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ABSTRACT 

THE DEVELOPMENT OF AN INNOVATIVE ADDER DESIGN EVALUATED 
USING PROGRAMMABLE LOGIC 

James A. Haas 

April 23rd
, 2004 

This research evaluates an innovative binary adder design and compares it against 

five standard adder designs. It begins with an algorithmic description of the five standard 

designs followed by the innovative design. It uses two metrics, speed and size, to 

establish a fair comparison among the designs and draw conclusions about the 

performance and usability of the innovative design. The metrics are applied to theory, 

simulation, and implementation of the adder designs. The latter part of the research 

draws conclusions from the analysis of these metrics to establish a fair comparison 

between the innovative and existing designs. 

The five standard designs are the carry-ripple, carry-complete, carry-Iookahead, 

carry-select, and pyramid. The carry-ripple design is the fundamental and most straight-

forward approach to addition. The carry-complete takes the carry-ripple design and adds 

a signal to detect when the addition is complete. The carry-Iookahead design uses some 

intermediate signals to add multiple bits concurrently. The carry-select design is a brute 

force approach that allows high speed for a large gate count. Lastly, the pyramid design 

divides the addition into multiple stages, each calculating a single step of the addition 

process. The innovative design, called the carry-feedback, works by starting with the 
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addends and iterating towards the solution, something unique from the other designs 

causing the sum to be latched by the adder. It's innovative approach provides a 

completion signal, simlar to the carry-complete adder. 

The research comes to the conclusion that the carry-feedback design is 

noteworthy deserving further attention. The carry-feedback design's performance along 

with its feature of latching the results and ability to signal completion make it an 

excellent candidate for asynchronous circuits, an area of continued interest in 

mIcroprocessors. 
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CHAPTER 1 

INTRODUCTION 

Concepts of Binary Addition 

Binary addition is one of the most fundamental calculations perfonned by today's 

microprocessors (Patterson & Hennessy, 1994). Binary addition is perfonned in much 

the same way as decimal addition Each digit of the vector is added, from right to left, 

producing a sum and a carry. The sum of two binary digits is very simple to calculate, 

and can be expressed in a simple truth table, often called a "half-adder" (Wakerly, 2000): 

Table 1 

Binary Half-Adder Truth Table 

Input 1 Input 2 Carry Sum 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 
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In order to calculate the addition of a vector longer than one bit, this table must be 

expanded to include the addition of the carry output of the previous bit. This is expressed 

in the following truth table, often called a "full-adder" (Wakerly, 2000): 

Table 2 

Binary Full-Adder Truth Table 

Carry-In Input 1 Input 2 Carry-Out Sum 

0 0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

To provide a method for handling negative numbers, binary vectors are typically 

expressed in a form called the 2s complement. The 2s complement uses the most 

significant bit to indicate the sign (0 is positive, 1 is negative), and requires a specific bit

length to be chosen The 2s complement is calculated by performing a 1s complement of 

the vector that describes the positive number, and adding 1. An example of this would be 

to model -7 in a 4-bit number would result in the following conversion. As a 4-bit binary 
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number, '7' is expressed as '0111'. First, we perform a Is complement to give' 1000'. 

Finally we add one to give' 1001'. By quick examination, we can determine that a 2s 

complement number of bit length N will result in a number in the range: _2N
-
1 <= number 

< 2N
-
1 (Omondi, 1994). 

In most addition scmmes, there is no direct way to perform subtraction To 

bypass this limitation, the complement of the number to be subtracted is added. The 2s 

complement is a quick and easy method to implement to perform subtraction. For 

example, instead of subtracting '55' from '77', '-55' is added to '77' (Patterson & 

Hennessy, 1994) 

Because of the limitations of the specific bit sizes in microprocessors, specific 

tests must be added to watch for overflow conditions, or conditions that result in an 

incorrect result. These conditions occur whether the addition is signed or not This is 

because any addition of numbers of bit sized N can potentially result in an answer that 

needs (N+ 1) bits to describe. For example, if you add the unsigned 3-bit numbers of 

'111' and '001' together, you end up with '1000', a 4-bit number (Omondi, 1994). 

Microprocessor complexity has grown quickly, and the width of the binary 

vectors used has increased from 8-bits to 32-bits, 64-bits, and beyond. Although the sum 

may be calculated by a binary adder quickly, the inability of most binary adders to 

determine whether the addition is complete requires the worst case to be assumed. The 

worst case addition is based upon the length of time for the carry calculation to propagate 

across the entire width of the sum vector. As such, addition of vectors of width N can 

require N operations to calculate despite the fact that the average case has but 10~N carry 
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propagations (Omondi, 1994). Therefore, tremendous research has gone into reducing 

the ti me required to perform that addition 

The research presented here investigates an innovative implementation of a binary 

adder, hereafter called a carry-feedback adder. The carry-feedback adder is compared 

against five traditional binary adder designs. The following five designs were chosen 

because they are either fundamental or highly optimized: carry-ripple, carry-completion, 

carry-Iookahead, carry-select, and pyramid adder schemes. The design comparison 

metrics are speed and size (Omondi, 1994) that are combined to determine overall 

performance. 

There is tremendous difficulty in establishing fairness in regard to these two 

metrics, as the exact implementation of a design often depends on the transistor 

technology being used. In an effort to maintain simplicity, factors such as 'fan-out' (a 

single output attached to too many gate inputs) and 'fan-in' (too many inputs to logic 

gate) are ignored. As such, speed is measured in terms of gate delays, and the gates are 

assumed to all require the same amount of time, represented as t. Likewise, size is 

measured in gate count, and gates are all assumed to be the same size. Adder variables 

are chosen such that the values regarding fan-in and fan-out are reasonable. 

The number of gate delays is calculated by determining the worst-case path 

through the adder. For example, given the equation AB + CD, the number of gate delays 

is two: one to determine the outputs of the gate (A AND B) and (C AND D), which are 

calculated simultaneously, another to determine the output of the OR gate that combines 

them. Likewise, the gate count is determined by summing up the total number of gates in 
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the adder (XOR is counted as a single gate). For example, given the equation (AB + 

CD), the number of gates is three: one for AB, one for BC, and one for AB + CD. 

Adder performance is measured by multiplying speed and size. Adders with 

lowers values for this calculated parameter indicate a higher performance. This research 

weights speed and size equally in regards to performance, but it is a simple change to 

weight one metric more important than another. 

For all adder designs and comparisons, the vectors A and B denote the addends, 

the vector C denotes the carries, and the vector S denotes the sum. All of the vectors are 

of width N. A subscript ofn on a vector, such as An, represents the single bit of vector A 

at position n, where n ranges from 0 to (N - 1). C in is a single bit input to the adder 

representing the carry input, sometimes represented as Co. Cout is a single bit output of 

the adder representing the carry output, sometimes represented as CN. 

Where latching is required, two technologies are compared. The first is a 

traditional D flip-flop; the second is an SRAM cell. D flip-flops have 6 gates and require 

3t gate delays to latch the output (Wakerly, 2000). SRAM cells have 1 gate equivalent 

and require 1 t gate delays to latch the output. Both of these technologies are used to 

provide an adequate comparison for implementations where SRAM cells, the obviously 

better choice, are not available. 
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CHAPTER 2 

BINARY ADDERS 

Carry Ripple Adder 

The carry-ripple design is the least complex binary adder design. It is constructed 

by connecting a large number of single-bit full-adders together in a chain The outputs 

are dependent on inputs given at the beginning of the calculation, as well as outputs from 

the previous significant bit. Thus, this design is aptly named, as the output of the 

addition is not complete until the carry has rippled through each bit of the vector until 

completion(Omondi, 1994). The following block diagram illustrates this concept: 

AN-I BN-1 

li U 
<: 

COUI 

I 

Bit N-l r 1000 
C2 

< 
Bit 1 C1 Bit 0 ~' 

~ ~ ~ 
SN-I So 

Figure 1. Block Diagram for the Carry-Ripple Algorithm 

Full-adders are chained together to perform addition on vectors. 
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The equations describing an implementation of the aforementioned block diagram 

for chained full-adders are as follows. 

The size of this adder is 6N gates: 2N for the S vector and 4N for the C vector. 

Since the carry-ripple algorithm has no indication of when addition is complete, the time 

required to complete an addition is N times the number of gate delays of the carry-out 

calculation, or in this case 2Nt. 

Carry-Completion Adder 

The carry-completion design is a simple modification to the carry-ripple design, 

adding an output signal that indicates when the summation is complete. The basic idea is 

to modify the carry-ripple design to have two carry chains, one to detect the O-carries, the 

other to detect the I-carries. It is known that the addition is complete when every bit has 

either generated a carry or is known to not generate a carry (Omondi, 1994). In the 

following equations, Cn 
0 will denote the O-carry from stage n, and Cn 

1 will denote the 1-

carry from stage n. Also, the equation for the DONE signal, the signal that indicates the 

addition is complete is included: 
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The size of this adder is (9N + 1) gates: 4N for the C1 vector, 3N for the CO 

vector, N for the S vector, and (N + 1) for the DONE signal. The time required to 

complete an addition of bit length N is summed up by the following three conditions (two 

gate delays are added to every condition for initialization): best case 7t, average case 

(210~N + 4}t, worst case (2N + 4}t. Since the carry-completion algorithm has a signal to 

indicate when addition is complete, the average case of (210g2N + 4}t is used. 

Carry-Lookahead Adder 

The carry-Iookahead design, often called a "Propagate/Generate (PG) Adder", is 

an improvement to the carry-ripple design. This design implements additional logic to 

speed up the addition by determining the carry without waiting for the summation to 

finish. This is accomplished with the addition of intermediate signals called propagate 

and generate. The generate signal describes the condition of a single digit addition that 

will generate a carry regardless of the Cin signal. The propagate signal describes the 

condition of a single addition that will propagate a carry only if the Cin signal is a one 

(Omondi, 1994). 
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A bit will have a carry if either it generates a carry or it propagates a carry and the 

previous bit will generate a carry. This can be implemented through the following 

equations: 

Pn = An+Bn 

On = AnBn 

Cn = On + PnCn-1 

The formula for Cn can be expanded to determine the equation for the nth carry 

bit. For example, suppose you wanted to calculate the equation for the 4th carry. 

