term ‘Reputation Management’ in the architecture refers to assigning 

counters and flag to the nodes based on their behavior, which is achieved by monitoring 

significant parameters in a node level at a given instance. The reputation counter is 

updated by comparing the values of the significant parameters against an expected norm. 
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  Figure 4.1 Architecture of the IDRMAN Response Framework   

Based on the reputation counter that is evaluated, the reputation flag is asserted as 

“Normal”, “Uncertain” or “Malicious”. If the reputation flag is “Normal”, no action is 
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necessary. If the reputation flag is “Uncertain” or “Malicious”, response action plans are 

executed to protect the MANET. The response action plans isolate, disconnect, block or 

automatically deny future connections to malicious nodes. 

      Figure 4.1 shows a time period check logic between “No action required” block 

and “monitor significant parameters” block. If there is no time period check between “No 

action required” block and “monitor significant parameters” block, the response 

framework would create an unnecessary overhead. This is due to the reason that 

continuous monitoring is expensive in terms of resources needed. Hence, a timed periodic 

check is applied in the framework. 

Thus, this framework is based on monitoring the network parameters and 

performing response action plan on the basis of assertion of reputation flag. Such a 

framework allows for response to selfish and malicious node attacks. Those malicious 

and selfish nodes with a specific IP address that generate abnormal metric parameter 

values are identified and gradually isolated. 

4.3 The IDRMAN Response Framework Mechanism  

The IDRMAN response and protection framework gets invoked when the Threat 

Index computed by the detection framework (explained in Chapter 3) is in the vulnerable 

state. The response and protection framework identifies the intruder and responds to the 

attack with the response action plan.  

Counters and flag are associated with each neighboring source node to the node 

under attack to implement the response algorithm. Each node has three types of counters 

– normal, uncertain and abnormal counter; the flag at each node can take three different 

values – normal, uncertain and malicious; the nature of the neighboring node is indicated 
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by the value that its flag takes. For each node which is a neighbor to the node under 

attack, the response and protection mechanism compares the value of the significant 

attack sensitive network parameters with the uncertain state and vulnerable state 

threshold values and updates the counters. The normal counter is incremented when the 

value of a significant parameter is in normal state, the uncertain counter is incremented 

when a significant parameter value is in uncertain state and the abnormal counter is 

incremented when a significant parameter value is in vulnerable state. Since all the 

significant parameters that are selected have equal importance (as explained in Step 2 of 

Section 3.4 in Chapter 3), they have equal weight in the intruder identification and 

response mechanism. After the counters are incremented, the flag for the node is asserted 

using the following logic: If the value of the normal counter is greater than sum of the 

uncertain and abnormal counters, “normal” flag is asserted. If the value of the uncertain 

counter is greater than the sum of normal and abnormal counters, “uncertain” flag is 

asserted. If the value of the abnormal counter is greater than the sum of normal and 

uncertain counters, “malicious” flag is asserted. If all the counter values are equal, the 

“uncertain” flag is asserted. Based on the flag that is asserted, different response action 

plans are triggered. The response action plans are explained as follows:

Response Action Plans: 

Response actions are required when the flag of a neighboring source node is 

“uncertain” or “malicious. The following action plans could be used in the response 

framework. 

Action Plan 1:  If a neighboring source node to a node under threat is flagged as 

“normal”, no action is needed since the node is neither malicious nor selfish. For this 
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level, the following could be executed [91].   

• Basic computer security policy like basic encryption, authentication, authorization 

and so forth. 

• Specially designed core software for proactive security. 

• Set the maximum concurrent connections allowed per user. 

• Powerful firewall capable of filtering a wide range of traffic based on extensive 

set of historical traffic characteristics. Provision of ability to add the detected 

traffic characteristics to a database.   

• Set the bandwidth at a lower acceptable level than the possible maximum. 

Action Plan 2: If a neighboring source node to a node under threat is flagged as 

“uncertain”, necessary precautions are needed to prevent further damage. In this case the 

following action plans could be executed:  

• This plan executes moderate response action like automatic node re-authentication. 

• Verify the correct execution of the packet forwarding function. 

• Automatic modification of the routing table information to the original state, in order 

to bring the system to original state. 

• Automatic modification of the propagation limits of the ad hoc nodes, in order to 

perform the packet forwarding function. 

• Reduce the maximum concurrent connections allowed per user. 

• Block specific IP address. 

• Automatically deny future connections to this address. 

• Ability to drop idle connections. 

• Increase the bandwidth. 
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• Filter “redundant” data packets or using routing information (filter spoofed packets 

traveling unexpected routes from their specified addresses) [91]. 

Action Plan 3: If a neighboring source node to a node under threat is flagged as 

“malicious”, action plan 3 is fired instantly to protect the system. Actions that could be 

executed for this plan include:  

• Drastic action like cutting off the node and restoration of the links. This is achieved 

by allowing nodes in MANET to observe several types of abnormal behavior makes 

it possible for the nodes to route around the misbehaved nodes and isolate them or 

delete the path containing malicious nodes. 

•  Immediately close the connection (Server will not wait to receive any data).  If one 

requires a message to be sent back to user (agent), the redirection feature should be 

used instead of deny feature, to redirect specific document to specific users (agent).   

Thus, with the help of the intruder identification mechanism and action plans, 

malicious nodes that create threat to the components in the network will be removed from 

the network. Response could be achieved by tracking the addresses of the nodes that 

generate abnormal values for the selected metrics. Those nodes with the specific address 

can then be disconnected or blocked or automatically denied future connections from 

accessing the network. This is achieved by means of modifying the routing protocol that 

controls the nodes participating in the network.  
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4.4 Intruder Identification and Response Algorithm for IDRMAN 

Intruder Identification and Response algorithm is shown in Figure 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Let N1, N2,…Nk be the nodes which are detected to be under threat based on Intrusion 
    Detection Algorithm.  
 
2. Let x1, x2,…xn be the significant metric parameters which have been identified using CART  
    explained in Section 3.4 of Chapter 3.  
 
3. For each node under threat (Ni), where 1< i<k and ‘k’ being the number of nodes under 
    threat 

      3.1. For each adjacent source node, (Mi,z ), where 1<z<m and ‘m’ being the  
     number of adjacent source nodes to the node under threat  
 3.1.1 Initialize its {abnormal, uncertain, normal}counteriz

    3.1.2 For each significant parameter (xj), where 1<j<n and ‘n’ being the 
         number of significant parameters 

                                 i.           Measure the parameter value (Val(xizj)) for the node (Mi,z ).              
ii. If Val(xizj) is in {abnormal state, uncertain state, normal state} 

increment the {abnormal, uncertain, normal}counteriz of source 
node (Mi,z ) respectively.   

3.2. For each adjacent source node (Mi,z ), 
3.2.1. if (its abnormalcounteriz is greater than sum of normalcounteriz and  
  uncertaincounteriz) 

                            {set the flag for node (Mi,z) to malicious} 
                     else 

                             if (its uncertaincounteriz is > sum of abnormalcounteriz and  
    normalcounteriz) 
                                      {set the flag for node (Mi,z) to uncertain} 

                            else 
                           {set the flag for node (Mi,z) to normal} 

                             end-if 
                             end-if 

         3.2.2. if (flag of node Mi,z   is malicious ) 
             {Execute Action Plan 3: this plan executes drastic action like cutting  
                    off the node and restoration of the links.} 

          else 
                 if(flag of node Mi,z is uncertain)  

                         {Execute Action plan 2: this plan executes moderate response 
            action like automatic re-authentication of the node.} 

            else 
                     {Execute Action Plan 1: No action is needed since the node is 
           neither malicious nor selfish. In order to avoid unnecessary 
           overhead, apply time period check before further collaborative 
           monitoring, for this action plan} 

               end-if 
end-if

         Figure 4.2 Intruder Identification and Response Algorithm 
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4.5 Example to Illustrate the Response Framework Mechanism 

  Let us consider the MANET example of Section 3.6, where our detection 

mechanism identified node N1 to be under attack at 200ms. Since the MANET is detected 

to be under attack, the intrusion response framework gets invoked. Table 4.1 is a 

combination of Table 3.1 and 3.3. Here the threshold values: UCLvs and UCLus are 

included for reference, and the parameter values on each link is classified into normal 

state (NS), uncertain state (US) and vulnerable state (VS) by comparing against the 

threshold references. 

Table 4.1 Threshold values and values of significant parameters during attack 
Parameter UCLvs UCLus M11 to N1 M12 to N1 M13 to N1 M14 to N1 M15 to N1

 (PD) 208.6336 119.081 155 / US 2000 /VS 20/NS 20/NS 20/NS 
 (QL) 1157.721 656.014 120 / NS 12000/ VS 120/NS 120/NS 120 / NS 
 (EC)Joules 1.9941 1.3397 1.30 /NS 3.92/VS 2.33/VS 2.36/VS 2.61/ VS     

 
From Table 4.1, we find that on the link where the neighboring source node is 

M11 and the destination is N1, QL and EC are in normal state and PD is in uncertain state. 

So the normal counter is incremented twice and takes a value of 2. Uncertain counter is 

incremented once and takes a value of 1. Since none of the significant parameters is in 

vulnerable state, the abnormal counter value is not incremented and remains 0. Since the 

value of the normal counter is greater than the sum of uncertain and abnormal counters, 

the “normal” flag is asserted for the link’s source M11. 

 On the link where the source is M12 and destination is N1 PD, QL and EC are in 

vulnerable state. So the abnormal counter is incremented thrice and takes a value of 3. 

The normal and uncertain counters are not incremented and they remain at 0. Since the 

value of the abnormal counter is greater than the sum of uncertain and normal counters, 

the “malicious” flag is asserted for this link’s source M12. 
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 On the link where the source is M13 and destination is N1, PD and QL are in 

normal state, and so the normal counter is incremented twice and takes a value of 2. Since 

EC is in vulnerable state, abnormal counter is incremented once and hence take a value of 

1. Since none of the significant parameters is in uncertain state, the uncertain counter 

value is not incremented and remains 0.  Since the value of the normal counter is greater 

than the sum of uncertain and abnormal counters, the “normal” flag is asserted for this 

link’s source M13. 

 On the link where the source is M14 and destination is N1, PD and QL are in 

normal state, and so the normal counter is incremented twice and takes a value of 2. Since 

EC is in vulnerable state, the abnormal counter is incremented once and results in a value 

of 1.  None of the significant parameters is in uncertain state and so the uncertain counter 

is not incremented and it remains at 0. Since the value of the normal counter is greater 

than the sum of abnormal and uncertain counters, the “normal” flag is asserted for this 

link’s source M14. 

 On the link where the source is M15 and destination is N1, PD and QL are in 

normal state, and so the normal counter is incremented twice and takes a value of 2. As 

EC is in vulnerable state the abnormal counter is incremented once and hence results in a 

value of 1. None of the significant parameters is in uncertain state and so the uncertain 

counter is not incremented and it remains 0. Since the value of the normal counter is 

greater than the sum of abnormal and uncertain counters, the “normal” flag is asserted for 

this link’s source M15. Using all the above information, Table 4.2 is formed and is shown 

as follows.  
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Table 4.2 Illustration of response framework for IDRMAN 
Node Under 
Threat 

Neighboring 
Nodes 

Normal  
Counter 

Uncertain 
Counter 

Abnormal 
Counter 

Flag Action Plan 

N1 M1,1 2 1 0 Normal Action Plan 1 
 M1,2 0 0 3 Malicious Action Plan 3 
 M1,3 2 0 1 Normal Action Plan 1 
 M1,4 2 0 1 Normal Action Plan 1 
 M1,5 2 0 1 Normal Action Plan 1 

  

 Each row in Table 4.2 represents the counter, flag of the neighboring source node 

for the node under threat and the type of the action plan that needs to be taken against the 

neighboring node.  The agent implementation of the routing protocol in mobile ad hoc 

network has the view of the Table 4.2 and takes appropriate response action based on the 

counters and the flag value. In Table 4.2, sum of abnormal, uncertain and normal 

counters for every neighboring node to a node under threat will be equal to the number of 

significant parameters. This is due to the reason that for every neighboring node to a node 

under threat, the effect of each significant parameter is analyzed and categorized into 

three possible states, and the normal, uncertain or abnormal and counters are incremented 

based on these states. 
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4.6 Mathematical analysis of the IDRMAN Response Framework 

In this section, we mathematically analyze the response model and compute the 

mean square error, which is the summation of false positives and false negatives in 

identifying an intruder for a node under threat, of the response framework. False-positive 

represents the number of incorrectly isolated neighboring nodes for the node under threat 

and false-negative represents the number of not isolated neighboring nodes which should 

have been isolated for the node under threat. 

Since ‘Yes’ and ‘No’ are the only possible outcomes in identifying the true nature 

of the intruder, where ‘Yes’ represents the correct Identification and ‘No’ represents the 

wrong Identification, the probability of correct identification of the N neighboring nodes 

can be obtained by applying the binomial distribution:  

     P(X=k) = .                       (4.1) kNkN
k ppC −−×× )1(

 Here k represents the number of nodes that are correctly estimated using the 

intruder identification and response framework, and can take any value from 1 to N; p 

represents the probability of correct identification. The Mean Square Error (MSE) is 

given by the sum of the variance and the square of the bias i.e.,  

MSE = variance + bias2         (4.2) 

where bias is defined as the distance between the estimator's mean and the parameter's 

(truth value’s) mean [112]. For the binomial probability distribution, variance is given by: 

variance = )1( ppN −××         (4.3) 

where p is the probability of the success and N is the number of trials [113]. 
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Proposition: 
The flag Miz of the intruder identification and response framework indicates if the 

neighboring node to the node under attack (i) is malicious or not, such that, if the mean 

squared error (MSE) defined by E [(Miz – Truth) 2]) is computed on each neighboring 

node for a node under threat (i), then the sum of the MSE on all the neighboring 

nodes for a node under threat is approximately equal to , 

where N is the number of neighboring nodes. Truth is the unknown reality (i.e. the state 

of the neighboring node) which is to be estimated using M

∑
=

N

z
iz

1

2  ])Truth) - E[(M( N09.0

iz. 

Proof: 

Let Miz represents the flag of the zth neighbor to the node i that is under threat. Let 

Miz takes a value of ‘1’ and ‘0’ as given by the following definition.   

