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ABSTRACT 

TEMPORAL INFORMATION PROCESSING ACROSS PRIMARY VISUAL 
CORTICAL LAYERS IN NORMAL AND RED LIGHT REARED TREE SHREWS 

Wenhao Dang 

August 5, 2015

  Visual neuroscience research has benefitted from decades of efforts of 

comparative studies of different species, since exploring and understanding the 

diversity of functional properties of visual system in different species has helped us 

identify both general organization rules and unique traits of certain species.  In this 

study, spatio-temporal receptive fields (STRFs), together with some other functional 

properties (etc. stimulus preference to different visual stimuli, orientation tuning, 

temporal frequency tuning and the F1/F0 ratio of responses to sine-wave grating 

stimuli), of primary visual cortex (V1) cells were measured in normally reared and 

red-light reared tree shrews (Tupaia), a species considered the closest non-primate 

relative to human being.  All data were sampled in anesthetized animals using 

extracellular recording techniques.  In the current study, a diversity of STRFs 

structures were found in tree shrew V1, and the STRFs found were classified into two 

categories, Type I receptive fields (RFs) that had spatially discontinuous on- and 

off-regions, or had spatio-temporal inseparable RFs, and Type II RFs that had 

spatially overlapped circular or elliptical on- and off- regions, and spatio-temporal 

separable RFs. Spatial and temporal profile analysis indicated this Type I and Type II 
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classification did not correspond to simple and complex RF types previously 

described in primates and carnivores. It was also found in the current study that the 

linear prediction based on STRFs did not predict temporal frequency tuning, 

orientation tuning or the F1/F0 ratio very well in tree shrew V1.  In tree shrew V1, 

both low-pass and band-pass cells for temporal frequency were found, and the 

proportion of cells with different types of tuning curves also differed across layers, 

resulting in a low-pass filter between layer II/II and layer IV.  Last but not least, it 

was found in this study that red light rearing after birth changes the population 

stimulus preference in layer IV in tree shrew V1.

 

  



vi 
 

TABLE OF CONTENTS 

 
ACKNOWLEDGMENTS ............................................................................................................... iii 

ABSTRACT .................................................................................................................................... iv 

LIST OF FIGURES ........................................................................................................................ vii 

INTRODUCTION .............................................................................................................................1 

General ..........................................................................................................................................1 

STRFs and laminar profiles...........................................................................................................4 

RLR experiments ........................................................................................................................16 

METHODS .....................................................................................................................................21 

Animals .......................................................................................................................................21 

Red light rearing ..........................................................................................................................21 

Anesthesia and surgery ................................................................................................................22 

Extracellular recording ................................................................................................................22 

Histological processing ...............................................................................................................23 

Visual stimuli ..............................................................................................................................25 

Data analysis ...............................................................................................................................29 

RESULTS ........................................................................................................................................32 

DISCUSSION .................................................................................................................................56 

Receptive field structure and linear model ..................................................................................56 

Lamina transformation of RF properties .....................................................................................58 

Red light rearing effect ................................................................................................................59 

Conclusion and future directions .................................................................................................62 

REFERENCES ................................................................................................................................65 

CURRICULUM VITAE ..................................................................................................................76 

 

  



vii 
 

LIST OF FIGURES

FIGURE                                                       PAGE 

1. Nissl staining of electrolytic lesions.......................................................................24 

2. Different visual stimuli employed..........................................................................26 

3. Diagram for reverse correlation procedure.............................................................27 

4. Representative neuron responses to different stimuli.............................................33 

5. Representative spatial and temporal structure of Type I and Type II receptive fields 

.....................................................................................................................................35 

6. Distribution of temporal interval between on- and off- peaks for Type I RFs........36 

7. Distribution of temporal interval between on- and off- peaks for Type II RFs.......37 

8. Distribution of spatial overlap index and aspect ratio for type II RFs....................39 

9. Lamina profile of stimulus preference in normally reared animals........................41 

10.Lamina profile of stimulus preference in red light reared (RLR) animals.............42 

11. Scatter plot of stimuli preference and orientation tuning index............................43 

12. Stimuli preference of cells with different RF structures in normally reared animals 

.....................................................................................................................................44 

13. Stimuli preference of cells with different RF structures in RLR animals.............45 

14. Lamina organization of F1/F0 ration....................................................................47 

15. Scatter plot of "on off balance index" and F1/F0 ratio.........................................48 

16. Both temporal frequency low-pass and band-pass cells exist in tree shrew primary 



viii 
 

visual cortex...............................................................................................................50 

17. Low-pass filter between V1 layer II/III and layer IV...........................................51 

18. Discrepancy between measured temporal frequency tuning curve and linear model 

predicted curve...........................................................................................................53 

19. Lamina profile of orientation tuning and performance of linear prediction........55 

 



1 
 

INTRODUCTION 

General 

  Tree shrews (Tupaia) are small squirrel-like animals native to southeast Asia.  

They are considered prototypes of early prosimian primates, and thus have received 

extensive study as a model for the evolution of primates.  Tree shrews are diurnal, 

arboreal mammals with fast and agile movements.  This living style indicates that 

tree shrews possess well-developed temporal vision.  Electroretinographic (ERG) 

studies (Tigges, Brooks, & Klee, 1967) have revealed a critical flicker frequency 

(CFF) of 75 Hz or more, which is higher than that of humans (50-60 Hz; de Lange, 

1954).  Temporal modulation sensitivity functions (tMSFs) also showed a higher 

peak frequency in tree shrews (15Hz) than in human (10Hz) (Callahan & Petry, 2000).

 

  Together with squirrels and some new world primates, tree shrews are one of 

the only mammalian groups with established cone-dominant retinas, and it has been 

conjectured that cone-dominant retinas might be an adaptation for better motion 

detection (Ahnelt & Kolb, 2000).  Tree shrew color vision is characterized by a 

spectral neutral point at 505 nm due to their retina containing only two types of cones: 

long-wave-sensitive (LWS) cones (sensitivity peak around 560nm) and 

short-wave-sensitive (SWS) cones (sensitivity peak around 440nm), and only 5% rods 

(Jacobs & Neitz, 1986; Müller & Peichl, 1989; Petry & Harosi, 1990).  Similar to the 
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X and Y retinal ganglion cells (RGCs) in cat (Cleland, Dubin, & Levick, 1971; 

Enroth-Cugell & Robson, 1966) and other species, a transient/sustained dichotomy 

was also found in the tree shrew retina (Dongen, ter Laak, Thijssen, & Vendrik, 

1976;Thijssen, van Dongen, & ter Laak, 1976).  Sustained-type neurons are slow to 

adapt and respond continuously following the onset or offset of light, while 

transient-type neurons respond briskly to the onset and/or offset of the light and show 

rapid adaptation.  When stimulated with a temporally modulated Gaussian spot, the 

sustained cells had lower peak frequencies and high-cutoff frequencies.  

Electrophysiological recordings made in the optic tract of tree shrews revealed that 

cells with sustained and transient response properties each comprise about one third of 

the RGCs, the other third exhibited response properties ascribed to W-like cells such 

as selective to movement direction, large center diameter, low spike density etc. (Lu 

&Petry, 2003). 

 

  Like primates, the dorsal lateral geniculate nucleus (dLGN) of the tree shrew 

consists of six well-defined cellular lamina separated by cell-sparse inter-laminar 

zones. However the functional organization of the six laminais a little different from 

primates (Holdefer & Norton, 1995).  Whereas in primates, tonic-firing parvocellular 

and phasic-firing magnocellular cells are separated in different layers (Derrington & 

Lennie, 1984; Merigan & Maunsell, 1993), in the tree shrew, cells with tonic and 

phasic temporal characteristics are intermixed in each layer, and the layers are 

organized by on- and off-center response preferences as well as by ocular input.  
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Lamina 1 and 5 receive input only from the ipsilateral eye; while lamina 2,3,4,6 

receive projections from the contralateral eye. Almost all neurons in lamina 1 and 2 

respond predominantly to the onset of the stimulus (on-cells), while neurons in lamina 

4 and 5 respond predominantly to the offset of the stimulus (off-cells).  Lamina 3 

contains a mixture of on- and off center cells; and lamina 6 and the inter-laminar zone 

are mostly on-off center cells (Holdefer & Norton, 1995).  

 

  This segregation of the on and off channels is maintained at the cortical level 

by an orderly projection from the dLGN to V1 in the tree shrew (Casagrande & 

Harting, 1975; Conley, Fitzpatrick, & Diamond, 1984, Van Hooser, Rhodes, Culp & 

Fitzpatrick, 2013).  Layer IVa is innervated by terminals from dLGNlamina1 and 2, 

while dLGN lamina 4 and 5 project predominantly to cortical layer IVB.  The dLGN 

lamina 3 and 6 appear to have principal targets that differ from those of the other 

dLGN lamina.  Lamina 3 projects to cortical layer IIIb and to more superficial layers, 

and lamina 6 projects to a thin strip at the top of layer IVa.  Physiological properties 

of V1 cells are in good accordance with this projection pattern.  Cells in layer IVa 

are mostly on-cells, cells in layer IVb are off-cells, and cells in superficial and deep 

layers are predominantly on-off cells (Norton, Rager, & Kretz, 1985).  In addition to 

this laminar organization, orientation selectivity is found to vary horizontally across 

the tree shrew V1 (Humphrey, Skeen, & Norton, 1980).But different from cat and 

primates, whose orientation map in V1 have pinwheel-like patterns (Bonhoeffer 

&Grinvald, 1991; Blasdel, 1992), orientation preference map in tree shrew show 
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parallel stripes pattern around the border of V1, and more punctate set of domains in 

the center (Bosking, Zhang, Schofield & Fitzpatrick, 1997).  