C4=04+ P4C3 

C4 = 0 4 + P4(03 + P3C2) 

C4 = 0 4 + P4(03 + P3(02 + P2CI)) 

C4 = 0 4 + P4(03 + P3(02 + P2(01 + PICO))) 

C4 = 0 4 + P4(03 + P3(02 + P2(01 + PI(Oo + POCin))) 

Cin can be described as 0_1, or the carry generated as input to the adder. The 

equation becomes summarized as: 

9 



An important observation from the resulting equation for C4 that can easily be 

seen is that in theory, any arbitrarily chosen Cn will result in 3-layer logic. This implies 

that any length addition can be solved in three gate delays. However, the AND and OR 

gates quickly grow in complexity because they require increasing number of inputs. 

Typically, the number of inputs is limited to some value determined by the capabilities of 

the hardware regarding fan- in. 

To address this issue, several approaches have been taken to form a hierarchy of 

carry-Iookahead calculation. Some of these include rippling the carries of several smaller 

PG Adders connected in series. Another approach is to connect a series of several 

smaller carry-ripple adders together, and then use a PG Adder to generate the C in signal 

for each block (Omondi, 1994). However, the fastest model is to use a pyramid of PG 

Adders to generate the Cin signal for blocks of PG Adders. This is commonly called a 

PG-PG Adder. The following block diagram illustrates how a PG-PG adder would be 

connected: 
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Block 3 Block 2 7 Block 1 Block 0 

Su-Sg 

Gs Ps 

Super-block 

Figure 2. Block Diagram for a 16-bit PG-PG Carry-Lookahead Algorithm. 

Lookahead blocks perform addition on a subset of the data. The super-block takes 

propagate/generate data from the lookahead blocks and calculates intermediate carries. 

The number of levels can be increased to improve efficiency for larger width vectors. 

Each block and super-block is M units wide, in this example, four. 

The super-blocks work much the same way as the smaller blocks. Each super

block takes propagate and generate outputs from the blocks beneath, combining them to 

form block propagate and block generate signals. The block propagate and block 

generate vectors are then combined in the same way as the propagate and generate 

vectors at the level below to determine the carry output for the super-block layer. For 

example, the super-block will have a COUI of 1 if the last block generates a carry, or ifit 

will propagate a carry and the previous block generate a carry. 
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The size of this adder is given by the following fonnula ofNIM( 4M + M(M+ 1 )/2 

-1) + (logMN(logMN -1)/2)(SM + M(M+l)/2 -1) + (M + 1) gates: NIM adder blocks of 

size (4M + M(M+l)/2 -1) gates, (logMN(1ogMN -1)/2) superblocks of size (SM + 

M(M+ 1 )/2 - 1), and (M+ 1) gates for the final carry-out calculation Since the PG-PG 

carry-Iookahead algorithm has no indication of when addition is complete, the time 

required to complete addition with group size M is the gate delay of each block times the 

number of levels, or (SlogMN)t . 

Carry-Select Adder 

The carry-select algorithm derives its name from the method in which the 

algorithm uses the carry to select which addition is correct. Adder blocks are duplicated, 

and the carry out selects which block is the correct one. By creating a pyramid of these 

blocks, the addition can be perfonned very quickly (Omondi, 1994). However, as the 

width of the addition vectors increases relative to the size of the adder blocks, the number 

of adder blocks increases exponentially. One implementation of this algorithm is 

illustrated in the following block diagram: 
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A3-Ao A7-A4 AII-A8 

e-m 

I I I I 
Adder Adder Adder Adder Adder Adder Adder 

~ C3=O C3=1 C3Cr OO C3Cr OI C3C7=1O C3C7=11 

C3 
C3 Multiplexer ----"-- Multiplexer 

C7 l-

I I 

Figure 3. Block Diagram for a 12-bit adder using the Carry-Select Algorithm. 

Adder blocks perform addition on a subset of the data. The first adder unit performs like 

a normal adder. The other adder units have their carry inputs set to 0 or I. The 

multiplexers take carry outputs from the adder blocks and select the proper sums. 

Often, this algorithm is used in conjunction with other algorithms to improve 

efficiency. Each individual adder block can be of any type. This allows incredible 

flexibility in implementation, and provides multiple methods of optimization. A common 

choice is to make each adder block a carry-Iookahead adder. 

The size of a carry-select adder divided into carry-Iookahead adder groups of size 

Mis (2N/M_l)(4M + (M+l)(M+2)12 -1) + (2N/M + NIM - 3) gates: (2N/M_l) adder blocks 

of size (4M + (M+I)(M+2)/2 -I) gates, and (N/M - I) multiplexer blocks that sum to a 

size of (2N/M + N/M - 3) gates. Since the carry-select algorithm does not require any 
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rippling of the addition, the time required for addition is a constant 7t. However, an 

adder of small width is only practical for this application. 

Pyramid Adder 

The last algorithm discussed is the pyramid adder algorithm. The pyramid adder 

consists of two main parts. One part is made up of hal:t:adders that calculate the partial 

sum and partial carry bits for all the stages. The other part is a pyramid structure whose 

base adjoins the other part, and where the partial carries are assimilated with the partial 

sums. The assimilation occurs over a number of stages in which carries are propagated 

over a predefined width, no more than twice the width of the previous stage (Omondi, 

1994). This is illustrated in the following block diagram: 
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~ ~ ~ ~ ! ! ~ ~ J l J ~ 1 1 1 1 
HA HA FA 

1+ 

C07 ~07 C06 S60 ~os ~os ~04 ~04 ~03 ~03 ~02 ~02 ~Ol SOl ~OO SOO 
1 1 1 1 1 1 1 

Assimilate 
Carry 

Cl
7 Sl7 Sl6 CIS ~IS 181

4 ~\ ~13 ~12 Cl
l S\ ~10 

~ 1 ~ 

r2
7 ~27 S26 S2S ~24 C2

3 S23 S22 1821 ~20 
1 1 1 

~ ~ ~ ~ ~ 

Cout Ss So 

Figure 4. Block diagram for an 8-bit adder using the pyramid algorithm. 

Partial carries are assimilated in blocks of twice the previous block size until the addition 

is complete. 

The pyramid algorithm can be implemented through the following series of 

equations: 

Stage 0: The partial sums and partial carries are produced. 
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CO. =AB-
J J J 

Stage 1: The stages are grouped in twos, and carries are assimilated within each group. 

C1 - CO SO CO j+l - j+l + j+l j 

Slj = SOj, for all other j 

Stage 2: The stages are grouped in fours and carries are propagated and assimilated 

within each group. 

S2 - Sl SI C1 j+2 - j+2 E9 j+l j 

C2 - C1 I Sl CO j+2 - j+2 + S j+2 j+l j 

Stage 3: The same procedure is repeated with groups of eight. 

S3 - S2 S2 C2 j+2 - j+2 E9 j+l j 

S3 - S2 S2 S2 C2 j+3 - j+3 E9 j+2 j+l j 
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3 _ 2 2 2 S2 S2 C2 
C j+4 - C j+4 + S j+4S j+3 j+2 j+l j 

Stage k: Similar, with the groups size doubled at each step. In general, the group size at 

step k is 2k, and the assimilation is expressed by the following equations G=2k-l, 3*2k-l, 

Sk. = Sk-I. in Ck-I. )+1 )+1 1;[7 ) 

Sk Sk-I Sk-I Ck-I j+2 = j+2 E9 j+l j 

Sk Sk-I Sk-I Sk-l Sk-l Ck-I j+2"(k-l) = j+2"(k-l) E9 j+2"(k-l)-1 j+2"(k-I)-2··· j+l j 

Ck Ck-I Sk-I Sk-I Sk-I Ck-I j+2"(k.-l) = j+2"(k-l) + j+21\(k-l) j+21\(k-l)-I··· j+l j 

The size of this adder is (2N+2) + N(log2N(log2N+I)I2) + N(I_TIog2N) gates: 

(2N+2) for the first stage, and then (N/2i)(i+ 1) for each stage i afterwards. Since the 

pyramid algorithm has no indication of when addition is complete, the time required to 

complete an addition is the number of stages (lo~N + 1) times the number of gate delays 

of each stage (2), plus an additional gate delay for the Oth stage, or (3+2Iog2N}t. 
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Carry-Feedback Adder 

The innovative adder design presented in this paper from this point forward is 

called the "carry-feedback" adder. The carry-feedback adder design is an unsophisticated 

design developed by the author while examining ways to speed up the average case 

addition. Typical additions performed by a human take advantage of the cases where 

there is no carry for a particular digit during addition. For example, 336 + 122 can 

typically be added more quickly than 938 + 239. As the lengths of the addend vectors 

increase, the percentage of "worst case" additions (additions that have a lot of digits that 

generate a carry) decrease. Mathematically, this is expressed by the following three cases 

for all binary addition for adding vectors of width N (Omondi, 1994): 

1. The best case is no carry propagation. 

2. The average case is 10gzN carries propagating. 

3. The worst case is N carries propagating. 

The author developed the carry-feedback algorithm to work iteratively to solve 

the addition rather than by directly calculating. The carry-feedback algorithm works by 

calculating two terms from the inputs: a partial-sum and a partial-carry. The partial-sum 

is calculated by performing a half-adder addition on all the digits. The partial-carry is 

calculated by performing a half-adder carry calculation on all the digits, and left shifting 

this vector one bit. Whenever a '1' is shifted out, it is latched as the 'carry-out' for the 

addition. Initially, the inputs are the two addends. Then, the partial-sum and partial carry 
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are fed back in as the new inputs. The addition is complete when the partial-carry vector 

is all zeroes. This is illustrated in the following block diagram: 

LOAD 

I I I I I I 
I I I I I I I 

Bit N-l 000- Bit 1 r-- Bit 0 -

PCN.] 
U L...-.. U '--- ~ 

PC] PCo 

I 
PSN.] PSI PSo 

I I 
I I 

DONE 

Figure 5. Block diagram for an adder using the carry-feedback algorithm. 

Partial sums are fed back into each block, whereas partial carries are fed forward into the 

next block. Partial sums iterate to the sum whereas partial carries iterate to zero. 

