
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2012

Phenomenological modeling of image irradiance
for non-Lambertian surfaces under natural
illumination.
Shireen Y. Elhabian
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Electrical and Computer Engineering Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Elhabian, Shireen Y., "Phenomenological modeling of image irradiance for non-Lambertian surfaces under natural illumination."
(2012). Electronic Theses and Dissertations. Paper 395.
https://doi.org/10.18297/etd/395

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.library.louisville.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/395
mailto:thinkir@louisville.edu


PHENOMENOLOGICAL MODELING OF 

IMAGE IRRADIANCE FOR 

NON-LAMBERTIAN SURFACES UNDER 

NATURAL ILLUMINATION 

By 

Shireen Y. Elhabian 

B.Sc. 2002, Faculty of Computers and Information, Cairo University 

M.Sc. 2005, Faculty of Computers and Information, Cairo University 

A Dissertation 

Submitted to J.B. Speed 

School of Engineering of University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

Department of Electrical and Computer Engineering 

University of Louisville 

Louisville, Kentucky 

December 2012 



© Copyright by Shireen Y. Elhabian 

All Rights Reserved 



ii 
 

PHENOMENOLOGICAL MODELING OF IMAGE 
IRRADIANCE FOR NON-LAMBERTIAN SURFACES UNDER 

NATURAL ILLUMINATION 
 

By 
 

Shireen Y. Elhabian 
 

B.Sc. 2002, Faculty of Computers and Information, Cairo University 
M.Sc. 2005, Faculty of Computers and Information, Cairo University 

 
 
 

A Dissertation Approval on 
 
 

  November 26, 2012   
 
 
 

by the Following Reading and Examination Committee: 
 
 
 
 

       
Aly A. Farag, Ph.D., Dissertation 

  Director 
 
 

       
Thomas L. Starr, Ph.D. 

 
 

       
James H. Graham, Ph.D. 

 
 

       
Robert W. Cohn, Ph.D. 

 
 

       
Hossam Eldin H. Abd El Munim, 

Ph.D. 



DEDICATION 

In the loving memory of my dear mother (may ALLAH shower His mercy 

on her), to my great father and to my beloved husband. 

iii 



ACKNOWLEDGEMENTS 

This research was developed by the grace of Almighty God, the merciful, the 

compassionate for the uncountable gifts given to me, who gave me the knowledge and 

wit to finish and establish this research. 

My sincere gratitude and thanks go to my advisor, Prof. Aly A. Farag, for the 

support and encouragement he gave me during my study at the University of Louisville. 

Thank you for introducing me to Computer Vision and giving me the opportunity to 

explore this captivating field. Your ongoing confidence in me and my work has been 

an inspiration. It has been an honor to be one of your Ph.D. students. I appreciate 

your support to make my Ph.D. experience productive and stimulating. You always 

aim high, "sky is the limit" , and I hope, with this dissertation, I met a portion of your 

expectations. Thank you Doc. 

I would like to acknowledge the other members of my Ph.D. committee for spending 

time and effort in reading and reviewing my work. The insights and differing points 

of view of Prof. Thomas L. Starr were a great help in developing new ideas, while 

his simultaneous enthusiasm and support were also much appreciated. I would like to 

acknowledge Prof. Robert Cohn for giving me resources which helped me learn about 

surface measures and surface topographic relief. 

During my course of study I have been privileged by the interaction with Dr. Petter 

Nillius, a researcher in the Physics of Medical Imaging lab at the Department of Physics 

at KTH, who helped me understand bits and pieces from his Ph.D. thesis. He never 

hesitated replying my emails especially during Christmas time (2011). Communicating 

with him have been profoundly an educative experience. 

During my study at UofL, I was surrounded with people and technology which made 

my research possible. lowe a great debt to William Michael Miller, who was always 

there with stimulating discussions and new suggestions. It has been a great privilege to 

work with someone like him. Thanks, Mike. Thanks to Chuck Sites for his technical 

support and guidance. 

I would also like to thank Dr. Asem Ali and Dr. Moumen Elmelegy with 

whom I enjoyed very fruitful and stimulating research collaborations. I have enjoyed 

working with Ham Rara; our discussions were always a great pleasure, and led to 

significant improvements in the content and exposition of this work. He gave important 

and fruitful guidance during my first steps into harmonic theory. His concepts have had 

a remarkable influence on my entire dissertation research. Thank you, Ham. 

All members of the Computer Vision and Image Processing Lab have helped in 

making these past few years a thoroughly enjoyable experience for which I am truly 

grateful. It has been an absolute pleasure and privilege to work with all of them. The 

group has been a source of friendships as well as good advice and collaboration. I am 

especially grateful to Mostafa Abdelrahman, Eslam Mostafa, Aly Abdelrehim, 

Cambron Carter, Ali Helmi and Ahmed Shalaby for their great help and patience 

iv 



in data acquisition and fruitful discussions. I really appreciate the help of Ahmed 

EIBarkouky who tolerated my discussions related to mathematical derivations. I would 

like to acknowledge Travis Gault with whom I shared fruitful discussions related to 

dissertation preparation and writing along with enormous technical support. 

Research life is full of ups and downs and no one can move on just being alone. One 

of the great things that happened to me is meeting someone like Marwa Ismail whom 

I consider a sister and a friend. Both of us share moments of frustrations as well as 

happiness. I wish her the best for her life and family. Meanwhile, I have enjoyed and 

enriched during working with her in the virtual colonoscopy project. 

I would also like to acknowledge my new friend and little sister, Heba Farag who 

spreads a spirit of joy and pleasure to her surroundings. I really admire her pure spirit 

as well as her baby acts. I am going to miss you so much. 

Being far from my own home country and family, Mrs. Salwa Elshazly and 

Amal Farag have not hesitated to provide me guidance and help to adapt living in the 

States during my first two years in Louisville. I still remember moments when I became 

frustrated being alone and find Mrs. Salwa cheering me up. Thank you both for all 

great memories you have been a part of. 

I am forever indebted to my parents, Youssef Elhabian and Eman Mazyouna, 

for their love, support, guidance and unfailing faith in me. Words cannot do justice to 

their impact in forging my personal and academic outlook. I am sure my mother would 

have been very happy seeing me graduating, may ALLAH shower His mercy on her. I 

would also like to acknowledge my parents-in-law for their love and encouragement. 

I have been blessed with a marriage to one of the most decent and lovable persons 

God ever created. My beloved husband, Samir Abdelrahman, supported me in times 

of doubt, and has enriched my life beyond measure. He has cheerfully accommodated all 

manner of long hours and inconvenient absences. His unconditional love and constant 

encouragement are what keep me going. Basically he was the person I counted on for 

support and encouragement. No words can express my love and appreciation for him. 

v 



ABSTRACT 

PHENOMENOLOGICAL MODELING OF IMAGE IRRADIANCE FOR 

NON-LAMBERTIAN SURFACES UNDER NATURAL ILLUMINATION 

Shireen Y. Elhabian 

November 26th, 2012 

Various vision tasks are usually confronted by appearance variations due to changes 

of illumination. For instance, in a recognition system, it has been shown that the 

variability in human face appearance is owed to changes to lighting conditions rather 

than person's identity. Theoretically, due to the arbitrariness of the lighting function, 

the space of all possible images of a fixed-pose object under all possible illumination 

conditions is infinite dimensional. Konethcless, it has been proven that the set of images 

of a convex Lambertian surface under distant illumination lies near a low dimensional 

linear subspace. This result was also extended to include non-Lambertian objects with 

non-convex geometry. As such, vision applications, concerned with the recovery of 

illumination, reflectance or surface geometry from images, would benefit from a low

dimensional generative model which captures appearance variations w.r.t. illumination 

conditions and surface reflectance properties. This enables the formulation of such 

inverse problems as parameter estimation. 

Typically, subspace construction boils to performing a dimensionality reduction 

scheme, e.g. Principal Component Analysis (PCA), on a large set of (real/synthesized) 

images of object(s) of interest with fixed pose but different illumination conditions. 

However, this approach has two major problems. First, the acquired/rendered image 

ensemble should be statistically significant vis-a-vis capturing the full behavior of the 

sources of variations that is of interest, in particular illumination and reflectance. Sec

ond, the curse of dimensionality hinders numerical methods such as Singular Value 

Decomposition (SVD) which becomes intractable especially with large number of large

sized realizations in the image ensemble. 

One way to bypass the need of large image ensemble is to construct appearance 

subspaces using phenomenological models which capture appearance variations through 

mathematical abstraction of the reflection process. In particular, the harmonic expan

sion of the image irradiance equation can be used to derive an analytic subspace to 

represent images under fixed pose but different illumination conditions where the image 

irradiance equation has been formulated in a convolution framework. Due to their low

frequency nature, irradiance signals can be represented using low-order basis functions, 

where Spherical Harmonics (SH) has been extensively adopted. 

Typically, an ideal solution to the image irradiance (appearance) modeling problem 

should be able to incorporate complex illumination, cast shadows as well as realistic 

surface reflectance properties, while moving away from the simplifying assumptions of 

Lambertian reflectance and single-source distant illumination. By handling arbitrary 

complex illumination and non-Lambertian reflectance, the appearance model proposed 

in this dissertation moves the state of the art closer to the ideal solution. 
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This work primarily addresses the geometrical compliance of the hemispherical basis 

for representing surface reflectance while presenting a compact, yet accurate representa

tion for arbitrary materials. To maintain the plausibility of the resulting appearance, the 

proposed basis is constructed in a manner that satisfies the Helmholtz reciprocity prop

erty while avoiding high computational complexity. It is believed that having the illumi

nation and surface reflectance represented in the spherical and hemispherical domains 

respectively, while complying with the physical properties of the surface reflectance 

would provide better approximation accuracy of image irradiance when compared to 

the representation in the spherical domain. 

Discounting subsurface scattering and surface emittance, this work proposes a surface 

reflectance basis, based on hemispherical harmonics (HSH), defined on the cartesian 

product of the incoming and outgoing local hemispheres (i.e. w.r.t. surface points). This 

basis obeys physical properties of surface reflectance involving reciprocity and energy 

conservation. The basis functions are validated using analytical reflectance models as 

well as scattered reflectance measurements which might violate the Helmholtz reciprocity 

property (this can be filtered out through the process of projecting them on the subspace 

spanned by the proposed basis, where the reciprocity property is preserved in the least

squares sense). 

The image formation process of isotropic surfaces under arbitrary distant illumina

tion is also formulated in the frequency space where the orthogonality relation between 

illumination and reflectance bases is encoded in what is termed as irradiance harmonics. 

Such harmonics decouple thc effect of illumination and reflectance from the underlying 

pose and geometry. Further, a bilinear approach to analytically construct irradiance 

subspace is proposed in order to tackle the inherent problem of small-sample-size and 

curse of dimensionality. The process of finding the analytic subspace is posed as estab

lishing a relation between its principal components and that of the irradiance harmonics 

basis functions. It is also shown how to incorporate prior information about natural 

illumination and real-world surface reflectance characteristics in order to capture the 

full behavior of complex illumination and non-Lamberti an reflectance. 

The use of the presented theoretical framework to develop practical algorithms for 

shape recovery is further presented where the hitherto assumed Lambertian assumption 

is relaxed. With a single image of unknown general illumination, the underlying ge

ometrical structure can be recovered while accounting explicitly for object reflectance 

characteristics (e.g. human skin types for facial images and teeth reflectance for hu

man jaw reconstruction) as well as complex illumination conditions. Experiments on 

synthetic and real images illustrate the robustness of the proposed appearance model 

vis-a-vis illumination variation. 

Keywords: computer vision, computer graphics, shading, illumination modeling, re

flectance representation, image irradiance, frequency space representations, {hemi)spherical 

harmonics, analytic bilinear PCA, model-based bilinear PCA, 3D shape reconstruction, 

statistical shape from shading. 
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CHAPTER 1 

PROLOGUE 

The human vision system is one of the gates to the external world, allowing one to navi

gate through and interact with the surrounding environment, detecting and recognizing 

objects and people. In a glimpse of human's eyes, information about the surrounding 

objects is available including their shapes, materials and relative poses. 

Being inspired from human and other biological visual systems, computer vision 

aims at making the computer see. This involves the extraction of information about 

the three dimensional world given two dimensional images. This is analogical to the 

human visual system which uses several cues to infer the same information from the 2-D 

images projected onto the retina. Different cues can be used to accomplish such a task. 

Looking at the world from slightly different positions, providing different views, gives 

an important depth cue known as the disparity cue. Another cue is the motion parallax, 

where images of nearby objects appear to move faster than these of distant objects. 

In some situations, a single still image is available, e.g. a passport image, leaving 

the image brightness to process. While edges and corners have been widely used in 

computer vision, such features cannot explain local shape perception provided by the 

shading cue. Shading can be defined as the gradual variation of image brightness as 

a function of the surface normal relative to the light source and the imaging sensor. 

Such brightness variation mainly depends on the surface reflectance properties and the 

illumination conditions. The extraction of information from shading primarily depends 

on understanding the image formation process; defined as the response of an imaging 

sensor to radiation. The core motivation behind the presented work is formulating an 

imaging model which describes the relationship between object's attributes (shape and 

reflectance properties) and the formed image brightness. 
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Figure 1.1: Image formation triology, light source(s) are used to illuminate a 3D object in space which will be captured by an imaging system, i.e. 
camera, to form the captured/observed image. The formed image depends on three main components; (1) The camera (viewer) which is characterized 
by its projection model (orthographic versus perspective projection) , intrinsic and extrinsic parameters, (2) Illumination (light source(s)) used to 
illuminate the object to be captured, characterized by direction, position, geometry and intensity, and (3) The object itself defined by its 3D structure, 
i.e. shape/surface geometry, and surface reflectance properties. The formed image at the end is a two-dimensional pattern of brightness. 



1.1. Shading-based Inference 

1.1 Shading-based Inference 

Shading is the visible output of the physical process of image formation, depending on 

the the shape of the surface, the surface' reflectance properties, the lighting conditions 

and the parameters of the imaging sensor. Physics-based vision [1] is concerned about 

extracting information about an image's contents based on an understanding of the 

underlying physics which governs how the image was formed. However, such a prob

lem is under-constrained because the formation process involves numerous unknowns 

in contrast to the available information at hand, i. e. image brightness value per pixel. 

Thus information inference based on shading commonly involves adding assumptions to 

the image formation process such as distant illumination and homogenous reflectance 

(where surface patches are assumed to have the same reflectance properties). 

Under the assumption of fixed pose and fixed camera parameters, shading-based 

inference involves the three components of the photometric image formation (shape, 

reflectance properties and illumination). Usually it is assumed that one or more compo

nents are known beforehand, e.g. Lambertian reflectance and known point light source 

were assumed in the pioneering work of Horn [2] to solve for the surface shape. The 

main contribution sought in this dissertation work is to present appearance models and 

representations which can be used for non-Lambertian surface reflectance and complex 

illumination. 

1.2 Modeling Image Formation 

Image formation can be defined as the response of an imaging sensor to radiation. It 

consists oftwo main aspects [3]; (1) Geometric image formation aspect which determines 

the location of a 3D point measured in the world frame (coordinate system) when 

projected onto the image plane, and (2) Photometric image formation aspect which 

determines the brightness of a point in the image plane relying on the interplay between 

the light scattering and the surface reflectance properties. See Figure 1.1. 

1.2.1 Illumination Modeling 

The simplest illumination model is a point light source which provides a good approx

imation to direct sunlight. Although inadequate for most real situations, it has been 
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1.2. Modeling Image Formation 

widely adopted in most work on shading. Formally, illumination is a spherical func

tion, defining the intensity of incident light from all possible incident directions. Such 

a function can never be recovered from the shading alone. Nonetheless, it has been 

found that surfaces acts as a low-pass filter on the incident illumination [4, 5], yielding 

a band-limited reflected light. This introduced the frequency-space illumination repre

sentation when D'Zmura [5J expressed the shading equations using spherical harmonics 

(SH) as an analogy to Fourier series on the real line. Further, independent works of 

(Basri and Jacobs) in [6J and (Ramamoorthi and Hanrahan) in [7J used SH to analyze 

the reflected light for convex Lambertian surfaces where they showed that it can be 

approximated as a convex combination of up to 2nd order SH (i. e. nine basis functions) , 

while the appearance of non-Lambertian surfaces depends on higher frequencies of the 

illumination. 

1.2.2 Surface Reflectance M odeling 

Modeling how light is reflected from surfaces is a central theme in both computer graph

ics and computer vision. When a light ray (measured by radiance) hits a surface, three 

effects might occur; (1) it may be absorbed inside the surface, (2) it may be reflected 

from the surface, and (3) it may be scattered at various depths/levels inside the surface. 

See Figure 1.2 for illustration. Usually a combination of these effects occurs. 

The situation can even be more complicated through the tendency of some surfaces 

to absorb light at one wavelength and then radiate it at a different wavelength. This 

effect is known as fluorescence. In addition, a warm enough surface can emit light in 

the visible range. 

It is common in vision to assume that all effects are local with neither emission nor 

fluorescence. A reasonable model for such kind of surfaces assumes the following [8J; (1) 

the radiance leaving a point on a surface is due to the radiance arriving at this point , (2) 

light leaving a surface at a given wavelength is due to light arriving at that wavelength, 

(3) light sources are treated separately, and (4) surfaces do not generate light internally. 

How the surface reflects the incident light is described by notion of the bidirectional 

reflectance distribution function (BRDF) [9J. It is considered the most general and 

common mathematical model of local reflection which entails how much light is reflected 

in an outgoing direction due to light being incident from another direction. This function 

is specified by two directions (outgoing and incoming), hence the name bidirectional. 
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Light Source 

Light Ray 

The ormal direction at X 

Camera Image Plane 

3D Space 

Absorbed light at surface 
point X 

Figure 1.2: A simplified image formation model. When a light ray hits the surface of 
an object in space, a portion of light energy is absorbed by the object 's surface and the 
remaining is reflected from the surface in different directions. The reflected light rays 
in the direction of the camera affect the brightness of the projected point in the image 
plane. 

It ranges from 0, where there is no outgoing/reflected radiance at the exit direction, 

to infinity, where arbitrary small irradiance is received from the incoming direction. 

The BRDF is symmetric in the incoming and outgoing directions; this is referred to 

as Helmholtz reciprocity principle. An important subclass is the isotropic BRDF where 

the surface appearance remains the same under rotations of the tangential plane about 

the surface normal. In such a case, BRDFs become functions of only three angles (the 

inclination angles of the incident and reflected illuminations and the absolute difference 

of their azimuthal angles). Although isotropy is not a universal property for all surfaces, 

many real surfaces exhibit such a property, while the reflectance of anisotropic surfaces 

can be approximated as being isotropic [10]. 

BRDF is also a function of position; however, sometimes this positional variance 

is not included in the description of a BRDF, where position/shift-invariant BRDFs 

are assumed. When the spatial position is not included as a parameter to the BRDF 

function, an assumption is implicitly made that the reflectance properties of a surface 

do not vary with the spatial position, this is only valid for homogeneous surfaces having 

homogeneous materials. Non-homogeneous surfaces with spatially varying reflectance 

properties are often approximated in vision applications by using a spatially varying 

texture which modulates the surface radiance [11]. 
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1.2. Modeling Image Formation 

In literature, analytic reflectance models (physically-based analytic [12, 13, 14J or 

empirical [15, 16]) are used to provide BRDFs to approximate the reflectance of real 

materials. Yet such models only describe the phenomena for which they are designed. 

The simplest model is the Lambertian one (perfect diffuser) where the surface is assumed 

to distribute the reflected light equally over all outgoing directions regardless of the 

incoming direction. At the other end of the spectrum, mirror-like surfaces are modeled 

by specular spike where the reflection only occurs along the mirrored incident direction. 

The surface roughness can also be captured through assuming that the surface exhibits 

a micro-facet geometry which accounts for self-shadowing and inter-reflections at micro-

structure. Glossy rough surfaces can be modeled by Torrance-Sparrow [12J and Cook

Torrance [13J models, while diffuse rough surfaces can be modeled by Oren-Nayar model 

[14J. Such analytical models are based on material parameters which could be measured 

in principle, but difficult to acquire in practice [17J. 

An alternative path is to measure the surface reflectance for different combinations 

of incoming and outgoing directions then fit the measured data to specific analytic 

model through various optimization approaches [16, 18J. Nonetheless, the measure-

and-fit approach is lacking in some aspects; the underlying assumption that there is 

an inherent noise in the measuring process which is filtered out by the fitting process 

ignores significant modeling errors due to the approximation imposed by the analytical 

model itself. Further, the choice of the error function in the optimization process is not 

intuitive! while the initial solution of the model parameters has a significant impact on 

the final solution of the fitting process. 

Another approach to modeling reflectance is acquiring dense measurements of re-

flectance which are tabulated in a lookup table to be used as a BRDF. While this 

approach maintains BRDF detailed structure which might be lost in the fitting process, 

it becomes expensive in terms of lookup time and storage with increasing number of 

materials to be used in a system. 

As a compromise between storage and representation, an arbitrary BRDF can be 

represented as a linear combination of a complete set of orthonormal basis functions, 

analogous to Fourier basis representing functions over the real line e.g. [19, 20, 21 , 22J. 

IMetr ics depending on Euclidean distance tend to overemphasize the weight of the specular peaks 
in the optimization process [17J. 
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Figure 1.3: Images of the same object under fixed pose appear differently due to the 
change in the light ing conditions. The set of M -pixel images of any convex Lambert ian 
object seen under all possible light ing conditions, while kept at fixed pose with respect 
to the imaging sensor, spans a convex cone known-as t he illumination cone [23] in lR,M. 

In t he imaging setup at the CVIP-UofL Lab, a coated torch (flash light) is used with a 
very tiny hole to narrow down light rays in order to simulate a single directional light 
source, modeled as a delta function. The light source and the camera are kept at a large 
distance compared to the object 's size, where viewer-centered coordinate system is used, 
to simulate distant illumination and far away viewer where orthographic projection can 
be assumed. 

1.2.3 Image Irradiance Modeling 

The appearance of an object under fixed pose depends primarily on t he triology of 

photometric image formation process; the object's geometrical structure (shape) , the 

surface reflectance properties (material) and illumination, where the shading is given by 

the image irradiance equation [24]. Belhumer and Kriegman in [23] posed the question of 

finding some underlying generative structure to the set of images of a fixed-pose object 

under variable illumination conditions. While theoretically, the space of all such images 

is infinite dimensional due to t he arbit rariness of the lighting functions [25], they proved 

that such set of images lie in a convex cone, termed as illumination cone, in t he space 

of images. 

Due to its convexity, the illumination cone for a given fixed-pose object is character-

ized by by a fini te set of extreme rays defining images of that object under appropriately 

chosen single distant point light sources. Whereas all other images inside the cone are 

formed by convex combinations of these extreme rays, see F igure 1.3 for illustration. 

This convex polyhedral cone can be used to generate and recognize images with novel 
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1.2. Modeling Image Formation 

illumination conditions [26] while the relative pose to the imaging sensor is kept fixed. 

Whereas Belhumer and Kriegman in [23] provided analytical justification for using 

low-dimensional linear su bspaces to model image variation of convex surfaces under 

different illumination (this also has been validated by others, e.g. [6, 7, 25 , 26]). This 

was also empirically justified by Yuille et at. [27] where they used a human face and other 

objects to perform Principal Component Analysis (PCA) on images acquired under a 

distant point light source moving on the locus of a sphere surrounding the object. They 

empirically illustrated that image variations due to illumination of Lambertian objects 

can be explained by the first five principal components. Thus linear subspaces can be 

used to represent a certain class of images, capturing variations due to different imaging 

conditions [6, 25 , 26]. Further, Epstein et at. [28] showed that non-convex surfaces, 

with cast as well as attached shadows, are still well approximated by a relatively low

dimensional subspace, yet with a bit higher dimension compared to convex surfaces 

[29]. 

Typically, the illumination cone, as an object-specific representation, provides a 

means to predict object appearance under unseen imaging conditions. As such, its 

bases serve as a generative appearance model which can be used to render/synthesize 

images of a fixed-pose object under new illumination conditions, i.e. extrapolate ap

pearance. While objects of the same class (e.g. human faces) have illumination cones 

with similar shapes [29], different objects would have different extreme rays associated 

to their individual illumination cones, hence such cones can be used to encode the iden

tity of an object within a given class under varying illumination, i.e. object recognition 

can be performed by assigning the identity of the closest illumination cone based on 

Euclidean distance. 

