
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2004

The development of an innovative adder design evaluated using The development of an innovative adder design evaluated using

programmable logic. programmable logic.

James A. Haas 1971-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Haas, James A. 1971-, "The development of an innovative adder design evaluated using programmable
logic." (2004). Electronic Theses and Dissertations. Paper 554.
https://doi.org/10.18297/etd/554

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F554&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/554
mailto:thinkir@louisville.edu

THE DEVELOPMENT OF AN INNOVATIVE ADDER DESIGN EV ALUATED
USING PROGRAMMABLE LOGIC

By

James A. Haas
B.S.E.E., Purdue University, 1994

A Thesis
Submitted to the Faculty of the

Graduate School of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

Department of Electrical Engineering
University of Louisville

May, 2004

THE DEVELOPMENT OF AN INNOVATIVE ADDER DESIGN EVALUATED
USING PROGRAMMABLE LOGIC

By

James A. Haas
B.S.E.E., Purdue University, 1994

A Thesis Approved on

by the following Thesis Committee:

Dr. John F. Naber, Thesis Director

Dr. Thomas G. Cleaver

Dr. Rammohan K. Ragade

11

Copyright 2004 by James A. Haas

All rights reserved

DEDICATION

This thesis is dedicated to my family

Mrs. Marcella M. Haas

and

Ms. Emily M Haas

who have made this thesis all worthwhile.

111

ACKNOWLEDGEMENTS

I would like to thank my thesis director, Dr. John Naber, for his leadership and

direction. I would also like to thank the other committee members, Dr. Thomas Cleaver

and Dr. Rammohan Ragade, for their willingness to participate. I would also like to

thank my wife, Marcie, and daughter, Emily, for their patience with me. They

encouraged me and gave me a reason to finish Also, many thanks are due to my family:

George, Carol, Sue, Greg, and Katie. The loving care shown by each of you is what

helped me to make it through the hard times. Finally, I would like to thank my close

friends: Paul, Jim, Kent, and Wes. Their willingness to give their time to provide advice,

proofreading, and engineering expertise was invaluable.

IV

ABSTRACT

THE DEVELOPMENT OF AN INNOVATIVE ADDER DESIGN EVALUATED
USING PROGRAMMABLE LOGIC

James A. Haas

April 23rd
, 2004

This research evaluates an innovative binary adder design and compares it against

five standard adder designs. It begins with an algorithmic description of the five standard

designs followed by the innovative design. It uses two metrics, speed and size, to

establish a fair comparison among the designs and draw conclusions about the

performance and usability of the innovative design. The metrics are applied to theory,

simulation, and implementation of the adder designs. The latter part of the research

draws conclusions from the analysis of these metrics to establish a fair comparison

between the innovative and existing designs.

The five standard designs are the carry-ripple, carry-complete, carry-Iookahead,

carry-select, and pyramid. The carry-ripple design is the fundamental and most straight-

forward approach to addition. The carry-complete takes the carry-ripple design and adds

a signal to detect when the addition is complete. The carry-Iookahead design uses some

intermediate signals to add multiple bits concurrently. The carry-select design is a brute

force approach that allows high speed for a large gate count. Lastly, the pyramid design

divides the addition into multiple stages, each calculating a single step of the addition

process. The innovative design, called the carry-feedback, works by starting with the

v

addends and iterating towards the solution, something unique from the other designs

causing the sum to be latched by the adder. It's innovative approach provides a

completion signal, simlar to the carry-complete adder.

The research comes to the conclusion that the carry-feedback design is

noteworthy deserving further attention. The carry-feedback design's performance along

with its feature of latching the results and ability to signal completion make it an

excellent candidate for asynchronous circuits, an area of continued interest in

mIcroprocessors.

VI

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF TABLES
LIST OF FIGURES

CHAPTER

I. INTRODUCTION

II. BINARY ADDERS

III. ADDERS SUMMARY

IV. DESIGN

V. SIMULATION

VI. TESTING AND VERIFICATION

VII. ANALYSIS

VIII. CONCLUSIONS

IX. FUTURE WORK

REFERENCES

APPENDIX A: CODE LISTINGS

CURRICULUM VITAE

VB

PAGE

IV

V

V1l1

IX

1

6

24

29

33

40

46

48

50

51

52

76

LIST OF TABLES

TABLE

1. Binary Half-Adder Truth Table

2. Binary Full-Adder Truth Table

3. Carry-Feedback Addition Example

4. Addition Time for Carry-Feedback in Gate Delays

5. Theoretical Addition Times of the Six Adders in Gate Delays

6. Theoretical Gate Count of the Six Adders

7. Theoretical Addition Time and Gate Count of the Six Adders

8. Theoretical Performance of the Six Adders (lower is better)

9. Simulated Addition Times of the Six Adders

10. Implemented Addition Times of the Six Adders

11. Implemented Macrocell Usage of the Six Adders

12. Implemented Performance of the Six Adders (lower is better)

Vlll

PAGE

1

2

21

22

25

26

27

28

35

41

44

45

LIST OF FIGURES

FIGURE

1. Block Diagram for the Carry-Ripple Algorithm

2. Block Diagram for a 16-bit PG-PG Carry-Lookahead Algorithm

3. Block Diagram for a 12-bit adder using the Carry-Select Algorithm

4. Block diagram for an 8-bit adder using the pyramid algorithm

5. Block diagram for an adder using the carry-feedback algorithm

6. Simulator Output of Flawed Carry-Feedback Adder

7. Logic Analyzer Screen Capture of Flawed Carry-Feedback Adder

8. Simulator Output of Corrected Carry-Feedback Adder

9. Simulator Output of Flawed Carry-Complete

10. Logic Analyzer Screen Capture of Flawed Carry-Complete Adder

11. Logic Analyzer Screen Capture of Corrected Carry-Feedback Adder

IX

PAGE

6

11

13

15

19

36

37

38

39

41

42

CHAPTER 1

INTRODUCTION

Concepts of Binary Addition

Binary addition is one of the most fundamental calculations perfonned by today's

microprocessors (Patterson & Hennessy, 1994). Binary addition is perfonned in much

the same way as decimal addition Each digit of the vector is added, from right to left,

producing a sum and a carry. The sum of two binary digits is very simple to calculate,

and can be expressed in a simple truth table, often called a "half-adder" (Wakerly, 2000):

Table 1

Binary Half-Adder Truth Table

Input 1 Input 2 Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

1

In order to calculate the addition of a vector longer than one bit, this table must be

expanded to include the addition of the carry output of the previous bit. This is expressed

in the following truth table, often called a "full-adder" (Wakerly, 2000):

Table 2

Binary Full-Adder Truth Table

Carry-In Input 1 Input 2 Carry-Out Sum

0 0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

To provide a method for handling negative numbers, binary vectors are typically

expressed in a form called the 2s complement. The 2s complement uses the most

significant bit to indicate the sign (0 is positive, 1 is negative), and requires a specific bit

length to be chosen The 2s complement is calculated by performing a 1s complement of

the vector that describes the positive number, and adding 1. An example of this would be

to model -7 in a 4-bit number would result in the following conversion. As a 4-bit binary

2

number, '7' is expressed as '0111'. First, we perform a Is complement to give' 1000'.

Finally we add one to give' 1001'. By quick examination, we can determine that a 2s

complement number of bit length N will result in a number in the range: _2N
-
1 <= number

< 2N
-
1 (Omondi, 1994).

In most addition scmmes, there is no direct way to perform subtraction To

bypass this limitation, the complement of the number to be subtracted is added. The 2s

complement is a quick and easy method to implement to perform subtraction. For

example, instead of subtracting '55' from '77', '-55' is added to '77' (Patterson &

Hennessy, 1994)

Because of the limitations of the specific bit sizes in microprocessors, specific

tests must be added to watch for overflow conditions, or conditions that result in an

incorrect result. These conditions occur whether the addition is signed or not This is

because any addition of numbers of bit sized N can potentially result in an answer that

needs (N+ 1) bits to describe. For example, if you add the unsigned 3-bit numbers of

'111' and '001' together, you end up with '1000', a 4-bit number (Omondi, 1994).

Microprocessor complexity has grown quickly, and the width of the binary

vectors used has increased from 8-bits to 32-bits, 64-bits, and beyond. Although the sum

may be calculated by a binary adder quickly, the inability of most binary adders to

determine whether the addition is complete requires the worst case to be assumed. The

worst case addition is based upon the length of time for the carry calculation to propagate

across the entire width of the sum vector. As such, addition of vectors of width N can

require N operations to calculate despite the fact that the average case has but 10~N carry

3

propagations (Omondi, 1994). Therefore, tremendous research has gone into reducing

the ti me required to perform that addition

The research presented here investigates an innovative implementation of a binary

adder, hereafter called a carry-feedback adder. The carry-feedback adder is compared

against five traditional binary adder designs. The following five designs were chosen

because they are either fundamental or highly optimized: carry-ripple, carry-completion,

carry-Iookahead, carry-select, and pyramid adder schemes. The design comparison

metrics are speed and size (Omondi, 1994) that are combined to determine overall

performance.

There is tremendous difficulty in establishing fairness in regard to these two

metrics, as the exact implementation of a design often depends on the transistor

technology being used. In an effort to maintain simplicity, factors such as 'fan-out' (a

single output attached to too many gate inputs) and 'fan-in' (too many inputs to logic

gate) are ignored. As such, speed is measured in terms of gate delays, and the gates are

assumed to all require the same amount of time, represented as t. Likewise, size is

measured in gate count, and gates are all assumed to be the same size. Adder variables

are chosen such that the values regarding fan-in and fan-out are reasonable.

The number of gate delays is calculated by determining the worst-case path

through the adder. For example, given the equation AB + CD, the number of gate delays

is two: one to determine the outputs of the gate (A AND B) and (C AND D), which are

calculated simultaneously, another to determine the output of the OR gate that combines

them. Likewise, the gate count is determined by summing up the total number of gates in

4

the adder (XOR is counted as a single gate). For example, given the equation (AB +

CD), the number of gates is three: one for AB, one for BC, and one for AB + CD.

Adder performance is measured by multiplying speed and size. Adders with

lowers values for this calculated parameter indicate a higher performance. This research

weights speed and size equally in regards to performance, but it is a simple change to

weight one metric more important than another.

For all adder designs and comparisons, the vectors A and B denote the addends,

the vector C denotes the carries, and the vector S denotes the sum. All of the vectors are

of width N. A subscript ofn on a vector, such as An, represents the single bit of vector A

at position n, where n ranges from 0 to (N - 1). C in is a single bit input to the adder

representing the carry input, sometimes represented as Co. Cout is a single bit output of

the adder representing the carry output, sometimes represented as CN.

