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ABSTRACT 

PACAP: A NOVEL NEUROPEPTIDE FOR PITUITARY GONADOTROPH 
MATURATION, FUNCTION AND REGULATION 

 

Rongqiang Yang 

May 2, 2013 

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino 

acid C-terminally D-amidated peptide that was first isolated from ovine 

hypothalamic extracts on the basis of its ability to stimulate cAMP production in 

anterior pituitary cells. As a member of the vasoactive intestinal polypeptide 

(VIP)/secretin/growth hormone-releasing hormone/glucagon superfamily, PACAP 

has been well conserved during evolution from sea squirt to humans, which 

suggests important biological functions. Two types of PACAP receptors have 

been characterized. PAC1-R is the only one PACAP-specific receptor with high 

affinity.  

Although PACAP was first found in hypothalamus, it is also expressed in 

the pituitary. In the research to be presented, PACAP and PAC1-R mRNA 

expression in the rodent pituitary and in gonadotroph cell lines were explored 

using semi-quantitative PCR, laser capture micro-dissection (LCM) and single 

cell PCR. The level of pituitary PACAP expression is high in the fetus and 

declines after birth. Most of pituitary PACAP is from gonadotrophs. PAC1-R in 
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fetal pituitary exists as the Hop and short forms, and the level of the short form 

decreases after birth.  

The effects of PACAP on gonadotropins synthesis and secretion were 

studied in vivo and in vitro. The action of PACAP on LH and FSH was 

investigated utilizing micro-pump implanted, containing PACAP38 or the 

antagonist, PACAP 6-38, in pre-pubertal male rats. Protein and mRNA analysis 

revealed that PACAP suppresses FSH presumably through increased follistatin, 

but had no significant influence on LH. The existence of PACAP, therefore, likely 

contributes to maintain an appropriate gonadotropin environment during sexual 

development.  

We also studied pituitary cell cultures and gonadotroph cell lines to 

understand why PACAP expression in pituitary is high in the fetus, and declines 

at birth. PACAP was found to stimulate its own expression in that the PACAP 6-

38 antagonist reduced the PACAP mRNA level in primary cell cultures, and 

PACAP38 induced high activity of PACAP promoter in gonadotroph cell lines. 

Furthermore, we found preliminary evidence to support the ideal that dopamine 

receptor 2 (Drd2) signaling may explain the neonatal decrease in pituitary 

PACAP mRNA levels. Finally, we propose that the decrease in PACAP results in 

a fall in pituitary follistatin, allowing for increased activin signaling which 

increases FSHE��facilitates the sexual maturation of the gonads.   
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

1. General introduction of PACAP 

1.1. Discovery of Pituitary Adenylate Cyclase-Activating Polypeptide 

(PACAP) 

Each of the classical hypothalamic hypophysiotrophic hormones had been 

isolated and identified by the mid-1980s. Since then, each of the classical 

releasing hormones, TRH, LHRH, GHRH, and CRH had been demonstrated to 

stimulate adenylate cyclase in cultured pituitary cells (Culler et al., 1984; Labrie 

et al., 1979; Labrie et al., 1982). Arimura and colleagues proposed to find out 

whether there were undiscovered hypothalamic releasing hormones which would 

also stimulate adenylate cyclase. This strategy led to the identification of a 

peptide in ovine hypothalamus that they named Pituitary Adenylate Cyclase-

Activating Polypeptide (PACAP) (Miyata et al., 1989).  

Through sequence analysis, PACAP was shown to have 38-amino-acids 

(Miyata et al., 1989), but was also present in smaller amounts as a shorter 

amidated form containing only the N-terminal 27 amino acids (Miyata et al., 

1990). The two forms with 38 and 27 residues were then named PACAP38 and 
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PACAP27. PACAP38 and PACAP27 are equivalent stimulators of adenylate 

cyclase (Miyata et al., 1990). However, PACAP38 and PACAP27 bind with 

different affinities to some PACAP receptor variants (Dautzenberg et al., 1999; 

Pantaloni et al., 1996).  

1.2. Structure of Pituitary Adenylate Cyclase Activating Polypeptide 

As a small peptide, the secondary structure of PACAP is relatively simple. 

Circular dichroism and nuclear magnetic resonance indicated that PACAP27 was 

characterized by a helical conformation of various lengths in different mediums 

(Inooka et al., 1992). PACAP38 has similar conformation to PACAP27 within the 

1-to-27 region and is connected with a short helix (28-to-38 region) by a flexible 

hinge (Wray et al., 1993). The conformation of PACAP may change following 

binding with PACAP receptors (Inooka et al., 2001; Sun et al., 2007).  

1.3. The Gene Encoding PACAP 

The PACAP genes from different species were cloned soon after its 

discovery in 1989 (Inooka et al., 1992; Kimura et al., 1990; Ogi et al., 1990). The 

PACAP gene has five exons and four introns, and the introns are bounded by the 

consensus splicing sequences 5’-GT and 3’-AG. PACAP38 and PACAP27 are 

encoded by exon 5 whereas Exon 4 encodes PRP (PACAP-related peptide) and 

exon 1 is un-translated (Hannibal et al., 1995; Hosoya et al., 1992).  In the 

PACAP gene, two CRE (cAMP-response-like element) and growth hormone 

transactivator factor-1 response elements, a GATA box, and a C-rich domain 

with GC boxes are conserved through different species (Ohkubo et al., 1992; 

White et al., 2000). The organization of the PACAP gene is similar to the that of 
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the VIP and GHRH genes, which are in the same superfamily (Lamperti et al., 

1991; Mayo et al., 1985; Ohkubo et al., 1992).  

1.4. Processing of the PACAP Precursor 

The PACAP precursors contain seven mono- or dibasic residues, which 

are similar to VIP precursors. They can be cleaved by various prohormone 

convertases (PC) including PC1, PC2, PC4, PC5, PC7, Furin, and paired basic 

amino acid-cleaving enzyme 4 (PACE4) (Seidah and Chretien, 1999; Seidah et 

al., 1994; Seidah et al., 1998). In mammals, the processing of the PACAP 

precursors has been thoroughly characterized. The first, cleavage occurs at three 

dibasic sites, Arg79-Arg80, Lys129-Arg130, and Arg170-Arg171, to generate a large 

intermediate precursor of PRP (big PRP) and a glycine-extended form of 

PACAP38. Next, the big PRP is cleaved at a single Arg110 followed by hydrolysis 

of this C-terminal Arg residue by carboxypeptidase E, H or M to generate PRP 

(Eipper et al., 1992; Rouille et al., 1995). For PACAP38, the Gly169 residue 

allows peptidyl glycine D-amidating monooxygenase to amidate the Lys168 

residue at the C-terminal extremity. In the final step, amidated PACAP27 is 

generated through the cleavage of tripeptide Gly158-Lys159-Arg160 (Okazaki et al., 

1992). In sum, the processing of PACAP precursor yields three products, 

PACAP38, PACAP27 and PRPs.  

PACAP has limited metabolic stability in the blood circulation with a half-

life between 2 and 10 min after injection into mice or humans (Li et al., 2007; Zhu 

et al., 2003). The proteolytic enzymes dipeptidyl peptidase IV and prolyl 
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oligopeptidase have been reported to be involved in the degradation of PACAP 

(Ahren and Hughes, 2005; Tenorio-Laranga et al., 2009).  

1.5. Phylogenetic Evolution of PACAP 

 

 

Figure 1. Amino acid sequences of PACAP from different species. Percentages 

indicate amino acids identical between non-mammalian PACAP38 and 

mammalian PACAP38. 

 

PACAP is a member of the secretin/glucagon/vasoactive intestinal 

polypeptide (VIP) superfamily, which includes glucagon, glucagon-like peptide-1 

(GLP1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic 

polypeptide (GIP), growth hormone-releasing hormone (GHRH), peptide histidine 

isoleucine (PHI) or peptide histidine methionine (PHM), PACAP, and VIP. 
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Compared to the other superfamily peptide hormones, PACAP is unique for its 

well-conserved primary amino acid sequence in vertebrates (Chartrel et al., 

1991). The N-terminal 1 to 27 region of PACAP is responsible for the biological 

activity of the peptide. This region has been fully conserved in most vertebrate 

species, except for a few species with a single amino acid substitution (Fig. 1) 

(Lee et al., 2009; McRory et al., 1997; Xu and Volkoff, 2009). On the other hand, 

the C-terminal portion of PACAP38 is more variable and is not crucial for PACAP 

biological functions (Fig. 1). 

1.6. PACAP Receptors  

VIP and PACAP are the most closely related of these peptides because 

the sequence of PACAP38 shows 68% identity with VIP (Ohkubo et al., 1992). 

Consequently, PACAP and VIP signaling can be mediated through similar 

receptors. Soon after the discovery of PACAP, two classes of PACAP binding 

sites were characterized on the basis of their relative affinities for PACAP27 and 

VIP (Gottschall et al., 1990; Lam et al., 1990). Type I binding sites exhibit high 

affinity for PACAP and much lower affinity for VIP (Cauvin et al., 1990; Suda et 

al., 1992). Type II binding sites possess similar affinity for PACAP and VIP 

(Gottschall et al., 1990; Lam et al., 1990). From the two types of binding sites, 

there are three PACAP receptors cloned, which were termed PAC1, VPAC1 and 

VPAC2 receptors by the International Union of Pharmacology (Seidah et al., 

1998). The PAC1 receptor, with 495-amino acid residues, is the type I receptor, 

which shows much higher affinity (100 to 1000-fold) for PACAP than VIP 

(Pisegna and Wank, 1993). The VPAC1 and VPAC2 receptors are type II 
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receptors, which have similar affinity for PACAP and VIP (Ishihara et al., 1992; 

Lutz et al., 1993). VPAC1, 2 and PAC1-R all belong to class B of G protein-

coupled receptors families (GPCRs), which mediate many important biological 

functions (Hoare, 2005). There are three main mammalian GPCR families (A, B 

and C). The group B or secretin receptor family consists primarily of peptide 

hormone and neuropeptide receptors such as the secretin, calcitonin, VIP and 

PACAP receptors. As members of the same family, VPAC1, VPAC2 and PAC1 

receptors share some common molecular properties, such as a large N-terminal 

extracellular domain (>120 residues), an N-terminal hydrophobic domain, and six 

conserved cysteine residents in the N-terminal extracellular domain and multiple 

consensus N-glycosylation sites (Gaudin et al., 1999; Laburthe et al., 1996).  

The N-terminal extracellular domain of the PAC1 receptor is a major 

binding site for the central and C-terminal helical segments of PACAP (Bourgault 

et al., 2008; Cao et al., 1995). PAC1-R is specific for binding with PACAP but not 

VIP because of different sequence regions (4 -13 and 24 - 28) between 

PACAP27 and VIP are PAC1-R selective sites (Onoue et al., 2001; Schafer et al., 

1999). 

PAC1-R has nine subtypes resulting from alternative splicing after 

transcription (Fig. 2). Six of these subtypes are distinguished from each other by 

the absence or presence of two cassettes named Hip and Hop, which are located 

at the end of the 3rd intracellular loop of PAC1-R (Spengler et al., 1993). They are 

named PAC1-R-Short, PAC1-R-Hop1, PAC1-R-Hop2, PAC1-R-Hip, and PAC1-

R-Hiphop1 and PAC1-R-Hiphop2. Beyond these six variants, more subtypes 
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were recently discovered including PAC1-R-Vs, PAC1-R-TM4 and PAC1-R-3a 

(Chatterjee et al., 1996; Daniel et al., 2001; Pantaloni et al., 1996). PAC1-R 

variants have different affinity for PACAP. Furthermore, the variants may mediate 

different signaling pathways in various cell types (Alexandre et al., 2002; Dickson 

and Finlayson, 2009; McCulloch et al., 2001; Niewiadomski et al., 2002). 

 

 

Figure 2. Schematic illustrations of the structure of the PAC1-Rs. Nine variants of 

the PAC1-R have been identified. 

 

1.7. Distribution of PACAP and its Receptors 



 

8 

Soon after the discovery of PACAP, distribution of the polypeptide was 

investigated by immunoassay and PCR (Arimura et al., 1991). PACAP is widely 

distributed but is found in highest concentration in the Central Nervous System 

(CNS). PACAP is found in various brain regions, including the hypothalamic area, 

cerebral cortex, amygdala, hippocampus, pineal gland, substantial nigra, 

cerebellum, and pons, and is found in both cell bodies and fibers (Dickson and 

Finlayson, 2009). Although PACAP and VIP are closely related in the same 

superfamily, their distributions in the CNS are different (Masuo et al., 1993). For 

instance, in the thalamus, VIP positive fibers and PACAP fibers are localized in 

different regions. While VIP fibers run up the walls of the third ventricle, PACAP 

fibers are observed in the central thalamic nuclei (Koves et al., 1991). Similar 

situations occur in other brain regions, such as stria terminalis, brainstem and 

posterior pituitary (Koves et al., 1994; Vereczki et al., 2003). PACAP38 has been 

demonstrated as the major molecular form in the CNS (Arimura et al., 1991; 

Hannibal et al., 1995; Masuo et al., 1993; Piggins et al., 1996).  

PACAP is also found in many peripheral tissues, such as most endocrine 

glands, the gastrointestinal tract, gonads, muscles and peripheral nervous 

system (Vaudry et al., 2009). PACAP38 is the predominant form in these tissues 

as in the CNS. In the rat testis, the concentration of PACAP is higher than any 

other tissues, and PACAP mRNA is only present in germ cells (Arimura et al., 

1991; Hannibal and Fahrenkrug, 1995; Shioda et al., 1994). The ovary also 

contains PACAP but at a much lower concentration compared to testis 

(Steenstrup et al., 1995). PACAP is found in nerve fibers that connect with the 
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musculature of the gastrointestinal tracts and circulatory system (Cardell et al., 

1991; Hauser-Kronberger et al., 1996; Olsson and Holmgren, 1994). In the 

immune system, PACAP is present in the lymphoid tissues, including the thymus, 

spleen and in the peritoneal macrophages (Vaudry et al., 2009). Unlike in the 

CNS, PACAP and VIP in peripheral tissues are often found in the same cells, 

and show similar expression patterns. PACAP and VIP have been co-localized in 

cell bodies and nerve fibers in esophageal sphincter, gut, parathyroid glands and 

the respiratory tract in mammals (Luts and Sundler, 1994; Sundler et al., 1992; 

Uddman et al., 1991). PACAP is found in the anterior pituitary and in high 

concentration during fetal life (Moore et al., 2009a).  

VPAC and PAC1-R are widely expressed in many kinds of tissues (Vaudry 

et al., 2009). In the Nervous system, high concentrations of PAC1-R are found in 

many brain structures including olfactory bulb, cerebral cortex, septum, amygdala, 

cerebellum, hippocampus, thalamus, pons and hypothalamus (Vaudry et al., 

2009). VPAC receptor expression levels are much lower than PAC1-R in many 

brain regions such as cerebellum and hypothalamic nuclei. Furthermore, the two 

VPAC receptors, VPAC1-R and VPAC2-R, have completely different distributions 

in the rat CNS (Ishihara et al., 1992; Usdin et al., 1994). Hippocampus is the only 

region of the CNS in which both VPAC1-R and VPAC2-R are found in (Usdin et 

al., 1994). In summary, the expression and density of PAC1-R is more abundant 

and wider compared to VPAC receptors in the CNS.  

