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ABSTRACT 

FUNCTIONAL EFFECTS OF CYP1A2, NAT1, AND NAT2 GENETIC VARIANTS 
IN NUCLEOTIDE EXCISION REPAIR - DEFECIENT HUMAN FIBROBLASTS: 

IMPLICATIONS FOR TOXICOLOGICAL RISK FROM ENVIRONMENTAL 
ARYLAMINES 

Carmine S. Leggett 

August6,2010 

Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the 

detoxification and/or activation of aromatic and heterocyclic amine carCinogens 

by two pathways. This metabolism reaction can lead to the detoxification by N-

acetylation, or bioactivation by a-acetylation often preceded by CYP450 

hydroxylation. Human NAT2 polymorphisms are characterized by rapid, 

intermediate, and slow acetylator phenotypes, thus resulting in differences in the 

rate of arylamine metabolism and consequently cancer risk. We have 

constructed nucleotide excision repair-deficient human cell model expressing 

human CYP1A2 and human NAT1and NAT2 in order to investigate carcinogen 

metabolism and cancer susceptibility in human cells. 

In this study we introduce the utilization of SV40-transformed human 

fibroblasts (GM4429) to examine the functional effects of human NAT2 

haplotypes, in the presence of human NAT1. Many carCinogens, such as 4-

aminobiphenyl, are metabolized by both NAT1 and NAT2, consequently both 

isozymes have toxicologically significant functions in the metabolism of 
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arylamines. Furthermore, both NAT1 and NAT2 isozymes are expressed 

in human liver, where they are significant to carcinogen detoxification and/or 

activation consequences. With this model, we can examine the role of NAT1 

and NAT2 carcinogen metabolism and genotoxicity in a NER-deficient human 

cell. 

In this study, we investigate novel inhibitors of NAT1 and NAT2. Previous 

studies have identified approximately 150 NAT inhibitor candidates following 

computer-based in silico screening of approximately 20 million compounds. The 

inhibitory properties of these compounds were tested using a High Performance 

Liquid Chromatography assay specific for human NAT1 and NAT2. A novel 

compound was identified that is an effective inhibitor of NAT1 (100%) and NAT2 

(90%). This inhibitor was selective for NAT1 (ICso about 1 tJM), compared to an 

ICso of 82.2tJM (SMZ) for NAT2. Further studies will determine potency and 

efficacy of NAT inhibitors to reduce DNA adduct formation and mutagenesis. We 

have also successfully constructed and characterized NER-deficient human 

fibroblast cells with stable expression of human NAT2 alleles (NAT2*4, NAT2*S8, 

or NAT 2*78) and CYP1 A2. These models are used to better understand the 

effects of NAT2 haplotypes on carcinogen metabolism and DNA adduct 

formation in human cells. 
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CHAPTER I 

INTRODUCTION 

Susceptibility to chronic diseases, such as cancer, involves interactions 

between genetic variants of xenobiotic-metabolizing enzymes (XMEs) and the 

environment. However the effects of genetic variance on toxicological risk are 

not fully understood. Many environmental arylamine genotoxins are metabolized 

by arylamine N-acetyltransferases (NATs). The two isozymes, arylamine N­

acetyltransferases 1 (NAT1) and 2 (NAT2), catalyze the detoxification and/or 

activation of aromatic and heterocyclic amines (Hein et aI., 2000). These 

metabolic pathways can lead to the detoxification by N-acetylation, or 

bioactivation by Q-acetylation, preceded by cytochrome P450 hydroxylation 

(Agudo et al 2009). The arylamine acetoxy products are capable of forming 

electrophilic species that covalently bind to DNA and proteins, thus causing DNA 

adduct formation (Figure 1.) and other toxicological insults. 

NA T polymorphisms were first discovered after differences in toxicity were 

seen in patients treated with isoniazid for tuberculosis (Hein et aI., 2000). These 

differences were attributed to Single nucleotide polymorphisms (SNPs) in the 

NAT2 gene. Human NAT2 polymorph isms are characterized by rapid, 

intermediate, and slow acetylator phenotypes, thus resulting in differences in the 

rate of arylamine metabolism and consequently toxicological risk (Hein, 2009). 
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This family of enzymes has been studied for their functional roles in 

pharmacogenetics and toxicological susceptibility. 

NAT1 and NAT2 genotypes may play an important role in cancer risk (Hein et 

aI., 2000). Previous studies in our laboratory investigated the effects of NAT2 

genetic variants on 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP) 

induced DNA adduct formation and mutagenesis in nucleotide excision repair 

(NER) -deficient Chinese hamster ovary (CHO) cells that recombinantly express 

human CYP1A2 and human NAT2*4 or NAT2*58 alleles (Metry et aI., 2007). 

This study provides evidence in support of the ability to study mutagenesis and 

DNA damage in a cell line stably transfected with human NAT2 and human 

CYP1 A2. Our study will investigate the functional effects of altered enzymatic 

activity in CYP1A2 and NAT1 and genetic variants in the NAT2 gene on oxidative 

stress, DNA adduct formation and mutagenesis by exploiting the use of NER 

deficient Simian Virus 40 (SV40) - transformed human fibroblast (GM4429). 

The utilization of SV40-transformed human fibroblasts to examine the 

functional effects of human NAT2 haplotypes in the presence of human NAT1 is 

a novel concept. Human fibroblast endogenously express NAT1, unlike any other 

cell model previously used. These cells have a deficiency in NER which inhibits 

the repair of bulky DNA lesions induced by UV or aromatic and heterocyclic 

amine genotoxins. The ability of this cell line to form bulky DNA lesions is 

pertinent to our study. GM4429 cells were derived from a Caucasian Xeroderma 

Pigmentosum (XP) patient exhibiting a delayed onset of neurological disease. 