Where latching is required, two technologies are compared. The first is a

traditional D flip-flop; the second is an SRAM cell. D flip-flops have 6 gates and require

3t gate delays to latch the output (Wakerly, 2000). SRAM cells have 1 gate equivalent

and require 1 t gate delays to latch the output. Both of these technologies are used to

provide an adequate comparison for implementations where SRAM cells, the obviously

better choice, are not available.

5

CHAPTER 2

BINARY ADDERS

Carry Ripple Adder

The carry-ripple design is the least complex binary adder design. It is constructed

by connecting a large number of single-bit full-adders together in a chain The outputs

are dependent on inputs given at the beginning of the calculation, as well as outputs from

the previous significant bit. Thus, this design is aptly named, as the output of the

addition is not complete until the carry has rippled through each bit of the vector until

completion(Omondi, 1994). The following block diagram illustrates this concept:

AN-I BN-1

li U
<:

COUI

I

Bit N-l r 1000
C2

<
Bit 1 C1 Bit 0 ~'

~ ~ ~
SN-I So

Figure 1. Block Diagram for the Carry-Ripple Algorithm

Full-adders are chained together to perform addition on vectors.

6

The equations describing an implementation of the aforementioned block diagram

for chained full-adders are as follows.

The size of this adder is 6N gates: 2N for the S vector and 4N for the C vector.

Since the carry-ripple algorithm has no indication of when addition is complete, the time

required to complete an addition is N times the number of gate delays of the carry-out

calculation, or in this case 2Nt.

Carry-Completion Adder

The carry-completion design is a simple modification to the carry-ripple design,

adding an output signal that indicates when the summation is complete. The basic idea is

to modify the carry-ripple design to have two carry chains, one to detect the O-carries, the

other to detect the I-carries. It is known that the addition is complete when every bit has

either generated a carry or is known to not generate a carry (Omondi, 1994). In the

following equations, Cn
0 will denote the O-carry from stage n, and Cn

1 will denote the 1-

carry from stage n. Also, the equation for the DONE signal, the signal that indicates the

addition is complete is included:

7

The size of this adder is (9N + 1) gates: 4N for the C1 vector, 3N for the CO

vector, N for the S vector, and (N + 1) for the DONE signal. The time required to

complete an addition of bit length N is summed up by the following three conditions (two

gate delays are added to every condition for initialization): best case 7t, average case

(210~N + 4}t, worst case (2N + 4}t. Since the carry-completion algorithm has a signal to

indicate when addition is complete, the average case of (210g2N + 4}t is used.

Carry-Lookahead Adder

The carry-Iookahead design, often called a "Propagate/Generate (PG) Adder", is

an improvement to the carry-ripple design. This design implements additional logic to

speed up the addition by determining the carry without waiting for the summation to

finish. This is accomplished with the addition of intermediate signals called propagate

and generate. The generate signal describes the condition of a single digit addition that

will generate a carry regardless of the Cin signal. The propagate signal describes the

condition of a single addition that will propagate a carry only if the Cin signal is a one

(Omondi, 1994).

8

A bit will have a carry if either it generates a carry or it propagates a carry and the

previous bit will generate a carry. This can be implemented through the following

equations:

Pn = An+Bn

On = AnBn

Cn = On + PnCn-1

The formula for Cn can be expanded to determine the equation for the nth carry

bit. For example, suppose you wanted to calculate the equation for the 4th carry.

C4=04+ P4C3

C4 = 0 4 + P4(03 + P3C2)

C4 = 0 4 + P4(03 + P3(02 + P2CI))

C4 = 0 4 + P4(03 + P3(02 + P2(01 + PICO)))

C4 = 0 4 + P4(03 + P3(02 + P2(01 + PI(Oo + POCin)))

Cin can be described as 0_1, or the carry generated as input to the adder. The

equation becomes summarized as:

9

An important observation from the resulting equation for C4 that can easily be

seen is that in theory, any arbitrarily chosen Cn will result in 3-layer logic. This implies

that any length addition can be solved in three gate delays. However, the AND and OR

gates quickly grow in complexity because they require increasing number of inputs.

Typically, the number of inputs is limited to some value determined by the capabilities of

the hardware regarding fan- in.

To address this issue, several approaches have been taken to form a hierarchy of

carry-Iookahead calculation. Some of these include rippling the carries of several smaller

PG Adders connected in series. Another approach is to connect a series of several

smaller carry-ripple adders together, and then use a PG Adder to generate the C in signal

for each block (Omondi, 1994). However, the fastest model is to use a pyramid of PG

Adders to generate the Cin signal for blocks of PG Adders. This is commonly called a

PG-PG Adder. The following block diagram illustrates how a PG-PG adder would be

connected:

10

Block 3 Block 2 7 Block 1 Block 0

Su-Sg

Gs Ps

Super-block

Figure 2. Block Diagram for a 16-bit PG-PG Carry-Lookahead Algorithm.

Lookahead blocks perform addition on a subset of the data. The super-block takes

propagate/generate data from the lookahead blocks and calculates intermediate carries.

The number of levels can be increased to improve efficiency for larger width vectors.

Each block and super-block is M units wide, in this example, four.

The super-blocks work much the same way as the smaller blocks. Each super

block takes propagate and generate outputs from the blocks beneath, combining them to

form block propagate and block generate signals. The block propagate and block

generate vectors are then combined in the same way as the propagate and generate

vectors at the level below to determine the carry output for the super-block layer. For

example, the super-block will have a COUI of 1 if the last block generates a carry, or ifit

will propagate a carry and the previous block generate a carry.

11

The size of this adder is given by the following fonnula ofNIM(4M + M(M+ 1)/2

-1) + (logMN(logMN -1)/2)(SM + M(M+l)/2 -1) + (M + 1) gates: NIM adder blocks of

size (4M + M(M+l)/2 -1) gates, (logMN(1ogMN -1)/2) superblocks of size (SM +

M(M+ 1)/2 - 1), and (M+ 1) gates for the final carry-out calculation Since the PG-PG

carry-Iookahead algorithm has no indication of when addition is complete, the time

required to complete addition with group size M is the gate delay of each block times the

number of levels, or (SlogMN)t .

Carry-Select Adder

The carry-select algorithm derives its name from the method in which the

algorithm uses the carry to select which addition is correct. Adder blocks are duplicated,

and the carry out selects which block is the correct one. By creating a pyramid of these

blocks, the addition can be perfonned very quickly (Omondi, 1994). However, as the

width of the addition vectors increases relative to the size of the adder blocks, the number

of adder blocks increases exponentially. One implementation of this algorithm is

illustrated in the following block diagram:

12

A3-Ao A7-A4 AII-A8

e-m

I I I I
Adder Adder Adder Adder Adder Adder Adder

~ C3=O C3=1 C3Cr OO C3Cr OI C3C7=1O C3C7=11

C3
C3 Multiplexer ----"-- Multiplexer

C7 l-

I I

Figure 3. Block Diagram for a 12-bit adder using the Carry-Select Algorithm.

Adder blocks perform addition on a subset of the data. The first adder unit performs like

a normal adder. The other adder units have their carry inputs set to 0 or I. The

multiplexers take carry outputs from the adder blocks and select the proper sums.

Often, this algorithm is used in conjunction with other algorithms to improve

efficiency. Each individual adder block can be of any type. This allows incredible

flexibility in implementation, and provides multiple methods of optimization. A common

choice is to make each adder block a carry-Iookahead adder.

The size of a carry-select adder divided into carry-Iookahead adder groups of size

Mis (2N/M_l)(4M + (M+l)(M+2)12 -1) + (2N/M + NIM - 3) gates: (2N/M_l) adder blocks

of size (4M + (M+I)(M+2)/2 -I) gates, and (N/M - I) multiplexer blocks that sum to a

size of (2N/M + N/M - 3) gates. Since the carry-select algorithm does not require any

13

rippling of the addition, the time required for addition is a constant 7t. However, an

adder of small width is only practical for this application.

Pyramid Adder

The last algorithm discussed is the pyramid adder algorithm. The pyramid adder

consists of two main parts. One part is made up of hal:t:adders that calculate the partial

sum and partial carry bits for all the stages. The other part is a pyramid structure whose

base adjoins the other part, and where the partial carries are assimilated with the partial

sums. The assimilation occurs over a number of stages in which carries are propagated

over a predefined width, no more than twice the width of the previous stage (Omondi,

1994). This is illustrated in the following block diagram:

14

~ ~ ~ ~ ! ! ~ ~ J l J ~ 1 1 1 1
HA HA FA

1+

C07 ~07 C06 S60 ~os ~os ~04 ~04 ~03 ~03 ~02 ~02 ~Ol SOl ~OO SOO
1 1 1 1 1 1 1

Assimilate
Carry

Cl
7 Sl7 Sl6 CIS ~IS 181

4 ~\ ~13 ~12 Cl
l S\ ~10

~ 1 ~

r2
7 ~27 S26 S2S ~24 C2

3 S23 S22 1821 ~20
1 1 1

~ ~ ~ ~ ~

Cout Ss So

Figure 4. Block diagram for an 8-bit adder using the pyramid algorithm.

Partial carries are assimilated in blocks of twice the previous block size until the addition

is complete.

The pyramid algorithm can be implemented through the following series of

equations:

Stage 0: The partial sums and partial carries are produced.

15

CO. =AB-
J J J

Stage 1: The stages are grouped in twos, and carries are assimilated within each group.

C1 - CO SO CO j+l - j+l + j+l j

Slj = SOj, for all other j

Stage 2: The stages are grouped in fours and carries are propagated and assimilated

within each group.

S2 - Sl SI C1 j+2 - j+2 E9 j+l j

C2 - C1 I Sl CO j+2 - j+2 + S j+2 j+l j

Stage 3: The same procedure is repeated with groups of eight.

