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ABSTRACT 

DIMENSIONAL RELATIONSHIPS BETWEEN THE SPHENOID SINUS, 
MAXILLARY SINUSES AND OTHER CRANIOMAXlLLOFAClAL 

STRUCTURES USING CONE-BEAM COMPUTED TOMOGRAPHY ANALYSIS 

Richard Michael Halpern 

November 24, 2010 

Introduction: The study investigated dimensional relationships between the sphenoid 

and maxillary sinuses and other selected craruomaxillofacial structures by using 

traditional cephalometric and volumetric procedures based on cone beam computed 

tomographic (CBCT) data. 

Methods and Materials: A retrospective three-dimensional (volumetric) and two-

dimensional (conventional cephalometric) analyses were conducted on CBCT datasets of 

27 subjects who met the inclusional criteria from a sampled database of2,290 individuals. 

Subjects were divided into 3 groups: (I) pre- fused spheno-occipital synchondrosi < 18 

years (n=8), (2) fused spheno-occipital synchondrosis <18 years (n=9), and (3) 2 18 years 

with fused spheno-occipital synchondosis (n= 10). 

Results: Differences between studied groups were found for linear and angular 

measurement. Specific correlations were found between certain topographic and internal 

measW'ements, and some sinus dimensions and other selected craniomaxillofacial 

structures. 
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Conclusion: Dimensional correlations exist between the sphenoid and maxillary sinuses 

and development of other se lected craniomaxillofacial structures. 

Keywords: Cephalometry; Computed tomography, cone-beam, x-ray; Development, 

maxillofacial; Malocclusion, dental ; Sinus, maxillary; Sinus, paranasal; Sinus, sphenoid; 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

The field of Orthodontics has relied on three dimensional (3~) structures being 

represented by two dimensional (20) projections for over half a century (Farman and 

Scarfe, 2006). In 1972 Godfrey Hounsfield introduced the Computed Tomography (CT) 

scanner based on his findings with Allan MacLeod Cormack (Hounsfield, 1980). CT 

imaging uses ionizing radiation to produce representations of certain biologic structures to 

be viewed in 3~. Initially CT scanners were large, costly and emitted high radiation 

doses. Adhering to the ALARA principle, ('as low as reasonably achievable" ) and 

analysing the cost! benefit ratio, CT imaging was rarely used in dentistry (Farman and 

Scarfe, 2006). 

In the late 1990's Cone-Beam Computed Tomography (CBCT) machines began to 

become commercially available with the first introduced in the United States market in 

2001. CBCT scanners are much smaller, cheaper and emit less radiation compared to 

comparable CT units (Schulze, et aI. , 2004). CBCT allows for better spatial appreciation 

than 2D radiography. Clinicians had previously relied on interpreting the relative 

positions of 3D structures from multiple 2D images. For these reasons, CBCT machines 

began to grow in popularity and are becoming more common place in dentistry. 

Consequently, software companies have begun to develop user-friendly applications to 

serve the imaging needs of the general dentist and dental specialist alike. 
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Today, CBCT is being used in Orthodontics to assist in diagnosis, treatment 

planning and predicting growth and assessing treatment therapy. Orthodontists have used 

CBCT for assessing: tooth morphology, position of impacted teeth, and spatial 

relationship of teeth to adjacent structures. CBCT images sometimes can allow for more 

precise discernment of supernumerary teeth, pathoses, temporomandibular joints and 

airway volumes than is possible with 2D images. Applications have been created for 

orthodontists to use virtual dento-alveolar models, super-impose hard and soft tissues 

before and after various treatments such as orthognathic surgery as well as to view thin 

slices or half the face without overlap. DrCOM (Digital Imaging and Communications in 

Medicine) compatible software allows the practitioner to assess facial symmetry, bone 

defects in cleft-palate patients, and sites for temporary orthodontic mini-implants. 3D 

imaging can also facilitate better patient-practitioner and practitioner-practitioner 

communication (Hechler, 2008; Chenin, et ai. , 2009; Mah, et al., 2010). 

Orthodontists treat patients in all three dimensions while continually trying to find 

final stable dental positions that will not relapse (Hahn, 1944). A 3D radiologic image 

allows the practitioner an enhanced appreciation of facial form and in some select 

instances may help reduce the amount of relapse that occurs. 3D orthodontic analyses are 

being developed and are gaining popularity in use for diagnosis, treatment planning and 

predicting prognoses. 

Unfortunately, CBCT has become such a popular treatment modality in certain 

regions and the West Coast of the United States that questions arise about practitioners 

balancing patient dose to ionizing radiation with diagnostic necessity and analysing the 

fmancial costlbenefit ratio (Scarfe, et aI. , 2006). The American Association of 
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Orthodontists (AAO) does not support CBCT as routine for orthodontic radiograpby. 

(American Association of Orthodontists, 

www.aaomembers.orgiResourceslPublications/ebulletin-05-06-1 O.cfm, 2010). A joint 

effort is in progress between the American Academy of Oral and Maxillofacial Radiology 

(AAOMR) and the American Association of Orthodontists (AAO) to establish guidelines 

for use of diagnostic imaging including CBCT in Orthodontics. The co-chairs of this 

activity are William C. Scarfe (AAOMR) and Carla Evans (AAO) (Farman, 2010) . In the 

future orthodontics will likely complete a 3D assessment for patients where CBCT 

imaging is indicated and will continue to use 2D assessments for patients where CBCT is 

not indicated. 

Respiratory patterns affect the way craniofacial growth occurs (McNamara, 1981; 

Harari, et al., 2010). A case presented by Basdra, ef aI. , (1998) presented a case report of 

abnormal bone growth in the maxillary sinus with unknown etiology. Examination 

revealed that the contralateral maxillary sinus had expanded to compensate, and the 

asymmetric maxilla, which was transversely wide, was matched by a non-pathologic 

unilateral mandibular asymmetry. Hence, the maxillary sinus pathosis during growth is 

believed to be the cause ofthis craniofacial morphologic abnormality in both jaws. 

Leclerc and Leclerc (2009) compared 23 non-syndromic patients with choanal 

atresia to controls found a significant decrease in zygomatic width, despite normal 

maxillary and sphenoid sinus widths in patients with this condition. This study was not 

able to measure volumes, and was limited by not being able to have a common orientation 

between patient images because only axial and coronal CT printed slices were available. 
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Recently, there has been attention in the literature about airway measurements as 

they pertain to sleep apnea and posterior skeletal crossbite (Haskell, et al., 2009; Pirelli, et 

at., 2010). Prior to the current study focus had not been placed on the effects of sinus 

dimensions on each other and on other craniomaxillofacial structures. It is suspected that 

this was due to CBCT not being common in Dentistry, difficulty in measuring these 

structures and the lack of technology. 

Orthodontists, pediatricians, otorhinolaryngologists, allergists and speech 

physiologists all have concerns about the effects of respiratory patterns on craniofacial 

growth (McNamara, 1981). Establishing nonnative values of paranasal sinuses improves 

the understanding of diseases such as chronic sinusitis, cystic fibrosis , eosinophilic 

granuloma, neurofibromatosis, fibrous dysplasia, and sickle cell anemia on sinus 

development (Kim, et al., 1997; Barghouth, et ai., 2002). 

Several authors have also stressed the importance of knowledge of parana sal sinus 

anatomy and anatomical variations for sinus operation. These nonnative values are 

important in preoperative staging of complex craniofacial malformations, bone 

dysplasias, craniomaxillofacial tumours by maxilla-facial surgeons and neurosurgeons 

and in surgical approaches of the pituitary gland through the sphenoid sinus and for 

functional endoscopy of the sinuses by otorhinolaryngologists. Precise anatomic 

knowledge is especially important to minimize complications in operating in growing 

children as sinus pneumatisation and facial growth could be compromised without it. 

Trauma, infection surgical intervention and irradiation have all been described as causes 

of sinus hypoplasia (Elwany, et ai., 1983; Wolf, et al. , .1993; Mair, et al., 1995; Kosko, et 

ai. , 1996; Spaeth, et ai. , 1997; Barghouth, et al. , 2002). 
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Attempts have been made to associate sinus dimension with malocclusions. With 

limited technologic capability, attempts like that ofOktay (1992) of trying to associate 

maxillary sinus area on panoramic radiographs with malocclusions were innovative. 

One early attempt to assess sinus volume involved using physical craniomaxillofacial 

measurements of skulls in three dimensions and multiplying these values to estimate 

vo lume size (Shea, 1977). Others have used a more complex ellipsoid formula to 

calculate volume from 2D dimensions measurements found by the researcher (Barghouth, 

et aI. , 2002). 

Calculating volumes have also been done by using the Cavalieri principle. This 

technique requires the researcher to overlay sequential CT scans with a sheet of positive 

symbols spread out evenly over the page. The number of positive symbols found 

overlaying the area in the sinus is added to the number of those in sequential s~ans 

(Emirzeolgu, et aI. , 2007). 

The most common technique of computing sinus volume, until recently, has been 

computer summation of areas measured from sequential CT slices. Uchida, et at., (1998) 

printed CT scans and digitised them by tracing the sinus borders prior to the computer 

summating these areas. Other authors have traced outlines in the proprietary software and 

relied on the computer program to summate the areas of each slices (Fernandes, 2007; 

Kim, et at. , 2007). 

The spectrum of reporting methodology includes failing to mention how reported 

volumes were calculated (Yonetsu, et at., 2000), reporting methodology for acquiring 

volumetric measurements but omitting to mention which software program was used 

(Kim, et at. , 2007) and not providing adequate detail on the technique used (Rae, et at., 
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2003). This makes it difficult to repeat previous techniques for future studies and to 

compare the reported volumes. 

Software now exists to defme borders and isolate segments of airway space for 

volumetric analysis. Parameters can be controlled by the user to adjust the limits of 

opacity required in order to incorporate each voxel, (smallest volumetric unit in the CT 

scan) into volumetric summation (Primer, et at., 2009). 

A recent study reported that the software program they used, while the CT dataset 

was being reconstructed, was simultaneously "automatically" calculating airway volumes 

(Park, et at.,20lO). 

Advances in CT software applications is making it seemingly easier to measure 

airway volumes with less user-dependant involvement for selecting borders, opacities or 

eliminating the need for complex summative formulas. As technology, "advances," it is 

important to examine the findings ofa recent study. EI and Palomo (2010) examined 30 

random subjects CBCT images with four different software programs, each with airway 

volume calculation capabilities. Their fmdings showed that repeat volumetric 

measurements, ofthe same airway, with the same software program, reported values 

which were consistent between measurements. However, values of the same airways, 

measured by different volumetric software, were statistically significantly different. 

Therefore, it is prudent to consider which software package was used when objective 

volumetric airway values are reported. For this reason, the current study will place its 

focus on dimensional relationships. 
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Throughout the past thirty years, there has been an absence of correlation between 

paranasal sinuses despite the ease with which we can now evaluate such structures 

(Brichard, et ai. , 1979; Emirzeoglu, et al., 2007; Park, et al. , 20 1 0). Studies have 

proposed that maxillary sinus dimensions may be responsible for anterior cranial base 

length, maxilla position and specific malocclusions, (Rothstein & Yoon-Tarlie, 2000) 

while others have found no conclusive correlation between maxillary sinus volume and 

malocclusions when considering both sexes together (Oktay, 1992). The present study, 

however, is the first study that will attempt to correlate the sizes of the sphenoid sinus, 

maxillary sinuses and other selected craniomaxillofacial structures with one another. 

The goal of this research is to seek statistical trends from the data and find 

relationship between metrics of the sinuses and other selected craniomaxillofacial 

structure. Correlations found may assist orthodontists, surgeons and other health care 

professionals in their increased understanding of biologically natural relationships 

between the dimensions of these structures relative to one another. Perhaps these fmdings 

will also be useful in clinical planning of medical or surgical interventions of the 

paranasal sinuses. The positive findings will ultimately yield better treatment planning by 

the practitioner and improved care for the patient. 
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CHAPTER II 

STA TEMENT OF OBJECTIVES AND HYPTOHESES 

Study Objectives 

The purpose of this of this study is to investigate relationships between the 

sphenoid and maxillary sinus dimensions and other selected craniomaxillofacial 

measurements with cone-beam computed tomography (CBCT) analysis. Tbe subject 

sample will be derived from a retrospective audit ofthe radiologic database of patients 

referred to oral and maxillofacial faculty practice at the University of Louisville Scbool of 

Dentistry. The determination oftbese relationships may increase our understanding the 

influence of the development of the sinuses on craniofacial dimensions and aid surgical 

treatment planning for orthognathic patients. 

The specific aims of the study were to: 

1. assess potential difference in craniomaxillofacial measurements between age 

groups for subjects in three developmental groups based on age and fusion of the 

spheno-occipital synchondrosis. 

2. describe potential relationships between external topographic measurements and 

internal measurements of the craniomaxillofacial complex. 
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3. describe potential relationships between volumetric and linear dimensions of the 

sphenoid and maxillary sinus and other selected craniomaxillofacial dimensions. 

4. describe potential relationships between vertical, antero-posterior and transverse 

craniomaxillofacial dimensions. 

5. assess potential differences between initial and repeat measurements for a sample 

of representative volumetric and linear dimensions. 

6. assess intra-observer reliability of repeat measurements as measured by the 

interclass correlation coefficient (lCC). 

Study Hypothesis 

Null Hypotheses (Ho) 

1. There is no statistically significant difference between craniomaxillofacial 

measurements for subjects in three developmental groups based on age and 

fusion of the spheno-occipital synchondrosis. 

2. There is no statistically significant relationship between external topographic 

measurements and internal measurements of the craniomaxillofacial complex. 

3. There is no statistically significant relationship between volumetric and linear 

dimensions of the sphenoid and maxillary sinus and other selected 

craniornaxillofacial dimensions. 

4. There is no statistically significant relationship between vertical, antero-posterior 

and transverse craniomaxillofacial dimensions. 
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5. There is a statistically significant difference between repeat and initial 

measurements for a sample of representative volumetric and linear dimensions. 

6. The measures of intra-observer reliability of repeat measurements, as measured 

by the ICC, do not differ from O. 

Alternate Hypotheses (HI) 

1. There is a statistically significant difference between craniomaxillofacial 

measurements for subjects in three developmental groups based on age and 

fusion of the spheno-occipital synchondrosis. 

2. There is a statistically significant relationship between external topographic 

measurements and internal measurements of the craniomaxillofacial complex. 

3. There is a statistically significant relationship between vo lumetric and linear 

dimensions of the sphenoid and maxillary sinus and other selected 

craniomaxillofacial dimensions. 

4. There is a statistically significant relationship between vertical, antero-posterior 

and transverse cranio maxi 110 facial dimensions. 

5. There is no statistically significant difference between repeat and initial 

measurements for a sample of representative volumetric and linear dimensions. 