 

  The properties of a higher order cortex that processes temporal or motion 

information is not very clear in the tree shrew.  A temporal dorsal area (TD) has been 

hypothesized to be the homologue of primate middle temporal (MT) cortex because it 

shares some anatomical features.  For example both TD and MT receive dense inputs 

from both V1 and V2, and the axons are heavily myelinated (Glenn Northcutt & Kaas, 

1995; Jain, Preuss, & Kaas, 1994; Kaas & Preuss, 1993; Sesma, Casagrande, & Kaas, 

1984). It was known that cells in this region were responsive to visual stimuli, but the 

receptive fields were large and difficult to delineate (Kaas, Hall, Killackey, & 

Diamond, 1972; Kaufmann & Somjen, 1979).  No further attempts have been 

reported to search for its best driving stimuli, tuning properties and receptive field 

structure.   

 

STRFs and laminar profiles 

  Vision, like other sensory modalities, emerged in evolution to help animals 

survive, and it does that by precisely and flexibly guiding animals' behavior to adapt 

the surrounding environment.  With that being said, it is easy to understand the 

concept of "feature detection", in which the visual system is viewed as a "feature 

detector" rather than a film and camera that precisely "projects" the physical world 

pixel to pixel (Martin, 1994).  Because the information contained in this complex 
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world is so overwhelming for an energy efficient system, the better idea is probably 

just to extract a series of features that are most relevant to animals' survival.  This 

"feature detector" theory, probably the most widely accepted model of what single 

neurons do in visual system, had been supported by much experimental evidence in 

different animal models, as well as at different stages in visual processing.  The first 

evidence comes from the "bug detector" cells in toad retina (Barlow, 1953).  These 

neurons responded to small object moving across their receptive fields (RFs), but not 

to overall luminance change or to moving edges. Similarly, oriented contrast edge 

detectors were found in mammalian primary visual cortex, and cells that are selective 

to more complex shapes, moving directions, and even faces were also found in higher 

hierarchy stages in visual processing (Albright, 1984; Hubel & Wiesel, 1962; Sereno 

& Maunsell, 1998; Tanaka, 1996).  

 

  Since all visual features can be viewed as specific combinations of certain 

spatial and/or temporal patterns, it was first proposed in theory and later confirmed by 

numerous empirical studies that the feature detection ability of visual neurons can be 

predicted from the spatial and/or temporal structure of their receptive field (RF).  

These efforts to characterize the RF structure of visual neurons led to a greatly 

deepened understanding of visual computation, like direction and speed tuning, as 

well as degree of linearity to grating stimuli (Baker, 2001; Dean & Tolhurst, 1983; 

Gardner, Anzai, Ohzawa, & Freeman, 1999; Hubel & Wiesel, 1959; Kagan, Gur, & 

Snodderly, 2002; McLean & Palmer, 1989; Reid, Soodak, & Shapley, 1988; Yeh, 
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Xing, Williams, & Shapley, 2009).  Since orientation selectivity is the most 

prominent, and a new emerging feature in cortical cells’ RFs compared to their 

thalamic input, most early studies of cortical RF structure focused on this property. 

Efforts were made to answer the question of how much of the cell's orientation 

selectivity can be accounted for by its first order spatial receptive field map in primary 

visual cortex. When Hubel and Wiesel (1959) first found orientation selectivity in cat 

primary visual cortex, they also mapped the spatial structure of those cells' RFs. This 

led to the discovery that some of the cells have non-overlapping, elongated RF 

sub-regions that can be activated by opposite contrast (i.e., sub-regions activated by 

luminance increment were called the on-region, by luminance decrement termed the 

off-region). They named those cells "simple cells".  The preferred orientation of 

simple cells is almost always parallel to the long axes of the cell's side-by-side 

elongated on-and off-sub-regions, and their response to grating were modulated by the 

phase of stimuli (high F1/F0 ratio, where F0 is cell's the average firing rate to its 

preferred grating stimuli, and F1 is the modulation depth of cell's firing rate to its 

preferred grating).  This was in good accordance with the prediction of a linear 

model, since for approximately half of the grating cycle, the polarity and orientation 

of stimuli matched that of RF, maximizing the activation of the cell, while in the other 

half cycle the activation was much less. Complex cells, on the other hand, had mostly 

overlapping on- and off- sub regions, and low F1/F0 ratio to grating stimuli. Their 

response cannot be predicted with a single linear filter, since even at the same location 

within the RF, both contrast polarities can activate the cell, making the cell insensitive 
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to the phase of the grating (i.e. low F1/F0 ratio).  Later studies also showed that this 

first order map can offer a decent prediction for the spatial frequency preference for 

most simple cells (Dean & Tolhurst, 1983; Kagan et al., 2002; Veit, Bhattacharyya, 

Kretz, & Rainer, 2013).  These findings suggested the simple cells mostly operate in 

a linear fashion when processing simple sine-wave grating stimuli, and this 

observation had an important implication for understanding the processing of more 

complex visual stimuli, since the Fourier theorem states that any periodic function can 

be expressed as the sum of a series of sine or cosine terms.  Previous adaptation 

experiments (Blakemore & Campbell, 1969) showed the existence of multiple 

channels for different sine wave gratings in the human visual system. 

 

  Mapping of RFs also helped to refine the model of how feature selectivity is 

formed.  Based on the difference between observed RF structures in V1 and LGN, 

Hubel and Wiesel (1959) developed the feed-forward model of orientation selectivity 

for cortical cells.  Specifically, they proposed that simple cells are constructed from 

spatially-aligned LGN input with the same contrast polarity preference, and complex 

cells are formed by feed-forward input from simple cells having the same orientation 

preference and slightly different spatial locations. Both the pros and the cons for this 

theory derive largely from investigations on RF structures. Several studies confirmed 

that the monosynaptic connectivity probability is highest when both location and 

polarity match in cortex and LGN neurons, confirming the structural basis for 

feed-forward model (Alonso, Usrey, & Reid, 2001; Chung & Ferster, 1998; Ferster, 
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Chung, & Wheat, 1996; Reid & Alonso, 1995; Tanaka, 1983; Usrey, Alonso, & Reid, 

2000). However other, more recent studies have reported phenomenon that cannot be 

explained alone by a feed-forward model.  One study showed that although the 

preferred orientation can be well predicted from the first-order RF map, the sharpness 

of tuning is always underestimated (Gardner, Anzai, Ohzawa & Freeman, 1999).  

Another study found progressively sharper orientation tuning at a time scale slower 

than what was predicted by a feed-forward mechanism (Shapley, Hawken, & Ringach, 

2003), thus leading to new areas of research on intra-cortical nonlinear mechanisms of 

orientation tuning, such as spike threshold, differential inhibition and recurrent 

excitatory amplification (Adorján, Levitt, Lund, & Obermayer, 1999; Ferster, 1988; 

Ferster & Miller, 2000; Hirsch et al., 2003; Monier, Chavane, Baudot, Graham, & 

Frégnac, 2003; Priebe & Ferster, 2005, 2012; Priebe, Mechler, Carandini, & Ferster, 

2004). 

 

  To completely characterize the first-order kernel of cells, the temporal aspect 

of the RF is also required.  The best known and pioneering study on this issue was 

that of Jones and Palmer (1987).  They used sparse noise and a reverse correlation 

method to construct a complete spatial-temporal map. In many subsequent reverse 

correlation studies, different visual stimuli, such as m-sequence noise or gratings with 

random spatial and orientation parameters, were also used for various purposes 

(Conway & Livingstone, 2003; Dean & Tolhurst, 1983; Gardner et al., 1999; Ringach, 

2004; Sedigh-Sarvestani, Fernandez-Lamo, Jaegle, & Taylor, 2014; Touryan, Felsen, 
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& Dan, 2005; Yeh et al., 2009). The general rule of reverse correlation is the same: 

correlating spikes with visual stimuli at varied times preceding the spike.  This 

extension into the time domain enabled researchers to test linear models that not only 

predicted how cells respond to spatial information, like orientation or spatial 

frequency, but also to temporal information like motion direction, temporal frequency 

and speed (McLean &Palmer, 1989; McLean, Raab, & Palmer, 1994; Reid et al., 

1988).  A good example of this kind of study is the confirmation of inseparable RFs 

predicted by the spatial-temporal energy model for motion (Adelson & Bergen, 1985).  

In the spatial-temporal energy model, neurons are proposed to be oriented spatial and 

temporal linear filters.  This model also proposed that the "joint STRFs" 

(spatial-temporal RFs) of some neurons are simply the product of their spatial and 

temporal maps, termed separable RFs. In contrast, some cells' STRFs cannot be 

expressed as a simple product, and are termed inseparable RFs. For separable RFs the 

"blobs" in the map, representing contrast polarity preferences across space and time in 

the joint spatial-temporal map (X-T map), do not shift position in space, while for 

inseparable RFs the "blobs" are tilted in X-T map.  The spatial-temporal energy 

model predicts that the cells with separable RFs are good motion detectors but are not 

directionally selective, while those with inseparable RFs are directionally selective, 

with the tilted orientation of "blobs" indicating the preferred direction.  These 

predictions largely have been confirmed by experimental data (McLean & Palmer, 

1989; Reid, Soodack & Shapley,1987).For example, predictions based on 

spatial-temporal characteristics capture the orientation preference of V1 cells fairly 
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well. However, another fact is that the linear model seems to overestimate the tuning 

width of orientation tuning, indicating that nonlinear mechanisms can still play an 

important role in V1 (Gardner et al., 1999).  