S3 - S2 S2 C2 j+2 - j+2 E9 j+l j

S3 - S2 S2 S2 C2 j+3 - j+3 E9 j+2 j+l j

16

3 _ 2 2 2 S2 S2 C2
C j+4 - C j+4 + S j+4S j+3 j+2 j+l j

Stage k: Similar, with the groups size doubled at each step. In general, the group size at

step k is 2k, and the assimilation is expressed by the following equations G=2k-l, 3*2k-l,

Sk. = Sk-I. in Ck-I.)+1)+1 1;[7)

Sk Sk-I Sk-I Ck-I j+2 = j+2 E9 j+l j

Sk Sk-I Sk-I Sk-l Sk-l Ck-I j+2"(k-l) = j+2"(k-l) E9 j+2"(k-l)-1 j+2"(k-I)-2··· j+l j

Ck Ck-I Sk-I Sk-I Sk-I Ck-I j+2"(k.-l) = j+2"(k-l) + j+21\(k-l) j+21\(k-l)-I··· j+l j

The size of this adder is (2N+2) + N(log2N(log2N+I)I2) + N(I_TIog2N) gates:

(2N+2) for the first stage, and then (N/2i)(i+ 1) for each stage i afterwards. Since the

pyramid algorithm has no indication of when addition is complete, the time required to

complete an addition is the number of stages (lo~N + 1) times the number of gate delays

of each stage (2), plus an additional gate delay for the Oth stage, or (3+2Iog2N}t.

17

Carry-Feedback Adder

The innovative adder design presented in this paper from this point forward is

called the "carry-feedback" adder. The carry-feedback adder design is an unsophisticated

design developed by the author while examining ways to speed up the average case

addition. Typical additions performed by a human take advantage of the cases where

there is no carry for a particular digit during addition. For example, 336 + 122 can

typically be added more quickly than 938 + 239. As the lengths of the addend vectors

increase, the percentage of "worst case" additions (additions that have a lot of digits that

generate a carry) decrease. Mathematically, this is expressed by the following three cases

for all binary addition for adding vectors of width N (Omondi, 1994):

1. The best case is no carry propagation.

2. The average case is 10gzN carries propagating.

3. The worst case is N carries propagating.

The author developed the carry-feedback algorithm to work iteratively to solve

the addition rather than by directly calculating. The carry-feedback algorithm works by

calculating two terms from the inputs: a partial-sum and a partial-carry. The partial-sum

is calculated by performing a half-adder addition on all the digits. The partial-carry is

calculated by performing a half-adder carry calculation on all the digits, and left shifting

this vector one bit. Whenever a '1' is shifted out, it is latched as the 'carry-out' for the

addition. Initially, the inputs are the two addends. Then, the partial-sum and partial carry

18

are fed back in as the new inputs. The addition is complete when the partial-carry vector

is all zeroes. This is illustrated in the following block diagram:

LOAD

I I I I I I
I I I I I I I

Bit N-l 000- Bit 1 r-- Bit 0 -

PCN.]
U L...-.. U '--- ~

PC] PCo

I
PSN.] PSI PSo

I I
I I

DONE

Figure 5. Block diagram for an adder using the carry-feedback algorithm.

Partial sums are fed back into each block, whereas partial carries are fed forward into the

next block. Partial sums iterate to the sum whereas partial carries iterate to zero.

The carry-feedback adder received its name because of the way the outputs are

fed back as inputs. The sequence of partial-sum vectors will approach and reach the

actual sum. The sequence of partial-carry vectors will converge to zero. The following

decimal addition illustrates the algorithm:

54963

+ 18265

19

62128 (partial sum vector, step 1)

+ 11100 (partial carry vector shifted left, step 1)

73228 (partial sum vector, step 2)

00000 (partial carry vector, step 2 and final step since 0)

In Boolean algebra, the equations are much simpler. One bit additions without

regard to carry can be expressed using a logical XOR gate. Likewise, one bit carry

calculations can be expressed using a logical AND gate. The output ofthe XOR gates

will approach and reach the sum very quickly. This is illustrated in the following 8-bit

addition example:

20

Table 3

Carry-Feedback Addition Example

Stage Input 1 Input 2 Carry- Partial- Partial-

Out Sum Carry

1 11101111 01101011 0 10000100 11010110

(-17d) (l07d) (-124d) (-42d)

2 10000100 11010110 1 01010010 0@001000

(-124d) (-42d) (82d) (8d)

3 01010010 00001000 1 01011010 O@OOOOOO
,

(82d) (8d) (90d)

The carry-feedback adder design is simple and uses very few logic gates for large

vector additions. Likewise, it can be very fast for certain additions. For the following

equations, A and B denote binary vectors oflength N. Let At depote the partial-sum

vector at iteration t, and Ao is the fIrst addend. Let Bt denote thel partial-carry vector at

iteration t, and Bo is the second addend. Let DONE denote the qutput indicating the

addition is complete. The equations are given by:

Bt = (At-l • Bt-J)« 1; (Where '« l' represents left shiftling the vector 1 bit)

DONE = Bo· B} • B2 • •.• • BN-I

21

The algorithm requires a clock to synchronize the feedback of signals. However,

the clock is not required to be synchronized with anything else. The outputs are

detennined asynchronously, allowing the addition to be calculated at the fastest speed

possible. The DONE signal allows nearly instantaneous reaction to the addition being

complete.

When D flip-flops are used, the size ofthis adder is 13N+9 gates, 7N for the

partial-sum and partial-carry calculation, 6N for latching these values, 4 for setting up

Cin, 4 for setting up Cout, and I for calculating DONE. A single iteration of the

algorithm requires 5t time, two for the logic and three to latch the output. Additionally,

the DONE signal requires t time. When SRAM cells are used, the size reduces to 8N + 9

and the gate delay reduces to 3t. From the carry-propagation equations, the time required

to complete an addition of bit length N is expressed in the following table (in all three

cases, two gate delays are included for initialization):

Table 4

Addition Time for Carry-Feedback in Gate Delays

Type

Best Case

Average Case

Worst Case

D flip-flops

7t

(510g2N + 2)t

(5N + 2)t

SRAM

5t

(310g2N + 2)t

(3N + 2)t

22

For comparison with the other designs, the average time will be used. It is

assumed that whatever device the adder is placed in will take advantage of the design's

ability to notify when complete.

23

CHAPTER 3

ADDERS SUMMARY

Summary of Adder Gate Delays and Gate Counts

To provide a theoretical basis for comparison, the addition times and sizes for the

six adder designs were computed. Addition times are represented through a count of gate

delays with the assumption that each gate in the design has the same delay. Likewise,

sizes are represented through a gate count, with the assumption that each gate in the

design has the same size. The reader should understand that these are estimations used

solely for magnitude comparisons. An exact calculation requires specifying the transistor

technology used and is beyond the scope of this paper. The theoretical speed and size are

based upon the optimal implementation ofthe design, not on programmable logic. Also,

specific information regarding the maximum fan-in and fan-out is required.

Table 5 displays the theoretical addition times for each of the six adders at various

bit widths. Some items of note: as expected on larger adders, the carry-ripple adder has

the largest number of gate delays. Also as expected, the carry-select adder has the fewest

number of gate delays, being a constant regardless of the adder size. The carry-complete

and carry-feedback designs use the average case addition time instead of worst case

because of their inclusion of a "DONE" signal. The other adders have gate delays on the

same rough order of magnitude.

24

Table 5

Theoretical Addition Times of the Six Adders in Gate Delays

Type 4bit 16bit 64bit 256bit

Carry-Ripple 8 32 128 512

Carry-Completion 8 12 16 20

Carry-Lookahead 5 10 15 20

Carry-Select 7 7 7 7

Pyramid 7 11 15 19

Carry-Feedback (D fli~flop) 12 22 32 42

Carry-Feedback (SRAM) 8 14 20 26

Table 6 displays the theoretical gate count for each of the six adder designs at

various bit widths. Some items of note: as expected, the carry-ripple adder has the

smallest number of gates. Also as expected, the carry-select adder has the largest

number, becoming unfeasible in the implementation chosen for large adders, showing the

price paid for a constant addition time irrespective of size. The pyramid adder increases

in size more rapidly than the remaining adders, all of which have sizes on the same rough

order of magnitude.

25

Table 6

Theoretical Gate Count of the Six Adders (block sizes of 4 are used)

Type 4bit 16bit 64bit 256bit

Carry-Ripple 24 96 384 1536

Carry-Completion 37 145 577 2305

Carry-Lookahead 30 134 492 1779

Carry-Select 30 467 2031599 5.7185E+20

Pyramid 25 209 1537 9985

Carry-Feedback (D flip-flop) 61 217 841 3337

Carry-Feedback (SRAM) 41 137 521 2057

Table 7 displays the theoretical addition times and gate counts of the six adder

designs for an arbitrary size ofN bits. Some items of note: when the adders are

compared side by side, the value of the carry-lookahead becomes apparent. The block

size 'M' can be chosen to optimally balance the fan-in/fan-out issues of the technology

used, as well as being convenient for the adder width. The size does not become

prohibitive as to prevent its use, making it obvious why this adder is commonly chosen

for microprocessor designs (Koren, 1993).

26

Table 7

Theoretical Addition Time and Gate Count of the Six Adders

Type Addition Time Gate Count

Carry-Ripple 2Nt 6N

Carry-Completion (2lo~N + 4)t 9N+ 1

Carry-Lookahead (SlogMN)t NIM(4M + M(M+l)/2 -1) +

(logMN(logMN -1)/2)(SM + M(M+l)/2

-1)+(M+l)

Carry-Select 7t (2N/M_l)(4M + (M+l)(M+2)/2 -1) +

(2N/M + NIM - 3)

Pyramid (3+2lo~N)t (2N+2) + N(log2N(log2N+l)/2) + N(1-

2-log2 N)

Carry-Feedback (D flip-flop) (Slo~N + 2)t 13N+9

Carry-Feedback (SRAM) (3log2N + 2)t 8N+9

Table 8 displays the performance characteristics of the theoretical size and speed

at various bit widths. The table clearly shows the rapid drop in performance in the carry

select adder caused by its exponential growth in size. Likewise, the linear decrease in

speed shows the rapid drop in performance in the carry-ripple adder. Using the

theoretical calculations, the carry-Iookahead adder stands out as the clear victor in

performance.

27

Table 8

Theoretical Performance of the Six Adders (lower is better)

Type 4bit 16bit 64bit 256bit

Carry-Ripple 192 3072 49152 786432

Carry-Completion 296 1740 9232 46100

Carry-Lookahead 150 1340 7380 35580

Carry-Select 210 3269 14221193 4.003E+21

Pyramid 175 2299 23055 189715

Carry-Feedback (D flip-flop) 732 4774 26912 140154

Carry-Feedback (SRAM) 328 1918 10420 53482

28

CHAPTER 4

DESIGN

Design Considerations

Since six binary adder designs of various sizes were being comp ared, a method to

reduce the amount of overhead involved in the implementation was needed. Two

objectives of reducing the overhead were desirable. The first was to use modem software

tools and methodologies to provide for fast and easy design and implell"rntation. The

second was to use modem hardware technology to reduce or eliminate the need for

custom chip design or lengthy breadboard wiring.