6. The measures of intra-observer reliability of repeat measurements, as measured 

by the ICC, differ from O. 
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Overview 

CHAPTERlIl 

METHODS AND MA TERIALS 

This observational research involved cone-beam computed tomography (CBCT) 

datasets previously collected for clinical diagnostic purposes. The study design was 

approved through an expedited review by the Institutional Review Board (IRB), of the 

University of Louisville on March 16, 20 I 0 (IRB #10.0093) (Appendix A). 

This study involved a retrospective audit ofCBCT report records within a 

radiologic interpretation database (Filemaker Pro v.8, FileMaker Inc., Santa Clara, CA) 

held within the Radiology and Imaging Science Division, Department of 

SurgicaVHospital Dentistry, The University of Louisville School of Dentistry, Louisville, 

Kentucky. Subjects were grouped according to age: Child (included individuals prior to 

and approximating the fusion of the spheno-occipital synchondrosis), Adolescent (post 

fusion of the Sphenoid-occipital synchondrosis until age 18 years) and, Adult (over 18 

years of age). A single observer made linear, angular and volumetric measurements of 

craniofacial structures from DICOM format images imported into a proprietary 

cephalometric software program. Two months later, repeated measurements on a subset 

of the sample were recorded and compared to determine intra-observer reliability. Group 

differences were analyzed using ANOYA testing, and associations explored with 

bivariate correlations and multiple regression analyses using statistical software (PASW 
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Statistics v. 18.0, SPSS Inc., Chicago, IL). All tests were set at an a priori level of 

significance set at a :'S 0.05. 

Sample Selection 

Four specific data fields from reports in the CBCT radiologic interpretation 

database for the period May 13, 2004 (installation of the CBCT equipment) to a 

convenience date (December 8, 2009) were exported to a spreadsheet (Excel, Microsoft 

Corp. , Redmond, WA) representing all subjects in the database within this period . A total 

of 2,290 radiographic reports were available. The specific data fields included: 

1) Age. Age in whole years at the time of presentation for the radiologic 

examination. 

2) Field 0/ View. Categorical structured text categorizing the procedure of CBCT 

scan used. Categories included: 8 cm (maxillofacial), Consultation, Extended 

(maxillofacial), Extended FOY (22cm x 16 cm) both arches, Extended Full 

(maxillofacial), Extended view CBCT, Full (both jaws), Full (craniofacial), 

Full (maxillofacial), Full (maxillofacial)/ Anterior Calvarium, Full extended 

FOY (Restricted 6 cm), Limited area (Mx/Md), Mandible 8 cm FOY, Second 

Opinion Consultation, Supplemental report: TMJ only. 

3) Reason/or referral. Categorical structured text categorizing the reason that 

the subject was referred for a CBCT scan. Categories included: Hand Wrist, 

Implant CBCT, Pathology CBCT, Fracture CBCT, TMJ CBCT, TMJ 

Tomography, Trauma CBCT, Cleft Lip/Palate, Ortho CBCT, Third Molar 

12 



CBCT, Cephalometric, Sleep Apnea, Dento/Craniofacial, Impaction CBCT, 

Surgical follow-up - plates/graft, Surgical follow up - recurrence, Surgical 

follow up - trauma, Consultation. 

4) Radiologic Impression. Narrative text data summarizing the primary and 

synchronous imaging [mdings. 

Records were sorted by the field of view data field, age of the subject then reason 

for referral respectively. 

Numerous exclusion criteria were applied to each of the fields within the 

radiographic reports (Figures 1 and 2). 

1. Field of View - Subjects whose scans potentially did not include three essential 

anatomic landmarks (Nasion (Na), Gnathion (Gn) and the external auditory 

meatus (EAM) bilaterally) necessary for orthodontic analysis were excluded such 

as: maxilla, mandible, maxilla/mandible or hand wrist. In addition CBCT data sets 

with ambiguous field of view inclusions were viewed with proprietary acquisition 

software (Xorancat, Imaging Sciences International, Hatfield, PA, USA) . These 

included: 8cm (maxillofacial), extended full, extended view, full (both jaws), 

limited area scan, full (maxillofacial), limited (MxlMd), full (Craniofacial) and 

those records without a procedure entry in the database. 
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Brac:es 

2. Age - Subjects listed in the database as 40 years old and older were excluded 

based on the assumption that these individuals ' occlusion and craniofacial 

morphologic characteristics could have been altered due to restorative intervention 

and/or loss of teeth. 

3. Report Type - Subjects having been imaged for sleep apnea were identified and 

excluded. 

4. Radiologic Impression - Pathologic and implant impressions were reviewed in 

detail. Records were excluded when craniofaciaVstructural abnormalities, 
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associated syndromes, systemic abnormalities, temporomandibular joint 

abnormalities, fractures, surgical stabilization plates, orthognathic surgery, local 

or regional changes or sinus issues were known or suspected. Subjects in or 

known to have had braces were excluded. Subjects with deviated septum, Haller 

cells, concha bullosa, ethmo bullosa, alveolar atrophy, alveolar fracture, socket 

sclerosis/enostosis and bifid mandibular canal were not excluded. 

5. Scan Issues - Subjects with corrupt or missing images were excluded. 

6. Open Occlusion - Using the proprietary acquisition software, datasets were 

examined to determine whether subjects ' teeth were separated or in occlusion 

during imaging and those whose dentitions were not intercuspated were excluded. 

7. Posterior Contact on Each Side - Subjects who did not have at least one 

posterior contact on each side were excluded. This observation was made with the 

primary acquisition software. 

Twenty seven subjects were determined to fulfill all exclusion criteria for the 

study. A list of each exclusion was recorded (Appendix B). This was considered as a low 

sample size, particularly in the target populations under consideration (subjects who 

demonstrated pre-fused spheno-occipital synchondrosis and those whose spheno-occipital 

synchondrosis had fused but were less than 18 years old (Coben, 1998) (See 

Determination of Stage of Sphenoid Development later). Therefore 2 further attempts 

were made to increase sample size. The first attempt involved expanding the search dates 

of the primary radiologic database from December 8, 2009 to April 26, 2010. While this 

provided a further 194 subjects, application of the exclusion criteria resulted in no further 

recruitment of individuals (Figure 3). A much smaller separate database CBCT radiologic 
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interpretive database was also available for patients who had presented with specific 

orthodontic imaging (e.g. impacted canines, asymmetry, etc.). The orthodontic database 

was created on November 2, 2009 and on April 26, 2010 consisted of 17 subjects. 

Application of the exclus ion criteria resulted in no further recru itment of individuals 

(Figure 4) . 
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Figure 3. Second attempt at increasing samp le size of subjects under 20 years old imaged 

after initial database was assessed. 
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Figure 4. Third attempt at increasing sample size by using Orthodontic Database. 

Subjects within each group were categorized into and saved as coded files. Subject 

waivers were not necessary, as all subject identifiers were stripped from the data set and 

fi les were made anonymous. 

Image Analysis 

Twenty seven subjects were determined to fulfill all exclusion criteria for the 

study. Their eBeT datasets were then exported as a DreOM files . These files were then 

imported into a proprietary orthodontic analysis software program (Dolphin 3D Imaging 
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Premium, v. II.O, Dolphin Imaging, Chatsworth, CA) with a new subject entry. One 

examiner preformed all image manipulations and analysis. 

Determination of Stage of Sphenoid Development 

For each subject, the CBCT data was initially visualized to determine the stage of 

development of the spheno-occipital synchondrosis. 

First the "3D" option was selected and "Edit" was selected which initiated loading 

of the CBCT dataset (Figure 5). The "4-Equal Layout" option was selected which 

displayed the three planes and a reconstructed image (Figure 6). 
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(a) (b) (c) 

Figure 5. Screen capture of segment of Dolphin 3D display demonstrating location and 

selection of 3D option (a) and options available (b) and subsequent loading verification 

screen (c). 
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(a) (b) 

Figure 6. Cropped screen capture of Dolphin 3D Imaging software demonstrating 

selection of 4-Equal Layout option (a) and resultant screen display (b). 

All subjects under the age of 18 were analysed for fusion of the spheno-occipital 

synchondrosis in the sagittal view in the midsagittal plane (Figure 7). Based on these 

observations on the presence or absence of the spheno-occipital synchondrosis, subjects 

were assigned to one of three groups. Group 1, consisted of the youngest sample of 

images who demonstrated pre-fusion of the spheno-occipital synchondrosis (Akhlaghi, et 

aI. , 2008). Group 2 comprised subjects who had fusion of the spheno-occipital 

synchondrosis but were 17 years or younger (Fudalej, et at. , 2007). Group 3 comprised 

subjects who demonstrated fusion of the spheno-occipital synchondrosis and were l8 

years or older. 
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(a) (b) 

Figure 7. Cropped sagittal image ofa 12 year old subject prior to fusion of the spheno-

occipital synchondrosis representative of subjects within Group 1 (a) . Cropped sagittal 

image ofa 14 year old subject demonstrating fusion of the spheno-occipital 

synchondrosis representative of subjects within Group 2 (b) . 

Craniofacial Analysis 

Three Dimensional Standardization 

Each CBCT dataset was retrieved (Figures 5 and 6) and re-oriented to provide a 

standard reference display prior to recording any linear or angular measurements. The 

following scheme was used: 

1. The anterior-posterior crosshair for the coronal view was placed along the palate. 

The image was rotated along this plane to ensure the crosshair was covering the 

middle of the Anterior and Posterior Nasal Spines (Figure 8) (Appendix C). 
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Figure 8. Axial orientation using the ANS and PNS landmarks. 

2. The sagittal view was moved medially unti l the external auditory meatus (EAM) 

was as posterior and superior and nearest the temporal bone while still being in a 

plane lateral to that where the temporal bone beginning to encircle the EAM. The 

anterior-posterior crosshair of the sagittal view was placed directly superior to the 

EAM on the superior margin of the EAM along the temporal bone (Figure 9). 

Where one EAM was found to be more superior to the other relative to this 

crosshair, the coronal view was rotated to allow this crosshair to lie over the most 

inferior aspect of the temporal bone superior to the EAM bilaterally. This plane 

assisted in orienting the fIrst two landmarks of the mid-sagittal plane and with the 

Nasion made up the midsagittal plane. 
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(a) (b) 

Figure 9. Coronal orientation using the left (a) and right (b) EAM landmark in the sagittal 

vIew. 

3. The superior-inferior crosshair in the coronal view was then adjusted to rest over 

the most lateral inferior aspect of the margin of the orbit (Orbitale) . The sagittal 

view was rotated and the anterior-posterior crosshair adjusted to ensure it lay on 

the inferior portion of the temporal bone directly superior to the EAM, as 

previously described, and the most inferior aspect of the orbit bilatera1ly (Figure 

10). This plane was used as the Frankfort Horizontal Plane for orientation 

purposes (Seward, et at., 1968). 
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(a) (b) 

Figure 10. Sagittal orientation using the right (a) and left (b) Orbitale landmark. 

Linear and Angular Measurement 

Following orientation, the Digitize/Measure option was selected on left toolbar 

(Figure 11) and used to measure all angles and lines that follow. 

Figure 11 . Screen capture of Dolphin 3D Imaging software demonstrating location of 

initial access to measurement screen window. 
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In the Digitise/Measurement window, the view "drop down" box would be 

selected and all lines and angles measured (Figure 12). With the view selection as "3D," 

all linear and angular measurements were made by selecting the " Line" or "Angle" tab 

respectively and clicking on the fIrst, then second point; and third point when angles were 

measured. After the points were repositioned to ensure they were on the accurate 

locations, measurement values appeared next to the line or angle and in the 

Digitise/Measurement window (Figure 12). These measurements were transferred into the 

data analysis spreadsheet (Excel, Microsoft Corp., Redmond, W A). (Appendix D) 

For the Sella-Nasion to Gonion-Gnathion angle only, the view was changed to 

"2D-Lateral." The analysis was changed to "[SteinerISM)". The "Landmark" tab was 

selected and the landmark ''Nasion'' was highlighted from the options and then placed 

over the corresponding landmark in the sagittal view. The same process was repeated for 

"Gonion", "Sella" and "Anatomical Gnathion." The "Measurements" tab was then 

selected and the value of SN -GoGn recorded. 
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Figure 12. 3D Digitize/Measurement window for adding lines (a), 2D-Lateral 
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./ 

Digitize/Measurement window for Steiner/SM analysis (b), and 3D Digitize/Measurement 

window for adding angles (c) . 

Several image adjustment properties were available. 

1) Image Slice thickness. This option allows adjustment of slice thickness 

between the 0.5mm to 5.0 mm. For each measurement, slice thickness was often 

assessed on each thickness to determine which would provide the best image, 

except where specified (Figure 13). 
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(a) 

(b) 

Figure 13. Image of coronal and sagittal slice demonstrating differences in display 

with a slice thickness of 0.5 mrn (a) and 5.0 mm (b). 

2) Contrast and Brightness. Contrast and brightness were also adjusted as 

required to allow appropriate landmarks to appear clearest (Figure 14). 
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(a) (b) (c) 

Figure 14. Sequence of coronal images demonstrating the effect of altering brightness and 

contrast. (a) Initial auto-adjusted brightness and contrast, (b) decreased contrast and, (c) 

increased brightness. 

3) Magnification. Magnification capability was used to aid in precisely placing 

the required points on the desired locations for more accurate measurements 

(Figure 15). 

(a) (b) (c) 

Figure 15. Cropped coronal images of the right maxillary sinus (a), demonstrating the 

effect of increasing magnification (b) and further magnification increase used to enlarge 

the view of the inferior margin of the sinus (c). 
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Linear and Angular Measurements: 

Table 1 shows the 12 mid-sagittal and two bilateral anthropometric and/or 

cephalometric points identified on the correlated orthogonal images (Table 1). 

Operational definitions of these landmarks were developed considering the variety of 

established definitions and the ability to repeatedly identify them on a CT image. 

Eighteen sagittal and nine coronal linear measurements were recorded as 

described in Tables 2 and 3. Nine sagittal angular measurements were recorded as 

described in Table 4 (Appendix C). 
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Table 1. Midline and Bilateral Topographic Points Used as Landmarks for the 

Measurements. 

Landmark Abbreviation Definition 

MID-LINE 
A Point A The deepest posterior depression in the 

anterior border of the maxilla between the 
anterior nasal spine and maxillary alveolar 
bone 

Anterior Nasal Spine ANS The most anterior portion of the maxilla 
superior to the alveolar bone of the maxilla 
and inferior to the inferior nasal conchae 

B Point B The deepest posterior depression in the 
anterior border of the mandible between the 
chin and the mandibular alveolar bone 

Basion Ba The most anterior aspect of the anterior 
margin of the foramen magnum 

Gnathion Gn The most inferior location of the mandible 

Incisal Plane IP Mathematically derived geographic plane 
halfway between the lower incisor tip and 
upper incisor tip parallel to the Frankfort 
horizontal 

Lower Incisor Tip LIT The most superior portion of the mandibular 
central incisor 

Nasion N Junction ofthe frontal and nasal bones 
Posterior Nasal Spine PNS The most posterior aspect of the palatine 

bone 
Sella Turcica S The center of the Sella Turcica based on 

inspection 
Sphenoid Floor Sph Floor The inferior surface of the outer cortex ofthe 

body ofthe sphenoid bone at the junction of 
the vomer along a line from the Sella Turcica 
to the Posterior Nasal Spine 

Upper Incisor Tip UIT The most inferior portion of the maxillary 
central incisor 

BILATERAL 
External Auditory EAM The radiolucent foramen connecting the outer 
Meatus and middle ear 
Gonion Go The most posterior inferior location of the 

angle of the mandible 
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Table 2. Definition of Sagittal Linear Dimensions Measurements. 