 

  The complexity of neuro-computation not only lies in dynamics but also in 

the diversity of RFs of individual cells.  There are multiple parallel pathways in the 

visual system, and in each pathway, there are multiple hierarchies extracting different 

features.  For example in primates, there are at least three parallel pathways (e.g., the 

P (parvocellular), M (magnocellular) and K (koniocellular) pathways), with distinct 

anatomical and physiological features (Livingstone & Hubel, 1988).  The 

segregation of these pathways begins at the first visual synapse, and is maintained at 

the cortical level in the classical model. To be specific, in the retina, parvocellular 

projecting (P) midget retinal ganglion cells (those projecting to ventral dorsal 4 layers 

in LGN of primates) receive their inputs from midget bipolar cells, which receive 

input from a single cone in the central visual field.  On the other hand magnocellular 

projecting (M) parasol retinal ganglion cells (those projecting to the ventral 2 layers in 

LGN of primates) are innervated by diffuse bipolar cells, which in turn sample from 

several rods and cones (Leventhal, Rodieck & Dreher, 1981; Perry, Oehler & Cowey, 

1984, Bowling & Michael, 1980; Sherman & Guillery, 1996).  When information is 

sent from the LGN to the primary visual cortex, magnocellular cells synapse in layer 

IVCα then project to layer IVB, and parvocellular cells synapse in IVCβ then to IVA 

and layer II/III (Gilbert & Kelly, 1975).  From the perspective of physiological 
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properties, cells in the P pathway show spectral opponency/selectivity, low luminance 

contrast gain, smaller receptive field size and poor contrast sensitivity at scotopic 

luminance.  In contrast, M pathways generally have no color opponency, higher 

luminance contrast gain, larger receptive field size and good contrast sensitivity at 

scotopic luminance.  Consequently these two pathways in monkey were also called 

the color/form and the luminance/motion pathways respectively (Kaplan, Lee, & 

Shapley, 1990; Lee, 1996; Merigan & Maunsell, 1993). Pathways in humans 

characterized psychophysically, and presumably based on similar neural mechanisms, 

have been termed color-opponent and luminance channels (e.g., King-Smith & 

Carden, 1976).  

 

  Some key physiological features of cortical cells are known to change with 

laminar location.  In the monkey primary visual cortex (V1), it is known that simple 

cells, which have spatially separated on-off RFs and high orientation selectivity, are 

preferentially located in the magnocellular pathway dominated layers (IVCα and 

upper tier of layer VI), while complex cells usually exhibit less orientation selectivity 

and are located mostly in the superficial and deep layers.  Very similarly, in cats cells 

with simple RFs are found mostly in direct thalamo-recipient zones, while complex 

cells are found in all layers other than layer IV (Hirsch & Martinez, 2006b).  Some 

investigations on laminar differences of linearity were also conducted, inspired by the 

fact that different layers are in different hierarchies of information flow. Since, in 

general, visual information travels from layer IV to layer II/III , and finally to layer V 
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in primary visual cortex (Douglas & Martin, 2004; Gilbert, 1983), one would expect 

differences across layers.  In both monkey and cat, the proportion of simple cells, as 

well as the spatial segregation of RF sub-regions, tends to decline with distance from 

direct thalamic input (Boyd & Matsubara, 1996; Hirsch & Martinez, 2006a; Hubel & 

Wiesel, 1968).  In a recent study, in-vivo whole cell recording was used in the cat 

cortex to reveal the "Push-Pull" structure of STRFs (Martinez et al., 2005) (Here 

"Push" means excitation and "Pull" means inhibition).  It was found that the 

segregated RFs in layer IV mostly have "Push-Pull" structure, meaning that at the 

same location and at the same time delay after a visual stimuli, the cell will get 

opposite input to opposite contrast polarity (for example, in an on- subregion, 

luminance increscent causes excitatory input, while luminance decrement results in 

inhibitory input).  However complex RFs in other layers were found mostly to have 

"Push-Push" structure. Through intracellular recording, it was also revealed that the 

interaction between excitation and inhibition underlying orientation selectivity 

changed across layers (Martinez, Alonso, Reid, & Hirsch, 2002).  Finally, different 

layers display different oscillations in local field potential, indicating different 

network structure and dynamics (Sun & Dan, 2009). 

 

  In a few recent studies, the laminar profile of RFs in the tree shrew visual 

system were measured.  Van Hooser and colleagues (2013) recorded responses from 

tree shrew dLGN, layer IV and II/III of primary visual cortex.  A moving bar was 

used to roughly measure the degree of spatial overlap of on- and off- sub-regions 
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based on the time difference of response to an on-and off- flashing bar stimuli.  

Grating stimuli were used to test orientation tuning, temporal frequency tuning, as 

well as modulation depth (simple cells vs. complex cells).  They found that 

compared to neurons in the dLGN and the cortical layer IV, those in layer II/III had 

slightly higher ON/OFF segregation and a larger proportion of complex cells.  They 

also found that unlike cats, sharp orientation tuning properties emerged in layer II/III 

of V1 in the tree shrew, rather than in layer IV.  In addition, a big decrease in the 

neuron's preferred temporal frequency between LGN cells and layer IV in V1 was 

also found. The authors suggested that, in contrast to cats, many response property 

transformations in the tree shrew visual system happen within the cortical circuits.  

Veit and colleagues (2014) applying a more "standard" approach, used sparse noise 

stimuli to map the on- and off- sub-regions of V1 cells in the tree shrew.   With a 

different overlapping index that is not directly comparable to that used by Van Hooser 

et al (2013), they revealed that most cells in tree shrew V1 have largely overlapping 

sub-fields irrespective of laminar location.  Higher degrees of orientation tuning in 

response to drifting sine-wave gratings were also found in this study, but no difference 

in the complex/simple cell ratio was observed between layer II/III and layer IV.  

 

  Mapping the full STRFs at different stages of visual system can greatly help 

us refine our understanding of how the brain performs feature extraction, but so far 

this approach has been mostly used to analyze the spatial domain, particularly 

orientation coding.  Very few efforts have been made to specifically dissect temporal 
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processing with STRFs (Dean & Tolhurst, 1983; McLean & Palmer, 1989; Párraga, 

Troscianko, & Tolhurst, 2005; Reid et al., 1988).  The current project addressed this 

by recording responses from different layers of tree shrew primary visual cortex in 

response to a variety of temporal visual stimuli, including flashing spots, drifting 

sine-wave gratings, and coherent random dots kinematograms (RDKs).  We 

employed reverse correlation methods to map the full first-order kernels of recorded 

neurons.  The benefits of using different stimuli was to provide the opportunity to 

observe how cells respond to different combinations of visual features.  For example, 

a flashing spot only contains localized contrast temporal modulation; drifting gratings 

have orientation, moving direction and spatial frequency; and RDKs represent 

relatively pure "motion", since the circular shape of the dots is devoid of all 

orientation, and sharp edges contain wide range of spatial frequencies.   

 

  First-order STRFs had been used to predict responses to various classical 

visual stimuli in V1.  In the spatial aspect it was found that spatial frequency, F1/F0 

ratio, and some aspects orientation selectivity can be predicted fairly well for cells 

with separated on-off sub-regions in cat and monkey; However, higher order 

interactions need to be considered to give a decent prediction for complex cell 

dominant layers.  In the temporal domain, the spatial-temporal energy model has 

also been used to predict neurons' activity to RDKs at various speed.  Previously it 

was found that for the same cell, the direction preference can change when dot speed 

changed, and direction preferences at high and low speed are usually 
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orthogonal(Geisler, Albrecht, Crane, & Stern, 2001; Jancke, 2000).  It was proposed 

that this phenomenon is caused by "temporal smear” in STRFs, in which case the cell 

is activated by temporal energy (moving) at low speed, and by a more "static moving 

axis" at high speed. Particularly interesting is that the spatial temporal model can 

precisely predict the "critical speed" at which the transition happens (An, Gong, 

McLoughlin, Yang, & Wang, 2014). 

 

  Our model system, the tree shrew, is an especially interesting model to study 

laminar profiles of temporal processing and STRFs, firstly, because tree shrews have 

superior temporal vision and a more primate-like visual system compared to 

carnivorous animal models like cats and ferrets, and secondly that they may have 

different mechanisms compared to primate and cats in forming some of the feature 

extraction properties in visual cortex, for example, dominant simple cell like response 

with highly overlapped on- and off- subregions in V1cells.Another example is that 

orientation selectivity emerges in layer II/III in tree shrew primary visual cortex rather 

in layer IV in cat. It has been reported that intracortical feed-forward as well as 

horizontal connection mechanism play important roles in forming the orientation 

selectivity in tree shrew V1. In the tree shrew, the axonal projection from orientation 

non-selective layer IV cells to orientation selective layer II/III cells is biased, 

specifically, by axons of layer IV cellspreferentially targeting layer II/III sites whose 

orientation preference matches the axis of visual field displacement between the 

presynaptic and postsynaptic cells. At the same time, horizontal connections within 
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layer II/III are also biased to sharpen the orientation tuning: cells with similar 

orientation preference are more strongly linked by horizontal connections. (Bosking, 

Zhang, Schofield, & Fitzpatrick, 1997; Chisum, Mooser, & Fitzpatrick, 2003; Mooser, 

Bosking, & Fitzpatrick, 2004; Van Hooser, Roy, Rhodes, Culp, & Fitzpatrick, 2013; 

Veit et al., 2013).Studying the tree shrew will help us better understand diversity 

versus homogeneity in visual processing.   

 

RLR experiments 

  It had been found in many species that visual experience plays an important 

role during early postnatal life in shaping the visual system, and abnormal visual 

stimulation during development has a profound effect on the visual neuron properties 

and visual system organizations (Sherman & Spar,1982; Boothe, Dobson &Teller, 

1985). Very interestingly, monocular deprivation resulted in more severe impairments 

than binocular deprivations (Wiesel & Hubel, 1965). The mechanism underlying this 

result is thought to be the result of abnormal competition between the cells driven by 

deprived eye and cells driven by normally stimulated eye.  However, if this 

competition interaction also occurs among other physiologically, anatomically and 

psychophysically identified visual pathways (e.g. W, X and Y pathways: Hoffmann, 

Stone & Sherman, 1972; M and P pathways: Livingstone & Hubel, 1988; 

color-opponent and luminance pathways: King-Smith & Carden, 1976) is not clear. 

this is because a prolonged differential stimulation of selected channels is a difficult 

condition to achieve during development. 
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  In our lab, we have been able to differentially stimulate the color-opponent 

and luminance channels during early postnatal development by utilizing tree shrew 

animal model and red light rearing (RLR) paradigm.  In RLR paradigm, tree shrew 

pups were reared in deep red light environment for 8 weeks. Because tree shrews have 

a cone dominant retina and only two types of cones, this red light rearing will deprive 

all external stimulation of SWS cones, while stimulate LWS cones relatively normally.  