The carry-feedback adder received its name because of the way the outputs are 

fed back as inputs. The sequence of partial-sum vectors will approach and reach the 

actual sum. The sequence of partial-carry vectors will converge to zero. The following 

decimal addition illustrates the algorithm: 

54963 

+ 18265 

19 



62128 (partial sum vector, step 1) 

+ 11100 (partial carry vector shifted left, step 1) 

73228 (partial sum vector, step 2) 

00000 (partial carry vector, step 2 and final step since 0) 

In Boolean algebra, the equations are much simpler. One bit additions without 

regard to carry can be expressed using a logical XOR gate. Likewise, one bit carry 

calculations can be expressed using a logical AND gate. The output ofthe XOR gates 

will approach and reach the sum very quickly. This is illustrated in the following 8-bit 

addition example: 
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Table 3 

Carry-Feedback Addition Example 

Stage Input 1 Input 2 Carry- Partial- Partial-

Out Sum Carry 

1 11101111 01101011 0 10000100 11010110 

(-17d) (l07d) (-124d) (-42d) 

2 10000100 11010110 1 01010010 0@001000 

(-124d) (-42d) (82d) (8d) 

3 01010010 00001000 1 01011010 O@OOOOOO 
, 

(82d) (8d) (90d) 

The carry-feedback adder design is simple and uses very few logic gates for large 

vector additions. Likewise, it can be very fast for certain additions. For the following 

equations, A and B denote binary vectors oflength N. Let At depote the partial-sum 

vector at iteration t, and Ao is the fIrst addend. Let Bt denote thel partial-carry vector at 

iteration t, and Bo is the second addend. Let DONE denote the qutput indicating the 

addition is complete. The equations are given by: 

Bt = (At-l • Bt-J)« 1; (Where '« l' represents left shiftling the vector 1 bit) 

DONE = Bo· B} • B2 • •.• • BN-I 
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The algorithm requires a clock to synchronize the feedback of signals. However, 

the clock is not required to be synchronized with anything else. The outputs are 

detennined asynchronously, allowing the addition to be calculated at the fastest speed 

possible. The DONE signal allows nearly instantaneous reaction to the addition being 

complete. 

When D flip-flops are used, the size ofthis adder is 13N+9 gates, 7N for the 

partial-sum and partial-carry calculation, 6N for latching these values, 4 for setting up 

Cin, 4 for setting up Cout, and I for calculating DONE. A single iteration of the 

algorithm requires 5t time, two for the logic and three to latch the output. Additionally, 

the DONE signal requires t time. When SRAM cells are used, the size reduces to 8N + 9 

and the gate delay reduces to 3t. From the carry-propagation equations, the time required 

to complete an addition of bit length N is expressed in the following table (in all three 

cases, two gate delays are included for initialization): 

Table 4 

Addition Time for Carry-Feedback in Gate Delays 

Type 

Best Case 

Average Case 

Worst Case 

D flip-flops 

7t 

(510g2N + 2)t 

(5N + 2)t 

SRAM 

5t 

(310g2N + 2)t 

(3N + 2)t 
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For comparison with the other designs, the average time will be used. It is 

assumed that whatever device the adder is placed in will take advantage of the design's 

ability to notify when complete. 
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CHAPTER 3 

ADDERS SUMMARY 

Summary of Adder Gate Delays and Gate Counts 

To provide a theoretical basis for comparison, the addition times and sizes for the 

six adder designs were computed. Addition times are represented through a count of gate 

delays with the assumption that each gate in the design has the same delay. Likewise, 

sizes are represented through a gate count, with the assumption that each gate in the 

design has the same size. The reader should understand that these are estimations used 

solely for magnitude comparisons. An exact calculation requires specifying the transistor 

technology used and is beyond the scope of this paper. The theoretical speed and size are 

based upon the optimal implementation ofthe design, not on programmable logic. Also, 

specific information regarding the maximum fan-in and fan-out is required. 

Table 5 displays the theoretical addition times for each of the six adders at various 

bit widths. Some items of note: as expected on larger adders, the carry-ripple adder has 

the largest number of gate delays. Also as expected, the carry-select adder has the fewest 

number of gate delays, being a constant regardless of the adder size. The carry-complete 

and carry-feedback designs use the average case addition time instead of worst case 

because of their inclusion of a "DONE" signal. The other adders have gate delays on the 

same rough order of magnitude. 
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Table 5 

Theoretical Addition Times of the Six Adders in Gate Delays 

Type 4bit 16bit 64bit 256bit 

Carry-Ripple 8 32 128 512 

Carry-Completion 8 12 16 20 

Carry-Lookahead 5 10 15 20 

Carry-Select 7 7 7 7 

Pyramid 7 11 15 19 

Carry-Feedback (D fli~flop) 12 22 32 42 

Carry-Feedback (SRAM) 8 14 20 26 

Table 6 displays the theoretical gate count for each of the six adder designs at 

various bit widths. Some items of note: as expected, the carry-ripple adder has the 

smallest number of gates. Also as expected, the carry-select adder has the largest 

number, becoming unfeasible in the implementation chosen for large adders, showing the 

price paid for a constant addition time irrespective of size. The pyramid adder increases 

in size more rapidly than the remaining adders, all of which have sizes on the same rough 

order of magnitude. 
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Table 6 

Theoretical Gate Count of the Six Adders (block sizes of 4 are used) 

Type 4bit 16bit 64bit 256bit 

Carry-Ripple 24 96 384 1536 

Carry-Completion 37 145 577 2305 

Carry-Lookahead 30 134 492 1779 

Carry-Select 30 467 2031599 5.7185E+20 

Pyramid 25 209 1537 9985 

Carry-Feedback (D flip-flop) 61 217 841 3337 

Carry-Feedback (SRAM) 41 137 521 2057 

Table 7 displays the theoretical addition times and gate counts of the six adder 

designs for an arbitrary size ofN bits. Some items of note: when the adders are 

compared side by side, the value of the carry-lookahead becomes apparent. The block 

size 'M' can be chosen to optimally balance the fan-in/fan-out issues of the technology 

used, as well as being convenient for the adder width. The size does not become 

prohibitive as to prevent its use, making it obvious why this adder is commonly chosen 

for microprocessor designs (Koren, 1993). 
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Table 7 

Theoretical Addition Time and Gate Count of the Six Adders 

Type Addition Time Gate Count 

Carry-Ripple 2Nt 6N 

Carry-Completion (2lo~N + 4)t 9N+ 1 

Carry-Lookahead (SlogMN)t NIM(4M + M(M+l)/2 -1) + 

(logMN(logMN -1)/2)(SM + M(M+l)/2 

-1)+(M+l) 

Carry-Select 7t (2N/M_l)(4M + (M+l)(M+2)/2 -1) + 

(2N/M + NIM - 3) 

Pyramid (3+2lo~N)t (2N+2) + N(log2N(log2N+l)/2) + N(1-

2-log2 N) 

Carry-Feedback (D flip-flop) (Slo~N + 2)t 13N+9 

Carry-Feedback (SRAM) (3log2N + 2)t 8N+9 

Table 8 displays the performance characteristics of the theoretical size and speed 

at various bit widths. The table clearly shows the rapid drop in performance in the carry

select adder caused by its exponential growth in size. Likewise, the linear decrease in 

speed shows the rapid drop in performance in the carry-ripple adder. Using the 

theoretical calculations, the carry-Iookahead adder stands out as the clear victor in 

performance. 
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Table 8 

Theoretical Performance of the Six Adders (lower is better) 

Type 4bit 16bit 64bit 256bit 

Carry-Ripple 192 3072 49152 786432 

Carry-Completion 296 1740 9232 46100 

Carry-Lookahead 150 1340 7380 35580 

Carry-Select 210 3269 14221193 4.003E+21 

Pyramid 175 2299 23055 189715 

Carry-Feedback (D flip-flop) 732 4774 26912 140154 

Carry-Feedback (SRAM) 328 1918 10420 53482 
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CHAPTER 4 

DESIGN 

Design Considerations 

Since six binary adder designs of various sizes were being comp ared, a method to 

reduce the amount of overhead involved in the implementation was needed. Two 

objectives of reducing the overhead were desirable. The first was to use modem software 

tools and methodologies to provide for fast and easy design and implell"rntation. The 

second was to use modem hardware technology to reduce or eliminate the need for 

custom chip design or lengthy breadboard wiring. 

A single solution was found to address both these issues. A common design 

practice that is radically changing the way in which digital circuits are developed is to use 

an HDL (Hardware Description Language) on a programmable logic chip. An HDL is a 

language that is used to describe a digital circuit design in text. VHDL (VLSI HDL) and 

Verilog are commonly used HDLs. VHDL and Verilog use different syntaxes, but 

accomplish the same purpose: they force a specific grammar on a digital circuit design in 

such a way that the chip manufacturer can convert that design into an output format 

necessary to program the chip (Skahill, 1996). 

A programmable logic chip is a highly configurable chip that can be programmed 

to represent different digital circuit designs. The chips are configurable by using flash or 

other technologies to allow gate configurations to be programmed in. The two flavors of 
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programmable logic chips are CPLDs (Complex Programmable Logic Device) and 

FPGAs (Field Programmable Gate Array). 

CPLDs are typically conventional AND/OR logic with latched outputs arranged 

in a complex fashion to allow extensive programmability, often using flash to store the 

configuration (making the configuration non-volatile). FPGAs are typically digital 

multiplexed lookup tables combined with a smaller amount of AND/OR logic that often 

allows for extreme programmability and optimization at the sacrifice of limited control 

on the implementation equations. FPGAs often use a volatile configuration storage 

method meaning they must be configured on each power cycle. Modem versions of both 

programmable logic chip types often include SRAM for storage usages. 

Several programmable chip manufacturers were available, but Cypress was the 

one chosen for this project (Skahill, 1996). Their development tool, called "Warp", 

claims to provide all the features necessary to provide accurate simulations and 

implementations of the various designs. Warp (Version 6.2) provided an important 

feature, the ability to tum off all optimization. Optimization has the potential to taint the 

design comparisons by altering the implementation equations to match a logic layout 

suitable for the chip. Cypress produces a line of CPLDs that were ideal for this project. 