Miz =  1 if abnormalcounteriz > normalcounteriz + uncertaincounteriz                 (4.4) 

 0; otherwise              

 In the above equation, abnormalcounteriz is the abnormal counter value of the zth 

neighbor to the node i that is under threat; normalcounteriz is the normal counter value of 

the zth neighbor to the node i that is under threat, and uncertaincounteriz is the value of the 

uncertain counter of the zth neighbor to the node i that is under threat.  

From the experimental results obtained by simulating the intruder detection and 

response algorithm for DoS attacks on MANET nodes, the probability p of correctly 

identifying a neighboring node as an intruder node or a normal node is 0.9. Hence, 

applying equation 4.3, variance= 09.0×N , where N is the number of neighboring nodes 

for the node under threat. Also based on the sample simulation data, bias2 is estimated to 

be 0.03. Thus, applying equation 4.2, 03.009.0 += NMSE .  
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4.7 Application of IDRMAN for MANET Attacks 

The intrusion detection and response of the IDRMAN can be applied to protect 

MANET from several types of attacks. IDRMAN can be applied for both active attacks 

like Denial of Service, unauthorized access and passive attacks like Masquerade. 

Following are the possible MANET attacks where IDRMAN can be applied: 

(i) Denial of Service: A node could spam other nodes causing resource constraints by 

repeatedly sending messages to another node. This may place undue burden on the 

message handling routines of the recipient.  Nodes can also intentionally distribute false 

or useless information to prevent other nodes from completing their tasks correctly or in a 

timely manner. In another kind of DoS attack, the local host could also ignore a node’s 

query or retrieval request by turning away the request. Nodes on other platforms waiting 

for the results from a non-responsive agent in the malicious host platform could cause 

deadlock problems. In yet another possible DoS attack, a node might consume excess 

amount of host resources so that the host cannot service other nodes properly. The 

network parameters like Queue length, Energy Consumption and Packet Drop were 

identified as the parameters that are sensitive to DoS attacks through the experimentation. 

By observing the threshold values for DoS attack sensitive parameters, DoS attacks could 

be identified and responded.    

(ii) Unauthorized Access: In these attacks, a node would invoke other node’s resources 

by accessing or modifying its code or data, which could change the behavior of the host 

from trusted to harmful one. In another possible kind of authorization attack, remote 

users, processes, and agents may request resources from the host, for which they are not 

authorized [34].  Reijo Savola has proposed metrics for MANET authentication and 
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authorization attacks based on the reasoning that in MANET, cryptographic strength has 

tight cross-relationships with critical control information like trust management 

information [117]. Some of those metrics are: 

Key length metric: The security of symmetric cryptosystem is a function of the length of 

the key. Since, there are 2N possibilities to break a key of length N bits by means of brute 

force attack, every extra key bit generally doubles the number of possible keys and 

therefore increases the effort required for successful brute force attack against most 

symmetric algorithms.  .  

Algorithm Strength Metric: Jorstad and Landgrave use algorithm strength as metric to 

express the overall measurement of a cryptographic algorithm’s strength [117]. 

Rounds Metric: Rounds are important to the strength of some ciphers.  For example, an 

eight round version of an algorithm like DES is not secure. In general, more rounds lead 

to more security up to a point. 

Attack steps metric: It is defined as the number of steps required to perform the best 

known attack. 

Attack time metric: It is defined as the time that might be required to perform the fastest 

known attack. 

  By observing the threshold values for these attack sensitive parameters, 

unauthorized attack could be identified and responded.    

(iii) Masquerade: In this type of attack, a node posing as host could deceive nodes and it 

harms both the node that is being deceived and the node whose identity has been 

assumed, especially in societies where reputation is valued and used as a means to 

establish trust. A node from a system external to MANET can also masquerade as 
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another node and request services and resources from the MANET for which it is not 

authorized.  The network parameters like percentage of connections to different hosts, 

protocol type and number of source packets were identified by experimentation as the 

parameters that are sensitive to Masquerade [84]. By observing the threshold values for 

these attack sensitive parameters, masquerade could be identified and responded.    

 Thus our IDRMAN security model could be applied to any of the above attacks 

by identifying critical network system parameters and their threshold values that are 

affected by various types of attacks. Though we conducted experiments to identify 

significant parameters for both active and passive attacks like Denial of Service, 

Masquerade and Unauthorized access, we performed simulation experiments to detect the 

attack, identify the intruder and respond to the attacks only for Denial of Service attacks 

in MANET. By continuously monitoring the threshold values of the attack sensitive 

network parameters for fixed or mobile hosts in a network, we could measure the relative 

change in these parameter values and detect the type of attack accurately and protect the 

system through an effective response.   
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CHAPTER V 
 

SIMULATION EXPERIMENTATION AND RESULTS 

5.1 Overview of the Chapter 

This chapter explains the simulation and experimentation carried out to 

demonstrate the validity and performance of the IDRMAN model described in Chapters 3 

and 4. This Chapter is organized as follows:   

• Section 5.2 describes the experiments that were conducted to identify the 

significant network parameters that would help detect an attack and identify the 

intruder. These experiments were carried out using data mining methodology with 

the CART tool and the MANET training dataset created through simulation. This 

section also presents the validation experiment conducted with the help of CART 

and DARPA benchmark dataset to validate the significant parameters identified 

using the MANET dataset. This section relates to the Step 2 of the model 

described in Section 3.4. 

• Section 5.3 describes the experiments that were conducted to identify the 

threshold values of the selected network parameters. These experiments were 

carried out using six sigma methodology on the MANET training dataset created 

through simulation. This section relates to Step 3 of the model described in 

Section 3.4.  
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• Section 5.4 presents the experimentation to calculate the TI thresholds and also 

validate these thresholds. These experiments were carried out using the fuzzy 

tool, MATLAB [101].  

• Sections 5.5 through 5.8 describe the simulation experiments of the IDRMAN 

model conducted using NS2 and the experimental results.  

o Section 5.5 describes the simulation environment for implementing the mobile 

ad hoc network. 

o Section 5.6 describes the scenario for the simulation experimentation. 

o Section 5.7 describes the experimental results when DSDV is used as the 

routing protocol. It presents the results of the detection of attack using fuzzy 

logic based threat index calculation and the results of the intruder 

identification and response.   

o  Section 5.8 presents the results of the threat detection and intruder 

identification and response when AODV is used as the routing protocol for the 

model simulation.  

• Section 5.9 describes the experiments that were conducted to demonstrate the 

efficiency and effectiveness of the IDRMAN detection framework compared to 

related MANET IDA.   

• Section 5.10 describes the experiments that were conducted to demonstrate the 

scalability aspect of the detection framework in the IDRMAN model. The purpose 

of this experimentation is to illustrate that the IDA scheme used in the IDRMAN 

performs well even when more mobile nodes are added into the MANET. 
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5.2 Significant Parameters Identification Experimentation 

Experimentation using MANET dataset: 

 To identify the significant parameters for MANET, we generated training dataset 

consisting of 200 records by simulating the ad hoc network with DoS attacks using NS2. 

The MANET simulation environment where the training data is sourced from, is 

explained in detail in Section 5.5. We then applied CART to the simulated training 

dataset to identify the significant parameters for DoS attacks [94]. The significant 

parameters were identified using the variable importance table generated in CART. 

Figure 5.1 shows the variable importance table generated by CART. Step 2 in Section 3.4 

explains in detail with an example, the concept of variable importance identification from 

a dataset using classification trees. As shown in Figure 5.1, Queue Length, Energy 

Consumption and Packet drop were identified as the significant parameters through the 

variable importance table since their variable importance is 100%. All experiments were 

conducted on Intel Pentium 3 machine with 1 Ghz processor and 512 MB RAM. 

 
Figure 5.1 Snapshot of Identification of Significant Parameters for MANET Dataset 

Through Variable Importance Tool in CART 
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Validation Experimentation using DARPA dataset: 

 In order to validate the significant network parameters that were identified by 

applying CART on the MANET training dataset for DoS attack, we performed 

experiments using the high dimensional DARPA validation benchmark dataset and data 

mining methodology as described in Chapter 3. The Table 5.1 shows the significant 

network parameters that were identified for specific attacks like DoS, masquerade and 

unauthorized access attacks. The significant network parameters were identified using the 

variable importance table generated by CART. A ‘Y’ in the column of Table 5.1 indicates 

that the parameter is affected by the attack and hence it needs to be used to measure the 

vulnerability of the system. An ‘N’ in the column of Table 5.1 indicates that the 

parameter is not affected by the attack. It can be seen that the network parameters 

identified for DoS attacks through the MANET dataset are detected through the 

benchmark DARPA dataset as well. ‘Queue Length’ network parameter identified in the 

MANET dataset is referred as ‘count’ in the DARPA dataset [100]. Packet Drop 

parameter in the MANET dataset is actually a difference between ‘Src Bytes’ and ‘Dst 

Bytes’ identified through the DARPA dataset. ‘Energy Consumption’ parameter being 

unique to MANET is not identified as attack sensitive network parameter in DARPA 

dataset, which is based on wired network.  

Unlike DoS and masquerading attacks, there appear to be no sequential patterns 

for unauthorized access attacks. This is because DoS and masquerading attacks involve 

many connections to some host(s) in a very short period of time, but the unauthorized 

access attack patterns are embedded in the data portions of packets, and normally involve 

only a single connection. Hence, it is unlikely that they can have any unique frequent 
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traffic patterns. So, we used domain knowledge to construct a set of “content” features to 

indicate whether the connection contents suggest suspicious behavior. In Table 5.1, 

except for categorical parameters like protocol and service type, all the parameters are of 

continuous type. In Table 5.1, the “same host” network parameter examines only the 

connections in the past two seconds that have the same destination host as the current 

connection. The “same service” network parameters examine only the destination host 

connections in the past two seconds that provide same service for the current connection. 

The "same host" and "same service" network parameters are time-based continuous 

traffic features. ‘SYN’ error represents the error due to TCP SYN flood attack. A TCP 

SYN flood sends erroneous TCP requests to the target system, which cannot complete the 

connection request. ‘REJ’ error indicates that the destination node has not received the 

packets correctly.   

 Table 5.1 Identification of significant network parameters through DARPA dataset 

   Network Parameter DoS Masquerade Unauthorized 
Access 

 1. Service (Type of network service  e.g., http, telnet, etc) Y Y Y 
 2. Protocol_type (Type of  protocol, e.g. tcp,   udp, etc) Y Y N 
 3. Src_bytes (No of  data bytes sent  from source to destination) Y Y Y 
 4. Dst_bytes (No of  data bytes received at destination from 
source) 

Y N Y 

 5. Count (No of connections to the ‘same host’ in the past two 
seconds) 

Y N N 

 6. Dst_Host Count  (No of connections to the ‘same host’  using 
a window of 100 connections instead of a time window ) 

N Y Y 

 7. Dst_Host Same Source Port Rate (No of connections to the 
same source port of host ) 

N Y Y 

 8. Dst_Host Service Count  (No of  host connections providing 
the ‘same service’ for the current connection in the past two 
seconds) 

N N Y 

 9. Dst_Host_Srv_Diff_Host Rate (% of connections to different 
hosts ) 

N Y N 

10. Dst_Host_Srv_ Rerror_Rate (% of host connections that have 
``REJ'' errors for providing the ‘same service’)  

Y N N 

11.Dst_Host_Serror Rate (% of host connections that have 
``SYN'' errors)  

Y N N 

12.Dst_Host_Rerror Rate (% of host connections that have 
``REJ'' errors)  

Y N N 
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5.3 Threshold Identification Experimentation 

 To identify the thresholds of the significant parameters for MANET, we generated 

a training dataset consisting of 2000 records by simulating the MANET under normal 

conditions using NS2. The MANET simulation environment, where the training data is 

sourced from, is explained in detail in Section 5.5. The values of the significant metrics 

for the MANET (simulated with DSDV and AODV as routing protocol) from the training 

dataset were used to calculate upper control limits for vulnerable state (UCLvs) and 

uncertain state (UCLus) as explained in Chapter 3 and they are shown in Tables 5.2 and 

5.3. Since LCL values for the significant parameters are negative and it does not make 

sense for these parameters, they are not considered and hence not shown in Tables 5.2 

and 5.3. Thus only UCL values are used to set the uncertain state and vulnerable state 

threshold values. 

       Table 5.2 US and VS threshold values of the metric parameters for DSDV 
            Metric Parameter Average σ (Sigma) UCLvs UCLus
Queue Length, QL  545.7273 2181.261 2823.98 1684.853 
Energy Consumption, EC (Joules) 0.7702712 1.3813058 2.2053 1.4824 
Packet Drop, PD 124.42424 395.4895724 537.4996 330.9619 

 
       Table 5.3 US and VS threshold values of the metric parameters for AODV 

            Metric Parameter Average σ (Sigma) UCLvs UCLus
Queue Length, QL  154.3077 960.695 1157.72 656.014 
Energy Consumption, EC (Joules) 0.6852 1.2532 1.9941 1.3397 
Packet Drop, PD 29.5294 171.4791 208.6336 119.0815 
 

      These thresholds are not validated for all types of MANETs. For instance, multi 

hop MANET could have a different threshold values for Queue Length, Packet Drop and 

Energy Consumption network parameters compared to single hop MANET. However, 

they can be obtained and validated by performing experiments on the training dataset 

obtained from simulation of the particular MANET type subjected to attacks. 
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5.4 Experimentation to Identify and Validate TI Thresholds 

 As explained in Chapter 3, Threat Index (TI) is an objective measure to identify 

whether a node is under threat. This section presents the experiment to identify and 

validate the TI thresholds for the uncertain and vulnerable states. This experiment was 

carried out with the Fuzzy Inference System (FIS) created using MATLAB [101] and the 

algorithm shown in Figure 3.9. Another purpose of this section is to validate through 

experimentation, the relationship between TI and attack sensitive network parameters.  