Like monkey and human, SWS cones also appear to contribute little to the luminance 

channel in this species (Eisner & Macleod, 1980; Petry, 1993).  Thus the red light 

rearing paradigm would be expected to create a competitive advantage for the 

luminance channel over the color-opponent channel. Since the luminance channel was 

thought to contribute more to higher temporal frequency vision, this biased 

competition may result in an enhancement in neural response and possibly also in 

behavior to higher temporal frequency visual stimuli.  Works by Petry and 

colleagues have shown this hypothesis likely to be correct. Despite no change in the 

size of the SWS cone population (Petry, Erichsen & Szel, 1991), histochemical 

studies showed the SWS cones in the RLR shrews were lacking nitric oxide synthesis 

(Murphy & Petry, 1995), and RLR shrews showed poorer color vision (Petry and 

Kelly, 1991). These results are consistent with a compromised color-opponent channel 

that is affected beginning at the retinal level. 

 

  In contrast, the "luminance channel" of RLR tree shrews appeared to be 
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enhanced. Petry and colleagues (1992) showed enhanced luminance channel mediated 

spectral sensitivity, and behavioral studies by Callahan and Petry (1995) showed that 

RLR shrews were able to detect flickering lights at much higher temporal frequencies 

than normally-reared shrews.  This difference was documented physiologically by 

recordings from retinal ganglion cells (Lu and Petry, 2002) and by calcium imaging of 

layer II/III neurons in area V1 of normal and RLR shrews (Van Hooser, Johnson 

&Petry, 2014).  However, it is worth pointing out that what is happening in layer IV 

and below in RLR shrews is not clear. The change in layer II/III following a 

developmental deprivation of SWS cones is consistent with the observation that 

superficial layers of tree shrew V1 receive the main input from dLGN layer III ( Usrey, 

Muly & Fitzpatrick, 1992), which is the only layer in the tree shrew LGN that can be 

driven by a SWS cone isolation stimulus (Johnson, Van Hooser & Fitzpatrick, 2010).  

It is also in agreement with the observation that in tree shrew layer II/III, LWS cone 

isolation stimuli driven cell populations displayed higher temporal frequency cutoffs 

than SWS cone isolation stimuli driven population (Johnson et al., 2010).  

 

  This most recent result in the series of the red-light-rearing studies has 

implications for the processing of temporal information in the normal visual system, 

especially for the geniculocortical circuit (e.g., dLGN to V1).  It was found 

previously in tree shrew and other species that cortical cells do not respond well to 

rapidly changing stimuli compared to LGN cells ( Hawken, Shapley & Grosof, 1996; 

Van Hooser et al., 2013).  For example, the preferred temporal frequencies of simple 
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cells in cats are lower by a factor of 2 compared to LGN cells (8Hz vs. 16Hz).  One 

element that surely contributes to this "low pass filter" between thalamocortical inputs 

and V1 outputs is the capacitor property of the V1 cell membrane. With a membrane 

constant near 15ms, the frequency at which the membrane filter attenuates its input by 

a factor of 2 is about 11 Hz.  This filter can explain about half of the difference 

between preferred temporal frequencies of LGN and V1 neurons (Priebe & Ferster, 

2012).  One hypothesis to account for the remaining mismatch is that the filtering 

effect is the result of imperfectly aligned LGN inputs in time. In other words, the 

varied latencies of LGN input will cause dispersion in postsynaptic activation for V1 

cells, and obviously this dispersion will have a bigger effect for high temporal 

frequencies.  

 

 The RLR tree shrews provide us an interesting model to study developmental 

aspects cortical temporal information processing.  In the RLR tree shrew the "low 

pass filter" appears to be modified and not simply removed.  Van Hooser et. al's 

(2013) imaging study of layer II/III neurons in RLR shrews showed that the grand 

average of responses not only showed an enhanced response to higher frequencies 

(15Hz-20Hz), but also a small enhancement at low end frequencies (1Hz).  The 

changes on two ends of temporal frequency spectrum suggest that that this change 

may be caused by two mechanisms, or happening on two different cell populations.  

Thus identifying and categorizing temporal frequency tuning curves as well as STRFs 

into possible different types, and then charactering the changes in different 
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populations may provide more information on the underlying mechanisms of this 

interesting observation of changes in the vision following red light rearing of tree 

shrews.
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METHODS 

Animals 

  36 adult tree shrews (Tupaia belangeri), 17 normally reared and 19 red light 

reared) with body weight ranging from 120g-180g were used in this study. All the 

animals were colony reared and sexually mature adults (>4 months of age) at the time 

of recording.  The care and treatment of all animals were in strict accordance with 

NIH and institutional IACUC guidelines.

 

Red light rearing   

  The conditions used by Petry and Kelly (1991) were used as a model to 

provide a red light rearing environment.  A week or more prior to their due date, 

pregnant tree shrews were moved to a colony room illuminated by deep red 

light.  The red light was provided by tungsten lights filtered with Kodak 1A Safelight 

filters (600nm cutoff). These lights were mounted directly above each cage resulting 

in an illuminance range of approximately 110-270 lux, comparable to the intensity to 

the "white-light" illumination of the main colony room.  A revolving "dark-room" 

type door allowed entry into the room without contaminating the red-light 

environment.   Tree shrew pups were born in the red light and hand-reared in red light 

until 8 weeks of age, at which time they were transferred to the main colony room.  

Recordings were conducted when the shrew were adults (i.e., 16-weeks of age or 
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older).   

 

Anesthesia and surgery 

  Tree shrews were initially anesthetized with Ketamine (100mg/kg, IM), 

under which a tracheotomy was performed, and subsequently with nitrous oxide gas 

anesthesia(70/30 N2O/O2) supplemented with 0.5-2.0% isoflurane. Following bladder 

cannulation, tree shrews were moved to a stereotaxic apparatus and a craniotomy was 

made above V1 for subsequent extracellular recording. Atropine sulfate (0.2mg/kg, IP) 

was used to prevent salivation and bronchial secretions, and sterile saline solution was 

continuously infused into abdominal cavity throughout the experiment to prevent 

dehydration of the animal.  Pupils were dilated with atropine sulphate(1%), and 

plano contact lenses were used to prevent dehydration of the corneas. Upon discovery 

of the first recordable neuron, gallaminetriethiodide(15mg/kg, IM) was injected to 

eliminate eye movements, and artificial respiration was begun (60 bpm).  Core 

temperature was maintained between 37-38 degrees Celsius.  The electro-cardiogram 

and expired CO2% were continuously monitored and computer-controlled alerts were 

set to predetermined thresholds and used to monitor significant deviations. 

 

Extracellular recording 

  Tungsten microelectrodes with 0.5-2.0 MΩ impedance at 1000Hz were used. 

The raw neuronal signal was first amplified and band-pass filtered (300-3000Hz) 

using an HI4 head stage and DB4 amplifier (World Precision Instruments Inc.), then 
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the signal was fed into a Power 1401 data acquisition interface (Cambridge 

Electronics Design Inc., U.K.) for ADC sampling. Spike events were detected by a 

threshold manually set by the experimenter. All spike events were sampled at 20 kHz. 

Spike 2 data acquisition software (Cambridge Electronic Design Limited, UK) was 

used for neural recording and spike sorting. A template-matching algorithm was used 

in the software to isolate single unit activity. That is, every spike was compared to a 

template waveform, which was the average waveform of spikes previously assigned 

to the template. If more than a certain percentage of points in an unsorted spike 

waveform fell within a predetermined range of the template, the spike was assigned to 

the matched template.  Sorting parameters were varied to maximize the isolation of 

template clusters in PCA (Principal Component Analysis) plots. Electrolytic lesions 

(15uA, 10sec) were made at cell locations after each penetration for recording sites 

reconstruction. A typical lesion is shown in Figure 1. 

 

Histological processing 

  At the completion of each experiment, the animal was perfused through the 

heart with 0.9% saline followed by 4% paraformaldehyde. Prior to extraction, the 

brain was blocked in the coronal plane parallel to the electrode penetration. Brains 

were then stored in 4% paraformaldehyde as post-fixation procedure. In most cases, a 

special medium (gelatin/albumin/glutaraldehyde) was used to encase the brain during 

vibratome cutting(Other brains were cut frozen with cryostat).Serial sections of 50 

µm were mounted on slides and stained using a standard Nissl staining protocol.  
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Figure 1. Two electrolytic lesions (15µA × 10sec) in layer IV and V in a 

Nissl-stained section of tree shrew visual cortex). 

 

100 um 
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Sections were then examined for the presence of lesions and electrode tracts using a 

bright field microscope. The locations of recorded cells were then determined using 

the lamina position of the lesion centers.  Normalized depth was calculated by 

dividing the distance between the cortical surface to lesion centers by the distance 

between cortical surface to the bottom of layer VI. 

 

Visual stimuli 

  All visual stimuli were generated using MATLAB PsychToolboxon 

a39cm×22cmcolor CRT monitor (set to 120Hz refresh rate, 1600×900resulotion) 

placed 30cm in front of the animal. All stimuli were presented binocularly. A battery 

of tests was conducted on each cell encountered as described in Figures 2 and 3. First, 

the temporal frequency tuning was tested using Gaussian flash stimuli. The contrast of 

the Gaussian spot was square-wave modulated (0-100%) with equal on and off 

durations, and the size of the stimuli was approximately 1.5 times the size of CRF 

(classical receptive field) of the cell under testing. The following frequencies were 

used: 1Hz, 3Hz, 10Hz, 15Hz, 20Hz, 30Hz, and 60Hz. Every frequency was presented 

for 3 seconds for three times in random order. Each presentation was separated by 

5seconds of blank screen (on-cells had a dark inter-stimuli blank screen, off-cells had 

a bright inter-stimuli blank screen, on-off cells had a gray inter stimuli blank screen). 