FPGAs could not be used because their implementation methods would not provide an 

exact match to the desired logic equations, a requirement for adequate comparison of the 

adder designs. Xilinx was also investigated, but their VHDL design tool did not allow 

disabling optimization, and as such, simulations produced addition times completely 

mismatching theory. 
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Although either Verilog or VHDL could have been used for development, VHDL 

was selected. Each design was implemented in its own VHDL file, with the bit width a 

variable. The designs were compiled into a library that could then be used by any VHDL 

file. A single "master file" was created for the project which allowed a conditional 

compile to select the current design, bit width, and any specific implementation 

constraints. 

The specific chip selected was a Cypress C37128P84-100JC, a CPLD with 

roughly 64 pins available for input and output. This chip allows a maximum clocked 

frequency of 100MHz and contains 450 macrocells. However, only the carry-feedback 

design was clocked, meaning the other designs could execute as fast as the logic gates 

would run internally on the chip. 

Because of the high integration among the design, simulation, and implementation 

of the design, all of the stages of development were performed simultaneously. This 

resulted in some suboptimal implementation constraints. However, these constraints 

were applied to all designs, affecting them all equally. One of these constraints was 

fixing the pin locations. This took away Warp's ability to assign the inputs and output to 

the pins that were most optimal. Further investigation showed that for all cases but one, 

the affects of this were negligible. Nevertheless, the important discovery was finding an 

adequate placement of the clock signal. Moving the clock from one pin to another nearly 

doubled the speed of the carry-feedback design. The elimination of path length delays 

caused by the poor choice of clock placement is likely the cause for such a dramatic 

improvement. 
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To ensure the highest performance, optimization from Warp was attempted on 

each adder to determine if the optimizer could layout the implementation in a better 

method while retaining the implementation method. The result of this found that on all 

adders but the carry- feedback, optimization resulted in the tool modifying the adder 

equations, which invalidated the results for that design Therefore, the optimizer was 

disabled for all designs except the carry-feedback. The resulting change provided 

roughly a 45% increase in speed for the carry-feedback design, a worthy optimization. 

An examination of the report file produced an explanation for this drarrntic improvement. 

An intermediate signal had been introduced in the un-optimized implementation for 

latching the results, which added several gate delays to each iteration of the feedback 

loop. The optimization removed this intermediate signal and sped up the entire loop. 

All of the adders except the carry-feedback incorporate a clock to activate the 

input signals and start the addition This provided a signal for synchronization at the 

tradeoff of a constant delay added to each adder. The carry-feedback adder provides an 

additional "load" signal which is used to initiate addition. However, its design still 

requires the use of a clock for timing the sequences. With the improvements previously 

mentioned, the clock signal was lOOMHz, the chip's maximum speed. However, this 

does not necessarily mean that lOOMHz was the carry-feedback's maximum speed. Chip 

manufacturers are required to be conservative on the speed ratings for their chips, and the 

underlying silicon may have been capable of running much lIDre quickly. 
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CHAPTERS 

SIMULATION 

Design Simulation 

Each design was compiled into a file suitable for simulation with the integrated 

ActiveSim tool. During this process, it was determined that the ActiveSim tool is a logic 

simulator, not a transistor simulator, meaning that gate delays are treated as exact, and 

unstable electrical conditions are not always detected. This was discovered when the 

initial carry-feedback design (which was not clocked) was implemented and worked in 

simulation but not when implemented. The simulator incorrectly showed that the carry

feedback design would work correctly in all scenarios, when during implementation it 

was proven that only a very few select cases would work correctly. Figure 6 shows a 

screen capture of the simulator showing a case that appears to work. Figure 7 shows the 

same case failing when implemented. A simple redesign of the carry-feedback adder 

using latches corrected the problem at the cost of a slight decrease in speed and increase 

in size. Figure 8 shows the corrected simulation. 

Several of the designs had multiple configurations available at a specific bit 

width. Given a choice, speed was weighted as more important than size, except when the 

size prohibited the design from fitting on the chip. These choices occurred on the carry

lookahead and carry-select adders where the group size is configurable. 
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For the carry-complete and carry-feedback adders, the input signals for testing 

were ones that produced log2N carry iterations (an average case): OxB + Ox3 + 1 for 4bit, 

OxBB + OxFF + 1 for 8bit, and OxBBBB + Ox7777 + 1 for 16bit. These numbers were 

chosen arbitrarily from a large sample of available number combinations. For the 

remaining designs, the worst case was chosen: OxF + OxO + 1 for 4bit, OxFF + OxOO + 1 

for 8bit, and OxFFFF + OxOOOO + 1 for 16bit. These numbers were chosen as being the 

typical "worst case" addition, always causing N carries to ripple. 

A limitation of the tool was found when the carry-complete design did not 

function properly. A glitch on the COl signal caused the DONE signal to assert 

prematurely. Cypress is currently investigating this to determine the cause. A rough 

estimation of performance was still attainable based upon the understanding of the 

design. At this point, Cypress has still not addressed this issue. Figure 9 shows the 

failure in simulation. 

Table 9 shows the simulated addition times for each of the six adder designs at 

various bit widths. As expected, most of the designs performed similarly; the addition 

times increasing logarithmically proportional to the bit width. One exception to this of 

course was the carry-ripple design, whose time increases linearly in proportion to the bit 

width. The other exception was the carry-select design, whose addition time remains 

fixed at the cost of exponentially increasing size. 
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Table 9 

Simulated Addition Times of the Six Adders 

Type 4bit 

Carry-Ripple sOns 

Carry-Completion 3lns 

Carry-Lookahead 40.Sns 

Carry-Select sOns 

Pyramid 40.Sns 

Carry-Feedback 3lns 

IA group size of 8bits was used 

2 A group size of 4bits was used 

3 A group size of 4bits was used 

4A group size of 4bits was used 

*Estimated because the design would not fit 

8bit 

88ns 

40.Sns 

40.Snsl 

SOns3 

SOns 

4lns 

16bit 

164ns 

SOns 

S9.Sns2 

SOns4* 

S9.Sns 

SIns 

As noted in the diagram, it was determined that a 16bit carry-select adder of any 

grouping size was too large to fit onto the Cypress chip. The macrocells required were 

very near the maximum allowed, so an individual experiment was performed. This 

validated that as a standalone design where Warp assigns the pins, the design would 

indeed fit on the chip, completely consuming its resources. The results from those 

simulations were used to fill in that entry in the table. 
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, Active-HDL Sim (my_adder) - C:\Thesis\Cypress Si ... ~liIm 
: Eile .. Sea[ch'ilew~iQr;1 2imlliation WaveforrT] 

iF~~liiI j l<\ J :~ jGl~ J ~~' !: .[2ij;-, E:I 
Tools t:!elp · 
l00ns+O ~ r 

Stinulator 

~ zero bit 0 < 0 
48 ns 

~ load o <=0 

,ii ~ a B88B <= 1011101110111011 ~8~88;::8======t===:::j :tl : ~in ~777:: ~11101110 111O111 :::77,::77=======j:===:j 
o cout .1 

it] 0 5 3333 888 
o done 

~ I 
a failedfeedba. J 

Figure 6. Simulator Output of Flawed Carry-Feedback Adder. 

The outputs of the simulator illustrate a successful implementation, showing the output 

correctly iterate to the sum. 
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Analyzer 

Accumulate 
Off 

Naveform MACHINE 1 Acq . Control 

Markers 
. Of f 

Figure 7. Logic Analyzer Screen Capture of Flawed Carry-Feedback Adder. 

The simulated scenario from Figure 6 is applied in the implementation, and fails because 

of race conditions inside the initial flawed carry-feedback adder. 
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( , Active-HDL Sim (design not loaded) - C:\The ... IlIiIEi 
' Eile. Seilcch lLiEiW 'Cl,eSigi §fiDulation \!Ilaveform 
' jJ ~ ~ ~ j i& ; j)~ )G-J~ ) .. ' .... I <~IH)Onst ~ 1 

J Name 

~ elk 

~ load 

F'i D- a 
' Ltl D-b 

~ ein 
, .,. cout 
, l±: -O S 

" done 

Clock 

<=0 

< = 1011101110111011 
< = 01 11011101110111 
i<= 1 

.. 
{BBBB 

{7777 

{XX 
, " 

I 

~ I 

loolst!elp 
No simulation I:' 

I » x 

'sf ' ns 

. . .. --

I 

,BBBB 333 

Ready iLnl,Coll r-iT-I-- d 

Figure 8. Simulator Output of Corrected Carry-Feedback Adder. 

The corrections are applied to the flawed carry-feedback adder and simulated. 
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° cout 
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< = 0111011101110111 :-:m=======t====== 
<= 1 
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~ done --.'-_ __ ~..J 
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i! complete 1 . ./ 

Ready 
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1111 4 

Figure 9. Simulator Output of Flawed Carry-Complete. 

The DONE signal incorrectly asserts before addition completes. 

39 



CHAPTER 6 

TESTING AND VERIFICATION 

Implementation of the Design on Programmable Logic 

To validate the simulation results, the designs were programmed onto a test board 

containing the Cypress chip used for simulation The test board was placed on a 

breadboard, and the signals wired to a bus, which was connected to an HP 1660A 

250MHz logic analyzer. Because of the low sample frequency of the logic analyzer, the 

maximum accuracy attainable for any measure was +/- 4ns. An HP 8656B Signal 

Generator connected to a bias tee was used to generate all clock signals for the project. 

For all the unclocked designs, a low frequency of 1 MHz was used to trigger the addition. 

For the carry-feedback design, a full 100 MHz clock with 60/40 duty cycle was 

generated. 

Errors similar to those seen during simulation occurred on the implementation of 

the carry-complete adder, as seen in Figure 10. The output of the corrected carry

feedback adder is shown in Figure 11. The screen capture from the logic analyzer almost 

exactly matches that from the simulation, affirming Cypress' statement of the simulator 

being the most exact on clocked designs. 