 The training data samples with about 150 normal, abnormal and uncertain set of 

values of significant attack sensitive network parameters were used as the input to the TI 

detection framework created using MATLAB FIS. The MANET simulation environment 

where the training data is sourced from, is explained in detail in Section 5.5. TI was then 

calculated by varying the TI threshold pair (P1, P2), where P2 > P1 and 1<=P1<=10 and 

1<=P2<=10.   For each TI threshold pair (P1, P2), if the final defuzzified TI was greater 

than or equal to P2 and the outcome label was ‘Vulnerable’, or if the calculated TI was 

less than or equal to P1 and the outcome label was ‘Normal’, or if the TI was between P1 

and P2 and the outcome label was ‘Uncertain’, a counter was incremented for that 

threshold pair. The threshold pair (4, 7) had the highest counter value and hence was 

chosen as the TI threshold for uncertain and vulnerable state. MATLAB code to 

implement the TI threshold identification algorithm is attached in Appendix C. 

Validation of the Vulnerable Threshold: 

 Since the vulnerable threshold of TI is more important than the uncertain 

threshold, the vulnerable threshold (P2) value of 7 is validated by the methodology below. 

This validation methodology uses the concepts from Proposition 1 which is explained in 
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Chapter 3.  P2 value of 7 is validated by checking, if the Mean Square Error (MSE) 

(explained in proposition 1) computed using P2 is a minimum.   

MSE for Values of P2
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          Figure 5.2 MSE for Various Values of P2
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Where, PV(i) represents the probability distribution of TI for vulnerable nodes, 

PN(i) represents the probability function of TI for normal nodes,  P(N) and P(V) represent 

the probability of occurrence of normal node and vulnerable node in the MANET. 

Our objective is to find the value of P2 between 1 and 10 such that g(P2) is 

minimum. To find this, the value of P2 was varied from 1 to 10 in intervals of 0.1 and 

g(P2) was calculated; The calculation was done using a software program coded using 

VB attached in Appendix E. The values of PV(i), PN(i), P(N) and P(V) are obtained from 

Section 3.7. The value of P2 that resulted in the minimum value for g(P2) (ie. minimum 

MSE of 0.075) was 6.7.   This is very close to the P2 value of 7 obtained by 

experimentation using the algorithm shown in Figure 3.9. Hence our choice of P2 stands 

validated. 
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Validation of the Relationship Between TI state and the State of the Parameters: 

 The basic relationship between TI and the significant parameters is that TI for a 

node will be in vulnerable state if the values of the parameters are in vulnerable state. 

Similarly TI for a node will be normal or uncertain if the values of the parameters are 

normal or uncertain state respectively. Also, as explained earlier in this section, we have 

higher TI values to represent the abnormal state for the node. 

 In order to validate this relationship between TI and the attack sensitive network 

parameters, we input the testing records (which are obtained from the simulated MANET 

as explained in Section 5.5) that had significant parameters in the vulnerable state to the 

TI detection framework created using MATLAB FIS to calculate TI. All the TI turned 

out to be between 7 and 10 meaning the state of these records is vulnerable. The 

validation experiment was then repeated by inputting the testing records (which are 

obtained from the simulated network) that had significant parameters in the normal state. 

All the TI turned out to be between 1 and 4 meaning the state of these records is normal. 

The simulation results are presented in Figures 5.11 through 5.17, They show that values 

of TI are in vulnerable state (greater than or equal to 7), when the values of the attack 

sensitive network parameters are in vulnerable state and the values of TI are in normal 

state (less than or equal to 4), when the significant variables are in normal state. These 

results thus validate the relationship between TI and the attack sensitive network 

parameters. 
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5.5 Simulation Environment for MANET 

Figure 5.3 shows the simulated MANET. Nodes (denoted by Ni) are connected 

within the mobile ad hoc network environment and mobile agents (denoted by Mi) are 

dispatched by a source node to a destination node for service purposes [92]. The mobile 

agents serve as a communication agent between the source and the destination node. The 

simulation of the MANET was carried out using NS2.  
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Figure 5.3 Simulated MANET 

 The description of the NS2 package, its input and output parameters and its use in 

simulation is explained with details in [95]. The parameters for the MANET to be 

simulated were specified using the OTcl configuration script. The routing protocol used 

in NS2 for mobile ad hoc networks was the proactive routing protocol - Destination 

Sequenced Distance Vector (DSDV). The experiments were also repeated using the 

reactive routing protocol - Ad hoc On Demand Distance Vector (AODV). The network 

parameters considered for analysis were: packet drop rate, energy consumption and queue 
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length based on the identification of significant parameters experiments using the 

classification trees methodology. The measured values of these three network parameters 

(metrics) were used in the detection and response framework, to perform intrusion 

detection, and intruder identification as explained in Chapters 3 and 4.  

 In order to study the feasibility and performance of the IDRMAN model and to 

validate our detection and response algorithm, we carried out extensive simulation 

experiments using various MANET parameters. In our simulation, the channel type was 

set to wireless channel type and TwoRayGround model was used as the propagation 

model. The Distributed Coordination Function (DCF) of IEEE 802.11 for wireless LANs 

was used as the MAC layer protocol. An unslotted carrier sense multiple access (CSMA) 

technique with collision avoidance (CSMA/CA) was used to transmit the data packets. 

The radio model was modeled as a shared-media radio with all nodes having the same 

channel capacity of 2 Mb/s and a transmission range of 250 m. 

 In the simulation, six mobile nodes were set to move in a 1000 meter x 500 meter 

rectangular region.  Each node was set to move independently with the same average 

speed. The mobility model we used was the Random Waypoint (RW) model. In RW 

model, a node randomly selects a destination from the physical terrain. It moves in the 

direction of the destination in a speed uniformly chosen between the minimal and the 

maximal speed. After it reaches its destination, the nodes stay there for a pause time and 

then moves again to a newly selected destination. In our simulation, the minimal speed 

was 3 m/s, and the maximal speed was 15 m/s. The pause time, which affects the relative 

speeds of the mobile nodes, was varied. Simulations were run for 1000 simulated 

seconds. 
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 Constant Bit Rate (CBR) traffic sources were used. The source-destination pairs 

were spread randomly over the network to generate CBR traffic. The size of all data 

packets was set to 512 bytes. The OTcl script used to implement the simulation 

environment is attached in the Appendix A. The hardware used for the simulation was 

Pentium 3, 512 MB machine. Operating system used for the simulation was Redhat 9.0, 

Linux Kernel 2.6.  

 Using this MANET simulation environment, we generated normal and vulnerable 

(intrusion) data for training and testing purposes explained in Section 5.2 through 5.4. We 

further generated a different set of normal and vulnerable data to evaluate the 

performance of IDRMAN under different node mobility and density scenarios to 

compare its performance with the related models, explained in Section 5.7 through 5.10.  

5.6 Scenario for Simulation Experiments 

In our simulation experiments, we considered the Denial of Service (DoS) attack 

on a host node by a set of mobile agent based nodes in MANET. As explained in Chapter 

3, these attacks by mobile agents based mobile nodes cause the network to be loaded 

excessively, thus causing enormous retransmissions, which consumes excessive amount 

of host resources and hence the host cannot service genuine agents properly. In this case 

as shown in Figure 5.3, the mobile agents M0, M2, M3, M4, and M5 dispatched by host N0, 

N2, N3, N4, and N5 respectively need to get serviced by N1. However, due to DoS attack 

by agent M2, the host N1 could not service the genuine agents M0, M3, M4, and M5.   In 

our experiments, the nodes as well as agents were simulated to be mobile. We specified 

mobility for the nodes using the OTcl script [95]. OTcl script is the interpretor in the NS2 

package that is used to specify the simulation parameters. 
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The basic steps of the simulation experimentation were as follows: Agent M2 

dispatched by node N2 was configured to send heavy traffic to Node N1, while all other 

nodes received normal traffic from their agents. TI evaluation framework implemented 

using C++ program then calculates TI for each node in the network using the optimized 

FIS to detect if a node is under attack. The optimized FIS is generated by applying a 

fuzzy training algorithm on a training dataset that has normal, uncertain and vulnerable 

state label. This training algorithm generates the optimized FIS with the optimized 

membership functions that are used by the TI evaluation framework. The TI evaluation 

C++ source code and MATLAB code which implements our fuzzy training algorithm to 

generate optimized FIS from the training data are attached in the Appendix B and C 

respectively.  

Node N1 was detected to be under attack as the calculated TI had a value greater 

than the vulnerable TI threshold. So its neighboring nodes N0, N2, N3, N4, and N5 were 

subjected to intruder identification and response algorithm. The intruder was identified to 

be N2 and it was isolated from the network by disabling its send and receive function in 

the routing protocol. This was implemented by modifying the C++ code in NS2. The 

values of the network metric parameters were observed before and after the attack and 

also after the response. A portion of the observed data of the significant parameters with 

and without response is attached in Appendix D. After the response, the TI was again 

calculated and it was found to be in the normal range. The Sections 5.7 and 5.8 give the 

experimental results for this experiment performed using DSDV and AODV protocols. 
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5.7 Experimental Results for DSDV 
Figure 5.4 shows the values of the evaluated TI without the response and with the 

response applied for the DoS attack at node N1 when DSDV is used as the protocol.As 

seen in Figure 5.4, TI of node N1 increases due to DoS attacks. Due to subsequent 

intruder identification and protection measures applied through the response plan, TI for 

the node N1, decreases within milliseconds after it is detected and reaches the normal 

state [86, 93].   
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Figure 5.4 Plot of the Evaluated TI for DSDV Experiment 

The Table 5.4 shows the values of the normal, uncertain and abnormal counters 

for each node that is neighbor to node under threat (N1). The agent implementation (using 

C++) for the DSDV routing protocol in mobile ad hoc network has the view of the Table 

5.4. The values are recorded every 100 ms of the simulation. As explained in Chapter 4, 

if the value of the parameter exceeds the vulnerable threshold level, abnormal counter is 

incremented. If the parameter exceeds the uncertain threshold level, uncertain counter is 

incremented. Otherwise, normal counter is incremented. For malicious node N2, at 

around 100 to 200 ms, the abnormal counter reaches the value of 3, thus resulting in the 

response plan 3 to be executed, to isolate the node. For every other neighboring node at 
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all the time during the simulation, the normal counter is higher than the sum of vulnerable 

and uncertain counter, thus resulting in their flag to be normal. The values for the 

parameters shown in Figures 5.5 through 5.10 validate the value of the counters and the 

flag in Table 5.4 for each node that is a neighbor to the node under threat (N1).  

  Table 5.4 Values of counters used for response action in DSDV experimentation 
Node Under 
Threat 

Neighbori
ng Nodes 

Time 
(ms) 

Normal  
Counter 

Uncertain 
Counter 

Abnormal 
Counter 

Flag Action Plan 

N1 N0 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1  
  600 2 1 0 Normal  Resp Plan 1 
 N2 100 2 0 1 Normal Resp Plan 1 
  200 0 0 3 Malicious Resp Plan 3 
 N3 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 
 N4 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 
 N5 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 

       

     Figures 5.5 through 5.10 give the plot of values of the significant attack sensitive 

network parameters without the response and with the response applied, for each 

neighboring node to the node under threat N1. Figures 5.5 and 5.6 represent control chart 

for the queue length metric during the DoS attack and after application of response 
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respectively. As shown in the Figure 5.5, queue length metric for the link between source 

node N2 and host is significantly above the vulnerable state threshold (2800) when no 

response is applied during the attack. After response is applied, the queue length metric 

for the link between node N2 and host N1 is within the normal state threshold control limit 

as seen in Figure 5.6, since it is cut off from the network.  
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Figure 5.5 Control Chart of Queue Length Metric Without Response for DSDV 

Control Chart for Queuelength metric with response
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    Figure 5.6 Control Chart of Queue Length Metric With Response for DSDV 

Figures 5.7 and 5.8 represent the control chart for the packet drop metric during 

the DoS attack and after the application of response respectively. As shown in Figure 5.7, 
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the packet drop metric for the link between source node N2 and host N1 is significantly 

above the vulnerable state threshold (537) when no response is applied during the attack. 

As shown in Figure 5.8, once the malicious node N2 is identified and isolated from the 

network, there are no packet drops associated with the malicious node N2 and the host N1.  
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    Figure 5.7 Control Chart of Packet Drop Metric Without Response for DSDV 

Control Chart for Packet Drop metric with response
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Figure 5.8 Control Chart of Packet Drop Metric With Response for DSDV   

Figures 5.9 and 5.10 represent the control chart for the energy consumption metric 

during the DoS attack and after the response respectively. As shown in Figure 5.9, the 

energy consumption metric for source node N2 is significantly above the vulnerable state 
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threshold (2 joules) when no response is applied during the attack. After response is 

applied, the energy consumption metric for the source node N2 is within the normal state 

threshold control limit as seen in Figure 5.10.    
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Figure 5.9 Control chart of energy consumption metric without response for DSDV  

 
 

Control Chart for Energy Consumption metric with response
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Figure 5.10.Control Chart of Energy Consumption metric with response for DSDV 
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5.8 Experimental Results for AODV 

Figure 5.11 shows the results of the evaluated TI without the response and with 

the response applied for the DoS attack at node N1 when AODV is used as the protocol. 

As seen in Figure 5.11, TI of node N1 increases due to DoS attacks. Due to subsequent 

intruder identification and protection measures applied through response plan, TI for the 

node N1, decreases within milliseconds, and reaches the normal state.  
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  Figure 5.11 Plot of the Evaluated TI for AODV Experiment 

Table 5.5 shows the values of the normal, uncertain and abnormal counters of 

each node that is a neighbor to the node under threat (N1). The agent implementation 

(using C++) for the AODV routing protocol in mobile ad hoc network has the view of the 

Table 5.5. The values are recorded every 100 ms of the simulation. As explained in 

Chapter 4, if the value of the parameter exceeds the vulnerable threshold level, abnormal 

counter is incremented. If the parameter exceeds the uncertain threshold level, uncertain 

counter is incremented. Otherwise, normal counter is incremented. For malicious node 

N2, at around 100 to 200 ms, the abnormal counter reaches the value of 3, thus resulting 
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in the response plan 3 (explained in Chapter 4) to be executed which isolates the node. 

For every other neighboring node at all the time during the simulation, the normal 

counter is higher than the sum of vulnerable and uncertain counter, thus resulting in their 

flag to be normal. The values of the parameters shown in Figures 5.12 through 5.17 

justify the value of the counters and flag in Table 5.5 for each node that is a neighbor to 

N1, the node under threat.   