Then, direction selectivity tuning and temporal frequency tuning for drifting 

sine-wave gratings were measured. In both tests, the grating patch was 100% contrast 

and 1.5 times the size of CRF. In the direction test, spatial frequency was optimized, 

and a presentation rate of 4Hz or 8Hz temporal frequency was used depending on the  
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Figure 2.Different visual stimuli were used in the experiments. A.)Gaussian 

flashing spot stimulus. B.) Random Dot Kinematogram (RDK) stimulus. C.) 

Drifting sine-wave grating stimulus. The red circle represents the general size 

and location of the cell's classical receptive field under testing.  

A. 

B. 

C. 
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Figure 3.Diagram of the procedure for calculating the spike-triggered average 

(STA) when using sparse noise stimuli.  In the STA every spike was correlated 

with stimuli at a different time delay. As spike numbers increased, random 

spontaneous firing averaged out, and structure of the receptive field emerged.  

From Jones & Palmer, 1987. 
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general temporal frequency preference of the cell. Twelve drifting directions 

(separated from each other by 30 degrees) were used in the test. Stimuli for each 

direction were presented for 1-sec five times in random order; each stimulus 

presentation separated by 1 second of blank screen(on-cells had a dark inter-stimuli 

blank screen, off-cells had a bright inter-stimuli blank screen, on-off cells had a gray 

inter stimuli blank screen). In the grating temporal frequency test, spatial frequency 

and direction of movement were optimized. Testing frequency included 1Hz, 3Hz, 

10Hz, 15Hz, 20Hz, -30Hz, and 60Hz.For each temporal frequency stimuli were 

presented for 2-sec five times by random order; each stimulus presentation was 

separated by 2 seconds of blank screen (on-cells had a dark inter-stimuli blank screen, 

off-cells had a bright inter-stimuli blank screen, on-off cells had a gray inter stimuli 

blank screen). Speed tuning for RDKs was also tested. The size, density and direction 

of dots was optimized for each cell. The speed range was from 5 to 200 degrees/sec, 

and motion direction coherence was 100%. Stimuli for each RDK speed was 

presented for 3seconds three times by random order; each stimulus presentation was 

separated by 2 seconds of blank screen(on-cells had a dark inter-stimuli blank screen, 

off-cells had a bright inter-stimuli blank screen, on-off cells had a gray inter stimuli 

blank screen). Last, first-order STRFs were mapped using sparse noise stimuli (the 

algorithm is shown in Figure 3, from Jones & Palmer, 1987), and spike triggered 

average (STA) methods. For the sparse noise stimuli, small squares (covering 0.3-0.5 

degrees of the visual field) were briefly flashed(25 ms)one at a time in rapid 

succession on a gray background at random locations, with random binary contrast 
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polarity on a 16x16 grid that covered the RF of the cell under testing. For each 

location in the grid, bright and dark squares were each presented 40 times. 

 

Data analysis 

  Simple and complex cells are classified by the F1/F0 ratio (Hubel & Wiesel, 

1959, 1962), where F0 is cell's the average firing rate to its preferred grating stimuli 

and F1 is the modulation depth of cell's firing rate to its preferred grating. If F1/F0 > 1, 

the cell was classified as simple cell. If F1/F0<1, the cell was classified as complex 

cell.  To calculate temporal frequency tuning curves for flash and grating stimuli, 2 

seconds of average firing rate to each frequency was first Fourier transformed, then 

the peak amplitudes at each tested frequency in the Fourier spectrum were used to plot 

the tuning curve. Direction and orientation selectivity were quantified by the 

following two circular variance indexes, DSI (direction selectivity 

index)=
  Rθ {cos  

πθ

180
 +i cos  

πθ

180
 }θ  

 Rθθ
, and OSI (orientation selectivity 

index)=
  Rθ {cos  

2πθ

180
 +i cos  

2πθ

180
 }θ  

 Rθθ
 ,where θ is grating drifting direction, Rθ is cell's 

firing rate to that direction minus spontaneous average firing rate between stimuli 

presentation and i is square root of -1. The direction tuning and temporal frequency 

tuning curves of simulated cell responses were calculated the same way as measured 

cell responses. To measure the overlap index of receptive fields sub-regions, "on" and 

"off" sub-regions were first fitted with 2D Gaussian functions: 

f(x,y)=Aexp(-(a(x-x0)2+2b(x-x0)(y-y0)+c(y-y0)2)), where a=cos2θ/2σx
2+ sin2θ/2σy

2, b= 

-sin2θ/4σx
2+ sin2θ/4σy

2, c= sin2θ/2σx
2+ cos2θ/2σy

2, then the spatial overlap index were 
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defined as: overlap index=(σon+σoff-d)/( σon+σoff +d), where σon and σoff are averages 

of σx and σy for "on" and "off" sub region respectively, d is the distance between "on" 

and "off" center. 

 

  To quantify relative preference to different stimuli, cells' highest average 

response to all temporal frequency/speed tested were calculated for flash (Aflash), 

grating (Agrating) and RDKs (ARDKs) stimuli, and then two index were calculated, 

grating/flash index=Agrating/Aflash; dots/flash index=ARDKs/Aflash. 

 

  For analysis of sparse noise data, each spike was assigned to the stimulus that 

preceded it by a delay period. Specifically, to calculate the spike triggered average at 

a certain time difference t', the following formula was used: 

 A x,y,t' =  Snn  x,y,t-t' , where A is the spike triggered average, n is number of 

spikes in the whole test, x and y are the locations of bright and dark squares in the 

stimuli grid, t are times of spikes and Sn represents the luminance polarities at 

specified location and time in the stimuli ensemble. To get the linear predictions of 

cells' response to sine-wave gratings, 1 second of sine-wave grating were convolved 

with250ms of STRFs of the cells in the MATLAB, and then the results were rectified 

to turn any negative parts into 0. To compare physiological measured data with model 

prediction, parameters (etc. temporal frequency, spatial frequency, orientation) of the 

sinewave grating used in modeling phase were kept same as in physiological 

recording phase. Noise defined as below 10% of peak amplitude in STRFs were 
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removed prior convolution.
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RESULTS 

  Data is presented from a total of 246 cells, as described in Table1, from 17 

normally reared and 19 RLR tree shrews. Of the 112 cells recorded from normally 

reared animals30% were complex cells and 70% were simple cells. The spatial 

temporal receptive fields (STRFs) of 70 cells were measured in normally-reared 

animals. In RLR animals, 134 cells were recorded, with 25.3% being classified as 

complex cells and 74.7% as simple cells.  The STRFs of 85 cells were measured in 

RLR animals. In each case, the cells' response selectivity (i.e., orientation tuning, 

temporal frequency tuning, and stimuli preference) was first measured, then the 

receptive field structure were estimated using sparse noise stimuli. The response of a 

representative cell to different stimuli used is shown in Figure4.

 

Table 1 

 

 Total 
number of 
cells 
recorded 

Layer 
II/III 

Layer 
IV 

Layer 
V/VI 

Simple 
cells 

Complex 
cells 

STRF 
measured 

Normally 
rearing 

112 19 66 23 77 33 70 

Red light 
reared 
(RLR) 

134 30 78 25 100 34 86 

note: In normally reared group, 2 cells were not classified as simple/complex, since the response 
to grating were too low. 
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Figure 4.Representative neuron responses to different motion stimuli.  Red circles in the 

stimuli snapshots represent the receptive field of the cells.  A)-C) came from different 

neurons. A)  Representative response to flash stimuli B)Representative response to drifting 

grating stimuli C) Representative response to RDK stimuli 

 

Random Dot Kinematogram C) 

 

 

Drifting sinewave grating 
B) 

 

Flashing spot 
A) 
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  Diverse STRF features in both space and time was found in tree shrew 

V1, but the proportion of different RF types did not differ across cortical layers.  

A diversity of spatial-temporal RF structure was found in the data, and classified into 

two types as shown in Figure 5. Type I cells had spatially continuous "on" or "off" 

regions in their X-Y map(Figure5A), or had their "on" or "off" region peak shifted in 

location over time. Type II RFs have spatially continuous "on" and "off" regions in the 

X-Y map, and both regions could be fitted by a 2D Gaussian function. The number of 

these two types of RFs in different layers are shown in Table 2. In all cortical layers of 

normally reared animals, Type II RFs were more common than Type I RFs (Layer IV: 

Type I 28.6%, Type II 71.4%; Layer II/III: Type I 27.4%, Type II 72.6%; Layer V/VI: 

Type I 25%, Type II 75%). Red light rearing appeared to increase the proportion of 

Type I cells in all layers, but this change was not statistical significant in our sample. 

(chi-square tests, Layer IV: χ2=1.2494, P=0.2637,Layer II/III: χ2=0.9392, P=0.3325, 

Layer V/VI: χ2=1.3421, P=0.2467, summed across layers: χ2=3.6619, P=0.057). 

 

Table 2 

 

  Layer 
II/III 

Layer IV Layer 
V/VI 

Normally 
reared 

Number of Type I RF measured 2 14 3 
Number of Type II RF measured 5 37 9 

Red light 
rearing 
(RLR) 

Number of Type I RF measured 9 20 7 
Number of Type II RF measured 9 33 8 

 

  The temporal aspect of each RF was measured by calculating the difference 

between “on” and “off” regions in X-T time as displayed in Figures 6 and 7. For both 

types of RFs and both groups of animals, the majority of cells had both an “on” and 
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A. Spatial RF profile (X-Y map) Spatiotemporal RF profile (X-T map) 

Figure 5. Representative spatial and temporal structures of Type I and Type II Receptive 

fields.The complete spatial temporal receptive profile is a function of three independent 

variables: X, Y, and T. X and Y are the two spatial dimensions of the receptive field, and T is 

time. Left: Spatial RF profiles (X-Y map). Right: Spatiotemporal RF profiles (X-T). A) A 

representative Type I cell where “on” or “off” regions are spatially discontinuous. B) A 

representative Type II cell where “on” or “off” regions are spatially continuous and both can 

be fitted with a 2D Gaussian function.  