Several measurements of each addition time were taken, and the average value 

was selected to try and filter out the logic analyzer error. Table 10 displays the average 

actual addition times for each of the six adder designs at various bit widths: 
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Table 10 

Implemented Addition Times of the Six Adders 

Type 4bit 

Carry-Ripple 16ns 

Carry-Completion 12ns 

Carry-Lookahead 12ns 

Carry-Select 12ns 

Pyramid 12ns 

Carry-Feedback 24ns 

'Estimated because the design would not fit 

,Accumulate 
Off 

Delay 
10.01 us 

Markers 
Tlme 

8bit 

32ns 

16ns 

16ns 

12ns 

16ns 

28ns 

Acq . Control 

>-: to 0 
20.00 ns 

16bit 

56ns 

20ns 

32ns 

12ns • 

20ns 

40ns 

Figure 10. Logic Analyzer Screen Capture of Flawed Carry-Complete Adder. 

The DONE signal incorrectly asserts before addition is complete. 
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Analyzer Waveform MACHINE 1 Acq. Con lro 1 

Figure II. Logic Analyzer Screen Capture of Corrected Carry-Feedback Adder. 

Shown is an average case addition for a 16 bit addition where 4 rounds of carries ripple. 

The first observation that can be made is that the actual addition times for all of 

the unclocked designs are less than half what was determined through simulation 

Cypress was contacted to investigate this phenomenon, and informed that a possible 

cause could be the inaccuracy of the logic analyzer. However, it was pointed out that for 

some of the designs, the time variance between simulated and actual approaches lOOns. 

Cypress indicated that the ActiveSim simulator software only performs logic simulations, 

not true transistor level simulations, and therefore can produce very inaccurate times for 

completely asynchronous circuits. Cypress' support team also indicated that clocked 

designs, such as the carry-feedback, would produce simulations times very close to actual 
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implementation. For comparison purposes, however, since the times are compared to 

each other only in their own context (simulated-to-simulated or actual-to-actual), 

agreement between the simulator and actual data is not a requirement. 

The second metric that was investigated was adder size. An exact measurement 

of gate count from the Warp compiler for each design was not attainable. However, an 

exact count of the macrocells used was attained, and provides a useful metric for 

comparing the size of the adder designs at various bit widths. Inaccuracies in using 

macrocell counts come from the design of CPLDs. Macrocells have a fixed logic layout, 

and each design will use a different fraction of a macrocell. Some designs will utilize the 

logic inside a macrocell more favorably than others. Since only rough numbers for 

comparative purposes were needed, the use of a macrocell as a measurement should 

suffice. 

It should be noted that to provide a constant pin interface to the logic analyzer, the 

widths of all input and output vectors were fixed at 16. As such, the smaller vector 

widths suffer a macrocell penalty for the additional logic to support the unused signals. 

However, this number is constant and applies to all adders in the same way. Table 11 

displays the actual macrocell usage for each of the six adder designs·at various bit widths: 
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Table 11 

Implemented Macrocell Usage of the Six Adders 

Type 4bit 8bit 16bit 

Carry-Ripple 65 106 169 

Carry-Completion 95 169 292 

Carry-Lookahead 82 149 296 

Carry-Select 92 158 450· 

Pyramid 76 138 267 

Carry-Feedback 69 101 161 

- "Estimated because the design would not fit 

As expected, the size of the adders increased similarly; the macrocell usage 

increased exponentially proportional to the bit width. The exceptions to this were the 

carry-ripple and carry-feedback designs, whose sizes increased linearly in proportion to 

the bit width. However, further investigation showed this comparison to be unfair. Each 

macrocell includes a flip-flop, a necessary piece of the carry-feedback design, but 

unimportant to the other designs. Therefore, the size of the carry-feedback design is 

incorrectly seen as lower than it actually is. This should be noted in all comparisons 

between it and the other designs. 

Table 12 displays the calculated performance from the six implemented adders. 

An important note before discussing the number in the table is the small vector widths 

used in implementation prevents a thorough analysis of performance. Nonetheless, an 

important observation can be made. The limitations mentioned previously, namely the 
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routing delay variations on programmable logic and the inaccurate gate count from 

macrocell usage make it difficult to determine an accurate comparison of theoretical and 

implemented performance. These problems would be fixed by a more powerful VHDL 

compiler that allowed complete control over optimization that generated a report file that 

gave more detailed information of macrocell usage. 

Table 12 

Implemented Performance of the Six Adders (lower is better) 

Type 4bit 8bit 16bit 

Carry-Ripple 1040 3392 9464 

Carry-Completion 1140 2704 5840 

Carry-Lookahead 984 2384 9472 

Carry-Select 1104 1896 5400 

Pyramid 912 2208 5340 

Carry-Feedback 1656 2828 6440 
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CHAPTER 7 

ANALYSIS 

Analysis of Theoretical, Simulated, and Tested Data 

Analysis of the data produced during all stages of evaluation reveal some useful 

numbers for comparison of the carry- feedback adder to the other adders. From the 

theoretical data (using a 64-bit vector width as the comparative point), the carry-feedback 

adder is nearly six times as fast as the carry-ripple adder while only being 33% larger. 

The carry-feedback adder is 10% smaller than the carry-complete adder for a 25% 

increase in speed. The carry-Iookahead adder stands out as the clear victor, its size being 

5% less than the carry-feedback adder and its speed being 25% greater. It is important to 

note that both size metrics ignore fan-in, an important factor for each of them. The carry

feedback has a single N-bit wide gate, and no others wider than three inputs. On the 

other hand, the carry-Iookahead with a block-size of just 4bits has numerous gates with 

:5ve or more inputs and many more above three. 

The data is most clear from Table 8, the theoretical performance. By sorting from 

llow to high, a quick picture of the ranking of each adder in comparison to the others is 

seen. The carry-Iookahead is first, second is the carry-completion, followed closely by 

the carry-feedback (SRAM). A large gap follows, and next are the pyramid and carry

feedback (D flip-flop) adders followed by the carry-ripple in a distance sixth place. In 

last place is the carry-select adder, which in the selected implementation becomes too 

large to be practically feasible. 
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Investigating the tested data reveals the penalties of using flip-flops to latch data 

in the carry-feedback adder. This coupled with the chip's maximum speed bottlenecking 

the carry-feedback's iteration time unfairly decreased its speed compared to the other 

adders able to run at the full speed ofthe silicon. The tested data (using a 16-bit vector 

width as the comparative point) shows the carry-feedback adder to be just under 30% 

faster than the carry-ripple while being slightly smaller, a phenomenon that can be 

attributed to the enabling of optimization for the carry-feedback adder. The wider gates 

required for many of the designs becomes apparent in the disagreerrent between 

macrocell usage and theoretical size. In implementation, the carry-Iookahead adder is the 

second largest adder, where in theory it was the second smallest. This is not surprising 

given the knowledge of the surface area cost of wider gates. 
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CHAPTER 8 

CONCLUSIONS 

Conclusions Drawn From the Design, Simulation, Testing and Verification 

Complex logic chips, such as system-on-chip (SoC) designs, are finding the 

benefits of being asynchronous. Asynchronous designs promise the possibility of lower 

power and easier design (Cole, 2003). Proper designs to take advantage of well-designed 

asynchronous chips can even offer increased speed over their synchronous counterparts, 

although this is currently an area of debate (Donovan, 2003). The complexity tradeoff 

comes from eliminating the globally distributed chip clock, and replacing it with 

individual units that must negotiate to each other through handshake signals (Cravotta, 

2004). 

The innovative approach to addition executed in the carry-feedback design, 

coupled with its features, reasonable gate count, and high performance in the average 

addition implies it is a valid new design that should be further investigated. Despite its 

requirement for a clock, the design's ability to run on a clock indeperrlent of its 

counterparts keeps the design asynchronous in a "complete chip" picture (Cole, 2003). 

Additionally, the carry-feedback design latches the sum automatically when the addition 

is complete. Since the Arithmetic Logic Unit (ALU) of most microprocessors must latch 

the sum, the additional size from adding the clock to fix the flaw adds little to the 

complete chip picture. The market for such a design has a potential to be very large as 
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binary addition is a fundamental piece of every microprocessor (Patterson & Hennessy, 

1994). 

The technology available through programmable logic is invaluable for rapid 

prototyping and comparison of logic designs, allowing time to be devoted to the more 

important aspects of development, design and analysis. Further improvements in the 

programmable logic arena will continue to increase productivity, allowing larger and 

llarger designs to be incorporated more quickly and easily. Since the research was started, 

new chip features are already available, such as the addition of SRAM. Each feature 

llncreases the programmability and use of these chips for rapid prototyping of designs. 

Also, newer CPLDs provide additional 110 lines, increasing the vector widths that could 

be tested to realms more in line with modem microprocessors. 

While the performance hit of adding a clock to the carry-feedback design is 

minimal when using SRAM, it is the author's belief that further research could once 

again lead to a design requiring no clock. Gate delay balancing is a common task 

performed by microprocessor designers, and proper balancing of the feedback signals 

<could completely eliminate the need for the clock. Since each gate delay in the loop is 

multiplied by the number of iterations, eliminating even one gate delay results in 

treme ndous speed improvements, although the impact to size is minimal. The nature of 

the design automatically provides latching of the sum data making the SRAM redundant. 
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CHAPTER 9 

FUTURE WORK 

Further Research Opportunities and Areas of Interest 

This research opened several opportunities for future research. For the carry

feedback adder, a research opportunity is finding new technologies that allowed 

simulation and implementation using SRAM to validate the theory. Additionally, a 

valuable effort is further investigation into the design to determine if the latches could be 

eliminated completely, perhaps by gate delay balancing or implementation of the 

algorithm in a different way. 

F or the research in general, using more powerful software and hardware tools that 

allow more control over the routing as well as more information into the sub-macrocell 

usage would provide far more accurate implementation results. Direct implementation 

onto custom silicon obviously would provide the highest level of validation of theory 

with implementation. 

Lastly, some interesting future research is applying the innovative concepts that 

led to the development of the carry-feedback to other parts ofthe microprocessor. If 

done properly, a microprocessor could be designed that is completely asynchronous. 
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APPENDIX A: CODE LISTINGS 

my_adder.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file is the main function file for the adder implementations. To 

vary the implementation or vector width, the 'adder_type' option is 
changed. Adjusting the vector width does not adjust the actual width 
of the output, only the width of the adder generated. 