Outside the CNS, the PAC1-R has been characterized in most endocrine 

tissues, including the pituitary, pancreas, placenta, adrenal, ovary and testis 
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(Vaudry et al., 2009). In the testis, PAC1-R is found in germ cells, Leydig cells 

and Sertoli cells (Daniel et al., 2001; Romanelli et al., 1997; Shivers et al., 1991). 

In the immune system, PAC1-R is expressed in rat peritoneal macrophages but 

not in peritoneal lymphocytes (Delgado et al., 1996; Ganea, 1996). VPAC 

receptors exhibit a distinct distribution patterns in peripheral organs as well. The 

VPAC1-R is highly expressed in lung, intestine, pancreas and adrenal medulla. 

However, VPAC2-R is present within the pituitary, testis and ovary, spleen, and 

adrenal cortex (Vaudry et al., 2009). In summary, PACAP receptors seem to 

have much wider distributions than their ligand PACAP, which suggests that the 

biological functions of the peptide in different systems come from paracrine, 

endocrine and neuronal sources.  

1.8. Biological and Pharmacological Effects of PACAP 

The distribution of PACAP and its receptors in a variety of systems implies 

diverse biological functions. PACAP has been demonstrated to function as a 

hormone, a neurohormone, a neurotransmitter, and a trophic factor in different 

systems. In the hypothalamus, with the highest density of PACAP and its 

receptors (Arimura, 1992; Arimura and Shioda, 1995), PACAP functions as a 

hypophysiotropic factor, a neurohormone, a neurotransmitter and 

neuromodulator.  There is evidence that PACAP increases GnRH, somatostatin, 

and CRH gene expression in the hypothalamus (Agarwal et al., 2005; Bredow et 

al., 1994; Grinevich et al., 1997; Kageyama et al., 2007). PACAP could influence 

food intake by transmitting leptin signals to proopiomelanocortin neurons in the 

ventrolateral aspect of the arcuate nucleus (ARC) (Mounien et al., 2009). 



 

11 

Circadian rhythms are also influenced by PACAP as evidenced by daily 

variations of PAC1-R mRNA expression in the suprachiasmatic nucleus (SCN) 

and supraoptic nucleus (Cagampang et al., 1998; Gillette and Mitchell, 2002). In 

the rat pineal gland, there are circadian differences as well, which suggests 

PACAP may regulate melatonin production (Fukuhara et al., 1998).  The 

stimulation of PACAP on melatonin secretion has been demonstrated both in 

vitro and in vivo. PACAP regulates circadian rhythms indirectly through 

hypothalamus and neurotransmitter glutamate as well (Hannibal et al., 2001; 

Rekasi and Czompoly, 2002).  

During the development of the CNS, PACAP may modulate neuronal cell 

proliferation, cell survival, cell migration and cell differentiation as a neurotropic 

factor. In the adult brain, PACAP protects injured neurons from apoptosis, 

indicating a potential target for the treatment of stroke or neurodegenerative 

diseases (Vaudry et al., 2009). PACAP is also involved in the regulation of non-

neuronal tissues including cell proliferation, plasticity, glycogen metabolism, and 

release of neurotropic factors from glial cells. There is little endogenous PACAP 

in glial cells; therefore, these cells may be regulated by PACAP from nearby 

neurons or within the circulatory system (Vaudry et al., 2009). 

PACAP also plays an important role in the other systems outside the CNS. 

The ability of PACAP to stimulate cAMP formation regulates the synthesis and 

secretion of many hormones in endocrine glands, like the pituitary, thyroid and 

adrenal glands (Arimura and Shioda, 1995; Christophe, 1993; Nussdorfer and 

Malendowicz, 1998). PACAP increases thyroxine secretion in the human and 
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porcine thyroid. The secretion of many pituitary and adrenal hormones are also 

influenced by PACAP exposure. The gonads have been demonstrated to contain 

high concentrations of PACAP and its receptors, especially the testis which 

contains the highest concentration of PACAP in mammals (Arimura et al., 1991). 

Subsequent studies demonstrate that PACAP may help sperm maturation and 

penile erection, and accelerate testicular aging in the male (Gozes and Fridkin, 

1992; Hedlund et al., 1995; Romanelli et al., 1997). In the ovary, PACAP is 

involved in progesterone production, follicular apoptosis and female fertility 

(Shintani et al., 2002; Zhong and Kasson, 1994). In the gastrointestinal tract, 

PACAP is present in exocrine glands and neuronal structures (ganglia, fibers) 

and stimulates the secretion of saliva, gastric acid and bicarbonate directly and 

also increases the release of some regulatory peptides including gastrin, 

somatostatin, atrial natriuretic factor and PYY to regulate the system indirectly. In 

addition, PACAP regulates smooth muscles of the gastrointestinal tract with 

tissue specific effects on motility (Vaudry et al., 2009). PACAP and its receptors 

are also involved in regulation of smooth muscles within the respiratory and 

cardiovascular systems. PACAP is also detected in immune cells, where it has 

been shown to exert protective anti-inflammatory actions in many different 

autoimmune models (Abad et al., 2001; Gomariz et al., 2006). Both endogenous 

and exogenous PACAP affect T cell responses through direct or indirect actions 

suggesting PACAP could be a target for immune system drug therapy (Delgado 

et al., 1999; Gonzalez-Rey et al., 2007; Tan et al., 2009).  PACAP and its 

receptors are also detected in pathological tissues including various kinds of 
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tumors, and many studies demonstrate either stimulatory or inhibitory effects on 

tumor cells. Therefore, PACAP agonists and/or antagonists may aid in the 

treatment of tumors depending on the specific type (Fruhwald et al., 1999). 

2.    General introduction of HPG axis 

In the classical view, the HPG axis is organized in three levels including 

GnRH neurons in hypothalamus, gonadotrophs in the pituitary and the gonads 

including the testis and ovary (Fig. 3). GnRH neurons synthesize and secrete a 

peptide hormone, GnRH, and GnRH receptors are localized on pituitary 

gonadotrophs. Therefore, GnRH, its receptor and intracellular transduction in 

gonadotrophs build the fundamental regulating pathway of HPG axis to 

synthetize and secret the gonadotropins.  

 

Figure 3. Schematic of the Hypothalamus-Pituitary-Gonadal axis.                 

GnRH, gonadotropin-releasing hormone; FSH, follicle-stimulating hormone; LH, 

luteinizing hormone. 
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The gonadotropins, FSH and LH, are both dimeric glycoprotein hormones 

composed of a E-subunit and a D-subunit. FSH and LH share the common D-

subunit whereas the E-subunits distinguish the two gonadotropins. In the male, 

LH regulates testicular Leydig and Sertoli cells to stimulate production of 

testosterone and androgen-binding protein, respectively.  FSH binds to its 

receptors on Sertoli cells to promote spermatogonia proliferation and germ cell 

meiosis and postmeiotic development. In the female, LH induces ovarian thecal 

cells to produce androgens and the granulosa cells of the preovulatory follicle to 

secret progesterone during the terminal stages of follicular growth. FSH 

stimulates expression of aromatase enzymes that convert androgens to estradiol 

in ovarian granulosa cells.   

Many investigators have utilized different animal models, containing both 

spontaneous and experimental mutations, to dissect the functional organization 

of HPG axis. The hypogonadal (HPG) mouse model, in which the gene encoding 

GnRH precursor is deleted, never enters puberty and displays a persistent 

hypogonadotropic-hypogonadal phenotype (Mason et al., 1986). Surgical 

disconnection between the hypothalamus and pituitary in sheep decreases 

pituitary gonadotropins and causes secondary hypogonadism (Clarke et al., 

1983). These results, and others, demonstrate that GnRH is critically important 

for the maintenance of biological functions of the HPG axis. Male and female 

LHE or LH receptor deficient mice are infertile because of marked decreases in 

gonadal steroid hormones, which induce defective spermatogenesis and late 
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follicular development (Ma et al., 2004; Zhang et al., 2001). FSHE and FSH 

receptor knockout mice also have defects in reproductive system in both genders. 

However, there are some differences among the mutants. Female FSHE 

knockout mice are infertile due to a defect in ovarian follicular maturation, 

whereas the males are still fertile with smaller testes and fewer sperm cells 

(Kumar et al., 1997). The female FSH receptor knockout mice have a similar 

phonotype as FSHE deficient mice. FSH receptor deficiency induces more 

serious problems in males than FSHE deficiency. FSH receptor null mice have 

significant decreases in Leydig cell numbers and testosterone levels (Abel et al., 

2000; Kumar et al., 1997).  

There are both positive feed-forward and negative feedback mechanisms 

in the HPG axis at different levels. Gonadal steroid hormones provide important 

feedback regulations of hypothalamic GnRH. In the male, testosterone exerts a 

negative feedback that may be mediated through the level neurons (Herbison et 

al., 1996; Tilbrook and Clarke, 2001). Gonadotropins also show a minor negative 

feedback on GnRH as well (Tilbrook and Clarke, 2001). In female, the feedback 

regulations from gonadal hormones (estrogen, progesterone) are more complex 

including negative and positive effects depending on the stage of the 

reproductive cycle (Glidewell-Kenney et al., 2007; Petersen et al., 1995; 

Petersen et al., 2003). In addition to gonadal hormones, the peptide hormones, 

inhibin, activin and follistatin, regulate the gonadotropins, primarily FSH, through 

the feedback mechanism. For instance, activin has been shown to work in a 

paracrine manner to induce FSHE expression in rat pituitary cells, while gonadal 
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derived inhibin is a competitive inhibitor of activin. Follistatin is also produced 

within the pituitary and can bind with activin and blocks its activity by preventing 

receptor interaction. (Gregory and Kaiser, 2004; Nakamura et al., 1990).  

3.   PACAP in HPG axis 

The previous section introduced the classical model describing the HPG 

axis. PACAP and its receptors are detected throughout the HPG axis suggesting 

that PACAP is involved in the function and regulation of the HPG axis. The 

actions of PACAP on HPG axis are at all three levels. In the hypothalamus, 

studies have revealed that PACAP stimulates synthesis and secretion of GnRH. 

For instance, intracerebroventricular injection (i.c.v) of PACAP increases GnRH 

mRNA level in rat hypothalamus while PACAP treatment increases GnRH 

release from mouse clonal GnRH cells (Li et al., 1996; Olcese et al., 1997).  

However, i.c.v administration of PACAP into the hypothalamus of ovariectomized 

ewes decreased LH secretion and LH pulse frequency (Anderson et al., 1996; 

Sawangjaroen and Curlewis, 1994). In adult female rats and mice, steroids are 

found to regulate the expression of PACAP mRNA in the ventromedial nucleus 

(Apostolakis et al., 2004), where PACAP mediates progesterone-evoked sexual 

behavior through PAC1-R (Apostolakis et al., 2005).  

The gonadotropins, LH and FSH, are produced and secreted from 

gonadotroph cells in the anterior pituitary gland. In the classic view, gonadotropin 

secretion is predominantly regulated by GnRH as previously described (Charlton, 

2008). However, gonadotropins are still present in GnRH deficient mice 

(Cattanach et al., 1977). This implies that GnRH is a key regulator but not the 
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only player in gonadotroph function. Subsequent studies have demonstrated that 

PACAP acts either alone or synergistically with GnRH to stimulate LH and FSH 

mRNA expression through direct and/or indirect mechanisms. For instance, intra-

atrial injection of PACAP increases plasma LH level in the male rats (Osuga et al., 

1992). Treatment of rat anterior pituitary cells with PACAP induces stimulation of 

gonadotropin release through calcium elevation (Rawlings et al., 1994; Tsujii et 

al., 1994). The effect of PACAP on gonadotropin synthesis involves the 

cAMP/PKA pathway, whereas its acute action on FSH/LH secretion is under the 

control of calcium elevation. Besides its direct action on gonadotropin release, 

PACAP has also been shown to increase rat GnRH receptor gene promoter 

activity through the cAMP/PKA pathway. Conversely GnRH can stimulate 

PACAP gene expression. Furthermore, GnRH agonist can inhibit PACAP-

induced cAMP production by phosphorylation of PAC1-R through the PKC 

pathway, illustrating the complex interplay between GnRH and PACAP in the 

regulation of gonadotroph cell functions. 

PACAP and its receptors are observed in the gonads and the testis has 

the highest level of PACAP of any of the biological systems suggesting that the 

peptide may operate as a local regulator of gonadal activity. Interestingly, the 

PACAP gene in the testis has a shorter promoter than in other tissues (Daniel 

and Habener, 2000). Testis PACAP levels are dramatically reduced by 

hypophysectomy and are restored by FSH administration, which indicates that 

the expression of PACAP in testis is regulated by pituitary gonadotropins 

(Romanelli et al., 1997; Shuto et al., 1995). PACAP has been demonstrated to 
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stimulate testosterone secretion in isolated rat Leydig cells (El-Gehani et al., 

1998; Rossato et al., 1997). Compared to the testis, the ovary contains much 

less PACAP. However, many investigations indicate that PACAP is also involved 

in the reproductive function of female mice. For example, in female rats, 

granulosa and cumulus cells from large pre-ovulatory follicles contain PACAP 

mRNA, and PACAP increases progesterone production in cultured grandulosa 

cells (Barberi et al., 2007; Gras et al., 1996). Furthermore, PACAP deficient 

female mice have decreased fertility with demonstrating behavioral, ovulatory 

and implantation defects (Isaac and Sherwood, 2008; Sherwood et al., 2007; 

Shintani et al., 2002). 

4.   Differential regulation of gonadotropins during development 

Although LH and FSH are both stimulated by GnRH secreted from 

hypothalamus, their expressions are not always parallel during development. At 

the mid gestation, serum levels of LH are nearly ten-fold higher than FSH 

(Debieve et al., 2000). The human fetal plasma LH levels are 25 to 100-fold 

higher than FSH during gestation whereas the LH:FSH ratio is only 1 to 0.5 in the 

adult (Siler-Khodr and Khodr, 1980). The differential regulation of the 

gonadotropins is also a characteristic of fetal development in male rodents. 