B. Spatial RF profile (X-Y map) 

 

Spatiotemporal RF profile (X-T map) 
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Figure 6.Distribution of temporal difference between “on” and “off” peaks for Type I RFs. 

A) Data for normally reared animals. Three representative RF X-T maps with different 

peak time difference are displayed, with a corresponding histogram show that most 

peak-to-peak time difference is shorter than 20ms. B) Data for RLR animals.  In both 

normally reared and RLR groups the relatively short interval (<20 ms) between “on” and 

“off” are more common. No significant difference was found between the two groups 

(Mann-Whitney test, P=0.2041). 
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Figure 7. Distribution of the temporal difference between “on” and “off” peaks for Type II 

RFs. A) Data for normally reared animals. Two representative RF X-T maps with different 

peak time difference are displayed, with the corresponding histogram that shows that 

most peak-to-peak time different is shorter than 20ms. B) Data for RLR animals.  In both 

normally reared and RLR groups the relatively longer interval (>20 ms) between “on” and 

“off” are more common.  No significant difference was found between two groups 

(Mann-Whitney test, P=0.1362). 
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“off” "blob" in the X-T map, but the distribution of "on-off interval" is different for 

Type I and Type II RFs.  In normally-reared group, for Type I cells have both "on" 

and "off" regions in X-T maps, relatively short intervals (<20 ms) between “on” and 

“off” were more common, while these intervals are relatively longer (>20ms) in Type 

II cells, though this is not the case in RLR group (Normally reared group: 

Kolmogorov-Smirnov test, p=0.029; RLR group: Kolmogorov-Smirnov test, 

p=0.5202; median for normal Type I group, 15.5 ms; median for RLR Type I group, 

23ms;median for normal Type II group, 28ms; median for RLR Type II group, 32.5 

ms). No significant difference was found between normally reared and RLR groups 

(Type1, Kolmogorov-Smirnov test, p=0.4688; Type2, Kolmogorov-Smirnov test, 

p=0.0731). 

 

  The degree of spatial overlapping of Type II cells with both “on” and “off” 

blobs were measured with an “Overlap Index” (See Methods).An Overlap Index equal 

to 1 means perfectly overlapped “on” and “off” regions. An Overlap Index equal to 0 

means tangent “on" and “off” regions, and an overlap index smaller than 0 means 

"on" and "off" sub-regions are further apart and no overlap. In both normally reared 

and RLR groups, “on” and “off” regions are highly overlapped as shown in Figure 8. 

(Median for normal group= 0.6691; Median for normal group= 0.6831). The aspect 

ratio of RF Type II RFs were also measured in our sample in normally and red light 

reared group, both showing peaks at around 1.5. 
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Figure 8. Distribution of spatial Overlap Index and aspect ratio for type II RFs in normally 

reared (A) and RLR animals (B). An Overlap Index equal to 1 means perfectly overlapped 

“on” and “off” regions. An Overlap Index equal to 0 means tangent “on” and “off” regions. 

In both normally reared and RLR groups, “on” and “off” regions are highly overlapped. 

Aspect ratios were calculated by dividing the RF lengths by RF widths. In both Normally 

reared and RLR group, aspect ratio peaked at around 1.5, which is much smaller than that of 

simple cells in cats and macaque monkey (DeAngelis, Ohzawa & Freeman ,1993; 

Ringach ,2002). 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

 

 

C
o

u
n

t

Normal rearing overlap index

 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

 

 

C
o

u
n

t

RLR overlap index

 

A 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

 

 

C
o

u
n

t

Normally reared

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

30

 

 

C
o

u
n

t

RLR aspect ratio

B 

Overlap index Aspect ratio 



40 
 

  Lamina analysis showed that grating preferring cells were found in layer 

IV and V/VI, but not in layer II/III, while red light rearing decreased this 

heterogeneity. No RDKs preferring population was found. Stimuli preference was 

quantified by comparing each cell’s average firing rate to different stimuli as shown in 

Figure 9 and 10. In layer IV and layer V/VI of the normally reared group, cells were 

clustered based on their preference for grating stimuli over flash stimuli. This is 

indicated by multiple peaks in the grating/flash histogram shown in Figure 9B). In 

contrast, there is only one peak in the dots/flash histogram across all layers (see 

Figure 9C). Red-light rearing seems to flatten the multiple peak distribution of the 

grating/ flash stimulus responses in layer IV though VI into a single peak distribution 

(Kolmogorov-Smirnov test, p=0.0107; see Figure 10B). To test if the multiple peaks 

in grating/flash histogram correlates with any known cell type categorizations, 

stimulus preference data were further analyzed in simple cell population alone(Figure 

11.A), by orientation selectivity (Figure 11. B), and by RF types (Figures 12.and 13.), 

but no evidence was found that different peaks in grating/flash histogram can be 

attributed to any of these properties. 

 

  Layer IV cells display highest modulation depth to grating stimuli, while 

in layer II/III red-light-rearing decreases cells' modulation depth to grating 

stimuli. Overall, in normally reared animals, the median of F1/F0 ratio in layer IV is 

slightly higher than that of other layers, though the population distributions was not 

significantly different in our sample ( layer II/III and layer IV: Kolmogorov-Smirnov  
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Figure 9. Stimulus preference of cells in normally reared animals across cortical layers. 

A)Scatter plot of stimulus preference. The X-axis is the cell’s average response firing rate to 

the grating stimulus divided by that in response to the flash stimulus. The Y-axis is the cell's 

average response firing rate to RDKs(dots) divided by that to the flash. Blue dots represent 

layer IV cells, red dots represent layer II/II cells, green dots represent layer V/VI cells. B) 

Histogram of grating/flash across layers. C)Histogram of dots/flash across layers. Note in 

layer IV and V/VI there are clearly multiple peaks in grating/flash histogram but not in the 

dots/flash histogram. 
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Figure 10. Stimulus preference of cells in RLR animals across cortical layers. A) Scatter plot 

of stimuli preference. The X-axis is cell’s average response firing rate to the grating stimulus 

divided by that in response to the flash stimulus. The Y-axis is cell's average response firing 

rate to RDKs (dots) divided by that to the flash. Blue dots represent layer IV cells, red dots 

represent layer II/II cells, green dots represent layer V/VI cells. B) Histogram of grating/flash 

across layers. C)Histogram of dots/flash across layers. 
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Figure 11. A) Stimuli preference in different cortical layers for simple cells. Note there is still 

obvious bimodal distribution in layer IV. B) Lower panel: Histogram of orientation tuning 

circular variance; Higher panel: scatter plot of circular variance and grating/flash response 

ratio. 
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Figure 12. Stimuli preference of cells with different RF structures in normally reared 

animals. A) Scatter plot of stimuli preference. The X-axis is cell’s average response firing 

rate to the grating stimulus divided by that in response to the flash stimulus. The Y-axis is 

cell's average response firing rate to dots divided by that to flash. B) Histogram of 

grating/flash for cells with Type I (upper panel) and Type II (lower panel) RFs. C) 

Histogram of dots/flash for cells with Type I (upper panel) and Type II (lower panel) RFs. 
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Figure 13. Stimuli preference of cells with different RF structures in RLR animals. A) Scatter 

plot of stimuli preference. The X-axis is cell’s average response firing rate to the grating 

stimulus divided by that in response to the flash stimulus. The Y-axis is cell's average 

response firing rate to RDKs (dots) divided by that to the flash. B) Histogram of 

grating/flash for cells with Type I (upper panel) and Type II (lower panel) RFs. C) Histogram 

of dots/flash for cells with Type I (upper panel) and Type II (lower panel) RFs. 
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test, p=0.4868; layer V/VI and layer IV: Kolmogorov-Smirnov test, p=0.1323; Figure 

14A). Interestingly, red light rearing seemed to caused an increase in the proportion of 

complex cells in layer II/III as shown in Figure 14B and 14D(Normal layer II/III 

median=1.2616; RLR layer II/III median=0.9043, Kolmogorov-Smirnov test, 

p=0.0633), and as a result making an significant difference between layer II/III and 

layer IV in F1/F0 distribution (Mann-Whitney test, p=0.0113).In cat and primates, the 

RF spatial separation co-varies with F1/F0 ratio, simple cells have both high F1/F0 

ratio and well separated RFs. However this is not the case in tree shrew. First, in our 

sample Type I RFs have higher proportion of complex cells (Table 3.), second, there is 

not negative relationship between RF separation and F1/F0 (Normally reared group, 

Pearson's r=0.011, Adj. R2=-0.0311 . RLR group, Pearson's r=0.2269, Adj. 

R2=-0.0188.). The relationship between F1/F0 ratio and the “On” and “Off” balance 

was also investigated. In both normally reared and RLR groups, “On” and “Off” 

strength ratiowere relatively widely distributed between 0 and 1, and no obvious 

peaks were found. No linear relationship was found between F1/F0 and “on” and “off” 

balance as shown in Figure 15 (Normally reared group: Pearson's r=0.1128, Adj. 

R2=-0.0022; RLR group: Pearson's r=-0.0284, Adj. R2=-0.0111). 

Table 3. 

 

  Total cells 
recorded  

 STRFs 
recorded  

Type I  Type 
II  

Normally reared  Simple Cell  77  53  11  42  
Complex Cell  33  17  8  9  

RLR  Simple Cell  100  57  23  34  
Complex Cell  34  29  16  13  
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Figure 14. Laminar organization of F1/F0 ratio for normally reared and RLR animals. A, B) 

Scatter plot of F1/F0 at different normalized depth in normally reared and RLR animals. Plot 

adjacent to a scaled photomicrograph of a Nissl-stained section of tree shrew V1 cortex. 