These cells are widely used to study NER deficiency due to their variant 
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complementation group A (XP-A) (States et aL, 1996). Simian Virus 40, an 

oncogenic DNA virus, induces malignant transformation and cause a loss of cell 

cycle checkpoint control (States et aL, 1996). The large T-antigen of the SV40 

virus accomplishes abrogation of the cell cycle checkpoint by sequestering p53 

which stops both G1 and G2 checkpoints (States et aL, 2002). The use of this 

cell line to study NAT metabolism and genetic variance is an innovative and 

exciting addition to the previously used Chinese hamster ovary cell (Metry et ai, 

2007), COS-1 cell (Zang et aL, 2007), yeast (Fretland et aL, 2001), and E. Coli 

(Hein et aL, 1994) models. We are able to utilize this cell line to study functional 

characterization of human CYP1A2, human NAT1 and human NAT2 phenotypic 

behavior in cells expressing these enzymes and genetic variants which is 

important to better understand the relationship between risk and genetic 

variance. Studies have indicated that synergistic effects caused by gene-gene 

interactions have been noted in increased risk to certain cancers (Cascorbi et aL, 

2001, Sanderson et aL, 2007, and Taylor et aL, 1998), further illustrating that the 

use of these cell lines expressing both human NAT isozymes and human 

CYP1A2 is beneficial for functional genomic studies of NAT and cancer risk. We 

believe the NER-deficient SV40-transformed human fibroblast cell lines will 

advance the study of NAT2 genetic variation and its effect on toxicological risk. 

Humans are exposed to many aromatic and heterocyclic amine 

environmental genotoxins that pose a risk upon metabolism. These risks include, 

but are not limited to, oxidative DNA damage, DNA adduct formation, and 

mutagenesis. NAT enzymes are recognized for their ability to metabolize 
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carcinogens and arylamine genotoxins such as 4-aminobiphenyl (ASP), 2-

aminofluorene (AF), 2,6-dimethylaniline (2,6-0MA), 3,5-dimethylaniline (3,5-

OMA), and 3-ethylaniline (3-EA). Carcinogens ASP and AF are metabolized by 

both NATs, illustrating that both NAT1 and NAT2 have an important role in the 

metabolism of arylamines (Grant et aL, 1990). Exposure to ASP, which is 

present in tobacco smoke, has been associated with bladder cancer risk (Liu et 

aL, 2008). AF, whose N-acetylated derivative was developed as an insecticide, is 

associated with mutagenesis (Sugamori et aL, 2006). Although some arylamine 

substrates such as ASP and AF are metabolized by both NAT1 and NAT2, each 

of the NATs exhibit specificity (Liu et aL, 2007). Studies show that when the 

relative capacities of human NAT1 and NAT2 to catalyze the metabolic activation 

of N-hydroxy-2-aminofluorene and N-hydroxy-4-aminobiphenyl were assessed, 

the rates were higher for NAT1 than NAT2 with both substrates (Hein et aL, 

1993). Capacities of human NAT1 to catalyze the metabolic activation of N­

hydroxy-2-acetylaminofluorene and N-hydroxy-4-acetylaminobiphenyl via N,O­

acetylation were lower than the metabolic rates of N-hydroxy-2-aminofluorene 

and N-hydroxy- 4-aminobiphenyl via 0- acetylation (Hein et aL, 1993). 

Arylamine genotoxins 2,6-0MA and 3,5-0MA are present in cigarette smoke 

and pollution from industrial sources. The alkylanilines, 2,6-0MA ,3,5-0MA, and 

3-EA, are associated with bladder cancer among the general population including 

non-smokers (Gan et aL, 2004). Exposure to these alkylanilines (monocyclic 

arylamines) is of particular interest to toxicological risk studies because of the 

high distribution of these compounds in the environment. Monocyclic arylamines 
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2,6-DMA , 3,5-DMA, and 3-EA are distributed widely in the environment, resulting 

in ubiquitous exposure (Skipper et aI., 2010). Since these compounds are 

present in cigarette smoke, indoor spaces contaminated with cigarette smoke 

exhibit higher levels of alkylanilines than in uncontaminated spaces. Industrial 

sources also provide significant levels of exposure to these compounds (Skipper 

et aI., 2010). It is important to note that in previous studies conducted in Italy, 

2,6-DMA levels were higher among non-smokers than smokers warranting the 

conclusion that the environmental significance of monocyclic arylamine exposure 

is extensive and is not confined to groups such as active smokers or those 

subjected to occupational exposure (Skipper et al. ,2010). Studies have indicated 

that diverse arylamine exposures are strongly associated with bladder cancer 

risk among nonsmokers (Gan et aI., 2004). This suggests that environmental 

exposure is as important as active smoking exposure. The 5 arylamine 

compounds used in this study were chosen because of their possible impact on 

toxicological risk by NAT metabolism. 

It is thought that monocyclic arylamines, to which humans are exposed, 

impose toxicological risk upon bioactivation by NATs. The activation of these 

compounds by metabolic hydroxylation by CYP and/or O-acetylation by NAT 

leads to the production of toxic N-arylhydroxyamines and N-acetoxyarylamines 

(Liu et aI., 2007). These compounds are also N-acetylated by NAT which is 

considered the detoxification reaction. The N-acetylation reaction decreases 

substrate availability for metabolic hydroxylation of the primary amino group (Liu 

et aI., 2007). 
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NAT1 and NAT2 have 87% nucleotide homology in the coding region, and 

despite their high protein homology, they differ in substrate specificity (Butcher et 

aI., 1999). The substrate affinity for NAT1 or NAT2 will playa major role in 

arylamine metabolism and toxicological risk, therefore the affinity of the above 

mentioned arylamine genotoxins for NAT1 or NAT2 will be determined. They also 

exhibit differences in tissue distribution. Human NAT2 is expressed mainly in the 

liver and intestine, while human NAT1 has a widespread tissue distribution in 

adult tissues, including the liver (Russell et aI., 2009). Moreover, they are both 

significant to carcinogen detoxification and/or activation consequences. 

Oxidative DNA damage is an important toxicological response to arylamine 

genotoxin metabolism (Murata et aI., 2001). Its implications have been noted in 

teratogenesis and neurodevelopmental deficits (Wells et aI., 2010), pathological 

eye conditions, such as age dependent cataract formation (Dairou et aI., 2005), 

chronic hepatitis, Fanconi's anemia, diabetes mellitus and Helicobacter pylori 

infections (Lodovici et aI., 2000). Furthermore oxidative DNA damage is known 

as a risk factor for many diseases including many cancers such as breast 

cancer (Sova et aI., 2010), renal cell carcinoma and squamous cell carcinoma 

(Tanaka et aI., 2000). Reactive oxygen species (ROS) are produced by the 

metabolism of environmental arylamine genotoxins such as chemical 

carcinogens and environmental agents (Kim et aI., 2003). ROS can lead to 

deleterious and extensive DNA damage including single strand breaks and DNA 

adduct formation. Modified bases such as 8-hydroxy-deoxyguanosine (8-0H-
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dG) can be used as a marker to evaluate DNA damage caused by oxidative 

stress (Kim et aI., 2003). 