Previous studies detected LHE as early as embryonic day 12 (E12) whereas 

could not observe FSHE until E19 or E21 (Aubert et al., 1985; Nemeskeri et al., 

1986; Nemeskeri et al., 1984). Similar temporal expression pattern of LHE and 

FSHE is observed in mouse pituitary development (Japon et al., 1994). The later 

and lower FSH levels than LH during embryonic days may be essential for an 
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appropriate hormonal environment of reproductive system. Why FSH expression 

should be repressed during embryonic days could be explained by the function of 

FSH during reproductive system development. Within the developing rat testis, 

FSH induces testosterone production from 5D-reduced steroids, which are 

essential for sexual differentiation of the CNS (McEwen, 1983; 1992). FSH can 

also suppress the production of muollerian inhibiting hormone (MIH), which is a 

key factor to form the male reproductive tract (Bercu et al., 1979; Kuroda et al., 

1990). Furthermore, the primary effect of FSH is to stimulate Sertoli cell and 

prepare the testes for spermatogenesis in adulthood. Therefore, the repression 

of FSH during embryonic days may play a role to prevent maturation of the 

testes. Male mice with overexpression of FSH under the regulation of the 

metallothionein-1 promoter in pituitary are infertile due to disrupted sexual 

behavior (Gorski, 2002; Kumar et al., 1999). Lager seminal vesicles and higher 

circulating testosterone levels may alter sexual maturation and reproductive 

behavior during the perinatal period. All these evidences suggest the importance 

of the repressed FSH expression in the fetal pituitary. The follistatin-activin-

inhibin axis is demonstrated to specifically regulate FSHE expression in pituitary 

(Carroll et al., 1989). Therefore, these three peptides are the candidates for the 

differential regulation of FSH in the male fetus as in the adult. However, bioactive 

forms of inhibin are not detectable within rat testes until birth (Phillips, 2000), and 

expression of activin in testes and pituitary has no changes during development 

(Gregory and Kaiser, 2004). Thus, follistatin is suggested as a factor contributing 

to the selective suppression of FSH during fetal development, and our previous 
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studies provided evidence. Follistatin as well as PACAP expression levels are 

high in the embryonic male pituitary and decline significantly after birth when 

FSHE mRNA levels increase dramatically (Moore et al., 2009a). Therefore, we 

hypothesize that FSH levels are suppressed by high concentration of follistatin 

induced by PACAP in embryonic male pituitary. To demonstrate the hypothesis, 

we designed both in vivo and in vitro experiments to answer three questions: 

Which cell types express PACAP and the PACAP specific receptor, PAC1-R, in 

the perinatal pituitary; whether PACAP stimulates follistatin expression in pituitary 

and if alterations in developmental pituitary PACAP expression can modify the 

developmental pattern of gonadotropin expression; and, Which factors may 

regulate pituitary PACAP expression levels.  
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CHAPTER TWO 

 

PACAP AND PAC1-R EXPRESSION IN PITUITARY GONADOTROPHS 

 

1.    Introduction 

PACAP was originally identified as a hypothalamic hypophysiotropic 

peptide with a high expression level in hypothalamus (Arimura et al., 1991; 

Miyata et al., 1989). PACAP mRNA was detected within the pituitary of 

embryonic rats by in situ hybridization (Jaworski and Proctor, 2000; Skoglosa et 

al., 1999). Furthermore, our previous studies demonstrate for the first time that 

pituitary expression of PACAP is very high in the fetus, and declines dramatically 

after birth (Moore et al., 2009a). PACAP has been demonstrated to regulate D-

GSU, LHE and FSHE mRNA levels in the cultured pituitary cells (Tsujii and 

Winters, 1995b). However, very few details about PACAP expression during 

development in pituitary gonadotrophs have been documented. The anterior 

pituitary is derived from oral ectoderm and forms Rathke’s pouch (Takuma et al., 

1998). In the adult rat anterior pituitary, approximately 50% of the cells are 

somatotrophs that are primarily located in the lateral wings of the anterior lobe 

and producing growth hormone. Prolactin (PRL)-secreting lactotrophs represent 

~15% of cells in the anterior pituitary and are randomly distributed through the 

lobe. Corticotrophs comprise about 15% of anterior pituitary cells (Nakane, 
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1970). Gonadotroph cells represent up to 10% of the human anterior pituitary cell 

population. Thyrotrophs are the least abundant cell type in the anterior pituitary, 

comprising ~5% of the total cell population, and are mostly found in the anterior-

medial portion of the gland. There are many supporting and or non-

neuroendocrine cells including follicular and folliculostellate cells throughout the 

anterior pituitary. We utilized single cell real-time PCR to determine which 

pituitary cell type expresses PACAP. Furthermore, we want to reveal whether 

there are changes of cell types with PACAP during development.  

The specific receptor of PACAP, PAC1-R, is expressed in anterior pituitary 

as well (Vigh et al., 1993). PAC1-R binds with PACAP and initiates intracellular 

signaling through cAMP/PKA as well as PKC/MAPK pathways (Fowkes et al., 

2001; Spengler et al., 1993). Furthermore, differential expression of the variants 

of PAC1-R might influence the potency of PACAP signaling. Thus, we examined 

the expression pattern of PAC1-R isoforms in both gonadotroph cell lines and 

developing rat pituitary by combined semi-quantitative PCR and restriction 

enzyme analysis.  

2.    Methods and Materials 

2.1. Animals 

Timed-pregnant Sprague-Dawley rats were purchased from Charles 

Rivers Laboratories, and were housed at least one week with free access to rat 

chow and water in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals according to a protocol approved by the Animal Care and 

Use Committee of the University of Louisville.   
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2.2. Immortalized Cell Culture 

Mouse DT3 and LET immortalized mouse pituitary gonadotroph cells were 

kindly provided by Dr. Pamela Mellon (University of California, San Diego, CA). 

DT3 cells were grown in Eagle’s Minimal Essential Medium (MEM) containing 

glucose (4.5g/L), NaHCO3 (2.2g/L) and HEPES (5.96g/L), with penicillin, 

streptomycin, and fluconazole, and supplemented with 10% fetal bovine serum 

(FBS).  LET2 cells were grown in Dulbecco’s MEM (DMEM) containing HEPES 

(22.5mM), NaHCO3 (40mM), 10% charcoal-stripped FBS, penicillin, 

streptomycin, and fluconazole.  Both cell lines were grown in 6 wells plate and 

used for experiments after 50%-70% confluence.  

2.3. Primary cell culture 

E19 pregnancy rats were sacrificed utilizing CO2, then the pups were 

removed and placed into ice-cooled 1 u PBS. Pituitaries from E19 and PN1 pups 

were dissected and placed in HEPES buffer without BSA on ice before treatment 

with 0.25% trypsin in a 15 ml Falcon tube in 37° water incubator for 5 minutes, 

with intermittent dispersal with a siliconized pipette. Treated pituitaries were 

pipetted up and down till tissue fragments were invisible. The tube was 

centrifuged for 10 minutes at 500 u g. Suspension was discarded and replaced 

with 5 ml fresh DMEM with 10% FBS to wash the cells. Centrifuge again for 10 

minutes at 500 u g. The cells were suspended in 5 ml DMEM then cultured in 5 

cm dishes for 24 hours before the experiments. All the glass pipets used were 

coated overnight by SIGMACOTE£ (SIGMA. CO). 

2.4. RNA extraction and reverse transcription                                                           
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Total RNA was prepared from cultured DT3, LET2 cells or male rats 

pituitary samples using QIGEN RNAeasy Kit following the instruction of 

manufacturer. Sample purity was determined by Nano-drop from Thermo 

(Wilmington, DE). 1Pg total RNA from every sample was reverse transcribed 

using Superscript III reverse transcriptase (Invitrogen, CA) primed with oligo(dT) 

following the instruction from Invitrogen. 

2.5. Real-time PCR 

The cDNA samples were amplified in parallel by PCR with a Stratagene 

MX3005P Multiplex Quantitative PCR System (Stratagene, La Jolla, CA) using 

the Brilliant SYBR Green QPCR Master Mix and specific primers. Accumulation 

of PCR product was monitored in real time, and the crossing threshold (Ct) was 

determined using Mx-pro software. 

2.6. Laser Capture Microdissection 

The head part tissues from E14 to PN10 rats were placed in desired 

orientation in cold Cryomold (Fisher Co, PA) with a thin layer of OCT on the 

bottom. Then, the specimen was covered with OCT then mounted to holder of 

microtome. Once the specimen and cryostat of microtome were temperature 

equilibrated, the specimens were cut to 10Pm sections. The sections were 

stained with hematoxylin and thoroughly dehydrated using gradient concentration 

ethanol. Under the microscope, the tissue section is viewed through the glass 

slide and specific areas are identified. When the pituitary is in the field of view, a 

near IR laser diode integral with the microscope optics is utilized. The pulsed 

laser beam activates a precise spot on the transfer film immediately above the 



 

25 

cells of interest. At this location the film melts and fuses with the underlying cells. 

The film with the bonded cells is then lifted off the section, leaving all unwanted 

cells behind. This allows targeted dissection of pituitaries to be pooled for RT-

PCR analysis. RNA from the LCM samples was isolated utilizing the PicoPure 

RNA isolation kit from Arcturus following the manufacturer’s protocol. Briefly, 

transfer film caps are placed onto microfuge tubes containing RNA extraction 

buffer, inverted, and incubated at 42° for 30 minutes. Next, 70% ethanol is added 

to the extraction buffer-sample solution and passed through a pre-conditioned 

purification column by centrifugation. The purification membrane is washed and 

the RNA is eluted with buffer.   

2.7. Single cell PCR 

The cells from E19 and PN1 rat pituitary cell cultures were picked using 

glass pipettes, which were made from 0.5 mm borosilicate glass (Sutter 

Instrument, CA) using micropipette puller (Model P-30). The selected cell was 

placed into a 0.5 ml eppendorf tube and put on dry ice immediately. To each tube 

we added 10mM dNTP(1Pl), oligo(dT)(1Pl), RNAse inhibitor(1Pl), 5×First strand 

buffer(4Pl), ddH2O(11Pl) and Superscript III(1Pl). All the cell samples were plated 

on a thermocycler using the standard reverse transcription protocol. After then, 

the mixture was ready to use as the template of PCR. 

3.    Results 

3.1. PACAP expression in Gonadotroph cell lines 

There are two immortalized gonadotroph cell lines; DT3 and LET2 cells, 

each derived from pituitary gonadotroph tumors that developed at different 



 

26 

developmental stages in mice. The tumor from which the DT3 cell line was 

derived from a tumor formed during prenatal development of the donor mouse. 

Conversely, LET2 cells were derived from a postnatal formed mouse pituitary 

tumor. The different cell lines have previously been demonstrated to represent 

different developmental stages in gonadotroph maturation (Turgeon et al., 1996). 

We collected RNA samples from both cell lines and examined PACAP mRNA 

expression levels. DT3 cells express a relative higher level of PACAP than LET2 

cells, in which PACAP mRNA is almost undetectable (Fig. 4). This result is 

similar to our previously reported findings that PACAP mRNA expression is high 

in the fetus, and declines substantially after birth (Moore et al., 2009a).  

Figure 4. PACAP mRNA level in DT3 (left) and LET2 (right) cells.                   

Total RNA (1Pg) was isolated from cultured DT3 and LET2 cells. PACAP mRNA 

expression levels were measured by semi-quantitative PCR after reverse-

transcription. Housekeeping gene (GAPDH) mRNA levels descripted the same 

amount of total RNA in all samples. GnRH (10nM) treated LET2 cell samples 

were the positive controls. 
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3.2. PAC1-R expression in Gonadotroph cell lines 

 

 

Figure 5. Expression pattern of PAC1-Rs (A,B) in gonadotroph cell lines.         

The total PAC1-R (A) and PAC1-R variants (B) mRNA expressions were 

measured by semi-qauntitative PCR and restriction enzyme after RNA extraction 

and reverse-transcription (1Pg RNA every sample). The specific PAC1-R primers 

and cleavage sites of enzymes are showed in C. 

 

PACAP signaling within the gonadotrophs could also be developmentally 

regulated by alterations in the expression of PACAP receptors. Although there 

are three PACAP receptors, VPAC1, VPAC2 and PAC1R, PAC1-R is the only 

one specific for PACAP. PAC1-R has at least six variants resulting from 

alternative splicing in the third intracellular loop region (Spengler et al., 1993). 

The splice variants are characterized by the absence (short variant) or presence 

of either one or two cassettes of 28 amino acids (hip or hop1 variant) or 27 amino 

acids (hop2 variant) (Spengler et al., 1993). DT3 and LET2 cells express similar 
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PAC1-R variants (Fig. 5A). However, they still have some differences. We found 

that DT3 cells contain significantly more Long form than Short form while in LET2 

cells they were in similar amount. The expression of Hip form was almost 

undetectable in either DT3 or LET2 cells (Fig. 5B) whereas the Hop form 

dominated in both cell lines (Fig. 5B).  Real-time PCR was also utilized to detect 

variants of PAC1-R, with similar results (data not show). 

3.3. PACAP expression in Pituitary cells 

We analyzed PACAP mRNA expression during development, and a 

significant decline happened after birth in male rat pituitary (Moore et al., 2009a). 

We cultured E19 and PN1 rat pituitary cells and picked single cells for qualitative 

PCR analyses. We designed specific primers for every cell type, and analyzed 

PACAP distribution in these cells. The results were summarized in following 

table. Although PACAP mRNA level in PN1 pituitary was less than E19, the 

pattern of expressing cell types didn’t change much. PACAP mRNA in pituitary 

was mainly produced by gonadotroph cells. 
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 E19 PN1 
PACAP 14 (9.5%) of 146 cells 17(14.3%) of 119 cells 

Of These  8 (57.1%) cells LH+ 8 (47.1%) cells LH+ 

 1 (7.1%) cells S100+ 1 (5.9%) cells S100+ 

 0            cells PRL+ 2 (11.8%) cells PRL+ 

 0            cells ACTH+ 2 (11.8%) cells ACTH+ 

 1 (7.1%) cells GH+ 1 (5.9%) cells GH+ 

 2 (14.2%) cells TSH+ 1 (5.9%) cells TSH+ 

Table 1. Distribution of PACAP in different type cells of rat pituitary gland.       

The cell types of PACAP positive cells were determined by real-time PCR from 

single cell samples. E19 and PN1 rat pituitary cells were cultured for 24 hours 

before experiment. 

3.4. PAC1-R mRNA expression in rat pituitary 

We also looked at PAC1-R expression during development of male rat 

pituitary gland. Because pituitary glands are tiny in embryos, LCM was utilized to 

collect E14-PN10 tissues, and then total RNA was extracted from these samples 

following the manufacturer’s instructions. Through semi-quantitative results, we 

observed a decline of PAC1-R-Short form after birth (Fig. 6A). Furthermore, we 

analyzed the Long form of PAC1-R in these tissues. Hop1/Hop2 form was always 

the main variant during development (Fig. 6B). To confirm the results, we chose 

the time point with most of our attentions, E19 and PN1. The pituitary gland 

samples in E19 and PN1 male rats, which were collected by traditional method, 

showed the same results (Fig. 6C).  
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Figure 6. PAC1-R mRNA expression pattern during rat pituitary development. 

PAC1-R (A) and its variants (B.C) were analyzed by semi-quantitative PCR after 

reverse-transcription. 

 

4.   Discussion and Future Investigations 

PACAP is a novel factor found to regulate synthesis and secretion of 

gonadotropins in cultured pituitary cells. However, very little was known about 

pituitary PACAP expression during development before our group first 

discovered dramatic decrease of pituitary PACAP levels after birth (Moore et al., 

2009a). To find further evidences to support functions of PACAP in pituitary 
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gonadotrophs, we examined expression patterns of PACAP and its specific 

receptor, PAC1-R, in both gonadotroph cells and developing rat pituitary.  