-- libraries 
library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

-- include the definition file of adder types 
use work.adder-package.all; 

-- adder declaration 
entity my_adder is 

-- configurable options 
generic 
( 

width : integer := 16; 
size: integer := 8; 

type 0 is ripple 
type 1 is lookahead 
type 2 is select 
type 3 is pyramid 
type 4 is complete 
type 5 is feedback 
type 6 is clocked feedback 

adder _type : integer .- 0 
) ; 

port declaration 
port 
( 

a in std_logic_vector(lS downto 0); 
b in std_logic_vector(lS downto 0); 
cin : in std_logic; 
cout : inout std_logic; 
s : out std_logic_vector(lS downto 0); 
clk : in std_logic; 
done : out std_logic; 
zero_bit : in std_logic; 
load : in std_logic 

) ; 

pin assignments 
attribute pin_numbers of my_adder 

"a (0) : 3 " & 

"a (1):4 " & 

"a (2) : 5 " & 

"a (3) : 6 " & 

"a(4):7 " & 

"a (5) : 8 " & 

"a(6) : 9 " & 

"a (7) : 10 " & 

"a (8) : 12 " & 

"a (9) : 13 " & 

entity is 
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addend· 1 
addend 2 
carry input 
carry output 
sum 
multipurpose clock 
completion indicator 
dummy signal to prevent optimization 
loads the signals 



"a(10) :15 " & 
"a(ll) :16 " & 

"a(12) :17 " & 
"a(13) :18 " & 
"a(14) :19 " & 
"a(15) :20 " & 

"b(O) :61 " & 

"b(l) :66 " & 

"b(2) :67 " & 

"b(3):68"& 
"b(4):69"& 
"b(5) :70 " & 

"b(6):71 " & 
"b(7) :73 " & 
"b(8) :75 " & 

"b(9) :76 " & 

"b(10) :77 " & 
"b(ll) :78 " & 

"b(12) :79 " & 
"b(13) :80 " & 
"b(14) :81 " & 
"b(15) :82 " & 
"s(O) :31 " & 

"s(l) :33 " & 

"s(2):34"& 
"s(3):36"& 
"s(4) :37 " & 

"s(5) :38 " & 

"s(6) :39 " & 

"s(7) :40 " & 

"s(8) :45 " & 

"s(9) :46 " & 

"s(10) :47 " & 
"s (11) :48 " & 

"s(12) :49 " & 
"s(13):50"& 
"s(14) :52 " & 
"s(15) :54 " & 
"clk:23 " & 
IIcin:24 " & 
"done:30 " & 
"zero bit:60 " & 
"load:59 " & 
"cout:S5 "i 

end my_adder; 

architecture Behavioral of my_adder is 

signal x 
signal y 
signal c 

std_Iogic_vector((width - 1) downto 0); 
std_Iogic_vector((width - 1) downto 0); 
std_Iogic; 

begin 

process (clk, a, b, cin) 
begin 

for all adders but carry-feedback, activate addends 
only when clock is high 

if (adder_type < 5) then 
for i in 0 to (width - 1) loop 

x(i) <= a(i) and clk; 
y(i) <= b(i) and clk; 

end loop; 
c <= cin and clk; 

end if; 
-- set unused sum outputs to '0' 
for i in width to 15 loop 

s(i) <= '0'; 
end loop; 

end process; 
-- carry-ripple definition 

53 



0» ; 

ripple 
ul 

if (adder type = 0) generate 
carry_ripple generic map(width) port map(x, y, c, cout, s((width-l) downto 

u2 done_signal port map(done); 
end generate ripple; 
-- carry-lookahead definition 
lookahead : if (adder_type = 1) generate 

ul : carry_lookahead generic map (width, size) port map(x, y, c, cout, s((width-l) 
downto 0»; 

u2 : done_signal port map(done); 
end generate lookahead; 
-- carry-select definition 
cselect : if (adder_type = 2) generate 

ul : carry_select generic map(width, size) port map(x, y, c, cout, s((width-l) 
downto 0»; 

0) ) ; 

u2 : done_signal port map (done) ; 
end generate cselect; 
-- pyramid definition 
pyramid : if (adder_type = 3) generate 

ul carry_pyramid generic map(width) port map(x, y, c, cout, s((width-l) downto 

u2 done_signal port map (done) ; 
end generate pyramid; 
-- carry-complete definition 
complete : if (adder_type = 4) generate 

ul : carry_complete generic map(width) port map(x, y, c, clk, cout, s((width-l) 
downto 0), done); 

end generate complete; 
-- flawed unclocked carry-feedback definnition 
feedback : if (adder_type = 5) generate 

ul : carry_feedback generic map(width) port map(a((width - 1) downto 0), b((width 
- 1) downto 0), cin, load, cout, s((width-l) downto 0), done, zero_bit); 

end generate feedback; 
-- correct clocked carry-feedback definition 
feedback2 : if (adder_type = 6) generate 

ul : carry_feedback2 generic map(width) port map(a((width - 1) downto 0), 
b((width - 1) downto 0), cin, load, cout, s((width-l) downto 0), done, clk); 

end generate feedback2; 
end Behavioral; 
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adder-package.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This is the file that defines the inputs and outputs of 

all the adders. 

library IEEE; 
use IEEE.STD_LOGIC_1l64.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

package adder-package is 
component carry_ripple 

generic 
( 

) ; 

port 
( 

width integer 

a in std_logic_vector((width 1) downto 0); 
b in std_logic_vector((width 1) downto 0); 
cin in std_logic; 
cout out std_logic; 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component carry_complete 

generic 
( 

) ; 

Port 
( 

width 

a in 
b in 
cin 
load 
cout 

integer 

std_logic_vector((width 
std_logic_ vector ( (width 
in std_logic; 
in std_logic; 
out std_logic; 

1) downto 0) ; 
- 1 ) downto 0) ; 

s out std_logic_vector((width - 1) downto 
done out std_logic 

) ; 

end component; 
component carry_feedback 

generic 
( 

) ; 

port 
( 

width integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin : in std_logic; 
load in std_logic; 
cout out std_logic; 

1) downto 0); 
1) downto 0); 

0) ; 

s out std_logic_vector((width - 1) downto 0); 
done out std_logic; 
zero bit in std_logic 

) ; 

end component; 
component carry_feedback2 

generic 
( 

) ; 

port 
( 

width integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin : in std_logic; 
load in std_logic; 
cout : out std_logic; 

- 1) downto 0); 
1) downto 0); 
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S : out std_logic_vector((width - 1) downto 0); 
done : out std_logic; 
clk : in std_logic 

) ; 

end component; 
component carry_lookahead 

generic 
( 

) ; 

port 
( 

width integer; 
block_size : integer 

a 
b in 

in std_logic_vector((width 
std_logic_vector((width 
in std_logic; 
out std_logic; 

1) downto 0); 

1) downto 0); 
cin 
cout 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component carry_select 

generic 
( 

) ; 

port 
( 

width: integer; 
minimum size : integer 

a in std_logic_vector((width 
in std_logic_vector((width 

in std_logic; 
out std_logic; 

1) downto 0); 
1) downto 0); b 

cin 
cout 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component carry_select1 

generic 
( 

) ; 

port 
( 

width integer; 
minimum size : integer 

a 
b 
cin 

in 
in 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width 1) downto 0); 
in std_logic; 

cout out std_logic; 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component carry_select2 

generic 
( 

) ; 

port 
( 

width integer; 
minimum_size : integer 

a 
b 
cin 

in 
in 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width 1) downto 0); 
in std_logic; 

cout out std_logic; 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component carry_select3 
generic 
( 

) ; 

width : integer; 
minimum size : integer 
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port 
( 

) ; 

a in std logic vector((width - 1) downto 0); 
b in std=logic=vector((width 1) downto 0); 
cin in std_logic; 
cout out std_logic; 
s out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_select4 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
minimum size : integer 

a in std_logic_vector((width 
in std_logic_vector((width 

in std_logic; 
out std_logic; 

1) downto 0); 
1) downto 0); b 

cin 
cout 
s out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_selectS 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
minimum size : integer 

a 
b 
cin 
cout 
s 

in 
in 

std_logic_vector((width 1) downto 0); 
std_logic_vector((width - 1) downto 0); 
in std_logic; 
out std_logic; 
out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_select6 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
minimum size : integer 

a 
b 
cin 
cout 
s 

in 
in 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width - 1) downto 0); 
in std_logic; 
out std_logic; 
out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_select7 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
minimum size : integer 

a 
b 
cin 
cout 
s 

in std_logic_vector((width - 1) downto 0); 
in std_logic_vector((width - 1) downto 0); 

in std_logic; 
out std_logic; 
out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_selectS 

generic 
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) ; 

port 
( 

width: integer; 
minimum_size : integer 

a in std_logic_ vector ( (width 
b in std logic vector((width 
cin in ~td_logic; 
cout out std_logic; 

1) 
1) 

downto 0); 
downto 0); 

s out std_logic_vector((width - 1) downto 0) 
) ; 

end component; 
component carry_select9 

generic 
( 

) ; 

port 
( 

width integer; 
minimum_size : integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin in std_logic; 
cout out std_logic; 

1) 
1) 

s out std_logic_vector((width 
) ; 

end component; 
component carry_selectl0 

generic 
( 

) ; 

port 
( 

width integer; 
minimum size : integer 

downto 0) ; 
downto 0) ; 

- 1) downto 

a 
b 
cin 

in 
in 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width - 1) downto 0); 
in std_logic; 

cout out std_logic; 

0) 

s out std_logic_vector((width - 1) downto 0) 
) ; 

end component; 
component carry_select 11 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
minimum size : integer 

a 
b 
cin 
cout 
s 

in 
in 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width 1) downto 0); 
in std_logic; 
out std_logic; 
out std_logic_vector((width - 1) downto 0) 

end component; 
component carry_select12 

generic 
( 

) ; 

port 
( 

width : integer; 
minimum size : integer 

a 
b 
cin 
cout 
s 

in std_logic_vector((width - 1) downto 0); 
in std_logic_vector((width - 1) downto 0); 

in std_logic; 
out std_logic; 
out std_logic_vector((width - 1) downto 0) 
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) ; 

end component; 
component carry_select13 

generic 
( 

) ; 

port 
( 

width integer; 
minimum size : integer 

a 
b 
cin 
cout 

in 
in 

std_logic_vector((width 
std_logic_vector((width 
in std_logic; 
out std_logic; 