Oxidative stress has also been noted for its ability to regulate NAT1 activity. 

Reactive oxygen species, such as H20 2 at physiological concentrations, can 

reversibly inactivate the NAT1 enzyme due to oxidation of the catalytic cysteine 

residue in the active site (Rodrigues - Lima et aL, 2004). This change in NAT1 

enzymatic activity and function results in differences in potential toxicological 

consequences, further demonstrating the importance of understanding the 

relationship between oxidative damage following NAT metabolism and 

toxicological response. In this study we will utilize cell lines that express NAT2 

alleles (NA 72*4, NA 72*58, and NA 72*78) and combinations of shRNA-lowered 

NAT1 and CYP1 A2 enzymatic activity to assess how these changes affect 

levels of oxidative stress, DNA adduct formation, and mutagenesis following 

exposure of human cells to arylamines. 

In order to elucidate ways to reduce or ablate toxicological risk caused by 

arylamine genotoxin metabolism, we will employ the use of a small molecule 

inhibitor. Studies provide evidence that NAT inhibitors have been beneficial in 

investigating the catalytic mechanism of NATs and are emerging as drug targets 

(Russell et aL, 2009). Other studies explore NAT inhibitors as a means to alter 

biotransformation by NAT, consequently providing potential differences in 

toxicological consequences (Dairou et aL, 2009). Our study introduces the use 

of novel and effective inhibitors of NAT1 to reduce levels of DNA adduct 

formation and mutagenesis. The selectivity of NAT1 inhibitors may be explained 
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----.---~----------

by the NAT1 catalytic pocket comparison to that of NAT2. Both NATs possess a 

functional Cys-His-Asp catalytic triad that allows the transfer of an acetyl group 

for acetyl-coenzyme A in a ping-pong bi-bi reaction mechanism followed by 

acetyl group transfer to a substrate (Hein, 2009). The NAT1 catalytic pocket is 

40% smaller than that of NAT2; this alludes to catalytic pocket size influence on 

substrate specificity. Substrate selectivity is also strongly influenced by three key 

active site loop residues F125, Y127, and R129, determined by site-directed 

mutagenesis of individual amino acids (Goodfellow et aI., 2000). 

There have been many reported associations between NAT1 genetic 

polymorph isms and increased risk of carcinogenesis by molecular 

epidemiological studies. NAT1 polymorphisms have been associated with 

individual risk to urinary bladder, colorectal, breast, lung, prostate, and 

pancreatic cancer (Walraven et aI., 2008). The close association between NAT1 

polymorph isms and risk for so many diseases indicates the potential clinical 

benefits of NAT1 inhibition. For example, in comparison with all other NAT1 

genotypes the putative rapid acetylator genotype (NAT1*10) was significantly 

higher in prostate cancer cases than in controls (Hein et aI., 2002). NAT1, which 

is present in most extrahepatic tissues, facilitates the activation of many 

carcinogens and arylamines by O-acetylation associating NAT1 with certain 

cancers (Hein, 2002). Taken together, this suggests that inhibition of NAT1 may 

be beneficial in reducing toxicological risk resulting from the activation of 

carcinogens and genotoxins by NAT1 O-acetylation. 
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The human NAT1 and NAT2 isozymes are similar in structure; therefore 

inhibition of NAT2 may be of concern considering the ability of NAT2 to 

metabolize many pharmaceutical agents. One may suspect that inhibition of 

NAT2 may lead to drug toxicity because NAT2 will be unable to facilitate the 

detoxification of its pharmaceutical targets. To address this concern, if the 

selective inhibitor is used as a drug, we are proposing overcoming this caveat by 

the use of site-directed administration of the potential inhibitor to extrahepatic 

target organs where NAT2 is not expressed. This will allow us to not only 

validate a NAT1 inhibitor as a tool to study NAT1 mechanistically, but to validate 

the potential use of the inhibitor as a drug to reduce NAT1 associated risk. 

Since NATs activate arylamine genotoxins to induce oxidative stress, DNA 

adduct formation, and mutagenesis, we will explore applications to reduce this 

risk with the use of a NAT1 inhibitor. 
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CHAPTER II 

SPECIFIC AIMS 

The study of genetic variation in xenobiotic-metabolizing enzymes, such as 

arylamine N-acetyltransferases (NATs) and cytochrome P450s (CYPs) bestows 

an essential contribution to the understanding of consequences resulting from 

toxicological insult (e.g. oxidative stress, DNA adducts formation and 

mutagenesis). Functional genomic studies help to better understand relationships 

between genetic variation and toxicological risk. It is our objective to study the 

effects of NAT2 genetic variants and altered enzymatic activity in xenobiotic­

metabolizing enzymes (NA T1 and GYP) on oxidative stress, DNA adduct 

formation, and mutagenesis, by exploiting the use of nucleotide excision repair 

(NER) deficient SV40-transformed human fibroblast cells. We hypothesize that 

xenobiotic-metabolizing enzyme phenotypes (i.e., rapid or slow) associated with 

allelic variants (e.g. NAT2*4, NAT2*58, NAT2*78) will impact levels of oxidative 

stress, DNA adduct formation, and mutagenesis. To test this hypothesis, we 

propose the following specific aims: 

Aim 1: To construct and to characterize NER-deficient SV40-tranformed human 

fibroblast cell lines that recombinantly express human CYP1A2 and human NAT2 

alleles NAT2*4, NAT2*5B, or NAT2*7B. We hypothesize that alleles NAT2*58 

and NA T2*78 will exhibit differences in arylamine metabolism as compared to 

the reference allele NAT2*4. Previous studies successfully use a NER-deficient 
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Chinese hamster ovary (CHO) cell model expressing human CYP1 A2 and 

human NAT2 to investigate the effects of NAT2 genetic variants on carcinogen 

induced DNA adduct formation (Metry et aI., 2007). In this study we introduce the 

utilization of SV40-transformed human fibroblasts (GM4429) to examine the 

functional effects of human NAT2 haplotypes on arylamine metabolism and 

toxicological risk. The construction of these cell lines will be accomplished using 

the Flp-In System (Invitrogen, Carlsbad, CA). We will complete the 

characterization by including the use of functional assays to evaluate CYP 

activity (ethoxyresorufin-o-deethylase (EROD) assay), NAT1 protein expression 

(Western blot assay), N- and 0- acetylation activity in vitro (high-performance 

liquid chromatography (HPLC); substrates: p-aminobenzoic acid (PABA), 

Sulfamethazine (SM2), 4-aminobiphenyl (ABP) , 2,6-dimethylaniline (2,6-DMA), 

3,5-dimethylaniline (3,5-DMA), and 3-ethylaniline (3-EA), N-acetylation activity in 

situ, and NAT mRNA expression (Taqman assay). In addition, the genotype of 

NAT1 (Taqman assay) and CYP1A2 (sequencing) will be determined. We will 

also determine the affinity of arylamine genotoxins for NAT1 and/or NAT2 using 

kinetic studies (Km, Vmax) for each arylamine listed above. 