In the two different gonadotroph cell lines, both PACAP and PAC1-Rs 

mRNA expressions were much higher in DT3 cells than in LET2 cells. At the 

same time, our previous studies revealed the dramatic decline of PACAP mRNA 

after birth (Moore et al., 2009a). All the data suggested that two gonadotroph cell 

lines represented different developing periods of gonadotrophs. Thus, the DT3 

and LET2 cell lines are useful in vitro models for studies on developing 

gonadotrophs. In future experiments, we could choose either more mature LET2 

or immature DT3 cells for in vitro researches depend on our hypotheses and 

targeting development stages.   

After PAC1-R had been cloned in many species, six variants resulting 

from alternative splicing in the third intracellular loop region were identified in rats 

(Journot et al., 1994; Spengler et al., 1993). Different variants may be temporal 

and/or spatially regulated in different cell types and mediate different pathways. 

For instance, the Hip cassette impairs AC stimulation and abolishes 

phospholipase C activation, which was in opposite of observed PACAP functions 

(Dickson and Finlayson, 2009). We demonstrated that Hop form and Short form 

were the dominant variants in both gonadotroph cell lines and rat pituitary gland, 

which suggests the most prominent PACAP pathways involved in the pituitary 

gland. Thus, in the following experimental design we focused on 

cAMP/PKA/CREB, cAMP/MAPK and PLC/PKC pathway analysis.  
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Although PACAP expression in pituitary was well known for a while, the 

type of PACAP positive cell is still less documented. The RT-PCR on single 

pituitary cell indicated that most of PACAP positive cells were gonadotroph cells 

in both E19 and PN1 rats. The data supported that the decline in PACAP mRNA 

in pituitary gland after birth partially reflects a decline in PACAP expression in 

pituitary gonadotrophs.  

The expression of PACAP and PAC1-R in developing pituitary suggests 

that PACAP may affect pituitary gland development. Furthermore, the result that 

PACAP are demonstrated to mainly exist in gonadotrophs of pituitary particularly 

implies that regulating gonadotrophs may be the main effect of PACAP. Different 

with the dramatic decline of pituitary PACAP levels at birth, its receptor, PAC1-R, 

only shows a decreased short subtype in postnatal period. The result suggests 

possible different pathways mediating the differential regulation of gonadotropins 

by PACAP. 

Based on recent data, future investigations on PACAP and PAC1-R 

expression in pituitary will still focus on single cell level. All endocrine cell types in 

the pituitary express PAC1-Rs (Gottschall et al., 1990; Lam et al., 1990). 

However, there are no data about the PAC1-R variants detail in different cell 

types. The detailed developmental expression pattern and future specific 

agonists or antagonists for variants could help drug design on pituitary related 

endocrine-disorders. 
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CHAPTER THREE 

 

FUNCTION OF PACAP ON PITUITARY GONADOTROPHS 

 

1.    Introduction 

The name pituitary adenylate cyclase-activating polypeptide (PACAP) was 

derived from the ability of this peptide to increase cAMP production in cultures of 

rat pituitary cells (Miyata et al., 1989). In addition of this observation, subsequent 

research found that PACAP stimulates the release of most pituitary hormones 

from rat pituitary cells (Counis et al., 2007). Therefore, PACAP may be a novel 

and important hypophysiotropic factor.  

Mammalian gonadotropins, Luteinizing hormone (LH) and follicle-

stimulating hormone (FSH), play a critical role in the regulation of reproductive 

development and function. Production of gonadotropins by pituitary 

gonadotrophs is mainly under the control of the hypothalamic factor GnRH as 

well as peripheral feedback mechanisms of gonadal hormones (Charlton, 2008). 

However, gonadotropins exist in GnRH deficient mice, which show us that there 

must be other important factors regulating the ontogeny and differentiation of 

gonadotrophs. 
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The effects of PACAP on gonadotropin secretion have been studied both 

in vivo and in vitro. PACAP has a consistent stimulatory action in vitro whereas 

effects in vivo are variable. For LH, i.v or i.c.v administration of PACAP38 in rats 

showed some differences between male and female. PACAP38 increased LH 

plasma levels in male (Osuga et al., 1992); however, it suppressed the 

preovulatory LH surge in female (Koves et al., 1996). The function of PACAP on 

the female rat has evidences demonstrating PAC1-R as a mediator (Choi et al., 

2000). The interest is that PACAP27 causes opposite effects on female rat, in 

which PACAP27 increased circulating LH levels instead of inhibiting LH surge 

(Kantora et al., 2000).  

On the other side, PACAP also regulates gonadotropin gene expression 

not just hormone release. In cultured rat pituitary cells, continuous PACAP 

treatment combined with pulses of GnRH increases D-subunit mRNA and LHE 

mRNA transcript length, which presumably prolongs its half-life. However, FSHE 

transcription was found to be reduced (Tsujii et al., 1994). On the other hand, the 

pulsatile treatment of PACAP alone increased D-subunit mRNA and LHE mRNA 

but no effects on FSHE�mRNA (Tsujii and Winters, 1995b).  

In gonadotrophs, effect of PACAP is exerted through activation of PACAP 

specific receptor, PAC1-R (Hezareh et al., 1996a). In Chapter two, the 

gondotroph cell lines, DT3 and LET2 cells, express PAC1-R. In particular, PAC1-

R Hop and Short form exist in gonadotroph cells, which indicated effect of 

PACAP through PAC1-R have several different pathways, PKA, PLC and [Ca2+] 

etc. (Bresson-Bepoldin et al., 1998; Hezareh et al., 1996b; Rawlings and 
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Hezareh, 1996). Although these pathways all involved in gonadotropins release 

and mRNA transcript, PACAP induced cAMP production appears to be more 

important in the synthesis than release (Sherwood et al., 2000). 

In addition to the direct effects of PACAP on gonadotroph cells, 

sometimes the actions of the peptide on gonadotropins could be mediated 

through indirect mechanisms. In the cultured pituitary cells and mouse clonal 

gonadotroph cells, exposure to PACAP reduced FSHE mRNA levels may relate 

to the increase in follistatin expression (Katayama et al., 2000; Winters et al., 

1997).  

In spite of all that is known about PACAP actions in gonadotrophs, we still 

lack the information about PACAP in the in vivo regulation of gonadotrophs and 

reproductive function. During sexual maturation in the male rat, expression and 

secretion of LH and FSH is not parallel. LH keeps a relatively constant level in 

the circulation from birth to adults. However, FSH levels remain at a low level 

until PN15 then begin to climb to a peak value at PN38. To investigate the role of 

PACAP signaling in the regulation of gonadotropin synthesis and secretion 

during male rat sexual maturation, we implanted micro-pumps containing PACAP 

antagonist (6-38) or PACAP38 into PN16 male rats and evaluated serum and 

pituitary gonadotropins levels after 3, 5 and 7 days of treatment. If PACAP is 

involved in regulation of FSH during sexual maturation, the treatment of pre-

pubertal male rats with PACAP or the PACAP antagonist should change the FSH 

levels in serum and/or pituitary. In addition, to demonstrate the hypothesis that 

PACAP regulates FSH through a follistatin-activin mediated mechanism, we 
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evaluated the follistatin levels in the pituitary of experimental animals. Finally, we 

utilized a mouse model of pituitary PACAP overexpression and performed gene-

chip analyses to screen the pituitary genes regulated by PACAP.  

2.    Methods and Materials 

2.1. Animals 

             Timed-pregnant Sprague-Dawley rats were purchased from Charles 

Rivers Laboratories, and were housed with free access to rat chow and water in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals 

according to a protocol approved by the Animal Care and Use Committee of the 

University of Louisville.  

2.2. Immortalized Cell Culture 

Mouse LET2 immortalized mouse pituitary gonadotroph cells were kindly 

provided by Dr. Pamela Mellon (University of California, San Diego, CA). LET2 

cells were grown in Dulbecco’s MEM (DMEM) containing HEPES (22.5mM), 

NaHCO3 (40mM), 10% charcoal-stripped FBS, penicillin, streptomycin, and 

fluconazole. The cell lines were grown in 6 wells plate and used for experiments 

after 50%-70% confluence.  

2.3. Micro-Osmotic Pumps implantation 

The ALZET micro-osmotic pumps were used to implant intraperitoneal into 

five PN16 male rats. There were three groups of pumps, which were filled with 

100Pl 1-38/BSA, 6-38/BSA and BSA only respectively and final concentration 

was 2Pg/ml.  For intraperitoneal placement, we made a small midline incision in 

the skin below the rib cage of an animal and another small incision in the 
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abdominal muscle. The pump was inserted, flow moderator first, into the 

peritoneal cavity. The muscle incision was closed with sutures, and then the skin 

incision was closed with a wound clip. After three, five or seven days, animals 

were sacrificed for serum and pituitary samples. 

2.4. Cell Transfection  

LET2 cells were plated in 6-well plates, and grow to 50%-70% confluence. 

The mixture was incubated at room temperature for more than 30 minutes before 

adding 120Pl to every well. The plates were gently swirled and continue 

incubated at 37Ԩ for 20 -24 hours. LET2 cells were transfected with Fugene 6 

(Roche Applied Science, Indianapolis, IN).  The transfection mixture was 

containing DMEM without serum, 3Pl Fugene 6 and 1Pg plasmid DNA every well, 

and incubated for 20 minutes at room temperature. 100Pl of mixture was added 

to every well in a drop-wise manner. The plates were continuing incubated for 20 

- 24 hours. 

2.5. FSH and LH ELISA 

The blood samples from experiment animals were collected into the dry 

tubes. The serum separated from the red blood cells was assayed immediately. 

a. Dispense 25ȝO�RI�HDFK�FDOLEUDWRU�LQWR�WKH�DSpropriate wells. 

b. Dispense 25ȝO�RI�VDPSOHV�RU�FRQWUROV�LQWR�DSSURSULDWH�ZHOOV� 

c. Add 200ȝO�RI�FRQMXgate (CONJ HRP) into each well. 

d. Incubate for 180 minutes at room temperature without shaking. 

e. Flick out the contents of the wells over a basin containing bleaching 

water or aspirate with an automated plate washer. 
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f. Wash the wells 7 times with an automated system set to 25�ȝO�SHU�ZHOO��

or by adding 250ȝO�WR�HDFK�ZHOO��IOLFNLQJ�RXW�RYHU�D�EDVLQ�DQG�EORWWLQJ�WKH�ZHOOV�RQ�

absorbent paper to remove any residual liquid after each washing. 

g. Dispense 200ȝO�RI�chromogenic substrate (SUBS TMB) solution into 

each well, ensuring that it is initially pale colored. 

h. Incubate for 30 minutes at room temperature without shaking. 

i. Stop the reaction by adding 50ȝO�RI�VWRS�VROXWLRQ��6723�62/1��WR each 

well. 

j. Place the plate on a flat surface, swirl gently to mix contents. 

k. Measure the absorbance at 450 nm on a 96 well micro-plate reader. 

2.6. Genotype of TG-mice 

Genotyping was performed by real-time PCR using DNA isolated from the 

tails of 2- to 4-week-old mice using heat-shock method. The 5’ primer is derived 

from the mouse DGSU-subunit promoter, and the 3’ primer is derived from rabbit 

E-globin cDNA sequences: 5' primer, 5'- AAATCCAGAGACATTGTTCCC -3'; and 

3' primer, 5'- AATCAAGGGTCCCCAAACTC -3' Using real-time PCR to identify 

transgenic mice. 

2.7. 2 -¨¨&T Method for analyzing Real-time PCR results 

The 2 -¨¨&T Method is a convenient way to analyze the relative changes in 

gene expression from real-time quantitative PCR experiments (Livak and 

Schmittgen, 2001).  

2.7.1. Derivation of the 2 -¨¨T Method 
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Exponential amplification of PCR: Xn= X0 u (1+Ex)n   Xn is the Number of 

target molecules. n is the cycle number. Ex is the efficient of target amplification. 

XT is the threshold number of target molecules. CT,X is the threshold cycle 

for target amplification, and KX is a constant. Similar, we have RT, CT,R and KR for 

reference molecules. Thus, we have following two equations: 

XT = X0 u (1+EX)C
T,X = KX 

RT = R0 u (1+ER)C
T,R = KR 

Dividing XT by RT gives the expression 

 

We used the same reagent and run all the groups in the same machine at 

the same time. Thus, we assumed efficiencies of the target and the reference are 

the same. EX=ER=E, 

 or  then  

The Final step is to divide the XN for any sample q by the XN for the calibrator: 

   

For amplifications designed to be less than 150 bp and for which the 

primer and Mg2+ have been properly optimized, E is close to 1. Therefore, the 

amount of target, normalized to an endogenous reference and relative to a 

calibrator, is given by  (Livak and Schmittgen, 2001). 

2.7.2. Following is a sample table of data analysis using the method. 
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Treat PACAP average 
CT 

GAPDH 
average CT 

ǻ&T ǻǻ&T Fold 
 

VEH 28.04±0.30 16.09±0.08 11.95±0.31 
 

0±0.31 1 
(0.83-1.21) 

���ȝ0 
BIM 

28.15±0.44 15.55±0.05 12.61±0.44 0.66±0.44 0.64 
(0.52-0.77) 

�ȝ0 
BIM 

30.00±0.40 16.46±0.25 13.54±0.47 1.60±0.47 0.33 
(0.31-0.36) 

2.8. Microarray analysis 

The microarray analysis was performed at the University of Louisville 

Microarray Core Facility according to instructions from Affymetrix (Santa Clara, 

CA). mRNA was converted into double stranded cDNA using a T7-oligo (dT) 

promoter primer sequence. The double-stranded cDNA was purified and served 

as a template in the subsequent in vitro transcription reactions. The in vitro 

transcription reactions were carried out in the presence of T7 RNA polymerase 

and a biotinylated nucleotide analog/ribonucleotide mix for cRNA amplification. 

The biotinylated cRNA was purified, fragmented, and used in the hybridization 

cocktail containing control oligonucleotide B2 and four control bacterial and 

phage cDNA (BioB, BioC, BioD, cre). The labeled cRNA was hybridized to the 

Mouse Genome 430 2.0 Array (Affymetrix, CA), using the protocol provided by 

Affymetrix. The Mouse Genome 430 2.0 Array is comprised of over 45,000 probe 

sets representing over 21,000 well-substantiated mouse genes. The sequence 

clusters were created from the UniGene database (Build 107, June 2002) and 

then refined by analysis and comparison with the publicly available draft 

assembly of the mouse genome from the Whitehead Institute for Genome 

Research (MGSC, April 2002). Alterations in RNA transcript levels were analyzed 

using Partek Genomics Suite 6.2 (Partek Inc., St. Louis, MO). Three different 
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experiments were performed for statistical analysis. Data analysis was performed 

using Partek Genomics Suite 6.2 (Partek Inc., St. Louis, MO). The Affymetrix 

probe level signal values were summarized using the RMA algorithm. Statistically 

significant changed genes were identified by analysis of variance (ANOVA) with 

FDR-corrected p-values < 0.05. The contrast between wild type and DGSU-

PACAP mice yielded no significantly different in genes based on these 

parameters. Two-way ANOVA tests were carried out to identify differentially 

expressed genes in the comparison of wild type and DGSU-PACAP mice, taking 

treatment and batch effect for the triplicate sample processing into account. The 

genes that showed 2-fold induction or 2-fold suppression were transferred to 

separate up and down lists, respectively. The gene sets with an FDR corrected 

p-value of less than 0.05 were identified in these lists and Ingenuity Pathway 

Analysis software (Ingenuity Systems Inc., Redwood City, CA) was used to 

interpret the interactive pathway networks between the selected genes from the 

microarray data. 