As outlined by Lee et at. [29], basis images spanning such a low-dimensional linear 

subspace can be obtained using three different ways; (1) Performing PCA on a large set 

of images of object(s) of interest with fixed pose but different illumination conditions, 

see Figure 1.4. This approach necessitates a fixed calibrated lighting rig while keeping 

the camera and the object fixed. Besides operating on a discrete set of images, this may 

produce biased subspace towards the particular illumination directions used. (2) Using 

3D models (shape and texture), image formation process can be simulated to render 

synthetic images under assumed imaging conditions, while PCA is again used to compute 

the required subspace, see Figure 1.5. Such an approach needs photo-realistic rendering 
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1.2. M o deling Image Formation 

algorithms, e.g. ray-tracing [30], to accurately simulate the effect of different illumination 

conditions with all possible configurations (3D rotaions) on the formed images. Since the 

continuous space of illumination directions should be sampled, the constructed subspace 

might also be biased towards such sampling. (3) Assuming certain surface reflectance 

distribution function, the harmonic expansion of the image irradiance equation [2] can 

be used to derive an analytic subspace to approximate images under fixed pose but 

different illumination conditions, see Figure 1.6. While this approach does not involve 

complicated acquisition setup other than the availability of groundtruth shape (which 

can be obtained by Cyberware scanners or shape-from-X approaches) and reflectance 

(which can be obtained from publicly available BRDF databases, e.g. [10, 17]), the 

main challenge is to incorporate realistic assumptions in the image formation model. 

This involves non-Lamberti an reflectance and complex illumination. 

Table 1.1 summarizes different approaches for linear subspace construction used to 

approximate/represent the illumination cone using finite set of orthonormal basis. This 

work is stemmed from the third approach where an analytical approach is defined for 

constructing the illumination cone of non-Lamberatian objects under fixed pose relative 

to the imagining sensor. 

Vary 
(virtual) 

light sourc., 
(direction) 

Fix Ib., 
object to "" 

captu red 

Fix (virtual) 
camera 

parameters 

I -• , , 
+ 

+ 

Figure 1.5: The linear subspace which represent all possible images of a specific ob
ject under all illumination conditions, while pose is kept fixed, can be constructed by 
simulating image formation process using 3D models to render synthetic images under 
various illumination conditions, while PCA is used to compute the required subspace. 
The Cyperware scanner was used to obtain the shape and albedo of the CVIP Lab 
bunny. 
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Figure 1.6: The linear subspace which represent all possible images of a specific ob
ject under all illumination conditions, while pose is kept fixed, can be constructed by 
assuming certain surface reflectance distribution function, the harmonic expansion of 
the lighting function can be used to derive an analytic subspace to approximate images 
under fixed pose but different illumination conditions. The Cyperware scanner was used 
to obtain the shape and albedo of the CVIP Lab bunny. 

1.3 Problem Statement 

A typical framework which estimates a low-dimensional subspace for object appearance 

involves sampling a finite set of the images in the illumination cone then use PCA. 

Nonetheless, this approach suffers from the need "large enough" image ensemble to de

crease the bias of constructed subspace towards illumination sampling, yet this renders 

numerical methods intractable. Further, with a small-sample-size, a biased set of sam-

pIes would produce an ineffective subspace in terms of encoding the object identity. 

Hence, recognition applications, for example, would benefit from an economical solution 

for subspace construction which resolves the trade-off between the small-sam pIe-size 

problem and numerical estimation of appearance subspace basis. Lee et al. [29J ad

dressed the issue of acquiring such subspaces by specifying a universal illumination con

figuration where appropriately chosen 9 point light sources were used to acquire images 

that are considered as a good approximation to the subspace basis images, i.e. extreme 

rays. While as few as 5 images can be acquired, this necessitates a calibrated lighting 

rig which might be possible in an industrial setting. 
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1.4. Related Work 

Typically, an ideal solution to the appearance modeling problem should be able to in

corporate complex illumination, cast shadows as well as realistic surface reflectance prop

erties, while moving away from the simplifying assumptions of Lambertian reflectance 

and single-source distant illumination. Current literature is comprised of models which 

relax one assumption while restricting to the others. Primarily, this work focuses on 

bringing out the underlying assumptions of the current image irradiance models with 

respect to the problem of modeling the appearance of objects under unknown general 

illumination while keeping the object at fixed pose relative to the imaging sensor. As 

such, the problem statement of this dissertation can thus be stated as follows . 

Derive an analytic form of appearance subspaces which define the illumina

tion cone, given 3D object model (shape and texture), under realistic imaging 

conditions, e.g. complex illumination and non-Lambertian reflectance. 

In particular, the frequency space based representation of image irradiance accounts 

for complex illumination, thus a point light source assumption can be relaxed, leading 

to a finite-dimensional linear model to represent the image irradiance under arbitrary 

illumination. 

This low-dimensional representation of image irradiance under unknown arbitrary 

lighting can be considered as a fundamental process for many computer vision tasks such 

as illumination modeling [6], surface reflectivity estimation/analysis [11 , 32]' statistical 

shape and albedo recovery [33 , 34, 35], shape from shading [36], photometric stereo 

[37, 38], object detection and recognition [39], to name a few. 

1.4 Related Work 

By definition, the illumination cone of a given fixed-pose objects contains all image 

variations under all possible lighting conditions. As such, an accurate representation 

of such cone would benefit vision tasks which need appearance extrapolation under 

previously-unseen imaging conditions. While the basic building block of an illumination 

cone is the estimation of its extreme rays, their number is proportional to the number 

of independent (distinct) surface normal which can be very large (order of thousands). 

Hence, in order to fully define the exact illumination cone of an object, a large number 

of extreme rays that make up its cone is needed to be computed. For example, a convex-
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Lambertian surface has O(n2) extreme rays where n is the number of distinct surface 

normals [29]. 

Nonetheless it was conjectured in [23] that the illumination cone for typical objects 

is flat, therefore it lies near a low-dimensional linear subspace of the image space. As 

such, the computation of the full cone may not be necessary where the illumination cone 

of a fixed-pose object can be approximated by a low-dimensional subspace whose basis 

can be estimated using a generative appearance model. 

Georghiades et al. [26] defined a generative appearance model for object recognition 

under variation in lighting. They used a small number of training images per subject 

taken under different known lighting directions with their variant of photometric stereo 

to reconstruct the corresponding shape and albedo. They were, in turn , used to render 

images under new illumination conditions which are used to estimate the basis images 

spanning the illumination cone using Singular Value Decomposition (SVD). Aside from 

assuming point light sources and Lambertian reflectance, this approach has inherent 

curse of dimensionality where a "large enough" rendered ensemble is needed to decrease 

the effect of illumination sampling on the resulting subspace. 

Lee et al. [29] addressed the issue of arranging physical lighting so that the ac

quired basis images for each object can be used directly as basis for low-dimensional 

appearance subspace. In the context of face recognition, they showed that such physical 

arrangements are qualitatively very similar for different individuals. They demonstrated 

both theoretically and empircally that few real images taken under well-chosen lighting 

configurations can be directly used to model illumination effects. Yet the optimization 

process which solved for such lighting configurations (locations and directions) needs 

to uniformly sample light directions in addition to rendering images under single direc

tionallight sources to construct an initial set of extreme rays (~ 1000 samples). With 

Lambertian assumption, such rendering is as simple as the dot product between surface 

normals and light directions. Generalizing their approach to non-Lamberti an surfaces 

would require computationally expensive rendering module to initiate the optimization 

procedure. 

Independent works of Basri and Jacobs in [6] and Ramamoorthi and Hanrahan in 

[7] provided analytical justification that the illumination cone of a convex-Lambertian 

surface can be accurately approximated by a 9D linear subspace derived based on spher

ical harmonics (SH). They formulated the image irradiance equation [2] in a convolution 
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framework where the lighting function acts as a signal filtered by the Lambertian ker

nel, opening the whole field of signal processing and filtering to the image irradiance 

modeling. They provided an analytical expression of an image of a convex-Lamberti an 

object illuminated by distant lighting. They proved that the Lambertian reflectance 

kernel acts as a low pass filter , presenting the image irradiance as a band-limited signal 

being represented by a finite number of basis functions. Both [6] and [7] used SH to 

represent the surface reflectance function in the frequency domain . While Basri and 

Jacobs [6] formulated this process in global coordinates with respect to global reference 

frame, Ramamoorthi in [7, 31] made the distinction between such a formalization in 

global and local coordinates (with respect to surface points) . 

While [6] and [7] provided a single expression for the harmonic basis, Ramamoorthi 

in [25], under the assumption of distant light, linearly combined higher order SH basis 

using analytical PCA, to build an optimal orthonormal eigenfunctions (basis) for image 

spaces. On the other hand, QR-decomposition is used in [6] to numerically orthogonlize 

up-to 2nd order SH basis. 

Recently Elhabian et ai. [40, 41] avoided the use of higher order SH basis and nu

merical orthogonalization to model the reflectance of convex-Lambertian surfaces under 

single viewpoint. They used hemispherical harmonics (HSH) which forms an orthonor

mal set of basis over a unit hemisphere, thus PCA or basis orthogonalization is no 

longer needed. Nonetheless, the incident illumination is restricted to the upper global 

hemisphere facing the camera while Lambertian reflectance is assumed. 

For non-Lambertian surfaces, Ramamoorthi and Hanrahan in [31] used SH basis 

functions to represent illumination and surface reflectance for real-time rendering of 

objects with complex isotropic non-Lambertian reflectance under distant natural illumi

nation. However the surface reflectance of non-emitting surfaces (discounting subsurface 

scattering) is defined on the cartesian product of two hemispheres corresponding to the 

incident and outgoing directions, hence the natural way to represent such a hemispher

ical function is to use hemispherical basis. On the other hand, Nillius [32] used the 

hemispherical basis proposed by Koenderink and van Doorn [21]. Such bases are based 

on Zernike radial polynomials, where bases for the unit disk are mapped onto the upper 

hemisphere. Yet , such polynomials have high computational cost [20] when compared 

to associated Legendre polynomials used for (hemi)spherical harmonics. In particular, 

Zernike radial polynomials require an amount of CPU time proportional to ()(N2 ) [42] 
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in contrast to associated Legendre polynomials which needs ()(N 10g2 N) [43] for cutoff 

frequency N = n2 with order n ~ O. 

Table 1.2 summarizes main different approaches in literature which solves for the ba

sis images spanning the illumination cone of a given object as compared to the proposed 

formulation. 

1.5 Research Questions 

By handling arbitrary complex illumination and non-Lambertian reflectance, the ap

pearance model proposed in the presented dissertation will move the state of the art 

closer to the ideal solution. Discounting subsurface scattering and surface emittance, 

this work seeks to address the following research questions: 

RQ1: How can image irradiance be efficiently and accurately represented, given that 

a surface point sees its surrounding world through a unit hemisphere? It has 

been shown that hemispherical functions present discontinuities at the boundary 

of the hemisphere when represented in the spherical domain. Consequently, the 

functional representation requires more coefficients for accurate representation. 

RQ2: How can surface reflectance be represented in a manner that guarantees the 

Helmholtz reciprocity property, which should be maintained by physically plausible 

surface bidirectional reflectance distribution functions? 

RQ3: How can illumination and reflectance be decoupled from the underlying geometry 

and pose? 

RQ4: How can prior information about natural illumination and real world surface ma

terials be incorporated to construct appearance models in an analytical manner? 

RQ5: How can the curse of dimensionality for subspace construction be tackled? 

RQ6: How can incompliance to the imaging model assumptions such as non-convexity 

be handled? 

RQ7: How can computer vision tasks benefit from the proposed imaging model? 
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1.6. Contributions 

1.6 Contributions 

To address the aforementioned research questions, an analytic formulation of appearance 

subspace construction is sought to capture the full behavior of complex illumination and 

real-world reflectance, while in the process accounting for the hemispherical nature of 

surface reflectance functions to model physically plausible surface materials. 

This work started with examining a very restrictive case of convex Lambertian sur

faces when image irradiance is captured from a single viewpoint with distant [40J and 

near [41J illumination assumptions. In such a case, the visible part of the object's surface 

constructs the upper hemisphere of the surface normals where spherical harmonics (SH) 

is no longer orthonormal. Assuming no inter-reflections and considering light source(s) 

distributed uniformly over the upper hemisphere, the use of HemiSpherical Harmon

ics (HSH) was proposed to model such a case while it has been proved analytically, 

and validated experimentally, that the Lambertian reflectance kernel has a more com

pact harmonic expansion in the hemispherical domain when compared to its spherical 

counterpart . 

Moving away from a Lambertian assumption, it was realized the need for formulating 

the image irradiance equation with regard to the local-coordinate frame where illumi

nation is perceived with regard to surface points. The contributions of this dissertation 

can be outlined as follows: 

• In Chapter 4 (based on [45]) , a novel surface reflectance basis is proposed based 

on hemispherical harmonics which is defined on the cartesian product of the in

coming and outgoing local hemispheres (i. e. w. r. t. surface points). This basis 

obeys physical properties of surface reflectance involving reciprocity and energy 

conservation. The proposed basis functions are validated using analytic reflectance 

models as well as scattered reflectance measurements. The form of the proposed 

basis is derived in case of directional hemispherical reflectance. This addresses 

RQl and RQ2 . 

• In Chapter 5 (based on [46]), the image formation process of isotropic surfaces 

under arbitrary distant illumination is further formulated in the frequency space. 

The term irradiance harmonics is defined which enables decoupling illumination 

and reflectance from the underlying geometry and pose. A closed form of the 

18 



1.6. Contributions 

energy content being maintained by different reflectance modes of the proposed 

irradiance harmonics is defined. The approximation accuracy of the irradiance 

harmonics is evaluated based on the proposed reflectance basis compared to similar 

basis in literature where BRDF measurements is used which are directly measured 

from real surfaces. This addresses RQ3. 

• In Chapter 6 , an analytical formulation for low-dimensional subspace construc

tion is proposed in which shading cues lie while preserving the natural structure 

of an image sample. Thanks to the frequency-space representation of the image 

irradiance equation, the process of finding such subspace can be cast as establish

ing a relation between its principal components and that of a deterministic set 

of basis functions. This resolves the issue of dimensionality since the source of 

randomness in the imaging process becomes the irradiance harmonics coefficients 

rather than the whole image realization. Representing images in their natural di

mension, i. e. matrices, further lessen the number of parameters to be estimated to 

define a bilinear projection which maps the image sample to a lower-dimensional 

bilinear subspace. Since irradiance harmonics enables decoupling illumination and 

reflectance from the underlying geometry and pose; this enables the incorporation 

of prior information about natural illumination and real world surface materials. 

This addresses RQ4 and RQ5. 

• In Chapter 7 (based on [47]) , the problem ofreconstructing the image irradiance 

signal from incomplete irradiance signal is considered where sources of incomplete

ness might include, for example, occlusions due to wearing apparel and makeup 

for facial images, or even incompliance to the imaging model assumptions such as 

non-convexity which introduce cast shadows. The errors introduced due to irradi

ance incompleteness are cast as: (1) statistical outliers which are determined and 

rejected using robust statistics and (2) local spatial erroneous continuous regions 

where Markov Gibbs random field with the homogenous isotropic Potts model is 

adopted to model the incompleteness's spatial interaction. This addresses RQ6. 

• In Chapter 8 (based on [48]), the main objective is aiming at recovering 3D 

facial shape from a single image of unknown general illumination while relaxing 

the non-realistic assumption of Lambertian reflectance. Prior shape, albedo and 

reflectance models from real data, which are metric in nature, are incorporated into 
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the shape recovery framework. Adopting a frequency-space based representation 

of the image irradiance equation, an appearance model is proposed, termed as 

Harmonic Projection Images, which accounts explicitly for different human skin 

types as well as complex illumination conditions. Assuming skin reflectance obeys 

Torrance-Sparrow model, it is proved analytically that it can be represented by 

at most 5th order harmonic basis whose closed form is provided. The recovery 

framework is a non-iterative approach which incorporates regression-like algorithm 

in the minimization process. This addresses RQ'i. 

• In Chapter 9 (preliminary work appears in [49]), a model-based shape-from

shading approach is proposed which allows for the construction of plausible human 

jaw models in vivo, without ionizing radiation, using fewer sample points in order 

to reduce the cost and intrusiveness of acquiring models of patients teethfjaws 

over time. Human teeth reflectance is assumed to obey Wolff-Oren-Nayar model 

where it is experimentally proved that teeth surface obeys the microfacet theory. 

While most shape-from-shading (SFS) approaches assume known parameters of 

surface reflectance and point light source with known direction, this work relaxes 

such assumptions using the harmonic expansion of the image irradiance equation 

where it is feasible to incorporate prior information about natural illumination 

and teeth reflectance characteristics. The results demonstrate the effect of adding 

statistical prior as well as appearance (illumination and reflectance) modeling on 

the accuracy of the recovered shape. The applicability of the proposed approach 

to a dental application encompassing tooth restoration is further investigated. This 

addresses RQ7. 

1.7 Dissertation Organization 

This document is divided into three main parts. The first part (Chapters 2 and 3) covers 

the fundamentals of the photometric aspect of image formation , introducing the neces

sary terminology to understand the domain of the research presented and discussing how 

illumination can be represented using spherical harmonics. The second part (Chapters 4 

through 7) presents the proposed solution for efficient image irradiance modeling while 

relaxing the simplifying Lambertian assumption which is widely assumed. The third 

part (Chapters 8 and 9) shows how the proposed imaging model would be beneficial to 
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1. 7. Dissertation Organization 

vision tasks such as shape recovery. The conclusion and future directions are outlined 

in Chapter 10. Relevant proofs for theorems and formula formulated in this dissertation 

along with some background materials are included in the appendices. Dissertation 

layout is illustrated in Figure 1.7. 

22 



PART I 

THEORETICAL BACKGROUND 
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CHAPTER 2 

PHOTOMETRIC ASPECT OF IMAGE 

FORMATION 

In order to use images to infer information about the 3D world , one needs to study how 

pixel brightness in the image is related to the physical world. To accomplish such a task, 

two questions needed to be addressed; (1) where some point in 3D will appear in the 

2D image, and (2) how bright this image point will be. The former question is related 

to the camera/viewer properties, i.e. geometric image formation, while the latter one 

is governed by surface properties and illumination conditions, i. e. photometric image 

formation. This chapter presents the fundamentals of photometric image formation 

necessary for the analysis performed in the presented work, where it is common in 

computer vision to consider a viewer-centered coordinate system with the viewer located 

at a distance relatively large compared to the object size [24]. Assuming, without loss 

of generality, that the viewing direction coincides with the z-axis of the global reference 

frame, where the orthographic projection can be used to approximate the geometric 

imaging process. 

The interplay between light source(s) illuminating an object and the object re

flectance properties construct the fundamentals of the photometric aspect of image 

formation [3]. The image brightness primarily depends on the physics related to the 

behavior of light in 3D space, defined by how energy is transferred from a light source 

to a surface patch. 

Consider an omnidirectional light source emitting light rays in all directions, where 

one light ray is directed towards a surface point x. When a light ray hits a surface point , 

a portion of its energy is absorbed by the object, while the remaining is reflected from 

the surface. Such portion is a function of surface reflectance properties. The brightness 
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2.1. Light in Space 

of the projected point in the image plane is affected by the reflected light rays in the 

direction of the camera. 

Usually, the physics of light is explained using different models [50], such as: (1) 

Geometric or ray optics which models light as independent rays traveling in an optical 

media according to geometric rules, describing the processes of reflection and refraction. 

(2) Wave optics which models light as electromagnetic waves, describing interference 

and diffraction, in addition to reflection and refraction. It is necessary to understand 

the interaction of light with objects having size comparable to the light wavelength. (3) 

Electromagnetic Optics which includes wave optics while adding polarization and dis

persion. (4) Photon or quantum optics which provides the foundation of the interaction 

of light with atoms and molecules of the matter, where the light is assumed to consist of 

particle, or photons. In computer vision, ray (or geometric) optics has been exclusively 

used to model the nature of light and how it scatters in the environment, and this work 

is no exception, ignoring effects such as diffraction, interference and polarization. 

In the following sections, the vocabulary used to describe the photometric aspect 

of image formation is reviewed. Starting off with the behavior of light rays in space, 

followed by the process of light reflection at surfaces, ending by formulating the image 

irradiance equation. Due to the ill-posed ness of the shading-based inference problems, 

this chapter is ended by enumerating the assumptions of the image formation process 

employed by the presented work, and how such assumptions affect the image irradiance 

equation. 

2.1 Light in Space 

Image brightness primarily depends on physics related to the behavior of light in 3D 

space, which is defined by how energy is transferred from a light source to a surface 

patch. In order to study such a behavior, it is required to establish the terminology of 

light in space. 

2.1.1 Hemisphere of Directions 

A point x on a 3D surface patch sees its surrounding world through a hemisphere of 

directions 0' centered at that point , where light rays can arrive or leave. The local frame 
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2.1. Light in Space 

(coordinate system) l of this point is defined by the surface normal n(x) along with two 

orthogonal tangential vectors t(x) (corresponding to y'-axis) and b(x) = n(x) x t(x) 

(which is the surface binomial, corresponding to the x'-axis) at this point, where the 

surface normal is used to define the orientation of the hemisphere (i. e. the z'-axis). A 

light ray w' arriving to or leaving from the surface point is defined by its inclination/slant 

angle ()' measured from the surface normal and its azimuth/tilt angle ¢' of its orthogonal 

projection on the surface tangent plane at this point measured from a fixed reference 

direction on that plane. See Figure 2.1 for illustration. 

, , 

Light Ray 
iii' : (9', cp') 

\ 
\ , 

The tangent 
direction t at X 

Figure 2.1: A point x on a surface patch sees its surrounding world through a unit 
hemisphere [2' centered at that point. The surface normal n(x) at the surface point 
x defines the orientation of the hemisphere. A light ray w' incident to the point x is 
defined by its direction (()', ¢') in spherical/angular coordinates. 

2.1.2 Foreshortening 

Foreshortening refers to the visual effect that a surface patch is smaller than it actually 

is, because it is angled toward the viewer. This means the surface does not appear 

directly in front of the viewer , i.e. tilted, hence it appears smaller than it is. Consider a 

surface patch tilted with respect to the direction in which the illumination is traveling, 

such a patch looks smaller to the light source due to foreshortening. Thus the source 

sees the foreshortened/projected area instead of the actual area of the surface patch. 

This concept is important since two different surface patches having the same foreshort

ened area will receive the same amount of radiation from the light source seeing them. 

Similarly, two different light sources will have the same effect on a surface patch if they 

Iprimed coordinates are used to denote local reference frame with respect to a surface point, in 
contrast to unprimed coordinates which denote the global reference frame. These two coordinate systems 
are related by a rotation . 
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2.1. Light in Space 

look exactly the same to the surface patch. See Figure 2.2 for illustration. 

Surface 
Normal 

Light source 

-
Surface 

~-----------------~ 
Foreshortened area = A cos () 

Figure 2.2: A light source sees the foreshortened area of a surface patch instead of its 
actual area. The foreshortened area depends on the actual area and the angle between 
the light ray and the surface normal. 

2 .1.3 Solid Angle 

The differential solid angle, dW' , represents the angular size of a light ray as well as 

its direction, it can be viewed as an infinitesimal area on the unit sphere, measured in 

steradian (abbreviated as sr) . It can be expressed in the spherical coordinates using 

the surface point local frame with z'-axis aligned to the surface normal fi and the two 

orthogonal vectors in the tangential plane, namely [ and b, where the size of a differential 

solid angle in spherical coordinates is given byl : 

dW' = sin 0' dO' d¢' (2.1) 

i.e. the infinitesimal area on the unit sphere is the product of the length of the longitu

dinal arc dO' and the length of the lati t udinal arc sinO'd¢' 

Given the spherical coordinates, the direction w' of the solid angle can be computed 

as, 

w' = sin 0' cos ¢'f + sin 0' sin ¢'b + cos 0' fi (2.2) 

An arbitrary small planar surface patch of area dA at a distance r from the origin of 

an illuminating unit sphere, where the light source is centered at the origin of such sphere, 

lUsing spherical pola r coordinates causes infini tesimal patches on t he surface of t he sphere to be 
bigger as the equator is approached and vanishes towards the poles, such an effect is encoded by sin £I '. 
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2.1. Light in Space 

subtends a solid angle given by Equation 2.3 where cos ()' accounts for the foreshortening 

effect l . 

dW' = dA cos ()' 
r2 

(2 .3) 

The light source here is considered as the observer/viewer of the surface pat ch; 

hence the solid angle measures how the light source sees such a patch. See Figure 2.3 

for illustration. It is important to note that two surface patches subtends the same solid 

angle receives the same amount of radiation from the light source. The roles of the light 

source and the surface patch can be interchanged to indicate how a surface patch sees 

a light source. See Figure 2.4. 

Small Surface Patch 
or area etA 

lUuminating Unit Sphere 

Figure 2.3: The solid angle is a two dimensional angle in the three dimensional space 
which an object (e.g. a small planar surface patch) subtends at a point. It measures 
how large an object appears to a viewer centered at that point . The solid angle sub
tended by a small planar surface patch of area dA at a light source is a function of the 
distance between this light source and the surface patch, taking into consideration the 
foreshortening effect since the patch is tilted with respect to surface area subtended by 
the solid angle. 