Aim 2: To evaluate and to compare the effects of combinations of genetic 

variants in NAT2 (Le. rapid or slow phenotypes) and high and low NAT1 and 

CYP1 A2 enzymatic activities on oxidative stress, DNA adduct formation, and 

mutagenesis. We hypothesize that cell lines with combinations of altered 

enzymatic activity associated with slow acetylator (NA T) and rapid hydroxylation 

(CYP) will present an increased incidence of oxidative DNA damage, while cell 
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lines with rapid acetylator (NA T) and slow hydroxylation (GYP) will exhibit less 

oxidative DNA damage, but increased incidences of DNA adduct formation and 

mutagenesis. It has been reported that the N-hydroxy derivatives of arylamine 

genotoxins have the ability to cause oxidative stress (Murata et aI., 2001). We 

will investigate oxidative stress in cell lines constructed in Aim 1, by measuring 

oxidized DNA, 8-hydroxy-2-deoxyguanosine (8-OH-dG), by Enzyme Linked 

Immunosorbent Assay (ELISA; Cayman Chemicals). We will utilize shRNA 

plasmids (SA8iosciences) to achieve combinations of high or low enzymatic 

activity by significant gene knockdown of endogenous human NAT1 and/or stably 

transfected human CYP1A2. As noted in Aim 1, human NAT2 (NA12*4, 

NA 12*58, and NA 12*78) will be stably transfected in these cells allowing the 

achievement of combinations with rapid and slow NAT2 phenotypes. Enzymatic 

activity will be measured using functional assays specific for NAT1 and NAT2 

(HPLC) and CYP1 A2 (EROD assay) to validate phenotypic behavior after shRNA 

knockdown. We will measure DNA adduct formation by HPLC-tandem mass 

spectrometry (LC-MS-MS) technology and mutagenesis by assays for 

mutagenesis at the hypoxanthine-guanine phosphoribosyltransferase (hrpt) 

locus. 

Aim 3: To determine the effectiveness of a novel arylamine NAT1 small molecule 

inhibitors on reducing mutagenesis and DNA adduct formation. We hypothesize 

that the inhibition of NA T1 enzymatic activity will reduce mutagenesis and DNA 

adduct formation, but increase oxidative DNA damage. The inhibitory properties 

of compounds were tested using an enzymatic assay (HPLC) specific for human 
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NAT1 and NAT2. A compound was identified that is an effective inhibitor of 

NAT1. This inhibitor was also selective for NAT1. This study will determine 

potency and efficacy of this compound to reduce mutagenesis and DNA adduct 

formation in NER SV40-transformed human fibroblasts treated with compounds 

that have an affinity for NAT1. Additional compounds are currently being 

screened for their ability to inhibit NAT, after which their potency and efficacy to 

reduce toxicological risk will be evaluated. 
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CHAPTER III 

METHODS AND MATERIALS 

Aim 1: To construct and characterize NER-deficient SV40-tranformed human 

fibroblast cell lines that recombinantly express human CYP1A2 and human NAT2 

alleles NA 72*4, NA 72*58, or NA 72*78. We hypothesize that alleles NAT2*SB 

and NA T2*7B will exhibit differences in arylamine metabolism as compared to 

the reference allele NAT2*4. 

Stable Transfection and Cell Culture 

We will construct stably transfected NER-deficient SV40-transformed human 

fibroblasts that express human CYP1A2 and NAT2 alleles (NA72*4, NA72*58, or 

NA 72*78) using the Flp-In system (Invitrogen) as described previously in CHO 

cells by Metry et aI., (2007). NER-deficient SV40-transformed human fibroblasts 

(GM4429) were chosen because they endogenously express NAT1, they are 

immortalized by the SV40 oncogenic virus, and they poorly repair arylamine­

induced DNA adducts. The pFRT/lacZeo plasmid will be transfected into the 

NER-deficient GM4429 cell, resulting in a single integrated FRT site. Cells will 

be split 24 hr after transfection and treated with medium supplemented with 

Zeocin (200 j.Jg/mL) 48 hr after transfection, for selection according to the 

manufacturer's protocol. Zeocin - resistant clones will be picked with cloning 

cylinders. The cell lines with a single intergrated FRT site determined by real-
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time polymerase chain reaction (PCR) and Southern blot screening will be 

selected for additional transfection. The piRES plasmid containing cDNAs of 

human CYP1A2 and NADPH-cytochrome P4S0 reductase gene, will be 

transfected into the newly constructed GM4429-FRT cell line using Effectene 

Transfecton Reagent kit (Qiagen). Geneticin -resistant clones will be picked 

using cloning cylinders. Human NAT2 alleles (NAT2*4, NAT2*S8, or NAT2*78) 

will be transfected using the pcDNAS/FRT plasmid and co-transfected with 

pOG44, a Flp recombinase expression plasmid, into GM4429-FRT-CYP1A2 cells 

(Figure 2.). Stably transfected cells will be selected by geneticin and hygromycin 

resistance. Cells will be grown in alpha-modified minimal essential medium 

(aMEM) supplemented with L-glutamine, 10% fetal bovine serum, 100 units/mL 

of penicillin, and 100 units/mL streptomycin; incubated at 3]oC in S% CO2 . 

Medium will be supplemented with selective agents (hygromycin and geneticin) 

to ensure maintenance of the stable transfection. 

Cytochrome P4S0 (CYP1 A2) Activity 

Different clones will express different levels of CYP1 A2 catalytic activity. To 

ensure that all cell lines have comparable CYP1A2 enzymatic activity whole cell 

samples will be assayed for 7 -ethoxyresorufin oxidation activity by fluorimetric 

determination as described by Bendaly et aI., (2007). This reaction will be 

conducted in a 96-well plate, containing 1 million cells in 1 0 ~I of PBS with SmM 

glucose and S~M 7 -ethoxyresorufin. The reaction will be incubated at 3]oC for 10 

minutes. Resorufin formation will be measured by fluorescence at emission 
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wavelength 585 nm and excitation wavelength of 530 nm. Cell lines from clones 

exhibiting 7 -ethoxyresorufin oxidation activity comparable to the parent cell line 

(GM4429) will be utilized for further characterization and study. 