Measurement Abbreviation Definition 

Nasion to Anterior Nasal Spine N-ANS Superior Facial Height. 

Anterior Nasal Spine to Upper ANS-UIT Superior Facial Height Including 
Incisor Tip Maxillary Dental Complex 

Anterior Nasal Spine to Lower ANS-LIT Portion of Superior Facial Height 

Incisor Tip 

Anterior Nasal Spine to Incisal ANS-IP Mathematically Derived Superior 
Plane Facial Height Including Maxillary 

Complex 

Nasion to Gnathion N-Gn Anterior Facial Height 

Gnathion to Upper Incisor Tip Gn-UIT Potion of Lower Facial Height 

Gnathion to Lower Incisor Tip Gn-LIT Lower Facial Height Including 
Mandibular Dental Complex 

Gnathion to Incisal Plane Gn-IP Mathematically Derived Lower 
Facial Height Including 
Mandibular Dental Complex 

Sella Turcica to Posterior Nasal S-PNS Sphenoid Sinus and Posterior 
Spine Nasal Space Along Nasion 

Gnathion Line 

Sella Turcica to Sphenoid Floor S-Sph Floor Sphenoid Sinus Along Nasion 
Gnathion Line 

Sphenoid Floor to Posterior Nasal Sph Floor-PNS Posterior Nasal Space Along 
Spine Nasion Gnathion Line 

Sella Turcica to Gnathion S-Gn Transverse Facial Length 

Posterior Nasal Spine to Gnathion PNS-Gn Mathematically Derived Portion 
of Transverse Facial Length 

Sphenoid Floor to Gnathion Sph Floor-Gn Mathematically Derived Portion 
of Transverse Facial Length 

Maximal Sphenoid Sinus Sph Sin PA Sphenoid Sinus Length 
Posterior-Anterior Length Length 

Maximal Right Maxillary Sinus Rt Mx Sin PA Right Maxillary Sinus Length 
Posterior-Anterior Length Length 

Maximal Left Maxillary Sinus Lt Mx Sin PA Left Maxillary Sinus Length 
Posterior-Anterior Length Length 

Posterior Facial Height Post Facial Hgt Posterior Facial Height 
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Table 3. Coronal Linear Dimensions Measurements. 

Measurement Abbreviation Definition 

Maximal Sphenoid Sinus Sph Sin Hgt Sphenoid Sinus Height 
Superior-Inferior Height: 

Maximal Right Maxillary Sinus Rt Mx Sin Hgt Right Maxillary Sinus Height 
Superior-Inferior Height: 

Maximal Left Maxillary Sinus Lt Mx Sin Hgt Left Maxillary Sinus Height 
Superior-Inferior Height 

Lateral Orbital Distance at Nasion Lat Orb Transverse Orbital Width of Face 
Distance 

Maximal Sphenoid Sinus Medial- Sph Sin Width Sphenoid Sinus Width 
Lateral Width 

Maximal Right Maxillary Sinus Rt Mx Sin Right Maxillary Sinus Width 
Medial-Lateral Width Width 

Maximal Left Maxillary Sinus Lt Mx Sin Left Maxillary Sinus Width 
Medial-Lateral Width Width 

Maximal Outer Right to Outer Outer Mx Sin Transverse Maxillary Sinus Width 
Left Maxillary Sinus Medial- Width of Face 
Lateral Width 

Minimal Inner Right to Inner Left Inner Mx Sin Transverse inner Maxillary Sinus 
Maxillary Sinus Width Complex Width 
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Table 4. Sagittal Angular Dimensions Measurements. 

Measurement Abbreviation Definition 

Sella Turcica to Nasion to A- SNA Position of Maxilla Relative to 

Point Cranial Base 

Sella Turcica to Nasion to B- SNB Position of Mandible Relative to 

Point Cranial Base 

A-Point to Nasion to B-Point ANB Position of Maxilla Relative to 
Mandible 

Sella Turcica to Posterior Nasal S-PNS-Gn Position of Posterior Palate 

Spine to Gnathion Relative to Cranial Base and 
Mandible 

Sphenoid Sinus Long Axis to Sph Sin Long Position of Mandible Relative to 

Gnathion Axis-Gn Sphenoid Sinus 

XY Axis Angle NBa-SGn Facial Angle Relative to Cranial 
Base 

Sella Turcica to Nasion with SN-GoGn Mandibular Plane Relative to 

Left Gonion to Gnathion Cranial Base 

Volumetric Measurement Procedures and Description: 

The Sinus/Airway option was selected on left toolbar and used to measure all 

volumes (Figure 16). 
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Figure 16. Screen capture of Dolphin 3D Imaging software display indicating location of 

Sinus/Airway option. 

Orientation of the image was not performed as measurements were volumetric . 

There was no option to modify the slice thickness . Brightness, contrast and magnification 

were modified as required (Figures 14 and \5). 

In the Draft window of the SinUs/Airway display, a sagittal image is presented 

(Figure 17). 
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Figure 17. Screen capture of Dolphin 3D Imaging software displaying Sinus/Airway 

Window. 

Using the mouse cursor, the boundaries of the cortical extent of the sinus was 

identified by clicking points that would automatically be joined. The sagittal slices were 

scrolled through from one end to the other. The points encircling the sinus were moved 

only outwardly to ensure the entirety of the sinus was contained within this boundary 

(Figure 18). The axial, then coronal tabs were selected and the same method was applied 

for new independent tracings in each respective view. 
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(a) (b) (c) 

Figure 18. Cropped mid-sagittal image demonstrating outlining of the borders of the 

sphenoid sinus (a) . Lateral sagittal image plane with sinus dimension larger than initial 

tracing (b) . Magnified image shown in (b) demonstrating borders after adjustment 

allowing for entire containment of sinus (c) . 

Segmentation inclusional seed points were then added to the sinuses to select the 

area to be included for volumetric assessment. This was done by clicking "add" tab for 

seeds and then clicking in the area where the seed was to be added (Figure 19). 

Seed Points : [< Prev I [ Add I [Next> I Ell Show Hidden Seeds 

Figure 19. Cropped image of Seed Points Toolbar. 

Where septa divided the sinus being measured, the seed would not extend its 

selection area and another seed point would need to be added (Figure 20). 
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(a) (b) (c) 

Figure 20. Magnified cropped image demonstrating irlltial placement of seed point within 

sinus colorizing values within a specific voxel range (a), lateral sagittal slice showing 

non-inclusion ofa part of the sinus (b) and addition of secondary seed point including 

volume within this separated region (c) . 

After placement of all sinus seed points, the sensitivity of the seeds was adjusted. 

Seed sensitivity adjustment dictated the range of values of the voxel to be included 

(Figure 21). The desired sensitivity was the highest value that included all of the areas of 

that sinus without detecting or ''bleeding'' into adjacent, non-representative sinus areas 

(Figure 22). 

Adjust slice alrway sensitivity: ~ 

Less 
o ~ 60 

More 

Figure 2l. Cropped image of Air Sensitivity Toolbar. 
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(a) (b) 

Figure 22. Maximum seed sensitivity without extending to non-representative area (a) and 

excessive seed sensitivity that has extended to non-representative area (b). 

The sensitivity level chosen in one slice view affected the sensitivity in all other 

views. Following sensitivity adjustment in all three views and after scrolling through all 

slices, the option "Update Volume" tab was selected (Figure 23). 

Click on this button tIl find airway 'olume: Upda te oIume 

Figure 23 . Cropped image of Update Airway Volume Toolbar. 

This resulted in re-segmentation of the volume and displayed the area included on 

a 3D volumetric rendering with an associated volumetric value (rnm3
) (Figure 24). 
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Figure 24. Screen capture of Dolphin 3D Imaging software display indicating 

airway volume. 

The value displayed was recorded in the data analysis spreadsheet. The "Remove" 

tab selected and the" Remove ALL Seed Points and Boundaries" option was selected. 

This procedure for sinus volume measurement was performed to determine the 

sphenoid, right maxillary and left maxillary sinus volumes. 

Statistical Analysis 

PASW statistical software was used to assess the measured values. The data in the 

data analysis spreadsheet was imported into the PASW statistical software program. After 

importation, the data analysis spreadsheet was converted into a proprietary format 

(PASW, *.sav) and saved. 
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Four additional measurements were calculated within the PASW program by the 

addition of columns and appropriate formulae. These included: 

1. Maximal Maxillary Sinus Posterior-Anterior Length Average (Mx Sin PA 

Length) 

2. Maximal Maxillary Sinus Superior-Inferior Height Average (Mx Sin Hgt) 

3. Maximal Maxillary Sinus Medial-Lateral Width Average (Mx Sin Width) 

4. Maxillary Sinus Volume Average (Mx Sin Vol) 

Group Comparisons 

All measurements collected were subjected to Oneway ANOVA testing 

comparing the three developmental groups. Differences identified between groups based 

on the F-test were further subjected to Tukey Post Hoc tests. The level of significance for 

all analyses was set at a:S 0.05. 

Measurements not found to have statistically significant group differences were 

combined and analyzed together whereas groups that demonstrated statistical significance 

were analyzed separately. Analysis consisted of bivariate Pearson correlations. These 

results were examined for correlations of clinical interest. 

Multiple regression analysis was applied to these identified measurements. 

Outcome measures were chosen based on those thought to have clinical relevance. 

Associated predictor variables were chosen based on measurements found to have 

statistically significant correlation to the outcome measure being assessed. Predictor 

variables found to have p values greater than 0.05 were not regarded as significant and 
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removed as predictor variables. The multiple regressions were then reassessed and the 

change in the R squared value observed. 

Intra-Observer Reliability and Repeatability 

Using the website: www.random.org random integers were generated to select 9 

ofthe 27 subjects to remeasure (Figure 25). 
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(b) 

Figure 25. Random sequence generator used to determine which subjects to remeasure 

(a), resultant random numbers generated (b). 

Only one line, one angle and one sinus volume were remeasured. The bivariate 

Pearson correlations of each variable with all the other variables of the 27 subjects were 

reviewed to select three such measurements that were not correlated with one another. 

Thus the three variables measured were independent. 
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Three measurements were made with the same techniques as described earlier. 

With the use of the PASW statistical software, the random subject measurement values 

were compared to the initial measurements of the same individuals. 

Repeatability is a measure of the amount of variation between a value remeasured 

under the same conditions. This was assessed by comparing the means of the first 

measurements with the second measurements through a paired t-test. 

Intra-observer reliability is a measure of the amount of agreement between 

remeasurements by a single observer. This was assessed through the intraclass correlation 

coefficient (ICC). 
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CHAPTER IV 

RESULTS 

Exclusion criteria were applied to the patient radiologic database as previously 

described in the Methods and Materials section. The sample stratified according to 

spheno-occipital fusion and age is shown in Table 5. 

Group 

I 

2 

3 

Table 5. Group Sample Size 

Group Definition 

Pre-fused Spheno-Occipital Synchondrosis 

Fused Spheno-Occipital Synchondrosis when Under 18 Years Old 

Subjects 18 Years Old and Older with Fused Spheno-Occipital 

Synchondrosis 

Sample Size 

8 

9 

10 

Appendix D provides the actual linear, angular and volumetric measurements for 

all subjects including repeated measures. 

Table 6 shows the mean (± standard deviation) dimensions for each group and the 

pooled overall group for craniofacial and sinus linear measurements. 
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Table 6. Comparison of Mean Linear Measurements (± standard deviation) for 

Craniofacial and Sinus Parameters for Each Group. ANOYA values are shown and 

significance at p::::: .05 are bolded. 

Group 1 Group 2 Group 3 Pooled 
Significance 

Parameter (mm) (n=8) (n=9) (IF10) (n=27) F p 

Craniofacial 

N-ANS 
46.79 ± 47.97 ± 49.08 ± 48.03 ± 

1.559 .231 
3.58 2.02 2.53 2.80 

ANS-UIT 
27.24 ± 28.38 ± 27.75 ± 27.81 ± 

.419 .663 
2.07 3.10 2.41 2.52 

ANS-LIT 
22.65 ± 26.16 ± 26.18 ± 25.12 ± 

3.679 .040 
2.14 4.20 2.46 3.38 

N-UIT 
93.58 ± 95.93 ± 98.16 ± 96.06 ± 

1.559 .231 
7.16 4.04 5.06 5.60 

Gn-UIT 
28.98 ± 33.96 ± 35.68 ± 33.12± 

11.895 .000 
1.61 3.84 2.89 4.02 

Gn-LIT 
33.58 ± 36.31 ± 37.24 ± 35.84 ± 

4.848 .017 
2.50 2.38 2.71 2.89 

ANS-IP 
24.94 ± 27.27 ± 26.96 ± 26.47 ± 

1.852 .179 
1.87 3.53 2.34 2.78 

Gn-IP 
31.28 ± 35.13 ± 36.46 ± 34.48 ± 

9.133 .001 
1.87 3.02 2.72 3.34 

N-Gn 
103.01 ± 110.37 ± 112.50 ± 108.98 ± 

5.219 .013 
5.50 7.30 6.18 7.36 

S-Sph Floor 
21.90 ± 23.47 ± 23.76 ± 23.11 ± 

1.472 .249 
2.89 2.20 2.16 2.45 

Sph Floor-PNS 
21.42 ± 22.86 ± 21.64 ± 21.98 ± 

.988 .387 
2.54 2.62 1.75 2.31 

S-PNS 
43.32 ± 46.32 ± 45.40 ± 45.09 ± 

2.140 .140 
4.37 1.91 2.55 3.17 

PNS-Gn 
65.18 ± 74.51 ± 77.13 ± 72.71 ± 

11.537 .000 
5.30 4.90 5.94 7.30 

Sph Floor-Gn 
86.60 ± 97.37 ± 98.77 94.70 ± 

9.304 .001 6.33 6.58 ±6.20 8.15 
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Table 6 (Continued). Comparison of Mean Linear Measurements (± standard deviation) 

for Craniofacial and Sinus Parameters for Each Group. ANOVA values are shown and 

significance at p:S .05 are bolded. 