The color-coded line is the median at different depth calculated using a sliding 0.1 wide 

window with 0.01 steps. C, D)Distribution of F1/F0 ratio in different layers of normally 

reared and RLR animals. 

D. 
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Figure 15. A) Scatter plot of "On-Off balance index" and F1/F0 in normally reared  and 

RLR  animals. The relative strength of “on” and “off” response were quantified by an 

“on-off” balance index, which equals to the smaller of “on” or “off” response measured in 

reverse correlation test divide by the larger of “on” or “off” response. The index ranges 

from 0 to 1. A value of zero indicates a response to only one contrast polarity,  A value of 

1 indicates that the cell's response strength to “on” and “off” are about same. Two 

representative cells with high and low “On-Off” balance index are shown on the right. B) 

Scatter plot of F1/F0 and spatial overlap index of Type II RFs. Normally reared group, 

Pearson's r=0.011, Adj. R2=-0.0311 . RLR group, Pearson's r=0.2269, Adj. R2=-0.0188. 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0
O

n
-O

ff
 b

a
la

n
c
e

 i
n

d
e

x

Normally reared F1/F0

 

0 5 10 15

 

A. 

Percentage (%) 

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

O
n

-O
ff
 b

a
la

n
c
e

 i
n
d

e
x

F1/F0

 

0 5 10 15 20 25

 

Percentage (%) 

0.0 0.5 1.0 1.5 2.0 2.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e

rl
a

p
 i
n

d
e

x

Normally reared F1/F0

0.0 0.5 1.0 1.5 2.0 2.5

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e

rl
a

p
 i
n

d
e

x

RLR F1/F0

B. 



49 
 

 

  Although both temporal frequency band-pass and low-pass cells can be 

identified in tree shrew V1, the proportions of each tuning curve types are 

different across cortical layers.  No significant effects were found in neurons 

from the RLR group in terms of averaged tuning curves to different frequencies. 

The temporal frequency tuning curves were measured with sine-wave gratings and 

then normalized.  Figure 16A shows the distribution of normalized response at 

different temporal frequencies for cells in normally reared animals. Each dot 

represents one cell's normalized response to a specific frequency. It is clear that at 1 

Hz, 10 Hz, 15 Hz and 20 Hz there are multiple peaks, suggesting potential multiple 

mechanisms in temporal processing. Thus cells are classified into three categories 

based on their turning curve shapes.  If the normalized response to 1 Hz is below 

0.65, the cell was classified as band-pass, otherwise it was classified as low-pass. 

Low-pass cells were further classified as high-cutoff and low-cutoff based on their 

average response to 10Hz, 15Hz and 20Hzas shown in Figure 16B.The proportion of 

cells with different tuning curves in each layer are shown in Figures 17A-17C. In 

general, low-pass high cutoff cells are less commonin layer II/III than in layer IV 

(Chi-square test: χ2=7.553, P=0.023) and V/VI (Chi-square test: χ2=5.834, P=0.055). 

Red light rearing also seemed to modify the proportion of different tuning curves in 

layer IV (Chi-square test: χ2=5.894, P=0.052), but did not have a significant effect on 

summed tuning curve in each layer (biggest median difference in layer II/III at 1Hz, 

Kolmogorov-Smirnov Test, p=0.2839). It was also found that layer II/III cells had  
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Figure 16. A) Distribution of normalized responses at different temporal frequencies for cells 

in normally reared animals. Each dot represent one cell's normalized response to a specific 

frequency, bin=0.05. Note that at 1 Hz and from 10-20 Hz, there are multiple peaks, 

indicating potentially different mechanisms in temporal processing. B) Normalized tuning 

curve for low-pass and band-pass cells. Cells were classified into three categories based on 

the shape of their temporal tuning curve. If the normalized response to 1 Hz is below 0.65, 

the cell will be classified as band-pass, otherwise it is a low-pass. Low-pass cells were further 

classified as high-cutoff and low-cutoff based on their average response to 10Hz, 15Hz and 

20Hz. The length of the error bar in the graph represent standard error. 
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Figure 17. A-C)Left: Proportion of cells with different tuning curves across layers.  Right: 

Median for normalized response at different temporal frequencies for normally reared 

and RLR animals. Length of error bar represents standard error. The histogram shows that 

in general, low-pass high-cutoff cells are more common in layer IV (χ2=7.553, P=0.023) and 

V/VI (χ2=5.834, P=0.055) than in layer II/III. Red light rearing also seems to change the 

proportion of different tuning curves in layer IV (χ2=5.894, P=0.052), but did not have 

significant effect on summed turning curve in each layer. 
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lower responses to 15Hz (Kolmogorov-Smirnov test, p=0.01039) and 20Hz 

(Kolmogorov-Smirnov test, p=0.01121) compared to layer IV.  

 

  The linear model does not provide a good prediction for temporal 

frequency tuning.  A linear model was used to predict temporal tuning properties 

based on the STRF of cells. As shown in Figure 18, overall, the model predicted more 

sharply tuned cells than were measured. For cells with single polar RFs, the linear 

model predicted a sharper tuned low-pass tuning curve, which overestimates the low 

frequency end and underestimates the response for higher frequency. For cells with 

both “on” and “off” region in STRFs, the result of the linear model predicted a 

sharper band-pass curve compared to measured data.  A representative cell is shown 

in Figure 18C. As evident, this cell with “on” and “off” blobs separated by 40ms was 

predicted to peak at 12.5 Hz by the linear model, but the measured data revealed a 

peaked at 3 Hz. 

 

  Finally, measurement of the laminar organization of orientation tuning 

revealed that in both groups, cells in layer II/III tended to have a higher median 

orientation tuning index than layer IV (Normally reared group: layer IV 

median=0.1356, layer II/III median=0.2203, layer V/VI median=0.1809, 

Mann-Whitney test between layer IV and layer II/III, p=0.0379; RLR group: layer IV 

median=0.1559, layer II/III median=0.3089, layer V/VI 

median=0.1968,Mann-Whitney test between layer IV and layer II/III, p=0.0505), as  
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Figure 18. Discrepancy between measured temporal frequency tuning curves and predicted 

tuning curves. A, B) Normalized measured and predicted tuning curve for Type I and Type II 

RFs. In both normally reared and RLR animals, a linear model predicted sharper tuned 

low-pass and band-pass groups, while the measured tuning curves were more flattened. C) 

Left: X-T map of a representative cell with 40ms interval between “on” and “off” peaks. 

Right: Normalized measured and predicted tuning curve for the cell shown on the left. A 

linear model predict a band-pass tuning curve peaks at ~12.5 Hz, while the measured 

tuning curve peaks at 3 Hz with a low-pass shape. 
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shown in Figure 19A.The linear model failed to predict either the degree or the 

direction of orientation tuning (see Figure 19B and19C), but the difference between 

predicted and measured preferred orientation was not randomly distributed. 
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Figure 19. A）Laminar profile of orientation tuning. A) Scatter plots of circular variance of 

orientation tuning at different normalized cortical depth. Plots are adjacent to a scaled 

photomicrograph of a Nissl-stained section of tree shrew V1 cortex. The color-coded line is 

the median at different depths calculated using a sliding 0.1 wide window with 0.01 steps. 

In both normally reared (left) and RLR (right) groups, layers II/III tend to have a higher 

median for orientation selectivity than layer IV. B) Scatter plot of measured and predicted 

orientation tuning index. A Linear model does not capture the degree of tuning in 

measured data in both normally reared and RLR groups. C) Histogram of the difference 

between measured and predicted preferred orientation in degrees. The histogram shows 

that a linear model does not predict the preferred orientation, however the difference 

between predicted and measured preferring orientation is not randomly distributed.  
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DISCUSSION 

Receptive field structure and linear model 

  The current study is the first comprehensive report on both the spatial and 

temporal aspects of V1 receptive field structure in the tree shrew.  In this study two 

types of STRFs were revealed: Type I included cells with spatially discontinuous "on" 

or "off" regions, or cells with RF centers that shifted in space over time; Type II 

STRFs were characterized by largely overlapped circular or elliptical "on" and "off" 

sub-regions.  This characterization differs from previous descriptions of the spatial 

aspect of RF structure of tree shrew V1 neurons.  Using similar methodology, Veit 

and colleagues (2014) only revealed RF types with highly overlapped elliptical "on" 

and "off” regions, similar to the Type II RFs described in the current study. Possible 

explanations for this discrepancy may be: 1) due to the smaller size of the sparse noise 

stimuli used in current study which was only about 1/3 of what was used in Veit et al. 

(2014),thus permitting our characterization of finer RF structural components; and 2) 

that the Type II RF neurons we sampled are a minority in V1 cell population. 

Considering that we also included the "shifting center" RFs into the Type I 

classification, the spatially discontinuous RF Type II neurons would constitute an 

even smaller proportion.

 

  The low proportion of complex cells (based on the criteria of F1/F0 ratio)and 
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spatially overleaped RF sub-regions we found is in accordance with previous research 

on tree shrew V1 (Kaufmann & Somjen, 1979; Veit et al. 2014). In both cats and 

primates, the separate subfields are thought to be the main contributor to high F1/F0 

ratio (Hubel & Wiesel, 1962, 1968), however, this does not seem to be the case in tree 

shrews. Despite having high proportion of simple cells, most cells in tree shrew V1 

have highly overlapped "on "and "off" sub-regions in spatial domain (see Figure 8.). 

However, in the current study, the "inflated" F1/F0 ratio does not seems to be caused 

by "unbalanced on-off" as suggested by Veit et al. (2014). In Veit et al. (2014), "on-off 

balance" was quantified use an index based on log ratio log, and because the off 

dominance in their data sample, this log index may make the linear regression 

analysis more sensitive and less powerful. In our data sample, many cells only 

respond to one polarity of stimuli, thus log ratio cannot be used. More following 

studies should be made to solve this discrepancy. 