2.1.4 Radiance 

In radiometry, the field of measuring light , the radiant flux/power <I> is defined as 

the power of electromagnetic radiation emitted/ radiated from a source. It is measured 

in Watt (W) having the dimension of energy per unit time or joules/second. Hence the 

radiant intensity f o is defined by the radiant power per unit solid angle, i . e. power 

coming out from a source through a unit solid angle, it is given by; 

(2.4) 

lTo understand why an angle is related to area/distance, consider the 2D case with a circle of radius 
r . An infinitesimal arc length dl is related to its subtended angle by dO = dl /r. 
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Light Ray 
w' : (O',(f) 

The Normal direction ii at x 

/ t z' 
, t" -:::~" 

I --/1 
\ 

Light Source 

Small Surface Patch --- _____ 1 ____ '..,' ~dO' 
of area dA r ~ ___ Solid angle dw'subtended 

--------- {- ---r --~ by Iightray w' 
I~ .... sinB'dt/J' 

----~ ~----~ , --~~------

Figure 2.4: An infinitesimal surface patch centered at surface point x with area dA sees 
an incident light ray dW' through the solid angle subtended by the light source on the 
unit hemisphere centered at x. 

The distribution of light in space is defined by radiance, L(x, w'), measured in 

W m -2 sr- l . According to [8], radiance is the amount of energy traveling at some point 

x in a specific direction wll , i . e. d3 Ew, per unit time, per unit area perpendicular to the 

direction of travel (i.e. foreshortened area), per unit solid angle. 

( _') d
3 
Ew' 

L X ,W = (cosO'dA)dw'dt (2.5) 

where d3 Ew' is the energy transmitted by a patch/source into an infinitesimal region 

of solid angle dW' around the direction w' = (0', ¢') in time dt through a foreshortened 

area cos 0' dA. 

This definition implies that the amount of energy incident on some patch depends 

on (1) how large the source is viewed from the patch and (2) how large the patch is 

viewed from the source. Assuming the light doesn't interact with the traveling medium, 

i.e. vacuum, radiance is characterized by being constant along a straight line, i.e. the 

radiance leaving a point Xl in the ciirection of another point X2 is the same as the 

radiance arriving at X 2 from Xl [8]. This assumption is employed by the majority of 

computer vision problems. 

I A direction in 3D can be specified in one of two ways; using spherical coordinates w = (0 , rf» or the 
direction from one point to another, i.e. w = XI --t X 2 . 
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2 .2 Light At Surfaces 

Modeling the light scattering locally at surface points, i. e. what happens when a light ray 

strikes a given surface, gives the fundamentals of what so called local illumination, which 

is formulated by the reflectance equation under t he assumption of no surface emit tance. 

On the other hand, global illumination takes into consideration the light being reflected 

from the whole scene and how this affects each surface point, this is modeled by the 

rendering equation, from which the reflectance function is a special case. The advantage 

of local illumination models is that they are easy to manipulate. Moreover , they support 

quite simple theories of how shape information can be extracted from shading. On the 

contrary, global models are more accurate. However , it is extremely difficult to infer 

shape information from shading values. 

It is common in vision to assume that all effects are local wit h neit her emission nor 

fluorescence. A reasonable model for such kind of surfaces assumes t he following [8]; (1) 

the radiance leaving a point on a surface is due to the radiance arriving at this point, (2) 

light leaving a surface at a given wavelength is due to light arriving at that wavelength, 

(3) light sources are treated separately, and (4) surfaces do not generate light internally. 

Since the illumination is assumed to affect the surface locally. Consider a point x on a 

surface, seeing t he surrounding worlcl through a local unit hemisphere [2' oriented by the 

surface normal n(x ) at this point . The incoming and outgoing/reflected illumination 

(light rays) at this point are defined in the point 's local fl.-ame as w~ = (e~, ¢D and 

w~ = (e~ , ¢~) respectively, where e~, e~ E [0, n /2] and ¢~, ¢~ E [0,2n], see Figure 2.5. 

In order to study/investigate the illumination effect on the surface at this point, t he 

relationship between the incoming and outgoing light at such a point is described as a 

function of the direction in which light arrives w~ and the direction in which light leaves 

2.2 .1 Surface Irradiance 

The amount of light falling on a surface is called irradiance, i. e. incident radiance, which 

is the unit used to represent the incoming power. It is defined as the incident power 

(energy per unit t ime) per unit area not foreshortened. It is measured in W.m-2 . Hence 

a surface at point x illuminated by radiance Li (x , wDl coming in from a directional 

IThe subscript i is used here to denote incident rad iance to t he surface, in contrast to radiance being 
emitted from a light source. 
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Incident Light Ray 
wi: (91,<I>D 

The Normal direction ii at x 

Outgoing Light Ray 
w~: (9~,<I>~) 

2.2. Light At Surfaces 

/ --/ \ 
Light Source 

~ ---- Solid angle dw; subtended 

Solid angle dw~ 
sublcndcd by outgoing 

light ray w~ 

by incident light ray wi 

Figure 2.5: A point x on a surface patch sees its surrounding world through a unit 
hemisphere n' centered at the point. The surface normal n at the point defines the 
orientation of the hemisphere. Using spherical coordinates, a light ray incident to the 
point x is defined by its unit direction w~ = (B~, ¢D, subtending an incident solid angle 
dW~. Similarly, an outgoing/reflected light ray is defined by its unit direction w~ = 

(B~ , ¢~), subtending an outgoing solid angle dW~. 

region of solid angle dW~ at direction w~ = (B~ , ¢D receives irradiance, 

(2.6) 

Note that the irradiance is defined in a differential quantity dEi since it is defined 

according to a differential solid angle dw~. This definition means that the multiplication 

of the radiance by the foreshortening factor and the solid angle provides the irradiance. 

Recall Equation 2.5, the multiplication by cos B~ converts the foreshortened area into 

the actual one. 

2.2.2 Surface Scattering 

When a light ray strikes a surface, it usually enters the surface and then scatters inter

nally before leaving the surface at a different spatial position, e.g. translucent materials 

such as marble. This scattering process is described by the Bidirectional Scattering 

Surface Reflectance Distribution FUnction or BSSRDF [9]. The BSSRDF, S , relates the 

differential reflected radiance, i. e. surface radiance, dLr , at surface point X o in direction 
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2.2. Light At Surfaces 

w~, to the differential incident flux, d~i at Xi from direction w~, 

(2 .7) 

The BSSRDF is the most general mathematical abstraction of surface interaction 

with incident light field, it is a function of the incoming position and direction as well as 

the outgoing position and direction. However , an eight-dimensional function is costly to 

evaluate. Under the assumption that light hitting a surface location is reflected at that 

same location, Nicodemus et al. [9] defined the Bidirectional Reflectance Distribution 

Function, BRDF, to describe light reflection at a surface as an approximation of the 

BSSRDF, thus reducing the domain to a six-dimensional one. 

The BRDF, fr, defines the relationship between the reflected radiance and irradiance, 

it is the ratio of the surface radiance in the outgoing direction w~ to the irradiance at 

the same surface point 1 . 

(2.8) 

This function is specified by two directions (outgoing and incoming) , hence the name 

bidirectional. It ranges from 0, where there is no outgoing/reflected radiance at the 

exit direction, to infinity, where arbitrary small irradiance received from the incoming 

direction. BRDF is also a function of position; however, sometimes this positional 

variance is not included in the description of a BRDF, where position/shift-invariant 

BRDFs are assumed. When the spatial position is not included as a parameter to the 

BRDF function , an assumption is implicitly made that the reflectance properties of a 

surface do not vary with the spatial position. Thus assuming homogeneous surfaces 

having position/shift-invariant BRDFs, the spatial parameter can be excluded from the 

BRDF definition, reducing the function to a four-dimensional domain. 

Based on its geometrical and physical nature, a BRDF should satisfy the Helmholtz's 

law of reciprocity [51 , 52]' which guarantees the invariance of the BRDF to the permu-

tation of incident and outgoing directions, i. e. , 

(2.9) 

lr in fr stands for reflect ion . 
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2.3. Image Irradiance 

Due to energy conservation, a surface cannot reflect more light that it receives from 

the incident upper hemisphere n~, thus a BRDF must satisfy the following, 

(2.10) 

The BRDF of the surfaces, which are isotropic with respect to light scattering, 

depends only on the polar angles of the incident and outgoing directions, whereas the 

azimuthal dependence is restricted to the absolute difference between the azimuths of 

the incident and outgoing light rays [21 , 53], 

Although isotropy is not a universal property for all surfaces, many real surfaces 

exhibit such a property, while the reflectance of anisotropic surfaces can be approximated 

as being isotropic [10]. 

2.2.3 Surface Radiance 

The surface radiance results from the contribution of all light rays being reflected in 

the direction towards the camera. The incident radiance at a surface point x in the 

direction w~, Li(x,wD, defines the surface irradiance dEi(X,W~) through a differential 

solid angle dw~ in the direction of incidence, it depends on the incident polar angle 

due to the foreshortening effect, see Equation 2.6 . According to the BRDF definition in 

Equation 2.8, this gives rise to differential surface radiance, dLr(x , w~), defined according 

to the differential incident solid angle. The total surface radiance can thus be computed 

by integrating this differential surface radiance over the hemisphere of possible incident 

directions n~, 

(2.12) 

2.3 Image Irradiance 

The brightness of an image pixel is determined by the image irradiance received by the 

corresponding element of the image sensor. Using Horn model of a single lens camera 

[24], the image irradiance is (approximately) directly proportional to the surface radiance 

with the factor of proportionality depending on the angle cp between the ray from the 
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2.3. Image Irradiance 

Self/Attached-shadow boundary 

Figure 2.6: Self-shadow boundaries occur when the surface is turning away from the 
source while cast-shadow boundaries occur when a surface patch does not see the source 
due to occluding object. This figure is re-produced from [8] for illustration purposes. 

surface to the image and the optical axis , i. e. , 

(2. 13) 

When the distance between the camera and the surface is large compared to the size 

of the surface, such factor is negligible. Thus the image irradiance equation, under the 

assumption of no surface emission, can be defined as, 

(2. 14) 

In a local illumination model, shadows occur at surface points which cannot see 

one or more light sources. Any surface patch is said to be in shadow, if the line of 

sight connecting such a patch and the light source passes through one or more objects. 

Shadows generated from point sources are characterized by crisp boundaries, where there 

are two kinds of shadow boundary; (1) attached-shadow l boundaries which occur when 

the surface is turning away from the light source and the ray connecting the patch to 

the source becomes tangent to the surface, and (2) cast-shadow boundaries where the 

source suddenly disappears behind an occluding object causing shadowing effect of that 

object cast on the surface patch. See Figure 2.6 for illustration. In case of more than 

one source illuminating the scene, shadows will be less dark with very dark areas occur if 

no source is visible. Ignoring cast-shadows, the effect of attached shadows on the image 

la. k.a. self-shadow since it occu rs due to t he surface geometry. 
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2.3. Image Irradiance 

y 

Figure 2.7: The image irradiance equation can be formulated such that the integration 
domain is over the global sphere. This is commonly used in case of Lambertian surfaces, 
where such formulation is switched to local spherical domain with respect to surface 
points in case of non-Lambertian surfaces. To ensure non-negative intensity values, the 
image irradiance equation Equation 2.14 is usually modified to include max(O, cos liD. 
While under the assumption of non-emitting objects, a surface point sees the surrounding 
world through the local hemisphere oriented by the surface normal at that point, thus 
integration can be defined over the incident local hemisphere. This formulation accounts 
implicitly for attached shadows without explicitly modifying the foreshortening (cosine) 
term. 

irradiance is a negative intensity value, where the angle between the surface normal and 

the incident light direction exceeds 7f /2. While attached shadows can be accounted for 

by controlling the integration domain of Equation 2.14 and the foreshortening term, 

a visibility term should be added to the integrand in order to handle cast shadows 

which indicates whether a surface point sees the source. This work primarily focuses on 

attached shadows whereas cast shadows can be considered as a potential future direction 

of research. 

The image irradiance equation in Equation 2.14 can be formulated using three differ-

ent integration domains according to the assumptions imposed on the image formation 

process. In case of convex-Lambertian surfaces, it is common to express the image ir-

radiance in the global coordinate frame [6, 11, 25], i.e. global sphere, see Figure 2.7. 

For non-Lambertian surfaces, it is useful to change this formulation to the local co

ordinate frame oriented by the surface normal at each surface point [11]. To account 

for attached shadows, the image irradiance equation Equation 2.14 is usually modified 

to include max(O , cos lI~) to ensure non-negative intensity values , while the integration 
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domain takes into account the whole global/local sphere [6, 7, 11]. On the other hand, 

under the assumption of non-emitting surfaces, a surface point only sees the surrounding 

environment through the local upper hemisphere oriented by the surface normal at this 

point, see Figure 2.7. Thus the integration in Equation 2.14 can be defined over the 

incident local hemisphere where t9~ E [0, 7r /2]. This formulation accounts implicitly for 

attached shadows without explicitly modifying the foreshortening (cosine) term. 

2.4 Assumptions 

Due to the illposedness of shading-based inference problems, assumptions are commonly 

used to present a simplified version of the image formation process. This work assumes 

homogeneous, convex surfaces under distant illumination conditions. While these as

sumptions are common in computer vision, non-homogeneous surfaces with spatially 

varying BRDFs are often approximated in vision applications by using a spatially vary

ing texture which modulates the surface radiance [11]. These assumptions are considered 

a reasonable approximation to various computer vision tasks while being flexible enough 

for analytical formulation. In the following subsections, the effect of such assumptions 

on the image irradiance equation in Equation 2.14 is elaborated. 

2.4.1 Homogeneous Convex Surfaces 

Assuming homogeneous surfaces allows modeling the surface at hand with the same 

BRDF everywhere. Thus the dependency of the BRDF on the spatial position can be 

dropped, leading to a four-dimensional function, fr(w; ,w~). 

The convex assumption implies that there is no cast-shadows or inter-reflection. Thus 

the incident illumination at a surface point is only due to a distant light source. This 

assumption allows parameterizing the surface by orientation. For isotropic surfaces, the 

surface orientation can be fully defined by its normal direction at each surface point. 

While for anisotropic surfaces, the direction of anisotropy is specified by the orientation 

of the local tangent frame . 

2.4.2 Distant Illumination 

Local surface patches have sizes relatively smaller than the distance to the light source, 

thus the incident light field can be assumed to be constant on these local patches. Hence 
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2.4. Assumptions 

distant illumination is a common assumption in many computer vision algorithms. 

The image irradiance in Equation 2.14 is defined in a local coordinate frame oriented 

by the surface normal. The surface orientation with angular coordinates (a, (3, ,) defines 

the rotational relation between the global reference frame and the local frame at the 

surface point x where a = a(x), (3 = (3 (x) and, = ,(x). Noting that , is only 

important for anisotropic surfaces, which controls the rotation of the local tangential 

plane about the surface normal. Thus the image irradiance can be re-parameterized as 

E(x,w~) -7 E(n(x),w~) = E(a,(3",e~,¢~). 

Under the assumption of distant light source, all surface points receive the same 

amount of light, hence the positional variance of the lighting function can be omit

ted. Thus the lighting function can be re-parameterized as Li(x,wD -7 Li(n(x),wD = 

ow, the lighting function represents the source radiance from incident di-

rections defined in the global reference frame, however the surface irradiance from the 

surrounding environment at any surface point is defined locally on the upper hemisphere, 

yielding a mixed-frames image irradiance equation, 

(2.15) 

Using Euler angle representation of 3D rotations with ZYZ-convention, correspond-

ing to three consecutive counterclockwise rotations about the Z- , y - and z- axis re-

spectively [54], the image irradiance equation in local coordinates can be written as, 

(2.16) 

where RQ ,{3,"'I = Rz((3)Ry(a)Rzh) . Note that (a, (3) are the spherical coordinates 

of the surface normal n(x) in the global reference frame. For isotropic surfaces, , has 

no physical meaning; it can be set arbitrarily to zero. Thus the rotation operator is 

redefined as RQ ,{3,Q = RQ ,{3 = Rz((3)Ry(a). 

2 .4.3 Orthographic Projection 

Considering a viewer-centered coordinate system with the viewer/camera located at a 

distance relatively large compared to the object size. Assuming, without loss of gener-

ality, that the viewing direction (i. e. the optical axis) coincides with the z-axis of the 

lThe angular coordinates of the surface normal is used to rotate the local incident direction to be 
represented in the global coordinate frame. 
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2.5. Image Irradiance Equa tion 

global reference frame, where orthographic projection can be used to approximate the 

imaging process. This viewing geometry implies that the reflected beam aligns with 

the optical axis , meaning that B~ = a [32]. Moreover, setting I = 0 for isotropic sur

face leads to ¢~ = 1r. Thus the image irradiance equation for isotropic surfaces can be 

completely determined by the surface normal as follows , 

(2.17) 

2.5 Image Irradiance Equation 

The image irradiance of a convex surface with spatially varying albedo is then formed 

by allowing each surface point to inherit its intensity from that point on a unit sphere 

having the same normal, such intensity is scaled by the point's albedo. Formally, let 

p(x) be the albedo/texture which modulates the surface radiance at point x. Thus the 

image irradiance can be written as1, 

(2.18) 

In this dissertation work, an accurate and compact representation of this function 

in the frequency domain will be investigated for the purposes of illumination modeling 

and image analysis. 

2.6 Summary 

In this chapter, the fundamentals of the photometric aspect of image formation are re

viewed, introducing the necessary terminology to understand the domain of the research 

presented. Starting with the light being radiated from a light source, then how light rays 

being received by a surface patch and then reflected. The chapter ends with the assump-

tions employed in this dissertation research and how they affected the image irradiance 

equation. In the following chapters, the representation of illumination and reflectance 

in the frequency domain will be investigated while deriving the image irradiance basis 

which spans the image subspace. 

lSometimes E(ii(x)) , E(x) and E(a ,(3) are used interchangeably to refer to the image irradiance 
from surface point x . 
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CHAPTER 3 

ILLUMINATION REPRESENTATION 

Light sources are used to emit light rays which are eventually reflected back to the 

camera to form the respective image of visible objects in the scene. There are variety 

of light source models which are primarily characterized by their geometry. Assuming 

simple source geometries is beneficial for two reasons [8]; (1) this will facilitate the 

generative process of image formation, i.e. image/view synthesis, while producing fairly 

effective images and (2) sources with simple geometries can still yield complex visual 

effects. In this chapter, a brief description of some source models is given which are 

used in vision and graphics. The ultimate goal is how such models can be represented 

as a part of the irradiance integral given in Chapter 2. 

3.1 Light Source Models 

Among various source models which primary defined in graphics literature, four main 

types of geometrical source models are of interest; point, area, distant and infinite-area 

sources. Different geometrical sources lead to different expressions for surface radiance 

obtained from the same surface patch. In what follows, the appearance of the light 

source from the surface patch is considered. 

3.1.1 Point Sources 

Since a light source is physically small compared to the scene it is illuminating, it is 

safe to assume a light source as a point with respect to the scene. In order to model 

the effect of a point source on a surface patch, the source can be represented as a very 

small sphere 32 which emits light at each point on the sphere with a constant exitance1 

lExitance E x (x) at point x by definition is the total internal power (energy per time) leaving a light 
source positioned at a point x per unit area on the radiating surface. It has units Wm - 2 It is essential 
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3.1. Light Source Models 

i.e. Ex(x) = Eo V x over the sphere. This is also known as isotropic point light source, 

emitting the same amount of light in all directions, in contrast to anisotropic point 

sources. See Figure 3.1 for a sample rendering of this type of source. 

Figure 3.1: Path tracing [30] is used to render Killeroo model being illuminated by 
a point light source. Notice the hard cast shadow boundaries (as shown in the zoom
in views) produced for this source model. Killeroo model courtesy of headus/Rezard 
(http: //www.headus.com/au/). 

Consider a surface patch centered at surface point x viewing a sphere centered at 

X s of radius E at a distance r(x ) = Ilxs - xii such that r(x) » E. See Figure 3.2 for 

illustration. The solid angle subtended by the source dW~ is approximately proportional 

to 7rE2 /r(x )2, recall that solid angle is related to foreshortened area/distance. As the 

sphere moves away from the surface patch, light rays leaving/reflected from the surface 

patch and arriving to the sphere move closer to each other. Recall that surface radiance 

is obtained by integrating the incident light rays multiplied by the foreshortening factor 

over the incoming hemisphere. However in this situation, it is important to note that 

the integral is over a small domain on the incoming hemisphere of the surface patch and 

the radiance does not change much over such a domain (due to constant exitance from 

the source), hence it is roughly equal to one value times the area of the patch. Further, 

for a point light source, the incident radiance comes from only a single direction since 

the source is only visible from its given location. Thus point sources are usually defined 

by a delta distribution where surface radiance due to point source can be defined as; 

to notice the difference between exitance and radiosity. Exitance measures t he interna lly generated 
power radiated by a light source per unit area on t he radiat ing surface, while radiosity measures t he 
total power leavi ng/reflected from a surface point per unit area. Sources can have both radiosity and 
exitance, because energy may be reflected off t he source as well as generated within it [8]. 
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3.1. Light Source Models 

Lr(x, w~) = in, 8(w~ - w~)fr(w~ , w~) C2E(2X)) Eo cos (}~dW~ . (3 .1 ) 

where w~ is unit vector defining the point light direction as perceived locally from the 

surface patch centered at x. 

Let n(x) be the unit normal to the surface at point x and s(x) be a vector from the 

surface point x and the source with length JS(x) I = E2 Eo. Thus n(x ).s(x) = cos ()~. This 

will yield the standard nearby point source model; 

(3.2) 

where w~ = I*:ll = cart(l, ()~, ¢~) . 
According to this model, the unknown exitance term is folded in the source vector and 

an explicit relationship between surface radiance and surface shape (the normal term) is 

established. Although each surface point x has a different distance to the nearby source, 

it is common, however incorrect , to omit the dependency on such distance. 

Solid angle dWj' 
The Normal t ,subtended by the 

direction n at x -- Z source 
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Figure 3.2: A surface patch sees a distant sphere with radius E at distance r. The 
sphere produces a small illuminated patch on the incoming hemisphere of the surface 
patch. 

3.1.2 Distant Sources 

Distant, a.k. a. directional, source emits illumination from the same direction at every 

surface point . As a point source becomes progressively farther aways, i.e. located at 
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3.1. Light Source Models 

infinity, e.g. the sun, or its distance to the object is large compared to the object 's size, 

the terms s(x) and r(x) become constant with respect to surface points, i.e. s(x) = 

"So + 6.s(x) with Isol » l6.s(x)I and r(x) = ro + 6.r(x) with Irol » l6.r(x)l. Thus, 

n(x).s(x) n(x). (so + 6.s(x)) n(x).so 
r2(x) = (ro + 6.r(x))2 :::::: r~ (3.3) 

With a single distant source of direction ws , the lighting function is described as a 

delta function [11]. A surface point sees the light source through its upper hemisphere 

from a single direction w~ = Ro. ,/3"ws , as such only one term in the radiance integral 

(Equation 3.2) will survive. Thus the surface radiance due to a distant light source 

becomes (ro can be discarded since it is constant for all surface points while light source 

can be assumed to be of unit exitance); 

(3.4) 

where cosB~ = n(x)."So. 

Figure 3.3: Path tracing [30] is used to render Killeroo model being illuminated by 
a distant light source. Along with the apparent hard cast shadow boundaries, one 
can observe the shape details of Killeroo model from the shadow cast on the ground. 
This reveals the difference between appearance resulting from distant and point light 
source (see Figure 3.1 for comparison). Notice the shadow of Killeroo is different ac
cording to the surrounding environment. Killeroo model courtesy of headus/Rezard 
(http)/www.headus.com/au/). 

Distant source (a.k.a. point source at infinity) is a valid model when the distance 

between objects in the scene is smaller in magnitude than the distance to the source, 

otherwise the nearby point source model should be assumed. The difficulty with the 
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3.1. Light Source Models 

nearby model is that surface radiance changes very sharply over space [8J. 

3.1.3 Area Sources 

An overcast sky in natural scenes and fluorescent light box in synthetic environments 

are good examples of area light sources. Area sources are commonly modeled as surface 

patches whose emitted radiation is independent of position and direction [8], generating 

uniform illumination distribution, thus they can be described by their exitance. 

Computing surface radiance due to area lights involves computing integrals over 

the surface of the light source which often can not be computed in closed form [30J. 

At the expense of computational complexity, soft shadows and more realistic lighting 

effects, rather than hard shadows, can be achieved by area light sources. See Figure 3.5 

for sample renderings of Killeroo model being illuminated by a disk shaped area light 

sources with different radii. 

Consider a surface patch illuminated by an area source of exitance EX(u) l , where 

u is a point on the source measured with respect to the source local fi'ame, in contrast 

to the surface point x on the patch. Thus surface radiance due to area source can be 

defined as; 
(3.5) 

where u -+ x defines the direction fi'om the source to the surface patch. Going 

from the integration over the incoming hemisphere at the surface patch to the outgoing 

hemisphere at the source gives [8],(note that Li is now emitted from the source and 

becomes source exitance Le) 

r Le(u,u-+x)fr(u -+x,w~)cos()~dW~ 
ln's 

l Ex ( u) f ( ~, ) ()' (dAu cos ()~ ) 
--- r U -+ x, Wo cos i 2 

source 1[" r 
(3.6) 

Note that the integration is now over the sources area/region. See Figure 3.4 for illus-

tration. 