Table 5.5 Values of counters used for response action in AODV experimentation 
Node 
Under 
Threat 

Neighboring 
Nodes 

Time 
(ms) 

Normal  
Counter 

Uncertain 
Counter 

Abnormal 
Counter 

Flag Action Plan 

N1 N0 100 2 1 0 Normal Resp Plan 1  
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1  
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1  
  600 2 1 0 Normal  Resp Plan 1 
 N2 100 2 0 1 Normal Resp Plan 1 
  200 0 0 3 Malicious Resp Plan 3 
 N3 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 
 N4 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 
 N5 100 2 1 0 Normal Resp Plan 1 
  200 2 1 0 Normal Resp Plan 1 
  300 2 1 0 Normal Resp Plan 1 
  400 2 1 0 Normal  Resp Plan 1 
  500 2 1 0 Normal  Resp Plan 1 
  600 2 1 0 Normal  Resp Plan 1 

 

              Figures 5.12 through 5.17 give the plot of the values of the significant attack 

sensitive parameters without the response and with the response applied, for each 
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neighboring node to the node under threat N1. Figures 5.12 and 5.13 represent the control 

chart for the queue length metric during the DoS attack and after the application of the 

response respectively. As seen in the Figure 5.12, queue length metric for the link 

between source node N2 and host N1 is significantly above the vulnerable state threshold 

(1157) when no response is applied during the attack. After the response is applied, the 

queue length metric for the link between node N2 and the host N1 is within the normal 

state threshold control limit as seen in Figure 5.13, since it is cut off from the network.   

Control Chart for Queuelength Metric without Response
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    Figure 5.12 Control Chart of Queue Length Metric Without Response for AODV  
 

Control Chart for Queuelength Metric with Response

0

2000

4000

6000

8000

10000

12000

14000

20 60 10
0

14
0

18
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

Time (s)

Q
ue

ue
le

ng
th

QL Node 0  

QL Node 2 

QL Node 3

QL Node 4  

QL Node 5  

UCLvs

UCLus

           Figure 5.13 Control Chart of Queue Length Metric With Response for AODV 
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Figures 5.14 and 5.15 represent the control chart for the packet drop metric during 

the DoS attack and after the application of response respectively. As shown in Figure 

5.14, the packet drop metric for the link between source node N2 and host is significantly 

above the vulnerable state threshold (208) when no response is applied during the attack. 

As shown in Figure 5.15, once the malicious node N2 is identified and isolated from the 

network, there are no packet drops associated with the malicious node N2 and host N1.  
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      Figure 5.14 Control Chart of Packet Drop Metric Without Response for AODV  

 

Control Chart for Packet Drop Metric with Response
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Figure 5.15 Control Chart of Packet Drop Metric With Response for AODV    
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Figures 5.16 and 5.17 represent the control chart for the energy consumption 

metric during the DoS attack and after the response respectively. As shown in Figure 

5.16, the energy consumption metric for source node N2 is significantly above the 

vulnerable state threshold (2 joules) when no response is applied during the attack. After 

response is applied, the energy consumption metric for the source node N2 is within the 

normal state threshold control limit as seen in Figure 5.17.     

Control Chart For Energy Consumption Metric without Response for AODV
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Figure 5.16 Control chart of energy consumption metric without response for 

AODV 
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DoS attack is detected 

 Figure 5.17 Control chart of energy consumption metric with response for AODV  
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Thus the vulnerability of the node is detected from the TI values and upon 

detecting that a node is under threat, the neighboring nodes are subjected to the response 

and protection mechanism, which identifies the intruder and isolates it. This stabilizes the 

TI of the node under threat and hence the entire network. 

As illustrated in Tables 5.2 and 5.3, the values of the metric parameters for 

AODV and DSDV are different. Specifically, average values for EC, QL and PD are 

lesser for AODV. This is due to the reason that under stressful load, AODV tends to 

perform better in routing than DSDV. In general, AODV tends to generate less routing 

load than DSDV due to its on-demand mechanism of route discovery and route 

maintenance.  However, as shown in Figures 5.4 through 5.17, without response and with 

response results for DSDV and AODV are similar. This illustrates that the proposed 

model is protocol independent and can be applied to any routing protocol. 

5.9 Related Model Performance Evaluation Experimentation 

 This section explains the performance evaluation experimentation and comparison 

of results of the proposed model with related schemes to illustrate the effectiveness of the 

detection framework used in our IDRMAN model. This section demonstrates that the 

detection framework used in the IDRMAN model performs better compared to related 

MANET IDA schemes.  

The performance of the proposed IDRMAN detection framework is compared 

with similar MANET IDA models like Cooperative Intrusion Detection System for Ad 

hoc Networks (CIDSAN) and Integration of Mobility and Intrusion Detection for 

Wireless Ad hoc Networks (MIDWAN) [58, 64]. These related models are explained in 

detail with results in Chapter 2. MIDWAN and CIDSAN are chosen for the comparison 
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because they are the latest anomaly detection based Intrusion Detection Model for 

MANET referred in the literature. CIDSAN is an improvement over their previous 

pioneer work [18]. It is also referred by MIDWAN as the most current anomaly detection 

based related MANET IDA at the time of the publication of their work.  

The Simulation environment and scenario for this experiment is same as the one 

explained in Section 5.5 and Section 5.6. However, the number of nodes used is around 

30 mobile nodes with a minimum speed of 5m/s and the maximum speed of 40 m/s. Also 

the number of malicious nodes is set to 5. AODV is used as the routing protocol.  

Metrics for Performance Evaluation: 

  The following metrics were chosen for comparing the performance of IDRMAN 

IDA approach with MIDWAN and CIDSAN.  

Detection rate at varied mobility speed:  It is defined as the percentage or fraction that a 

mobile node under threat is correctly detected.  This is chosen since accuracy is one of 

the most important characteristics of an IDA. A high detection rate is desirable for a good 

MANET IDA.  

False Positive rate at varied mobility speed: It is defined as the percentage or fraction 

that a mobile node has been falsely classified to be under threat. This parameter 

represents sensitivity to the noisy training data. A good IDA should adapt better even to 

the unseen data, even if the data representation has some irrelevant information. 

Experimental Results: 

The accuracy feature of the related IDA is shown in the following Figure 5.18. It 

shows the detection rate metric results of IDRMAN IDA at varied mobility speed 

compared to the results of MIDWAN and CINSAN. 
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Figure 5.18 Detection Rate at Varied Mobility Speed for Related IDA Evaluation 

For detection rate metric at varied node mobility speed, IDRMAN IDA approach 

works better at various node mobility speeds compared to CIDSAN and MIDWAN. For 

our IDRMAN IDA approach, the detection rate of 97% is consistent at varied mobility 

speed. MIDWAN has detection rate of about 97% until 10 m/s. As speed increases the 

detection rate slightly falls to 90% at 40 m/s. Whereas CIDSAN’s detection rate is 

consistent at about 89% from 5 m/s to 40 m/s. 

The noise tolerance feature of the IDA is shown in the following Figure 5.19. It 

shows the results of IDRMAN IDA at varied mobility speed compared to the results for 

MIDWAN and CIDSAN approaches for the false positive rate metric. 
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Figure 5.19 False Positive Rate at varied Mobility Speed for Related IDA Evaluation 

For false positive rate metric at varied node mobility speed, IDRMAN IDA 

approach works better at different mobility speeds compared to CIDSAN and MIDWAN. 

IDRMAN has false positive rate of about 3% until 10 m/s. As speed increases the false 

positive rate slightly increases to 13% at 25 m/s and then to 17% at 40m/s node speed. 

While CIDSAN has false positive rate of about 5% until10 m/s and as speed increases, 

the false positive rate slightly increases to 10% at 25 m/s and then to 15% at 40 m/s. 

Whereas MIDWAN’s false positive rate is about 10% at 5 m/s but it gets significantly 

increase to about 25% at about 20m/s and increase further at mobility levels higher than 

20m/s. 

Thus, the performance of IDRMAN detection framework is superior for both 

metrics, Detection rate at varied mobility speed and false positive rate at varied mobility 

speed. These two metrics are the most important factors for evaluating a detection 

scheme. This hence demonstrates that the IDRMAN detection framework performs better 

compared to the related MANET IDA. 
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5.10 Scalability Performance Evaluation Experimentation for IDRMAN

 This section explains the performance evaluation of the IDRMAN detection 

framework when more mobile nodes are added into the network at varied mobility speed. 

The results of this section demonstrate the effectiveness of IDRMAN detection 

framework from the scalability perspective with respect to the size of the mobile network.  

Simulation environment and scenario for this experiment is same as the one 

explained in Section 5.5 and Section 5.6. However, the number of mobile nodes is varied 

from 5 to 100 in steps of 10 with the minimum speed of 3m/s and the maximum speed of 

15 m/s. Also the number of malicious nodes is also varied. AODV is used as the routing 

protocol. 

Metrics for Performance Evaluation with respect to scalability: 

  The following metrics were chosen for evaluating the performance of IDRMAN 

detection framework from the scalability perspective.  

Detection rate:  It is defined as the percentage or fraction that a mobile node under threat 

is correctly detected.  This is chosen since accuracy is one of the most important 

characteristics of an IDA. A high detection rate for a large sized MANET is desirable for 

a scalable MANET IDA.  

False Positive rate: It is defined as the percentage or fraction that a mobile node has been 

falsely classified to be under threat.  This parameter represents sensitivity to the noisy 

training data. A good scalable IDA with large number of mobile nodes should adapt 

better even to the unseen data, even if the data representation has some irrelevant 

information. 
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Total Processing Time:  It is defined as the total time the system takes to analyze 

parameters and detect that the node is under threat. This is an important metric since 

effective intrusion detection should happen quickly even when there are a large number 

of mobile nodes, so that the response can be applied before significant damage occurs to 

the MANET. 

Experimental Results: 

The accuracy feature of the scalable IDA is shown in the following Figure 5.20. It 

shows the results of IDRMAN IDA when more mobile nodes are added into MANET at 

varying mobile speed.  
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Figure 5.20 Detection Rate Metric Results for Varied Number of Mobile Nodes   

For detection rate metric, IDRMAN IDA approach works slightly better when 

there are less mobile nodes compared to higher number of mobile nodes. The detection 

rate is close to 100% when the number of mobile nodes is less than 20. But as the number 

of mobile nodes increases, the detection rate falls to 98% when the number of nodes is 

30, then to 95 % when the number of nodes is 60 and finally to 93% when the number of 

nodes is 100. Also the detection rate is slightly better when the node mobility speed is 

less. 
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The noise tolerance feature of the IDA for varying MANET size is shown in the 

following Figure 5.21. It shows the results for the false positive rate metric of the 

IDRMAN IDA when more mobile nodes are added into the MANET at varied speed. 
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Figure 5.21 False Positive Rate Metric Results for Varied Number of Mobile Nodes   

For false positive rate metric, IDRMAN IDA approach works slightly better when 

there are less mobile nodes compared to higher number of mobile nodes. The false 

positive rate is close to 0% when the number of mobile nodes is less than 20. But as the 

number of mobile nodes increases, the false positive rate increases to 3% when the 

number of nodes are 30, then to 5 % when the number of nodes are 60 and finally to 

about 7% when the number of mobile nodes are 100. Also the false positive rate is 

slightly smaller when the node mobility speed is less. 

Figure 5.22 shows the processing time metric of IDRMAN IDA when more 

mobile nodes are added into the MANET at varying speed. It shows the results for the 

IDRMAN IDA model when the number of mobile nodes is increased from 5 to 100 in 

steps of 10. 
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 ProcessingTime Metric at Varied Number of Nodes and Speed
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Figure 5.22 Processing Time Metric Results for Varied Number of Mobile Nodes 

For Processing Time Metric, IDRMAN IDA approach performs better when there 

are less mobile nodes compared to higher number of mobile nodes. The processing time 

is less than 10 seconds when the number of mobile nodes is less than 40. But as the 

number of mobile nodes increases, the processing time increases to 50 seconds when the 

number of nodes are 60, then to 60 seconds when the number of nodes are 70 and finally 

to about 80 seconds when the number of mobile nodes increase to 100. Also the 

processing time is slightly less when the node mobility speed is less. 

Thus, from the metrics used to evaluate the scalability aspect of the IDRMAN 

IDA, the performance of IDRMAN detection framework is superior when the number of 

mobile nodes is less than 40 and the performance falls only slightly as more mobile nodes 

are added to the MANET. This demonstrates that the IDRMAN detection framework is 

scalable and can perform well even when more mobile nodes are added into the network. 
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CHAPTER VI 

                          CONCLUSION  

 This chapter summarizes the research work, reviews the contributions and 

suggests possible future work. 

6.1 Summary of the Research 

 This research designed and developed the intrusion detection and response model 

for mobile ad hoc networks (IDRMAN). This model consists of the intrusion detection 

framework and the intrusion response framework. These two frameworks complement 

each other to make a complete intrusion detection based security model for MANETs. 

The functionality and effectiveness of this model was validated by applying this model 

for simulated Denial of Service attacks(DoS) in MANET. 

 The detection framework of the IDRMAN uses CART based data mining 

methodology to identify the parameters that are significant for a particular attack. It then 

uses the six sigma methodology to set the thresholds for the significant parameters 

identified. The detection framework then quantifies an attack using a metric called Threat 

Index (TI) by applying fuzzy logic on the measured values of the significant parameters. 

The response framework of the IDRMAN is invoked when the detection 

framework identifies an attack. The response framework has an intruder identification 

component and an intrusion response component. The intruder identification component 

uses the significant parameters and their thresholds in a reputation management 

mechanism to identify the intruder and flag its status. The response action plan is then 
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executed by the response framework based on the intruder status indicated by the 

reputation management mechanism. 

The model was simulated for selected Denial of Service attacks with DSDV and 

AODV as the routing protocols. The results indicate that the threat index evaluation 

based intrusion detection framework and the intruder identification based intrusion 

response framework can be used to detect and respond to an attack effectively and is 

protocol independent. 

 Extensive simulations were performed to evaluate the performance of proposed 

model. Simulation results demonstrate that the proposed fuzzy logic based threat 

detection algorithm has better false positive ratio and detection ratio at varied mobility 

rates compared to related models. Also, the false positive ratio and detection ratio 

performance by the model is not affected when we add more mobile nodes into the 

network. This indicates that the proposed model is scalable with respect to the size of the 

MANET. 