2.9. Statistical Analysis 

All the luciferase assays and real-time PCR data were performed with 

triplicate samples and repeated at least three times. Values were expressed as 

mean ±SEM. Statistical analysis was performed using ANOVA and post Tukey’s 

test if necessary. P<0.05 was considered statistically significant. 

3.    Results 

3.1. FSH and LH levels in developing immature male rats 
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In male rats serum FSH levels are low at PN17 and increase significantly 

beginning at PN19 (Fig. 7A). By PN29, the serum level of FSH was two-fold 

higher than the PN17 value. A similar increase was observed in the pituitary 

FSHE mRNA levels during the same period (Fig. 7B). However, the serum LH 

levels remained relatively constant (Fig. 7A) but showed a small increase at 

PN29. Likewise, no significant increase happened till PN29 for LHE mRNA levels 

(Fig. 7B). The results are consistent with previous research showing that FSH 

and LH levels are not parallel with each other during this period of development.  

3.2. PACAP and Fst-288 mRNA levels in developing immature male rats  

To evaluate whether a relationship exists between expression of PACAP 

and follistatin and gonadotropins during the period, qRT-PCR was performed 

using pituitary RNA isolated from PN17 to PN29 immature male rats. PACAP 

mRNA concentrations decreased significantly by 4-fold (Fig. 8A) during the 

period. On the other hand, qRT-PCR analysis also revealed an 80% drop in Fst-

288 mRNA (Fig. 8B) from PN17 to PN29. Thus PACAP mRNA is decreased in 

parallel with pituitary Fst-288 expression, and is reciprocal to the rise in FSH 

levels. 

3.3. Effects of PACAP38 and PACAP antagonist 6-38 on gonadotropins in 

immature male rats 

Follistatin was known to inhibit FSH synthesis by binding activin and 

limiting activin signaling to gonadotrophs (Katayama et al., 2000). Furthermore, 

follistatin mRNA expression followed the same expression pattern as PACAP 

from PN17-PN29. To further demonstrate the role of PACAP in the synthesis and 
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secretion of gonadotropins in immature male rats, we utilized micro-pumps filled 

with 2Pg/ml PACAP 6-38 or PACAP38 to implant intraperitoneal in PN16 male 

rats. Analysis of gonadotropins levels of experimental animals was processed at 

3, 5 and 7 days after surgeries.  

3.3.1. Effect of 3 days i.p. administration of PACAP 6-38 on gonadotropins in 

immature male rats 

We implanted intraperitoneal osmotic micro-pumps containing PACAP 

antagonist PACAP 6-38 (2Pg/ml) into PN16 male rats. After three days, both 

serum gonadotropins (Fig. 9) and pituitary gonadotropins mRNA (data not show) 

from surgical animals were analyzed and compared with vehicle and non-surgical 

control rats. Neither LH nor FSH was affected by 3 days administration of 

PACAP 6-38. 

3.3.2. Effect of 5 and 7 days i.p. administration of PACAP 6-38 and PACAP38 on 

gonadotropins in immature male rats 

However, 5 and 7 days treatments in immature male rats cause significant 

differences. Rats treated with 6-38 for 5 and 7 days had significantly higher levels 

of both serum FSH and FSHE mRNA than vehicle and nonsurgical control rats 

(Fig. 10 and 11). On the other hand, PACAP38 treatment for 5 and 7 days 

reduced levels of serum FSH and FSHE mRNA compared to vehicles and 

controls (not statistic significant). Based on these results, PACAP expression in 

pituitaries of immature male rats contributes to suppression of FSH, and that an 

endogenous decline in PACAP around PN17 allows for FSH expression to 
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increase. Neither serum LH nor LHE mRNA was affected by PACAP 6-38 or 

PACAP38 (Fig.10C and D).  

3.3.3. Effect PACAP 6-38 on Fst-288 and PACAP mRNA in immature male rats 

The pituitary samples collected from PACAP 6-38 treated immature male 

rats were analyzed for Fst-288 mRNA levels. PACAP 6-38 treated rats have 

much lower (40-60%) follistatin levels than vehicles and nonsurgical controls. At 

the same time, PACAP38 treatment increased Fst-288 level by about 50% (Fig. 

12A). The data suggest that effect of PACAP on gonadotropins works through 

follistatin-activin signaling pathway. PACAP mRNA in pituitary samples are also 

affected by PACAP 6-38 and PACAP38, which PACAP 6-38 decreases the 

PACAP mRNA level whereas PACAP 38 increases it (Fig. 12B). However, the 

differences are statistically significant compared to vehicle animals but not 

control animals, which may be induced by surgery procedure. 

3.4. Effect of PACAP38 on follistatin promoter in LET2 cells 

The in vivo experiments suggested that PACAP might induce follistatin 

expression in immature male rats. To examine how PACAP could affect follistatin 

expression, we investigated the activities of follistatin promoter utilizing a 

luciferase-reporter construct under PACAP38 treatments. We chose LET2 cells 

because they have similar low level of PACAP with our in vivo experimental 

animals. 

3.4.1. PACAP stimulates follistatin promoter in LET2 cells 

Increasing doses of PACAP38 treatment proved that follistatin promoter 

activity was stimulated more than 2-fold than medium alone at 10nM 
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concentration (Fig. 13A). After PAC1-R variants, Short and Hop1 form, were 

overexpressed in LET2 cells, the activity of follistatin promoter stimulated by 

PACAP climbed to 2-fold higher than wild type in both short and hop1 

overexpressed cells (Fig. 13B).  

3.4.2 PACAP stimulates follistatin promoter through PKA and MAPK pathway 

By sequence homology and previous research, we identified some 

putative transcription factor binding sites on the follistatin promoter. Among these 

sites, AP1 and CRE binding sites were important in MAPK and PKA pathway. 

AP1, CRE and double mutant constructs were transfected into cells with or 

without PAC1-R expression vectors. AP1 mutation didn’t significantly reduce the 

activity stimulated by PACAP compared to wild type vector (Fig. 14A). PAC1-R 

overexpression still induced PACAP stimulated activity. On the other hand, 

PACAP stimulated activity decreased after CRE mutation, and overexpression of 

PAC1-R got the similar pattern with native receptor types (Fig. 14B). Significant 

decrease in PACAP stimulated activity happened after we mutated both AP1 and 

CRE sites even when we overexpressed PAC1-R (Fig. 14C). All these data 

suggest that PAC1-R-PKA pathway through CREB was the most important for 

effect of PACAP on follistatin whereas MAPK pathway may also be involved in.  

3.5. Microarray analysis revealed function of PACAP in gonadotrophs 

We created a transgenic mouse model, in which we use DGSU subunit 

promoter to drive PACAP expression to maintain lifelong high pituitary PACAP 

levels. To evaluate genes that could be either up- or down-regulated by pituitary 

overexpression of PACAP, we performed gene chip microarray analysis 
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comparing pituitary gene expression in wild type and DGSU-PACAP mice.  

Pituitaries were collected from postnatal day 35 mice, an age when the difference 

in FSHE and follistatin mRNA levels was maximal. Of the 45, 102 probe sets 

present on the gene chip, 516 were at least ±1.5 fold different (357+, 159-) in the 

DGSU-PACAP mice (p<0.05).  Adjusting to a more stringent criterion of at least ± 

2-fold difference and consolidation of multiple probe sets for individual genes, 

108 genes (73+, 35-) were significantly (p<0.05) altered by chronic pituitary 

PACAP overexpression (Table 2). Among these genes, we found similar results 

with our previous experiments. Follistatin was strongly stimulated by PACAP with 

a 4-fold change. On the contrary, FSHE�was suppressed with a 3-fold decrease 

(Table 2, bold letter). We did find some novel genes, which were regulated by 

PACAP change. Two new genes that were affected the most by pituitary PACAP 

over-expression were gastrin releasing peptide (GRP, +14.97-fold) and 

“phosphate regulating gene with homologies to endopeptidases on the X 

chromosome” (PHEX, -12.2 fold).  

To gain biological insight into the changes in gene expression in the 

pituitaries of DGSU-PACAP mice, we utilized Pathway Analysis software from 

Ingenuity Systems, Inc. (Table 3). These analyses revealed significant changes 

in the expression of genes involved in established biological networks including 

reproductive system disease, cancer, lipid metabolism, development and cellular 

growth and proliferation. The top biological functions of the genes with altered 

expression included neurological, endocrine, reproductive, genetic, and skeletal 

disorders; cellular functions including lipid metabolism, morphology, and 
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development; and physiological system functions including organ morphology 

and development of the nervous and reproductive systems.  Not surprisingly, the 

top canonical pathway altered to the greatest extent was the GnRH signaling 

pathway. Through the analysis, we also listed genes which were known to be 

involved in pituitary function (Table 3). Furthermore, all the changes of selected 

genes were confirmed by real-time PCR.  

4. Discussion and Future Investigations 

Previous studies demonstrated that PACAP and PAC1-Rs were present in 

gonadotrophs during development. Subsequence investigations revealed some 

functions of PACAP on gonadotrophs, like stimulating gonadotrophins secretion, 

increasing subunit gene expression and lengthening LHE mRNA transcripts 

(Rawlings et al., 1994; Tsujii et al., 1994; Tsujii and Winters, 1995b). However, 

most of these data were from in vitro studies, including pituitary cell culture and 

LET2 and DT3 cell lines. Very little information has come from in vivo 

experiments. Previous studies documented that PACAP could suppress FSHE 

mRNA levels in pituitary cell cultures from adult rats (Winters et al., 1997). 

Furthermore, PACAP was demonstrated to increase follistatin expression in rat 

pituitary cell cultures and clonal FS cell line (Winters et al., 1997). As follistatin is 

an activin-binding protein, high levels of follistatin within the pituitary would block 

activin stimulation of FSHE transcription in gonadotrophs (Katayama et al., 2000).  

Therefore, PACAP may indirectly regulate FSHE through follistatin then activin in 

gonadotrophs.  
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Our previous data revealed the decline of PACAP and follistatin mRNA 

levels happened around birth in male rats (Moore et al., 2009a). At the same 

time, follistatin mRNA levels begin to rise. In this dissertation, we could find 

another period from PN17 to PN29, during which PACAP and follistatin were 

decreasing whereas FSHE was increasing (Fig. 7 and 8). Together, we noticed 

that PACAP and follistatin mRNA expression were parallel and reciprocal with 

FSHE during the male rat sexual development.  This evidence supports the 

hypothesis that PACAP in vivo should have similar function on FSHE as 

observed in cell cultures.  From PN16, we treated male rats with 0.5%BSA, 

PACAP 6-38 or PACAP38 then collected serum and pituitary samples at PN19, 

PN21 and PN23. After 3 day treatment, neither PACAP 6-38 nor PACAP38 

showed the significant effect on FSH and LH levels in serum or pituitary (Fig. 9). 

On the other hand, FSH serum levels in PN21 and PN29 after PACAP 6-38 

treatment were significantly higher than controls and vehicles. PACAP38 

treatment did show some decreasing trends but no statistically significant 

differences were detected (Fig. 10 and 11). LH levels were not influenced by 

either treatment.  

Two alternatively spliced mRNAs are produced from follistatin gene, with 

Fst-288 having greater activin-neutralizing activity (Hashimoto et al., 1997; 

Sugino et al., 1997), and our experiments revealed that PACAP 6-38 treatment 

decreased Fst-288 mRNA level in pituitary (Fig. 12A). These data provide the 

first in vivo evidence in rats demonstrating a suppressive effect of PACAP on 

FSH through regulating follistatin. In addition, we observed that PACAP regulates 
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mRNA expression of itself, which is increased by PACAP38 treatment and 

decreased by PACAP 6-38 (Fig. 12B). 

Chapter two showed that the Short and Hop forms PAC1-R dominated in 

developing rat pituitary and gonadotrph cell lines. In the present experiments, 

overexpression the Short or Hop1 form in LET2 cells strongly increased PACAP 

induced follistatin promoter activity (Fig. 13).  Furthermore, AP1 and CRE site 

mutations totally eliminated follistatin promoter activity induced by PACAP in wild 

type LET2 cells. Single mutation of the CRE site showed significant reduction of 

follistatin promoter activity in wild type LET2 cells but not in PAC1-R 

overexpression cells whereas AP1 mutation result no significant decrease in wild 

type cells and no effect in overexpression cells. All these data provide support 

that PACAP regulates follistatin mRNA mainly through PKA pathway with both 

Short and Hop1 forms involved.  This result was not a surprise considering that 

the main function of PACAP is to stimulate production of cAMP, which a key 

factor inducing the PKA pathway.  

Our lab also built a transgenic mouse line with high level pituitary PACAP 

in both prenatal and postnatal period. Lifelong pituitary PACAP over-expression 

in male mice was associated with decreased gonadotropin subunit mRNA levels, 

lower circulating FSH and testosterone levels, which gave us additional in vivo 

evidence about PACAP suppressing FSH. Gene chip analysis of PN35 male 

wild-type mice and TG-mice confirmed a significant decline in FSHE and an 

increase in follistatin.  PACAP overexpression in pituitary also modified the 

expression of some novel genes not previously shown to be PACAP dependent. 
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Some of these genes are known to affect pituitary function (Table 3). EGR1 (-

3.99 fold) was reported to activate LHE and other gene promoters in 

gonadotrophs. Gamma-aminobutyric acid (GABA) may either stimulate or inhibit 

gonadotropin secretion depending on the physiological state of the 

gonadotrophs. In PN35 PACAP overexpressing mice, we saw that GABA A 

receptor, beta 2 isoform was significantly decreased (-2.56 fold). Neurod1 (+2.51 

fold) has been shown to increase GnRH-R expression in immortalized mouse 

gonadotroph cells. The gene with the highest fold change (+14.97) was Grp. In 

rats, intravenous injection of GRP increases circulating LH levels and decreases 

TSH concentrations. GRP also stimulates ACTH release from rat pituitary cells in 

vitro and GRP peptide levels within the pituitary increase following repeated 

stress in rats. GRP receptor is also found in the rat pituitary.  Therefore, GRP 

may play a role in pituitary gonadotroph function, and may be regulated by 

PACAP. Other genes in the list have been demonstrated to be involved in 

pituitary development, like Fgfr2 (+2.40 fold) and Tgfbi (+4.51 fold).  