3.1.4 Infinite Area Sources 

Usually referred to as an environment map, it describes an infinitely far away area 

light source casting light into the scene from all directions surrounding the entire scene. 

lSince area sources are approximated as rectangular region which emits light , U is used to denote any 
point on such region similar to texture-mapping notations, however meanings are implicitly different . 
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3.1. Light Source Models 

Typically, an omnidirectional image (referred to as a light probe) is used to record the 

incident illumination from all incident directions at a particular point in space. These 

images can be captured from real world scenes [55] and several freely available light probe 

images can be found in http://www.debevec.org/Probes/. Futher, a larger collection 

of environment maps are released from sIBL (smart Image Based Lighting) archive! 

including a wide variety of illumination conditions such as indoor, outdoor, summer and 

winter conditions. 

See Figure 3.6 for sample renderings for Killeroo model at different times of the day. 

One can notice the change of appearance due to illumination variation while keeping 

the geometry and reflectance (e.g. Lambertian) fixed. 

Solid angle diJi ' 

The Normal subtended b the 
d· . .... :---. y 

neetlOh n at X t z' source 

/~ !--- l Upper 
hemisphere n' 

____ ' I 
I 

Figure 3.4: An area light source illuminating a diffuse surface patch. In order to 
compute the patch radiance due to such a source, the integral of incoming radiance at 
the surface is transformed into an integral over the source area dAu. 

Light probes, also sometimes called "Light Maps" as well , are 360 x 180-degree 

spherical (or latlong) high dynamic range (HDR) files . They have been captured by 

photographing a mirror sphere from several directions and at several exposures. The 

images were then calibrated and merged to form a high dynamic range image of the full 

view sphere. These probes are considered nowadays the de-facto-standard for encoding 

natural illumination in vision and graphics li terature. 

Ihttp: //www.hdrlabs.com/ sibl/archive.html 
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Figure 3.5: Path tracing [30] is used to render Killeroo model being illuminated by a disk-shaped area light source of different radii. Starting with a 
disk radius which is relatively small compared to the model size; the shadow has soft penumbrae but otherwise the image looks very similar to the one 
with point source. The effect of using larger disk appears in larger penumbrae and noticeably different appearances when wider range of directions is 
used for illumination. Killeroo model courtesy of headus/Rezard (http://www.headus.com/au/). 
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Figure 3.6: Path tracing [30] is used to render Killeroo model illuminated by different environment maps. (a) Blue skylight, (b) day skylight and (c) 
sunset skylight. Maps (courtesy of [30]) are shown in t he first row. Using a realistic illumination distribution gives appearance which is more realistically 
compelling compared to the ones of area and directional light sources. In addition, changing just the environment map gives different renderings revealing 
the illumination conditions surrounding the scene object. Killeroo model courtesy of headus/Rezard (http://www.headus.com/au/). 
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3.2. Illum ination in Frequency Space 

While several parameterizations are available, see Figure 3.71, in this work it is 

preferred to stick with the angular representation whose representation complies with 

the subsequent analysis. It is worth noting that sIBL maps are available as latlong files 

where HDRShop2 was used to convert them to the angular representation. 

Angular Ladong (latitude/longitude) Cubic 

Figure 3.7: Sample light probe image (Galileo's Tomb, Santa Croce, Florence) with 
different parameterizations courtesy of Paul Debevec [55]. 

3.2 Illumination In Frequency Space 

Typically, the lighting function Li : S2 ~ IR. is a spherical function defined on the 

surface of the global sphere. Thus spherical harmonics (SH) has been an attractive fit 

for illumination representation in the frequency domain since they form an orthonormal 

basis for spherical functions. 

3.2.1 Spherical Har monics 

3.2.1.1 D efinition 

An infinite series of associated Legendre polynomials P;:" (x) can be used to express any 

piecewise continuous function over the interval [-1, 1]. They are defined in terms of the 

m th derivative of the Legendre polynomials as3 , 

(3.7) 

where n 2: 0 and m E [0, n] . n here is used as the band index (a.k. a. order), dividing the 

polynomial set into bands of functions with (n + l)n polynomials for n-th band series. 

l Light probes are courtesy of Paul Debevec, http://www.pauldebevec.com/ Probesf. 
2http://ict .debevec.org/ debevec/HDRShop/ download/ 
3In [56], t he associated Legendre polynomials were defined wit h an addit ional (_ l )m, which seems 

a complication t hat can be ignored at t his point . It will be included in t he defin it ion of the spherical 
harmonics later. 
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3.2. Illumination in Frequency Space 

Whereas m denotes the polynomial degree. 

In case of either band-limited functions or band-limited approximation, a finite num

ber of polynomials can be used. Thus any circular-symmetric function with no azimuthal 

dependence can be expressed in terms of associated Legendre polynomials by mapping 

the po!ru' angle B to the interval [-1, 1], this can be accomplished by using x = cos B as 

the independent vru'iable of the polynomial P:;"(x) . In order to guarantee orthogonality 

in case of non-circular symmetric functions, associated Legendre polynomials are com-

bined with sinusoidal functions for the azimuthal part dependency [57]. As such, the 

real SH functions can be written as l , 

! 
J2N;::P:;" (cos B) cos(m¢) m > 0 

Ynm(B,¢) = N~P~(cosB) m = 0 

(-1 rJ2N~ml p~ml (cos B) sin( -m¢) m < 0 

(3.8) 

with N;:: being defined as the normalization factor (to guarantee orthonormality), 

2n + 1 (n - m) ! 

4n (n + m)! 

Eqn. Equation 3.8 can be short-handed as, 

(3.9) 

(3.10) 

where n ~ 0 denoting the harmonic order, mE [- n, n] denoting the harmonic degree, 

BE [0, n] and ¢ E [0 , 2n]. The polar part is given by, 

e~ (B) = N~ml p~ml (cos B) (3.11) 

and the azimuthal part is defined as, 

! 
J2 cos(m¢) m > 0 

<l'>m(¢)= 1 m=O 

(-l)mJ2sin(-m¢) m < 0 

(3.12) 

IThe complex-valued SH functions y;:' are defined in terms of complex sinusoidals. This work mainly 
deals with real-valued functions, hence according to Chisholm [58], t he definition of the real-form of the 
SH from their complex analogy is used. 
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3.2. Illumination in Frequency Space 

By construction, the azimuthal part obeys the orthogonality condition such that, 

(3.13) 

Figure 3.8 demonstrates the functional dependencies of both the polar and azimuthal 
parts by considering the spherical basis Yl( (), ¢), where the polar part depends on 

p1(cos ()) = ~ (7 cos2 () - 1) sin2 () and the azimuthal part depends on cos(2¢). 

Figure 3.9 shows the visualization of the real-form of the spherical harmonic basis up 

to the fourth order, where the distribution of the basis function values are demonstrated 

via the textured unit spheres displayed on the top right corner of each basis function 

(refer to Appendix H: (Hemi)Spherical Functions from more details about spherical 

functions visualization). It can be observed that there are three main classes of SH 

basis; (1) The zonal harmonics which are these of degree m = 0, i.e. have no azimuthal 

dependence, thus they are circular symmetric. (2) The sectoral harmonics which have 

the form of 11:1' (3) The tesseral harmonics including all other harmonics, where the 

distribution of the function values over the unit sphere appears to be divided into several 

blocks in longitudinal and latitudinal directions. 

3.2.1.2 Rotation of Spherical Functions 

Rotations of the unit sphere 82 are equivalent to rotations in lR 3 , they form a special 

orthogonal group 80(3) whose elements are 3 x 3 real orthogonal matrices of unit 

determinant parameterized by the Euler angles (a, (3 , ,) with a E [O,7rJ, (3 E [O,27r] and 

, E [O,27r]. Any rotation RQ,{J,,,! E 80(3) can be written as a product of three matrices 

RQ,{J,,,! = Rz ((3 )Ry(a)Rzh) where Rz and Ry represent the rotation matrices about 

the z-axis and y- axis, respectively, defined as, 

[

COS (3 - sin (3 0) 

Rz ((3) = sin (3 cos (3 0 

o 0 1 

(3.14) 

and 

Ry(a) = 
[ 

co~a : Sina ) 

- sin a 0 co~a 
(3.15) 
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3.2. Illumination in Frequency Space 

The rotation Ra ,{3,"1 takes the north pole of the unit sphere with Cartesian coordinates 

(0,0,1) to the point on a unit sphere having a unit direction w = cart(l , a,,8) with 

Cartesian coordinates (cos,8sina,sin ,8sina,cosa), while the equator plane (which is 

perpendicular to the north pole) is rotated by T See Figure 3.10 for illustration. 

z 

Ry(a) • 
Figure 3.10: Illustration of 3D rotation using Euler angles . 

Consider the spherical domain, any two unit directions WI, W2 E 82 are related 

by some rotation Ra ,{3,'Y E 80(3) such that Ra ,{3d:J1 = W2 . Thus 80(3) forms a 

transformation group of IR. 3 which causes rotation of vectors in IR. 3 . For each rota

tion Ra ,{3,"1 E 80 (3), square integrable functions f defined on 82
, i. e. the Hilbert 

space L2(82), can be rotated by the rotation operator f (Ra,{3,"Iw) which acts point-wise 

Vw E 82 . 

3.2.1.3 Rotational Invariance 

Due to basis orthonormality, SH is known to be rotationally invariant [30]; rotation of 

spherical function coefficients is the same as rota ting the function then projecting it onto 

the SH basis . This enables rotating spherical functions given their harmonics spectrum. 

The rotation process is thus a linear operation where coefficients between distinct bands 

don't interact . Thus, after rotation, a SH basis Y~(.) of band n can be expressed as a 

linear combination of other un-rotated SH bases with weights depending on the rotation 

Euler angles such that 

n 

yn
m(Ra,{3,'Yw) = L 'D~m,(a,,8, 'Y)Y~'(w) (3.16) 

m'=-n 

where W = cart( l , e, ¢) and 'Dn are Wigner 's rotation matrices [59] satisfying, 

(3.17) 
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3.2. Illumination in Frequency Space 

For a given order n, ,])n is a (2n + 1) x (2n + 1) matrix which encodes how to express 

a rotated SH basis function in terms of all other SH bases of the same order. The 

orthogonality relation of ,])n matrices is given as [11], 

(3.18) 

Since the z-axis rotation is only affecting the azimuthal part of a spherical function, 

contributing to the sin/cos part of the real SH, the rotation matrix for the nth band for 

real SH is defined as [60], 

where, 

sgn(x) = { 1 
- 1 

x~O 
(3.20) 

x<O 

and dn is a matrix defining the y-axis rotation, it is defined explicitly as [61], 

d~m,(a) = J(n + m)!(n - m)!(n + m')!(n - m')! 

( l )m -m'+s ( Q:)2n+m'-m-2s (. Q:)m-m'+2s 
" - cos 2 sm 2 
L- (n + m' - s)!s!(m - m' + s)!(n - m - s)! 

s 

(3.21) 

with the range of s determined such that all factorials are non-negative. 

The computation of dn matrices dominates the evaluation of SH rotations where nu

merical instability arises when computed explicitly as in Equation 3.21. Consequently, 

existing approaches tend to rely on recurrence relations such as [60, 61 , 62]. According 

to Lessig et at. [63], Ivanic's [62] error grows proportionally with the spherical harmonic 

order compared to that of Blanco's [60] which in turn shows stable numerical pel·for-

mance for higher orders. Meanwhile Ivanic's approach consumes more time compared to 

that of Blanco's, such time difference increases with the harmonic order. In particular, 

at lower orders, rotation matrices evaluated by !vanic's relations exhibit lower execution 

time, yet such performance is not maintained for n ~ 3. 
As such, this work makes use of recurrence relations defined by Blanco et al. in [60] 

which are enumerated in Algorithm 1. Since limQ:-t7r tana/2 = 00, steps (d) and (e) 
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3.2. Illumination in Frequency Space 

in Algorithm 1 becomes invalid recurrence relations. However all elements of the last 

two columns are zeros due to the following relations [60] except for d~n,_n(a) = 1 and 

d~-l ,l-n(a) = n - l. 

(2n) ! (a)n+ml ( . a)n- ml cos- -sm-
(n + m')!(n - m')! 2 2 

(3.22) 

~-l ,m/(a) = (n cos a - m') 
(2n - I)! (a)n- l+ml ( . a)n- l- ml 

cos- - sm-
(n + m')!(n - m' )! 2 2 

(3.23) 

3.2.2 Illumination Harmonic Expansion 

The spherical harmonic basis functions form a complete set of functions which are or

thonormal over the surface of the unit sphere 82 , where the term complete implies that 

any well-behaved/smooth function can be expanded as an infinite series of these basis 

functions. The orthonormality property connotes that , 

(3.24) 

holds for real SH functions. 

A lighting function Li(Wi ) can be represented as a convex combination of the spherical 

harmonic (SH) basis functions such that , 

00 n 

Li(Wi) = L L l~Ynm(wi)' Wi = Ra,/3,-yw~ (3.25 ) 
n=Om=-n 

where {l~} are the illumination spectrum coefficients when projected onto the subspace 

spanned by the real SH basis. Thus the lighting function in Equation 5.2 can be rewritten 

as, 
00 n n 

Li(Wi ) = Li(Ra,/3,-ywD = L L L l~1>~m/(a,J1 , r)Ynm/(w~) (3.26) 
n=O m=- n m' =-n 

For isotropic surfaces, where rotation of the tangential plane about surface normal 

doesn't affect surface appearance, r can be arbitrary set to O. Hence the SH rotation 

matrices are re-written as [11], 

(3.27) 
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3.3. Illumination Signal Energy Content 

where the orthogonality relation is modified such that , 

(3.28) 

where the orthogonality relation is no longer held for index q due to the absence of 'Y 

integration [11]. 

Algorithm 1 dn Matrices Computation 

INPUT: (a) Euler rotation angle about y-axis, a , (b) Maximum SH order, N. 
OUTPUT: Rotation matrices dn 'Vn E [0, N]. 

1: Compute zero order matrix: d8,o(a) = 1 
2: Compute the matrix of the first order: 

d6 o(a) = cos a d~ - 1 (a) = sin2 ~ , , 2 

1 ( ) 1. 1 ( ) 2 a 
d1 0 a = - M sm a d1 1 a = cos -2 

' v2 ' 

To obtain other matrix entries, use symmetric relations defined as , 

d~,m,(a) = cem,-m,(a) = (_ 1)m+m'cem,_m,(a) = ( - l)m+m'~,m,(a) 

3: Compute higher order matrices: For n = 2,3 , .. . , N 
(a) Compute d~,m,(a) for m = 0, ... ,n - 2 and m' = - m , ... ,m such that 

~,m, (a) = J(n2 :~~)~n~) _ m,2) { (d6,o(a) - n(::'l)) ~~~,(a) 
J [(n - 1)2 - m 2][(n - 1)2 - m 12 ]iE-2,(a) } 

(n - 1)(2n - 1) m,m 

(b) Compute ~,n(a) 

(c) Compute d~_ 1 n-1 (a) , 

d~- 1 ,n- 1(a) = (n d6,o(a) - n + 1) d~=Ln-1(a) 

(d) Compute d~,m,(a) for m' = n - 1, ... , - n 

(n + m' + l)d~ - 1 (a) 
d~,m,(a) = - (n _ m')d1 '(a) ~,m'+l(a) 

1,1 

(e) Compute d~_ l m, (a) for m' = n - 2, ... , 1 - n , 

n d6 o(a) - m' (n + m' + l)d~ - 1 (a) 
d~_ l ,m,(a) = - n d6,o(a) - m' _ 1 (n _ m' )d})a) d~- l ,m'+l (a) 

(f) Use symmetric relations in step 4 to obtain the rest of the elements with m > O. 

3.3 Illumination Signal Energy Content 

The concept of the signal 's energy content normally arises in constructing linear sub

spaces [64] where the signal's frequency spectrum portrays the range of frequencies for 
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3.3. Illumination Signal Energy Content 

which the signal has significant energy content. In case of illumination representation, 

it is of interest to maintain the minimum number of bases which captures a significant 

energy content of the lighting function. The illumination energy content can be defined 

as, 

(3.29) 

Using SH-based representation and basis orthonormality criterion, the energy content 
can be expressed as, 

00 00 n n' 

L L L L l~l~' 1 Ynm(Wi)Yn~' (wi)dWi 
n=On'=Om=-nm'=-n' , S2 , 

v 

00 n 

L L (l~)2 
n=Om=-n 

(3.30) 

In order to eliminate the effect of the illumination configuration, the lighting function 

undergoing all possible 3D rotations is taken into account. Consider a light source with 

spectrum coefficients l~ such that , 

00 n 

Li(Wi) = L L l~Ynm(Wi) (3.31 ) 
n=Om=-n 

After a 3D rotation R o:,{3" E 50(3), this light source becomes, 

00 n n 

n=O m=-n o=-n 
00 n n 

L L L l~1)~o(a,,B,'Y) ynm(Wi) (3.32) 
n=O m=-n o=-n 

'''----.v,----' 
IW 

Thus the average signal energy of the lighting function over all possible 3D rotations 
can be written as, 

E{ eL} = 1 eL dRo:,{3" = f t 1 (1~)2 dRo: ,{3" 
80(3) n=O m=-n SO(3) 

(3.33) 

where, 

r (l~)2 dRo:,{3" 
l SO(3) 
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3.4. Frequency P r operties of Light Sources 

(3.34) 

From the orthogonality relation of 'Dn matrices Equation 3.18, it can be shown that, 

(3.35) 

where, 

1 . 
dRa ,{3,-y = 87[2 sm adad{3d"( (3.36) 

Thus the average simply becomes, 

00 1 n 2 

E {ed = L 2n + 1 L (l~) 
n=O o=-n 

(3.37) 

where e~(n) is the average energy content maintained by the n-th illumination order. 

Thus let 's define the representation approximation accuracy to be the ratio of the signal 

energy content of the truncated series to that of the infinite one. 

(3.38) 

In the computations below, the infinite series in the denominator of Equation 3.38 is 

computed up to an asymptotic illumination order where infinite precision rational num-

bel'S are used for such high orders. In the sequel, t he average energy profile of different 

lighting functions is investigated including point light sources and natural illuminations. 

3.4 Frequency Properties of Light Sources 

A light source defines a directionally varying incident radiance function Li(Wi)' For point 

light sources (near or distant) , the incident radiance comes from a single direction while 

for area or infinite-area sources, different directions carry different incident illumination. 

This section investigates the frequency properties of different light source models when 
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3 .4. Fre que ncy Properties of Light Sources 

being represented in the space spanned by the SH basis functions. 

3.4.1 Distant Sources 

A single directional source can be defined as a delta function. Let Ws be a unit vector 

denoting the source direction in the global coordinates. Consider a surface patch cen

tered at the global origin and oriented such that the global and local frames coincide l . 

Hence the lighting function can be defined as, 

(3.39) 

As such the lighting spectrum can be obtained by integrating the lighting function 

in Equation 3.39 with each harmonic basis function . Since a directional source is defined 

as a delta function, the integral boils to a single term where the light coefficients are the 

basis functions evaluated at the light source direction. 

(3.40) 

Since all possible 3D rotations are taken into account when computing the average 

signal energy content, it is safe to assume that the light source is positioned at the north 

pole with Ws = cart(l, 0, 0), where, 

(3.41) 

Consequently, distant sources have a non-decayable energy profile2 where each illu-

mination order maintains the same average energy content such that, 

1 n 2 1 
eJ.L(n) = - '" ([0) =_ 

L 2n+ 1 6 n 41f 
(3.42) 

o=- n 

While this implies that an infinite number of basis is needed in order to fully recover 

a directional light source, the goal is to represent the image irradiance integral where 

the surface reflectance acts as a low pass filter on the lighting spectrum. As such, a 

1 Having a surface patch deviating from these assumptions would involve 3D rotation of the illumina
tion direction w.r.t. the surface patch. This is amounted for when computing the average signal energy 
content where a ll 3D rotations are taken into consideration. 

2This corresponds to the Fourier transform of a delta function in ID. 

58 



3.4. Frequency Properties of Light Sources 

finite-dimensional model will be derived later in the dissertation. 

3.4.2 Point Sources 

Harmonic basis , in general, are known to provide optimal basis for images of convex 

objects under distant light [65]. Nonetheless, light coming from close by objects, indoor 

environments and reflections from surrounding surfaces are examples of common near 

light scenarios, where the lighting function is dominated by higher frequencies. Thus it 

is crucial to relax the distant light assumption to determine what distance to the light 

source is sufficient to be considered infinite. 

Consider a point light source located on the locus of a global sphere with radius r 

surrounding a surface patch centered at the global origin and oriented such that the 

global and local frames coincide. According to the standard nearby point source model, 

the light intensity arrives at the surface patch is attenuated by a factor of :.\ where r2 
r 

denotes the square the distance between the surface patch and the light source. 

In case of a single point light source, the incident radiance comes from only a single 

direction; it can be defined as a delta function. Let Ws be a unit vector denoting the 

source direction in the global coordinates. Hence the lighting function can be defined 

as, 

(3.43) 

Therefore the lighting spectrum can be obtained by, 

(3.44) 

Assuming a light source located at the north pole, the average energy content main

tained by the n-th order expansion of a point light source can be obtained as1, 

1 
eJ.'(n;r) =--

L 4m.4 
(3.45) 

While the energy content depends on how near the light source is, point light sources 

still have a non-decayable energy profile similar to distant light sources. 

lWe use a semicolon notation in the function argument to denote given constant quantities. 
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3.5. Summary 

3.4.3 Infinite Area Sources 

Recall that infinite area sources are represented by two-dimensional texture maps defin

ing the directionally-varying emitted radiance as a function of incident directions in 

spherical coordinates. As such, Monte Carlo integration! is considered to be a reason-

able approach to solve for the lighting coefficients [30]. Figure 3.11 shows the average 

energy content and the approximation accuracy of Debevec's environment maps [55]. It 

can be noticed that while the energy content of point light sources remains constant over 

frequency, i . e. illumination order, the energy content of infinite area sources (i. e. natural 

illumination) rapidly decrease at high frequencies. The rate of decay primary depends 

on the frequency content of the light source. For example Funston Beach illumination 

map can be considered as a low-frequency light source compared to other maps since its 

approximation accuracy saturates at 100% at lower frequencies, meanwhile the approxi

mation accuracy of Galileo Tomb and St . Peter Basilica maps asymptotically approaches 

100% due to their higher frequency content. Such results are emphasized in Figure 3.12 

which shows a sample of a wider variety of environment maps taken from sIBL archives. 

Hence it can be concluded that most of natural (real world) illuminations tend to have 

low-frequency content where most of the lighting signal content is captured using lower 

illumination orders. This motivates the concept of deriving lower-dimensional subspace 

to model natural lighting conditions. 

3.5 Summary 

This chapter reviewed the definition of different light source models deployed in vision 

and graphics applications. Spherical harmonics (SH) was also reviewed as the key ingre

dient which is widely used to represent illumination in the frequency domain. According 

to the frequency properties of different light source models, it has been shown that di-

rectionaljdistant sources have non-decayable spectrum whereas natural illumination has 

a spectrum which rapidly decrease with frequency. This discussion benefits subsequent 

chapters when explaining the image formation process and how the image irradiance 

equation can be represented in the frequency domain. 

1 Refer to Appendix I: Projection Onto Basis - Monte Carlo Integration for more deta.ils about Monte 
Carlo integration and project ion onto basis functions. 
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Figure 3.11: Frequency properties of sample infinite area light sources [55]: (a) Average 
energy content et(n) (log scale) as a function of illumination order n. (b) Approxima
tion accuracy AccL(N) as a function of the truncating illumination order N. otice 
that Funston Beach illumination map (shown in red box) is considered a low-frequency 
environment map due to the rapidly decrease of its average energy content at high fre
quencies, i.e. illumination order, compared to other sources, hence its approximation 
accuracy saturates at 100% at lower orders. Meanwhile the approximation accuracy of 
Galileo Tomb and St. Peter Basilica maps asymptotically approaches 100% due to their 
higher frequency content. ote: Lighting coefficients are solved for using Monte Carlo 
integration of number of sample cells J = 250. 
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Figure 3.12: Frequency properties of sample environment maps from sIBL whose an
gular maps are shown in the left . Middle: Average energy content e~(n) (log scale) 
as a function of illumination order n. Right: Approximation accuracy AccL(N) as a 
function of the truncating illumination order N. otice that the approximation accu
racy of low-frequency environment maps saturate at 100% at lower illumination orders, 
e.g. Brooklyn Bridge Planks, due to the rapidly decrease of its average energy content 
at high frequencies. On the other hand, high-frequency illuminations such as Subway 
Lights and Chelsa Stairs maps asymptotically approaches 100% due to their higher fre
quency content. Note: Lighting coefficients are solved for using Monte Carlo integration 
of number of sample cells J = 250. 
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PART II 

IMAGE IRRADIANCE 

REPRESENTATION 
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CHAPTER 4 

PHENOMENOLOGICAL 

REPRESENTATION OF ARBITRARY 

REFLECTANCE 

The visual appearance of real-world surfaces is the net result of surface reflectance char

acteristics when exposed to illumination. Appearance models, under local illumination 

assumption, can be constructed using phenomenological models which capture surface 

appearance through mathematical modeling of the reflection process. This yields an 

integral equation, known as the reflectance equation, describing the surface radiance, 

which depends on the interaction between the incident light field and the surface bidi

rectional reflectance distribution function (BRDF). The BRDF embodies all the infor

mation about the reflectance behavior of a surface. It is a function defined on the 

cartesian product of two hemispheres corresponding to the incident and outgoing direc

tions; the nature way to represent such a hemispherical function is to use hemispherical 

basis. However, due to their compactness in the frequency space, spherical harmonics 

(SH) has been extensively used for this purpose. 