Group 1 Group 2 Group 3 Pooled 
Significance 

Parameter (mm) (n=8) (n=9) (n=10) (n=27) F P 

Craniofacial 

S-Gn 
108.50 ± 120.83 ± 122.53 ± 117.81 ± 

11.3111 .000 
7.88 5.79 6.29 8.90 

Post Facial Hgt 
64.42 ± 75.12 ± 72.86 ± 71.11 ± 

2.151 .138 
8.96 6.56 15.16 11.61 

Lat Orb Distance 
86.34 ± 88.93 ± 84.92 ± 86.68 ± 

.858 .437 
6.13 5.45 8.06 6.69 

Outer Mx Sinus 
75.68 ± 79.20 ± 75.02 ± 76.61 ± 

1.160 .330 
6.07 6.81 6.05 6.36 

Inner Mx Sinus 
26.42 ± 26.07 ± 26.67 ± 26.40 ± 

.054 .948 
3.13 3.05 5.21 3.87 

Sphenoid Sinus 

Sph Sin P A Length 
22.20 ± 29.31 ± 28.41 ± 26.87 ± 

4.541 .021 6.26 5.19 4.42 5.94 

Sph Sin Hgt 
20.84 ± 23.24 ± 23.58 ± 22.66 ± 

2.545 .099 
3.81 2.34 1.95 2.89 

Sph Sin Width 
31.09 ± 33.76 ± 33.70 ± 32.94 ± 

.289 .752 
10.10 7.78 6.92 8.01 

Maxillary Sinus 

Mx Sin PA Length* 
34.92 ± 38.54 ± 35.94 ± 36.50 ± 

1.905 .171 
2.81 2.57 5.53 4.13 

Mx Sin Hgt* 
28.91 ± 33.25 ± 30.68 ± 31.01± 

1.560 .231 
4.92 5.62 4.78 5.22 

Mx Sin Width* 24.54 ± 26.12 ± 23.86 ± 24.81 ± 
.543 .588 

3.88 5.05 5.22 4.72 

* Average of measurements from left and right 

Table 7 shows the mean (± standard deviation) dimensions for each group and the 

pooled overall group for craniofacial and sinus angular measurements. 

45 



Table 7. Comparison of Mean Angular Measurements (± standard deviation) for 

Craniofacial and Sinus Parameters for Each Group. ANOV A values are shown and 

significance at p :s .05 are bolded. 

Parameter ra) Group 1 Group 2 Group 3 Pooled Significance 

(n=8) (n=9) (n=10) (n=27) F p 

Craniofacial 

SNA 
81.21± 

85.08 ± 2.29 83.72 ± 4.50 83.43 ± 4.11 2.073 .148 
4.63 

SNB 
77.50 ± 

81.17 ± 2.10 81.20 ± 3.53 80.09 ± 3.96 2.768 .083 
5.13 

ANB 3.77 ± 1.57 4.03 ± 1.96 3.68 ± 2.12 3.83 ± 1.85 .084 .919 

S-PNS-Gn 
l72.79± 170.91 ± 171.06± 17l.52 ± 

.501 .612 
4.40 4.48 3.98 4.19 

XY Axis 86.65 ± 
85.27 ± 3.39 84.21 ± 3.27 85.28 ± 3.42 1.141 .336 

Angle 3.59 

SN-GoGn 
35.01 ± 

30.02 ± 4.30 29.04 ± 3.89 31.l4±5.25 3.878 .035 6.07 

Sph Sin Long 88.52 ± 
81.88 ± 7.51 81.33 ± 7.62 83.64 ± 7.42 2.821 .079 Axis-Gn 5.13 
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Table 8 shows the mean (± standard deviation) dimensions for each group and the 

pooled overall group for craniofacial and sinus volumetric measurements. 

Table 8. Comparison of Mean Volumetric Measurements (± standard deviation) for Sinus 

Parameters for Each Group. ANOV A values are shown and significance at p:S .05 are 

bolded. 

Parameter (mm3
) 

Group I Group 2 Group 3 Pooled 
Significance 

(n=8) (n=9) (n=10) (n=27) 

F p 

Sphenoid Sinus 

8,569.79 ± 
11,169.33 10,422.09 10,122.34 

Sphenoid Sinus Vol 
4,496.90 

± ± ± 1.205 .317 
3,071.53 3,023.09 3,559.00 

Maxillary Sinus 

11,865.36 
16,965.12 13,290.94 14,093.27 

Maxillary Sinus Vol* 
± 3,068.13 

± ± ± 2.691 .088 
5,766.15 4,772.55 5,027.81 

* Average of measurements from left and right 
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Variation in Measurements Between Groups 

ANOVA revealed only some ditTerences between groups. Table 9 summarizes 

parameters that demonstrated significance at P:S .050. 

Table 9. Summary of ANOVA Comparisons Between all Groups. 

Parameter F P 

ANS-LIT 3.679 .040 

Gn-UIT 11.895 .000 

Gn-LIT 4.848 .017 

Gn-IP 9.133 .001 

N-Gn 5.219 .013 

PNS-Gn 11.537 .000 

Sph Floor-Gn 9.304 .001 

S-Gn 11.311 .000 

Sph Sin P A Length 4.541 .021 

SN-GoGn 3.878 .035 

Table 10 shows the Post Hoc Tukey tests for parameters tound to demonstrate 

significance (p :S .05) in Tables 8 and 9. 
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Table 10. Post Hoc Tukey Test Comparisons. 

Parameter Group P 

ANS-LIT None None 

Gn-UIT 1 < 2 .006 

1 < 3 .000 

Gn-LIT 1 < 3 .015 

Gn-IP 1 < 2 .015 

1 < 3 .001 

N-Gn 1 < 3 .012 

PNS-Gn 1 < 2 .005 

1 < 3 .000 

Sph Floor-Gn 1<2 .005 

1 < 3 .001 

S-Gn 1<2 .005 

1<3 .000 

Sph Sin P A Length 1<2 .027 

SN-GoGn 1 >3 .036 

For the 27 measurements which did not demonstrate differences between groups, 

data were pooled and bivariate Pearson correlations and multiple regressions were 

calculated. 
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Relationship Between Linear, Angular and Volumetric Relationship of the Sinuses 

and Other Selected Craniomaxillofacial Dimensions 

Tables 11 to 16 shows the bivariate Pearson correlation and p-value for the pooled 

group for craniofacial and sinus linear, angular and volumetric measurements. 
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Table 11. Bivariate Pearson Correlations Between Sinus and Craniomaxillofacial 

Dimensions (R (p value». Values shown with significance at p:S .05 are bolded. 

Secondary Maxillary Sinus Dimensions 

Maxillary 
Height* 

Sinus 

PA* 

Width* 

Volume .84(.00) .80(.00) 

Sphenoid Sinus Height .38(.05) .27(.17) .14(.48) .31(.11) 

Width .17(.40) .10(.63) .36(.07) .11(.59) 

Volume .40(.04) .22(.28) .39(.05) .38(.05) 

Cranio-facial N-ANS .43(.02) .67(.00) .29(.14) .50(.01) 

ANS-UIT .17(.40) .30(.14) .09(.66) .27(.18) 

N-UIT .44(.02) .67(.00) .29(.14) .50(.01) 

ANS-IP .25(.21) .38(.05) .15(.47) .40(.04) 

S-Sph Floor -.06(.77) .12(.56) .01(.97) .04(.82) 

Sph Floor-PNS .39(.04) .29(.14) .28(.16) .49(.01) 

S-PNS .24(.23) .30(.13) .21(.30) .39(.04) 

Post Facial Hgt .34(.08) .31(.12) -0.3(.88) .29(.14) 

Lat Orb Distance .25(.21) .26(.19) .32(.10) .35(.07) 

Outer Mx Sinus .54(.00) .59(.00) .93(.00) .75(.00) 

Inner Mx Sinus -.52(.00) -.54(.00) -.76(.00) -.59(.00) 

SNA -.26(.19) -.06(.75) -.27(.18) -.16(.43) 

SNB -.15(.46) .17(.93) -.24(.23) -.07(.71) 

ANB -.14(.4 7) -.01(.95) .08(.67) -.01(.98) 

S-PNS-Gn -.26(.19) -.25(.21) -.22(.27) -.24(.24) 

XY Axis Angle .37(.06) .14(.48) .35(.07) .32(.11) 

Sph Sin Long Axis-
.19(.34) .23(.24) .17(.39) .24(.24) 

Gn 

* Average of measurements from left and right 
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Table 12. Bivariate Pearson Correlation Between Sphenoid Sinus and 

Craniomaxillofacial Dimensions (R (p value». Values shown with significance at p:S .05 

are bolded. 

Secondary Sphenoid Sinus Dimensions 

Sphenoid Sinus Height 

Width 

Volume .78(00) 

Cranio-facial N-ANS .35(.08) .18(.36) .15(.45) 

ANS-UIT .16(.43) .13(.52) .00(1.00) 

N-UIT .35(.08) .18(.36) .15(.45) 

ANS-IP .19(.33) .09(.66) .03(.88) 

S-Sph Floor .64(.00) .48(.01) .59(.00) 

Sph Floor-PNS -.13(.52) .05(.80) .11(.60) 

S-PNS .40(.04) .41(.03) .54(.00) 

Post Facial Hgt .22(.28) .06(.79) .16(.42) 

Lat Orb Distance .32(.11) .52(.00) .41(.03) 

Outer Mx Sinus .19(.35) .42(.03) .44(.02) 

Inner Mx Sinus .06(.75) .04(.85) -.04(.86) 

SNA .28(.16) .33(.09) .33(.10) 

SNB .17(.41) .18(.37) .26(.19) 

ANB .26(.18) .18(.37) .23(.26) 

S-PNS-Gn -.02(.92) -.13(.51) -.24(.24) 

XV Axis Angle -.23(.25) -.02(.92) -.13(.53) 

Sph Sin Long Axis-Gn .06(.76) -.18(.37) -.05(.79) 
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Table 13. Bivariate Pearson Correlations Between Craniomaxillofacial Dimensions 

(R (p value». Values shown with significance at p:S .05 are bolded. 

Secondary Cranio-facial Dimensions 

N-ANS 
ANS-

N-UIT ANS-IP 
UIT 

Cranio-
N-ANS 

facial 

ANS-UIT 

N-UIT 1.00(.00) 

ANS-IP .31(.11) .92(.00) 

S-Sph Floor .24(.22) .07(.72) .24(.22) 0.78(.70) 

Sph Floor-PNS .29(.14) .17(.41) .29(.14) .20(.32) 

S-PNS .40(.04) .18(.38) .40(.04) .20(.31) 

Post Facial Hgt .24(.23) .35(.07) .24(.23) .38(.05) 

Lat Orb Distance .35(.07) .48(.01) .35(.07) .42(.03) 

Outer Mx Sinus .30(.13) .25(.21) .30(.13) .29(.14) 

Inner Mx Sinus -.26(.18) .13(.53) -.26(.18) .07(.73) 

SNA -.04(.86) -.01(.98) -.04(.86) .03(.89) 

SNB .03(.88) -.06(.78) .03(.88) .06(.75) 

ANB -.07(.74) .03(.90) -.07(.74) -.05(.79) 

S-PNS-Gn -.20(.30) .01(.97) -.20(.30) .03(.88) 

XY Axis Angle .05(.79) .32(.10) .05(.79) .25(.21) 

Sph Sin Long 
.07(.73) .25(.22) .07(.73) .14(.50) 

Axis-Gn 
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Table 14. Bivariate Pearson Correlations Between Craniomaxillofacial Dimensions 

(R (p value». Values shown with significance at p:S .05 are bolded. 

Secondary Cranio-facial Dimensions 

S-Sph 
Sph 

Post Facial 
Floor- S-PNS 

Floor 
PNS 

Hgt 

Cranio-
S-Sph Floor 

facial 

Sph Floor-PNS 

S-PNS 

Post Facial Hgt .06(.78) .45(.02) 

Lat Orb Distance .38(.05) .20(.33) .43(.02) .29(.15) 

Outer Mx Sinus .12(.54) .42(.03) .40(.04) .01(.98) 

Inner Mx Sinus .22(.26) -.11(58) 09(.65) .08(.69) 

SNA .56(.00) .12(.56) .52(.01) .13(.53) 

SNB .47(.01) .29(.14) .57(.00) .40(.04) 

ANB .24(.22) -.29(.15) -.02(.92) -.46(.02) 

S-PNS-Gn -.17(.39) -.36(.06) -.40(.04) -.30(.13) 

XY Axis Angle .42(.03) .08(.71) -.27(.17) -.19(.34) 

Sph Sin Long .00(1.00) -.13(.52) -.10(.64) -.03(.87) 
Axis-Gn 
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Table 15. Bivariate Pearson Correlations Between Craniomaxillofacial Dimensions 

(R (p value)). Values shown with significance at p::: .05 are bolded. 

Secondary Craniofacial Dimensions 

Lat Orb Outer Mx Inner Mx 
SNA 

Distance Sinus Sinus 

Cranio-
Lat Orb Distance 

facial 

Outer Mx Sinus 

Inner Mx Sinus .06(.76) 

SNA .14(.50) -.06(.77) 

SNB .02(.91) -.10(.62) .35(.07) .81(.00) 

ANB -.01(.94) .16(.41 ) -.04(.83) .28(.16) 

S-PNS-Gn .08(.68) -.26(.19) .04(.83) .04(.84) 

XY Axis Angle .26(.19) .32(.11) -.27(.18) -.44(.02) 

Sph Sin Long .16(.41) .13(.52) -.16(.44) -.21(.28) 
Axis-Gn 
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Table 16. Bivariate Pearson Correlations Between Craniomaxillofacial Dimensions 

(R (p value)). Values shown with significance at p::::: .05 are bolded. 

Secondary Craniofacial Dimensions 

SNB ANB 
S-PNS- XY Axis 

Gn Angle 

Cranio-
SNB 

facial 

ANB 

S-PNS-Gn -.24(.22) 

XY Axis Angle -.64(.00) 

Sph Sin Long 
-.28(.15) .04(.86) .10(.61) .36(.06) 

Axis-Gn 

Multiple Regressions were applied and the results are listed in Tables 17 to 27. 

Table 17 Sphenoid Sinus Width Multiple Regression with Predictor Variables Lat Orb 

Distance, Outer Mx Sinus and Inner Mx Sinus. Values shown with significance at p::::: .05 

are bolded. 

Dependant Variable = Sph Sin Width 

R Square = .352 , F = 4.156, P = .017 

Predictor Variable 

Lat Orb Distance 

Outer Mx Sinus 

Inner Mx Sinus 

Standardized 
Coefficient Beta 

56 

.336 

AOO 

.232 

T P 

1.673 .108 

1.678 .107 

1.076 .293 



Table 18. Sphenoid Sinus Hgt Multiple Regression with Predictor Variables S-PNS 

and Post Facial Hgt. Values shown with significance at p :s .05 are bolded. 

Dependant Variable = Sph Sin Hgt 

R Square =.164 ,F = 2.358, P = .116 

Predictor Variable 
Standardized 

Coefficient Beta T p 

S-PNS 

Post Facial Hgt 

.370 

.078 

1.839 .078 

.387 .702 

Table 19. Sphenoid Sinus Vol Multiple Regression with Predictor Variables Sph Sin Hgt, 

Sph Sin Width and S-PNS. Values shown with significance at p ::s .05 are bolded. 