In summary, these data suggest that like the perinatal period, PACAP 

plays a role in the suppression of FSH during the infantile period of development. 

A significant decline in pituitary PACAP expression prior to puberty causes a 

decline in follistatin expression allowing for stimulation of FSH expression by 

locally derived activin. Advancing the decline in pituitary PACAP expression by 

endogenous treatments of day 16 rats with a PACAP antagonist causes a time- 

advanced and significant decline in pituitary follistatin and a reciprocal rise in 

FSH expression. 
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Future investigations are planned to evaluate the effect of pituitary PACAP 

on the developing testis. In addition to PACAP overexpressing mice, we plan to 

use conditional knockout mice, which could delete PACAP in specific tissue and 

time point.  Knockout of PACAP in pituitary after birth and around PN16 would 

reveal more details about effect of PACAP in the postnatal pituitary 

gonadotrophs.  
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Figure 7. LH and FSH levels during male sexual development.                     

Serum LH and FSH (A) concentration in infant male rats were determined by 

ELISA. The pituitary LHE and FSHE mRNA (B) levels of these animals were 

expressed as levels relative to PN17 values. Each value represents the mean 

±SEM of 6 rats per groups. * Significantly (P<0.05) different compared to PN17 

levels. 
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Figure 8. PACAP and Fst-288 mRNA levels during male rat sexual development. 

PACAP mRNA (A) and Fst-288 (B) mRNA levels were determined by real-time 

PCR after reverse-transcription and were expressed as levels relative to PN17 

values. Each value represents the mean ±SEM of 6 rats per group. * Significantly 

(P<0.05) different compared to PN17 levels.  
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Figure 9. Serum FSH and LH levels after 3 days treatment of PACAP 6-38. 

Micro-Osmotic pumps with vehicle (0.5% BSA) or 2Pg/ml PACAP 6-38 antagonist 

were surgically implanted (i.p.) in PN16 male rats, and 3 days later, serum 

collected for determination of serum FSH (A) and LH (B) levels by ELISA. Each 

value represents the mean ±SEM of 5 rats per group. * Significantly (P<0.05) 

different with controls and vehicles. 
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Figure 10. FSH and LH levels after 5 days PACAP 6-38 and 1-38 treatment.           

Micro-Osmotic pumps with vehicle (0.5% BSA) or 2Pg/ml PACAP 6-38 antagonist 

or 2Pg/ml PACAP 1-38 were surgically implanted (i.p.) in PN16 male rats, and 5 

days later, RNA from Pituitary glands were isolated for determination of FSHE (A) 

and LHE (C) mRNA levels, while blood was collected for determination of serum 

FSH (B) and LH (D) levels by ELISA. mRNA data were normalized to controls 

and each ELISA value represents the mean ±SEM of 5 rats per group. * 

Significantly (P<0.05) different with control and vehicles. 
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Figure 11. FSH levels after 7 days PACAP 6-38 and 1-38 treatment.            

Micro-Osmotic pumps with vehicle (0.5% BSA) or 2Pg/ml PACAP 6-38 antagonist 

or 2Pg/ml PACAP 1-38 were surgically implanted (i.p.) in PN16 male rats, and 7 

days later, RNA from Pituitary glands were isolated for determination of FSHE (A) 

mRNA levels, while blood was collected for determination of serum FSH (B) 

levels by ELISA. mRNA data were normalized to controls and each ELISA value 

represents the mean ±SEM of 5 rats per group. * Significantly (P<0.05) different 

with controls and vehicles. 
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Figure 12. Fst-288 and PACAP mRNA level after PACAP 6-38 and 1-38 

treatment. Micro-Osmotic pumps with vehicle (0.5% BSA) or 2 Pg/ml PACAP 6-

38 antagonist or 2Pg/ml PACAP 1-38 were surgically implanted (i.p.) in PN16 

male rats, and 5 days later, RNA from Pituitary glands were isolated for 

determination of Fst-288 (A) and PACAP (B) mRNA levels, mRNA data were 

normalized to controls. * Significantly (P<0.05) different with controls and 

vehicles. � Significantly (P<0.05) different with vehicles only. 
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Figure 13. Effect of PACAP on follistatin promoter in LET2 cells.  

LET2 cells were transfected with the mouse the Fst-luc promoter reporter 

construct only (A) and with PAC1-R overexpression (Short and Hop1) (B), then 

treated for six hours with increasing doses (A) or 10nM (B) of PACAP38. Data 

are expressed as fold difference normalized to treatment with media alone. * 

Significantly different than medium alone (p<0.05) by ANOVA. Results were from 

three experiments with triplicate wells. 
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Figure 14. Effect of PACAP on mutant follistatin promoters in LET2 cells.  

LET2 cells were transfected with three types mutant Fst-luc alone, AP-1 (A) CRE 

(B) and Double mutation (C), or together with PAC1-R-Short or Hop1 expression 

vectors, then treated for six hours with medium alone or 10nM PACAP38. Data 

are expressed as fold difference normalized to FBS-free media treatment of 

transfected cells. * Significantly different than media alone (p<0.05) by ANOVA. ٟ

Significantly different than wild type by Tukey’s test. Results were from three 

experiments with triplicate wells.  
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Table 2. List of genes mostly regulated by PACAP overexpression.   
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Table 3. IPA software analysis results 
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CHAPTER FOUR 

 

REGULATORY FACTORS OF PITUITARY PACAP EXPRESSION 

 

1.   Introduction 

The synthesis and secretion of LH does not always parallel FSH as we 

described in chapter three. The first physiological instance of differential 

gonadotropin regulation in males appears during fetal development with the 

predominance of LH over FSH (Chiappa and Fink, 1977; Chowdhury and 

Steinberger, 1976; Ketelslegers et al., 1978; Moore et al., 2003). The reason for 

this divergence is not known. Pituitary adenylate cyclase activating polypeptide 

(PACAP) has been demonstrated to differentially regulate gonadotropin subunit 

gene expression. PACAP stimulates D-subunit transcription, lengthens LHE 

mRNA and presumably prolongs its half-life in rat pituitary cell cultures. However, 

PACAP inhibits the synthesis of FSHE by stimulating follistatin transcription in 

gonadotrophs and folliculostellate cells (Carroll et al., 1989; Fujii et al., 2002; 

Tsujii and Winters, 1995b; Winters et al., 1997). We reported previously that 

PACAP and follistatin expression levels are high in the embryonic male pituitary, 

and decline significantly and in parallel at birth at which time FSHE mRNA levels 

increase dramatically (Moore et al., 2009a). From these results, we hypothesize 
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that continuous exposure of the embryonic anterior pituitary to PACAP facilitates 

the early appearance of D- and LHE-subunits but delays ontogeny of FSHE by 

stimulating follistatin production and this hypothesis has been supported with our 

in vivo data from the male rats and the transgenic mice in chapter three. 

However, little is known about the mechanisms that regulate PACAP gene 

expression in the pituitary. Treatment of rats with PACAP-38 increases pituitary 

PACAP mRNA levels (Radleff-Schlimme et al., 1998). The PACAP promoter 

contains sequence homologous to the CRE, and is activated by forskolin and by 

PACAP itself in neuroblastoma cells and in PC12 cells (Kozawa et al., 1995; 

Suzuki et al., 1994).  

In the present study, we analyzed additional factors that could potentially 

regulate PACAP expression, both through stimulation and suppression. We first 

examined whether gonadal hormones have feedback on PACAP expression in 

gonadotrophs. In addition, activation of Dopamine-2 Receptor (Drd2) was tested 

as a potential down-regulation factor. The dramatic decline in pituitary PACAP 

expression that occurs around the time of birth provides an excellent model to 

examine developmental PACAP gene regulation in the pituitary. We propose that 

developmental changes in both pituitary-derived and endocrine factors regulate 

pituitary expression of PACAP, and the present studies were designed to begin 

to understand the factors that regulate pituitary PACAP expression. We utilized 

mouse PACAP promoter-reporter constructs (1.2 kb) transfected into DT3 and 

LET2 gonadotroph cells, as models of immature and mature gonadotrophs, 

respectively. We measured basal and stimulated promoter activity in the two cell 
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lines in the absence or presence of PACAP and demonstrate the involvement of 

the PKA, PKC and MEKI signaling pathways in the activation of the PACAP 

promoter. Furthermore, we identified potential promoter regions, important for the 

regulation of PACAP gene transcription.  

2.    Materials and Methods 

2.1. Cell Culture 

DT3 and LET2 immortalized mouse pituitary gonadotroph cells were kindly 

provided by Dr. Pamela Mellon (University of California, San Diego, CA). DT3 

cells were grown in Eagle’s Minimal Essential Medium (MEM) containing glucose 

(4.5g/L), NaHCO3 (2.2g/L) and HEPES (5.96g/L), with penicillin, streptomycin, 

and fluconazole, and supplemented with 10% fetal bovine serum (FBS).  LET2 

cells were grown in Dulbecco’s MEM (DMEM) containing HEPES (22.5mM), 

NaHCO3 (40mM), 10% charcoal-stripped FBS, penicillin, streptomycin, and 

fluconazole. Primary cell culture is the same as described in Chapter one. 

2.2. Mouse PACpro-luc reporter constructs 

A PCR generated cDNA fragment, including the promoter (-1218 - + 36) 

region of mouse PACAP, was cloned separately into the pSTBlue-1 vector by TA 

cloning.  The cDNA were sequenced and found to be identical to published 

sequences.  The cDNA was excised with restriction enzymes and cloned into the 

pGL3-Basic vector (Promega Corp., WI). Truncated promoter sequences were 

produced utilizing the restriction enzyme Kpn I and one of four other enzymes (-

1018 by Spe I, -700 by Bst I, -541 by Nde I, -200 by AaT II) followed by re-
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ligation. CRE site mutation (-200) was constructed utilizing the restriction 

enzymes Aat II, which broken the CRE site sequence. 

2.3. Expression vectors 

 A dominant-negative inhibitor protein expression vector of CREB, termed 

A-CREB, was obtained from Dr. Vinson (Department of Neuroscience, The 

Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA). 

A rat PAC1-R-Short expression vector was obtained from Dr. Laurent 

Journot (National Center of Scientific Research, Montpellier, France). A human 

PAC1-R-Hop1 expression vector was obtained from Dr. Eve Lutz (Royal College, 

Glasgow, UK)  

2.4. Cell Transfections 

For transfections, DT3 and LET2 cells were plated in 6-well plates at 1– 

2×106 cells/well and used within 1–2 days at 50–80% confluency. Approximately 

3h prior to transfection, the media were replaced with fresh media (MEM+10% 

dextran-coated-charcoal-stripped FBS). Cells were transfected with Fugene-6 or 

GeneJammer Transfection Reagent (Stratagene, CA) according to the 

manufacturers’ protocols. For each plasmid, phRL-TK vector (Promega, WI) was 

co-transfected into the cells (0.2mM) for use of Renilla luciferase expression to 

monitor transfection efficiency. After 24 hours, cells were washed and incubated 

with fresh media. After 48 hours, cells were treated with test substances for 6-8 

hours; cells were then lysed and assayed for luciferase activity. 

2.5. RNA extraction and reverse transcription 
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Total RNA was prepared from cultured DT3 and LET2 cells using QIAGEN 

RNAeasy Kit following the instruction of manufacturer. 1Pg total RNA from every 

sample was reverse transcribed using Superscript III reverse transcriptase 

(Invitrogen, CA) primed with oligo (dT) following the instructions from Invitrogen. 

2.6. Cell Count 

0.5 ml of primary cell suspension was placed in a 1.5ml tube, then 0.1ml 

of 0.4% Trypin Blue (by GIBCO) was added with cells. Cells were staining for 5 

minutes at room temperature. Metallized Hemacytometer (by Hausser) was filled 

with stained cell suspension (about 100Pl). Numbers were counted under the 20 

u Microscope then calculated using the following formula: 

The number of cells per milliliter = Number of cells counted per square 

millimeter u dilution u 10,000 

2.7. 2 -¨¨C
T Method for analyzing Real-time PCR results 

Same procedure was used as described in Chapter three. 

2.8. Microarray Analysis 

           Samples from wild type and PAC1-R-Hop1 overexpressed LET2 cells 

treated with PACAP or medium alone are analyzed following the procedure 

stated in Chapter three.  

2.9. Statistical Analysis 

All the luciferase assays and real-time PCR data were performed with at 

least double samples and repeated at least three times. Values were expressed 

as mean ± SEM. Statistical analysis was performed using ANOVA ant post 

Tukey’s test if necessary. P<0.05 was considered statistically significant. 
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3.    Results 

3.1. Effect of Gonadal Hormones on PACAP expression 

PACAP regulates gonadotropins synthesis and secretion and influence 

gonadal hormones through modulating gonadal responses to gonadotropins. To 

examine whether there are feedback mechanisms from gonadal hormones, we 

treated DT3 cells with increasing dose of hormones and analyzed PACAP mRNA 

expression (data not show) and promoter activity (Fig. 15). No changes in 

PACAP promoter activity were observed following various concentrations of 

testosterone, estradiol, or progesterone exposure. These data suggest that 

gonadal hormones within the circulatory system do not influence PACAP 

expression in gonadotrophs.  

3.2. Self-stimulation of PACAP 

3.2.1. Effects of PACAP on mouse PACAP promoter activity in gonadotroph cell 

lines 

The in vivo results of the effects of PACAP and PACAP antagonist on 

pituitary PACAP expression suggest that PACAP can self-regulate its own 

expression. To examine how PACAP affects activation of the PACAP promoter in 

gonadotrophs, we utilized a luciferase-reporter construct containing the mouse 

PACAP promoter (-1218 - +36). Figure 16 shows that the PACAP promoter is 

activated by PACAP in both DT3 and LET2 cells but is more sensitive to 

stimulation by PACAP in LET2 cells than in DT3 cells (Fig. 16A and B). 

3.2.2. Effects of PACAP on mouse PACAP promoter activity with PAC1-R 

receptors overexpressed in gonadotroph cell lines 
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The PAC1-R specific receptor has several splice subtypes (Spengler et al., 

1993). Figure 17A confirms that the level of expression of Hop1 exceeds PAC1-R 

short in DT3 cells (Rawlings et al., 1995), while both subtypes are expressed at 

similar low levels in LET2 cells.  We overexpressed the PAC1-R-Short or Hop1 in 

DT3 and LET2 cells (Fig. 17A). When these cell lines were also transfected with 

the PACpro-luc reporter construct, 10nM PACAP significantly increased PACAP 

stimulated promoter activation more strongly in PAC1-R-Short and PAC1-R-

Hop1 cells than in wild type (WT) DT3 or LET2 cells. Compared to WT LET2 cells, 

PAC1-R Short overexpression induced a 3-fold increase in PACAP promoter 

activity, while PAC1-R-Hop1 overexpression resulted in a 4-fold increase in 

PACAP activation of the PACAP promoter compared to stimulation in WT cells 

(Fig. 17C). Based on the level of expression following transfection (Fig, 17A), the 

Hop1 form appears to be more effective than the short form in increasing PACAP 

stimulated PACAP promoter activity in LET2 cells. In DT3 cells, on the other hand, 

only PAC1-R-Short overexpression significantly increased PACAP stimulation of 

the PACAP promoter. Thus the PAC1-R-Hop1 is more effective in transducing 

the PACAP signal in mature LET2 than in immature DT3 cells (Fig. 17B). 