This chapter addresses the geometrical compliance of hemispherical basis for repre

senting plausible surface BRDFs. A Cartesian product of the hemispherical harmon

ics (HSH) is proposed to provide a compact , yet accurate representation for arbitrary 

BRDFs, while satisfying the Helmholtz reciprocity property. An analytical analysis and 

experimental justification is provided that for a given truncating reflectance order, the 

proposed hemispherical basis provide better approximation accuracy of the BRDF when 

compared to similar bases in literature. In case of isotropic surfaces, where the surface 

appearance remains the same uncleI' rotations of the tangential plane about the sur-

64 



4.1. Introduction 

face normal, it is proved that the number of basis are reduced drastically, however the 

proposed Helmholtz HSH-based basis contains more basis functions than the Zernike-

based ones at a given approximating order. The presented validation is extended to 

model scattered reflectance data which might violate the Helmholtz reciprocity prop

erty; this is filtered out through the process of projecting them on the subspace spanned 

by the HSH-based basis, where the reciprocity property is preserved in the least-squares 

sense. This chapter ends by investigating the closed form of the proposed basis in case 

of directional hemispherical reflectance where the BRDF domain is reduced to be two 

dimensional; i. e. at fixed incoming or outgoing direction. In such a case, an implicit 

assumption holds where there is a smooth BRDF variation w. r. t. the fixed direction. 

4 .1 Introduction 

Various types of surfaces can be identifiable by their appearance, which is the net result 

of the surface reflectance characteristics when exposed to illumination. There are three 

fundamental ways to construct appearance models; (1) understanding the underlying 

physical process of light-surface interaction; leading to Fresnel's equations, (2) under

standing the structure of the surface 's material at a micro-scale level, where layered 

models can be investigated, and (3) using phenomenological models to capture surface 

appearance through mathematical modeling of the reflection process, leading to the re

flectance equation. The theoretical formulation and modeling of the reflectance equation 

is of a great interest to numerous computer vision tasks concerned with inverse render

ing problems! , such as illumination modeling [6], surface reflectivity estimation/analysis 

[11, 32], shape and albedo recovery [33, 34]' shape from shading [36], photometric stereo 

[37, 38], object detection and recognition [39], to name a few. 

Using geometric optics, the reflectance equation, under the assumption of no sur

face emittance, is an integral equation describing the surface reflected radiance which 

results from the interaction between the incident light field and the surface bidirectional 

reflectance distribution function (BRDF). Being considered as the most general model 

of local reflection, the surface BRDF is a mathematical and physical abstraction which 

captures the positional and directional dependencies of reflection, while in the meantime, 

hides the complexity of the interaction of light with matter. 

lInverse rendering problems appear in applications in which scene properties, such as the il lumina
tion, scene 3D geometry and / or reflectance properties, are inferred from images. 
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A BRDF model can be obtained by (1) deriving an analytic formula based on either 

physical principles or simple formulation designed to mimic some kind of reflection, (2) 

simulating an assumed surface micro-geometry model, or (3) measuring BRDF values 

based on empirical observation [66]. In all cases, it is required to devise a compact, 

yet accurate, BRDF representation of real-world materials which maintains the phys

ical characteristics of surface reflectance. As such, BRDF representation has received 

much research attention from computer graphics and vision communities [67], where 

low-dimensional parametric models enable formulating inverse rendering problems as 

parameter estimation [68]. 

A tabular representation, as simple as is, can be used to represent an arbitrary 

BRDF. However due to its four-dimensionality, full BRDF data are very scarce where 

the measurements can be restricted to the plane of incidence and is usually limited by 

some angular resolution. Further, the process of BRDF measurements acquisition could 

take hours to mechanically vary light source and sensor positions [66]. Interpolation, 

extrapolation and smoothing are usually used to benefit from measured BRDF data in 

a convenient manner. 

At the other end of the spectrum, analytic formula can present a very compact model 

for BRDF representation. Such formula can be either based on empirical observations, 

such as Lambertian model with a constant BRDF [69] and Blinn/Phong model [15, 

70] (based on cosine-lobes) , or physically based modeling of the microscopic surface 

geometry (i.e. distribution of micro-facet orientations) such as Torrance-Sparrow [12] 

for rough specular surfaces and Oren-Nayar [14] for rough diffuse surfaces. Despite 

the representation compactness, the lack of generality is the main drawback for such 

models , where there is no guarantee that these analytical models can represent arbitrary 

measured reflectance data [67], thus they only represent limited classes of surfaces. 

On the middle ground, phenomenological models represent an arbitrary/real-world 

BRDF as a linear combination of a complete set of orthonormal basis functions, anal

ogous to Fourier basis representing functions over the real line. Such low-dimensional 

representation has been used as an alternative to both measured/tabulated BRDFs and 

analytic models for three main reasons: First , most BRDFs are smooth functions [19], 

i. e. they depend slowly on the directions and hence reflectance information is encoded 

via low frequency components. As such, they are considered as good candidates for rep

resentation using smooth orthonormal basis functions. Second, the human visual system 
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is, in general, insensitive to appearance fine details [67], i.e. high frequency components 

of surface reflectance, as long as features such as specularity and color are maintained. 

Matusik et al. [17] supported this proposition by representing a BRDF as a linear com

bination of BRDF basis derived from densely sampled reflectance measurements of 100 

real-world materials. Third, the lack of acquired data in areas such as near grazing an

gles, near retro-reflection directions (i.e. scattering in the backward direction) and along 

specular directions have justified the use of basis functions for BRDF representation to 

extrapolate missing BRDF measurements while filtering out violations of physical re

flectance requirements. Whereas analytical models are compact in principle, they only 

approximate the reflectance phenomena they were designed for. Moveover, there is no 

single model that is expected to represent all real-world materials. In that regard, phe

nomenological models are considered a practical approach for reflectance representation 

[21]. 

Surface BRDFs are not arbitrary functions; in theory they are governed by basic 

principles of physics [71]. (1) Non-negativity - A BRDF should attain non-negative 

values since both radiance and irradiance are non-negative. (2) Energy conservation -

Under the assumption of no surface emittance, a surface cannot reflect more light that 

it receives from the incident upper hemisphere. Maintaining such property is important 

to avoid color bleeding while producing plausible rendered images with accurate reflec

tion behavior especially near grazing incident angles [72]. (3) Reciprocity - Helmholtz's 

law of reciprocity [52] implies that the BRDF is invariant to permutation of incident 

and outgoing light directions. BRDF models which obey these principles are said to be 

physically plausible BRDFs [73] since they can reproduce natural reflection [66], in con

trast to non-physical ones which do not exist in nature. Another advantage of adopting 

a representation which maintains reciprocity is that, in forward rendering applications, 

light beams being reflected from a fixed outgoing/viewing direction can be traced while 

accumulating the incident radiance at different incident directions [4]. 

A BRDF can be classified as an isotropic one if the surface appearance remains the 

same under rotations of the tangential plane about the surface normal, or an anisotropic 

one when this does not hold, i. e. appearance is affected by the azimuthal orientation of 

the surface. It is advantageous to split the BRDF spectrum into an isotropic part and 

an anisotropic part , nonetheless it has been noted in [21] that the contribution of the 

anisotropic part is much smaller compared to that of the isotropic one. Further, while 
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anisotropy prevails that there are preferred reflectance angles, isotropy holds when the 

medium of interest is composed of a large number of particles [74] since there is no longer 

preferred orientations. Hence the reflectance of anisotropic surfaces can be approximated 

as being isotropic. 

Isotropy and reciprocity have been adopted in vision to reduce the BRDF domain 

for surface reconstruction purposes [75 , 76]. They have also been used in graphics in 

image-based rendering [77, 78]. For example, Helmholtz reciprocity property, imply

ing symmetry of surface reflectance when light and camera positions are swapped, is 

exploited to recover accurate surface normals [76]. This is termed as Helmholtz Stere

opsis which is primarily used for image-based reflectance measurement and rendering 

[79]. Tan et at. [80] exploited isotropy and reciprocity in a broader sense to resolve the 

generalized base-relief (GBR) ambiguity which is inherent to uncalibrated photomet

ric stereo. As such, devising a low-dimensional phenomenological model which yields 

physically plausible BRDFs goes to the heart of various vision and graphics applications. 

The BRDF is a function defined on the cartesian product of two hemispheres cor

responding to the incident and outgoing directions; the nature way to represent such a 

hemispherical function is to use hemispherical basis. However, due to their compact

ness in the frequency space, spherical harmonics (SH) has been extensively used for 

this purpose [4, 19, 81]. Whereas SH is a complete set of orthonormal basis on the 

full unit sphere, hemispherical functions present discontinuities at the boundary of the 

hemisphere when represented in the spherical domain [20], demanding more coefficients 

for accurate representation. 

The goal of this chapter is thus to derive a low-dimensional, i. e. compact, phe

nomenological BRDF model which can (1) address the physical compliance of the model 

to yield physically plausible BRDFs, (2) adhere to the geometrical nature of surface 

BRDF as being defined on a hemispherical domain rather than a spherical one, (3) ad

dress the trade-off between approximation accuracy and model compactness (memory 

consumption) and (4) achieve accuracy comparable to the state-of-art phenomenological 

models. This suggests a linear model in terms of hemispherical orthonormal basis func

tions which obey symmetries such as isotropy and reciprocity. An inherent advantage of 

linear models is avoiding non-linear optimization processes used when employing poly

nomial functions [66]. In particular, a cartesian product of the hemispherical harmonics 

(HSH) is proposed to provide a compact, yet accurate, representation for arbitrary 
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BRDFs, while satisfying the physical characteristics of surface reflectance. The pro

posed BRDF model can be used in place of simple Lambertian models in algorithms 

such as shape-from-shading and photometric stereo. 

This work is similar in spirit to that of Koenderink and van Doorn [21] where they 

used hemispherical Zernike polynomials. Whereas the polar part of the proposed basis is 

defined in terms of shifted associated Legendre polynomials. The set of such polynomials 

is distinguished by the property that it contains a polynomial for every combination of 

order and degree [82], compared to Zernike polynomials which are restricted to even 

differences between polynomial order and degree. Thus, an analytical analysis and 

experimental justification is provided that for a given approximation order, the proposed 

HSH-based basis provide better approximation accuracy when compared to the Zernike

based ones [21], while, avoiding the high computational complexity inherent from Zernike 

polynomials [20]. 

The accuracy of the proposed basis functions is assessed analytically as well as numer

ically, starting with a theoretical analysis of the representation accuracy of the proposed 

model on different analytic physical BRDFs ranging from ideal diffuse and specular re

flection to micro-facet based reflection models. The accuracy of such approximations 

is then evaluated using measured reflectance where scattered BRDF data might violate 

the Helmholtz reciprocity property. 

4.2 Related Work 

Whereas real-world materials can be used as basis for general BRDF representation [17], 

using orthonormal set of basis functions robustify the process of coefficient estimation 

where BRDF coefficients, i. e. spectrum, can be estimated individually using Monte 

Carlo integration as opposed to estimating them simultaneously using least squares. 

Another intrinsic property of orthonormal basis is that it amounts for efficient truncated 

decomposition where the omission of high-frequency components is likely to yield good 

reflectance representation. 

While several attempts adopted SH for BRDF representation, such models do not 

comply with the geometrical characteristics of non-emitting surface reflectance. For 

example, Kajiya and Herzen [74] used SH to derive an analytical scattering function 

describing the radiation scattering in volume densities such as the case of clouds and 
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fog. However this method used the wave theory of light as apposed to geometric op

tics. Cabral et al. [4] and Sillion et al. [83] used such representation as a numerical 

approximation of the BRDF. In particular, assuming constant outgoing (a.k.a. viewing) 

direction, Cabral et al. [4] derived SH coefficients for isotropic clamped BRDFsl based 

on a height field geometry without relying on neither analytic BRDF model nor mea

sured reflectance data. They used a tabulated (binned) version of BRDFs while dividing 

the outgoing hemisphere into specific number of bins. This amounted for using smaller 

lookup tables while smoothing and interpolation took place. The hemispherical topology 

of reflectance was handled by replacing cos e~ with the nonlinear term max (0, cos eD. 

While Cabral et al. [4] used this representation for the purpose of simulating diffuse and 

glossy reflections of the environment. Sillion et al. [83] tried to use such representation 

to solve the global illumination problem for arbitrarily complex reflectance models. By 

expanding the BRDF at fixed incoming direction, they represented the SH coefficients 

as functions of the incident angle which were stored as one dimensional cubic splines. 

Westin et al. [19] simulated optical scattering to introduce a physically-based Monte 

Carlo algorithm to approximate arbitrary BRDFs. They used SH to define the basis 

over the cartesian product of two spheres, taking the advantage of symmetry and reci

procity to reduce the non-zero coefficients representing the BRDF (isotropic as well as 

anisotropic ones) . This representation does not require discretizing scattering directions 

as in the work of Cabral et al. [4]. The reciprocity property was enforced by using a 

combined basis function Ypq (w~)y/(w~). The dependence on the incident and outgoing 

directions was encoded in a large matrix which stores the SH coefficients. On the other 

hand , to avoid on-the-fly evaluation of high-order basis functions , Kautz et al. [81] pa

rameterized the clamped BRDF by the outgoing direction to represent the 4D space of 

arbitrary BRDF (isotropic and anisotropic) in a 2D offiine-table of SH coefficients. 

On the other hand , several hemispherical basis have been proposed in literature to 

represent hemispherical functions. Sloan et al. [84] used SH as in [19] to represent an 

even-reflected (about xy-plane) version of a hemispherical function. Coefficients were 

found using least squares SH in contrast to Monte Carlo integration in [19], however this 

leads to non-zero values in the lower hemisphere. Koenderink et ai. [21 , 53] used Zernike 

polynomials [85], which are basis functions defined on a disk, to build hemispherical ba

sis. Yet, such polynomials have high computational cost. Makhotkin [57] and Gautron et 

lClamped BRDF is the product of the BRDF with the foreshortening factor cosO;. 
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al. [20] proposed hemispherically orthonormal basis through mapping the negative pole 

of the sphere to the border of the hemisphere. Such contraction was achieved through 

shifting the adjoint Jacobi polynomials [57] and the associated Legendre polynomials 

[20] without affecting the orthogonality relationship. Recently, Habel and Wimmer [22] 

used the SH as an intermediate basis to define polynomial-based hemispherical basis. 

They used the SH basis functions which are symmetric to the z = ° plane since they 

are orthogonal over the upper hemisphere. While other basis functions are shifted the 

same way that was proposed by [20]. Although such basis definition leads to polynomial 

basis, this inhibits deriving an analytical expression of the harmonic expansion of the 

surface reflectance function and in turn of the irradiance integral. 

This work adopts the hemispherical basis defined by Gautron et al. [20] to propose 

the surface reflectance basis. While [20] introduced the hemispherical harmonics (HSH) 

in the context of forward rendering, the primary focus of this work is on the reverse 

problem. Along the same line, Gautron et al. [20] used two HSH transformations to 

define hemispherical basis. Nonetheless, such definitions do not guarantee Helmholtz 

reciprocity. On the other hand, Koenderink et al. [21 , 53] used Zernike polynomials [85] 

to define hemispherical basis that satisfy such a property, however such polynomials are 

known to have high computational complexity [20] and in the meantime, they are not 

defined for all combinations of polynomial orders and degrees. 

4 .3 Hemispherical Harmonics (HSH) 

4.3.1 Shifted Associated Legendre Polynomials 

The idea of using linear transformation to shift orthogonal polynomials has been com

monly used to change the domain of well-known basis. For example, associated Leg

endre polynomials and adjoint Jacobi polynomials are shifted to define hemispherical 

basis functions as an adapted version of the spherical ones [20, 57]. 

Consider an orthogonal set of functions {Bk(X)} defined over the interval x E [a, b] 

with weighting function w(x) , a linear transformation of the independent variable x 

to 1I:1X + 11:2 with 11:1 =1= ° causes the set of functions {BdIl:1X + 1I:2)} to be orthogonal 

over the interval [a:;2, b:72] with weighting function W(1I:1X + 11:2) [86]. Moreover, if 

the set {Bk(X)} is orthonormal then {(sign(II:t})kMBk(1I:1X + 1I:2)} maintains the 

orthonormality property. 
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With 11:1 = 2 and 11:2 = - 1, shifted associated Legendre polynomials P;:"(x) can be 

defined over the interval x E [0, 1 J 1 , 

(4.1) 

The orthogonality relationship of the shifted associated Legendre polynomials is defined 
with weighting function w(x) = w(2x - 1) = 1 as [20], 

(4.2) 

4 .3 .2 HSH Definition 

An infinite series of shifted associated Legendre polynomials can be used to express any 

piecewise continuous function over the interval [0,1]' where band-limited functions can 

be exactly reconstructed using finite number of polynomials. Shifted Legendre polyno-

mials can be combined with sinusoidal functions to define the hemispherical harmonics 

representation for non-circular symmetric functions where the polar angle B E [0,71" /2J 

is mapped to the interval [0, 1 J by using x = cos B as the independent variable of the 

polynomial P;:,,(x). In case of circular-symmetric functions , zonal harmonics are used 

which reduce to the shifted associated Legendre polynomials with zero degree. 

Analogical to SH definition, the real hemispherical harmonics (HSH) can be written 

! 
V2N;:"P;:"(cosB)cos(m¢) m> 0 

H!;(B, ¢) = N~P~(cos B) m = 0 

( - 1 )m.j2N~ml p~ml (cos B) sine -m¢) m < 0 

with N;:" being defined as the normalization factor , 

2n + 1 (n - m)! 
271" (n + m)! 

(4.3) 

(4.4) 

lThe main idea behind this shifting is limiting the domain of the inclination angle 0 to [0, 7r /2] when 
substituting x by cosO. 

2Note the difference between this work and [20] in the factor of (_l)m, since it is preferred to include 
this factor in the harmonics definition rather than including it in the associated Legendre polynomial 
definition. 
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4.4. Proposed H elmholtz HSH-based R eflectance B asis 

Eqn. Equation 4.3 can be short-handed as, 

(4.5) 

where n 2: 0 denoting the harmonic order , m E [-n, n] denoting the harmonic degree, 

8 E [0 , 7r / 2] and ¢ E [0, 27r]. The polar part is given by e~( 8) = N~ml p~ml (cos 8) and 

the azimuthal part is defined as Equation 3.12. 

Figure 4.1 demonstrates the functional dependencies of both the polar and azimuthal 

parts by considering the hemispherical basis Ht (8 , ¢), where the polar part depends on 

pl (cos 8) = Pl(2cos8 - 1) = 60(1 - cos 8)cos 8(14cos2 8- 14cos 8+ 3) and the azimuthal 

part depends on cos(2¢). 

Figure 4.2 shows the visualization of the real-form of the hemispherical harmonic 

basis up to the fourth order , where the distribution of the basis function values are 

demonstrated via the textured unit hemispheres displayed on the top right corner of 

each basis function. 

The HSH basis functions form a complete set of functions which are orthonormal over 

the surface of the unit hemisphere n, implying that any hemispherical smooth function 

can be expanded as an infinite series of these basis functions. The orthonormality 

property connotes that , 

(4.6) 

holds for real HSH functions. 

4.4 Proposed Helmholtz HSH-based Reflectance Basis 

As noted earlier , the surface bidirectional reflectance distribution function (BRDF) is 

defined as the ratio of the reflected radiance exiting along the outgoing direction w~ to 

the surface irradiance incident fi-om the incoming direction w~ , where both directions are 

defined with respect to the surface normal1. While it is often preferable to work with 

the clamped BRDF [11], i.e. fr(w~,w~)cos 8~, to enforce C 1 continuity at the equator 

and hence reduce the ringing in the approximation (a. k. a. Gibbs phenomenon) [83], es

pecially at grazing incident angles where singular performance is expected [21]. Yet , it is 

INote t hat t he primed coordinates a re used to indicate measurements wit h respect to t he local frame 
of a surface point. 
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not required to deal with the clamped BRDF since the proposed basis is hemispherical 

in nature, i.e. it adheres to the geometrical structure of surface reflectance. In addition, 

clamped BRDF leads to a reflectance kernel which does not obey the reciprocity prop

erty. One way to handle this is to multiply both sides of the image irradiance equation 

by cos B~ [11], yet this inhibits modeling the image irradiance signal itself. As such, 

this work opt for dealing with the BRDF itself without incorporating the foreshortening 

factor , cos B~ , which will be included in later analysis when dealing with the irradiance 

equation. 

4.4.1 Basis for Ar bitrary R e flectance 

Consider the product of two HSH basis functions to give a mapping n~ x n~ -+ lR from 

the Cartesian prod uct of two hemispheres to the real line, one can define a combined 

basis function H~(wDH:(w~). Although these functions construct a complete orthogonal 

basis for the cartesian product of two hemispheres, this work seeks a set of bases which 

span the subspace of functions characterized by maintaining the Helmholtz reciprocity 

property. Thus the term Helmholtz HSH-based basis is defined by symmetrizing the 

combined basis w. r . t. the incident and outgoing directions, i. e. 

9{q8(W' w') = HQ(w')H8(w') + H8(w')HQ(w') pr ~'o P 1 r 0 r ~ p 0 (4.7) 

The orthogonality property of this basis is inherited from the orthonormality of the 

HSH basis in Equation 4.6, where, 

( rt.rQ8 (-' -') rt.rQ' 8' (-' -')) 
JLpr Wi'Wo ,J Lp'r' Wi,Wo 

r r [Hg(w~)H:(w~) + H:(w~)Hg(w~)l 
in~ in; 

[H~ (wDH:: (w~) + H:: (w~)H~ (w~)] dW~dW~ 

(10; Hg(w~)H~ (W~)dW~) (1o~ H:(w~)H:: (W~)dW~) 

+ (10; Hg(wDH::(W~)dW~) (1o~ H:(W~)H~(W~)dW~) 

+ (10; H:(w~)H;: (W~)dW~) (1o~ Hg(w~)H;: (W~)dW~) 

+ (10; H:(WDH::(W~)dW~) (1o~ Hg(W~)H::(W~)dW~) 
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(4.8) 

Hence,the normalized Helmholtz HSH-based basis can be defined as, 

9{qS(w' w') = Nqs [Hq(w')HS(w') + HS(w')Hq(w')] 
pi" %' 0 pi" P % r 0 r % p 0 (4.9) 

where N,g; is a normalization factor which guarantee the basis orthonormality. Using 

the orthogonality condition in Equation 4.8, the normalization factor can be defined as, 

(4.10) 

Thus, an arbitrary surface BRDF can be represented in terms of the Helmholtz HSH

based basis as follows, 

00 00 p r 

f (w' w') ~~ ~ ~ aqs 9{qS(w' w') 
r i' 0 = ~ ~ ~ ~ pi" pi" %' 0 

( 4.11) 
p=o r=O q=-p s=-r 

In case of measured BRDFs, where scattered data are available, the Helmholtz reci-

procity property might be violated. The process of projecting such scattered data on 

the subspace spanned by the proposed basis will filter out noisy components yielding 

the closest function which fits the data yet maintains the reciprocity property in the 

least-squares sense. The expansion coefficients of the series in Equation 4.11 can be 

obtained through projecting the surface BRDF on the Helmholtz HSH-based basis such 

that! , 

(4.12) 

By construction one has, 

(4.13) 

Hence, the BRDF energy content, which is defined as the integral [Jr(w~, w~W over its 

1 Complex conjugate is dropped since this work deals with the real form of the basis. 
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entire domain l , can be written as, 

(4.14) 

Thus the approximation accuracy (or the energy captured by the Pth order approxi
mation) can be defined as2 , 

",p ",p ",p ",r (qS)2 
Ace (P) = L....p=O L....r= O L....q=-p L....s=-r apr 

B r r [f (-I -I )]2 J .--.I J .--'I Jnb In; r Wi' Wo u,wiu,wo 

( 4.15) 

One can observe that the approximation accuracy of surface BRDF looks little bit 

different from that of illumination. This is because in the latter case it is required to 

take into consideration all possible 3D rotations for the lighting function, hence the 

average energy content is of the main concern. This is in contrast to the former case 

where all function parameters (incoming and outgoing directions) are already included 

in the BRDF definition which in turn are defined w. r. t. the local coordinates, hence the 

approximation accuracy of the BRDF becomes independent of the hemispheres orienta-

tion. 

The list of the coefficients {af}:.} represents the bidirectional surface reflectance spec

trum (BSRS) which characterize the BRDF in a manner similar to the Fourier spectrum, 

where low-order spectrum maintains the overall properties of the underlying kernel, 

whereas increasing the order adds more details. 