A single solution was found to address both these issues. A common design

practice that is radically changing the way in which digital circuits are developed is to use

an HDL (Hardware Description Language) on a programmable logic chip. An HDL is a

language that is used to describe a digital circuit design in text. VHDL (VLSI HDL) and

Verilog are commonly used HDLs. VHDL and Verilog use different syntaxes, but

accomplish the same purpose: they force a specific grammar on a digital circuit design in

such a way that the chip manufacturer can convert that design into an output format

necessary to program the chip (Skahill, 1996).

A programmable logic chip is a highly configurable chip that can be programmed

to represent different digital circuit designs. The chips are configurable by using flash or

other technologies to allow gate configurations to be programmed in. The two flavors of

29

programmable logic chips are CPLDs (Complex Programmable Logic Device) and

FPGAs (Field Programmable Gate Array).

CPLDs are typically conventional AND/OR logic with latched outputs arranged

in a complex fashion to allow extensive programmability, often using flash to store the

configuration (making the configuration non-volatile). FPGAs are typically digital

multiplexed lookup tables combined with a smaller amount of AND/OR logic that often

allows for extreme programmability and optimization at the sacrifice of limited control

on the implementation equations. FPGAs often use a volatile configuration storage

method meaning they must be configured on each power cycle. Modem versions of both

programmable logic chip types often include SRAM for storage usages.

Several programmable chip manufacturers were available, but Cypress was the

one chosen for this project (Skahill, 1996). Their development tool, called "Warp",

claims to provide all the features necessary to provide accurate simulations and

implementations of the various designs. Warp (Version 6.2) provided an important

feature, the ability to tum off all optimization. Optimization has the potential to taint the

design comparisons by altering the implementation equations to match a logic layout

suitable for the chip. Cypress produces a line of CPLDs that were ideal for this project.

FPGAs could not be used because their implementation methods would not provide an

exact match to the desired logic equations, a requirement for adequate comparison of the

adder designs. Xilinx was also investigated, but their VHDL design tool did not allow

disabling optimization, and as such, simulations produced addition times completely

mismatching theory.

30

Although either Verilog or VHDL could have been used for development, VHDL

was selected. Each design was implemented in its own VHDL file, with the bit width a

variable. The designs were compiled into a library that could then be used by any VHDL

file. A single "master file" was created for the project which allowed a conditional

compile to select the current design, bit width, and any specific implementation

constraints.

The specific chip selected was a Cypress C37128P84-100JC, a CPLD with

roughly 64 pins available for input and output. This chip allows a maximum clocked

frequency of 100MHz and contains 450 macrocells. However, only the carry-feedback

design was clocked, meaning the other designs could execute as fast as the logic gates

would run internally on the chip.

Because of the high integration among the design, simulation, and implementation

of the design, all of the stages of development were performed simultaneously. This

resulted in some suboptimal implementation constraints. However, these constraints

were applied to all designs, affecting them all equally. One of these constraints was

fixing the pin locations. This took away Warp's ability to assign the inputs and output to

the pins that were most optimal. Further investigation showed that for all cases but one,

the affects of this were negligible. Nevertheless, the important discovery was finding an

adequate placement of the clock signal. Moving the clock from one pin to another nearly

doubled the speed of the carry-feedback design. The elimination of path length delays

caused by the poor choice of clock placement is likely the cause for such a dramatic

improvement.

31

To ensure the highest performance, optimization from Warp was attempted on

each adder to determine if the optimizer could layout the implementation in a better

method while retaining the implementation method. The result of this found that on all

adders but the carry- feedback, optimization resulted in the tool modifying the adder

equations, which invalidated the results for that design Therefore, the optimizer was

disabled for all designs except the carry-feedback. The resulting change provided

roughly a 45% increase in speed for the carry-feedback design, a worthy optimization.

An examination of the report file produced an explanation for this drarrntic improvement.

An intermediate signal had been introduced in the un-optimized implementation for

latching the results, which added several gate delays to each iteration of the feedback

loop. The optimization removed this intermediate signal and sped up the entire loop.

All of the adders except the carry-feedback incorporate a clock to activate the

input signals and start the addition This provided a signal for synchronization at the

tradeoff of a constant delay added to each adder. The carry-feedback adder provides an

additional "load" signal which is used to initiate addition. However, its design still

requires the use of a clock for timing the sequences. With the improvements previously

mentioned, the clock signal was lOOMHz, the chip's maximum speed. However, this

does not necessarily mean that lOOMHz was the carry-feedback's maximum speed. Chip

manufacturers are required to be conservative on the speed ratings for their chips, and the

underlying silicon may have been capable of running much lIDre quickly.

32

CHAPTERS

SIMULATION

Design Simulation

Each design was compiled into a file suitable for simulation with the integrated

ActiveSim tool. During this process, it was determined that the ActiveSim tool is a logic

simulator, not a transistor simulator, meaning that gate delays are treated as exact, and

unstable electrical conditions are not always detected. This was discovered when the

initial carry-feedback design (which was not clocked) was implemented and worked in

simulation but not when implemented. The simulator incorrectly showed that the carry

feedback design would work correctly in all scenarios, when during implementation it

was proven that only a very few select cases would work correctly. Figure 6 shows a

screen capture of the simulator showing a case that appears to work. Figure 7 shows the

same case failing when implemented. A simple redesign of the carry-feedback adder

using latches corrected the problem at the cost of a slight decrease in speed and increase

in size. Figure 8 shows the corrected simulation.

Several of the designs had multiple configurations available at a specific bit

width. Given a choice, speed was weighted as more important than size, except when the

size prohibited the design from fitting on the chip. These choices occurred on the carry

lookahead and carry-select adders where the group size is configurable.

33

For the carry-complete and carry-feedback adders, the input signals for testing

were ones that produced log2N carry iterations (an average case): OxB + Ox3 + 1 for 4bit,

OxBB + OxFF + 1 for 8bit, and OxBBBB + Ox7777 + 1 for 16bit. These numbers were

chosen arbitrarily from a large sample of available number combinations. For the

remaining designs, the worst case was chosen: OxF + OxO + 1 for 4bit, OxFF + OxOO + 1

for 8bit, and OxFFFF + OxOOOO + 1 for 16bit. These numbers were chosen as being the

typical "worst case" addition, always causing N carries to ripple.

A limitation of the tool was found when the carry-complete design did not

function properly. A glitch on the COl signal caused the DONE signal to assert

prematurely. Cypress is currently investigating this to determine the cause. A rough

estimation of performance was still attainable based upon the understanding of the

design. At this point, Cypress has still not addressed this issue. Figure 9 shows the

failure in simulation.

Table 9 shows the simulated addition times for each of the six adder designs at

various bit widths. As expected, most of the designs performed similarly; the addition

times increasing logarithmically proportional to the bit width. One exception to this of

course was the carry-ripple design, whose time increases linearly in proportion to the bit

width. The other exception was the carry-select design, whose addition time remains

fixed at the cost of exponentially increasing size.

34

Table 9

Simulated Addition Times of the Six Adders

Type 4bit

Carry-Ripple sOns

Carry-Completion 3lns

Carry-Lookahead 40.Sns

Carry-Select sOns

Pyramid 40.Sns

Carry-Feedback 3lns

IA group size of 8bits was used

2 A group size of 4bits was used

3 A group size of 4bits was used

4A group size of 4bits was used

*Estimated because the design would not fit

8bit

88ns

40.Sns

40.Snsl

SOns3

SOns

4lns

16bit

164ns

SOns

S9.Sns2

SOns4*

S9.Sns

SIns

As noted in the diagram, it was determined that a 16bit carry-select adder of any

grouping size was too large to fit onto the Cypress chip. The macrocells required were

very near the maximum allowed, so an individual experiment was performed. This

validated that as a standalone design where Warp assigns the pins, the design would

indeed fit on the chip, completely consuming its resources. The results from those

simulations were used to fill in that entry in the table.

3S

, Active-HDL Sim (my_adder) - C:\Thesis\Cypress Si ... ~liIm
: Eile .. Sea[ch'ilew~iQr;1 2imlliation WaveforrT]

iF~~liiI j l<\ J :~ jGl~ J ~~' !: .[2ij;-, E:I
Tools t:!elp ·
l00ns+O ~ r

Stinulator

~ zero bit 0 < 0
48 ns

~ load o <=0

,ii ~ a B88B <= 1011101110111011 ~8~88;::8======t===:::j :tl : ~in ~777:: ~11101110 111O111 :::77,::77=======j:===:j
o cout .1

it] 0 5 3333 888
o done

~ I
a failedfeedba. J

Figure 6. Simulator Output of Flawed Carry-Feedback Adder.

The outputs of the simulator illustrate a successful implementation, showing the output

correctly iterate to the sum.

36

Analyzer

Accumulate
Off

Naveform MACHINE 1 Acq . Control

Markers
. Of f

Figure 7. Logic Analyzer Screen Capture of Flawed Carry-Feedback Adder.

The simulated scenario from Figure 6 is applied in the implementation, and fails because

of race conditions inside the initial flawed carry-feedback adder.

37

(, Active-HDL Sim (design not loaded) - C:\The ... IlIiIEi
' Eile. Seilcch lLiEiW 'Cl,eSigi §fiDulation \!Ilaveform
' jJ ~ ~ ~ j i& ; j)~)G-J~) .. ' I <~IH)Onst ~ 1

J Name

~ elk

~ load

F'i D- a
' Ltl D-b

~ ein
, .,. cout
, l±: -O S

" done

Clock

<=0

< = 1011101110111011
< = 01 11011101110111
i<= 1

..
{BBBB

{7777

{XX
, "

I

~ I

loolst!elp
No simulation I:'

I » x

'sf ' ns

. . .. --

I

,BBBB 333

Ready iLnl,Coll r-iT-I-- d

Figure 8. Simulator Output of Corrected Carry-Feedback Adder.

The corrections are applied to the flawed carry-feedback adder and simulated.

38

, ,Active-HOL Sim (design not loaded) - C:\Thesis\Cy ... IilIilEi
Eile Sea(ch "[jew [2eslg< Simulation

]-~ ~lil '" -r,~-I (+ I ~ I ~ 1>, t 11[;;n.