1) downto 0); 
1) downto 0); 

s out std_logic_vector((width - 1) downto 0) 
) ; 

end component; 
component carry_select14 

generic 
( 

) ; 

port 
( 

width integer; 
minimum size : integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin in std_logic; 
cout out std_logic; 

1) 
1) 

s out std_logic_vector((width 
) ; 

end component; 
component carry_pyramid 

generic 
( 

) ; 

port 
( 

width integer 

downto 0); 
downto 0); 

- 1) downto 0) 

a 
b 
cin 

in 
in 

std_logic_vector((width 1) downto 0); 
std_logic_vector((width 1) downto 0); 
in std_logic; 

cout out std_logic; 
s out std_logic_vector((width - 1) downto 0) 

) ; 

end component; 
component pg_carry 

generic 
( 

) ; 

port 
( 

) ; 

bit number integer 

p in std_logic_vector(bit_number downto 0); 
g in std logic vector(bit number downto 0); 
cin : in std_logic; -
cout : inout std_logic 

end component; 
component superblock 

generic 
( 

) ; 

port 
( 

width integer; 
current_width: integer; 
block_size : integer 

p 
g 
c 

in std_logic_vector((current_width*block_size 
in std_logic_vector((current_width*block_size 
inout std_logic_vector(width downto 0) 
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) ; 

end component; 
component superblock2 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
current_width : integer; 
block_size : integer 

p in std_logic_vector((current_width*block_size - 1) downto 0); 
g in std_logic_vector((current_width*block_size - 1) downto 0); 
c inout std_logic_vector(width downto 0) 

end component; 
component superblock3 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
current_width : integer; 
block_size : integer 

p in std_logic_vector((current_width*block_size - 1) downto 0); 
g in std_logic_vector((current_width*block_size - 1) downto 0); 
c inout std_logic_vector(width downto 0) 

end component; 
component pyramid_block 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
block size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

end component; 
component pyramid_block2 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
block_size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

end component; 
component pyramid_block3 

generic 
( 

) ; 

port 
( 

) ; 

width integer; 
block size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 
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end component; 
component pyramid_block4 

generic 
( 

) ; 

port 
( 

width : integer; 
block size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

) ; 

end component; 
component pyramid_blockS 

generic 
( 

) ; 

port 
( 

width : integer; 
block size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

) ; 

end component; 
component pyramid_block6 

generic 
( 

) ; 

port 
( 

width : integer; 
block size : integer 

sin in std logic vector((width - 1) downto 0); 
cin in std=logic=vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

) ; 

end component; 
component done_signal 

port 
( 

done 
) ; 

end component; 
end adder~ackage; 
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carry_ripple.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file defines the carry-ripple adder. 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity carry_ripple is 
generic 
( 

width 
) ; 

port 
( 

integer .- 16 

a in std_logic_vector((width - 1) downto 0); 
b in std_logic_vector((width - 1) downto 0); 
cin : in std_logic; 
cout : out std_logic; 
s : out std_logic_vector((width - 1) downto 0) 

) ; 

end carry_ripple; 

architecture Behavioral of carry_ripple is 

signal c : std_logic_vector(width downto 0); 

begin 

c(O) <= cin; 
process (a, b, cin, c) 
begin 

for i in 0 to (width - 1) loop 
s(i) <= a(i) xor b(i) xor c(i); 
c(i+l) <= (a (i) and b(i)) or (a(i) and c(i)) or (b(i) and c(i)); 

end loop; 
end process; 
cout <= c(width); 

end Behavioral; 
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carry_lookahead.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file defines the carry-lookahead adder. It includes 

the following files: pg_carry and superblock. 

library IEEE; 
use IEEE. STD_LOGIC_1l64 .ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.adderyackage.all; 

entity carry_lookahead is 
generic 
( 

) ; 

port 
( 

) ; 

width: integer; 
block size : integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin : in std_logic; 
cout : out std_logic; 
s : out std_logic_vector((width 

end carry_lookahead; 

1) downto 0); 
1) downto 0); 

- 1) downto 0) 

architecture Behavioral of carry_lookahead is 

signal c 
signal p 
signal g 

std_logic_vector(width downto 0); 
std_logic_vector((width - 1) downto 0); 
std_logic_vector((width - 1) downto 0); 

begin 

c(O) <= cin; 
process (a, b, cin, c) 
begin 

for i in 0 to (width-I) loop 
s (i) <= a (i) xor b(i) xor c (i) ; 
p(i) <= a(i) or b (i); 
g(i) <= a(i) and b (i) ; 

end loop; 
end process; 
cout <= c(width); 

F : for i in 0 to (width-I) generate 
C : if ((((i+l) mod block_size) /= 0) or (width = block_size)) generate 

carry : pg_carry generic map (i mod block_size) 

end generate C; 
end generate F; 

port map(p(i downto (i-(i mod block_size))), 
g(i downto (i-(i mod block_size))), 
c((i/block_size)*block_size) , 
c(i+l) 
) ; 

PG : if (width /= block_size) generate 
block_carry : superblock generic map (width, width/block_size, block_size) 

port map (p, g, c); 
end generate PG; 

end Behavioral; 

63 



pg_carry.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file is used to calculate the pg carries for the 

carry-Iookahead adder. 

l.ibrary IEEE; 
use IEEE.STD LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity pg_carry is 
generic 
( 

bit number 
) ; 

port 
( 

integer .- 0 

p in std_Iogic_vector(bit_number downto 0); 
9 in std_Iogic_vector(bit_number downto 0); 
cin : in std_Iogic; 
cout : inout std_Iogic 

) ; 

end pg_carry; 

architecture Behavioral of pg_carry is 

begin 

process (p, g, cin) 

variable and_level, or level 

begin 
or_level := g(bit_number); 
for j in bit_number downto 0 loop 

and_level := '1'; 
for k in bit_number downto j loop 

and level := and level and p(k); 
end loop; 
if (j = 0) then 

and level .- and level and cin; 
else 

and level .- and level and g(j - 1); 
end if; 
or_level := or_level or and_level; 

end loop; 
cout <= or_level; 

end process; 

end Behavioral; 
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File 
Author 
Date 
Purpose 

superblock.vhd, superblock2.vhd, superblock3.vhd 
James Haas 
July, 2003 
These files are identical. Three copies of the same file 
had to be used because the Warp compiler could not handle 
recursive generations of an object. This file combines the 
pg carries into a superblock. 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.adder_package.all; 

Emtity superblock is 
generic 
( 

) ; 

port 
( 

width: integer; 
current_width: integer; 
block size : integer 

p in std_logic_vector((current_width*block_size - 1) downto 0); 
g in std_logic_vector((current_width*block_size - 1) downto 0); 
c inout std_logic_vector(width downto 0) 

) ; 

end superblock; 

architecture Behavioral of superblock is 

signal bp 
signal bg 

std_logic_vector((current_width - 1) downto 0); 
std_logic_vector((current_width - 1) downto 0); 

begin 

process (p, g, bp) 

variable and level 

begin 
for 1 1n 0 to (current_width-1) loop 

and_level := '1'; 
for j in 0 to (block_size-1) loop 

and_level := and level and p(i*block_size+j); 
end loop; 
bp(i) <= and_level; 

end loop; 
end process; 

F : for i in 0 to (current_width-1) generate 
BG : pg_carry generic map(block_size-1) 

port map (p(((i+1)*block_size-1) downto (i*block_size)), 
g(((i+1)*block_size-1) downto (i*block_size)), 

bg(i) 
) ; 

C if ((((i+1) mod block_size) 1= 0) or (current_width = block_size)) generate 
carry: pg_carry generic map(i mod block_size) 

end generate C; 
end generate F; 

port map(bp(i downto (i-(i mod block_size))), 
bg(i downto (i-(i mod block_size))), 
c (0), 

c((i+1)*(width/current_width)) 
) ; 

PG : if (current_width /= block_size) generate 
block_carry: superblock2 generic map (width, current_width/block_size, 

block_size) 
port map (bp, bg, c); 
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end generate PG; 

end Behavioral; 
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File 
Author 
Date 
Purpose 

carry_select.vhd, carry_selectl.vhd through carry_select14.vhd 
James Haas 
July, 2003 
These files are identical copies used to define the carry_select 
adder. Multiple copies had to be created to overcome a deficiency 
in the Warp compiler that disallowed recursive generations of an 
object. 

library IEEE; 
use IEEE.STD_LOGIC_1l64.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.adder_package.all; 

entity carry_select is 
generic 
( 

) ; 

port 
( 

width : integer; 
minimum size : integer 

a in std_logic_vector((width 
b in std_logic_vector((width 
cin : in std_logic; 
cout : out std_logic; 

1) downto 0); 
1) downto 0); 

s : out std_logic_vector((width - 1) downto 0) 
) ; 

end carry_select; 

architecture Behavioral of carry_select is 

signal upper_select : std_logic; 
signal c_1 : std_logic; 
signal c_O : std_logic; 
signal left 1 std_logic_vector((width - minimum_size - 1) downto 0); 
signal left 0 std_logic_vector((width - minimum_size - 1) downto 0); 
signal right std_logic_vector((minimum_size - 1) downto 0); 

begin 

generate bits minimum size downto 0 with carry_lookahead 
R : carry_lookahead generic map (minimum_size, minimum_size) 

port map(a((minimum_size - 1) downto 0), 
b( (minimum_size - 1) downto 0), 
cin, 
upper_select, 
right) ; 

-- If more bits left and not on final stage 
LeftBig: if ((width - minimum size) > minimum size) generate 

generate bits width do;nto minimum_siz; with carry_select with carry_in of 0 
LO : carry_select1 generic map (width - minimum_size, minimum_size) 

port map(a((width-1) downto minimum_size), 
b((width-1) downto minimum_size), 

'0 ' , 
c_O, 
left 0); 

generate bits width downto minimum_size with carry_select with carry_in of 1 
L1 : carry_select2 generic map (width - minimum_size, minimum_size) 

port map(a((width-l) downto minimum_size), 
b((width-1) downto minimum_size), 

II' , 

end generate LeftBig; 