For scattered reflectance data, high-order spectrum components would add noise 

rather than details [21], thus truncation/smoothing is mostly used to improve scattered 

data description. This resulting harmonic expansion defines a smooth function which 

can be considered as a least squares approximation of the underlying BRDF. Figure 4.3 

visualizes up-to 3rd order of the proposed basis at a fixed incident direction (more details 

about basis at fixed direction will be given in later sections). 

1 Using t he orthonormality property of t he HSH-based basis, all terms in this integral vanishes except 
for p = p' , q = q' , r = r' and 8 = 8'. 

2Note that the integral in the denominator can be evaluated using Monte Carlo integrat ion. 
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Figure 4.3 : Visualization of up-to 3rd order of the proposed Helmholtz surface reflectance basis at an incident direction w;o = (7r / 3, 0). 
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4.4. Proposed Helmholtz HSH-based Reflectance Basis 

4.4.2 Reflectance Basis For Isotropic Surfaces 

Isotropic BRDFs can be assumed when rotating the local tangent plane doesn 't affect the 

surface reflect ance properties , i.e. the BRDF becomes a function of only three variables 

fr (w~, w~) = fr (()~, ¢~ , ()~, ¢~) = fr( ()~ , ()~, I¢~ - ¢m· Thus depending only on I ¢~ - ¢~I 

allows negating both the incident and outgoing azimuthal angles without affecting the 

surface BRDF. 

Furthermore, all terms in the harmonic expansion Equation 4.11 vanish except for 

those terms which satisfy the isotropy assumption, i. e. rotational invariant w. r. t. the 

azimuthal part (adding 6.¢' to both ¢~ and ¢~ makes no difference) , this requires q = s . 

Hence the expansion coefficients of the BRDF are now defined , using three indices, by 

ar;:. = a~~ = a;;q)( - q) = a~. From isotropy it can be shown that , 

where 6.¢' = I¢~ - ¢~I· 

'J{j;!.( ()~, 6.¢' , ()~ , 0) 

'J{j;!.( ()~ , 0, ()~, 6.¢') 

'J{~ (()~ , ()~, 6.¢') 

Therefore, the harmonic expansion of isotropic BRDFs can be defined as, 

00 00 min(p,r) 

LL L 
p= O r=O q=- min(p,I' ) 

( 4.16) 

( 4.17) 

where the basis for isotropic surfaces can be defined in terms of the polar and azimuthal 

parts of the HSH as, 

where 
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q > O 

q = O 

q < O 

(4.18) 

(4.19) 
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4 .5. On B asis Complexity 

This reduced domain causes the number of independent spectrum components to be 

reduced drastically [21]. The normalization factor for negative degree basis is zero, i.e. 

N;;" = ° 'V q E [- min(p, r), - 1]. Moreover, due to the Helmholtz reciprocity, one has 

9{~(.) = 9{~p(.). Thus the expansion in Equation 4.17 can be rewritten as, 

fr( ()~, ()~, t::.¢') 
00 p r 

L L L a~9{~(()~, ()~, t::.¢') ( 4.20) 
p=O r=O q=O 

Whereas t he isotropic bidirectional surface reflectance spectrum (IBSRS) can be 

obtained by, 

(fr(()~, ()~ , t::.¢') , 9{~r(()~ ' ()~, t::.¢')) 

r r fr(()~, ()~, t::.¢')9{~(()~, ()~ , t::.¢')dW~dW~ 
Jn~ In; 

(4.21) 

Figure 4.4 shows a visualization for up-to 3rd order of the proposed Helmholtz basis 

in case of isotropic surface BRDF. It can be observed that higher orders are entertained 

with larger number of basis adding more details to the BRDF representation. This in 

contrast to the isotropic basis proposed by Koenderink et al. [21] which maintains only 

8 basis at the 3rd order representation due to the definition of the Zernike polynomials. 

Figure 4.5 shows the number of available orthonormal basis as a function of the 

reflectance order p (where r = p) for isotropic and anisotropic cases. One can find that 

the proposed basis definition provides more orthonormal basis functions when compared 

to that of Koenderink et al. [21]. This give insights that the proposed reflectance basis 

would capture similar energy content to that of the Zernike-based basis at lower orders of 

reflectance, leading to a more compact representation of surface BRDF. It is worth noting 

that the proposed basis share the same number of orthonormal basis with [19, 20, 22]. 

4.5 On Basis Complexity 

The numerical computation of expansion coefficients in general and reflectance coef

ficients (a.k.a. spectrum) in particular is one of the important computational issues 

in many applied research areas , e.g. computer vision, medical imaging and statistical 

analysis. As such, this motivated much research to be conducted in developing fast 
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4.5. On Basis Complexity 
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Figure 4.5: Number of orthonormal reflectance basis available up to reflectance order 
p = r = P for (a) anisotropic and (b) isotropic cases. It can be noted that the proposed 
basis has more orthonormal bases at lower orders compared to that of Koenderink et 
at. [21] leading to a more compact representation for surface BRDF. 

computational algorithms for computing expansions, e.g. [87, 88]. Since spherical and 

hemispherical reflectance bases share the same azimuthal functions, the core computa-

tional component of different reflectance basis in comparison is the polar part. Whereas 

the spherical-based bases depend on associated Legendre polynomials, e.g. [19, 81]' 

hemispherical-based bases depend on either (shifted) associated Legendre polynomials, 

e.g. [20, 22] or Zernike radial polynomials [21]. Thus the problem of fast computation 

of reflectance spectrum reduces to efficient computation of the polar functions of the 

respective basis definition. As noted earilier, the core justification of the proposed basis 

is that the associated Legendre polynomials are known to have lower computational 

complexity when compared to Zernike ones. This section presents such a justification 

in more details. 

Let n ~ 0 be the band index (a. k. a. order) dividing the associated Legendre poly

nomial set into bands of functions with (n + l)n polynomials for n-th band series. 

Using the standard arithmetic complexity model! , Healy et at. in [87] and [43] pro-

vided algorithmic tools which improved the asymptotic complexity of the complete set 

of Legendre polynomials from c:J(N3/ 2) to c:J(Nlog2 N), for cutoff frequency N = n2. 

Their algorithms were driven from the factorization of the Legendre functions obtained 

from their recurrence relations where a high-degree Legendre function was decomposed 

as a linear combination of lower-degree Legendre functions. Suda and Takami in [89] 

proposed a fast approximate algorithm for the associated Legendre transform by means 

lSingle operation is defined as a complex multiplication followed by a complex addition. 
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of polynomial interpolation accelerated by the Fast Multipole Method (FMM). Their 

divide-and-conquer approach gives the same computational complexity of 0 (N log2 N). 

On the other hand, the calculation of Zernike polynomials using the series definition 

of the radial polynomials, i.e. Direct method , requires O(N3) for N-th order polynomial. 

Different approaches have been proposed to expedite the computation of Zernike poly

nomials including Belkasim's [90], Kintner's [91] and Prata's [92]. Belkasim's algorithm 

is based on factorizing some of the redundant terms in the radial and angular expansion 

of Zernike polynomials, however the total number of of multiplications involved remains 

O(N3 ). Kintner 's method uses a recurrence relation which uses polynomials with vary

ing lower orders and with fixed degree reducing the number of operations required to 

O(N2). Prata, on the other hand, used a different recurrence relation which uses radial 

polynomials of lower orders, yet the complexity remains at O(N2). 

Therefore, one finds that bases which are based on (shifted) associated Legendre 

polynomials require less amount of CPU time when compared to the ones which are 

based on Zernike radial polynomials, especially for high orders. 

4.6 Representation of Analytic Reflectance Models 

Surfaces can be classified according to their reflectance properties. SiIlion et at. [83] 

introduced the classification of reflectance types into ideal diffuse, ideal specular and 

directional diffuse components. Diffuse, a.k.a Lambertian/body, reflection occurs when 

the surface reflects the incident light rays equally in all directions regardless of the 

incident direction, i.e. it has a constant BRDF and thus can be represented by a single 

scalar value (a.k.a. albedo). see Figure 4.6(a). On the other hand, the specular reflection, 

also called interface reflectance, is caused by mirror-like reflection at the surface air 

interface, i. e. it has a Dirac delta function as its BRDF and thus can be represented 

by the ratio of the outgoing radiation in the specular direction to the incoming one 

(a.k.a. specular reflectance). Figure 4.6(b) demonstrates the ideal specular reflection. 

In practice, the specular reflection can be described by two overlapping components: the 

specular spike and specular lobe. The specular spike occurs in a very narrow range of 

solid angles around the perfect specular direction (mirror-like) reflection and it is more 

dominant in the smooth surfaces. The specular lobe arises from the scattering reflection 

caused by the surface roughness , see Figure 4.6(c). Most surface materials exhibit a 
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4.6. Representation of Analytic Reflectance Models 

more elaborate directionality than these limiting cases [83]. As such directional diffuse 

reflectance is widely used to describe general reflectance while excluding the specular 

component, see Figure 4.6(d) . Such type of reflectance depend primarily on surface 

roughness , wavelength and the material electrical properties [83]. One way to add the 

specular effect is superimposing the specular component and the (directional) diffuse 

one, see Figure 4.6(e). 

The approximating orders of the proposed reflectance basis expansion of an ar-

bitrary BRDF primarily depend on the analytic form of the BRDF at hand, where 

smooth BRDFs require fewer coefficients for accurate representation compared to non-

smooth/complex ones. This section investigates the representation power of the pro

posed basis to approximate perfect diffuse and specular reflectance models. This anal

ysis is also extended to investigate the spectrum of physical analytic models of surface 

reflectance such as Torrance-Sparrow specular reflection model [12] for rough surfaces. 

Take note that one is mainly interested in physical (a.k.a. theoretical) models which try 

to accurately simulate reflectance using physics laws, as opposed to empirical models 

which provide a simple analytic formulation designed to mimic some reflection phenom-

ena, e. g. Phong [15] and Blinn [70] models. 

4.6.1 Ideal Diffuse Reflectance 

Ideal diffuse, i.e. Lambertian, surfaces have the property that their BRDF is independent 

of the incoming and outgoing directions. Formally, this model is given by a surface whose 

BRDF is independent of outgoing direction and, by the reciprocity principle, of incoming 

direction as well, i.e. fr(w~, w~) = fro Hence the radiance leaving the surface is angle

independent. This implies that a Lambertian surface will look equally bright from any 

direction, taking into account that brightness is proportional to surface radiance. 

For Lambertian surfaces, radiosity l is used to measure the radiance of the surface. 

The BRDF being independent of the incoming and outgoing directions; is commonly 

lIn general, if the radiance leaving a surface is independent of the exit angle, mdiosity is used to 
measure this leaving power, it is defined as the total power (energy per time) leaving a point x on a 
surface per unit area on the surface. It has units Wm - 2 It is obtained by integrating the surface 
radiance leaving the surface at that point over the whole exit hemisphere n~, where the radiance is 
multiplied by the foreshortening factor to turn the foreshortened area into an actual area. 
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4.6. Representation of Analytic Reflectance Models 

referred to as albedo Pd which is defined as follows; where d refer to diffuse. 

Pd 1 f (_I _I) ()' .1.-.1 
r Wi,Wo cos oUWo 

n' o 

r27r r l2 

ir Jo Jo cos ()~ sin ()~d()~d¢~ = 7r ir ( 4.22) 

Thus the BRDF of a Lambertian surface is related to surface albedo by a constant, 
i.e. , 

( 4.23) 

Since the Lambertian BRDF has no azimuthal dependence, it can be represented in 

terms of zonal-basis where q = O. The isotropic surface reflectance spectrum, i.e. the 

expansion coeffcients, can be obtained as follows. 

agr = r r i:(()D'J{gr(()~ ' ()~,f:::Jo4/)dW~dW~ 
Jn~ In; 

Ngr ~ in; in~ [eg(()De~(()~) + e~(()~)eg(()~)] iPo(6.¢')dw~dW~ 

NO Pd [1 eO(()1 )dW' 1 eO(()I)dW' pr~ roo p t t 
"n~ n; 

+ r eg(()~)dW~ r e~(()~)dW~l 
Jn~ In; 

(4.24) 

where (for proof refer to Appendix A: The Polar Integral of Shifted Associated Legendre 
Polynomials) , 

r eg(()~)dW~ ~ r eg(()DdW~ 
Jn~ In; 

p ~ (-l)k(p + k)! 
(-1) J27r(2p + 1) ~ (k + 1)(k!)2(p _ k)! 

{ 

20.5066 P = 0 

p>O 

Similarly it can be shown that, 

k=O 

r = 1 eO(()I)dWl ~ l eO(()I)d-1 
'>r roo r , w, 

n~ n; 
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4.6. Representation of Analytic Reflectance Models 

{ :5066 
r=O 

( 4.26) 
r>O 

Therefore, the only non-vanishing spectral component is at the zeroth-order, thus 

one zero-order basis is only needed to construct the Lambertian reflectance kernel, scaled 

L n~O , 

{ 

E!.sJ. r 2 p = 0 r = 0 

apr = 0 p> 1,1 < r ~ p 
( 4.27) 

Thus the DC component of the BRDF spectrum is simply the Lambertian reflectance 

function, hence the Lambertian model is the lowest-order approximation of any re-

flectance function. This complies with the conclusion presented in [21]. 

4.6.2 Ideal Specular Reflectance 

An ideal specular surface behaves like an ideal mirror, where radiance arriving along a 

particular incoming direction can only leave the surface along the specular direction w~. 

This direction is obtained by reflecting the incoming direction about the surface normal 

at the point of interest. This implies that the outgoing polar angle 8~ equals the incident 

polar angle 8~ and the incident and outgoing rays lie in a plane containing the surface 

normal. Therefore the surface radiance in the outgoing direction is the source radiance 

in the corresponding outgoing direction [93], i. e. the surface forms a virtual image of 

the light source2 . 

( 4.28) 

Comparing to the definition of surface radiance in Equation 2.12, the specular BRDF 

can be written as [93], 

( 4.29) 

According to Koenderink et at. [21], a specular reflectance kernel defined in Equa

tion 4.30 is used instead to define perfect mirror BRDF. 

IN80 = 1/ 2 

f S(8' ,/,' 8' ,/,') ~ o(8~ - 8~)o(¢~ - ¢~ + 7r) 
r 1.,,+,1.' 0''+'0 rv . ()' sm i 

( 4.30) 

2 Normally, a portion of the incoming radiance is absorbed by the surface. An ideal specular surface 
would absorb the same fraction of the incoming radiance for every direction. 
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4.6. Representation of Analytic Reflectance Models 

The spectral components (expansion coefficients) of the mirror-like reflectance kernel 

can be obtained as follows. 

as,qs 
pr 

(4.31) 

Since integration is performed over delta functions , the integral vanishes except for 

()' = ()~ = ()~ and ¢' = ¢~ = ¢~ - 1r. 

1211" 1 11"/2 
a;;'qS = ')(j;. (()', ¢' , ()' , ¢' + 1f) sin ()' d()' d¢' 

</>'=0 0'=0 
( 4.32) 

Due to the separability of HSH basis functions in Equation 4.5, using Equation 4.9, the 

integral can be factorized into polar and azimuthal parts as follows. 

a;;'qS Nf}. ~~:O iPq( ¢' )iPs( ¢' + 1f)d¢' 1o~~: e~( ()')e~( ()') sin ()' d()' 

+N7}. ~~:O iPs(¢' )iPq(¢' + 1f)d¢' 10:: e~(()')e~( ()' ) sin ()'d()' 

N7}. r /2 e~ ( ()') e~ ( ()') sin ()' d()' 
}O'=o 

[~~:O iPq(¢' )iPs(¢' + 1f)d¢' + ~~:O iPs(¢')iPq(¢' + 1f)d¢'] (4 .33) 

According to the definition of the azimuthal part of the HSH in Equation 3.12, the 
following relation can be inferred, 

q is even 
(4.34) 

q is odd 

Therefore, the azimuthal part of the integral in Equation 4.33 vanishes if q and s do not 

have the same parity, i.e. both are even or both are odd. Using the orthogonality of iPq 

functions in Equation 3.13 leads to , 
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{ (_l)S J;'" CI>q (¢') CI>s (¢/)d¢/ q+s even 

0 q+s odd 

{ ( - 1)S27r6qs q+s even 
= 

0 q+s odd 
( 4.35) 

Thus the integral in Equation 4.33 can be written as , 

q + seven 
( 4.36) 

q+s odd 

where 

r/2 

io e~(B')e~(B')sinB'dB' 

= N~q'N~q'l"'/2 p~ql(cosB')P~ql(cosB')sinB'dB' ( 4.37) 

Switching to the cartesian representation, one has z = cos B', thus dz = - sin B' dB', 

while the integration domain changes from [0, 7r /2] to [1,0]. Using the orthogonality 

relation of the shifted associated Legendre polynomials in Equation 4.2 and the definition 

of the normalization factor N~ql in Equation 4.4 yield, 

r/2 

io e~(B')e~(B') sinB'dB' 

_ (i\l:lql) 2 (r + Iql)! 6 - ~6 
- r (2r + 1)(1' - Iql)! pr - 27r pr 

( 4.38) 

Therefore, the spectral components of the mirror-like reflectance kernel can be written 

as, 

{ ~ as,qs = 2 6pr6qs q + seven 
pr 

o q+s odd 
( 4.39) 

We can note that all non-vanishing spectrum components have the same absolute 

value, i. e. the specular reflectance kernel has a flat spectrum as an analogy to the Fourier 

spectrum of an impulse. The simplicity of the result originates from the assumption of 

ideal specular surface, however, such an expression becomes more complicated when 

taking into consideration the off-specular reflection for rough surfaces [12]. 
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Figure 4.7(a) plots the approximations of the ideal specular reflectance kernel ob

tained by truncating the infinite series in Equation 4.11 at orders P = 0, I, 2, 4, 6 and 

8. For comparison purposes, Figure 4. 7(b) shows the approximation of the same kernel 

using the Zernike-based basis proposed by [21]1 . In both case, the lowest order ap

proximation leads to the Lambertian kernel, i. e. perfectly diffuse, where the reflected 

radiance is isotropically distributed and no specularity is observed. With higher orders, 

the radiance tends to reflect in the general direction of specularity, with narrower lobe. 

It can be observed from Figure 4.7 that with the HSH-based basis, the reflected 

radiance becomes more concentrated towards the specularity direction at lower orders 

when compared to the Zernike-based basis of [21], while being less sensitive to the abrupt 

truncation of the series causing less ringing effect. Further the reflected radiance have 

smaller spurious lobes in directions other than that of the perfect specular direction 

which vanish faster than that of the Zernike-based basis at higher orders. 

Figure 4.8 shows the reconstruction of the ideal specular lobe at different incident 

directions while truncating the approximating series at the 8th order. It is evident that 

the HSH-based basis provide a more compact approximation with lower ringing effect 

when compared to the Zernike-based basis. 

It is important to note that, as in Fourier synthesis, the width of the reconstructed 

specular lobe primarily depend on the order at which the series is truncated where an 

infinite number of terms causes the reconstruction of the perfect specular spike. This 

leads to a relation between width and order. 

Ideal specular surfaces rarely exist in the real world. Usually, radiation arriving in 

a particular direction leaves the surface in a small lobe of directions surrounding the 

specular direction, where the incoming radiance is shared over all outgoing directions 

within this lobe, see Figure 4.6(c). This appears as a bright blob, also called specularity, 

along the specular direction. Phong model [15] is commonly used to model the shape 

of the specular lobe, where the radiance leaving a specular surface is proportional to 

cosl(e~ - eD, where e~ is the exit polar angle, e~ is the specular polar angle which is the 

same as the incident polar angle. l is a parameter defining the width of the specular 

lobe, where larger values of l defines narrower lobes and sharper specularities. 

1 Refer to [21] for the expansion coefficients of the reflectance function. 

91 



(0 
~ 

z 

l 
z z z z 

y 
y y y \ y 

x x 

flewi, w~) p=o P=l P=2 P=4 P=6 P=8 
Ideal specular BRDF (a) Reconstruction of ideal specular BRDF using our Helmholtz HSH·based basis for different approximating orders 

z z 

0.2 D .~ 0.6 0.8 

y y y y y y 

p=o P=l P=2 P=4 P=6 P=8 
(b) Reconstruction of ideal specular BRDF using Zernike·based basis of Koenderink et al. for different approximating orders 

Figure 4.7: The reconstruction of the ideal specular reflectance kernel, where the light ray (in solid orange) is incident from direction g~ = 7f/ 4 and 
<p~ = 0 and the perfect specular direction is plotted in dashed-orange. The approximating series has been truncated at different orders P, using (a) the 
proposed HSH-based basis, versus using (b) Zernike-based basis of [21]. In both cases, the lowest order entails the perfect diffuse/ Lamberti an reflectance 
while the specular lobe begins to be apparent for orders 1 and higher. Notice the ringing effect due to the abrupt truncation of the approximating 
series, however the HSH-based basis has lower ringing effect compared to the Zernike-based basis having smaller spurious lobes in directions other than 
that of the perfect specular direction, vanishing faster than that of the Zernike-based basis at higher orders. 
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perfect specular direction is plotted in dashed-orange. The approximating series has been truncated at order P = 8, using (a) the proposed HSH-based 
basis, versus using (b) Zernike-based basis of [21]. It can be noted that the HSH-based basis provides a compact approximation for the specular lobe 
with lower ringing effect when compared to the Zernike-based basis. 
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4 .6. R e p resentation of Analytic R eflectance M o dels 

4 .6.3 Example of N on-Ideal Physical R eflectance M odels 

Pure diffuse or specular surfaces are non-existent. Many surfaces can be approximated 

by having a BRDF consisting of a diffuse/Lambertian component and a specular com

ponent, see Figure 4.6(e). Diffuse albedo and specular albedo are used to weight these 

components respectively in this combination. 

Despite the simplicity of the Lambertian model, Oren and Nayar [14] had proved 

that such a model provides an inaccurate approximation to the diffuse component of the 

surface reflectance. This was accomplished through a set of experiments carried out on 

real samples, such as plaster, clay, sand and cloth, demonstrating significant deviation 

from Lambertian behavior. 

The surface roughness model by Torrance and Sparrow [12] is built on the assump

tion that the surface is composed of a collection of long symmetric V-cavities, see Fig

ure 4.6(f). Each V-cavity has two opposing facets with the width of each facet is much 

smaller than its length. The roughness of the surface is specified using probability func-

tion for the orientations of the facets . In order to use geometric optics, the area of each 

facet is assumed to be much larger than the wavelength of the incident light beam, and at 

the same time much smaller than the area of the surface patch being projected onto one 

pixel, thus the facets covered by one pixel can be described by statistical distributions. 

The physically-based micro-facet model proposed by Torrance and Sparrow [12] is 

focused on glossy reflectance, where the V-cavity geometry implies that only facets facing 

in direction of the halfway vector w~ = (();t' ¢~) affect the BRDF, where the reflection 

from each facet is described by the Fresnel equation F( cos ()~; TJ) where TJ is the classical 

refractive index from geometric optics. The fraction of the facets oriented in the direction 

of w~ is described by the facet slope distribution function D(()~; a), where a is the 

root mean square slope of the micro-facets describing the surface's roughness . Whereas 

masking and shadowing of micro-facets are included in the geometric attenuation factor 

G(w~,w~). Thus the Torrance-Sparrow (TS) BRDF is given by[12], 

f
TS( -I -I) Pd Ps F( cos ()~; TJ)D(()~; a )G(w~, w~) w · w - - + - -'----'.!....--'--..,.-'-.!..:...--,'---'.......::....---=.. 
r t' 0 - 7r 7r cos ()' cos ()I 

t 0 

( 4.40) 

where Pd is the diffuse albedo, Ps is the specular albedo and the half-way vector is given 
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4.6. Representation of Analytic Reflectance Models 

by, 

( 4.41) 

An approximation for Fresnel formula for dielectrics used by Cook and Torrance [13] 

can be written as , 

F 1 (g - c)2 ( (c(g + c) - 1)2) c·n - - 1 + (, ) - 2(g+C)2 (c(g - c)+1)2 ( 4.42) 

with g2 = n2 + c2 - 1. 