, Name StimuialOI

~ elk < 1

Waveform

r. ~ I G

Tools I:lelp

No simulalion i

SOn'

,.1QO l'~O nJ

fi1 0. a
-tj o.- b

Do cin
° cout

'f!I -c. S

< = 10 1110 11101110 11):iBB~B*,B === ====t=== ===
< = 0111011101110111 :-:m=======t======
<= 1

3333

~ done --.'-_ __ ~..J

~ I
i! complete 1 . ./

Ready
------------------;==

1111 4

Figure 9. Simulator Output of Flawed Carry-Complete.

The DONE signal incorrectly asserts before addition completes.

39

CHAPTER 6

TESTING AND VERIFICATION

Implementation of the Design on Programmable Logic

To validate the simulation results, the designs were programmed onto a test board

containing the Cypress chip used for simulation The test board was placed on a

breadboard, and the signals wired to a bus, which was connected to an HP 1660A

250MHz logic analyzer. Because of the low sample frequency of the logic analyzer, the

maximum accuracy attainable for any measure was +/- 4ns. An HP 8656B Signal

Generator connected to a bias tee was used to generate all clock signals for the project.

For all the unclocked designs, a low frequency of 1 MHz was used to trigger the addition.

For the carry-feedback design, a full 100 MHz clock with 60/40 duty cycle was

generated.

Errors similar to those seen during simulation occurred on the implementation of

the carry-complete adder, as seen in Figure 10. The output of the corrected carry

feedback adder is shown in Figure 11. The screen capture from the logic analyzer almost

exactly matches that from the simulation, affirming Cypress' statement of the simulator

being the most exact on clocked designs.

Several measurements of each addition time were taken, and the average value

was selected to try and filter out the logic analyzer error. Table 10 displays the average

actual addition times for each of the six adder designs at various bit widths:

40

Table 10

Implemented Addition Times of the Six Adders

Type 4bit

Carry-Ripple 16ns

Carry-Completion 12ns

Carry-Lookahead 12ns

Carry-Select 12ns

Pyramid 12ns

Carry-Feedback 24ns

'Estimated because the design would not fit

,Accumulate
Off

Delay
10.01 us

Markers
Tlme

8bit

32ns

16ns

16ns

12ns

16ns

28ns

Acq . Control

>-: to 0
20.00 ns

16bit

56ns

20ns

32ns

12ns •

20ns

40ns

Figure 10. Logic Analyzer Screen Capture of Flawed Carry-Complete Adder.

The DONE signal incorrectly asserts before addition is complete.

41

Analyzer Waveform MACHINE 1 Acq. Con lro 1

Figure II. Logic Analyzer Screen Capture of Corrected Carry-Feedback Adder.

Shown is an average case addition for a 16 bit addition where 4 rounds of carries ripple.

The first observation that can be made is that the actual addition times for all of

the unclocked designs are less than half what was determined through simulation

Cypress was contacted to investigate this phenomenon, and informed that a possible

cause could be the inaccuracy of the logic analyzer. However, it was pointed out that for

some of the designs, the time variance between simulated and actual approaches lOOns.

Cypress indicated that the ActiveSim simulator software only performs logic simulations,

not true transistor level simulations, and therefore can produce very inaccurate times for

completely asynchronous circuits. Cypress' support team also indicated that clocked

designs, such as the carry-feedback, would produce simulations times very close to actual

42

implementation. For comparison purposes, however, since the times are compared to

each other only in their own context (simulated-to-simulated or actual-to-actual),

agreement between the simulator and actual data is not a requirement.

The second metric that was investigated was adder size. An exact measurement

of gate count from the Warp compiler for each design was not attainable. However, an

exact count of the macrocells used was attained, and provides a useful metric for

comparing the size of the adder designs at various bit widths. Inaccuracies in using

macrocell counts come from the design of CPLDs. Macrocells have a fixed logic layout,

and each design will use a different fraction of a macrocell. Some designs will utilize the

logic inside a macrocell more favorably than others. Since only rough numbers for

comparative purposes were needed, the use of a macrocell as a measurement should

suffice.

It should be noted that to provide a constant pin interface to the logic analyzer, the

widths of all input and output vectors were fixed at 16. As such, the smaller vector

widths suffer a macrocell penalty for the additional logic to support the unused signals.

However, this number is constant and applies to all adders in the same way. Table 11

displays the actual macrocell usage for each of the six adder designs·at various bit widths:

43

Table 11

Implemented Macrocell Usage of the Six Adders

Type 4bit 8bit 16bit

Carry-Ripple 65 106 169

Carry-Completion 95 169 292

Carry-Lookahead 82 149 296

Carry-Select 92 158 450·

Pyramid 76 138 267

Carry-Feedback 69 101 161

- "Estimated because the design would not fit

As expected, the size of the adders increased similarly; the macrocell usage

increased exponentially proportional to the bit width. The exceptions to this were the

carry-ripple and carry-feedback designs, whose sizes increased linearly in proportion to

the bit width. However, further investigation showed this comparison to be unfair. Each

macrocell includes a flip-flop, a necessary piece of the carry-feedback design, but

unimportant to the other designs. Therefore, the size of the carry-feedback design is

incorrectly seen as lower than it actually is. This should be noted in all comparisons

between it and the other designs.

Table 12 displays the calculated performance from the six implemented adders.

An important note before discussing the number in the table is the small vector widths

used in implementation prevents a thorough analysis of performance. Nonetheless, an

important observation can be made. The limitations mentioned previously, namely the

44

routing delay variations on programmable logic and the inaccurate gate count from

macrocell usage make it difficult to determine an accurate comparison of theoretical and

implemented performance. These problems would be fixed by a more powerful VHDL

compiler that allowed complete control over optimization that generated a report file that

gave more detailed information of macrocell usage.

Table 12

Implemented Performance of the Six Adders (lower is better)

Type 4bit 8bit 16bit

Carry-Ripple 1040 3392 9464

Carry-Completion 1140 2704 5840

Carry-Lookahead 984 2384 9472

Carry-Select 1104 1896 5400

Pyramid 912 2208 5340

Carry-Feedback 1656 2828 6440

45

CHAPTER 7

ANALYSIS

Analysis of Theoretical, Simulated, and Tested Data

Analysis of the data produced during all stages of evaluation reveal some useful

numbers for comparison of the carry- feedback adder to the other adders. From the

theoretical data (using a 64-bit vector width as the comparative point), the carry-feedback

adder is nearly six times as fast as the carry-ripple adder while only being 33% larger.

The carry-feedback adder is 10% smaller than the carry-complete adder for a 25%

increase in speed. The carry-Iookahead adder stands out as the clear victor, its size being

5% less than the carry-feedback adder and its speed being 25% greater. It is important to

note that both size metrics ignore fan-in, an important factor for each of them. The carry

feedback has a single N-bit wide gate, and no others wider than three inputs. On the

other hand, the carry-Iookahead with a block-size of just 4bits has numerous gates with

:5ve or more inputs and many more above three.

The data is most clear from Table 8, the theoretical performance. By sorting from

llow to high, a quick picture of the ranking of each adder in comparison to the others is

seen. The carry-Iookahead is first, second is the carry-completion, followed closely by

the carry-feedback (SRAM). A large gap follows, and next are the pyramid and carry

feedback (D flip-flop) adders followed by the carry-ripple in a distance sixth place. In

last place is the carry-select adder, which in the selected implementation becomes too

large to be practically feasible.

46

Investigating the tested data reveals the penalties of using flip-flops to latch data

in the carry-feedback adder. This coupled with the chip's maximum speed bottlenecking

the carry-feedback's iteration time unfairly decreased its speed compared to the other

adders able to run at the full speed ofthe silicon. The tested data (using a 16-bit vector

width as the comparative point) shows the carry-feedback adder to be just under 30%

faster than the carry-ripple while being slightly smaller, a phenomenon that can be

attributed to the enabling of optimization for the carry-feedback adder. The wider gates

required for many of the designs becomes apparent in the disagreerrent between

macrocell usage and theoretical size. In implementation, the carry-Iookahead adder is the

second largest adder, where in theory it was the second smallest. This is not surprising

given the knowledge of the surface area cost of wider gates.

47

CHAPTER 8

CONCLUSIONS

Conclusions Drawn From the Design, Simulation, Testing and Verification

Complex logic chips, such as system-on-chip (SoC) designs, are finding the

benefits of being asynchronous. Asynchronous designs promise the possibility of lower

power and easier design (Cole, 2003). Proper designs to take advantage of well-designed

asynchronous chips can even offer increased speed over their synchronous counterparts,

although this is currently an area of debate (Donovan, 2003). The complexity tradeoff

comes from eliminating the globally distributed chip clock, and replacing it with

individual units that must negotiate to each other through handshake signals (Cravotta,

2004).

The innovative approach to addition executed in the carry-feedback design,

coupled with its features, reasonable gate count, and high performance in the average

addition implies it is a valid new design that should be further investigated. Despite its

requirement for a clock, the design's ability to run on a clock indeperrlent of its

counterparts keeps the design asynchronous in a "complete chip" picture (Cole, 2003).

Additionally, the carry-feedback design latches the sum automatically when the addition

is complete. Since the Arithmetic Logic Unit (ALU) of most microprocessors must latch

the sum, the additional size from adding the clock to fix the flaw adds little to the

complete chip picture. The market for such a design has a potential to be very large as

48

binary addition is a fundamental piece of every microprocessor (Patterson & Hennessy,

1994).

The technology available through programmable logic is invaluable for rapid

prototyping and comparison of logic designs, allowing time to be devoted to the more

important aspects of development, design and analysis. Further improvements in the

programmable logic arena will continue to increase productivity, allowing larger and

llarger designs to be incorporated more quickly and easily. Since the research was started,

new chip features are already available, such as the addition of SRAM. Each feature

llncreases the programmability and use of these chips for rapid prototyping of designs.

Also, newer CPLDs provide additional 110 lines, increasing the vector widths that could

be tested to realms more in line with modem microprocessors.

While the performance hit of adding a clock to the carry-feedback design is

minimal when using SRAM, it is the author's belief that further research could once

again lead to a design requiring no clock. Gate delay balancing is a common task

performed by microprocessor designers, and proper balancing of the feedback signals

<could completely eliminate the need for the clock. Since each gate delay in the loop is

multiplied by the number of iterations, eliminating even one gate delay results in

treme ndous speed improvements, although the impact to size is minimal. The nature of

the design automatically provides latching of the sum data making the SRAM redundant.

49

CHAPTER 9

FUTURE WORK

Further Research Opportunities and Areas of Interest

This research opened several opportunities for future research. For the carry

feedback adder, a research opportunity is finding new technologies that allowed

simulation and implementation using SRAM to validate the theory. Additionally, a

valuable effort is further investigation into the design to determine if the latches could be

eliminated completely, perhaps by gate delay balancing or implementation of the

algorithm in a different way.