-- if more bits left and ARE on final stage 
LeftSmall: if (((width - minimum_size) <= minimum_size) and ((width - minimum_size) > 

0» generate 
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o 

1 

generate bits width downto minimum size with carry_lookahead with carry_in of 

L2 : carry_lookahead generic map (width - minimum_size, minimum_size) 
port map(a((width-1) downto minimum_size), 

b((width-1) downto minimum_size), 
10 1 , 

c_O, 
left 0); 

generate bits width downto minimum size with carry_lookahead with carry_in of 

L3 : carry_lookahead generic map (width - minimum_size, minimum_size) 
port map(a((width-1) downto minimum_size), 

end generate LeftSmall; 

b((width-1) downto minimum_size), 
I 1', 

c_l, 
left 1); 

-- select which carry_select based upon carry_out of the carry_lookahead 
process (a, b, cin, upper select, left 0, left 1, right, c_O, c_1) 
begin -

if (width> minimum_size) then 
if (upper_select = '0') then 

s <= left_O & right; 
cout <= c 0; 

else 
S <= left 1 & right; 
cout <= c_1; 

end if; 
end if; 

end process; 

end Behavioral; 
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carry_pyramid.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file defines the pyramid adder. It includes the following 

file: pyramid_block.vhd. 

library IEEE; 
use IEEE.STD_LOGIC_1l64.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.adderyackage.all; 

entity carryyyramid is 
generic 
( 

width 
) ; 

Port 
( 

integer 

a in std_logic_vector( (width - 1) downto 0); 
b in std_logic_vector((width - 1) downto 0); 

cin : in std_logic; 
cout : out std_logic; 
s : out std_logic_vector((width - 1) downto 0) 

) ; 

end carry_pyramid; 

architecture Behavioral of carry_pyramid is 

signal sO 
signal cO 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width - 1) downto 0); 

begin 

process (a, b, sO, cin) 
begin 

sO(O) <= a(O) xor b(O) xor cin; 
cO(O) <= (a(O) and b(O)) or (a(O) and cin) or (b(O) and cin); 
for i in 1 to (width - 1) loop 

sO(i) <= a(i) xor b(i); 
cO ( i) < = a ( i) and b ( i) ; 

end loop; 
end process; 

-- Generate the next level or be done 
PYR: if (width> 2) generate 

PB : pyramid_block generic map (width, 1) port map (sO, cO, s, cout); 
end generate PYR; 

end Behavioral; 
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File 
Author 
Date 
Purpose 

pyramid_block.vhd, pyramid_block2.vhd through pyramid_block6.vhd 
James Haas 
July, 2003 
This file defines a single level of the pyramid adder. 

library IEEE; 
use IEEE.STD_LOGIC_1l64.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.adderyackage.all; 

entity pyramid_block is 
generic 
( 

) ; 

Port 
( 

) ; 

width: integer; 
block size : integer 

sin in std_logic_vector((width - 1) downto 0); 
cin in std_logic_vector((width - 1) downto 0); 
s : out std_logic_vector((width - 1) downto 0); 
cout : out std_logic 

end pyramid_block; 

architecture Behavioral of pyramid_block is 

signal snext 
signal cnext 

std_logic_vector((width - 1) downto 0); 
std_logic_vector((width - 1) downto 0); 

begin 

process (sin, cin) 

variable and_level : std_logic; 
variable temp : integer; 

begin 
if (block_size = width) then 

else 

for i in 0 to (width -1) loop 
s(i) <= sin(i); 

end loop; 
cout <= cin(width - 1); 

for i in 0 to (width - 1) loop 
if (((i+1) mod (block_size*2)) = 0) then 

temp := (i / block size) * block size; 
and_level ':= cin(t~mp - 1); 
for j in temp to i loop 

and_level := and_level and sin(j); 
end loop; 
cnext(i) <= cin(i) or and_level; 

end if; 
if (((i / block_size) mod 2) = 0) then 

else 
snext(i) <= sin(i); 

temp := (i / block_size) * block size; 
and_level := cin(temp - 1); 
if (i > temp) then 

for j in temp to (i-l) loop 
and level .- and level and sin(j); 

end loop; 
end if; 
snext(i) <= sin(i) xor and_level; 

end if; 
end loop; 

end if; 
end process; 
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-- Generate the next level or be done 
PYR: if (width >= (block_size * 2)) generate 

PB: pyramid_block2 generic map (width, block_size*2) port map (snext, cnext, s, 
Gout) ; 

end generate PYR; 

emd Behavioral; 
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carry_complete.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file defines the carry_complete adder. 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity carry_complete is 
generic 
( 

) ; 

Port 
( 

} ; 

width integer .- 16 

a 
b 
cin 
load 
cout 
s 
done 

in std_logic_vector((width 1) downto O}; 
in std_logic_vector((width - 1} downto O}; 

in std_logic; 
in std_logic; 
out std_logic; 
out std_logic_vector((width - 1} downto O}; 
out std_logic 

end carry_complete; 

architecture Behavioral of carry_complete is 

signal c1 
signal cO 
signal ps 
signal pd 

std_logic_vector(width downto O}; 
std_logic_vector(width downto O}; 
std_logic_vector((width - 1} downto O}; 
std_logic_vector((width - 1} downto O}; 

begin 

process (a, b, cin, load, c1, cO, ps, pd) 

variable tdone : std_logic; 

begin 
cO(O} <= not (cin) and load; 
c1(O} <= cin and load; 
tdone := '1'; 
for i in 0 to (width - 1) loop 

ps(i} <= a(i} xor b(i}; 
pd(i} <= cO(i+1} or c1(i+1}; 
Apparently, these formulas.from Omondi are bad? 

cO(i+1} <= ((not(a(i}) and not(b(i}}} or (ps(i) and not(cO(i}}}} and load; 
c1(i+1} <= ((a(i) and b(i}} or (ps(i) and c1(i}}} and load;' 

cO(i+1} <= ((not(a(i}) and not(b(i}}} or ((not(a(i}) or not(b(i}}} and 
cO(i}}} and load; 

c1(i+1} <= ((a(i) and b(i}} or ((a(i) or b(i}} and c1(i}}} and load; 
s(i} <= ps(i} xor c1(i}; 
tdone := tdone and pd(i}; 

end loop; 
done <= tdone; 
cout <= c1(width}; 

end process; 

end Behavioral; 
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File 
Author 
Date 
Purpose 

carry_feedback.vhd 
James Haas 
July, 2003 
This file defines the flawed, unclocked version of the carry
feedback adder. 

library IEEE; 
use IEEE.STD_LOGIC_1l64.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity carry_feedback is 
generic 
( 

width integer .- 16 
) ; 

port 
( 

) ; 

a in std_logic_vector((width - 1) downto 0); 
b in std_logic_vector((width - 1) downto 0); 
cin in std_logic; 
load in std logic; 
cout out std_logic; 
s out std_logic_vector((width - 1) downto 0); 
done out std_logic; 
zero bit : in std_logic 

end carry_feedback; 

architecture Behavioral of carry_feedback is 

signal x : std_logic_vector((width - 1) downto 0); 
signal y : std_logic_vector((width - 1) downto 0); 
signal xin : std_logic; 
signal yin : std_logic; 
signal yout : std_logic; 

begin 

process (a, b, cin, load, xin, yin, x, y, yout, zero_bit) 

variable d_check 

begin 
yin <= ((zero_bit and not (load)) or 

(cin and load)); 
xin <= ((xin and not (yin) and not(load)) or 

(not (xin) and yin and not (load)) or 
(cin and load)); . 

y(O) <= (xin and yin and not(load)) or 
(b(O) and load); 

x(O) <= (x(O) and not(y(O)) and not(load)) or 
(not(x(O)) and y(O) and not (load)) or 
(a (0) and load); 

for i in 1 to (width - 1) loop 
-- to be clockess, the following two equations must not race 
y(i) <= (x (i-I) and y(i-l) and not(load)) or (b(i) and load); 
x(i) <= (x(i) and not(y(i)) and not(load)) or 

(not(x(i)) and y(i) and not (load)) or 
(a(i) and load); 

end loop; 
yout <= (x(width - 1) and y(width - 1)) or 

(yout and not(load)); 
S <= Xj 

cout <= yout; 
d check .- yin; 
for i in 0 to (width - 1) loop 

d_check .- d check or y(i); 
end loop; 
done <= not(d_check) and not (load) ; 

end process; 
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end Behavioral; 
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carry_feedback2.vhd 
James Haas 
July, 2003 

File 
Author 
Date 
Purpose This file defines the clocked carry_feedback design. 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity carry_feedback2 is 
generic 
( 

width 
) ; 

port 
( 

integer :~ 16 

a in std_logic_vector((width - 1) downto 0); 
b in std_logic_vector((width - 1) downto 0); 
cin in std_logic; 
load in std_logic; 
cout out std_logic; 
s out std_logic_vector((width - 1) downto 0); 
done out std_logic; 
clk : in std_logic 

) ; 

end carry_feedback2; 

architecture Behavioral of carry_feedback2 is 

signal x : std_logic_vector(width downto 0); 
signal y : std_logic_vector(width downto 0); 
signal carry: std_logic_vector(width downto 0); 
signal sum: std_logic_vector(width downto 0); 

begin 

process (clk, load, a, b, cin, cout, s, done, carry, sum, x, y) 

variable d_check std logic; 

begin 
if clk'event and clk ~ '1' then 

if (load ~ '1') then 
sum <= a & ciu; 
carry <~ b & cin; 

else 
sum <= X; 

carry <~ y; 
end if; 

end if; 
x <~ sum xor carry; 
y <~ (sum((width-1) downto 0) and carry((width-1) downto OJ} & '0'; 
d_check :~ not(load}; 
for i in 0 to width loop 

d check :~ d check and not(carry(i}}; 
end loop; 
done <~ d_check; 

end process; 
cout <~ (x (width) and y(width}) or (cout and not (load)) ; 
s <~ sum (width downto 1); 

end Behavioral; 
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