In our literature review, we studied several existing mobile ad hoc network 

security schemes and IDA schemes with respect to MANET. We also analyzed the 

security attacks and issues concerning the mobile ad hoc network. Our analysis as 

described in Chapter 2 shows that the potential threats faced by MANET come in the 

form of authentication, denial of service, selfish node behavior, or routing attack. We 

classified the contributions by various authors and the different types of approaches taken 

to provide security based on the type of security attacks and attempted a comparative 

study of related requirement features for a secured system. Such classification enhances 

the understanding of the proposed security schemes in the mobile ad hoc networks.  
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6.2 Review of Contributions  

 To recap, the main research contributions are as follows: 

• We have proposed an effective Intrusion Detection for MANET through our 

metric called Threat Index. Threat Index is computed using the fuzzy logic based 

intrusion detection framework and it detects whether a node is under threat or not.  

• Through our response framework in the model we have provided the mechanism 

for attack control and protection of MANET mobile nodes under threat by 

identifying the intruder and subjecting appropriate response plan.  

• We have also proposed the methodology to identify the significant attack 

sensitive parameters through machine learning based decision trees concept; we 

have also proposed the methodology to set their threshold values to differentiate 

normal, uncertain and vulnerable states.  

• Our detection and response framework provides a protocol independent 

infrastructure for protecting the MANET from active attacks by measuring critical 

parameters in the underlying MANET infrastructure. Proposed model 

continuously monitors the online network data and efficiently detects the attacks 

independent of the protocol used in MANET.  
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6.3 Recommendations for Future Work 

Since not many research efforts have been devoted to MANET IDA, especially 

the intruder identification, intrusion response and control, this dissertation provides the 

leading effort in constructing a viable MANET intrusion detection, intrusion response 

and control model. As a very new, hot and promising research area there are several 

interesting and important future directions explained as follows.  

• Focusing on DSDV and AODV as the routing protocol, and DoS attacks as the 

threat model, we have designed and developed IDRMAN model to the full. 

Further work can be performed to extend this model to other passive attacks like 

unauthorized access, probing, selfishness and non-repudiation attacks in mobile 

ad hoc networks and active routing attacks. 

• Further research could also be devoted to apply the proposed model to secure the 

integrated wired and wireless networks like cellular networks/sensor networks.  

• Having demonstrated the viability of intrusion detection and response approach in 

providing security for mobile ad hoc networks in a simulation environment, it 

would be valuable to evaluate the model in a wireless MANET test bed in order to 

bridge the gap between simulation and actual MANET deployment. 
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APPENDIX A 
 
#*********************************************************************** 
# * RelatedPerfEval6Node.TCL to  Simulate MANET in NS2. 
# * Written by: Sathish Kumar AP. 
# * Date: 07/15/2006.  
# ********************************************************************** 
# Define options 
# =============================================================== 
set val(chan)           Channel/WirelessChannel        ;# channel type 
set val(prop)           Propagation/TwoRayGround   ;# radio-propagation model 
set val(netif)          Phy/WirelessPhy                      ;# network interface type 
set val(mac)            Mac/802_11                           ;# MAC type 
set val(ifq)            Queue/DropTail/PriQueue          ;# interface queue type 
set val(ll)             LL                                   ;# link layer type 
set val(ant)            Antenna/OmniAntenna              ;# antenna model 
set val(ifqlen)         50                                    ;# max packet in ifq 
set val(nn)             6                                    ;# number of mobilenodes 
set val(rp)             AODV                                  ;# routing protocol 
#   Node 1 is attacked by Node 2             #  
#   Mobility for all nodes is level 1 3 m/s  # 
#   =============================================================== 
# Main Program 
#  
# Initialize Global Variables 
# 
set ns_  [new Simulator] 
set tracefd     [open newmanet.tr w] 
$ns_ trace-all $tracefd 
$ns_ namtrace-all-wireless [open newmanet.nam w] 1000 500 
# set up topography object 
set topo       [new Topography] 
$topo load_flatgrid 1000 500 
# 
# Create God 
# 
create-god $val(nn) 
# 
#  Create the specified number of mobilenodes [$val(nn)] and "attach" them 
#  to the channel.  
#  Here two nodes are created : node(0) and node(1) 
# configure node 
        $ns_ node-config -adhocRouting $val(rp) \ 
    -llType $val(ll) \ 
    -macType $val(mac) \ 
    -ifqType $val(ifq) \ 
    -ifqLen $val(ifqlen) \ 
    -antType $val(ant) \ 
    -propType $val(prop) \ 
    -phyType $val(netif) \ 
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    -channelType $val(chan) \ 
    -topoInstance $topo \ 
    -agentTrace ON \ 
    -routerTrace ON \ 
    -macTrace ON \ 
    -movementTrace OFF    
     
 for {set i 0} {$i < $val(nn) } {incr i} { 
  set node_($i) [$ns_ node]  
  $node_($i) random-motion 0  ;# disable random motion 
 } 
 
# 
# Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes 
# 
$node_(0) set X_ 5.0 
$node_(0) set Y_ 2.0 
$node_(0) set Z_ 0.0 
$node_(1) set X_ 39.0 
$node_(1) set Y_ 38.0 
$node_(1) set Z_ 0.0 
$node_(2) set X_ 12.0 
$node_(2) set Y_ 8.0 
$node_(2) set Z_ 6.0 
$node_(3) set X_ 15.0 
$node_(3) set Y_ 23.0 
$node_(3) set Z_ 6.0 
$node_(4) set X_ 22.0 
$node_(4) set Y_ 28.0 
$node_(4) set Z_ 6.0 
$node_(5) set X_ 32.0 
$node_(5) set Y_ 38.0 
$node_(5) set Z_ 6.0 
# Now produce some simple node movements 
# Node_(1) starts to move towards node_(0) 
# 
# Now produce some simple node movements 
# Node_(1) starts to move towards node_(0) 
# 
$ns_ at 50.0 "$node_(1) setdest 25.0 20.0 12.0" 
$ns_ at 10.0 "$node_(0) setdest 20.0 18.0 12.0" 
$ns_ at 50.0 "$node_(2) setdest 36.5 17.5 12.0" 
# Node_(1) then starts to move away from node_(0) 
$ns_ at 100.0 "$node_(1) setdest 490.0 480.0 12.0"  
$ns_ at 70.0 "$node_(3) setdest 190.0 480.0 12.0"  
$ns_ at 80.0 "$node_(4) setdest 290.0 480.0 12.0"  
$ns_ at 90.0 "$node_(5) setdest 390.0 480.0 12.0"  
# Setup traffic flow between nodes 
# TCP connections between node_(0) and node_(1) 
 
set udp0 [new Agent/UDP] 
$udp0 set class_ 1 
set udp2 [new Agent/UDP] 
$udp2 set class_ 2  
#SET A TCP Connection between node_(3) and node_(4) 
set tcp3 [new Agent/TCP/Newreno] 
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$tcp3 set class_ 3  
set tcpsink [new Agent/TCPSink] 
$tcpsink set class_ 4  
set sink [new Agent/UDP] 
set sink2 [new Agent/UDP] 
 
$ns_ attach-agent $node_(0) $udp0 
$ns_ attach-agent $node_(1) $sink 
$ns_ attach-agent $node_(2) $udp2 
$ns_ attach-agent $node_(3) $tcp3 
$ns_ attach-agent $node_(4) $tcpsink 
$ns_ attach-agent $node_(5) $tcp3 
 
$ns_ connect $udp0 $sink 
$ns_ connect $udp2 $sink2 
$ns_ connect $udp10 $sink11 
$ns_ connect $tcp3 $tcpsink 
$ns_ connect $udp20 $sink21 
set cbr0 [new Application/Traffic/CBR] 
$cbr0 set packetSize_ 512 
$cbr0 set interval_ .01 
set ftp [new Application/FTP] 
$ftp attach-agent $tcp3 
$ftp set packetSize_ 512 
$ftp set interval_ 1 
$cbr0 attach-agent $udp0 
$ns_ at 10.0 "$cbr0 start"  
$ns_ at 10.0 "$ftp start" 
#$ns_ at 10.0 "$cbr4 start" 
#set qmon [$ns_ monitor-queue $node_(0) $node_(1) [open qmadhoc.out w] 0.1]; 
for {set i 0} {$i < [expr ($val(nn))]} {incr i} { 
    # 20 defines the node size in nam, must adjust it according to your 
    # scenario 
    # The function must be called after mobility model is defined 
    $ns_ initial_node_pos $node_($i) 10 
} 
# Tell nodes when the simulation ends 
for {set i 0} {$i < $val(nn) } {incr i} { 
    $ns_ at 150.0 "$node_($i) reset"; 
} 
$ns_ at 1000.0 "$ns_ nam-end-wireless 100.0" 
#$ns_ at 200.0 "$ns_ nam-end-wireless 100.0" 
$ns_ at 1000.0 "$ns_ halt" 
#$ns_ at 200.0 "$ns_ halt" 
$ns_ at 1500.0 "stop" 
#$ns_ at 300.0 "stop" 
#$ns_ at 1500.01 "puts \"NS EXITING...\" ; $ns_ halt" 
$ns_ at 300.01 "puts \"NS EXITING...\" ; $ns_ halt" 
proc stop {} { 
    global ns_ tracefd 
    $ns_ flush-trace 
    close $tracefd 
} 
puts "Starting Simulation..." 
$ns_ run 
 

 173



 
 
 
 
APPENDIX  B 

 
/*********************************************************************** 
 * MAIN.cpp --- C++ code to Test TI detection framework. 
 * (This file is main file) 
 * Written by: Sathish Kumar AP. 
 * Date: 07/15/2006.  
 **********************************************************************/ 
#include <stdio.h> 
#include "Mainfis3In.cpp" 
#include "Fuzzy3Input.cpp" 
#include <fstream.h> 
#include <sstream> 
#include <string.h> 
#define MAXLINE 100 
//using namespace std; 
using std::string;  
void main( void ) 
{ 
 float EC;   float PD;  float QL; 
 double TI; string line = ""; 
 ifstream OpenFile("sathishinp.txt"); 
 printf("Reading Input File\n"); 
 char str1[100]; char s1[10] = ""; char s2[10] = ""; char s3[10] = "";  
 int u =0;int v =0;int w =0; 
     while(!OpenFile.eof()) 
  { 
      OpenFile.getline(str1,100); 
  for(int x = 0; x < 8; x++) 
  { s1[u] = str1[x]; u++;} 
  u=0; 
  for(int y = 9; y < 17; y++) 
  { s2[v] = str1[y]; v++;} 
  v=0; 
  for(int z = 18; z < 26; z++) 
  { s3[w] = str1[z]; w++;} 
  w=0; 
  printf("%s\n",str1); printf("%s\n",s1); printf("%s\n",s2);printf("%s\n",s3); 
  EC = atof (s1); PD = atof (s2); 
  QL = atof (s3); 
  printf ("EC is %f\n", EC); 
  printf ("PD is %f\n", PD); 
  printf ("QL is %f\n", QL); 
  TI = Fuzzy_Inference("Threshold_Index.fis", EC, PD, QL); 
  printf("TI = %f \n", TI); 
  } 
} 
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/*********************************************************************** 
 * Fuzzy3Input.cpp --- C++ code for TI fuzzy inference system. 
 * Written by: Sathish Kumar A P 
 * Date: 07/02/2006.  
 **********************************************************************/ 
double Fuzzy_Inference(char *fis_file, float input1, float input2, float input3) 
{ 
 char *data_file; 
 double  **Outputmatrix; 
 double fis_output; 
 
   FILE *Inptfile; 
   Inptfile = fopen("Inpt.txt", "w"); 
   fprintf(Inptfile,"%.2f\t%.2f\t%.2f\n",input1, input2, input3); 
   fclose(Inptfile); 
   data_file = "Inpt.txt"; 
   Outputmatrix = fis_system(data_file, fis_file); 
               fis_output = Outputmatrix[0][0]; 
   FILE *Otptfile; 
   Otptfile = fopen("fuz_out.txt", "a"); 
   fprintf(Otptfile,"%.2f\n",fis_output); 
   fclose(Otptfile); 
 return(fis_output); 
} 
/*********************************************************************** 
 * MainFIS3In.cpp --- C++ code for TI fuzzy inference system. 
 **********************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <conio.h> 
#include "Macros.cpp" 
#include "MF.cpp" 
#include "DataMatrix3In.cpp" 
#include "FISMatrix.cpp" 
#include "Defuzz.cpp" 
#include "BuildFisNode.cpp" 
#include "Inference.cpp" 
double ** fis_system(char *data_file, char *fis_file) 
{ 
 FIS *fis; 
 int i; 
 int debug = 0; 
 double **dataMatrix, **fisMatrix, **outputMatrix; 
 int data_row_n, data_col_n, fis_row_n, fis_col_n; 
 /* obtain data matrix and FIS matrix */ 
 dataMatrix = returnDataMatrix(data_file, &data_row_n, &data_col_n); 
 fisMatrix = returnFismatrix(fis_file, &fis_row_n, &fis_col_n); 
 /* build FIS data structure */ 
 fis = (FIS *)fisCalloc(1, sizeof(FIS)); 
 fisBuildFisNode(fis, fisMatrix, fis_col_n, MF_POINT_N); 
 /* error checking  */ 
 if (data_col_n < fis->in_n) { 
  printf("Given FIS is a %d-input %d-output system.\n", 
  fis->in_n, fis->out_n); 
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  printf("Given data file does not have enough input entries.\n"); 
  fisFreeMatrix((void **)dataMatrix, data_row_n); 
  fisFreeMatrix((void **)fisMatrix, fis_row_n); 
  fisFreeFisNode(fis); 
  fisError("Exiting ..."); 
 } 
 /* debugging  */ 
 if (debug) 
  fisPrintData(fis); 
 /* create output matrix */ 
 outputMatrix = (double **)fisCreateMatrix(data_row_n, fis->out_n, sizeof(double)); 
 /* evaluate FIS on each input vector */ 
 for (i = 0; i < data_row_n; i++) 
  getFisOutput(dataMatrix[i], fis, outputMatrix[i]); 
 /* print output vector   
 for (i = 0; i < data_row_n; i++) { 
  for (j = 0; j < fis->out_n; j++) 
   printf("outputMatrix = %.3f ", outputMatrix[i][j]); 
  printf("\n"); 
 }*//* clean up memory */ 
 fisFreeFisNode(fis); 
 fisFreeMatrix((void **)dataMatrix, data_row_n); 
 fisFreeMatrix((void **)fisMatrix, fis_row_n); 
 return(outputMatrix);} 
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APPENDIX C 
 