Dependant Variable = Sph Sinus Vol 

R Square = .820 , .F = 40.478, p = .000 

Predictor Variable 
Standardized 

T Coefficient Beta 

Sph Sin Hgt .435 4.202 

Sph Sin Width . 511 4.910 

S-PNS .152 1.623 

p 

.000 

.000 

.118 

Table 20. Sphenoid Sinus Vol Multiple Regression with Predictor Variables Sph Sin 

Hgt and Sph Sin Width. Values shown with significance at p::S .05 are bolded. 

Dependant Variable = Sph Sinus Vol 

R Square =.823 , F = 55.609, p = .000 

Predictor Variable 

Sph Sin Hgt 

Sph Sin Width 

Standardized 
Coefficient Beta 

.472 

.552 
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T 

4.527 

5.294 

p 

.000 

.000 



Table 21. Sphenoid Sinus Vol Multiple Regression with Predictor Variables Lat Orb 

Distance, Outer Mx Sinus and Inner Mx Sinus. Values shown with significance at p:S .05 

are bolded. 

Dependant Variable = Sph Sinus Vol 

R Square = .283 , F = 3.028, p = .050 

Predictor Variable 
Standardized 

T 
Coefficient Beta 

Lat Orb Distance .199 .941 

Outer Mx Sinus .470 1.874 

Inner Mx Sinus .206 .908 

p 

.357 

.074 

.374 

Table 22. Mx Sin Width* Multiple Regression with Predictor Variables Lat Orb 

Distance, Outer Mx Sinus and Inner Mx Sinus. Values shown with significance at p:S .05 

are bolded. 

Dependant Variable = Mx Sin Width* 

R Square = .956 , F = 166.438, P = .000 

Predictor Variable 
Standardized 

t Coefficient Beta 

Lat Orb Distance .045 .850 

Outer Mx Sinus .699 11.254 

Inner Mx Sinus -.387 -6.872 

* Average of measurements from left and right 
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p 

.404 

.000 

.000 



Table 23. Mx Sin Vol* Multiple Regression with Predictor Variables Lat Orb Distance, 

Outer Mx Sinus and Inner Mx Sinus. Values shown with significance at p:S .05 are 

bolded. 

Dependant Variable = Mx Sin Vol* 

R Square = .634 , F = 13.257, p = .000 

Predictor Variable 
Standardized 

t 
Coefficient Beta 

Lat Orb Distance .150 .995 

Outer Mx Sinus .513 2.864 

Inner Mx Sinus -.327 -2.014 

* Average of measurements from left and right 

p 

.330 

.009 

.056 

Table 24. Mx Sin Vol* Multiple Regression with Predictor Variables Mx Sin PA 

Length*, Mx Sin Hgt*, Mx Sin Width* and Inner Mx Sinus. Values shown with 

significance at p:S .05 are bolded. 

Dependant Variable = Mx Sin Vol* 

R Square = .885 , F = 42.316, p = .000 

Predictor Variable 
Standardized 

t 
Coefficient Beta 

Mx Sin PA Length* .386 3.942 

Mx Sin Hgt* . 501 5.221 

Mx Sin Width * .278 2.228 

Inner Mx Sin .090 .797 

* Average of measurements from left and right 
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p 

.001 

.000 

.036 

.434 



Table 25. Mx Sin Vol* Multiple Regression with Predictor Variables Mx Sin PA 

Length*, Mx Sin Hgt* and Mx Sin Width*. Values shown with significance at p:S .05 are 

bolded. 

Dependant Variable = Mx Sin Vol* 

R Square = .882, F = 57.115,p = .000 

Predictor Variable 
Standardized 

T 
Coefficient Beta 

Mx Sin PA Length* .378 3.911 

Mx Sin Hgt* .494 5.213 

Mx Sin Width* .219 2.201 

* Average of measurements from left and right 

p 

.001 

.000 

.038 

Table 26. N-ANS Multiple Regression with Predictor Variables Mx Sin Vol*, Mx Sin 

Width*, Mx Sin Hgt* and Mx Sin PA Length*. Values shown with significance at p:S .05 

are bolded. 

Dependant Variable = N-ANS 

R Square = .497 , F = 5.427,p = .003 

Predictor Variable 
Standardized 

T p 
Coefficient Beta 

Mx Sin Vol* -.240 -.546 .591 

Mx Sin Width* -.228 -.987 .334 

Mx Sin Hgt* .307 l.041 .309 

Mx Sin P A Length * .824 3.133 .005 

* Average of measurements from left and right 
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Table 27. N-ANS Multiple Regression with Predictor Variable Mx Sin PA Length*. 

Values shown with significance at p :s .05 are bolded. 

Dependant Variable = N-ANS 

R Square = .422 ,F = 19.961,p = .000 

Predictor Variable 
Standardized 

Coefficient Beta 
T P 

Mx Sin PA Length* .666 4.468 .000 

* Average of measurements from left and right 

Intra-Observer Reliability 

The intra-observer variability of repeated measurements was assessed with a 

paired 2-taled t-test. A p value :S0.05 indicates that there was a statistically significant 

difference between initial and remeasured values. Results are shown in Table 28. 

Table 28. T-Test Results of Remeasured Values. Values shown with significance at p:S 

.05 are bolded. 

Parameter 
Mean(SD) Mean(SD) 

Original Measure Repeat Measure 
p 

ANS-IP 28.06 (±3.01) 28.09 (±2.89) .751 

SNB 80.13 (± 3.90) 79.52 (±3.96) .139 

Sph Sin Vol 
10140.71 10367.30 

.444 
(±421O.56) (±4522.51) 

Intra-observer reliability was also assessed with the Intraclass Correlation 

Coefficient. A p value :S0.05 indicates that there was no statistically significant difference 

between initial and remeasured values. Results are shown in Table 29. 
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Table 29. Intrac1ass Correlation Coefficient. Values shown with significance at p:S .05 

are bolded. 

Parameter ICC F P 

ANS-IP .997 376.327 .000 

SNB .979 48.565 .000 

Spb Sin Vol .991 106.017 .000 
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HYPOTHESIS I 

CHAPTER V 

DISCUSSION 

ANOY A revealed that there were statistically significant differences between 

each ofthe three development/age groups for the summarized measurements (Table 9). 

These findings support that there is a significant increase in lower anterior facial height 

in an anterior and inferior direction with increase in development/age (Enlow and Hans, 

1996). Part ofthis is contributed by the continued growth of the spheno-occipital 

synchondrosis leading to an anteriorly and inferiorly positioned mandible (Coben, 1998). 

N-Gn, and Gn-IP were significantly different between groupings while there was 

no difference in N-IP or N-ANS. These findings concur with those ofNasjleti and 

Kowalski (1975) who showed a change in the proportion of upper facial height to the 

total facial height between age groups in the developing child. 

Contrary to Enlow and Hans (1996), measurements of upper facial height and the 

Sph Sin Hgt were not significantly different between groups. This may be the result of 

vertical growth of the nasomaxillary complex occurring prior to that ofthe mandible 

before the age of the current study's youngest subjects. Another possibility is that 

vertical growth of the mandible occurs in growth spurts and is easier to detect differences 

in measurements than the steadier growth ofthe developing maxilla. 
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The lack of difference in maxillary and sphenoid sinus dimensions, except Sph 

Sin PA Length, between the three groups was expected as this study's youngest subject 

group was 8-15 years old. This appears to be the age after which the largest growth 

spurts of sphenoid and maxillary sinus have occurred (Park, et af., 20 I 0). 

The current study found slightly smaller maxillary sinus dimensions compared to 

other studies; maxillary sinus P A length 36.5 mm compared to 39.6 mm (Spaeth, et af., 

1997) and 40 mm (Barghouth, et at., 2002); maxillary sinus width 24.8 mm compared to 

30.8 mm (Spaeth, et af., 1997) and 30 mm (Barghouth, et af., 2002); maxillary sinus 

height 31.0 mm compared to 38 mm (Barghouth, et al., 2002) and maxillary sinus 

volume 14.09 cm3 compared to 14.83 cm' (Park, et af., 2010). These smaller values may 

be attributed to the current study not measuring through septa and different 

representative values obtained with the technology used (EI and Palomo, 2010). 

The present study found larger sphenoid sinus dimensions compared to previous 

report; sphenoid sinus width 32.9 mm compared to 30.1 mm (Spaeth, et al., 1997); and 

sphenoid sinus volume 10.12 cm3 compared to 6.94 cm3 (Park, et al., 2010). These larger 

values may be attributed to different measurement technique and technology (EI and 

Palomo, 2010). 

It is unclear why there was a statistically significant difference in Sph Sin PA 

Length between the three sample groups. The Sph Sin PA Length found in group 2, 

made up of subjects 14-17 years old, and was 29.3 mm. This was only slightly larger 

than findings from Spaeth et al., (1997) whose subjects were 12-18 years old and had a 

sphenoid sinus PA length ranging from 23.7 - 28.0 mm. 
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Rothstein and Y oon-Tarlie (2000) postulated that, ""excessively developed" 

sinuses may contribute to a more protrusively positioned maxilla." Our results do not 

support this hypothesis as no correlation was found between SNA and any maxillary or 

sphenoid sinus dimensions. 

HYPOTHESIS II 

Bivariate Pearson correlations showed that there were significant relationships 

between external topographic measurements and internal measurements. Correlations 

were found between the Lat Orb Distance and the: Outer Mx Sin Width, S-PNS, ANS­

UIT, Sph Sin Width and the Sph Sin Vol. Correlations were also found between the N­

ANS and the: S-PNS, Mx Sin Hgt, Mx Sin PA Length and the Mx Sin Vol. 

HYPOTHESIS III 

Bivariate correlations and multiple regression analysis showed that there were 

significant relationships between linear and volumetric dimensions of the sphenoid sinus, 

maxillary sinuses and other selected craniomaxillofacial dimensions. 

Multiple regression analysis showed the predictor variables Sph Sin Hgt and Sph 

Sin Width to be significant in determining the value of the Sph Sin Vol. Similarly, 

multiple regression analysis showed the predictor variables Mx Sin Hgt, Mx Sin Width 

and Mx Sin PA Length to be significant in determining the value of the Mx Sin Vol. The 

Standardized Coefficient Betas with corresponding T values from these analyses are listed 
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in Tables 20 and 25 for three dimensional calculations when airway volume segmentation 

software is not available. 

It has been suggested that the maxillary sinuses grow in a lateral and inferior 

direction (Leclerc and Leclerc, 2009). The current study found: 

• a negative correlation between the Outer Mx Sin Width and the Inner Mx Sin 

Width 

• positive correlations between the Mx Sin Vol to Mx Sin PA Length, Mx Sin 

Width, Mx Sin Hgt and the Inner Mx Sin Width 

• positive correlations between the Sph Sin Vol to Sph Sin Width and Sph Sin Hgt 

Therefore, the results presented in this study find that the maxillary sinuses do not 

expand solely in a lateral and inferior direction. The findings in Tables 11 and 12 support 

that the sinuses grow in a more "balloon" style of expansion 

When comparing the same dimension of the sphenoid sinus with that of the 

maxillary sinus, a positive correlation was found between the Mx Sin Hgt and the Sph Sin 

Hgt, as well as between the Mx Sin Vol and the Sph Sin Vol, but not between the Mx Sin 

Width and the Sph Sin Width. Correlations were also found in different dimensions of the 

maxillary sinus with relation to the sphenoid sinus; the Mx Sin Width was correlated to 

the Sph Sin Vol and the Mx Sin Hgt was correlated to the Sph Sin Vol. The findings in 

this study support those of Emirzeoglu et at., (2007), that the dimensions of parana sal 

sinuses are closely related to each other. 
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A review of correlations found in this study has highlighted the importance of the 

correlation between S-PNS to several other structures. These include the: 

• Sph Sin Vol 

• Sph Sin Width 

• Sph Sin Hgt 

• Mx Sin Vol 

• Outer Mx Sin Width 

• Lat Orb Distance 

• N-ANS 

• N-UIT 

• SNA 

• SNB 

• S-PNS-Gn (negative correlation) 

Assumptions must not be prematurely made between oxygen flow through the 

posterior nasopharyngeal airway and form as the cause for these structural correlations 

(Harari, et at., 2010), as the same correlations between the Sph Floor-PNS do not 

replicate similar findings as would be expected. The cause for these multiple structural 

associations with S-PNS is presently unknown. 

A review of correlations also found correlations between the N-ANS to Mx Sin 

Hgt, Mx Sin PA Length and Mx Sin Vol. No correlations were found between the N-ANS 

and any ofthe sphenoid dimensions. In conclusion, where S-PNS has several structural 

67 



correlations with sphenoid sinus dimensions, N-ANS has several structural correlations 

with maxillary sinus dimensions. 

HYPOTHESIS IV 

There were statistically significant correlations found between vertical, antero­

posterior and transverse craniomaxillofacial dimensions. A positive bivariate correlation 

was found between Sph Sin Width and: S-PNS, and the Lat Orb Distance. Another 

positive correlation was found between the Mx Sin PA Length and the N-ANS. The 

Outer Mx Sin Width was positively correlated to S-PNS. The SNA was also found to 

have a positive bivariate correlation with: S-PNS, and the Inner Mx Sin Width. These 

findings support that dimensions of particular craniomaxillofacial structures do not 

enlarge independently in a linear fashion along one plane. Hence, craniomaxillofacial 

growth assessments must not ignore the changes occurring simultaneously in all three 

dimensions. 

HYPOTHESES V AND VI 

There was no statistically significant difference between repeated and initial 

measurements for the sample of representative volumetric and linear dimensions for 

subjects in three developmental groups based on age and fusion of the spheno-occipital 

synchondrosis. Further, there was high intra-observer reliability of repeat measurements. 

While the volumetric results presented in this study are highly repeatable this does not 

imply that their values are highly representative of their respective structures' true 
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volumes. Different software can result in drastically different values for the same airway 

volume measured (El and Palomo, 2010). 

LIMITATIONS AND FUTURE STUDIES 

One limitation of this study is that after the exclusion criteria were applied, only a 

small sample size (n=27) remained. As a result, measurements were obtained, and where 

no significant differences were found between groups, results from the three groups were 

combined into one large sample group and further statistical assessments were conducted. 

This was done in place of assessing each ofthe three desired development/age groups 

independently. Despite this small sample size, there were enough results with statistical 

significance to draw conclusions. Future studies should obtain larger sample sizes and 

assess mean volumes and correlations specific to developmental stages of growth. 

This study excluded a lot of datasets based on not having teeth in occlusion and 

having the complete mandible included in the image. This was done to include specific 

craniomaxillofacial skeletal measurements of the mandible. Many of these measurements 

were eliminated from the combined group (n=27) because of differences found with 

ANOVA between the three smaller sample groups based on development/age. Using this 

same database, a future study could obtain a larger sample size by not examining specific 

craniomaxillofacial measurements of the mandible and including patients regardless of 

having teeth in occlusion, posterior contacts or the mandible in the image. 