NAT Protein Expression (Western Blot Assay) 

NAT1 protein expression will be evaluated using western blot assays as 

described by Stanley et aI., (1996). Approximately 20 ~g of cell lysate will be 

mixed with 2x loading buffer, boiled for 5 min, and resolved by 12% SOS-PAGE 

gel and then transferred by semi-dry electroblotting to polyvinylidene fluoride 

(PVOF) membrane. The membrane will be probed with the primary polyclonal 

antibody ES195 (1 :1000, provided by Edith Sim, University of Oxford, UK) and 

the HRP-conjugated secondary mouse anti-rabbit IgG antibody (1 :10,000, 

provided by Pierce Protein Research Products, Rockford, IL.). ECl plus 

chemiluminescence will be used to detect the signal (Amersham Biosciences, 

Piscataway, NJ). 

N-acetvlation Activitv (in vitro) 

N-acetylation of PABA, SMZ, and selected arylamine genotoxins (2,6-0MA, 3,5-

DMA, 3-EA) will be evaluated in vitro using reverse phase high performance 

liquid chromatography (HPlC) (Fretland et aI., 2001). Reactions will be prepared 

with acetyl- coenzyme A (300~M), selective substrates (300~M) p-aminobenzoic 

acid (NAT1), sulphamethazine (NAT2), or selected arylamine genotoxins, and 

incubated at 3rC. Reactions will be stopped using 1 M acetic acid and protein 
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centrifuged at 10,000 xg for 10 minutes. Reaction products in the resulting 

supernatant will be separated by reverse-phase HPLC. HPLC separation for 

sulphamethazine NAT2 assays will be achieved on a C18 LiChrospher® 

125x4mm column using a gradient 91 :9 sodium perchlorate (pH 2.5) 1 acetonitrile 

to 71 :29 sodium perchlorate (pH 2.5) 1 acetonitrile over 5 min at 260 nm. HPLC 

separation for p-aminobenzoic acid NAT1 reactions will be achieved using a 

gradient 96:4 sodium perchlorate (pH 2.5)1 88:11acetonitrile at 280nm. HPLC 

separation for 2,6-DMA, 3,5-DMA, and 3-EA will be achieved using a gradient 

50:50 acetonitrile and 0.01 M potassium phosphate buffer (pH 5) at 1 ml/min at 

210 nm (Martin et aI., 1996). 

O-acetylation Activity (in vitro) 

O-acetylation catalytic activity will be evaluated using reverse phase HPLC 

instrumentation as described above. Reactions will be carried out as described 

by Bendaly et aI., (2007). Briefly, reaction mixtures containing cell lysate, 1 

mg/ml deoxyguanosine, substrate (100 !-1M N-hydroxy-ABP) and (300 !-1M) acetyl 

coenzyme A will be incubated at 3rC and stopped with ethyl acetate. Reactions 

will be centrifuged for 10 minutes and the organic phase will be transferred, 

allowed to dry, and re-suspended in 100 !-1M of 10% acetonitrile. HPLC 

separation will be achieved using a gradient of 50:50 sodium perchlorate (pH 

2.5)1 acetonitrile over 3 minutes to 80:20 sodium perchlorate (pH 2.5)/acetonitrile 

over 2 minutes at a wavelength of 300 nm. Measurements will be adjusted 

according to baseline measurements using Iysates of GM4429/CYP1 A2 cell line. 
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N-acetylation Activity Un situ} 

N-acetylation activity in situ will measured in whole cell samples. Human 

fibroblast cell lines, grown to confluency, will be treated with medium 

supplemented with PABA, SMZ, ABP, AF, 2,6-DMA, 3,5-DMA, and 3-EA in 

varying doses including 10, 50, and 300 IJM. Medium will be collected at various 

time pOints (2, 6,8,10 h). Existing protein will be preCipitated out of solution using 

1 mM acetic acid; the reaction products and substrates will be subjected to HPLC 

for separation. Measurement of acetylated PABA, SMZ, ABP, AF, 2,6-DMA, 3,5-

DMA, and 3-EA will be carried out as described above. 

Kinetic Studies 

We will measure kinetic parameters Km and V max of acetyl GoA and arylamine 

genotoxins such as 2,6-dimethylaniline (2,6-DMA), 3, 5-dimethylaniline (3,5-

DMA), and 3-ethylaniline (3-EA) for NAT1 or NAT2. We will determine acetyl 

GoA Km and Vmax with varying acetyl GoA concentrations (0- 400 IJM) and fixed 

substrate concentrations (300 IJM). The substrate Km and Vmax will be 

determined with varying substrate concentrations (0 - 1 mM) and a fixed acetyl 

GoA concentration of 100 IJM. The apparent Km and Vmax constants will be 

calculated using linear regression of Eadie-Hoftsee plots. These values 

(apparent Km and Vmax) will allow us to select arylamines for further study based 

on arylamine affinity for either NAT1 or NAT2. 
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NAT mRNA expression (Tagman Quantitative RT-PCR Assays) 

TaqMan assays will be used to assess level of NAT1 and NAT2 mRNA 

expressed in each cell line. TaqMan Universal Master Mix (Applied Biosystems, 

Foster City, California, USA), primers and probes, 96 well optical plates and caps 

will be used. Synthesis of first strand cDNA will be carried out using Superscript 

III ReverseTranscriptase (Invitrogen) following the manufacturer's protocol using 

1 IJg of DNase-treated total RNA. PCR with 1 x final concentration of TaqMan 

Universal Master Mix, 300 nM of each primer and 100 nM of probe in 20 IJI will be 

performed using Applied Biosystems StepOnePlus Real-Time PCR Systems 

(Applied Biosystems). For quantitative RT-PCR of NAT1 (Husain et ai, 2007a) 

and NAT2 (Husain et aI., 2007b), forward primer and reverse primer will be used 

with TaqMan probe. 