%****************************************************************        
% Matlab code to optimize Membership Functions of TI detection framework. 
        % Written by: Sathish Kumar AP. 
        % Date: 07/10/2006.  
%********************************************************************* 
          clear 
          Target = 7; 
          decrease_ratio = 0.97; 
          increase_ratio = 1.03; 
          ec_ns = 2.1;    ec_us = 2.15;          ec_vs = 2.2; 
          pd_ns = 109;   pd_us = 117;          pd_vs = 126; 
          ql_ns = 122;    ql_us = 134;          ql_vs = 146; 
          exp_path     = 'C:\adHocSim\Generate_fis_file\Threshold_Index\Attaked_Data_3'; 
          results_file = 'C:\adHocSim\Generate_fis_file\Threshold_Index\Attaked_Data_3\results.txt'; 
          save_file    = 'C:\adHocSim\Generate_fis_file\Threshold_Index\Attaked_Data_3\MFs_points'; 
          addpath(exp_path); 
          load pd.txt 
          load ql.txt 
          load ec.txt 
          no_of_training_data = size(ec,1); 
          fid = fopen(results_file,'a'); 
          for i = 1:no_of_training_data  
              input_array = [ec(i) pd(i) ql(i)]; 
              output_TI = Fuzzy_TI_fun(input_array, ec_ns, ec_us, ec_vs, pd_ns, pd_us, pd_vs, ql_ns, ql_us, 
ql_vs); 
              fprintf(fid,'%.1f\n',output_TI); 
              % Test NS netwotk %%%%%%%%%%%%%%%%%%%  
              if((Target <=4) & (output_TI > 4)) 
                  if ((ec(i) > (ec_ns-(ec_ns*0.2))) & (ec(i) < (ec_vs-(ec_vs*0.2)))) 
                      if ((ec_ns * increase_ratio) < ec_us) 
                          ec_ns = ec_ns * increase_ratio; 
                      end 
                  end 
                  if ((pd(i) > (pd_ns-(pd_ns*0.2))) & (pd(i) < (pd_vs-(pd_vs*0.2)))) 
                      if ((pd_ns * increase_ratio) < pd_us) 
                          pd_ns = pd_ns * increase_ratio; 
                      end 
                  end 
                  if ((ql(i) > (ql_ns-(ql_ns*0.2))) & (ql(i) < (ql_vs-(ql_vs*0.2)))) 
                      if ((ql_ns * increase_ratio) < ql_us) 
                          ql_ns = ql_ns * increase_ratio; 
                      end 
                  end 
              end 
              % Test VS netwotk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
              if((Target >=7) & (output_TI < 7)) 
                  if ((ec(i) > (ec_ns-(ec_ns*0.2))) & (ec(i) < (ec_vs-(ec_vs*0.2)))) 
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                      if ((ec_vs * decrease_ratio) > ec_us) 
                          ec_vs = ec_vs * decrease_ratio; 
                      end 
                  end 
                  if ((pd(i) > (pd_ns-(pd_ns*0.2))) & (pd(i) < (pd_vs-(pd_vs*0.2)))) 
                      if ((pd_vs * decrease_ratio) > pd_us) 
                          pd_vs = pd_vs * decrease_ratio; 
                      end 
                  end 
                  if ((ql(i) > (ql_ns-(ql_ns*0.2))) & (ql(i) < (ql_vs-(ql_vs*0.2)))) 
                      if ((ql_vs * decrease_ratio) > ql_us) 
                          ql_vs = ql_vs * decrease_ratio; 
                      end 
                  end 
              end 
              %% Test US netwotk %%%%%%%%%%%%%%%%%%%%%%%%  
              if((Target > 4) & (Target < 7) & (output_TI < 4)) 
                  if ((ec(i) > (ec_ns-(ec_ns*0.2))) & (ec(i) < (ec_vs-(ec_vs*0.2)))) 
                      if ((ec_us * increase_ratio) < ec_vs) 
                          ec_us = ec_us * increase_ratio; 
                      end 
                  end 
                  if ((pd(i) > (pd_ns-(pd_ns*0.2))) & (pd(i) < (pd_vs-(pd_vs*0.2)))) 
                      if ((pd_us * increase_ratio) < pd_vs) 
                          pd_us = pd_us * increase_ratio; 
                      end 
                  end 
                  if ((ql(i) > (ql_ns-(ql_ns*0.2))) & (ql(i) < (ql_vs-(ql_vs*0.2)))) 
                      if ((ql_us * increase_ratio) < ql_vs) 
                          ql_us = ql_us * increase_ratio; 
                      end 
                  end 
              end 
              if((Target > 4) & (Target < 7) & (output_TI > 7)) 
                  if ((ec(i) > (ec_ns-(ec_ns*0.2))) & (ec(i) < (ec_vs-(ec_vs*0.2)))) 
                      if ((ec_us * decrease_ratio) > ec_ns) 
                          ec_us = ec_us * decrease_ratio; 
                      end 
                  end 
                  if ((pd(i) > (pd_ns-(pd_ns*0.2))) & (pd(i) < (pd_vs-(pd_vs*0.2)))) 
                      if ((pd_us * decrease_ratio) > pd_ns) 
                          pd_us = pd_us * decrease_ratio; 
                      end 
                  end 
                  if ((ql(i) > (ql_ns-(ql_ns*0.2))) & (ql(i) < (ql_vs-(ql_vs*0.2)))) 
                      if ((ql_us * decrease_ratio) > ql_ns)     ql_us = ql_us * decrease_ratio; 
                      end 
                  end 
              end 
              %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
          end % for loop 
          fclose(fid); 
          save (save_file, 'ec_ns', 'ec_us', 'ec_vs', 'pd_ns', 'pd_us', 'pd_vs', 'ql_ns', 'ql_us', 'ql_vs') 
          rmpath(exp_path). 
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%********************************************************************** 
        % Matlab code  to implement Threshold Training Algorithm. 
        % Written by: Sathish Kumar AP        % Date: 07/15/2006.  
%********************************************************************* 
   ec_ns = 2.1; 
   ec_us = 2.15; 
   ec_vs = 2.2; 
   pd_ns = 109; 
   pd_us = 117; 
   pd_vs = 126; 
   ql_ns = 122; 
   ql_us = 134; 
   ql_vs = 146; 
%%%%In the above matrix w are interested in the non shaded region only where P2 > P1 
for i = 1: 10 
 for j = 1: 10 
   p[i] [j] = 0;   
 end % end for loop 
end  % end for loop 
exp_path   = 'C:\adHocSim\Generate_fis_file\Threshold_Index\Attaked_Data_3'; 
addpath(exp_path); 
load pd.txt 
load ql.txt 
load ec.txt 
%%%%%no_of_training_data = size(ec,1); 
  for k = 1:159 %no_of_training_data  
 for i = 1: 10 
  for j=i+1: 10 
     p1 = i; 
     p2 = j;   
          output_TI = Fuzzy_TI_fun(input_array, ec_ns, ec_us, ec_vs, pd_ns,   
     pd_us,pd_vs, ql_ns, ql_us, ql_vs, p1, p2, (p1+p2)/2); 
     if(output_TI > p2) 
    CalculatedState = ‘VS’; 
     end; 
     if(output_TI < p1) 
    CalculatedState = ‘NS’; 
     end; 
     if(output_TI >= p1) and (output_TI <= p2) 
    CalculatedState = ‘US’; 
     end 
     if (CalculatedState = = Target Outcome Label) 
     p[i][j] = p[i][j] + 1; 
     end 
  end %%%%end first for loop 
 end %%% end second for loop 
end %%% end third for loop 
p1=0; p2=0; MaxValue = 0; 
for i = 1 : 10 
 for j = 1: 10 
   If (p[i][j] > MaxValue)  
    MaxValue = p[i][j]; p1=i;  p2=j;  
  end   
 end % end for loop 
end % end for loop 
printf(“P1 and P2 are '%d %d\n”, p1, p2); 
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%********************************************************************** 
        % Matlab code  to generate FIS file. 
        % Written by: Sathish Kumar AP        % Date: 07/15/2006.  
%********************************************************************* 
            clear 
            a=newfis('FuzzyTI'); 
            a=addvar(a,'input','EC',[0 4]); 
            a=addmf(a,'input',1,'NS','zmf',[2.1 2.15]); 
            a=addmf(a,'input',1,'US','trimf',[2.1 2.15 2.2]); 
            a=addmf(a,'input',1,'VS','smf',[2.15 2.2]); 
            a = rmmf(a,'input',1,'mf',1); 
            a = rmmf(a,'input',1,'mf',1); 
            a = rmmf(a,'input',1,'mf',1); 
            figure('name', 'input 1: EC', 'numbertitle', 'off'); 
            plotmf(a,'input',1);                        
%-------------------             
            a=addvar(a,'input','PD',[0 400]); 
            a=addmf(a,'input',2,'NS','zmf',[109 117]); 
            a=addmf(a,'input',2,'US','trimf',[109 117 126]); 
            a=addmf(a,'input',2,'VS','smf',[117 126]); 
            a = rmmf(a,'input',2,'mf',1); 
            a = rmmf(a,'input',2,'mf',1); 
            a = rmmf(a,'input',2,'mf',1); 
            figure('name', 'input 2: PD', 'numbertitle', 'off'); 
            plotmf(a,'input',2); 
%-------------------             
            a=addvar(a,'input','QL',[0 400]); 
            a=addmf(a,'input',3,'NS','zmf',[122 134]); 
            a=addmf(a,'input',3,'US','trimf',[122 134 146]); 
            a=addmf(a,'input',3,'VS','smf',[134 146]); 
            a = rmmf(a,'input',3,'mf',1); 
            a = rmmf(a,'input',3,'mf',1); 
            a = rmmf(a,'input',3,'mf',1); 
            figure('name', 'input 3: QL', 'numbertitle', 'off'); 
            plotmf(a,'input',3); 
%-------------------             
            a=addvar(a,'output','TI',[1 10]); 
            a=addmf(a,'output',1,'NS','zmf',[4 5.5]); 
            a=addmf(a,'output',1,'US','trimf',[4 5.5 7]); 
            a=addmf(a,'output',1,'VS','smf',[5.5 7]); 
            a = rmmf(a,'output',1,'mf',1); 
            a = rmmf(a,'output',1,'mf',1); 
            a = rmmf(a,'output',1,'mf',1); 
            figure('name', 'output: TI', 'numbertitle', 'off'); 
            plotmf(a,'output',1); 
%-------------------             
            rule01='if EC is NS and PD is NS and QL is NS then TI is NS'; 
            rule02='if EC is NS and PD is NS and QL is US then TI is NS'; 
            rule03='if EC is NS and PD is NS and QL is VS then TI is NS'; 
            rule04='if EC is NS and PD is US and QL is NS then TI is NS'; 
            rule05='if EC is NS and PD is US and QL is US then TI is NS'; 
            rule06='if EC is NS and PD is US and QL is VS then TI is US'; 
            rule07='if EC is NS and PD is VS and QL is NS then TI is NS'; 
            rule08='if EC is NS and PD is VS and QL is US then TI is US'; 
            rule09='if EC is NS and PD is VS and QL is VS then TI is VS'; 
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            rule10='if EC is US and PD is NS and QL is NS then TI is NS'; 
            rule11='if EC is US and PD is NS and QL is US then TI is NS'; 
            rule12='if EC is US and PD is NS and QL is VS then TI is US'; 
            rule13='if EC is US and PD is US and QL is NS then TI is NS'; 
            rule14='if EC is US and PD is US and QL is US then TI is US'; 
            rule15='if EC is US and PD is US and QL is VS then TI is VS'; 
            rule16='if EC is US and PD is VS and QL is NS then TI is US'; 
            rule17='if EC is US and PD is VS and QL is US then TI is VS'; 
            rule18='if EC is US and PD is VS and QL is VS then TI is VS'; 
            rule19='if EC is VS and PD is NS and QL is NS then TI is NS'; 
            rule20='if EC is VS and PD is NS and QL is US then TI is US'; 
            rule21='if EC is VS and PD is NS and QL is VS then TI is VS'; 
            rule22='if EC is VS and PD is US and QL is NS then TI is US'; 
            rule23='if EC is VS and PD is US and QL is US then TI is VS'; 
            rule24='if EC is VS and PD is US and QL is VS then TI is VS'; 
            rule25='if EC is VS and PD is VS and QL is NS then TI is VS'; 
            rule26='if EC is VS and PD is VS and QL is US then TI is VS'; 
            rule27='if EC is VS and PD is VS and QL is VS then TI is VS'; 
 
            ruleList = [rule01; rule02; rule03; rule04; rule05; rule06; rule07; rule08; rule09; 
                        rule10; rule11; rule12; rule13; rule14; rule15; rule16; rule17; rule18;   
 rule19; rule20; rule21; rule22; rule23; rule24; rule25; rule26; rule27 ]; 
            a=parsrule(a,ruleList); 
            figure('name', 'fis', 'numbertitle', 'off'); 
            plotfis(a); 
            showfis(a); 
            ruleview(a); 
            writefis(a,'C:\Threshold_Index') 
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APPENDIX   D 