F or the research in general, using more powerful software and hardware tools that

allow more control over the routing as well as more information into the sub-macrocell

usage would provide far more accurate implementation results. Direct implementation

onto custom silicon obviously would provide the highest level of validation of theory

with implementation.

Lastly, some interesting future research is applying the innovative concepts that

led to the development of the carry-feedback to other parts ofthe microprocessor. If

done properly, a microprocessor could be designed that is completely asynchronous.

50

REFERENCES

Omondi, A. (1994). Computer Arithmetic Systems. Cambridge, Great Britain: The
University Press.

Koren, I. (1993). Computer Arithmetic Algorithms. Englewood Cliffs, New Jersey:
Prentice Hall

Wakerly,1. (2000). Digital Design Principles and Practices. Englewood Cliffs, New
Jersey: Prentice Hall

Patterson, D. & Hennessy 1. (1994). Computer Organization & Design: The Hardware /
Software Interface. San Francisco, California: Morgan Kaufinann Publishers, Inc.

Skahill, K. (1996). VHDLfor Programmable Logic. Menlo Park, California: Addison
Wesley Publishing Company, Inc.

Donovan, 1. (2003). 'Clockless' Chip Risk May Pay Off. EETimes 1281,41

Cole, B. (2003). Clocked or Clockless? Time to Readjust the 'Timing' Rules.
EETimes 1273,57

Cravotta, R. (2004). Squeeze Play: Wring the Power Out of Your Designs. EDN 49(4),
36-46.

51

APPENDIX A: CODE LISTINGS

my_adder.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file is the main function file for the adder implementations. To

vary the implementation or vector width, the 'adder_type' option is
changed. Adjusting the vector width does not adjust the actual width
of the output, only the width of the adder generated.

-- libraries
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- include the definition file of adder types
use work.adder-package.all;

-- adder declaration
entity my_adder is

-- configurable options
generic
(

width : integer := 16;
size: integer := 8;

type 0 is ripple
type 1 is lookahead
type 2 is select
type 3 is pyramid
type 4 is complete
type 5 is feedback
type 6 is clocked feedback

adder _type : integer .- 0
) ;

port declaration
port
(

a in std_logic_vector(lS downto 0);
b in std_logic_vector(lS downto 0);
cin : in std_logic;
cout : inout std_logic;
s : out std_logic_vector(lS downto 0);
clk : in std_logic;
done : out std_logic;
zero_bit : in std_logic;
load : in std_logic

) ;

pin assignments
attribute pin_numbers of my_adder

"a (0) : 3 " &

"a (1):4 " &

"a (2) : 5 " &

"a (3) : 6 " &

"a(4):7 " &

"a (5) : 8 " &

"a(6) : 9 " &

"a (7) : 10 " &

"a (8) : 12 " &

"a (9) : 13 " &

entity is

52

addend· 1
addend 2
carry input
carry output
sum
multipurpose clock
completion indicator
dummy signal to prevent optimization
loads the signals

"a(10) :15 " &
"a(ll) :16 " &

"a(12) :17 " &
"a(13) :18 " &
"a(14) :19 " &
"a(15) :20 " &

"b(O) :61 " &

"b(l) :66 " &

"b(2) :67 " &

"b(3):68"&
"b(4):69"&
"b(5) :70 " &

"b(6):71 " &
"b(7) :73 " &
"b(8) :75 " &

"b(9) :76 " &

"b(10) :77 " &
"b(ll) :78 " &

"b(12) :79 " &
"b(13) :80 " &
"b(14) :81 " &
"b(15) :82 " &
"s(O) :31 " &

"s(l) :33 " &

"s(2):34"&
"s(3):36"&
"s(4) :37 " &

"s(5) :38 " &

"s(6) :39 " &

"s(7) :40 " &

"s(8) :45 " &

"s(9) :46 " &

"s(10) :47 " &
"s (11) :48 " &

"s(12) :49 " &
"s(13):50"&
"s(14) :52 " &
"s(15) :54 " &
"clk:23 " &
IIcin:24 " &
"done:30 " &
"zero bit:60 " &
"load:59 " &
"cout:S5 "i

end my_adder;

architecture Behavioral of my_adder is

signal x
signal y
signal c

std_Iogic_vector((width - 1) downto 0);
std_Iogic_vector((width - 1) downto 0);
std_Iogic;

begin

process (clk, a, b, cin)
begin

for all adders but carry-feedback, activate addends
only when clock is high

if (adder_type < 5) then
for i in 0 to (width - 1) loop

x(i) <= a(i) and clk;
y(i) <= b(i) and clk;

end loop;
c <= cin and clk;

end if;
-- set unused sum outputs to '0'
for i in width to 15 loop

s(i) <= '0';
end loop;

end process;
-- carry-ripple definition

53

0» ;

ripple
ul

if (adder type = 0) generate
carry_ripple generic map(width) port map(x, y, c, cout, s((width-l) downto

u2 done_signal port map(done);
end generate ripple;
-- carry-lookahead definition
lookahead : if (adder_type = 1) generate

ul : carry_lookahead generic map (width, size) port map(x, y, c, cout, s((width-l)
downto 0»;

u2 : done_signal port map(done);
end generate lookahead;
-- carry-select definition
cselect : if (adder_type = 2) generate

ul : carry_select generic map(width, size) port map(x, y, c, cout, s((width-l)
downto 0»;

0)) ;

u2 : done_signal port map (done) ;
end generate cselect;
-- pyramid definition
pyramid : if (adder_type = 3) generate

ul carry_pyramid generic map(width) port map(x, y, c, cout, s((width-l) downto

u2 done_signal port map (done) ;
end generate pyramid;
-- carry-complete definition
complete : if (adder_type = 4) generate

ul : carry_complete generic map(width) port map(x, y, c, clk, cout, s((width-l)
downto 0), done);

end generate complete;
-- flawed unclocked carry-feedback definnition
feedback : if (adder_type = 5) generate

ul : carry_feedback generic map(width) port map(a((width - 1) downto 0), b((width
- 1) downto 0), cin, load, cout, s((width-l) downto 0), done, zero_bit);

end generate feedback;
-- correct clocked carry-feedback definition
feedback2 : if (adder_type = 6) generate

ul : carry_feedback2 generic map(width) port map(a((width - 1) downto 0),
b((width - 1) downto 0), cin, load, cout, s((width-l) downto 0), done, clk);

end generate feedback2;
end Behavioral;

54

adder-package.vhd
James Haas
July, 2003

File
Author
Date
Purpose This is the file that defines the inputs and outputs of

all the adders.

library IEEE;
use IEEE.STD_LOGIC_1l64.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

package adder-package is
component carry_ripple

generic
(

) ;

port
(

width integer

a in std_logic_vector((width 1) downto 0);
b in std_logic_vector((width 1) downto 0);
cin in std_logic;
cout out std_logic;
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component carry_complete

generic
(

) ;

Port
(

width

a in
b in
cin
load
cout

integer

std_logic_vector((width
std_logic_ vector ((width
in std_logic;
in std_logic;
out std_logic;

1) downto 0) ;
- 1) downto 0) ;

s out std_logic_vector((width - 1) downto
done out std_logic

) ;

end component;
component carry_feedback

generic
(

) ;

port
(

width integer

a in std_logic_vector((width
b in std_logic_vector((width
cin : in std_logic;
load in std_logic;
cout out std_logic;

1) downto 0);
1) downto 0);

0) ;

s out std_logic_vector((width - 1) downto 0);
done out std_logic;
zero bit in std_logic

) ;

end component;
component carry_feedback2

generic
(

) ;

port
(

width integer

a in std_logic_vector((width
b in std_logic_vector((width
cin : in std_logic;
load in std_logic;
cout : out std_logic;

- 1) downto 0);
1) downto 0);

55

S : out std_logic_vector((width - 1) downto 0);
done : out std_logic;
clk : in std_logic

) ;

end component;
component carry_lookahead

generic
(

) ;

port
(

width integer;
block_size : integer

a
b in

in std_logic_vector((width
std_logic_vector((width
in std_logic;
out std_logic;

1) downto 0);

1) downto 0);
cin
cout
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component carry_select

generic
(

) ;

port
(

width: integer;
minimum size : integer

a in std_logic_vector((width
in std_logic_vector((width

in std_logic;
out std_logic;

1) downto 0);
1) downto 0); b

cin
cout
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component carry_select1

generic
(

) ;

port
(

width integer;
minimum size : integer

a
b
cin

in
in

std_logic_vector((width - 1) downto 0);
std_logic_vector((width 1) downto 0);
in std_logic;

cout out std_logic;
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component carry_select2

generic
(

) ;

port
(

width integer;
minimum_size : integer

a
b
cin

in
in

std_logic_vector((width - 1) downto 0);
std_logic_vector((width 1) downto 0);
in std_logic;

cout out std_logic;
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component carry_select3
generic
(

) ;

width : integer;
minimum size : integer

56

port
(

) ;

a in std logic vector((width - 1) downto 0);
b in std=logic=vector((width 1) downto 0);
cin in std_logic;
cout out std_logic;
s out std_logic_vector((width - 1) downto 0)

end component;
component carry_select4

generic
(

) ;

port
(

) ;

width integer;
minimum size : integer

a in std_logic_vector((width
in std_logic_vector((width

in std_logic;
out std_logic;

1) downto 0);
1) downto 0); b

cin
cout
s out std_logic_vector((width - 1) downto 0)

end component;
component carry_selectS

generic
(

) ;

port
(

) ;

width integer;
minimum size : integer

a
b
cin
cout
s

in
in

std_logic_vector((width 1) downto 0);
std_logic_vector((width - 1) downto 0);
in std_logic;
out std_logic;
out std_logic_vector((width - 1) downto 0)

end component;
component carry_select6

generic
(

) ;

port
(

) ;

width integer;
minimum size : integer

a
b
cin
cout
s

in
in

std_logic_vector((width - 1) downto 0);
std_logic_vector((width - 1) downto 0);
in std_logic;
out std_logic;
out std_logic_vector((width - 1) downto 0)

end component;
component carry_select7

generic
(

) ;

port
(

) ;

width integer;
minimum size : integer

a
b
cin
cout
s

in std_logic_vector((width - 1) downto 0);
in std_logic_vector((width - 1) downto 0);

in std_logic;
out std_logic;
out std_logic_vector((width - 1) downto 0)

end component;
component carry_selectS

generic

57

) ;

port
(

width: integer;
minimum_size : integer

a in std_logic_ vector ((width
b in std logic vector((width
cin in ~td_logic;
cout out std_logic;