Another shortcoming of this retrospective study is that a complete medical history 

of subjects was not able to be obtained. Resultantly, this study relied on the accuracy of 

the radio logic reports and findings in images as the standard with which subjects were 

excluded. For example, without being able to ask subjects ifthey had a history of wearing 
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braces, it became necessary to rely on seeing brackets in the acquired dataset or a mention 

in the radiologic report of a history of having wom braces as the basis for exclusion. 

Future studies should be designed in a prospective fashion requesting specific medical 

histories. 

Further, without subject histories it was not possible to know the ethnicity and sex 

of subjects which has been suggested to have a statistically significant difference on 

measurements (Shea, 1977; Spaeth, et ul., 1997). Hence, this study attempted to 

compensate for sex by using development as opposed to chronologic age to separate the 

growing subjects in groups 1 and 2. The sample size in this study was too small to assess 

statistically significant differences in males and females in the present study sample. 

Other studies have shown no difference in sinus volumes between males and females 

(Barghouth, et aI., 2002). Future studies should obtain larger sample sizes and obtain a 

history of sex and ethnicity. 

Due mostly, to the retrospective nature of the current study and available scans, it 

was not possible to determine changes in dimensions that resulted in individuals over 

time. Three subjects had remained after exclusion criteria were applied who had datasets 

available from two different time points. However, the results from comparing these three 

subjects would not have much statistical value. In place, the current study compared 

development/age by relying upon a cross section of subjects at three development/age 

points for a "snapshot" of what could be expected. Future studies would ideally be 

prospective and obtain datasets at two time points for the same subject. This would 

provide more information for changes in dimensional relationships between the sphenoid 
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sinus, maxillary sinuses and other selected craniomaxillofacial structures with growth 

over time. 

This study is limited by the resolution of subject images, motion artefacts and 

accuracy of the computer software to be able to discern and measure structures 

accordingly. Occasionally, the image requirements of the computer used for utilising the 

3D software were more than the computer could manage and the computer would 

"crash." This resulted in the need for the dataset to be reloaded and reoriented. Despite 

several attempts while reloading and reorienting, the image could not always be 

reoriented to parallel initial measurements exactly. Remeasurements taken to test intra­

observer reliability required reloading, reorientation and remeasurements and no 

significant difference was able to be detected between initial and repeat measurements 

(Tables 28 and 29). Hence, the inconsistency of being unable to reorient the images 

exactly was not considered a statistically significant source of error. In the future, perhaps 

software companies will be able to create programs which will allow for the exact 

reorientation of images to initial orientations. 

Volumetric measurements required the placing of seeds and the observer to define 

the threshold of opacity of the voxels in the airway to count towards the volume 

measured. These two techniques, (seed placing and voxel opacity threshold selection), are 

observer dependant. Results from repeat measurements showed a high ability of the 

observer to use the same technique (Tables 28 and 29). Future studies should use multiple 

observers for recording such volumes and compare inter-observer reliability of measuring 

these volumes based on these observer specific techniques. 
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CHAPTER VI 

CONCLUSION 

In this study we analyzed the dimensions of the sphenoid sinus, maxillary sinuses 

and other selected craniomaxillofacial structures between groups of subjects divided into 

three developmental groups based on age and fusion of the spheno-occipital 

synchondrosis. Retrospective datasets of 27 patients existed after exclusion criteria were 

applied. 

ANOVA revealed differences between groups for the following measurements: 

• ANS-LlT 

• Gn-UIT 

• Gn-LIT 

• Gn-IP 

• N-Gn 

• PNS-Gn 

• Sph Floor-Gn 

• S-Gn 

• Sph Sin P A Length 

• SN-GoGn 

Measurements without differences between groups were grouped together. 
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The results of this study suggest that correlations exist between topographic and 

internal measurements. These include correlations between: 

• Lat Orb Distance and: Outer Mx Sin Width, S-PNS, ANS-UIT, Sph Sin 

Width and Sph Sin Vol 

• N-ANS and: S-PNS, Mx Sin Hgt, Mx Sin PA Length, Mx Sin Vol 

The results of this study suggest that correlations exist between volumetric and 

linear dimensions of the sphenoid and maxillary sinuses and other selected 

craniomaxillofacial dimensions. Multiple regressions showed associations when the 

following Predictor Variables were used to predict the Dependant Variable (Predictor 

Variable: Dependant Variable): 

• Sph Sin Hgt and Sph Sin Width: Sph Sin Vol 

• Mx Sin Hgt, Mx Sin Width and Mx Sin PA Length: Mx Sin Vol 

Significant bivariate correlations were found that include, but are not limited to, 

existing between: 

• Outer Mx Sin Width and Inner Mx Sin Width (negative correlation) 

• Mx Sin Vol to Mx Sin PA Length, Mx Sin Width, Mx Sin Hgt and Inner 

Mx Sin Width 

• Sph Sin Vol to Sph Sin Width and Sph Sin Hgt 

• Mx Sin Hgt and Sph Sin Hgt 

• Mx Sin Vol and Sph Sin Vol 

• Mx Sin Width and Sph Sin Vol 

• Mx Sin Hgt and Sph Sin Vol 
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• S-PNS to Sph Sin Vol, Sph Sin Width, Sph Sin Hgt, Mx Sin Vol and, 

Outer Mx Sin Width, Lat Orb Distance, N-ANS, N-UIT, SNA, SNB and 

S-PNS-Gn (negative correlation) 

• N-ANS to Mx Sin Hgt, Mx Sin PA Length and Mx Sin Vol 

Significant bivariate correlations were expected, but not found, between the following 

selected dimensions: 

• Mx Sin Width and Sph Sin Width 

• N-ANS and any of the sphenoid dimensions 

The results of this study suggest that correlations exist between vertical, antero­

posterior and transverse dimensions. These include: 

• Sph Sin Width and S-PNS and Lat Orb Distance 

• Mx Sin PA Length and N-ANS. 

• Outer Mx Sin Width and S-PNS 

• SNA and S-PNS and Inner Mx Sin Width 

The results of this study are presented to provide the basis for an objective normal 

relationship of sphenoid and maxillary sinuses and other selected craniomaxillofacial 

structures and for studies involving craniofacial form, anomalies and diseases of the 

smuses. 
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APPENDICES 

APPENDIX A - Approval of Protocol by Human Studies Committee 

To: 
From: 
Date: 
Subject: 

Tracking #: 
Title: 

Approval 
Date: 
expiration 
Date: 

Scarfe, William 

INST1T\JTIONAL REVIEW BOARDS 

UnM!niily 01 louisVIlle 

MedCenter One. Suite 200 

501 E Broadway 

Louisville. Kentucky 40202-1798 

Ofliat: 502-852-5188 

Fax' 502-852-21s.. 

The University of Louisville Institutional Review Board (IRB) 
Wednesday, March 17, 2010 
Approval Letter 

10.0093 
THREE DIMENSIONAL ANALYSIS OF THE SPHENOID SINUS AND 
RELATIONSHIPS TO OTHER CRANIOMAXILLOFACIAL STRUCTURES 
USING CONE-BEAM COMPUTED TOMOGRAPHY 
3116/201012:00:00 AM 

3/15/2011 12:00:00 AM 

This study was reviewed on 0311612010 by the chair/vice chair of the Institutional 
Review Board and approved through the Expedited Review Procedure, according to 45 
CFR 46.11 O(b) , since this study falls under Expedited Category (5) Research involving 
materials (data, documents, records, or specimens) that have been collected, or will be 
collected solely for non-research purposes (such as medical treatment or diagnosis). 

This study was also approved through 45 CFR 46.116 (D), which means that it has 
been granted a waiver of informed consent because it meets the following criteria: 
o The research involves no more than minimal risk to the subjects. 
o The waiver or alteration will not adversely affect the rights and welfare of the subjects. 
o The research could not practicably be carried out without the waiver or alteration. 
o VVhenever appropriate, the subjects will be provided with the additional pertinent 
information after participation. 

The following items have been approved: 

• Research Protocol, not dated 
• Data Collection Form, not dated 
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• HIPAA Complete Waiver, not dated 

This study now has finallRB approval from 03/16/2010 through 03/1512011. You 
should complete and return the Progress Report/Continuation Request Form EIGHT 
weeks prior to this date in order to ensure that no lapse in approval occurs. The 
committee will be advised of this action at their next full board meeting. 

Site Approval 

If this study will take place at an affiliated research institution, such as Jewish 
Hospital/St Mary's Hospital, Norton Healthcare, or University of Louisville Hospital, site 
approval by the affiliated institution must be given before the research may begin. 

Privacy & Encryption Statement 
The University of Louisville's Privacy and Encryption Policy requires such information 
as identifiable medical and health records: credit card, bank account and other personal 
financial information; social security numbers; proprietary research data; dates of birth 
(when combined with name, address and/or phone numbers) to be encrypted. For 
additional information: http://security.louisville.edu/PoIStdslISO/PS018.htm. 

1099 Information (If Applicable) 
As a reminder, in compliance with University policies and Internal Revenue Service 
code, all payments (including checks, gift cards, and gift certificates) to research 
subjects must be reported to the University Controller's Office. Petty Cash payments 
must also be monitored by the issuing department and reported to the Controller's 
Office. Before issuing compensation, each research subject must complete a W-9 
form. 
For additional information, please contact the Controller's Office at 852~237 or 
controll@louisville.edu. 

The following is a link to an Instruction Sheet for BRAAN2 "How to Locate 
Stamped/Approved Documents in BRAAN2" 

https:lllouisville.edu/researchlbraan2/help/Docs.pdf 

Please begin using your newly approved (stamped) consent(s) at this time. The 
previous versions are no longer valid. If you need assistance in accessing any of the 
study documents, please feel free to contact our office at (502) 852-5188. You may 
also email our service account at hsppofC@louisville.edu for assistance. 

Best wishes for a successful study. If you have any questions please contact the 
HSPPO at (502) 852-5188 or hsppofC@louisville.edu. 
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Thank you. 

Board Designee: Groff, Diller 

Once you begin your human subject research the following regulations apply: 

1. Unanticipated problems or serious adverse events encountered in this research 
study must be reported to the IRB within five (5) work days. 
2. Any modifications to the study protocol or informed consent form must be 
reviewed and approved by the IRB prior to implementation. 
3. You may not use a modified informed consent form until it has been approved 
and validated by the IRB. 
4. Please note that the IRB operates in accordance with laws and regulations of 
the United States and guidance provided by the Office of Human Research Protection 
(OHRP), the Food and Drug Administration (FDA), the Office of Civil Rights (OCR) and 
other Federal and State Agencies when applicable. 
5. You should complete and SUBMIT the Continuation Request Form eight weeks 
prior to this date in order to ensure that no lapse in approval occurs. 

Letter Sent By: Tabb, Stephanie, 3/17/20104:13 PM 

Fila AccreditllJion since June 2005 by I" .. As.wciaJion Jor Ih" A <'Credilo1;oIJ oJ 
Humtln Rl!SI!IlTch Protection Programs, Inc. 
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APPENDIX B - Reasons for Exclusions From Initial Database 

Field of View 

Hand and wrist image 19 

Mandible only 802 

Mandible and maxilla only 7 

Landmarks not captured in field of view 21 

Maxilla only 677 

Skull only 1 

Age 

Scan of patients older than 39 years old 
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Structural Abnormalities 

Sleep apnea 6 

Cleft lip and palate 12 

Craniofacial anomalies 3 

Known or suspected hemifacial microsomia 4 

Marked facial asymmetry 6 

Maxillofacial skeletal anomalies - dentocraniofacial anomalies 2 

Plagiocephaly 

Skeletal anterior, posterior and vertical craniofacial discrepancies 12 

Associated Syndromes 

C l-C2 arthrosis syndrome 

Cleidocranial dysplasia 

Crouzon syndrome 

Goldenhar syndrome 

Multiple eruption cysts 

3 

2 

2 

Oculodentodigital dysplasia signs 1 

Suspected keratocystic odontogenic tumour 9 

Saethre-Chotzen syndrome 2 

Suspected or known ectodermal dysplasia 3 

Treacher-Collins syndrome 

Unknown suspected syndrome 5 
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Systemic Abnormalities 

Dentinogenesis imperfecta 

Neurofibromatosis 

Rheumatoid arthritis 3 

Temporomandibular Joint Abnormalities 

Adaptive remodelling of temporomandibular joint condyle 2 

Mandibular condyle hyperplasia 6 

Left mandibular coronoid process hyperplasia 

Marked disc displacement in closed position 

Misplaced mandible 

Temporomandibular joint ankylosis 

Temporomandibular joint changes 

Temporomandibular joint disease 

Temporomandibular joint osteoarthritis 
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Fracture/Surgical 

Anterior implant of maxillary central incisor 

Artificial temporomandibular joint 1 

Condylar surgery 

Displaced maxillary fracture 

Displaced fracture of right infraorbital rim 

Facial fracture involving the zygoma 1 

Plate and healing fracture invo lving the maxilla 2 

Fractured mandibular condylar head 2 

Left resected mandible 

Image following fracture 11 

Image following orthognathic surgery 2 

Surgical defect 2 

Surgical follow-up 22 

Trauma and plating 
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Local/Regional Changes 

Arne 10 blastoma 

Expanded anterior ascending ramus 

Healing defects with recurrent cystic lesions 

Monostotic fibrous dysplasia 

Benign non-odontogenic lesion where biopsy was suggested 

Benign odontogenic tumour 

1 

Compound odontoma affecting eruption of anterior mandibular dentition formation 1 

Maxillary pathologic lesion 

Odontogenic myxoma 

Odontoma 

Palatal tumour 

Suspected intraosseous hemangioma 

Recurrent cystic lesion 

Suspected or known neoplasm 

Suspected or known recurrent tumour 
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Sinus 

Generalised osteomeatal thickening 1 

Hypertrophic maxillary sinus 1 

Mucosal retention phenomenon 3 

Mucosal thickening 6 

Mucous extravasation phenomenon 

Opacification of maxillary sinus 

Sinusitis 

Braces 

Known history of braces 

Currently in braces 

Scan Issues 

10 

4 

Corrupt, errors or missing images 9 

Insufficient information to track patient's image 3 

Motion artefact 

Open Occlusion 

Dentition not in occlusion during scan 
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Posterior Contact Bilaterally 

Edentulous 3 

Lacking at least one posterior contact on each side 2 
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APPENDIX C - Methodology for the Identification of Landmarks for Measurements 

Nasion to Anterior Nasal Spine (Sagittal): In the midsagittal plane, the anterior­

posterior crosshair was placed over the Anterior Nasal Spine. The fITst point was placed 

on the Nasion and the second point was placed directly inferior along the anterior­

posterior crosshair. Under magnification, the superior-inferior crosshair was placed over 

the first point and the fITst point was adjusted as necessary. The image was then scrolled 

to the second point which was moved accordingly if required, to ensure that it was at the 

intersection of the two crosshairs (Figure 26). 

Figure 26. Nasion to Anterior Nasal Spine. 