3.2.3. Evaluation of second messenger cascades involved in stimulation of the 

PACAP promoter 

PACAP has been demonstrated to increase cAMP production, PKC 

activity and Ca2+ mobilization (Miyata et al., 1989; Niewiadomski et al., 2002; 

Rawlings et al., 1993; Taupenot et al., 1999). However, little is known about the 

signaling pathways by which PACAP stimulates the PACAP promoter. To 
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determine the important pathways that regulate PACAP promoter activity, we 

used the pharmacological inhibitors BIM (PKC inhibitor), H-89 (PKA inhibitor) and 

PD98059 (MAPK inhibitor) in cultures of DT3 and LET2 cells transfected with the 

mPACpro-luc. Basal promoter activity in DT3 cells was decreased when the PKA 

(50%) or MAPK (30%) pathways (Fig. 18A) were inhibited but not when PKC 

signaling was blocked with BIM at doses previously shown to inhibit forskolin-

stimulated follistatin promoter activity (Winters et al., 2007).  In contrast, basal 

promoter activity was reduced by H89 but was unaffected by PKC or MAPK 

inhibitors in LET2 cells (Fig. 18B). In DT3 cells stimulated with PACAP, H-89 and 

PD98059 markedly decreased PACAP promoter activity while BIM was less 

effective (Fig. 18C). These results demonstrate that the PKC, PKA and MAPK 

pathways are all involved in PACAP induced promoter activity and suggest that 

the PKA and MAPK pathways are more critical mediators of PACAP promoter 

activity in DT3 cells. 

3.2.4. Regional analysis of basal and stimulated mouse PACAP promoter activity 

in DT3 and LET2 cells 

By sequence homology and previous research, we identified a series of 

putative binding sites for transcription factors on the PACAP promoter that share 

at least 80% homology to their consensus sequences and are present in pituitary 

(Fig. 19) (Ohkubo et al., 1992; White et al., 2000). Based on these findings, we 

constructed five mouse PACAP promoter reporter constructs, each with a 

sequential truncation of approximately 200 bp, and treated DT3 and LET2 cells 

for 6 hours with 10nM PACAP or control media. 
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Fig. 19A and B showed the basal activity changes after sequential cutting. 

We found two regions that may mediate an inhibitory signal to the PACAP 

promoter. One element is located between position -700 and -541 and is 

effective both in DT3 and LET2 cells. The second region, between -1218 and -

1018, appears to possess inhibitory binding sites but only in DT3 cells. In figure 

19C and D, in which cells were treated with PACAP, a second element (-1218 to 

-1018) was essential for maximum PACAP induced activity in DT3 but not in 

LET2 cells.  The promoter region from -541 to -200 contains elements that 

mediate the effects of PACAP because deletion of this region resulted in a 

pronounced loss of promoter activation in both cell lines (Fig. 19C and D). 

However, the element (-700 to -541) does not influence PACAP induced 

promoter activity.  

3.2.5. PACAP promoter activity required CRE site 

PKA and MAPK signaling mediate PACAP expression in gonadotrophs, 

and serial deletions of the PACAP promoter identified the -541 to -200 region to 

be critical for promoter activity.  This region of the mouse PACAP promoter 

contains regions with similarity to the consensus CRE element, a well-described 

mediator of PKA signaling. Furthermore, we have evidence that PACAP induces 

CRE activities utilizing a luciferase reporter construct with a CRE element in both 

cell lines. Therefore, DT3 and LET2 cells were transfected with the mPACpro-luc 

construct and with increasing concentrations of an expression plasmid encoding 

a dominant negative inhibitor of CREB (A-CREB) and a filler plasmid. A-CREB 
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decreased both basal (Fig. 20A) and PACAP-induced (Fig. 20C) promoter 

activity dose-dependently to a similar extent in DT3 and LET2 cells.  

We also designed a CRE site mutant (around -200) mPACpro-luc 

construct and transfected it into both DT3 and LET2 cells. In DT3 cells, CRE site 

mutation almost totally blocked PACAP induced promoter activity compared to 

WT construct, whereas in LET2 cells PACAP induced a little activity with mutant 

construct but not statistic significant (Fig. 21A and B). Furthermore, 

overexpression of the PAC1-R-Short or Hop1 forms in LET2 cells could not totally 

abrogate this inhibition but caused a significant increase compared to medium 

alone (Fig. 21C). 

3.2.6. Gene-array analysis LET2 cells overexpressed PAC1-R and treated with 

10nm PACAP 

To evaluate novel genes that could be either up- or down-regulated by 

PACAP signaling, we performed gene chip microarray analysis comparing 

untreated or 10 nM PACAP treated LET2 cells and PACAP treated LET2 cells 

with Hop1 overexpression.  As depicted in Table 4, six hour PACAP38 treatment 

of LET2 cells transfected with control vector resulted in significant (p<0.01, 

change > 20%) alterations in 223 genes (106 increased, 117 decreased).  

PACAP38 treatment of PAC1-R-Hop1 transfected LET2 cells resulted in 

significant alterations of 393 genes (171 increased, 222 decreased), of which, 

113 (44 increased, 69 decreased) were common to PACAP treated control cells. 

Ingenuity Systems Pathway Analysis revealed significant changes in gene 

expression of putative molecules related to specific canonical pathways (Table 4).  
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PACAP treatment of control and PAC1-R-Hop1 transfected LET2 cells resulted in 

significant changes in molecules in pathways known to regulate gonadotroph 

function such as, increases in the PKA (PRKACB, CREM) and PI3K/AKT (cRAF, 

Bcl-XL, p21cip1, eNOS) signaling pathways while decreasing molecules in the 

ERK/MAPK (Myc, PIK3R1, TLN2) and BMP (BMPR2, Runx2) pathways. 

Overexpression of the PAC1-R-Hop1 receptor leads to additional changes in 

gonadotroph regulatory pathways including significant increases in molecules in 

the JAK/STAT (Bcl-XL, p21cip1, RAF1, CDKN1A), TGF-E (INHD, RAF1, HNF) 

and Interleukin (BAX1, RAF1, GNB3, CDH1, CXCL 10/11, I-TAC) signaling 

pathways and significant decreases in molecules in the GnRH (EGR1, GnRHr), 

insulin and IGF-1 (FOX01, SOCS2), EGF (NRAS, PIK3R1, MAP3K), Wnt/E-

catenin (E-catenin, ACVR1, ACVR2A, Frizzled family receptor), estrogen and 

androgen (HSP90, SRY) signaling pathways. Many other molecules related to 

signaling pathways not previously associated with gonadotroph functioning were 

also significantly altered.  

3.3. Dopamine-2 Receptor activation Decreases PACAP expression in rat 

pituitary gland 

Last section tells us that PACAP stimulated itself through PKA pathways 

as one of the positive regulators in addition to GnRH (Grafer et al., 2009a). We 

proposed one potential negative regulator (dopamine) that might interrupt 

PACAP expression in gonadotrophs. The dopamine-2 receptor, Drd2, has been 

demonstrated to be expressed in DT3 and LET2 gonadotroph cell lines (Kanasaki 

et al., 2002; Mutiara et al., 2006). Drd2 couples to GDI to inhibit adenyl cyclase 
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activity, and reduce cAMP levels (Missale et al., 1998) whereas PACAP 

increases the level of cAMP in gonadotroph cells. Furthermore, Dopamine 

production increases near birth in the rat hypothalamus, the main control center 

of pituitary (Hooghe-Peters et al., 1988). It is possible that dopamine activates 

gonadotroph Drd2 to suppress cAMP production, which can induce a decreased 

PACAP expression. 

To prove the possibility that Drd2 activity is involved in regulating pituitary 

PACAP expression, pituitary cell cultures were prepared from E19 rats, and were 

treated for 24 hours with the dopamine receptor agonists (Bromocriptine and 

BIM53097) or with PACAP antagonist 6-38. Both PACAP 6-38 and dopamine 

receptor agonists lowered PACAP expression (Fig. 22).  

4.    Discussion and Future Investigations 

The mammalian gonadotropins, Luteinizing hormone (LH) and Follicle-

stimulating hormone (FSH) play a critical role in the regulation of reproductive 

development and function. In females, an acute rise in circulating LH triggers 

ovulation and development of the corpus luteum while FSH stimulates the 

maturation of follicles in the ovary. In males, LH stimulates Leydig cell production 

of testosterone, and FSH stimulates primary spermatocytes to undergo the first 

division of meiosis to form secondary spermatocytes (Dorrington and Armstrong, 

1979; Leung and Armstrong, 1980; Louvet et al., 1975). Interestingly, LH and 

FSH expression are not always parallel during important physiologic functions. 

Compared to LH, FSH is more prominent in mature mammals whereas during 

fetal life, a lower level of expression of FSHE may prevent the early maturation of 
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the reproductive system. Since PACAP was discovered as a hypothalamic-

releasing factor, and is known to be expressed in the gonadotrophs of the 

anterior pituitary, subsequent research has revealed its potential functions in 

reproduction. PACAP contributes to the regulation of gonadotrope function 

through several mechanisms: directly on gonadotropes, either alone or by an 

interaction with GnRH signaling, indirectly, by modifying GnRH release or GnRH 

receptor expression, and through paracrine/autocrine actions (Counis et al., 2007; 

Culler and Paschall, 1991; McArdle et al., 1994; Ortmann and Diedrich, 1999; 

Tsujii and Winters, 1995a). For example, there is evidence that PACAP 

suppresses FSH expression before birth through stimulation of follistatin. Most 

importantly, in Chapter three, we proved that PACAP suppresses FSH 

expression during male rat sexual development through stimulation of follistatin. 

Follistatin binds with Activin to prevent stimulation of FSHE transcription (Fujii et 

al., 2002; Moore et al., 2009b). Therefore, the PACAP expression pattern is 

important for reproductive development, and it is important to evaluate the factors 

involved in the regulation of PACAP expression. Compared to the number of 

studies of PACAP functions, however, only a few papers have described 

regulation of PACAP expression. PACAP has been shown to up-regulate its own 

level of expression in several cell lines, and injection of PACAP (10Pg bolus) 

increased PACAP mRNA expression in the pituitary of adult rats (Radleff-

Schlimme A, 1998). GnRH was found to increase PACAP expression in LET2 

cells through PKA and PKC pathways (Grafer et al., 2009b). Within the HPG axis, 

gonadal hormones have some feedback to the hypothalamus GnRH expression. 
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However, only estrogens and progesterone are found to stimulate PACAP in the 

rat hypothalamus (Apostolakis et al., 2004; Ha et al., 2000). 

  Our experiments revealed that gonad hormones could not stimulate or 

suppress PACAP promoter activity in gonadotroph cell lines (Fig. 15). Therefore, 

there is no direct feedback connection between gonadal hormones and 

gonadotroph PACAP expression. But we cannot ignore the possibility that 

gonadal hormones regulate PACAP indirectly through other factors, like GnRH.  

 PACAP increase its own level of expression in several cell lines and in 

the rat pituitary. The results from Chapter three tell us that PACAP treatment 

increases its pituitary PACAP mRNA levels in immature male rats whereas 

antagonist decreases the level. PACAP antagonist decreases PACAP mRNA 

expression in E19 primary pituitary cell cultures as well. To gain more information 

about PACAP self-stimulatory function, we designed experiments to study the 

mouse PACAP promoter. The -1280 to +36 region of the mouse PACAP 

promoter was cloned into a luciferase-reporter plasmid. The promoter was active 

in both gonadotroph cell lines, and was stimulated 4-fold by PACAP even though 

the level of expression of PAC1-R is much lower in LET2 cells.  Furthermore, 

dose response curves revealed that LET2 cells are more sensitive to PACAP 

treatment than DT3 cells. These differences may be due to the much higher level 

of PACAP expression in DT3 cells. Overexpression of the PAC1-R-Short or Hop1 

forms substantially increased PACAP stimulated PACAP promoter activity in 

LET2 cells with a much smaller increase in DT3 cells.  The Hop1 form was also 

more effective than the Short form in LET2 cells even though the level of 



 

84 

overexpression of the two receptors was similar. The various cassettes of PAC1-

R are couple to different second messengers, and while both isoforms stimulate 

cAMP production Hop1 also stimulates PLD (McCulloch et al., 2000). The much 

lower level of expression of PAC1-R in LET2 than DT3 cells may also partly 

explain this finding. In DT3 cells, there already exists a high level of endogenous 

PACAP expression, which may mask the effect of exogenous PACAP treatment.  

PAC1-R is known to activate several signaling pathways including the 

PKA, PKC and MAPK-pathways (Dickson and Finlayson, 2009; Holighaus et al., 

2011; May et al., 2010). BIM, H-89 and PD98059 were used to disrupt the PKC 

PKA, and MAPK pathways, respectively, in un-stimulated or PACAP-stimulated 

DT3 and LET2 cells. The results imply that the PKA pathway plays a key role in 

PACAP promoter activity both in DT3 and LET2 cells. Blocking the MAPK 

pathway also markedly inhibited basal and PACAP stimulated PACAP 

expression in DT3 cells providing the first evidence for MAPK regulation of 

PACAP in gonadotrophs. On the other hand, MAPK signaling plays a lesser role 

in PACAP expression in the more mature LET2 cell line.  

In a regional analysis of the mouse PACAP promoter, we found three 

potential regions, which could play a role in pituitary PACAP expression. The 

region between -1280 and -1080 appears essential for maximal basal and 

PACAP stimulated activity in DT3 whereas -541 to -200 is important for basal and 

stimulated activity in both cell lines. In addition, we found that the putative CREB, 

Jun and AP1 sites, which are important in PKA and MAPK pathways, are 

essential for maximal PACAP expression. The region from -700 to -541 is more 
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critical for promoter activity in LET2 cells. It may mediate an inhibiting signal for 

PACAP regulation in both cell lines. In this region, there is an important transcript 

factor binding site for pituitary function, SMAD3. SMAD3 has been demonstrated 

to be essential for Activin and GnRH active FSHE expression (Coss et al., 2007; 

Coss et al., 2010). Through Chapter three, PACAP might inhibit FSHE through 

follistatin binding with activin. During pituitary development, it is possible that 

some factors connected with SMAD3 pathway could suppress PACAP 

expression after birth. Similar interactions could exist for other factors in this 

region such as STAT, GATA3. The differences between LET2 and DT3 cells may 

be caused by different maturity levels and imply that signaling pathways are 

changing during development.  