 

 The temporal aspect our data also revealed a difference between species. In 

cat visual cortex, the distribution peak of the "on-off" interval is around 60ms 

(DeAngelis et al., 1993), while in tree shrew it is much shorter (20ms was most 

common for Type II).  Of interest is that whereas the peak of the temporal frequency 

tuning curve is the same in the two species (both at around 3Hz, DeAngelis et al., 

1993), tree shrew cells have a much higher cutoff than cat cells. It is also worth 

pointing out that the Type I and Type II classification of neurons in our study does not 

directly correspond to simple and complex types in cat and primates. In primates, 
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most simple type RFs have separated "on" and "off" subfields both in space and time, 

and complex type RFs have overlapped subfields both in space and time (Rust, 

Schwartz, Movshon & Simoncelli, 2005; Liu, Liu& Li, 2007), while in tree shrew it is 

more intermixed. For example, for Type II RFs, though in the space domain the "on" 

and "off" are largely overlapped, in temporal domain the peak interval is widely 

distributed. A linear model was employed in the current study to predict orientation 

and temporal frequency tuning. It was found that the prediction for orientation is poor. 

In cat and primates, the linear prediction for orientation tuning only works for simple 

cell, which mostly have separate "on" and "off" sub-regions  (Martinez et al., 2005; 

Ferster et al., 1996).  So this observation agrees with the fact that in tree shrew V1, 

separate sub-regions are infrequent. It is also in accordance with the idea that the 

orientation tuning in tree shrew V1 neurons is largely contributed by nonlinear 

intra-cortical mechanisms (Fitzpatrick, 1997; Chisum et al., 2003; Mooser et al., 

2004). The linear prediction of temporal frequency tuning is also not very accurate, 

especially for the cells with a bipolar structure of their X-T map, raising the 

possibility that nonlinearity also plays an important role in temporal information 

processing. 

 

Lamina transformation of RF properties 

  In cat visual cortex, layer IV cells display dramatically different properties 

from LGN cells. Most layer IV cells exhibit orientation tuning to grating stimuli, and 

a high percentage exhibit direction tuning for motion (Reid & Alonso, 1995; Ferster et 
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al., 1996).However, our results in tree shrew confirmed previous findings that, 

orientation tuning emerges in layer II/III (not in layer IV) in this species.  We also 

found that similar to cat and primates (Gilbert, 1977), tree shrew layer IV cells have 

the highest F1/F0 ratio across cortical layers, but in contrast to cats and primates, the 

F1/F0 ratio in the tree shrew is not strongly correlated with first order RF structures 

measured with sparse noise stimuli.  This suggests the presence of a different 

mechanism in tree shrews. In the current study, we identified both a band-pass and a 

low-pass mechanism to be present, and the proportions of band-pass cells and 

low-pass cells across cortical layers were also measured. Different types of temporal 

tuning shapes were found in Layer IV neurons compared to Layer II/III neurons. In 

general, Layer IV cells respond more vigorously to higher frequency stimuli than did 

cells in the superficial layers.  This suggests that, similar to primates ( Hawken, 

Shapley & Grosof, 1996), a second order low-pass filter exists between the granular 

layer (layer IV) and the supra-granular layers (layers II/III). This second filter was not 

reported in the previous study investigating tree shrew V1 laminar RF transformation 

(Van Hooser et al., 2013),so this discrepancy may due to differences in the method of 

analysis (normalized vs. non-normalized) or differences in the sample size (e.g., the 

relatively small sample in layer IV in their study). 

   

Red light rearing effect 

  The tree shrew is an ideal model to test the effect of unbalanced competition 

between the color-opponent channel and luminance channel. Tree shrews have a cone 
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dominant retina with two type of cones (short wave sensitive, SWS, and long wave 

sensitive, LWS).  Deep red light rearing after birth will deprive activation for SWS 

cones while stimulating LWS cones normally. Since like monkey and human, SWS 

cones also appearto contribute little to the luminance channel in this species, the red 

light rearing paradigm will create a competitive advantage for the luminance channel 

over the color-opponent channel, which has been shown to lead to an enhanced high 

temporal frequency response in retinal ganglion cells (Lu & Petry, 2002), 

supragrannular cortical cells(Van Hooser, Johnson & Petry, 2014) as well as at the 

behavioral level (Callahan & Petry, 1995). One unexpected result of the current study 

was that no statistically significant difference was observed in the averaged response 

to higher temporal frequencies between layers II/III neurons in normally-reared tree 

shrews and in red-light-reared tree shrews, which would have been expected from the 

imaging results of Van Hooser et al. (2014). This is most likely because the sample 

size of layer II/III neurons was relatively small in the current study, coupled with the 

fact that the variance between cells is large for higher frequency responses (since 

there are both low-pass and band-pass cells in layer II/III, their response differs a lot 

in higher frequency).  There appeared to be an enhancement in low frequency (1Hz) 

response in layer II/III, as expected from the imaging study (Van Hooser et al., 2014), 

in our data sample that was likely caused by an increased proportion of cells with 

low-pass high cutoff temporal tuning curves. This observed change in tuning type 

composition is also in accordance with previous finding that the SWS cone isolation 

stimuli driven response fell off quickly at higher temporal frequencies (>8 Hz, thus 
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have a low-pass low cutoff shape), while LWS cone isolation stimuli can drive neuron 

responses well at higher temporal frequencies (up to 30 Hz), and thus have a low-pass 

high cutoff shape (Johnson, Van Hooser & Fitzpatrick, 2010). If the unbalanced 

spectral rearing caused competition that made the LWS cone inputs dominant in layer 

II/III, cells with the low-pass high-cutoff type tuning curves will become more 

common. It is worth pointing out that the same mechanism may also possibly explain 

both low-frequency and high-frequency changes observed in the imaging study Van 

Hooser et al., 2014), because generally all tuning types have fairly strong responses at 

3-10 Hz, and the increased proportion of broad tuning types in layer II/III will have 

biggest effect on low and high end of temporal frequency spectrum.  In the current 

study we did not find a statistically significant difference at any frequency tested in 

layer IV neurons between normally-reared and RLR groups even we had sufficient 

sample size.  Since layer II/III neurons are considered downstream to layer IV within 

V1, this finding suggests that the changes in frequency response of superficial layers 

after red light rearing was probably not inherited from cortical feed-forward inputs, 

but more possibly from direct inputs of dLGN layer 3, which is the only layer in tree 

shrew dLGN that projects mainly to superficial layers (e.g., Usrey, Muly & 

Fitzpatrick, 1992) as well as responding to SWS cone isolation stimuli (Johnson et al., 

2010). 

 

 Another interesting observation in current study was that red light rearing 

appeared to change layer IV cells' stimulus preference, making them more responsive 
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to flashes and/or less responsive to gratings. In normal reared animals, especially in 

layer IV and V/VI, there appeared to be separate populations of cells that preferred 

flash or grating stimuli, while in red light rearing group, no clear grating-preferring 

cell population was found. The source of multiple peaks in grating/flash histogram 

and the mechanism of distribution change after red light rearing are not clear. The 

clusters in grating/flash histogram were found not correspond to simple/complex cell 

dichotomy, nor to high/low orientation selectivity populations, nor to RF 

categorization we had in current study.  One possible explanation is that the 

multimodal distribution was contributed by cell populations defined by combinations 

of properties, thus harder to identify, or it may be contributed by intra-cortical 

interactions that can hardly be captured in first order STRFs. Lastly, we found that 

after red rearing, the proportion of complex cells increased, and Type II RFs also had 

an increasing trend. This change may be explained by an axon elaboration mechanism 

(Butz, Worgotter, & Ooyen, 2009; Trachtenberg & Stryker, 2001) caused by 

unbalanced excitation and inhibition (Maffei, Neson & Turrigiano, 2004) as a result of 

RLR. In the tree shrew, layer II/III cells have a relatively strong SWS cone input, so 

the red light rearing will dramatically decrease the excitatory inputs to cells with 

strong SWS cone inputs, and as a result, they may be connected with multiple 

neighboring or even far away cells with horizontal connections, thus possibly 

expanding the RF size of interconnected cells. 

 

Conclusion and Future directions 
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  This study revealed a striking diversity of RF structures in tree shrew primary 

visual cortex (V1).  By comparing our results to carnivores and primates, it was 

revealed that in terms of V1 RF structures and mechanism, carnivores are more 

similar to primates than to tree shrews (Ringach, 2002).  Our results support the idea 

that the functional organization and mechanism of properties emergence cannot be 

simply ascribed to the evolutionary ancestral relationship between mammals, factors 

like localization of eyes, or what aspect of vision is more important for the lifestyle of 

animal should also taken into consideration (Scholl, Tan, Corey, & Priebe, 2013). For 

example, perception of depth is possibly very important for the survival of animals 

with both eyes facing front, previous research had shown that the phase difference is 

very important for depth coding in V1 (Anzai, Ohzawa, & Freeman, 1999), it provide 

a possible explanation why the RFs with separate "on" and "off" regions (or "on" and 

"off" phases) are very common in cat and primate V1.  In current study, the constant 

fast moving living style may also explain why tree shrew V1 cells have short reversal 

intervals between "on" and "off" in X-T maps, and pretty high high-cutoff frequency 

for temporal frequency.  Since the linear model that had been previously 

demonstrated as successful for predicting the orientation preference and the F1/F0 

ratio in carnivores and primates V1 failed to do so when applied to tree shrew cortical 

neurons, other hypothesis-based models employing intra-cortical interactions should 

be tested for use in modeling tree shrew visual cortical function.  Additionally, the 

effect of red light rearing on temporal frequency tuning should be further tested using 

electrophysiology techniques in tree shrew V1, as well as in dLGN, with the goal of 
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obtaining a larger sample to discriminate contribution of different mechanisms.
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