NAT1 Genotvping 

DNA will be extracted from human fibroblast cell samples using the "Qiagen DNA 

Purification kit" (Qiagen, Valencia. CA). NAT1 genotype will be determined as 

previously described (Doll and Hein, 2002). Briefly, NAT1 amplification will be 

carried out in an Applied Biosystems StepOnePlus Real-Time PCR Systems with 

two initial hold steps (50°C for 2 min., followed by 95°C for 10 min.) and 40 

thermocycles of a two-step PCR: 92°C for 15 s, 60° C for 1 min. The fluorescence 

intensity of each sample will be measured at temperature change to monitor 

amplification of the NAT1 gene. Controls are run to ensure that contaminated 
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DNA is not amplified. Primers, probes, and DNA are added to final 

concentrations of 300 nM, 100 nM, and 0.5 -2.5 ng/IJI, respectively 

Aim 2: To evaluate and compare the effects of combinations of genetic variants 

in NAT2 (i.e. rapid or slow phenotypes) and high and low NAT1 and CYP1A2 

enzymatic activities on oxidative stress, DNA adduct formation, and 

mutagenesis. We hypothesize that cell lines with combinations of altered 

enzymatic activity associated with slow acetylator (NA T) and rapid hydroxylation 

(GYP) will present an increased incidence of oxidative DNA damage, while cell 

lines with rapid acetylator (NA T) and slow hydroxylation (GYP) will exhibit less 

oxidative DNA damage, but increased incidences of DNA adduct formation and 

mutagenesis. 

NAT1 and CYP1A2 gene knockdown by RNA interference 

We will utilize Dharmacon SMART pool siRNA (Thermofisher) formatted to target 

the open reading frame of human CYP1 A2 and the 3' untranslated region 

(3'UTR) of human NAT1 mRNA to achieve knock down of the expression of 

CYP1A2 and NAT1. SMART pool siRNA products contain four highly functional 

duplexes that target different regions of the target gene, guaranteeing 75% 

knockdown of genes. The open reading frame region of CYP1A2 will be targeted 

because only the complete coding region sequence of CYP1 A2 is present in the 

piRES plasm ids used for initial transfection. The 3' UTR of NAT1 will be targeted 
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because the cell lines also express human NAT2, and the vast difference 

between the 3'UTRs of both isozymes will prevent targeting of both NAT genes. 

The siRNA transient transfection will be achieved according to manufacturer's 

instructions. GM4429 cells will be seeded 48 hours before the transfection at 

3x1 04 cells/well in order to have 60-70% confluency at the day of transfection. In 

a microcentrifuge tube 20 ~M siRNA will be mixed with 25 ~I of siRNA diluents 

and 1 0 ~I serum-free medium. In another tube, 5 ~I of transfection reagent will 

be diluted with 25 ~I serum-free medium. The two tubes will be mixed and 

incubated for 15 minutes at room temperature. The mixture will be added to a 6-

well plate, which will contain 930~1 of serum-free medium. After incubating the 

mixture for 3-4 hours, the medium will be changed. Seventy-two hours after the 

application of the smart pool, the cells will be harvested for qRT-PCR to evaluate 

the levels of knockdown. Enzymatic activity will be measured using functional 

assays for NAT (HPLC) and CYP (EROO assay) as earlier described to initially 

test transfection efficacy. 

Evaluation of the Effect of Altered Enzymatic Activity and Genetic Variance on 

Toxicological Outcomes 

Cell lines with combinations of CYP1A2 and/or NAT1 knock down and variant 

NAT2 alleles will be used to evaluate the effects of altered enzymatic activity of 

expressed XMEs on toxicological risk. Newly generated cell lines will be treated 

with arylamine genotoxins and toxicological outcomes will be measured as 

described below. 
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Oxidative DNA Damage 

Oxidative DNA damage will be evaluated by enzyme immunoassay (EIA) to 

measure 8-hydroxy-2-deoxyguanosine (8-0H-dG), according to the 

manufacturer's instructions (Cayman Chemical Company, Ann Arbor, MI) . Cell 

Iysates will be collected and DNA will be purified and digested (Qiagen) 

according to manufacturer's instructions. Fifty IJI of sample will be applied to a 96 

well plate containing 100 IJI of EIA buffer or 50 IJI of 8-0H-dG EIA standard. Fifty 

IJI of 8-0H-dG acetylcholinesterase tracer will be added to each well except the 

total activity and blank wells, followed by 50 IJI of 8-0H-dG EIA monoclonal 

antibody. The plate will be covered and incubated for 18 hr at 4°C. Two hundred 

IJI of reconstituted Ellman's reagent will be added to each well and 5 IJI of tracer 

to the total activity wells. The plate will be read by Spectra Max Gemini XS plate 

reader (Molecular Devices, Sunnyvale, CAl at a wavelength between 405 and 

420 nm and 8-0H-dG concentration will be quantified. 

DNA Isolation and DNA Adduct Quantitation 

DNA adduct levels will be measured as previously described in our laboratory 

(Metry et aI., 2007). DNA will be isolated from cells grown in 15 cm plates and 

treated with ASP, AF, 2,6-DMA, 3,5-DMA, or 3-EA. Our laboratory has extensive 

experience with ASP adduct level measurement studies in other cell lines, 

therefore ASP will be used as a positive control in the present study. Cells will be 

harvested after 48 hr and the pellet suspended in 500 IJI of 50 mM Tris HCI and 
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10 mM EDT A. Cells will be incubated in 50 j,J1 of 10% SDS and 20 j,Jg/ml 

proteinase K for 45 min at 37 cC. DNA will be extracted by 

phenol:chloroform:isoanyl alcohol (25:24:1) and precipitated using cold 

isopropanol and cen~rifuged for 1 min. Supernatant will be removed and the 

pellet washed with ethanol, dried, and resuspended in buffer containing 5mM Tris 

HCI, 1 mM CaCI2, 1 mM MgCI2, and 1 mM ZnCI2. DNA will be quantified at A26o. 