Anterior Nasal Spine to Upper Incisor Tip (Sagittal): In the midsagittal plane, 

the anterior-posterior crosshair was placed over the Anterior Nasal Spine. The fITst point 

was placed on the Upper Incisor Tip and the second point was placed directly superior 

along the anterior-posterior crosshair. Under magnification, the superior-inferior crosshair 
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was placed over the fIrst point and the fIrst point was adjusted as necessary. The image 

was then scrolled to the second point which was moved accordingly, if required, to ensure 

that it was at the intersection of the two crosshairs (Figure 27). In case of overlapping 

central incisors both appearing in this plane, and everywhere else in the midsagittal plane 

the Upper Incisor Tip was being measured, the most inferior Upper Incisor Tip was used. 

Figure 27. Anterior Nasal Spine to Upper and Lower Incisor Tip. 

Anterior Nasal Spine to Lower Incisor Tip (Sagittal): In the midsagittal plane, 

the anterior-posterior crosshair was placed over the Anterior Nasal Spine. The first point 

was placed on the Lower Incisor Tip and the second point was placed directly superior 

along the anterior-posterior crosshair. Under magnifIcation, the superior-inferior crosshair 

was placed over the fIrst point and the fITst point was adjusted as necessary. The image 

was then scrolled to the second point which was moved accordingly, if required, to ensure 

that it was at the intersection of the two crosshairs (Figure 27). In case of overlapping 

central incisors both appearing in this plane, and everywhere else in the midsagittal plane 
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the Lower Incisor Tip was being measured, the most superior Lower Incisor Tip was 

used. 

Anterior Nasal Spine to Incisal Plane (Sagittal): The excel data spreadsheet was 

used to average the linear values of the Anterior Nasal Spine to Upper Incisor Tip and the 

Anterior Nasal Spine to Lower Incisor Tip. 

Nasion to Gnathion (Sagittal): In the midsagittal plane, the anterior-posterior 

crosshair was placed over the Gnathion. The fIrst point was placed over Nasion and the 

second point was placed directly inferior along the anterior-posterior crosshair. Under 

magnifIcation, the superior-inferior crosshair was placed over the fust point and the fIrst 

point was adjusted as necessary. The image was then scrolled to the second point which 

was moved accordingly, if required, to ensure it was at the in intersection of the two 

crosshairs (Figure 28). 

Figure 28. Nasion to Gnathion. 
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Gnathion to Upper Incisor Tip (Sagittal): In the midsagittal plane, the anterlor­

posterior crosshair was placed over the Gnathion. The first point was placed on the Upper 

Incisor Tip and the second point was placed directly inferior along the anterior-posterior 

crosshair. Under magnification, the superior-inferior crosshair was placed over the first 

point and the first point was adjusted as necessary. The image was then scrolled to the 

second point which was moved accordingly, if required, to ensure that it was at the 

intersection of the two crosshairs (Figure 29). 
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Figure 29. Gnathion to Upper and Lower Incisor Tip. 

Gnathion to Lower Incisor Tip (Sagittal): In the midsagittal plane, the anterior­

posterior crosshair was placed over the Gnathion. The first point was placed on the Lower 

Incisor Tip and the second point was placed directly inferior along the anterior-posterior 

crosshair. Under magnification, the superior-inferior crosshair was placed over the first 

point and the first point was adjusted as necessary. The image was then scrolled to the 
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second point which was moved accordingly, if required, to ensure that it was at the 

intersection of the two crosshairs (Figure 29). 

Gnathion to Incisal Plane (Sagittal): The excel data spreadsheet was used to 

average the linear values of the Gnathion to Lower Incisor Tip and the Gnathion to Upper 

Incisor Tip. 

Sella Turcica to Nasion to A-Point (Sagittal): In the midsagittal plane points 

were marked under magnification in the center of the Sella Turcica, then on Nasion and 

finally at A-point (Figure 30). 

Figure 30. Sella Turcica to Nasion to A-Point. 

Sella Turcica to Nasion to B-Point (Sagittal): In the midsagittal plane points 

were marked under magnification in the center of the Sella Turcica, then Nasion and 

fmally B-point (Figure 31). 
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Figure 31. Sella Turcica to Nasion to B-Point. 

A-Point to Nasion to B-Point (Sagittal): In the midsagittal plane points were 

marked under magnification at A-Point, then N and finally at B-point (Figure 32). 

Figure 32. A-Point to Nasion to B-Point. 
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Sella Turcica to Posterior Nasal Spine (Sagittal): In the midsagittal plane points 

were placed under magnification in the center of the Sella Turcica and at the most 

posterior aspect of the Posterior Nasal Spine (Figure 33). 

Figure 33. Sella Turcica to Posterior Nasal Spine. 

Sella Turcica to Sphenoid Floor (Sagittal): In the midsagittal plane, under 

magnification a point was placed overlapping the Sella Turcica point marked in the Sella 

Turcica to Posterior Nasal Spine measurement. A second point was placed along this line 

at the junction of the outer cortex of the body of the spheno id inferiorly at its junction 

with the superior margin of the vomer (Figure 34). 
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Figure 34. Sella Turcica to Sphenoid Floor. 

Sphenoid Floor to Posterior Nasal Spine (Sagittal): The excel data spreadsheet 

was used to determine this linear value by subtracting the values of the Sella Turcica to 

sphenoid floor measurement from the Sella Turcica to Posterior Nasal Spine measurement 

(Figure 34). 

Sella Turcica to Gnathion (Sagittal): [n the midsagittal plane, under 

magnification, a point was placed overlapping the Sella Turcica point marked in the SeUa 

Turcica to Posterior Nasal Spine measurement. The second point was placed on the 

Gnathion (Figure 35). 
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Figure 35. Sella Turcica to Gnathion. 

Posterior Nasal Spine to Gnathion (Sagittal): The excel data spreadsheet was 

used to determine this linear value by subtracting the values ofthe Sella Turcica to 

Posterior Nasal Spine measurement from the Sella Turcica to Gnathion measurement 

(Figures 33 and 35). 

Sella Turcica to Posterior Nasal Spine to Gnathion (Sagittal): This angular 

measurement was measured in the midsagittal plane through marking points under 

magnification in the center of the Sella Turcica, then on the posterior aspect of the 

Posterior Nasal Spine and [mally on Gnathion (Figure 36). 

99 



Figure 36. Sella Turcica to Posterior Nasal Spine to Gnathion. 

Sphenoid Floor to Gnathion (Sagittal): The excel data spreadsheet was used to 

determine this linear value by subtracting the values of the Sella Turcica to sphenoid floor 

measurement from the Sella Turcica to Gnathion measurement (Figures 34 and 35). 

Sphenoid Sinus Long Axis to Gnathion (Sagittal): In the rilldsagittal plane the 

sagittal slice was inspected and rotated such that the anterior-posterior crosshair would 

bisect the long axis ofthe sphenoid sinus. Three to six guide-Lines were placed on the 

screen in what was at that time a superior-inferior direction. The guide-lines were 

superimposed with, what was at that time, the superior-inferior crosshair. Magnification 

was used to ensure the guidelines were parallel to this crosshair while touching the 

borders of the sphenoid sinus inner cortex. Immediately after placement of each 

guideline, prior to movement of the crosshair, the guideline was reduced to half its height 

while one if its ends were left unperturbed touching one of the inner cortical borders. A 

line was then placed that, upon inspection, best intersected the remaining ends of the 

guidelines towards the middle of the long axis of the sphenoid sinus. The angle tool was 

selected. A point was placed in an anterior location of the long axis line, then a point was 
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placed at the junction of the Sella Turcica with the Gnathion line, and finally a point was 

placed at inferior location along the Sella Turcica Gnathion line. The sagittal slice was 

then reoriented to the original orientation as previously described (Figure 37). 

Figure 37. Sphenoid Sinus Long Axis to Gnathion. 

Maximal Sphenoid Sinus Posterior-Anterior Length (Sagittal): In the 

midsagittal plane, at 0.5mm slab thickness, the anterior-posterior crosshair was placed 

through the sphenoid sinus at the location suspected to have the longest length. Three to 

five lines were drawn from the posterior to the anterior inner cortical margins of the 

sphenoid sinus in locations suspected to have the greatest length by moving the anterior­

posterior crosshair superior or inferior as required and by scrolling through the sagittal 

planes medially-laterally. Under magnification the anterior-posterior crosshair was used 

as a guide to ensure measurements were parallel to Frankfort Horizontal. Measurements 

being recorded would not cross any radiopaque areas such as septa as demonstrated in the 
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figure below on the left. The measurement with the largest value was recorded in the 

excel data spreadsheet (Figure 38). 

(a) (B) 
Figure 38. Maximal Sphenoid Sinus Posterior-Anterior Length in lateral sagittal slice (a), 

and in a different lateral sagittal slice measured at 3 locations (b) . 

Maximal Right Maxillary Sinus Posterior-Anterior Length (Sagittal): The 

same technique was applied as that used to measure the Maximal Sphenoid Sinus 

Posterior-Anterior Length (Figure 39). 

Figure 39. Maximal Right Maxillary Sinus Posterior-Anterior Length. 
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Maximal Left Maxillary Sinus Posterior-Anterior Length (Sagittal): The same 

technique was applied as that used to measure the Maximal Sphenoid Sinus Posterior­

Anterior Length independently of the plane used to measure the maximal right maxillary 

sinus posterior-anterior length (Figure 39). 

XY Axis Angle (Nasion to Basion with Gnathion to Sella Turcica) (Sagittal): 

In the mid sagittal plane, a line was drawn from Nasion to Basion. A second line was 

drawn from Sella Turcica to Gnathion. The first point of this angular measurement was 

placed toward the forward end ofthe Nasion-Basion line. The second point was placed at 

the intersection of the two lines . The third point was placed toward the bottom end of the 

Sella Turcica-Gnathion line (Figure 40). 

Figure 40. XY Axis Angle (Nasion to Basion with Sella Turcica to Gnathion). 
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Posterior Facial Height (Sagittal): Using the 5.0 mm slab, in the midsagittal 

plane, the crosshairs were placed to intersect over the center ofthe Sella Turcica. The 

sagittal slice view was moved laterally until the Gonion appeared most clear. A line was 

placed measuring the distance from the intersection of the crosshairs to the Gonion 

(Figure 41) . 

(b) 

(c) 
Figure 4l. Intersection of cross hairs over Sella Turcica in midsagittal view (a), 

measurement from crosshairs to Gonion in sagittal view (b), coronal view ofS-Go 

measurement (c). 
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Sella Turcica to Nasion with Left Gonion to Gnathion (Sagittal): Using the 

SteinerlSM analysis, in the midsagittal plane with 5.0 mrn thickness, points were marked 

at Nasion, Sella Turcica and Gnathion. The sagittal moved laterally to mark the Gonion 

(Figure 42). 

(a) (b) 
Figure 42. Midsagittal plane with markings placed at Sella Turcica, Nasion and Gnathion 

(a), and in a lateral sagittal plane with marking placed at Gonion (b). 
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Maximal Sphenoid Sinus Superior-Inferior Height (Coronal): In a coronal 

plane, at 0.5mm slab thickness, the superior-inferior crosshair was placed through the 

sphenoid sinus at the location suspected to have the tallest height. Three to five lines were 

drawn from the inferior to the superior inner cortical margins of the sphenoid sinus in 

locations suspected to have the greatest height by moving the anterior-posterior crosshair 

medially-laterally as required and by scrolling through the coronal planes anteriorly­

posteriorly. Under magnification the inferior-superior crosshair was used as a guide to 

ensure measurements were parallel to Frankfort Horizontal. Measurements being 

recorded would not cross any radiopaque areas, such as septa, as demonstrated in Figure 

38. The measurement with the largest value was recorded in the excel data spreadsheet 

(Figure 43) . 

Figure 43. Maximal Sphenoid Sinus Superior-Inferior Height. 

Maximal Right Maxillary Sinus Superior-Inferior Height (Coronal): The 

same technique was applied as that used to measure the maximal sphenoid sinus superior­

inferior height (Figure 44). 
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Figure 44. Maximal Maxillary Sinus Superior-Inferior Height. 

Maximal Left Maxillary Sinus Superior-Inferior Height (Coronal): The same 

technique was applied as that used to measure the maximal sphenoid sinus superior­

inferior height independently of the plane used to measure the maximal right maxillary 

sinus superior-inferior height (Figure 44). 

Maximal Lateral Orbital Distance (Coronal): The coronal slice, with 0.5 mrn 

thickness, was moved as anterior as possible while still clearly displaying Nasion. The 

medial-lateral crosshair was placed over this landmark. Three to five lines were drawn 

from the lateral orbital margins along the medial- lateral crosshair on slices suspected of 

having the greatest lateral orbital distance. This was done by scrolling through the coronal 

planes anteriorly-posteriorly. Under magnification the medial-lateral crosshair was used 

as a guide to ensure measurements were parallel to Frankfort Horizontal. The 

measurement with the largest value was recorded in the excel data spreadsheet (Figure 

45). 
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(a) (b) 
Figure 45. Maximal Lateral Orbital Distance. Crosshair alignment over Nasion (a), 

Maximal Lateral-Lateral Width (b). 

Maximal Sphenoid Sinus Medial-Lateral Width (Coronal): In a coronal plane, 

at 0.5mm slab thickness, the medial-lateral crosshair was placed through the sphenoid 

sinus at the location suspected to have the widest medial-lateral width. Three to five lines 

were drawn from the over the crosshair from one inner cortical margin to the other of the 

sphenoid sinus in locations suspected to have the greatest width by moving the medial--

lateral crosshair superiorly-inferiorly as required and by scrolling through the coronal 

planes anteriorly-posteriorly. Under magnification the medial-lateral crosshair was used 

as a guide to ensure measurements were parallel to Frankfort Horizontal. Measurements 

being recorded were able to cross only a thin radiopaque midline septum, (Figure 46). 

The measurement with the largest value was recorded in the excel data spreadsheet. 
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(a) (b) 
Figure 46. Maximal Sphenoid Sinus Medial-Lateral Width in coronal slice (a), Maximal 

Sphenoid Sinus Medial-Lateral Width measured in another coronal slice (b). 

Maximal Right Maxillary Sinus Medial-Lateral Width (Coronal): The same 

technique was applied, as that used to measure the maximal sphenoid sinus medial-lateral 

width except it was not permissible for this measurement being recorded to cross any 

radiopaque areas, such as septa. (Figure 47) . 

Figure 47. Maximal Left Maxillary Sinus Medial-Lateral Width. 
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Maximal Left Maxillary Sinus Medial-Lateral Widtb (Coronal): The same 

technique was applied as that used to measure the maximal sphenoid sinus medial-lateral 

width independently ofthe plane used to measure the maximal right maxillary sinus 

medial-lateral height (Figure 47). 