1)
1)

downto 0);
downto 0);

s out std_logic_vector((width - 1) downto 0)
) ;

end component;
component carry_select9

generic
(

) ;

port
(

width integer;
minimum_size : integer

a in std_logic_vector((width
b in std_logic_vector((width
cin in std_logic;
cout out std_logic;

1)
1)

s out std_logic_vector((width
) ;

end component;
component carry_selectl0

generic
(

) ;

port
(

width integer;
minimum size : integer

downto 0) ;
downto 0) ;

- 1) downto

a
b
cin

in
in

std_logic_vector((width - 1) downto 0);
std_logic_vector((width - 1) downto 0);
in std_logic;

cout out std_logic;

0)

s out std_logic_vector((width - 1) downto 0)
) ;

end component;
component carry_select 11

generic
(

) ;

port
(

) ;

width integer;
minimum size : integer

a
b
cin
cout
s

in
in

std_logic_vector((width - 1) downto 0);
std_logic_vector((width 1) downto 0);
in std_logic;
out std_logic;
out std_logic_vector((width - 1) downto 0)

end component;
component carry_select12

generic
(

) ;

port
(

width : integer;
minimum size : integer

a
b
cin
cout
s

in std_logic_vector((width - 1) downto 0);
in std_logic_vector((width - 1) downto 0);

in std_logic;
out std_logic;
out std_logic_vector((width - 1) downto 0)

58

) ;

end component;
component carry_select13

generic
(

) ;

port
(

width integer;
minimum size : integer

a
b
cin
cout

in
in

std_logic_vector((width
std_logic_vector((width
in std_logic;
out std_logic;

1) downto 0);
1) downto 0);

s out std_logic_vector((width - 1) downto 0)
) ;

end component;
component carry_select14

generic
(

) ;

port
(

width integer;
minimum size : integer

a in std_logic_vector((width
b in std_logic_vector((width
cin in std_logic;
cout out std_logic;

1)
1)

s out std_logic_vector((width
) ;

end component;
component carry_pyramid

generic
(

) ;

port
(

width integer

downto 0);
downto 0);

- 1) downto 0)

a
b
cin

in
in

std_logic_vector((width 1) downto 0);
std_logic_vector((width 1) downto 0);
in std_logic;

cout out std_logic;
s out std_logic_vector((width - 1) downto 0)

) ;

end component;
component pg_carry

generic
(

) ;

port
(

) ;

bit number integer

p in std_logic_vector(bit_number downto 0);
g in std logic vector(bit number downto 0);
cin : in std_logic; -
cout : inout std_logic

end component;
component superblock

generic
(

) ;

port
(

width integer;
current_width: integer;
block_size : integer

p
g
c

in std_logic_vector((current_width*block_size
in std_logic_vector((current_width*block_size
inout std_logic_vector(width downto 0)

59

1) downto 0);
1) downto 0);

) ;

end component;
component superblock2

generic
(

) ;

port
(

) ;

width integer;
current_width : integer;
block_size : integer

p in std_logic_vector((current_width*block_size - 1) downto 0);
g in std_logic_vector((current_width*block_size - 1) downto 0);
c inout std_logic_vector(width downto 0)

end component;
component superblock3

generic
(

) ;

port
(

) ;

width integer;
current_width : integer;
block_size : integer

p in std_logic_vector((current_width*block_size - 1) downto 0);
g in std_logic_vector((current_width*block_size - 1) downto 0);
c inout std_logic_vector(width downto 0)

end component;
component pyramid_block

generic
(

) ;

port
(

) ;

width integer;
block size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

end component;
component pyramid_block2

generic
(

) ;

port
(

) ;

width integer;
block_size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

end component;
component pyramid_block3

generic
(

) ;

port
(

) ;

width integer;
block size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

60

end component;
component pyramid_block4

generic
(

) ;

port
(

width : integer;
block size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

) ;

end component;
component pyramid_blockS

generic
(

) ;

port
(

width : integer;
block size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

) ;

end component;
component pyramid_block6

generic
(

) ;

port
(

width : integer;
block size : integer

sin in std logic vector((width - 1) downto 0);
cin in std=logic=vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

) ;

end component;
component done_signal

port
(

done
) ;

end component;
end adder~ackage;

61

carry_ripple.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file defines the carry-ripple adder.

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity carry_ripple is
generic
(

width
) ;

port
(

integer .- 16

a in std_logic_vector((width - 1) downto 0);
b in std_logic_vector((width - 1) downto 0);
cin : in std_logic;
cout : out std_logic;
s : out std_logic_vector((width - 1) downto 0)

) ;

end carry_ripple;

architecture Behavioral of carry_ripple is

signal c : std_logic_vector(width downto 0);

begin

c(O) <= cin;
process (a, b, cin, c)
begin

for i in 0 to (width - 1) loop
s(i) <= a(i) xor b(i) xor c(i);
c(i+l) <= (a (i) and b(i)) or (a(i) and c(i)) or (b(i) and c(i));

end loop;
end process;
cout <= c(width);

end Behavioral;

62

carry_lookahead.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file defines the carry-lookahead adder. It includes

the following files: pg_carry and superblock.

library IEEE;
use IEEE. STD_LOGIC_1l64 .ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.adderyackage.all;

entity carry_lookahead is
generic
(

) ;

port
(

) ;

width: integer;
block size : integer

a in std_logic_vector((width
b in std_logic_vector((width
cin : in std_logic;
cout : out std_logic;
s : out std_logic_vector((width

end carry_lookahead;

1) downto 0);
1) downto 0);

- 1) downto 0)

architecture Behavioral of carry_lookahead is

signal c
signal p
signal g

std_logic_vector(width downto 0);
std_logic_vector((width - 1) downto 0);
std_logic_vector((width - 1) downto 0);

begin

c(O) <= cin;
process (a, b, cin, c)
begin

for i in 0 to (width-I) loop
s (i) <= a (i) xor b(i) xor c (i) ;
p(i) <= a(i) or b (i);
g(i) <= a(i) and b (i) ;

end loop;
end process;
cout <= c(width);

F : for i in 0 to (width-I) generate
C : if ((((i+l) mod block_size) /= 0) or (width = block_size)) generate

carry : pg_carry generic map (i mod block_size)

end generate C;
end generate F;

port map(p(i downto (i-(i mod block_size))),
g(i downto (i-(i mod block_size))),
c((i/block_size)*block_size) ,
c(i+l)
) ;

PG : if (width /= block_size) generate
block_carry : superblock generic map (width, width/block_size, block_size)

port map (p, g, c);
end generate PG;

end Behavioral;

63

pg_carry.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file is used to calculate the pg carries for the

carry-Iookahead adder.

l.ibrary IEEE;
use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity pg_carry is
generic
(

bit number
) ;

port
(

integer .- 0

p in std_Iogic_vector(bit_number downto 0);
9 in std_Iogic_vector(bit_number downto 0);
cin : in std_Iogic;
cout : inout std_Iogic

) ;

end pg_carry;

architecture Behavioral of pg_carry is

begin

process (p, g, cin)

variable and_level, or level

begin
or_level := g(bit_number);
for j in bit_number downto 0 loop

and_level := '1';
for k in bit_number downto j loop

and level := and level and p(k);
end loop;
if (j = 0) then

and level .- and level and cin;
else

and level .- and level and g(j - 1);
end if;
or_level := or_level or and_level;

end loop;
cout <= or_level;

end process;

end Behavioral;

64

File
Author
Date
Purpose

superblock.vhd, superblock2.vhd, superblock3.vhd
James Haas
July, 2003
These files are identical. Three copies of the same file
had to be used because the Warp compiler could not handle
recursive generations of an object. This file combines the
pg carries into a superblock.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.adder_package.all;

Emtity superblock is
generic
(

) ;

port
(

width: integer;
current_width: integer;
block size : integer

p in std_logic_vector((current_width*block_size - 1) downto 0);
g in std_logic_vector((current_width*block_size - 1) downto 0);
c inout std_logic_vector(width downto 0)

) ;

end superblock;

architecture Behavioral of superblock is

signal bp
signal bg

std_logic_vector((current_width - 1) downto 0);
std_logic_vector((current_width - 1) downto 0);

begin

process (p, g, bp)

variable and level

begin
for 1 1n 0 to (current_width-1) loop

and_level := '1';
for j in 0 to (block_size-1) loop

and_level := and level and p(i*block_size+j);
end loop;
bp(i) <= and_level;

end loop;
end process;

F : for i in 0 to (current_width-1) generate
BG : pg_carry generic map(block_size-1)

port map (p(((i+1)*block_size-1) downto (i*block_size)),
g(((i+1)*block_size-1) downto (i*block_size)),

bg(i)
) ;

C if ((((i+1) mod block_size) 1= 0) or (current_width = block_size)) generate
carry: pg_carry generic map(i mod block_size)

end generate C;
end generate F;

port map(bp(i downto (i-(i mod block_size))),
bg(i downto (i-(i mod block_size))),
c (0),

c((i+1)*(width/current_width))
) ;

PG : if (current_width /= block_size) generate
block_carry: superblock2 generic map (width, current_width/block_size,

block_size)
port map (bp, bg, c);

65

end generate PG;

end Behavioral;

66

File
Author
Date
Purpose

carry_select.vhd, carry_selectl.vhd through carry_select14.vhd
James Haas
July, 2003
These files are identical copies used to define the carry_select
adder. Multiple copies had to be created to overcome a deficiency
in the Warp compiler that disallowed recursive generations of an
object.

library IEEE;
use IEEE.STD_LOGIC_1l64.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.adder_package.all;

entity carry_select is
generic
(

) ;

port
(

width : integer;
minimum size : integer

a in std_logic_vector((width
b in std_logic_vector((width
cin : in std_logic;
cout : out std_logic;

1) downto 0);
1) downto 0);

s : out std_logic_vector((width - 1) downto 0)
) ;

end carry_select;

architecture Behavioral of carry_select is

signal upper_select : std_logic;
signal c_1 : std_logic;
signal c_O : std_logic;
signal left 1 std_logic_vector((width - minimum_size - 1) downto 0);
signal left 0 std_logic_vector((width - minimum_size - 1) downto 0);
signal right std_logic_vector((minimum_size - 1) downto 0);

begin

generate bits minimum size downto 0 with carry_lookahead
R : carry_lookahead generic map (minimum_size, minimum_size)

port map(a((minimum_size - 1) downto 0),
b((minimum_size - 1) downto 0),
cin,
upper_select,
right) ;