 
Queue length  Parameter NS2 log at node 2 without response 
qlen: Second at Time 10.000000 Src 2 Dest -2  
qlen: Second at Time 10.010000 Src 2 Dest -2  
qlen: Second at Time 137.730000 Src 2 Dest -2  
qlen: Second at Time 141.690000 Src 2 Dest -2  
qlen: Second at Time 141.700000 Src 2 Dest -2  
qlen: Second at Time 141.710000 Src 2 Dest -2  
qlen: Second at Time 141.720000 Src 2 Dest -2  
qlen: Second at Time 141.730000 Src 2 Dest -2  
qlen: Second at Time 141.740000 Src 2 Dest -2  
qlen: Second at Time 141.750000 Src 2 Dest -2  
qlen: Second at Time 141.760000 Src 2 Dest -2  
qlen: Second at Time 141.770000 Src 2 Dest -2  
qlen: Second at Time 141.780000 Src 2 Dest -2  
qlen: Second at Time 141.790000 Src 2 Dest -2  
qlen: Second at Time 141.800000 Src 2 Dest -2  
qlen: Second at Time 141.810000 Src 2 Dest -2  
qlen: Second at Time 141.820000 Src 2 Dest -2  
qlen: Second at Time 141.830000 Src 2 Dest -2  
qlen: Second at Time 141.840000 Src 2 Dest -2  
qlen: Second at Time 141.850000 Src 2 Dest -2  
qlen: Second at Time 141.860000 Src 2 Dest -2  
qlen: Second at Time 141.870000 Src 2 Dest -2  
qlen: Second at Time 141.880000 Src 2 Dest -2  
qlen: Second at Time 141.890000 Src 2 Dest – 
qlen: Second at Time 175.000000 Src 2 Dest -2  
qlen: Second at Time 175.010000 Src 2 Dest -2  
qlen: Second at Time 175.020000 Src 2 Dest -2  
qlen: Second at Time 175.030000 Src 2 Dest -2  
qlen: Second at Time 175.040000 Src 2 Dest -2  
qlen: Second at Time 175.050000 Src 2 Dest -2  
qlen: Second at Time 175.060000 Src 2 Dest -2  
qlen: Second at Time 175.070000 Src 2 Dest -2  
qlen: Second at Time 175.080000 Src 2 Dest -2  
qlen: Second at Time 175.090000 Src 2 Dest -2  
qlen: Second at Time 175.100000 Src 2 Dest -2  
qlen: Second at Time 175.110000 Src 2 Dest -2  
qlen: Second at Time 175.120000 Src 2 Dest -2  
qlen: Second at Time 175.130000 Src 2 Dest -2  
qlen: Second at Time 175.140000 Src 2 Dest -2  
qlen: Second at Time 175.150000 Src 2 Dest -2  
qlen: Second at Time 175.160000 Src 2 Dest -2  
qlen: Second at Time 175.170000 Src 2 Dest -2  
qlen: Second at Time 175.180000 Src 2 Dest -2  
qlen: Second at Time 175.190000 Src 2 Dest -2  
qlen: Second at Time 175.200000 Src 2 Dest -2  
qlen: Second at Time 175.210000 Src 2 Dest -2  
qlen: Second at Time 175.220000 Src 2 Dest -2  
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qlen: Second at Time 175.230000 Src 2 Dest -2  
qlen: Second at Time 175.240000 Src 2 Dest -2  
qlen: Second at Time 175.250000 Src 2 Dest -2  
qlen: Second at Time 175.260000 Src 2 Dest -2  
qlen: Second at Time 175.270000 Src 2 Dest -2  
qlen: Second at Time 175.280000 Src 2 Dest -2  
qlen: Second at Time 175.290000 Src 2 Dest -2  
qlen: Second at Time 175.300000 Src 2 Dest -2  
qlen: Second at Time 175.310000 Src 2 Dest -2  
qlen: Second at Time 175.320000 Src 2 Dest -2  
qlen: Second at Time 175.330000 Src 2 Dest -2  
qlen: Second at Time 175.340000 Src 2 Dest -2  
qlen: Second at Time 999.850000 Src 2 Dest -2  
qlen: Second at Time 999.860000 Src 2 Dest -2  
qlen: Second at Time 999.870000 Src 2 Dest -2  
qlen: Second at Time 999.880000 Src 2 Dest -2  
qlen: Second at Time 999.890000 Src 2 Dest -2  
qlen: Second at Time 999.900000 Src 2 Dest -2  
qlen: Second at Time 999.910000 Src 2 Dest -2  
qlen: Second at Time 999.920000 Src 2 Dest -2  
qlen: Second at Time 999.930000 Src 2 Dest -2  
qlen: Second at Time 999.940000 Src 2 Dest -2  
qlen: Second at Time 999.950000 Src 2 Dest -2  
qlen: Second at Time 999.960000 Src 2 Dest -2  
qlen: Second at Time 999.970000 Src 2 Dest -2  
qlen: Second at Time 999.980000 Src 2 Dest -2  
qlen: Second at Time 999.990000 Src 2 Dest -2  
qlen: Second at Time 1000.000000 Src 2 Dest -2 
 
Queulength  Parameter NS2 log at Node 2 With Response: 
qlen: Second at Time 10.000000 Src 2 Dest -2  
qlen: Second at Time 10.010000 Src 2 Dest -2  
qlen: Second at Time 137.730000 Src 2 Dest -2  
qlen: Second at Time 141.690000 Src 2 Dest -2  
qlen: Second at Time 141.700000 Src 2 Dest -2  
qlen: Second at Time 141.710000 Src 2 Dest -2  
qlen: Second at Time 141.720000 Src 2 Dest -2  
qlen: Second at Time 141.730000 Src 2 Dest -2  
qlen: Second at Time 141.740000 Src 2 Dest -2  
qlen: Second at Time 141.750000 Src 2 Dest -2  
qlen: Second at Time 141.760000 Src 2 Dest -2  
qlen: Second at Time 141.770000 Src 2 Dest -2  
qlen: Second at Time 141.780000 Src 2 Dest -2  
qlen: Second at Time 141.790000 Src 2 Dest -2  
qlen: Second at Time 141.800000 Src 2 Dest -2  
qlen: Second at Time 141.810000 Src 2 Dest -2  
qlen: Second at Time 141.820000 Src 2 Dest -2  
qlen: Second at Time 141.830000 Src 2 Dest -2  
qlen: Second at Time 141.840000 Src 2 Dest -2  
qlen: Second at Time 141.850000 Src 2 Dest -2  
qlen: Second at Time 141.860000 Src 2 Dest -2  
qlen: Second at Time 141.870000 Src 2 Dest -2  
qlen: Second at Time 141.880000 Src 2 Dest -2  
qlen: Second at Time 141.890000 Src 2 Dest -2  
qlen: Second at Time 141.900000 Src 2 Dest -2  
qlen: Second at Time 141.910000 Src 2 Dest -2  
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qlen: Second at Time 141.920000 Src 2 Dest -2  
qlen: Second at Time 141.930000 Src 2 Dest -2  
qlen: Second at Time 141.940000 Src 2 Dest -2  
qlen: Second at Time 141.950000 Src 2 Dest -2  
qlen: Second at Time 141.960000 Src 2 Dest -2  
qlen: Second at Time 141.970000 Src 2 Dest -2  
qlen: Second at Time 141.980000 Src 2 Dest -2  
qlen: Second at Time 141.990000 Src 2 Dest -2  
qlen: Second at Time 142.000000 Src 2 Dest -2  
qlen: Second at Time 142.010000 Src 2 Dest -2  
qlen: Second at Time 142.020000 Src 2 Dest -2  
qlen: Second at Time 142.030000 Src 2 Dest -2  
qlen: Second at Time 142.040000 Src 2 Dest -2 
qlen: Second at Time 151.210000 Src 2 Dest -2  
qlen: Second at Time 151.220000 Src 2 Dest -2  
qlen: Second at Time 151.230000 Src 2 Dest -2  
qlen: Second at Time 151.240000 Src 2 Dest -2  
qlen: Second at Time 151.250000 Src 2 Dest -2  
qlen: Second at Time 151.260000 Src 2 Dest -2  
qlen: Second at Time 151.270000 Src 2 Dest -2  
qlen: Second at Time 151.280000 Src 2 Dest -2  
qlen: Second at Time 151.290000 Src 2 Dest -2  
qlen: Second at Time 151.300000 Src 2 Dest -2  
qlen: Second at Time 151.310000 Src 2 Dest -2  
qlen: Second at Time 151.320000 Src 2 Dest -2  
qlen: Second at Time 151.330000 Src 2 Dest -2  
qlen: Second at Time 151.340000 Src 2 Dest -2  
qlen: Second at Time 151.350000 Src 2 Dest -2  
qlen: Second at Time 151.360000 Src 2 Dest -2  
qlen: Second at Time 151.370000 Src 2 Dest -2  
qlen: Second at Time 151.380000 Src 2 Dest -2  
qlen: Second at Time 151.390000 Src 2 Dest -2  
qlen: Second at Time 151.400000 Src 2 Dest -2  
qlen: Second at Time 151.410000 Src 2 Dest -2  
qlen: Second at Time 151.420000 Src 2 Dest -2  
qlen: Second at Time 151.430000 Src 2 Dest -2  
qlen: Second at Time 151.440000 Src 2 Dest -2  
qlen: Second at Time 151.450000 Src 2 Dest -2  
qlen: Second at Time 151.460000 Src 2 Dest -2  
qlen: Second at Time 151.470000 Src 2 Dest -2  
qlen: Second at Time 151.480000 Src 2 Dest -2  
qlen: Second at Time 151.490000 Src 2 Dest -2  
qlen: Second at Time 151.500000 Src 2 Dest -2  
qlen: Second at Time 151.510000 Src 2 Dest -2  
qlen: Second at Time 151.520000 Src 2 Dest -2  
qlen: Second at Time 151.530000 Src 2 Dest -2  
qlen: Second at Time 151.540000 Src 2 Dest -2  
qlen: Second at Time 151.550000 Src 2 Dest -2  
qlen: Second at Time 151.560000 Src 2 Dest -2  
qlen: Second at Time 151.570000 Src 2 Dest -2  
qlen: Second at Time 151.580000 Src 2 Dest -2  
qlen: Second at Time 151.590000 Src 2 Dest -2  
qlen: Second at Time 151.600000 Src 2 Dest -2  
qlen: Second at Time 151.610000 Src 2 Dest -2  
qlen: Second at Time 151.620000 Src 2 Dest -2  
qlen: Second at Time 151.630000 Src 2 Dest -2  
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qlen: Second at Time 151.640000 Src 2 Dest -2  
qlen: Second at Time 151.650000 Src 2 Dest -2  
qlen: Second at Time 151.660000 Src 2 Dest -2 
 
Packet Drop Parameter NS2 log  at Node 2 Without Response: 
enquedrop: Time 10.000000 Src 2 Dest -2 
enquedrop: Time 10.010000 Src 2 Dest -2 
drop: at time 137.729665  Src 2 Dest 1  
drop: at time 137.729665 Src 2 Dest 1  
drop: at time 137.729665 Src 2 Dest 1  
drop: at time 137.729665 Src 2 Dest 1  
enquedrop: Time 137.730000 Src 2 Dest -2 
drop: at time 141.681306  Src 2 Dest 1  
drop: at time 141.681306 Src 2 Dest 1  
drop: at time 141.681306 Src 2 Dest 1  
enquedrop: Time 141.690000 Src 2 Dest -2 
enquedrop: Time 141.700000 Src 2 Dest -2 
enquedrop: Time 141.710000 Src 2 Dest -2 
enquedrop: Time 141.720000 Src 2 Dest -2 
enquedrop: Time 141.730000 Src 2 Dest -2 
enquedrop: Time 141.740000 Src 2 Dest -2 
enquedrop: Time 141.750000 Src 2 Dest -2 
enquedrop: Time 141.760000 Src 2 Dest -2 
enquedrop: Time 141.770000 Src 2 Dest -2 
enquedrop: Time 141.780000 Src 2 Dest -2 
enquedrop: Time 141.790000 Src 2 Dest -2 
enquedrop: Time 141.800000 Src 2 Dest -2 
enquedrop: Time 175.890000 Src 2 Dest -2 
enquedrop: Time 175.900000 Src 2 Dest -2 
enquedrop: Time 175.910000 Src 2 Dest -2 
enquedrop: Time 175.920000 Src 2 Dest -2 
enquedrop: Time 175.930000 Src 2 Dest -2 
enquedrop: Time 175.940000 Src 2 Dest -2 
enquedrop: Time 175.950000 Src 2 Dest -2 
enquedrop: Time 175.960000 Src 2 Dest -2 
enquedrop: Time 175.970000 Src 2 Dest -2 
enquedrop: Time 175.980000 Src 2 Dest -2 
enquedrop: Time 175.990000 Src 2 Dest -2 
enquedrop: Time 176.000000 Src 2 Dest -2 
enquedrop: Time 176.010000 Src 2 Dest -2 
enquedrop: Time 176.020000 Src 2 Dest -2 
enquedrop: Time 176.030000 Src 2 Dest -2 
enquedrop: Time 176.040000 Src 2 Dest -2 
enquedrop: Time 176.050000 Src 2 Dest -2 
enquedrop: Time 176.060000 Src 2 Dest -2 
enquedrop: Time 176.070000 Src 2 Dest -2 
enquedrop: Time 176.080000 Src 2 Dest -2 
enquedrop: Time 176.090000 Src 2 Dest -2 
enquedrop: Time 176.100000 Src 2 Dest -2 
enquedrop: Time 176.110000 Src 2 Dest -2 
enquedrop: Time 176.120000 Src 2 Dest -2 
enquedrop: Time 176.130000 Src 2 Dest -2 
enquedrop: Time 176.140000 Src 2 Dest -2 
enquedrop: Time 176.150000 Src 2 Dest -2 
enquedrop: Time 176.160000 Src 2 Dest -2 
enquedrop: Time 176.170000 Src 2 Dest -2 
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enquedrop: Time 176.180000 Src 2 Dest -2 
enquedrop: Time 176.190000 Src 2 Dest -2 
enquedrop: Time 176.200000 Src 2 Dest -2 
enquedrop: Time 999.780000 Src 2 Dest -2 
enquedrop: Time 999.790000 Src 2 Dest -2 
enquedrop: Time 999.800000 Src 2 Dest -2 
enquedrop: Time 999.810000 Src 2 Dest -2 
enquedrop: Time 999.820000 Src 2 Dest -2 
enquedrop: Time 999.830000 Src 2 Dest -2 
enquedrop: Time 999.840000 Src 2 Dest -2 
enquedrop: Time 999.850000 Src 2 Dest -2 
enquedrop: Time 999.860000 Src 2 Dest -2 
enquedrop: Time 999.870000 Src 2 Dest -2 
enquedrop: Time 999.880000 Src 2 Dest -2 
enquedrop: Time 999.890000 Src 2 Dest -2 
enquedrop: Time 999.900000 Src 2 Dest -2 
enquedrop: Time 999.910000 Src 2 Dest -2 
enquedrop: Time 999.920000 Src 2 Dest -2 
enquedrop: Time 999.930000 Src 2 Dest -2 
enquedrop: Time 999.940000 Src 2 Dest -2 
enquedrop: Time 999.950000 Src 2 Dest -2 
enquedrop: Time 999.960000 Src 2 Dest -2 
enquedrop: Time 999.970000 Src 2 Dest -2 
enquedrop: Time 999.980000 Src 2 Dest -2 
enquedrop: Time 999.990000 Src 2 Dest -2 
enquedrop: Time 1000.000000 Src 2 Dest -2 
 