The distribution function of TS-BRDF is used to model the facet slope distribution 

which is based on the physical theory of scattering electromagnetic waves, the distribu-

tion function is given by, 

D(e~ ; a) = :2 exp [- (~ r] ( 4.43) 

The geometric attenuation factor G ranges from 0 (total shadowing) to 1 (no shadow

ing) , defining how the incoming light beam interact with the surface locally; the entire 

beam can reflect , a portion of the outgoing beam can be blocked (masking), or a portion 

of the incoming beam can be blocked (shadowing). Thus the geometric attenuation 

factor is defined as, 

( 4.44) 

For analytical simplicity, a simplified 4-parameter TS model is widely used in computer 

graphics, where the aforementioned model is modified in the following aspects while 

maintaining the physical properties of surface reflectance [7]. The Fresnel for a refractive 

index'rJ is normalized to be 1 at normal exitance. While F depends on the angle w. r. t. the 

half-way vector; in practice, this angle is very close to e~, thus the Fresnel term becomes 

F(cose~;'rJ)/F(1 ; 'rJ). Ashikhmin [94] believed that the distribution function has much 

greater impact on surface appearance than the geometric attenuation term, as such the 

geometric term can be omitted for simplicity [7]. This also comply with the distribution

based BRDF [67] where the shape of the reflection is dominated by the distribution 

function. Assuming, without loss of generality, that the viewer/camera is located at 

a distance relatively large compared to the object size such that the viewing direction 

coincides with the z-axis of the global reference frame; normal-exitance (i. e. e~ = 0) can 
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4.6 . Representation of Analytic Reflectance Models 

be used to approximate the imaging process. Thus the half-way angle can be written 

as e~ = eU2 [7] since there is no azimuthal dependance in Equation 4.40. Hence the 

modified TS-BRDF can be written as, 

Pd + Ps 
n na2 cos e~ cos e~ 

F(cose~ ; 1J) [(e~)2l x exp - -
F(l ;1J) 2a 

( 4.45) 

Since there is no azimuthal dependance in Equation 4.45, i.e. TS is radially sym-

metric, it can be expanded using zonal basis of the isotropic Helmholtz HSH-based basis 

of 9-C~, centered at surface normal n(x), where q is set to zero. The zonal basis can be 

written as, 

1 (2p + 1)(2r + 1) 

2n 2 + 28pr 

x [pp(cose~)Pr(Cose~) + Pr(coseDPp(cose~)] ( 4.46) 

where Pp is shifted associated Legendre polynomials [20] with order p ~ 0. Thus TS

BRDF can be expanded in the subspace spanned by the isotropic Helmholtz HSH-based 

basis as, 

( 4.47) 

The spectrum coefficients of the diffuse component of TS model can be derived 

using the orthogonality relation of the shifted associated Legendre polynomials , while 

their series representation can be used for the spectrum of the specular component. 

The spectrum coefficients can be obtained as (for proof refer to Appendix B: Torrance 

Sparrow Spectrum Coefficients), 

( 4.48) 

where, 

(2p + 1)(2r + 1) 
2 + 28pr 

[ 
8ro (') 8pO (I)] 

2r + 1 Ap eo, a + 2p + 1 Ar eo , a (4.49) 
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4.6. Representation of Analytic Reflectance Models 

with 

( 4.50) 

This means that apO = aop, thus a single index for the spectrum coefficients can be used 

where, 

p=o 
(4.51 ) 

p>o 

Hence TS-BRDF can be represented as, 

00 

f;S (w~, w~) = ao((j~) + 2 L ap(e~)9{go(w~, w~) ( 4.52) 
p=l 

ote that the spectrum coefficients depends on the 4-parameters of TS model. Using 

Merl skin reflectance BRDF [95] which provide TS parameters of six different skin types 

(from very white to black) , the harmonic spectrum is investigated in case of normal-

exitance of each individual sample of skin BRDFs where Figure 4.9 shows the graphical 

representation of the first thirteen coefficients (up to the 12th order) averaged over skin 

types. he approximation accuracy, i. e. cumulative energy, of the pth order expansion 

as a function of the harmonic order is shown. It can be observed that the spectrum of 

TS model decays along the harmonic order. While the approximation accuracy exceeds 

99% using the 5th order approximation. It is worthwhile to note that more spectrum 

coefficients are needed due to the specular component of TS model, while the diffuse 

component is fully encoded in the zeroth order approximation. 

Using the skin BRDF parameters of Merl Skin BRDF database[95], Figure 4.10 

compares the average approximation accuracy of Torrance Sparrow reflection model 

under distant illumination using the proposed isotropic basis in comparison to bases of 

Westin et al. [19], Gautron et al. [20], Koenderink et al. [21], Habel and Wimmer [22] 

and the Helmholtz basis of Koenderink et al. [21] where their isotropic version is used. 

The average is taken over 100 samples for each skin type at different facial regions while 

the BRDF spectrum is obtained using Monte Carlo integration. While the proposed 

basis provide a comparable accuracy to the Helmholtz basis of Koenderink et al. [21], 

one can observe that the former basis shows higher approximation accuracy especially 

at lower truncating reflectance orders compared to other bases. It is important to note 
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Figure 4.9: A graphical representation of the first thirteen harmonic expansion coeffi
cients of Torrance Sparrow reflection model under distant illumination using skin BRDF 
parameters of Merl Skin BRDF database[95J. Note that TS acts as a low pass filter , 
where the 5th order expansion is sufficient to encodes more than 99% of the BRDF 
energy content regardless of the skin type. 

that the spherical basis Westin et al. [19J shows the lowest accuracy compared to the 

hemispherical ones, this justifies the need of a representation which comply with the 

geometric structure of reflectance functions. As such, the proposed basis provide a 

compact BRDF representation requiring fewer coefficients to accurately model surface 

BRDFs. 

4.7 Modeling Scattered Reflectance Data 

Scattered BRDF data might violate the Helmholtz reciprocity property; this can be 

filtered out through the process of projecting them onto the subspace spanned by the 

HSH-based basis , where the reciprocity property is preserved in the least-squares sense. 

Furthermore, in many practical cases, reflectance data are only available for plane

of-incidence geometries, where the incident and outgoing directions are coplanar with 

the surface normal. The reflectance spectrum components provide a phenomenological 

extrapolation from the available data in a unique manner [21J. This is used implicitly 

when assuming a surface to be Lambertian with diffuse albedo obtained from few or even 

single measurements; this is equivalent to taking the zero-order approximation of the 

reflectance kernel. Thus using the reflectance spectrum components can be considered 

as a way of refining the reflectance kernel representation beyond the zero-order. 

This section further evaluates the accuracy and compactness of the HSH-based basis 
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o 1 2 3 4 5 6 7 8 9 
Reflectance Order P 

Figure 4.10: The average approximation accuracy of Torrance Sparrow reflection model 
under distant illumination as a function of the truncating reflectance order P. the skin 
BRDF parameters of Merl Skin BRDF database[95] are used. The average is taken over 
100 samples for each skin type at different facial regions. The BRDF spectrum is ob
tained by projecting the TS function using Monte Carlo integration onto the subspace 
spanned by the proposed isotropic basis in comparison to bases of Westin et al. [19], 
Gautron et at. [20]' Koenderink et at. [21], Habel and Wimmer [22] and the Helmholtz 
basis of Koenderink et at. [21] where their isotropic version is used. Note that the pro
posed basis provide higher approximation accuracy at lower reflectance orders compared 
to other bases, hence the proposed representation is capable of providing a compact rep
resentation of reflectance functions. 

using BRDF measurements which are directly measured from real surfaces. This work 

makes use of BRDF databases which are available, free of charge, for academic purpose. 

In this dissertation, two BRDF databases are used for reflectance modeling. The first 

one is the database provided by Mitsubishi Electric Research Laboratories (Merl) [17] 

containing isotropic materials. The second one is offered by Columbia University and 

Utrecht University named as CUReT database [10] containing a mix of isotropic and 

anisotropic materials. 

4.7.1 Experimentation on Isotropic-Merl Reflectance Data 

Merl reflectance data [17] is based on 100 isotropic materials to represent a wide variety 

of surface materials with different diffuse and specular reflection properties. Based on 

uniform spacing, 1,458,000 BRDF measurements are provided in 3D angular space using 

half-angle parameterization of Rusinkiewicz [96]. These BRDF samples are used as a 

lookup table since they are dense enough. 

For each Merl material, Figure 4.11 compares between the approximation accuracies 
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Figure 4.11: The approximation accuracy of Merl database materials [17] for different 
truncating reflectance orders P. The reflectance spectrum for each material is obtained 
by projecting randomly drawn Merl BRDF measurements using Monte Carlo integra
tion onto the subspace spanned by the proposed isotropic basis in comparison to bases 
of Westin et al. [19], Gautron et al. [20], Koenderink et al. [21], Habel and Wimmer 
[22] and the Helmholtz basis of Koenderink et al. [21] where their isotropic version is 
used. The sampling points are drawn from the cartesian product of the incoming and 
outgoing (hemi)spheres (according to the basis definition). It can be observed that 
the proposed basis provides the highest approximation accuracy for most of the Merl 
materials especially at reflectance order P = 8. 
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Figure 4.12: Required minimum reflectance order for the materials in the Merl database 
[17] when using the proposed isotropic basis. The blue, green and red bars show the 
required reflectance order P to achieve approximation accuracy of 95%, 98% and 99%, 
respectively. 

provided by different isotropic reflectance bases in contrast to that of the proposed 

isotropic basis with different truncating reflectance orders P. Some materials show 

extreme specular properties such as chrome-steel where it displays low approximation 

accuracies in Figure 4.11 at lower reflectance orders regardless of the reflectance basis. 

In contrast, diffuse materials such as beige-fabric shows high approximation accuracies 

at lower reflectance orders. Nonetheless, in general, one can observe how the proposed 

basis provide the highest approximation accuracy for most of Merl materials especially 

at P = 8, while the spherical basis shows the worst accuracy for BRDF representation. 

These observations hold for both diffuse and specular materials. 

Figure 4.12 shows the required minimum truncating reflectance order to achieve 

specific level of accuracy when using the proposed isotropic basis. It can be noted that 

all Merl materials can be represented with accuracy of 95% with reflectance order less 

than or equal P = 7, while diffuse materials such as fabric materials can be represented 

with accuracy of 99% with reflectance order less than or equal P = 4. 

101 



1-Pti. 
2 - Po1yes~.r 
3 - T.rryclotb 
4 -RoUCh-PI •• dc 
S-Lutb.r 
6 - Sandpaper 
7-Velvet 
8 - P.bbles 
9 - ProSled-Glass 
10-Pla ....... 
U-Plut ... ·b 
12 - Rouch-Paper 

4.7. Modeling Scattered Reflectance Data 

--. Westin et al 

30 
Malerlallndex 

- . Gautron ct aI_ 
.• Koenderink et al. 

Habel and Wimmer 

50 

- . Koenderink et al.(Helmholtz Version 
- . Proposed 

15 - Aniacial-Grus 25 - Quarry-Til. 37 - Bliclt .... 
14 -Root-Shinel. 26-1.00& 3& -1tibMd-Paper 
15 - Poil 'l:1-Ins .... don 39 - Hum.....sldn 
16-Cork 28 - Crumpled-Paper 40- Straw 
17 -RoUCh-Til. 29 - (2-zoomed) 41-Brick-b 
18-R ....... 30 - (11-z00med) 42 - Corduroy 
19 - R ..... b 31 - (12-zoomed) 43 - Salt-Crystals 
20 - Sryrolosm 32 - (1~oomed) 44 - Linen 
21-Spoac· 33 - Sla ...... 43 - Conc ........ 
22 - Lambswool 34- Slat.b 46 - Conon 
23- I.ettuc.LuI lS-Sph.res 47 - Stones 
24 -Rabbit-Pur 36 - Limeston. 48 - Bro,,-n-B ... d 

60 

49 - COllcret.b 
SO-COllcret ..... 
S1-Com-Husk 
52-Whi •• B ... d 
»-Plan. 
54-Wood ... 
»-O ....... Peel 
M - Wood-b 
S7 - P .. cock-P .. tb .. 
SS -T ... Buk 
S9-Craclt ..... 
60 - Cracker-b 
61-Moss 

Figure 4.13: The approximation accuracy of CUReT database materials [10] for differ
ent truncating reflectance orders P. The reflectance spectrum for each material is ob
tained by projecting randomly drawn CUReT BRDF measurements using Monte Carlo 
integration onto the subspace spanned by the proposed basis in comparison to bases of 
Westin et al. [19], Gautron et al. [20], Koenderink et al. [21], Habel and Wimmer [22] 
and the Helmholtz basis of Koenderink et al. [21]. Note that BRDF sparse measure
ments are interpolated at the drawn samples using the provided fitted measurements. 
The sampling points are drawn from the cartesian product of the incoming and outgoing 
(herni)spheres (according to the basis definition). It can be observed that the proposed 
basis provides the highest approximation accuracy for all CUReT, while the spherical 
basis [19] provides the lowest accuracy compared to others. 
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Figure 4.14: Required minimum reflectance order for the materials in the CUReT 
database [10] when using the proposed basis. The blue, green and red bars show the 
required reflectance order P to achieve approximation accuracy of 95%, 98% and 99%, 
respectively. 

4.7.2 Experimentation on CUReT R eflectance Dat a 

T he CUReT database [10] consists of 61 BRDFs with sparse measurements of 205 mea-

surements each over varying incident and outgoing directions. It also offers a BRDF 

parameter database which fits the sparse measurements to the Koenderink reflectance 

model [21]. In the presented experimentation, the parameter database is used since the 

samples are not dense enough to be used directly as a BRDF lookup table. One opts 

for using the anisotropic parameters since this database contains anisotropic materials. 

Figure 4.13 shows the approximation accuracy for each CUReT material. Material 

spectrums are computed based on different anisotropic reflectance bases compared to 

that of the proposed anisotropic basis. It can be observed that such basis provide the best 

approximation accuracy levels for all CUReT materials especially with higher orders. 

It is again the spherical basis which provide the worst accuracy levels compared to the 

hemispherical ones. otice that an anisotropic material such as vevlet is represented 

with higher approximation accuracy using the proposed basis when compared to others. 

103 



4.8. Directional Hemispherical Reflectance 

Figure 4.14 presents the required minimum truncating reflectance order to represent 

CUReT materials using the anisotropic basis where all the materials can be represented 

with accuracy of 99% with P ~ 8. 

4.8 Directional Hemispherical Reflectance 

The light leaving many surfaces is almost independent of the exit angle [8]. With the reci

procity property maintained, this can be rephrased as being independent of the incident 

angle. This gives an answer to what fraction of incident light is reflected. The fraction 

reflected primarily depends on the directional distribution of the incident light. Hence, 

surface reflectivity can be measured by the directional hemispherical reflectance function, 

where one direction is involved, instead of using the bidirectional reflectance distribu

tion function depending on two. Directional Hemispherical Reflectance fr(w;O,W~) of a 

surface is defined as the fraction of the incident irradiance in a given direction that is 

reflected by the surface, irrespective of the direction of reflection. It is dimensionless 

with values ranging from 0 to 1. It is obtained by integrating the radiance leaving the 

surface over all directions and dividing by the irradiance in the direction of illumination. 

Representing BRDF spectrum as a function of either incident or outgoing/reflected 

direction is usually used to accelerate the evaluation of the reflectance integral in the 

image irradiance equation which forms the bottleneck in real time rendering. It is 

worth mentioning that assuming dependence on either incoming or outing directions 

implicity assumes low frequency content on the respective domain and hence requires 

fewer coefficients. 

4.8.1 Directional Hemispherical Basis 

In order to translate the four-dimensional problem into a two-dimensional one, for a fixed 

incident direction, the BRDF is a hemispherical function of the outgoing direction 1, thus 

to obtain a better insight on the representation power of the proposed basis and how 

the approximation order affects the function reconstruction accuracy, it is helpful to 

derive the basis in such a frame. For a fixed incident direction w~o, the BRDF expansion 

coefficients can be written as, 

a~(w~O) = r fr(w~O,W~) ( r JC~(W~'W~)dW~) dW~ 
10.'0 Jn~ 

--~------------------~~ 
IThis is a lso valid if the outgoing direction is fixed due to the Helmholtz reciprocity property. 

( 4.53) 
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4.8. Directional Hemispherical Reflectance 

where, 

( 4.54) 

Using the orthonormality of HSH basis Equation 4.6 and the fact that H8(wD = k, 
v27r 

one has, 

T hus Equation 4.54 can be simplified as, 

y'2;- r Hg(wDH8(wDdW~ 
Jo~ • 

y'2;-8no8mo ( 4.55) 

( 4.56) 

Hence, the BRDF expansion coefficients under fixed incident light direction can be 

written as, 

If p = 0 and q = 01, using Equation 4.10, 

OS(~'o) _ { aOr wi -

and if p =1= 0 and q =1= 0, 

f f (~' 0 ~' ) -1.---. ' Jo' r wi ,Wo UWo o 

( 4.57) 

r =1= 0, 8 =1= 0 
( 4.58) 

r = 0,8 = 0 

r = 0,8 = 0 
( 4.59) 

r =1= 0, 8 =1= 0 

We can observe that the reciprocity property is also maintained in t he expansion 

ffi . h qO Oq Th £ I h D coe clents, were apo = aop ' erelore, as an ana ogy to t e r ourier series expansion, 

I H8(w~) = k 
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4.8. Directional Hemispherical Reflectance 

the BRDF at a given incident direction can be written as, 

OO( -'O)l1.foo( -'0 _I) aOO w i JlOO Wi ,Wo 
00 p 

+ L L a~g(w~O)9{~g(w~O,w~) 
p=l q=-p 
00 r 

"" OS(-'O)I1.fOS(-'O - I ) + ~ ~ aOr Wi JlOr Wi ,Wo 

r= l s=-r 

(4.60) 

Using the reciprocity property maintained by the expansion coefficients and the basis 

functions, the two series in Equation 4.60 are equal, 

(4.61) 
r= l s=-r 

where 

1 [HO( w'O) HO(w') + HO(w'O) HO(w')] 
';2 + 28

00
8

00 
0 tOO 0 tOO 

~ [_ 1 __ 1_ + _1 __ 1_] 
2 .j'j;IT.j'j;IT ~ ~ 
1 

27f 
( 4.62) 

and for r ::::: 1,8 E [-r, r ] one has, 

( 4.63) 

Hence, the HSH-based basis under fixed incident direction can be defined as, 

r = 0,8 = 0 
( 4.64) 

r ::::: 1,8 E [-r,r] 

Therefore the BRDF can be represented in terms of the expansion coefficients ag~ in 

Equation 4.58 as follows, 

00 r 

f (-'0 - I) 1 00(-'0) 1"" OS(-'O) [HS(-/) HS(-'O) ] 
r w i ,Wo = 27faoo Wi + 2ft ~s~r aOr wi r Wo + r Wi (4.65) 
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4.8. Directional Hemispherical Reflectance 

Considering the Rth order function approximation, the approximation accuracy (or 

the energy captured by the Rth order approximation) of the BRDF representation under 

fixed incident direction using HSH-based basis can be defined as (refer to Appendix C: 

Approximation Accuracy of Directional Hemispherical Basis for proof), 

ACCB(R;w~O) = 
(a88 (w;O)f 

r r [f (-/ 0 -, ))2 ...... u .... , 
J n~ J n~ r Wi ,Wo u,wi UUJo 

( OO( -' 0) ) 2 "R "r 
aOO Wi + L.."r= l L.J s=- r 

R = O 

R > O 

( 4.66) 

4.8.2 Experimentation on Compact Description of BRDF Physical 

models 

This subsection investigates the representation power of the proposed directional hemi-

spherical basis to approximate physical analytical models of BRDF such as Oren-Nayer 

BRDF [14] and Cook-Torrance BRDF [13]. They are physically-based micro-facet mod-

els where the former models facets as perfectly diffuse while the latter is focused on 

glossy reflectance. 

Consider a BRDF model with a parameter set :P = {Pl ,P2 , ... ,Pd } whose incoming 

hemisphere being sampled, where :PeT = {Pd , Ps , m, np and :PON = {Pd , a-}2 for Cook-

Torrance and Oren-Nayer BRDFs respectively. The average amount of energy captured 

by the Rth order approximation, i . e. average approximation accuracy, can be expressed 

as, 

( 4.67) 

Thus in order to study the effect of a specific parameter Pk, one can marginalize the 

average approximation accuracy to become a function of the parameter Pk. In order 

to assess the representation power of the proposed basis, the parameter-set domain of 

In is the classical refractive index from geometric optics, m is the root mean square slope of the 
micro-facets describing the surface's roughness , ps is the surface specular reflectivity and Pd is the surface 
diffuse reAect ivity. 

2 (7 is the standard deviation of the Gaussian distribution used to represent surface roughness and 
Pd is the surface diffuse reAectivity. 
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4.8. Directional Hemispherical Reflectance 

Cook-Torrance is sampled based on the statistics for Torrance-Sparrow BRDF model , 

provided by the MERLjETH skin reflectance database developed by Weyrich et at. [95], 

which was derived from measuring the skin reflectance of 156 subjects with varying age, 

gender and race. In the presented experimentation, the distribution of surface roughness 

m and specular reflectivity Ps are sampled, where p,(m) = 0.3032, std(m) = 0.0891, 

p,(Ps) = 0.3753 and std(ps) = 0.1655, while Pd was taken as 1 - Ps and skin refractive 

index n = 1.4433 according to [97]. On the other hand, the domain of surface roughness 

parameter for the Oren-Nayar BRDF was uniformly sampled where (j E [0,1] where unit 

diffuse albedo is assumed. l 

• j -"0,,=O.J 
t:~~jj .... ;;;;;i""'_! _,..0,,=11.4 

: _+0,,=0.5 
j -"'0,,=8.6 ) -"0 .. =11.7 . 
j -,,0,,=0.8 
1-.-0=0.9 . : 

0.90 2 4 6 8 10 Il 14 16 18 20 22 U 
Approximation RefI_ce OnIH R 

(a) 

O.950~-!-2 ~4-6~-!-8~IO:--:I:':2 ~14-!16~1:':8-:':20-!22~24 
Approximation ReOec .. nce OnIer R 

(b) 

Figure 4.15: The Oren-Nayar BRDF approximation accuracy of the Helmholtz HSH
based basis as a function of the approximating order, where in (a) each curve corresponds 
to the average approximation accuracy over all sampled incident directions for several 
values of surface roughness, and in (b) it is compared to Zernike-based basis proposed by 
Koenderink et al. [21], where the mean and standard deviation were taken over eN((j). 

Figure 4015(a) shows the Oren-Nayar BRDF approximation accuracy of the Helmholtz 

HSH-based basis as a function of the approximating order R for several values of sur-

face roughness (j. Each curve corresponds to the average approximation accuracy over 

sampled incident directions. It can be observed that ; (1) for zero surface roughness , 

the Oren-Nayar BRDF boils to a Lambertian model whose total energy is captured 

by the zero-order approximation, (2) as the surface roughness increase, zero-order ap

proximation captures less energy, thus with rougher surfaces, higher orders are needed 

to maintain a specific level of accuracy, (3) beyond the sixth order, excluding smooth 

surfaces, the surface roughness parameter has insignificant impact on the Oren-Nayar 

BRDF approximation accuracy. Figure 4015(b) shows mean and standard deviation of 

IWe used Monte Carlo integration to evaluate t he expansion coefficients of the BRDFs. 
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4.8. Directional Hemispherical Reflectance 

ACCB(R;O")} of the Oren-Nayar BRDF for the Helmholtz HSH-based basis in contrast 

to the basis based on Zernike polynomials, as functions of the approximation order 

R. It can be observed that (1) both basis have the same zero-order accuracy, since 

the zero-order basis corresponds to the BRDF DC component , (2) Zernike-based basis 

outperforms HSH-based basis up to the second order, after which HSH-based basis per

formance grows faster than that of the Zernike-based basis. This emphasizes the effect 

of reflectance basis at all combination of orders and degrees as in the case of HSH when 

compared to Zernike polynomials. 

In case of Cook-Torrance BRDF, the grazing incident angles represents a problem 

in the BRDF construction, where the shape of the BRDF varies from Lambertian-like 

shape in case of very low specular reflectivity to specular-lobe in case of high specular 

reflectivity. This introduces a source of discontinuity/non-smoothness in the BRDF. 

Since harmonic-based basis are compact in the frequency domain, they are capable of 

representing smooth BRDFs with fewer non-zero coefficients when compared to complex 

BRDFs. It has been known that both SH and Zernike polynomials require large number 

of basis to represent specular BRDFs [96J. Since HSH is an adapted version of SH, it 

is anticipated to behave similarly. Rusinkiewicz [96] proposed a change of variables to 

re-parameterize the BRDF in order to yield efficient decompositions/representations of 

specular BRDFs, this can be viewed as one of the potential future efforts. This work 

investigates the proposed reflectance basis in the original/intuitive parameterizations of 

incident and outgoing angles. For purposes of comparison to Zernike-based basis, one 

has two situations; (1) non-grazing and (2) grazing incident angles, where throughout the 

experimentations, an incident angle of B~ > i~ was considered to be a grazing incident 

angle. Figure 4.16 shows an example of fitting HSH-based basis versus the Zernike-based 

ones on a Cook-Torrance BRDF with high surface specular reflectivity. 

Figure 4.17 shows the approximation accuracy of the Cook-Torrance BRDF in case of 

non-grazing and grazing incident angles, where each curve shows the mean and standard 

deviation of ACCB(R; Ps, m). One can observed that the HSH-based basis functions 

provide better representation when compared to the Zernike-based ones in case of non

grazing incident angles , however, this is not the case for grazing angles where specularity 

perturbs the smoothness of the BRDF, one way to tackle such a problem is to re

parameterize the BRDF as proposed by [96J. 

In the following , discussion is restricted to the case of non-grazing incident angles. 
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- 0ricinal BIDP 
--- IHocu~"" BRDF • HSH·based Basi! 
_.- IHocutructecl BRDF · Ztmib-based Bali. 