DNA samples will be treated with 10 units DNAase I (US Biological, Swampscott, 

MA) for 1 hour at 3rC and nuclease P1 (US Biological) for six hours, followed by 

overnight treatment with 5 units of alkaline phosphatase (Sigma). Two volumes 

of acetonitrile will be added to stop the reaction. Samples will be filtered using a 

5,000 nominal molecular weight limit centrifugal filter device (Millipore, Bedford, 

MA) and will be evaporated to 50 j,JL. Samples will then be reconstituted in 5% 

acetonitrile to a final volume of 100 j,JL. Samples will be used for LC-MS-MS 

analysis performed by Biomolecular Mass Spectrometry laboratory of Dr. William 

Pierce. Samples used for quantitative analysis will be spiked with one ng 

deuterated internal standard before any sample treatment. Samples will be 

loaded into the Inertsil C18 precolumn using Perkin Elmer ABI 140D syringe 

pumps and a Hewlett Packard 1100 Series Autosampler. Samples will be 

injected into a Micromass Quattro LC triple quadrupole mass spectrometer using 

nanospray with 20 j,Jm Ld. fused silica tubing inserted through 125 j,Jm Ld. PEEK 

tubing as previously described (Neale et aI., 2008). 
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Assays for Mutagenesis at the hprt Locus 

To evaluate mutagenesis at the hprt locus we will employ methods previously 

used in our lab (Metry et aI., 2007). Cells will be grown for 12 doublings, with 

selective agents in complete HAT medium (30 IJM hypoxanthine, 0.1 IJM 

aminopterin, and 30 IJM thymidine). Survival will be determined by colony forming 

assay and expressed as percent of vehicle control. The remaining cells will be 

re-plated and sub-cultured. After 7 days of growth, cultures will be plated for 

cloning efficiency in complete media and for mutations in complete medium 

containing 40 IJM 6-thioguanine (6-TG) (Sigma). Dishes will be seeded with 1 x 

105 cells /100 mm and incubated for 7 days; cloning efficiency dishes will be 

seeded with 100 cells/ well/ 6-well plate and incubated for 6 days. In order to 

distinguish between effects of DNA damage by activated arylamine versus 

oxidative damage we will employ a Cu(lI) specific chelator, bathocuproine, to 

ablate mutagenesis occurring as a result of oxidative damage. 

Aim 3: To determine the effectiveness of a novel arylamine NAT1 small molecule 

inhibitor on reducing mutagenesis and DNA adduct formation. We hypothesize 

that the inhibition of NA T1 enzymatic activity will reduce mutagenesis and DNA 

adduct formation, but increase oxidative DNA damage. 

In order to identify novel inhibitors of NAT a two-stage screening process will be 

utilized. The first stage included previous studies by Dr. John Trent, University of 

Louisville, that identified approximately 150 NAT inhibitor candidates by 

computer-based in silico screening of approximately 20 million compounds. 
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Initial screening of inhibitory properties of the candidate compounds will be 

evaluated using NAT1 (PABA)- and NAT2 (SMZ)- specific enzymatic assays that 

recombinantly express human NAT1 or NAT2 in yeast. Reactions will be 

prepared with acetyl- coenzyme A (1 mM), selective substrates p-aminobenzoic 

acid (NAT1) or sulphamethazine (NAT2) (300 IJM), and potential inhibitors at 

varying concentrations between 0 - 1 mM. Control reactions will substitute the 

vehicle (DMSO) for inhibitor. The reactions will be stopped using 1 M acetic acid 

and protein will be centrifuged at 10,000 x g for 10 minutes. Reaction products in 

the resulting supernatant will be separated by reverse-phase HPLC as previously 

described. We will evaluate the effectiveness of promising inhibitors on reducing 

mutagenesis and DNA adduct formation. Cells will be treated with varying doses 

of inhibitor, followed by measurements of oxidative damage, hprt mutagenesis, 

and DNA adduct levels as described above. ICso values of the most promising 

NAT1 inhibitors will be determined by evaluating the inhibition of ABP, PABA, 

and SMZ N-acetylation activity in Iysates of yeast that recombinantly express 

human NAT1 or NAT2. Activity will be determined using 100 IJM acetyl CoA and 

10 IJM ABP, PABA, or SMZ with varying concentrations of inhibitor (0- 100IJM). 

Screening of additional compounds will be completed to determine their ability to 

inhibit NAT. 

Statistical Analysis 

Quantitative analysis of differences between various test groups will be done 

using one-way analysis of variance (ANOVA), with the Bonferroni posttest. We 
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will use the Student's t test to compare differences between an experimental 

group and a control group. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

We have successfully constructed NER-deficient SV40- transformed 

human fibroblast cells that stably express human NAT2 alleles (NAT2*4, 

NAT2*58, or NAT 2*78) and human CYP1 A2. This was accomplished using the 

Flp-In system (Invitrogen, Carlsbad, CA). The CYP1A2-, CYP1A2INA12*4-, 

CYP 1 A21 NA 12*58 and CYP 1 A21 NA 12*78- transfected cells exhibited EROO 

when assessed using fluorimetric determination of 7 -ethoxyresorufin oxidation. 

No statistical differences (p>O.05) in CYP1 A2 EROD catalytic activity were 

observed between GM4429/CYP1 A2 cells and the cell lines further transfected 

with NAT2 alleles (Figure 3.). 

Human NAT2-specific SMZ N-acetylation activity was measured to 

validate successful production of stable transformants expressing NA 12*4, 

NA12*58 and NA12*78 (Figure 4.). All NAT2 transfected cells had significantly 

higher SMZ N-acetylation activity than the non-transfected cell lines. Lysates 

collected from cells transfected with NA 12*58 and NA 12*78 showed significantly 

lower SM2 N-acetylation activity when compared to the reference allele NAT2*4 

using one-way ANOVA analysis followed by 80nferroni posttest (p<O.001). 

Activity in GM4429 cells not transfected with NAT2 were below the level of 

detection for SMZ N-acetyltransferase «O.15nmoles/min/mg). 
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As shown in Figure 5., cells were tested for PABA N-acetyltransferase 

activity in Iysates of NER-deficient SV40 transformed GM4429 cells stably 

transfected with human CYP1A2 and human NAT2 alleles. No significant 

difference in PABA N-acetylation activity was observed among all GM4429 cells 

lines using one-way ANOVA analysis (p > 0.05). 