-- If more bits left and not on final stage
LeftBig: if ((width - minimum size) > minimum size) generate

generate bits width do;nto minimum_siz; with carry_select with carry_in of 0
LO : carry_select1 generic map (width - minimum_size, minimum_size)

port map(a((width-1) downto minimum_size),
b((width-1) downto minimum_size),

'0 ' ,
c_O,
left 0);

generate bits width downto minimum_size with carry_select with carry_in of 1
L1 : carry_select2 generic map (width - minimum_size, minimum_size)

port map(a((width-l) downto minimum_size),
b((width-1) downto minimum_size),

II' ,

end generate LeftBig;

-- if more bits left and ARE on final stage
LeftSmall: if (((width - minimum_size) <= minimum_size) and ((width - minimum_size) >

0» generate

67

o

1

generate bits width downto minimum size with carry_lookahead with carry_in of

L2 : carry_lookahead generic map (width - minimum_size, minimum_size)
port map(a((width-1) downto minimum_size),

b((width-1) downto minimum_size),
10 1 ,

c_O,
left 0);

generate bits width downto minimum size with carry_lookahead with carry_in of

L3 : carry_lookahead generic map (width - minimum_size, minimum_size)
port map(a((width-1) downto minimum_size),

end generate LeftSmall;

b((width-1) downto minimum_size),
I 1',

c_l,
left 1);

-- select which carry_select based upon carry_out of the carry_lookahead
process (a, b, cin, upper select, left 0, left 1, right, c_O, c_1)
begin -

if (width> minimum_size) then
if (upper_select = '0') then

s <= left_O & right;
cout <= c 0;

else
S <= left 1 & right;
cout <= c_1;

end if;
end if;

end process;

end Behavioral;

68

carry_pyramid.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file defines the pyramid adder. It includes the following

file: pyramid_block.vhd.

library IEEE;
use IEEE.STD_LOGIC_1l64.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.adderyackage.all;

entity carryyyramid is
generic
(

width
) ;

Port
(

integer

a in std_logic_vector((width - 1) downto 0);
b in std_logic_vector((width - 1) downto 0);

cin : in std_logic;
cout : out std_logic;
s : out std_logic_vector((width - 1) downto 0)

) ;

end carry_pyramid;

architecture Behavioral of carry_pyramid is

signal sO
signal cO

std_logic_vector((width - 1) downto 0);
std_logic_vector((width - 1) downto 0);

begin

process (a, b, sO, cin)
begin

sO(O) <= a(O) xor b(O) xor cin;
cO(O) <= (a(O) and b(O)) or (a(O) and cin) or (b(O) and cin);
for i in 1 to (width - 1) loop

sO(i) <= a(i) xor b(i);
cO (i) < = a (i) and b (i) ;

end loop;
end process;

-- Generate the next level or be done
PYR: if (width> 2) generate

PB : pyramid_block generic map (width, 1) port map (sO, cO, s, cout);
end generate PYR;

end Behavioral;

69

File
Author
Date
Purpose

pyramid_block.vhd, pyramid_block2.vhd through pyramid_block6.vhd
James Haas
July, 2003
This file defines a single level of the pyramid adder.

library IEEE;
use IEEE.STD_LOGIC_1l64.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.adderyackage.all;

entity pyramid_block is
generic
(

) ;

Port
(

) ;

width: integer;
block size : integer

sin in std_logic_vector((width - 1) downto 0);
cin in std_logic_vector((width - 1) downto 0);
s : out std_logic_vector((width - 1) downto 0);
cout : out std_logic

end pyramid_block;

architecture Behavioral of pyramid_block is

signal snext
signal cnext

std_logic_vector((width - 1) downto 0);
std_logic_vector((width - 1) downto 0);

begin

process (sin, cin)

variable and_level : std_logic;
variable temp : integer;

begin
if (block_size = width) then

else

for i in 0 to (width -1) loop
s(i) <= sin(i);

end loop;
cout <= cin(width - 1);

for i in 0 to (width - 1) loop
if (((i+1) mod (block_size*2)) = 0) then

temp := (i / block size) * block size;
and_level ':= cin(t~mp - 1);
for j in temp to i loop

and_level := and_level and sin(j);
end loop;
cnext(i) <= cin(i) or and_level;

end if;
if (((i / block_size) mod 2) = 0) then

else
snext(i) <= sin(i);

temp := (i / block_size) * block size;
and_level := cin(temp - 1);
if (i > temp) then

for j in temp to (i-l) loop
and level .- and level and sin(j);

end loop;
end if;
snext(i) <= sin(i) xor and_level;

end if;
end loop;

end if;
end process;

70

-- Generate the next level or be done
PYR: if (width >= (block_size * 2)) generate

PB: pyramid_block2 generic map (width, block_size*2) port map (snext, cnext, s,
Gout) ;

end generate PYR;

emd Behavioral;

71

carry_complete.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file defines the carry_complete adder.

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity carry_complete is
generic
(

) ;

Port
(

} ;

width integer .- 16

a
b
cin
load
cout
s
done

in std_logic_vector((width 1) downto O};
in std_logic_vector((width - 1} downto O};

in std_logic;
in std_logic;
out std_logic;
out std_logic_vector((width - 1} downto O};
out std_logic

end carry_complete;

architecture Behavioral of carry_complete is

signal c1
signal cO
signal ps
signal pd

std_logic_vector(width downto O};
std_logic_vector(width downto O};
std_logic_vector((width - 1} downto O};
std_logic_vector((width - 1} downto O};

begin

process (a, b, cin, load, c1, cO, ps, pd)

variable tdone : std_logic;

begin
cO(O} <= not (cin) and load;
c1(O} <= cin and load;
tdone := '1';
for i in 0 to (width - 1) loop

ps(i} <= a(i} xor b(i};
pd(i} <= cO(i+1} or c1(i+1};
Apparently, these formulas.from Omondi are bad?

cO(i+1} <= ((not(a(i}) and not(b(i}}} or (ps(i) and not(cO(i}}}} and load;
c1(i+1} <= ((a(i) and b(i}} or (ps(i) and c1(i}}} and load;'

cO(i+1} <= ((not(a(i}) and not(b(i}}} or ((not(a(i}) or not(b(i}}} and
cO(i}}} and load;

c1(i+1} <= ((a(i) and b(i}} or ((a(i) or b(i}} and c1(i}}} and load;
s(i} <= ps(i} xor c1(i};
tdone := tdone and pd(i};

end loop;
done <= tdone;
cout <= c1(width};

end process;

end Behavioral;

72

File
Author
Date
Purpose

carry_feedback.vhd
James Haas
July, 2003
This file defines the flawed, unclocked version of the carry
feedback adder.

library IEEE;
use IEEE.STD_LOGIC_1l64.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity carry_feedback is
generic
(

width integer .- 16
) ;

port
(

) ;

a in std_logic_vector((width - 1) downto 0);
b in std_logic_vector((width - 1) downto 0);
cin in std_logic;
load in std logic;
cout out std_logic;
s out std_logic_vector((width - 1) downto 0);
done out std_logic;
zero bit : in std_logic

end carry_feedback;

architecture Behavioral of carry_feedback is

signal x : std_logic_vector((width - 1) downto 0);
signal y : std_logic_vector((width - 1) downto 0);
signal xin : std_logic;
signal yin : std_logic;
signal yout : std_logic;

begin

process (a, b, cin, load, xin, yin, x, y, yout, zero_bit)

variable d_check

begin
yin <= ((zero_bit and not (load)) or

(cin and load));
xin <= ((xin and not (yin) and not(load)) or

(not (xin) and yin and not (load)) or
(cin and load)); .

y(O) <= (xin and yin and not(load)) or
(b(O) and load);

x(O) <= (x(O) and not(y(O)) and not(load)) or
(not(x(O)) and y(O) and not (load)) or
(a (0) and load);

for i in 1 to (width - 1) loop
-- to be clockess, the following two equations must not race
y(i) <= (x (i-I) and y(i-l) and not(load)) or (b(i) and load);
x(i) <= (x(i) and not(y(i)) and not(load)) or

(not(x(i)) and y(i) and not (load)) or
(a(i) and load);

end loop;
yout <= (x(width - 1) and y(width - 1)) or

(yout and not(load));
S <= Xj

cout <= yout;
d check .- yin;
for i in 0 to (width - 1) loop

d_check .- d check or y(i);
end loop;
done <= not(d_check) and not (load) ;

end process;

73

end Behavioral;

74

carry_feedback2.vhd
James Haas
July, 2003

File
Author
Date
Purpose This file defines the clocked carry_feedback design.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity carry_feedback2 is
generic
(

width
) ;

port
(

integer :~ 16

a in std_logic_vector((width - 1) downto 0);
b in std_logic_vector((width - 1) downto 0);
cin in std_logic;
load in std_logic;
cout out std_logic;
s out std_logic_vector((width - 1) downto 0);
done out std_logic;
clk : in std_logic

) ;

end carry_feedback2;

architecture Behavioral of carry_feedback2 is

signal x : std_logic_vector(width downto 0);
signal y : std_logic_vector(width downto 0);
signal carry: std_logic_vector(width downto 0);
signal sum: std_logic_vector(width downto 0);

begin

process (clk, load, a, b, cin, cout, s, done, carry, sum, x, y)

variable d_check std logic;

begin
if clk'event and clk ~ '1' then

if (load ~ '1') then
sum <= a & ciu;
carry <~ b & cin;

else
sum <= X;

carry <~ y;
end if;

end if;
x <~ sum xor carry;
y <~ (sum((width-1) downto 0) and carry((width-1) downto OJ} & '0';
d_check :~ not(load};
for i in 0 to width loop

d check :~ d check and not(carry(i}};
end loop;
done <~ d_check;

end process;
cout <~ (x (width) and y(width}) or (cout and not (load)) ;
s <~ sum (width downto 1);

end Behavioral;

75

CURRICULUM VITAE

NAME: James Arthur Haas

ADDRESS: 6320 Horizon Way
Charlestown, IN 47111

DOB: Jeffersonville, IN - June 2, 1971

EDUCATION
& TRAINING: B.S. Electrical Engineering

Purdue University
1989-94

AWARDS:

PROFESSIONAL SOCIETIES:

PUBLICATIONS:

NATIONAL MEETING PRESENTATIONS:

REFEREED JOURNALS:

BOOKS AND SYMPOSIA:

INVITED PRESENTATIONS:

76

	The development of an innovative adder design evaluated using programmable logic.
	Recommended Citation

	tmp.1423685735.pdf.scr0M