Maximal Outer Rigbt to Outer Left Maxillary Sinus Medial-Lateral Widtb 

(Coronal): In a coronal plane, at 0.5mm slab thickness, the medial-lateral crosshair was 

placed through the maxillary sinuses at the location suspected to have the widest medial­

lateral width. Three to five lines were drawn from the crosshair of one inner cortical 

margin to the other in locations suspected to have the greatest width by moving the 

medial-lateral crosshair superiorly-inferiorly as required and by scrolling through the 

coronal planes anteriorly-posteriorly. Under magnification the medial-lateral crosshair 

was used as a guide to ensure measurements were parallel to Frankfort Horizontal. The 

only radiopacity these measurements were able to cross were those ofthe midline nasal 

structure. The measurement with the largest value was recorded in the excel data 

spreadsheet (Figure 48). 

Figure 48. Maximal Outer and Minimal Inner Right to Left Maxillary Sinus Medial­

Lateral Width. 
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Minimal Inner Right to Inner Left Maxillary Sinus (Coronal): The same 

coronal slice and thickness as the maximal outer right to left maxillary sinus medial­

lateral width measurement was used for this measurement. The medial-lateral crosshair 

was used and three to five measurements were taken to discover the smallest possible 

value by placing two points along the medial inner cortices of the right and left maxillary 

sinus. The measurement was not required to be along the same line as the Maximal Outer 

Right to Left Maxillary Sinus Medial-Lateral Width (Figure 48). 
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APPENDIX D - Linear, Angular and Volumetric Measurements 

Anonymized 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 
19 

20 

21 

22 
23 

24 

25 

26 

27 

16 

5 

10 

15 

4 

14 

20 

22 
11 

Group Age 
- -,.., - -:- - - - .. 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 
2 

2 

2 

3 

3 
3 

3 

3 

3 

11 45.9 

10 47.0 

13 52.1 

12 41.7 

12 47.6 

15 51.2 

8 43.1 
8 45.7 

16 47.3 

16 47.6 

16 47.6 

14 46.8 

17 49.7 

14 45.1 

17 48.5 

17 46.9 

17 52.2 

25 50.4 

21 49.5 

19 49.1 

39 49.3 

23 50.7 

26 49.4 

3 27 42.7 

47.5 

52.0 

50.2 

3 18 

3 23 

3 32 

Re m easu re 17 

Remeasure 12 

Re m easu re 16 

Remeasure 17 

Re m easure 12 

Remeasure 14 

Re m easu re 19 
Re m easu re 23 

Remeasure 16 

28.8 

27.1 

27.5 

28.9 

29.2 

28.2 

24.4 

23.8 

29.8 
25.5 

32.2 

24.3 

29.4 

24.8 

31.0 

26.6 

31.8 

28.6 

25.9 

34.1 

27.7 

27.4 

25.6 

27.0 

26.2 

27.6 

27.4 

26.7 

28.4 

25.5 

30.9 

29.1 

24.9 

34.2 

27.2 

30.9 

- ._----
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22.7 

21.1 

22.4 

25.2 

26.3 

20.6 

22.6 

20.3 

24.9 
24.3 

32.0 

18.3 

26.1 

25.2 

29.4 

24.1 

31.1 

28.6 
23.8 

31.6 

25.1 

26.7 

25.0 

23.7 

26.2 

26.9 
24.2 

24.5 

26.1 

24.8 

29.8 
25.9 

25.2 

31.6 

27.0 

32.4 

28.2 

29.6 

29.1 

26.6 

32.0 

29.6 

29.1 

27.6 

30.9 

35.3 

38.8 

26.0 

33.0 

34.3 

33.4 

36.4 

37.5 

39.7 
33.9 

40.4 

35.2 

33.5 

34.6 

30.7 

37.1 

36.4 
35.3 

34.0 102.8 25.8 

35.7 103.8 24.1 

34.1 108.7 25.0 

30.4 97.3 27.1 

35.0 108.9 27.8 

37.3 109.1 24.4 

30.9 96.6 23.5 

31.2 97.2 22.1 

35.8 108.0 27.4 

36.5 108.4 24.9 

39.2 118.7 32.1 

32.0 97.1 21.3 

36.3 112.1 27.8 

34.4 104.5 25.0 
35.0 112.9 30.2 

39.1 110.0 25.4 

38.5 121.7 31.5 

39.7 118.7 28.6 

35.8 109.2 24.9 
42.9 123.6 32.9 

37.9 112.3 26.4 

34.2 111.6 27.1 

35.2 109.6 25.3 

34.0 100.4 25.4 

37.1 HO.8 26.2 
37.1 116.0 27.3 

38.5 112.9 25.8 

25.6 

27.3 

25.2 

30.4 
27.5 

25.1 

32.9 

27.1 

31.7 

31.1 

32.7 

31.6 

28.5 

33.5 

33.5 

30.0 

29.4 

33.4 

35.9 

39.0 

29.0 

34.7 

34.4 
34.2 

37.8 

38.0 

39.7 

34.9 

41.7 
36.6 

33.9 

34.9 

32.4 

37.1 

36.8 

36.9 



Anonymlzed sNA sNB ANB 5-PNs 5-sph Floor sph Floor- PNs S-Gn PN5-Gn 5-PNs-Gn sph Floor-Gn Sph Floor-PNs 

1 81.7 74.9 7.1 43.4 23.5 19.9 104.7 61.3 170.4 81.2 19.9 
2 91.1 88.1 3.3 49.3 26.2 23.1 118.6 69.3 169.7 92.4 23.1 
3 78.0 75.1 2.7 45.4 22.3 23.1 113.7 68.3 172.7 91.4 23.1 
4 75.7 71.5 4.1 38.2 17.8 20.4 95.0 56.8 173.2 77.2 20.4 

5 SO.9 79.0 2.2 41.1 19.9 21.2 115.1 74.0 167.6 95.2 21.2 
6 79.0 74.3 4.8 49.3 24.6 24.7 113.2 63.9 170.1 88.6 24.7 
7 83.4 SO.6 2.9 41.4 18.9 22.5 104.3 62.9 178.6 85.4 22.5 
8 79.9 76.5 3.1 38.5 22.0 16.5 103.4 64.9 1SO.0 81.4 16.5 

9 84.5 81.9 2.6 47.0 23.2 23.8 119.7 72.7 163.6 96.5 23.8 
10 82.5 79.8 2.8 46.6 25.6 21.0 118.2 71.6 168.8 92.6 21.0 
11 86.4 SO. 2 6.8 46.9 24.8 22.1 127.4 SO.5 174.0 102.6 22.1 
12 87.8 82.1 5.9 44.3 24.3 20.0 ll1.9 67.6 165.4 87.6 20.0 
13 84.0 77.8 6.4 43.9 20.7 23.2 ll8.5 74.6 174.7 97.8 23.2 
14 82.9 79.6 3.7 48.3 24.1 24.2 ll7.2 68.9 170.7 93.1 24.2 
15 85.6 83.8 1.8 46.4 26.7 19.7 122.4 76.0 173.3 95.7 19.7 
16 89.0 84.4 4.5 44.1 20.7 23.4 120.6 76.5 177.4 99.9 23.4 
17 83.0 SO.9 1.8 49.4 21.1 28.3 131.6 82.2 170.3 llO.5 28.3 

18 89.5 86.7 2.8 49.5 25.8 23.7 133.8 84.3 170.1 lOS.0 23.7 
19 78.0 77.9 0.2 43.2 21.0 22.2 ll9.0 75.8 170.8 98.0 22.2 
20 81.8 79.2 2.6 43.3 23.4 19.9 132.1 88.8 175.1 lOS.7 19.9 
21 81.7 75.8 5.9 41.9 23.3 18.6 ll6.0 74.1 174.5 92.7 18.6 
22 SO.7 83.7 3.0 47.5 24.7 2.2.8 125.6 78.1 164.8 100.9 22.8 
23 87.5 84.2 3.3 46.5 23.5 23.0 122.1 75.6 167.2 98.6 23.0 
24 89.9 85.1 4.8 48.5 26.6 21.9 115.3 66.8 174.2 88.7 21.9 
25 77.7 SO.4 2.8 43.6 21.0 22.6 ll8.2 74.6 166.1 97.2 22.6 
26 86.9 78.9 8.0 45.9 26.7 19.2 12.1.6 75.7 176.0 94.9 19.2 
27 83.5 SO.1 3.4 44.1 21.6 22.5 121.6 77.5 171.8 100.0 22.5 

16 82.5 
5 79.0 

10 78.4 

15 83.9 
4 71.2 
14 SO.6 
20 78.1 

.22 84.1 
II 77.9 
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Anonymized PNS-Gn Sph Sin Long Axis- Gn Sph Sin PA Length XV Axis Angle (NBa-GnS) Post Fac Hgt (S-Go) 

1 61.3 83.3 30.7 84.0 56.2 

2 69.3 95.5 22.4 81.6 76.2 

3 68.3 83.7 21.7 89.1 68.6 

4 56.8 92.5 14.0 92.4 49.0 

5 74.0 86.4 27.3 89.0 71.3 

6 63.9 91.7 26.7 88.3 70.2 

7 62.9 82.4 12.8 84.8 63.8 

8 64.9 92.7 22.0 84.0 60.1 

9 72.7 81.6 35.9 89.0 75.7 

10 71.6 81.4 31.6 SO.9 64.7 

11 SO.5 96.3 35.9 87.1 84.7 

12 67.6 81.3 31.6 SO.6 71.9 

13 74.6 78.4 20.7 86.6 73.9 

14 68.9 73.1 25.3 88.6 75.6 

15 76.0 79.2 27.8 81.4 75.6 

16 76.5 74.3 30.6 85.5 69.1 

17 82.2 91.3 24.4 87.7 84.9 

18 84.3 82.1 32.5 82.4 80.0 

19 75.8 89.9 27.4 84.1 79.1 

20 88.8 84.0 27.0 85.7 89.2 

21 74.1 91.6 31.0 91.5 74.3 

22 78.1 86.6 32.2 83.1 78.5 

23 75.6 78.4 27.9 82.0 74.6 

24 66.8 75.4 29.2 81.2 70.6 

25 74.6 73.7 31.6 81.2 73.4 

26 75.7 84.3 28.0 87.7 32.2 

27 77.5 67.3 17.3 83.2 76.7 
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38.1 24.6 27.2 26.9 

2 38.1 38.8 26.4 22.2 26.9 27.3 

3 37.7 38.5 37.6 24.2 36.1 38.1 

4 30.1 32.3 46.3 16.4 28.6 27.7 

5 34.8 33.1 33.4 19.1 28.2 31.4 

6 37.8 36.8 33.8 22.8 30.4 31.1 

7 31.5 31.8 29.0 14.3 19.0 20.5 

8 33.8 33.6 35.5 23.1 31.1 32.0 

9 37.4 36.6 29.1 21.5 38.0 38.4 

10 37.9 41.0 36.8 25.9 31.8 33.8 

11 43.0 41.6 28.5 27.8 39.1 39.6 

12 36.9 32.9 23.0 21.3 24.2 21.0 

13 38.5 39.3 30.2 22.9 33.2 34.6 

14 38.3 37.8 25.1 21.4 32.6 37.2 

15 37.5 37.5 33.2 23.8 27.4 28.2 

16 37.6 35.0 33.9 23.6 29.5 31.3 

17 42.9 42.1 30.4 21.0 41.2 37.4 

18 36.3 41.6 26.0 25.5 32.6 26.7 

19 33.8 36.5 27.1 23.5 33.2 37.5 

20 34.7 38.7 25.7 22.7 20.8 24.5 

21 39.0 39.7 37.6 26.5 34.7 39.2 

22 41.0 38.7 26.6 22.1 35.6 35.5 

23 36.7 37.3 25.0 24.0 31.9 33.0 

24 19.0 22.7 29.5 25.6 26.2 23.8 

25 38.7 38.1 31.9 23.0 32.0 31.2 

26 36.7 38.6 31.9 23.1 25.5 27.2 

27 36.2 34.7 29.1 19.8 31.7 30.8 
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1 89.6 48.6 31.5 30.1 85.9 23.8 

2 84.5 32.6 20.7 20.9 73.4 28.6 

3 94.8 36.5 21.9 25.5 71.9 26.9 

4 76.1 13.8 22.9 25.6 75.8 27.7 

5 88.0 33.0 20.9 18.8 72.1 32.5 

6 92.6 33.4 30.2 28.4 84.0 24.4 

7 81.5 24.1 20.7 23.6 68.8 23.8 

8 83.6 26.7 24.4 26.5 73.5 23.7 

9 92.1 48.2 33.3 32.2 86.2 22.8 

10 85.2 40.3 26.6 29.1 79.2 24.1 

11 91.6 32.2 29.5 26.8 81.7 25.1 

12 77.9 23.2 17.4 15.5 65.4 31.9 

13 92.4 33.1 24.3 27.5 79.9 25.2 
14 94.9 37.2 29.3 33.0 86.2 24.6 

15 93.2 29.4 20.6 20.8 72.1 30.1 

16 84.6 35.6 24.7 24.3 78.0 27.0 

17 88.5 24.6 28.1 27.1 84.1 23.8 

18 92.4 48.8 28.3 29.6 83.8 31.2 
19 86.0 30.5 23.1 24.4 72.1 24.9 
20 96.0 33.3 18.3 20.9 71.0 30.9 
21 84.2 38.4 23.8 28.8 74.1 21.9 

22 89.7 26.8 31.4 31.4 82.9 19.5 
23 84.5 30.2 25.6 22.2 77.7 28.5 

24 85.6 38.4 11.0 13.7 63.8 37.0 

25 66.7 26.2 224 25.8 73.5 23.9 
26 86.1 35.9 23.5 28.1 79.4 25.3 
27 78.0 28.5 21.6 23.2 71.9 23.6 
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Anonymized SphSfnVor M Mic Sin Vol U Mx 511'1 Vol 
1 15143.3 12958.0 12852.3 

2 11252.1 10907.1 11145.7 

3 12092.5 16264.5 17083.3 

4 2216.2 10585.8 11777.5 

5 7760.9 10559.5 10488.4 

6 9136.9 15429.9 14704.9 

7 2455.0 6267.6 6956.7 

8 8501.4 10617.9 11246.7 

9 13311.2 15087.8 16403.9 

10 15172.7 16005.2 18545.9 
11 13477.1 24885.4 23047.7 

12 7831.5 8468.4 5893.4 

13 9333.4 15712.6 17063.0 

14 14044.1 20962.9 20376.7 
15 7117.1 11022.3 11974.3 
16 12134.5 14403.0 14832.4 
17 8102.4 28341.2 22346.1 

18 15249.4 14551.6 15210.4 
19 9090.2 12752.2 15694.3 
20 7656.5 6851.9 11244.8 

21 13075.4 14627.4 17685.8 

22 11687.3 22342.6 20964.0 

23 9220.2 15429.7 14967.8 
24 14015.5 2676.8 4139.6 

25 9206.6 13476.0 13785.1 
26 9521.0 12159.0 14685.8 
27 5498.8 10768.6 11805.4 

16 11537.4 
5 7695.2 

10 15389.9 
15 7145.4 

4 2067.8 
14 13777.0 

20 7832.6 
22 12034.5 

11 15825.9 
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