Through the PACAP promoter regional analysis, -541 to -200 is critical for 

promoter activities in both cell lines. Sequence analysis revealed a putative CRE 

binding site located at around -210. Its binding protein CREB family is believed to 

depend on PKA pathway (Meinkoth JL, 1993). Co-transfecting the luciferase-

report construct with CREB dominant-negative construct to DT3 and LET2 cells 

showed CRE pathways were definitely involved in PACAP basal and stimulated 

promoter activity. The same result was received when we used CRE-site mutant 

mPACpro-luc construct. Furthermore, overexpression of PAC1-R receptors did 

not have any influence on these results. So stimulation of PACAP promoter 

needs participation of CRE- family. And the results proved that PKA signaling 

induced transcript factor CRE-family binding to PACAP promoter may be the 

most important regulation pathway for PACAP. 
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Global analysis of alterations in gene expression in LET2 cells in response 

to PACAP stimulation confirmed known changes in gene expression and 

revealed changes in molecules previously not associated with PACAP signaling. 

PACAP receptors are known to stimulate the PKA and PI3K pathways, and 

molecules associated with these pathways were increased significantly in 

response to 6h PACAP exposure. Surprisingly, Ingenuity Pathway Analysis 

predicted a net decrease in ERK/MAPK signaling (Table 4) in response to 

PACAP; however, MEK1 and MEK2 were both increased by PACAP perhaps 

through an alternate intracellular signaling pathway. Confirmation of the 

importance of MAPK signaling was demonstrated by a significant decrease in 

PACAP promoter activity in the presence of a MEK1 inhibitor (Fig. 18). The 

predicted decrease in BMP signaling was strongly influenced by the significant 

decrease in BMP receptor type II expression. BMP has been demonstrated to 

selectively increase synthesis and secretion of FSH while PACAP has the 

opposite effect (Huang et al., 2001; Otsuka and Shimasaki, 2002; Takeda et al., 

2007; Takeda et al., 2003) so that the decreases in BMP receptor expression 

and signaling may contribute to the selective down regulation of FSH in response 

to PACAP. Of particular interest were the changes observed in gene expression 

following overexpression of the Hop1 isoform of the PACR-1 receptor. Increased 

PACAP signaling through the Hop1 receptor lead to increases in molecules 

related to interleukin signaling including molecules in the JAK/STAT signaling 

cascade. The interleukins have been shown to inhibit gonadotropin release, and 

stimulation of various interleukin signaling pathways may have a role in the 
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suppressive effect of PACAP on FSH production (Bilezikjian et al., 1998; Feng et 

al., 1991; Karanth and McCann, 1991; Murata and Ying, 1991; Yamaguchi et al., 

1990). The predicted decrease in TGFE signaling was strongly influenced by 

observed decreased expression of the activin receptors I and IIa. TGFE is a 

potent stimulator of FSH secretion (Ying et al., 1986) and stimulates FSHE 

mRNA expression (Suszko and Woodruff, 2006). This observation suggests yet 

another mechanism by which PACAP can inhibit the expression of FSH.  The 

gene array results also suggest that PACAP may have a role in mediating the 

effects of EGF, IGF-1, insulin, Wnt/E-catenin and through each of these pathways 

was predicted to be reduced following PACAP exposure of cells with PAC1-R-

Hop1 overexpression (Gardner et al., 2010; Gutierrez et al., 2007; Mouihate et al., 

1996; Navratil et al., 2009; Weiss et al., 2003; Weiss et al., 2006; Xia et al., 2001). 

Of particular interest were the effects of PACAP exposure on GnRH signaling. 

Six hour PACAP exposure resulted in significant decreases in GnRH receptor 

expression and signaling, and in Egr1 expression in LET2 cells with PAC1-R-

Hop1 overexpression.  A decrease in these molecules was also observed in 

transgenic mice that overexpress PACAP in the pituitary (Moore et al., 2012). 

Pituitary PACAP transgenic mice have lifelong suppression of gonadotropin 

secretion due in part to increased follistatin and decreased Egr1 and GnRH 

receptor expression. The global gene expression analysis reveals that PACAP 

may interact with multiple extracellular and intracellular signaling pathways to 

regulate gonadotroph function. 
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Dopamine activates five types of G-protein coupled receptors, D1-D5, and 

their variants. Drd2 is expressed at a high level in pituitary, and we found it in 

DT3 and LET2 cell lines. Furthermore, single cell analysis demonstrated that 

Drd2 mRNA and PACAP mRNA co-localized in some cells. Two Drd2 agonists, 

Bromocriptine and BIM53097, suppressed PACAP mRNA expression in E19 rat 

pituitary cell cultures respectively (Fig. 22).  All these data implied the 

suppressive effect on PACAP might be through the activation of Drd2. In addition, 

dopamine levels in the CNS rise dramatically during the perinatal period, while 

PACAP mRNA begins to decrease (Hooghe-Peters et al., 1988). In future 

experiments, we will utilize in vitro systems to examine the cAMP levels changes 

after treatment of Drd2 agonists and validate that activation of Drd2 reduce its 

levels. Furthermore, pharmacological inhibitors of different signaling pathways 

will be utilized to reveal which pathways are involved in this suppression function.   
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Figure 15. Effect of Gonadal hormones on PACAP promoter activity. 

The mPACpro-luc construct was transfected into DT3 cells, then treated cell with 

increasing dose of gonadal hormones for 24 hours.  Data are expressed as fold 

difference normalized to medium alone. * Significantly different than media alone 

(P<0.05) by ANOVA. Results were from three experiments with triplicate wells. 
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Figure 16. PACAP induced promoter activity in DT3 and LET2 cells. 

DT3 (A) and LET2 (B) cells were transfected with the mPACpro-luc construct and 

treated for six hours with increasing concentrations (0-100nM) of PACAP. Data 

are expressed as fold difference normalized to media alone. * Significantly 

different than media alone (P<0.05) by ANOVA. Results were from three 

experiments with triplicate wells. 
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Figure 17. Effect of overexpression PAC1-Rs on PACAP stimulated activity of 

promoter. PAC1-R mRNA isoform expression in wild type DT3 and LET2 cells 

and cells transfected with PACR-1 short or PACR-1 hop expression vector (A). 

DT3 cells (B) and LET2 (C) were transfected with the mPACpro-luc (2.5Pg) and 

PAC1-R express vector (50ng) and treated for six hours with 10nM PACAP. Data 

are expressed as fold difference normalized to media alone. * Significantly 

different than media alone (P<0.05) by ANOVA. � Significantly different than 

Wild type cells with 10nM PACAP (P<0.05) by Tukey’s Test. Results were from 

three experiments with triplicate wells. 
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Figure 18. Pathway analysis on PACAP promoter activity.                                

DT3 (A, C) and LET2 (B, D) cells were transfected with the mPACpro-luc 

construct and treated for six hours with media alone (A,B) or 10nM PACAP (C,D) 

with or without the indicated concentrations of the PKC inhibitor, 

bisndolylmaleimide (BIM), the PKA inhibitor, H89, or the MEK1 inhibitor, 

PD98059. Media alone groups used Renilla luciferase test. Data are expressed 

as fold difference or stimulation normalized to media alone. * Significantly 

different than media alone (p<0.05) by ANOVA. Results were from three 

experiments with triplicate wells. 
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Figure 19. Region analysis of PACAP promoter.                                                

Top of the figure is schematic diagram depicting the regions of the mouse 

PACAP promoter utilized in this investigation. DT3 (A, C) and LET2 (B, D) cells 

were transfected with DNA constructs containing various lengths of the mouse 

PACAP promoter reporter construct (mPACpro-luc) and treated for six hours with 

media alone (A, B) or media containing 10nM PACAP (C, D). Media alone 

groups used Renilla luciferase test. Data are expressed as fold difference 

normalized to media alone treatment of mPACpro-luc transfected cells. * 

Significantly different than basal -1218 promoter activity. Results are from three 

experiments with triplicate wells.  
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Figure 20. Effect of CREB inhibitor on PACAP promoter activity.                       

DT3 (A, C) and LET2 (B, D) cells were transfected with the mPACpro-luc 

construct and with the indicated concentrations of expression plasmid coding for 

the dominant negative inhibitor of CREB (A-CREB), and a filler plasmid (CMV-

500) to control for total transfected DNA amount. Transfected cells were treated 

for six hours with media alone (A, B) or 10nM PACAP (C, D) and the cell lysates 

were collected for luciferase activity determination. Data are expressed as fold 

difference or stimulation normalized to media alone. * Significantly different than 

media exposure alone (p<0.05) by ANOVA. Results were from three experiments 

with triplicate wells.   
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Figure 21. Effect of CRE-site mutation on PACAP promoter activity.                

DT3 (A) and LET2 (B, C) cells were transfected with the CRE-mutant mPACpro-

luc (A, B) construct and with the PAC1-R expression plasmid (C). Transfected 

cells were treated for six hours with media alone and 10nM PACAP and the cell 

lysates were collected for luciferase activity determination. Data are expressed 

as fold difference to media alone. * Significantly different than media exposure 

alone (P<0.05) by Tukey’s test. Results were from three experiments with 

triplicate wells.  
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Table 4. PACAP induced signaling pathways in gonadotroph cells.         

Canonical pathways with molecules significantly affected by alterations in gene 

expression elicited by PACAP signaling. Ë Significantly greater in PAC1-R-Hop1 

transfected cells.  

 

 



 

104 

 

 

 

 

 

 

 

 

 

 



 

105 

Figure 22. Effect of PACAP 6-38, Drd2 agonists on PACAP expression in E19 

pituitary cell cultures. Cells were cultured for 24 hours before treated with 100nM 

PACAP 6-38, 1PM and 5PM Bromocriptine, or 0.1PM and 1PM BIM53097, or 

control medium for 24 hours. PACAP mRNA level was tested by real-time PCR 

and DQDO\]HG�XWLOL]LQJ�WKH�ǻǻ&T method of normalization to control value. Values 

are the mean ± SEM (n=3) experiments. * Significant different (P<0.05) than 

control. 
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CHAPTER FIVE 

 

SUMMARY AND SIGNIFICANCE 

 

It is already more than 20 years since PACAP was discovered in ovine 

hypothalamus. Previous studies have demonstrated diverse functions of PACAP 

in many different biological systems and animal models from the molecular level 

to physiological characterization. This dissertation investigates the developing 

rodent pituitary, with a focus on the role of PACAP in the regulation of 

gonadotrophs in the anterior pituitary. PACAP as well as its receptors are 

demonstrated to play a role in the function of pituitary gonadotrophs. 

PACAP mRNA levels in the rat pituitary show a dramatic decline after birth, 

and a low level of expression in adults. Single cell PCR of pituitary cells reveals 

that PACAP is mostly present in gonadotroph cells from both E19 and PN1 rats. 

Therefore, the perinatal decrease of PACAP expression in the pituitary is mainly 

contributed by changes in gonadotroph cells. In addition, we observed significant 

differences in PACAP mRNA levels between two gonadotroph cell lines, DT3 and 

LET2. We utilized DT3 and LET2 gonadotroph cells, representing immature and 

mature gonadotroph stages for in vitro experiments. We evaluated PAC1-R 

mRNA expression levels from the E14 to PN10 rat pituitaries. Furthermore, we 
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demonstrate that PAC1-R-Hop and PAC1-R-Short form are predominate during 

rat pituitary development as well as in the DT3 and LET2 cell lines, which 

suggests that actions of PACAP in pituitary gondatrophs are mediated by the two 

receptor subtypes.  

During early sexual development of male rats, we implanted osmotic 

micro-pumps containing PACAP38 or the PACAP antagonist, PACAP 6-38, into 

the peritoneal cavities. After 5 or 7 days treatment, PACAP 6-38 causes an 

increase of FSH levels in both serum and pituitary whereas PACAP 1-38 

decrease the FSH levels. However, neither treatments change the LH levels. In 

addition, Fst-288 mRNA levels in pituitary are suppressed by PACAP 6-38 and 

stimulated by PACAP 1-38. In summary, the results provide the first in vivo 

evidences of PACAP regulation of FSH, likely through its regulation of local 

follistatin levels. Furthermore, we demonstrate that PACAP induces high 

follistatin promoter activity through PKA pathways and mediated by PAC1-Rs in 

the gonadotroph cells utilizing the follistatin promoter reporter vectors. The 

results demonstrate the hypothesis that high level PACAP in fetus suppresses 

FSH expression through follistatin-activin mechanism. Therefore, the increase of 

FSH after birth is caused by the decreased PACAP.    

Besides the studies on PACAP actions in pituitary gonadotroph, the 

dissertation gives more information about regulation of PACAP expression. 

PACAP expression in gonadotrophs is not regulated by feedback mechanism 

from gonadal hormones. However, we observed a decrease of PACAP mRNA 

after treatment of PACAP 6-38 both in vitro and in vivo, which suggests PACAP 
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may be stimulated by itself. Subsequent studies reveal that PACAP stimulates its 

promoter in the DT3 and LET2 cell lines through PKA and MAPK pathway, and 

the existence of a proximal CRE binding site is required. In addition to positive 

regulation, a potential inhibitory factor was discovered and evaluated in this 

dissertation. Activation of Dopamine-2 receptor suppresses PACAP mRNA 

expression in cultured E19 rat pituitary cells. Therefore, the stimulation of PACAP 

on itself may contribute to the high level PACAP in the fetus while Drd2 activity 

may mediate the decline of pituitary PACAP at birth.  

The importance of differential regulation of gonadotropins by PACAP 

during sexual development in humans is not yet known. However, as in rodents, 

human preterm infants have less FSH than LH (Massa et al., 1992), and PACAP 

increases follistatin mRNA levels in primate FS cell-enriched pituitary cultures 

(Kawakami et al., 2002). Thus, PACAP might also differentially regulate 

gonadotropins during human sexual development. Furthermore, many symptoms 

of the reproductive diseases relate to abnormal levels of gonadotropins in the 

human. For example, polycystic ovary syndrome (PCOS), which is characterized 

by menstrual dysfunction and hyperandrogenism in the female, shows low to 

normal FSH levels in the face of increased LH (Hall et al., 1998). The drugs 

utilized for treatment usually will regulate both FSH and LH levels through 

stimulating GnRH. Our investigations in this dissertation suggest that it is 

possible to specifically regulate FSH levels through PACAP-follistatin-activin 

mechanism. Therefore, PACAP and PAC1-R might be the targets of drug 

designs for the gonadotroph disorders.  
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In conclusion, PACAP is a novel regulatory factor for pituitary 

gonadotrophs. PACAP is involved in the differential regulation of the 

gonadotropins that occur during the perinatal and infantile periods in the male rat. 

In the fetus, high level of PACAP, increases follistatin expression thereby 

suppressing FSH through blocking the stimulatory function of activin. The high 

levels of fetal pituitary PACAP could possibly be induced by self-stimulation 

through high levels of pituitary or hypothalamic PACAP expression. After birth, 

pituitary PACAP levels decrease significantly causing a decline of local follistatin 

levels and allows for activin stimulation of FSH (Fig. 23). Our data suggests that 

the perinatal decline in pituitary PACAP expression may be the result of a 

significant increase in Drd2 activation through increased dopamine exposure or 

responsiveness. Further research is needed to determine the importance of 

PACAP in reproductive system development of the human.  
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Figure 23. Schematic diagram of the dissertation summary.  
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