Packet Drop Parameter NS2 log  at Node 2 With Response: 
enquedrop: Time 10.000000 Src 2 Dest -2 
enquedrop: Time 10.010000 Src 2 Dest -2 
drop: at time 137.729665 Src 2 Dest 1  
drop: at time 137.729665 Src 2 Dest 1  
drop: at time 137.729665 Src 2 Dest 1  
drop: at time 141.681306 Src 2 Dest 1  
drop: at time 141.681306 Src 2 Dest 1  
enquedrop: Time 141.690000 Src 2 Dest -2 
enquedrop: Time 141.700000 Src 2 Dest -2 
enquedrop: Time 141.710000 Src 2 Dest -2 
enquedrop: Time 141.720000 Src 2 Dest -2 
enquedrop: Time 141.730000 Src 2 Dest -2 
enquedrop: Time 141.740000 Src 2 Dest -2 
enquedrop: Time 141.750000 Src 2 Dest -2 
enquedrop: Time 141.760000 Src 2 Dest -2 
enquedrop: Time 141.770000 Src 2 Dest -2 
enquedrop: Time 141.780000 Src 2 Dest -2 
enquedrop: Time 141.790000 Src 2 Dest -2 
enquedrop: Time 141.800000 Src 2 Dest -2 
enquedrop: Time 151.420000 Src 2 Dest -2 
enquedrop: Time 151.430000 Src 2 Dest -2 
enquedrop: Time 151.440000 Src 2 Dest -2 
enquedrop: Time 151.450000 Src 2 Dest -2 
enquedrop: Time 151.460000 Src 2 Dest -2 
enquedrop: Time 151.470000 Src 2 Dest -2 
enquedrop: Time 151.480000 Src 2 Dest -2 
enquedrop: Time 151.490000 Src 2 Dest -2 
enquedrop: Time 151.500000 Src 2 Dest -2 
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enquedrop: Time 151.510000 Src 2 Dest -2 
enquedrop: Time 151.520000 Src 2 Dest -2 
enquedrop: Time 151.530000 Src 2 Dest -2 
enquedrop: Time 151.540000 Src 2 Dest -2 
enquedrop: Time 151.550000 Src 2 Dest -2 
enquedrop: Time 151.560000 Src 2 Dest -2 
enquedrop: Time 151.570000 Src 2 Dest -2 
enquedrop: Time 151.580000 Src 2 Dest -2 
enquedrop: Time 151.590000 Src 2 Dest -2 
enquedrop: Time 151.600000 Src 2 Dest -2 
enquedrop: Time 151.610000 Src 2 Dest -2 
enquedrop: Time 151.620000 Src 2 Dest -2 
enquedrop: Time 151.630000 Src 2 Dest -2 
enquedrop: Time 151.640000 Src 2 Dest -2 
enquedrop: Time 151.650000 Src 2 Dest -2 
enquedrop: Time 151.660000 Src 2 Dest -2 
 
Energy Consumption Parameter  NS2 log at node 2 Without Response 
energy: at src node 2 at time 10.001870 is  99.454280  
energy: at src node 2 at time 10.003240 is  99.454040  
energy: at src node 2 at time 10.004151 is  99.453800  
energy: at src node 2 at time 10.019865 is  99.448760  
energy: at src node 2 at time 10.019865 is  99.448760  
energy: at src node 2 at time 10.020000 is  99.448760  
energy: at src node 2 at time 10.030000 is  99.444666  
energy: at src node 2 at time 10.040000 is  99.441474  
energy: at src node 2 at time 10.050000 is  99.436878  
energy: at src node 2 at time 10.060000 is  99.433292  
energy: at src node 2 at time 10.070000 is  99.431545  
energy: at src node 2 at time 10.080000 is  99.429798  
energy: at src node 2 at time 10.090000 is  99.428050  
energy: at src node 2 at time 10.100000 is  99.426303  
energy: at src node 2 at time 10.110000 is  99.424556  
energy: at src node 2 at time 10.120000 is  99.422809  
energy: at src node 2 at time 10.130000 is  99.421062  
energy: at src node 2 at time 10.140000 is  99.419314  
energy: at src node 2 at time 10.150000 is  99.417567  
energy: at src node 2 at time 10.160000 is  99.415820  
energy: at src node 2 at time 10.170000 is  99.414073  
energy: at src node 2 at time 49.990000 is  92.233016  
energy: at src node 2 at time 50.000000 is  92.231269  
energy: at src node 2 at time 50.010000 is  92.228122  
energy: at src node 2 at time 50.020000 is  92.224685  
energy: at src node 2 at time 50.030000 is  92.221100  
energy: at src node 2 at time 50.040000 is  92.219353  
energy: at src node 2 at time 50.050000 is  92.217605  
energy: at src node 2 at time 50.060000 is  92.215858  
energy: at src node 2 at time 50.070000 is  92.214111  
energy: at src node 2 at time 50.080000 is  92.212364  
energy: at src node 2 at time 50.090000 is  92.210617  
energy: at src node 2 at time 50.100000 is  92.208869  
energy: at src node 2 at time 50.110000 is  92.207122  
energy: at src node 2 at time 50.120000 is  92.205375  
energy: at src node 2 at time 50.130000 is  92.203628  
energy: at src node 2 at time 50.140000 is  92.201881  
energy: at src node 2 at time 50.150000 is  92.200133  
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energy: at src node 2 at time 50.160000 is  92.198386  
energy: at src node 2 at time 50.170000 is  92.196639  
energy: at src node 2 at time 50.180000 is  92.194892  
energy: at src node 2 at time 162.500980 is  75.184101  
energy: at src node 2 at time 163.501100 is  75.182661  
energy: at src node 2 at time 164.501460 is  75.179781  
energy: at src node 2 at time 166.500980 is  75.178341  
energy: at src node 2 at time 167.501180 is  75.176901  
energy: at src node 2 at time 169.001280 is  75.175461  
energy: at src node 2 at time 169.501040 is  75.174021  
energy: at src node 2 at time 170.501420 is  75.172581  
energy: at src node 2 at time 172.001340 is  75.171141  
energy: at src node 2 at time 172.501420 is  75.169701  
energy: at src node 2 at time 176.001100 is  75.168261  
energy: at src node 2 at time 176.002890 is  75.168021  
energy: at src node 2 at time 181.001240 is  75.161061  
energy: at src node 2 at time 182.501380 is  75.158181  
energy: at src node 2 at time 183.501260 is  75.156741  
energy: at src node 2 at time 184.501500 is  75.155301  
energy: at src node 2 at time 185.501320 is  75.153861  
energy: at src node 2 at time 186.500940 is  75.152421  
energy: at src node 2 at time 189.501080 is  75.150981  
energy: at src node 2 at time 191.500940 is  75.149541  
energy: at src node 2 at time 964.501160 is  74.203700  
energy: at src node 2 at time 966.501320 is  74.200820  
energy: at src node 2 at time 968.001240 is  74.199380  
energy: at src node 2 at time 969.501460 is  74.197940  
energy: at src node 2 at time 980.501060 is  74.192420  
energy: at src node 2 at time 980.503130 is  74.192180  
energy: at src node 2 at time 982.500940 is  74.188100  
energy: at src node 2 at time 983.500920 is  74.186660  
energy: at src node 2 at time 983.501850 is  74.186420  
energy: at src node 2 at time 983.503950 is  74.185940  
energy: at src node 2 at time 984.501280 is  74.182580  
energy: at src node 2 at time 985.000980 is  74.181140  
energy: at src node 2 at time 986.001360 is  74.179700  
energy: at src node 2 at time 986.501040 is  74.178260  
energy: at src node 2 at time 988.001040 is  74.176820  
energy: at src node 2 at time 989.500940 is  74.175380  
energy: at src node 2 at time 989.502810 is  74.175140  
energy: at src node 2 at time 991.000920 is  74.172500  
energy: at src node 2 at time 992.001320 is  74.171060  
energy: at src node 2 at time 998.501060 is  74.165300 
 
Energy Consumption Parameter NS2 log  at node 2 With Response 
energy: at src node 2 at time 10.001870 is  99.454280  
energy: at src node 2 at time 10.003240 is  99.454040  
energy: at src node 2 at time 10.004151 is  99.453800  
energy: at src node 2 at time 10.019865 is  99.448760  
energy: at src node 2 at time 10.019865 is  99.448760  
energy: at src node 2 at time 10.020000 is  99.448760  
energy: at src node 2 at time 10.030000 is  99.444666  
energy: at src node 2 at time 10.040000 is  99.441474  
energy: at src node 2 at time 10.050000 is  99.436878  
energy: at src node 2 at time 10.060000 is  99.433292  
energy: at src node 2 at time 10.070000 is  99.431545  
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energy: at src node 2 at time 10.080000 is  99.429798  
energy: at src node 2 at time 10.090000 is  99.428050  
energy: at src node 2 at time 10.100000 is  99.426303  
energy: at src node 2 at time 10.110000 is  99.424556  
energy: at src node 2 at time 10.120000 is  99.422809  
energy: at src node 2 at time 10.130000 is  99.421062  
energy: at src node 2 at time 10.140000 is  99.419314  
energy: at src node 2 at time 10.150000 is  99.417567  
energy: at src node 2 at time 10.160000 is  99.415820  
energy: at src node 2 at time 10.170000 is  99.414073  
energy: at src node 2 at time 10.180000 is  99.412326  
energy: at src node 2 at time 10.190000 is  99.410578  
energy: at src node 2 at time 10.200000 is  99.408831  
energy: at src node 2 at time 10.210000 is  99.407084  
energy: at src node 2 at time 10.220000 is  99.405337  
energy: at src node 2 at time 10.230000 is  99.403590  
energy: at src node 2 at time 10.240000 is  99.401842  
energy: at src node 2 at time 10.250000 is  99.400095  
energy: at src node 2 at time 10.260000 is  99.398348  
energy: at src node 2 at time 10.270000 is  99.396601  
energy: at src node 2 at time 10.280000 is  99.394854  
energy: at src node 2 at time 141.620000 is  75.272189  
energy: at src node 2 at time 141.623072 is  75.270441  
energy: at src node 2 at time 141.630000 is  75.269477  
energy: at src node 2 at time 141.633512 is  75.267729  
energy: at src node 2 at time 141.640000 is  75.266765  
energy: at src node 2 at time 141.643412 is  75.265017  
energy: at src node 2 at time 141.650000 is  75.264053  
energy: at src node 2 at time 141.653272 is  75.262305  
energy: at src node 2 at time 141.660000 is  75.261806  
energy: at src node 2 at time 141.665124 is  75.260059  
energy: at src node 2 at time 141.670000 is  75.259757  
energy: at src node 2 at time 141.674257 is  75.258009  
energy: at src node 2 at time 141.680000 is  75.257813  
energy: at src node 2 at time 142.001080 is  75.246437  
energy: at src node 2 at time 142.002130 is  75.246197  
energy: at src node 2 at time 142.005570 is  75.245237  
energy: at src node 2 at time 142.007631 is  75.244757  
energy: at src node 2 at time 142.502394 is  75.233444  
energy: at src node 2 at time 142.506576 is  75.232661  
energy: at src node 2 at time 143.000980 is  75.225789  
energy: at src node 2 at time 143.001930 is  75.225549  
energy: at src node 2 at time 143.002800 is  75.225309  
energy: at src node 2 at time 143.500920 is  75.217793  
energy: at src node 2 at time 143.502410 is  75.217553  
energy: at src node 2 at time 143.503380 is  75.217313  
energy: at src node 2 at time 143.504450 is  75.217073  
energy: at src node 2 at time 144.500940 is  75.206901  
energy: at src node 2 at time 144.502210 is  75.206661  
energy: at src node 2 at time 145.001380 is  75.204261  
energy: at src node 2 at time 145.500900 is  75.202821  
energy: at src node 2 at time 146.500980 is  75.201381  
energy: at src node 2 at time 147.501440 is  75.198501  
energy: at src node 2 at time 148.001020 is  75.197061  
energy: at src node 2 at time 149.001400 is  75.195621  
energy: at src node 2 at time 149.501320 is  75.194181 

 189



 
 
 
 
APPENDIX E 
 

%********************************************************************** 
        % VB code to validate VS TI threshold and MSE calculation. 
        % Written by: Sathish Kumar AP        % Date: 08/10/2006.  
%********************************************************************* 
  Dim i As Integer 
  Dim TIcrit As Double 
  Dim TIcritfind As Double 
  Dim Sum1 As Double 
  Dim ProbA As Double 
  Dim j As Integer 
  Dim Sum2 As Double 
  Dim ProbN As Double 
  Dim Sum As Double 
  Dim Oldsum As Double 
  Dim Minsum As Double 
  Sum1 = 0 
  ProbA = 0.1 
  Sum2 = 0 
  ProbN = 0.9 
  Sum = 0 
 
  TIcrit = 1 
  TIcritfind = 1 
  Do While TIcrit <= 10 
   Oldsum = Sum 
   Sum = 0 
   Sum1 = 0 
   Sum2 = 0 
   For i = 1 To TIcrit 
   Sum1 = Sum1 + ((TIcrit - i) * (TIcrit - i)) * ProbAbn(i) 
 
  Next i 
  Sum1 = Sum1 * ProbA 
  For j = TIcrit To 10 
   Sum2 = Sum2 + ((TIcrit - j) * (TIcrit - j)) * ProbNorm(j) 
  Next j 
  Sum2 = Sum2 * ProbN 
  Sum = Sum1 + Sum2 
  If Sum < Oldsum Then 
    Minsum = Sum 
    TIcritfind = TIcrit 
  Else: Minsum = Oldsum 
  End If 
  TIcrit = TIcrit + 0.1 
  Loop 
  picOutput.Print Minsum 
  picOutput.Print TIcritfind 
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  Sample Snapshot of Fuzzy Memberships  in Fuzzy Model 
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