The identification of NAT inhibitors in a two stage screening method is 

previously described. Based on our intial in vitro screening we determined that 

the compound ethyl[1-(3-ethoxycarbonylpropanoyloxy)-1 0-dioxo-2-anthryl]­

butanedioate (compound 10) was most promising in its ability to inhibit 

acetylation activity (Table 1.). Compound 10 inhibition of PABA and ABP N­

acetylation activity in Iysates of yeast that recombinantly express human NAT1 *4 

was determined to be 100% (Figure 6.). ICso values were calculated and 

determined to be 0.75 ~M (PABA) and 0.97 ~M (ABP) in yeast lysate that 

recombinantly express human NAT1 *4 (Figure 6.). In yeast lysate that 

recombinantly express human NA 72*4 ICso values were determined to be 41.3 

~M (ABP) and 82.2 ~M (SMZ) (Figure 7.). In CHO cells stably transfected with 

human NAT1 *4 ICso values for compound 10 were determined to be 8 ~M (ABP) 

and 118 ~M (PABA) (Figure 8.). 
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DISCUSSION 

Our results show that we have successfully constructed and characterized 

NER-deficient human fibroblast cell lines that stably express human NAT2 alleles 

(NA T2*4, NA T2*58, or NA T 2*78) and CYP1 A2. These cell lines can be used to 

study NAT metabolism. Future studies include the investigation of functional 

effects of genetic variations in NAT2, in the presence of human NAT1, on 

arylamine metabolism and toxicological risk. The cell lines used in this study are 

most beneficial because they endogenously express human NAT1, therefore are 

practical in studying not only substrate specificity, but combinations of altered 

enzymatic activity in human CYP1A2, human NAT1 and genetic variance in 

human NAT2. 

This study also introduces the use of novel small molecule NAT1 inhibitors 

to reduce DNA adduct formation and mutagenesis. The applications of these 

compounds are novel. We expect that inhibiting NAT1 catalytic activity will 

reduce mutagenesis and DNA adduct formation resulting from NAT1 0-

acetylation. We expect to see an increase in oxidative stress because inhibition 

of NAT activity will increase substrate availability for metabolic hydroxylation 

leading to an increased production of reactive oxygen species, consequently 

increasing oxidative DNA damage. The results of this investigation provide 

insight into functional genomic studies of NAT2 in human cells. We expect that 
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future studies will allow us to determine more details of the relationship between 

genetic variations and toxicological risk from genotoxic environmental 

arylamines. 
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Figure 1. Metabolic pathways of 4-aminobiphenyl by NAT. 

Adapted from 8endaly et aI., 2009. 
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Figure 2. Schematic of stable transfection using the Invitrogen Flp-In System 
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Figure 3. CYP1A2 EROO activity in NER-Oefiecient SV40-transformed GM4429 
cells. Each bar represents mean ± SEM for 3 experiments determining 7-
ethoxyresorufin-O-deethylase (EROO) activity (pmoles/min/1 x 106 cells) in NER­
deficient SV40-transformed GM4429 cells stably transfected with human 
CYP1A2 and human NAT2 alleles. No significant difference in EROO activity was 
observed among transfected cells using one-way ANOVA analysis (p > 0.05) 
EROO activity in non-transfected cells was below the limit of detection «0.05 
pmoles/min/1 x 106 cells). 
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Figure 4. 8MZ N-acetyltransferase activity in ceillysates of NER-deficient 8V40-
transformed GM4429 cells stably transfected with human CYP1 A2 and human 
NAT2 alleles. All NAT -transfected cells had significantly higher 8MZ N­
acetylation activity than the non-transfected cells. Lysates collected from cells 
transfected with NAT2*58 and NAT2*78 showed significantly lower 8MZ N­
acetylation activity when compared to extracts of cells transfected with the 
reference allele NAT2*4 using one-way ANOVA analysis followed by 80nferroni 
posttest (p<O.001). 8MZ N-acetyltransferase activity of non-transfected GM4429 
cells was below the level of detection «O.15nmoles/min/mg protein). 
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Figure 5. PABA N-acetyltransferase activity in ceillysates of NER-deficient SV40 
transformed GM4429 cells stably transfected with human CYP1 A2 and human 
NAT2 alleles. PABA N-acetylation was determined with 1 mM acetyl CoA and 
300 IJM PABA. No significant difference in PABA N-acetylation was observed 
among all GM4429 cells lines using one-way ANOVA analysis (p > 0.05). 
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Figure 6. Compound 10 inhibition of PABA and ABP N-acetylation activity in 
Iysates of yeast that recombinantly express human NAT1. Each point represents 
mean ± SEM for 3 experiments determining compound 10 inhibition of PABA 
and ABP N-acetylation activity in Iysates of yeast that recombinantly express 
human NAT1. 
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Figure 7. Compound 10 inhibition of ASP and 8MZ N-acetylation activity in 
Iysates of yeast that recombinantly express human NAT2. Each point represents 
mean ± 8EM for 3 experiments determining compound 10 inhibition of ASP and 
8MZ N-acetylation activity in Iysates of yeast that recombinantly express human 
NAT2. 
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Figure 8. Compound 10 inhibition of ABP and PABA N-acetylation activity in 
CHO cells that recombinantly express human NAT1. Each point represents 
mean ± SEM for 3 experiments determining compound 10 inhibition of ABP and 
PABA N-acetylation activity in CHO cells that recombinantly express human 
NAT1. 
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Table 1. Target NAT isozyme, priority number, and percent inhibition of screened 

compounds 

Entry Priority number % inhibition of NAT2 % inhibition of NAT1 
1 NAT2 6 4 0 
2 NAT2 9 49 7 
4 NAT1 14 3 0 
5 NAT1 19 0 30 
6 NAT2 7 7 0 
7 NAT2 11 0 25 
8 NAT1 3 0 0 
9 NAT1 20 7 14 
10 NAT1 23 100 100 
11 NAT1 40 88 95 
12 NAT1 67 23 8 
13 NAT1 0 3 
14 NAT1 0 7 
15 NAT2 24 9 5 
16 NAT2 23 5 75 
17 NAT1 27 0 0 
18 NAT2 25 0 0 
19 NAT1 47 2 16 
20 NAT2 28 2 16 
21 NAT1 50 9 2 
23 NAT2 26 21 5 
24 NAT2 27 22 15 
25 NAT2 30 37 2 
26 NAT1 26 0 31 
27 NAT2 46 0 0 
28 NAT2 57 26 0 
30 NAT1 49 7 0 
31 NAT2 52 14 27 
32 NAT1 54 30 43 
33 NAT2 53 0 7 
34 NAT2 33 10 14 
35 NAT2 22 2 0 
36 NAT2 41 0 0 
37 NAT2 32 4 17 
38 NAT2 60 13 21 
39 NAT2 67 0 5 
40 NAT2 58 0 3 
41 NAT2 56 2 0 
42 NAT2 49 0 14 
43 NAT2 55 27 0 
44 NAT2 68 10 13 
45 NAT2 51 0 20 
46 NAT2 38 15 21 

47 NAT2 44 14 5 
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