R=<2 

R=<4 R=<8 R=< 16 R=< 24 

Figure 4.16: Example of fitting HSH-based basis (dashed red) versus the Zernike-based 
ones (dashed blue) on a Cook-Torrance BRDF (solid green) with high surface specular 
reflectivity, where Ps = 0.458, m = 0.125 , Bi = 7r /3 , ¢i = O. Notice how HSH-based basis 
provide better fitting at lower orders when compared to the Zernike-based basis. For 
visualization purposes, the incident plane is plotted and dashed orange line represents 
the light incident direction. 
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Figure 4.17: The Cook-Torrance BRDF approximation accuracy ofthe Helmholtz HSH
based basis compared to Zernike-based basis proposed by Koenderink et al. [21] as a 
function of the approximating order, where the mean and standard deviation were taken 
over eN(ps, m): (a) non-grazing incident angles, where Bi E [0, I~], (b) grazing incident 
angles, where Bi > I~. An example of the BRDF is visualized for the two cases where 
m = 0.2, n = 1.44, Ps = 0.6 and Pd = 0.4. 

Figure 4.18 illustrates the effect of surface roughness of Cook-Torrance model on the 

approximation accuracy of HSH-based basis, Figure 4.18(a) , versus Zernike-based ones, 

Figure 4.18(b) , where each curve represents the average approximation accuracy taken 

over several values of surface specular reflectivity. In general, the rougher the surface, the 

less specular it looks, this results in having more energy captured at lower approximation 

orders. In the close-up views, it can be observed that the effect of surface roughness 

on the approximation accuracy decreases at lower orders in case of HSH-based basis 
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when compared to the Zernike-based ones. In other words, Zernike-based basis are 

more sensitive to surface roughness parameter of the Cook-Torrance model. 
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Figure 4.18: The Cook-Torrance BRDF approximation accuracy of (a) the Helmholtz 
surface reflectance basis, (b) Zernike-based basis, as a function of the approximating 
order, where each curve corresponds to the average approximation accuracy over all 
sampled incident directions for several values of surface roughness. 

Figure 4.19 shows the effect of surface specular reflectivity on the approximation 

accuracy of HSH-based basis Figure 4.19(a) versus that of Zernike-based basis Fig

ure 4.19(b) , where each curve represents the average approximation accuracy taken over 

several values of surface roughness. With lower specular reflectivity, the performance of 

the approximation accuracy tends toward the Lambertian case, where all the function's 

energy is captured with the zero-order coefficient. This performance degrades with more 

specular reflectivity. It can be observed that the Helmholtz basis captures more function 

energy at lower orders when compared to Zernike-based ones. In the close-up views, the 

sensitivity of the Zernike-based basis to the specular reflectivity can be noticed, while 

on the other hand the effect of the specular reflectivity on the approximation accuracy 

decreases at lower orders in case of HSH-based basis. 

4.9 Summary 

This chapter proposed a complete, orthonormal basis to provide a compact and efficient 

representation for surface bidirectional reflectance distribution function (BRDF), which 

is defined on the cartesian product of two hemispheres. The proposed basis, which are 

defined in terms of hemispherical harmonics (HSH), preserve the Helmholtz reciprocity 

111 



_ ... p. =0.125 

_ .... p. = 0.2J6J8 

-+-. p. = 0.34775 

_" ,p. = 0.45913 

2 4 
Approxlm.llon RofIecbnce Order R 

(a) 

4.9. Summary 

_ ... p. =0.125 

_ .... p. = 0.23638 

-+-. p. = 0.34775 

-",p. = 0.45913 

"==~=""""="",, _ ... p. = 0.5705 

4 6 8 ro U H ~ ~ W ~ ~ 
Approxlm.llon RofIecbnce Order R 

(b) 

Figure 4.19: The Cook-Torrance BRDF approximation accuracy of (a) the Helmholtz 
surface reflectance basis, (b) Zernike-based basis, as a function of the approximating 
order, where each curve corresponds to the average approximation accuracy over all 
sampled incident directions for several values of specularity reflectivity. 

property of BRDFs while avoid the computational complexity inherited from Zernike 

polynomials that are usually used to construct hemispherical basis. An analytical as well 

as experimental justification was presented such that for a given truncating reflectance 

order, the proposed hemispherical basis provide better approximation accuracy of the 

BRDF when compared to similar bases in literature. While hemispherical basis provide 

higher approximation accuracies when compared to spherical ones, basis maintaining 

helmholtz property was observed to provide higher accuracy levels compared to others. 

The closed form of the proposed basis was presented in case of isotropic and directional 

hemispherical reflectance. The proposed basis was further validated using scattered 

reflectance data which might violate the Helmholtz reciprocity property; where such 

property is maintained in the least-squares sense in the process of fitting the BRDF 

measurements to the HSH-based basis. The basis was also validated using micro-facet 

physical BRDF models: Oren-Nayar for diffuse rough surfaces and Torrance-Sparrow 

and Cook-Torrance for specular rough surfaces. Based on the fact that associated Leg

endre polynomials are defined for all combinations of polynomial order and degree in 

contrast to Zernike polynomials, HSH-based basis showed high BRDF approximation 

accuracy at lower orders. It was observed that the significance of BRDF parameters de

cayed with the approximation order versus the case of Zernike-based basis. The grazing 

incident angles represented a problem in case of Cook-Torrance BRDF which introduces 

a source of non-smoothness in the BRDF, where the HSH-based basis functions provide 
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better representation when compared to the Zernike-based ones in case of non-grazing 

incident angles, however, this is not the case for grazing angles. Modeling measured 

reflectance was further investigated where the Helmholtz reciprocity might be violated. 

It was shown that the proposed basis captured almost all diffuse and specular materials 

with reflectance order less than P = 10. Ongoing efforts are directed towards handling 

grazing incident angles using BRDF re-parameterization. 
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CHAPTER 5 

IMAGE IRRADIANCE HARMONICS 

Phenomenological appearance models capture surface appearance through mathemat

ical modeling of the reflection process. Theoretically, the space of all possible images 

of a fixed-pose object under all possible illumination conditions is infinite dimensional. 

Nonetheless, due to their low-frequency nature, irradiance signals can be represented us

ing low-order basis functions. Discounting subsurface scattering and surface emittance, 

this work seeks to address the question; how to compactly and accurately represent 

image irradiance under unknown general illumination, given that a surface point sees its 

surrounding world through the local upper hemisphere oriented by the surface normal 

at this point. This chapter formulates the image formation process of isotropic surfaces 

under arbitrary distant illumination in the frequency space while addressing the physical 

compliance of hemispherical basis for representing surface reflectance, e.g. Helmholtz 

reciprocity and isotropy. The term irradiance harmonics is also defined which enables 

decoupling illumination and reflectance from the underlying geometry and pose. This 

work provides a closed form of the energy content being maintained by different re

flectance modes of the proposed irradiance harmonics. Since specular materials tend to 

require more basis functions when compared to diffuse ones, the presented harmonics 

captures same cumulative energy content , by providing larger number of orthogonal ir

radiance basis, at lower illumination orders when compared to similar basis in literature. 

5.1 Introduction 

The crux of Physics-based vision [1] is inferring information about an image's contents 

based on modeling the underlying physical process of image formation. However, such a 

problem is under-constrained since the formation process involves numerous unknowns 
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in contrast to the available information at hand, i. e. image brightness value per pixel. 

Thus information inference based on shading commonly involves adding assumptions to 

the image formation process such as distant illumination and homogenous reflectance. 
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Figure 5.1: (a) An object's surface is illuminated under distant lighting function defined 
on the global sphere. (b) An in-depth view of a surface patch showing surface normals 
at each surface point. Under the assumption of non-emitting surfaces, a surface point 
only sees the surrounding environment through the local upper hemisphere oriented by 
the surface normal at this point, thus the reflection integral can be defined over the 
incident local hemisphere where e~ E [0,7r/2]. (c) A zoom-in view at a surface point x 
seeing its surrounding world through a unit hemisphere [2' centered at the point and 
oriented by the surface normal ii at that point. Using spherical coordinates, a light 
ray incident to the point x is defined by its unit direction w~ : (e~, ¢~) , subtending an 
incident solid angle dW~. Similarly, an outgoing/reflected light ray is defined by its unit 
direction w~ : (e~, ¢~), subtending an outgoing solid angle dW~. (d) Visualization of up-to 
3rd order of the proposed isotropic Helmholtz surface reflectance basis at an incident 
direction w~ : (7r /3 , 0). The order p runs from top to bottom while the associated order 
r runs from left to right. The azimuthal order q, or known as degree, also runs from left 
to right for each order r . 

Appearance is the net result of the surface reflectance characteristics when exposed 

to illumination. Theoretically, due to the arbitrariness of the lighting function , the 

space of all possible images of a fixed-pose object under all possible illumination condi

tions is infinite dimensional [25]. Yet , statistical modeling is widely devised to provide a 

low-dimensional linear subspace of image irradiance by performing Principal Component 

Analysis (PCA) on a large set of images under various imaging conditions [27]. However, 

this approach suffers from the need of special acquisition setup to control and measure 

the lighting function while keeping the camera and the object fixed. In addition, the 
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constructed subspace is biased towards the sampled illumination directions. A problem 

which can be alleviated by using a "large-enough" image ensemble rendering numer

ical methods intractable due to the curse of dimensionality. Moreover, either surface 

reflectance properties are assumed or known a-priori. 

On the other hand, appearance models can be constructed using phenomenologi

cal models which capture variations of surface appearance with respect to illumination 

conditions and surface reflectance properties through mathematical abstraction of the 

reflection process. In particular, the harmonic expansion of the image irradiance equa

tion can be used to derive an analytic subspace to approximate images under fixed pose 

but different illumination conditions [6, 11 , 25 , 44]; it has been shown that surfaces acts 

as a low-pass filter on the incident illumination [4, 5], yielding a band-limited reflected 

light, introducing the frequency-space representation of image irradiance. 

Discounting subsurface scattering and surface emittance, this work seeks to address 

the question; how to compactly and accurately represent image irradiance under un

known general illumination, given that a surface point sees its surrounding world through 

the local upper hemisphere oriented by the surface normal at this point , see Figure 5.l. 

This work is after deriving an analytic form for the image irradiance basis which spans 

the subspace representing the set of images under all possible illumination conditions of 

non-Lambertian surfaces; taking into account that hemispherical functions present dis

continuities at the boundary of the hemisphere when represented in the spherical domain 

[20], demanding more spectrum coefficients for accurate representation. In contrast to 

the case where spherical harmonics (SH) is used to represent hemispherical reflectance 

kernels [6, 11], the physical compliance of the hemispherical basis is addressed for rep

resenting surface arbitrary bidirectional reflectance distribution functions. 

The previous chapter addressed the physical compliance of reflectance hemispherical 

basis by defining a Cartesian product of hemispherical harmonics (HSH) to provide 

a compact and accurate representation for arbitrary reflectance, while satisfying the 

Helmholtz's law of reciprocity [52]. This chapter defines the image irradiance basis 

(or what is termed as irradiance harmonics) based on the proposed reflectance basis. 

While maintaining isotropy and reciprocity properties reduces drastically the number of 

basis, the proposed isotropic Helmholtz reflectance basis contains more basis functions 

than the widely used Zernike-based ones [32] at a given approximating order. This is 

based on the fact that the set of associated Legendre polynomials is distinguished by 
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the property that it contains a polynomial for every combination of order and degree 

[82], compared to Zernike polynomials which are restricted to even differences between 

polynomial order and degree. This chapter proposes a compact representation of image 

irradiance of isotropic surfaces by adopting frequency domain based representation for 

the purposes of illumination modeling and image analysis. 

Due to the illposedness of shading-based inference problems, assumptions are com

monly used to present a simplified version of the image formation process. For instance, 

since local surface patches have sizes relatively smaller than the distance to the light 

source, the incident light field can be assumed to be constant on these local patches. 

Hence distant illumination is a common assumption in many vision algorithms. This 

chapter assumes homogeneous, convex surfaces under distant illumination conditions. 

Non-homogeneous surfaces with spatially varying reflectance properties are often ap

proximated in vision applications by using a spatially varying texture which modulates 

the surface radiance [11]. These assumptions are considered a reasonable approximation 

to various computer vision tasks while being flexible enough for analytical formulation. 

5.2 Related Work 

An image formed by a convex surface is an albedo-modulated version of the surface 

reflectance junction, which is an analytic expression representing the process of turn

ing the surface irradiance into outgoing radiance (reflection). It has been shown that 

surfaces acts as a low-pass filter on the incident illumination [4, 5], yielding a band

limited reflected light. This introduces the frequency-space representation of the surface 

reflectance function and in turn the image irradiance equation, where spherical har

monics (SH) based representation is widely used as a powerful tool to analyze shading 

theoretically [32], accounting for arbitrary illumination. 

D'Zmura [5] expressed the image irradiance equation using SH as an analogy to 

Fourier series on the real line, to explore ambiguities in lighting. Since then, research 

has been conducted to analytically derive a linear subspace for the image irradiance 

equation to aid computer vision tasks to handle illumination variations. Basri and Ja

cobs in [6] and Ramamoorthi and Hanrahan in [7, 11] formulated the image irradiance 

equation [2] in a convolution framework where the lighting function acts as a signal 

filtered by the Lambertian kernel, opening the whole field of signal processing and fil-
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tering to the image irradiance modeling. They provided an analytical expression of an 

image of a convex-Lamberti an object illuminated by distant lighting using SH. They 

proved that the Lambertian reflectance kernel acts as a low pass filter, presenting the 

image irradiance as a band-limited signal being represented by a finite number of ba

sis functions. While Basri and Jacobs [6] formulated this process in global coordinates 

with respect to global reference frame, Ramamoorthi and Hanrahan [7, ll] made the 

distinction between such a formulation in global and local coordinates (w. r. t. surface 

points). 

Whereas Basri and Jacobs in [6] and Ramamoorthi in [ll] provides a single expres

sion for the harmonic basis , Ramamoorthi [25], under the assumption of distant light , 

linearly combined the SH basis to build an optimal basis for image spaces illuminated by 

uniformly distributed point light sources to create a new set of orthonormal eigenfunc

tions over this restricted domain. In particular, Ramamoorthi in [25] used analytical 

principal component analysis (PCA) in order to provide orthogonal set of basis in such 

a domain, this resulted in a convex combination of higher order spherical harmonic 

basis functions. On the other hand, QR-decomposition is used in [6] to numerically 

orthogonlize up-to 2nd order SH basis. 

Under the assumption of no surface emittance, surface reflectance is defined on the 

cartesian product of two hemispheres corresponding to the incident and outgoing direc

tions; the nature way to represent such a hemispherical function is to use hemispherical 

basis. However, due to their compactness in the frequency space, SH has been extensively 

used for this purpose. Recently Elhabian et at. [40, 41] avoided the use of higher order 

SH basis and numerical orthogonalization to model the reflectnace of convex-Lambertian 

surfaces under single viewpoint. They used hemispherical harmonics (HSH) which forms 

an orthonormal set of basis over a unit hemisphere, thus PCA or basis orthogonalization 

is no longer needed. Nonetheless, the incident illumination is restricted to the upper 

global hemisphere facing the camera while Lambertian reflectance is assumed. 

For non-Lambertian surfaces, in contrast to [ll], Nillius [32] used the hemispherical 

basis proposed by Koenderink and van Doorn [21]. Such bases are based on Zernike 

radial polynomials, where bases for the unit disk are mapped onto the upper hemisphere. 

Yet, such polynomials have high computational cost [20] when compared to associated 

Legendre polynomials used for (hemi)spherical harmonics. In particular, Zernike radial 

polynomials require an amount of CPU time proportional to O(N2) [42] in contrast 
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Table 5.1: Assumptions and Harmonic Basis of Different Formulations of Image Irradiance Equation (e~ is the angle between surface normal and 
incident light direction) 

Light Camera Object Integration Do- Harmonic Attached Notes 
main Basis Shadows 

Basri and Ja- Distant (directional) Distant (Ortho- Convex, Lam- Global sphere Spherical max(O, cos Bl) Using spherical basis to represent 
cobs [6] graphic projection bertian harmonics hemispherical domain. Cant be ex-

assumed) tended to non-Lambertian surfaces 
unless local hemisphere is consid-
ered. 

Ramamoorthi Distant (directional ) Distant (Ortho- Convex, non- Global vs. local Spherical max(O, cos BD Using spherical basis to represent 
and Hanrahan versus uniform lighting graphic projection Lambertian sphere harmonics hemispherical domain. 
[7, 11, 31] assumed) 

Ramamoorthi Distant (directional) Distant (Ortho- Convex, Lam- Global sphere vs. Spherical max(O, cos BD Using spherical basis to represent 
[25] graphic projection bertian global hemisphere harmonics hemispherical domain. 

assumed) 

Nillius and Ek- Distant (directional) Distant (Ortho- Convex, non- Local hemisphere Zernike- Integrating Zernike polynomials are known to 
lundh [32, 44] graphic projection Lambertian based hemi- over hemi- have high computational complex in 

assumed) spherical sphere addition of being undefined for all 
basis combination of harmonic orders and 

degrees. Rotation matrices are not 
defined for Zernike polynomials [20], 
hence they can not be used in the 
global hemispherical domain. 

Elhabian et Distant (direc- Distant (Ortho- Convex, Lam- Global hemi- Hemispherical Integrating Incident light is restricted to the up-
al. [40, 41] tional) / Investigate graphic projection bertian sphere Harmonics over hemi- per hemisphere facing the camera 

Near lighting assumed) basis sphere while Lambertian reflectance is as-
sumed. 

Our Model Distant (directional) Distant (Ort ho- Convex, non- Local hemisphere Helmholtz Integrating Work can be extended to handle 
graphic projection Lambertian Hemi- over hemi- near illumination. 
assumed) spherical sphere 

Harmonics- I 
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5.3. Irradiance Harmonics D efinition 

to associated Legendre polynomials which needs Ij(N log2 N) [43] for cutoff frequency 

N = n2 with order n 2 O. Table 5.1 summarizes the assumptions and harmonic basis 

of different formulations of the image irradiance equation compared to the proposed 

formulation. 

5.3 Irradiance Harmonics D efinition 

A parametric model for the image irradiance involves a frequency-space representation 

of the lighting function and the surface BRDF, where their spectrum coefficients in 

the frequency domain aid inferring one of them given the other, i.e . inverse rendering 

[11]. The main challenge will be deriving a frequency-space basis which efficiently and 

accurately models the image irradiance of any surface under arbitrary illumination. 

Consider a distant viewer where the orthographic projection can be used to approx

imate the geometric imaging process. According to Horn model of a single lens camera 

[24], the image irradiance equation of an object with isotropic reflectance can be written 

(5.1) 

where (a, (3) are the spherical coordinates of the surface normal n(x) in the global 

reference frame, L i (R a ,{3(iJD) denotes the incident radiance at a surface point x in 

the direction iJ~ : (B~, ¢~) E n~ with n~ denoting the local hemisphere oriented by 

n(x), Ra ,{3 = Rz({3)Ry(a) is the Euler angle representation of 3D rotations with ZYZ

convention and fr denotes the Bidirectional Reflectance Distribution Function (BRDF). 

Refer to Figure 8.1 for illustration. 

To account for attached shadows, the image irradiance equation in Equation 5.1 

can be formulated using two different local integration domains ID' w. T". t. the surface 

point. A spherical domain 8,2 requires the foreshortening term t f (BD to be defined as 

max(O, cos BD , e.g. [6, 7, 11]. Whereas under the assumption of non-emitting surfaces, a 

surface point only sees the surrounding environment through the local upper hemisphere 

n~ oriented by the surface normal at this point. This formulation accounts implicitly 

for attached shadows without imposing the nonlinear max operator, i.e. tf(BD = cosB~, 

e.g. [44]. 

Iprimed coordinates are used to denote loca l reference frame with respect to a surface point. 
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5.3. Irradiance Harmonics Definition 

The lighting function can be written in terms of spherical harmonics (SH) basis as, 

00 n n 

Li(Ro:,f3( ()~' ¢~)) = L L L l~'D~m,(a, ,8, ,)yn
m' (()~, ¢~) (5 .2) 

n=Om=-nm'=-n 

where {l~ } are the illumination spectrum coefficients when projected onto the subspace 

spanned by the real SH bases {Ynm } and 'Dn are Wigner's rotation matrices [59] which 

encodes how to express a rotated SH basis function in terms of all other SH bases of the 

same order. 

Let the surface BRDF ir be represented by (hemi)spherical basis functions denoted 

as nr up to reflectance order P s.t. p E [0, P] and {r, q} indices are given according 

to the type of reflectance basis, e.g. [7, 44, 45]. Hence its harmonic expansion can be 

written as, 

ir(()~ , a, l¢~ - 7r1) = L a~::Plpr(()~, a, l¢~ - 7r1) (5.3) 
prq 

where {a~r } are the BRDF spectrum coefficients when projected onto the subspace 

spanned by the reflectance bases {Tlpr}. Thus the image irradiance can be written 

as a linear combination of precomputed basis which is termed as image irradiance 

harmonics. Such harmonics encodes the orthogonality relation between SH and the 

deployed BRDF representation. It can be written as follows where due to the orthog-

onality relation of the azimuthal functions , all terms in the integral vanish except for 

m'=q. 

Hence, the frequency-space representation of the image irradiance in Equation 5.1 

for isotropic surfaces can be written as follows , 

E(a, ,8) (5.5) 
nm,prq s 

where Cs = l~a~ with s and its corresponding indices n, m , p, rand q are given by an 

ordering function based on the average power content (i.e. second moment) P{13~t} 

of the irradiance harmonics. This is defined as the integral of the respective harmonic 

over the global hemisphere of visible surface normals weighted by the surface normal 
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5.4. Irradiance H armonics for HSH-based R eflecta nce B asis 

distribution p(a, (3), 

(5.6) 

5.4 Irradiance Harmonics for HSH-based Reflectance Ba-

SIS 

Representing the lighting function using SH and the surface reflectance using the Helmholtz 

HSH-based basis, the frequency-space representation of the image irradiance in Equa-

tion 5.1 for isotropic surfaces can be written as follows, 

(5.7) 

Moving terms which are independent of the local incident direction out of the integral 

yields, 

E(a, (3) L l:a~1)~m/(a,{3) 
nmm' 

prq 

x r yn
m' (wDHz,.(B~, a, I¢~ - 7r1) cos B~dW~ 

i n; 
(5.8) 

Based on the orthogonality relation of the azimuthal functions , all terms in the 

integral vanish except for m' = q. The polar part of the integral can be derived as 

follows. Using variable substitution z = cos B~ , inserting the explicit forms of (shifted) 

associated Legendre polynomials [98]1, using the binomial theorem which constrains Iql 

to be even and using the Euler Beta integral [99] lead to (proof is included in Appendix 

lMu lder in [98] defined the series representation of associated Legendre polynomials. by replacing 
cos 0; with 2 cos 0; - 1. the exp licit form of shifted associated Legendre can be derived using the identity 
sin1ql O; = (1 - cos2 0:) Iql/2 for O;.J qJ 2: 0 
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5.5. Irradiance Signal Energy Content 

D: Analytic Derivation of C~pr(a) ), 

where l , 

r YJ(wD1{~(B~, a, I<p~ - 7r1) cos B~dW~ 
In; 
7r N'J,.( -l)q J2(1 + Dqo) 

{ eq(B' )NlqlNlqlJq + eq(B' )NlqlN1qlJq } ron p np p 0 n r nr 

1
~/2 -

Jq = plql (cos B~)plql (cos B') cos B' sin B'dB' np n t p t t t t 
o 

(5.9) 

(5.10) 

Hence, the image irradiance of isotropic reflectance under arbitrary distant illumi-

nation, where surface points can be parameterized by their normals, can be represented 

as a sum of the irradiance harmonics ~:::'~ as follows , 

E(a, iJ) = L L 
nm prq , q is even 

lr;:a~ [1)~q(a, iJ)ehpr(a)] 
... V' ' 

'B;::',,1l,. (<:> ,(3) 

(5.11) 

Note the effect of the light and BRDF spectrum coefficients on the image irradiance 

representation. While theoretically, an infinite number of basis is needed to perfectly 

represent the irradiance signal , most natural BRDFs have a band-limited spectrum, thus 

acting as a low-pass filter on the illumination signal, leading to finite number of basis 

capturing a large portion of the irradiance signal energy content. 

5.5 Irradiance Signal Energy Content 

The concept of the signal's energy content normally arises in constructing linear sub-

spaces [64]. In case of image irradiance representation, one is interested in maintaining 

the minimum number of basis which portrays the range of frequencies for which the 

signal has a significant energy content. Since the illumination function can be arbitrary 

while the surface reflectance is known to act as a low-pass filter, one assumes a direc-

tionallight source, i. e. delta function, with a non-decayable spectrum along illumination 

bands. Thus the decay of the irradiance spectrum will be due to the BRDF spectrum. 

To eliminate the effect of the light direction, a light source undergoing all possible 3D 

Iproof and closed form is included in Appendix D: Analytic Derivation of C~"r(Q) . 
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5.5. Irradiance Signal Energy Content 

rotations SO(3) is considered. 

Considering the surface normals perceived by the camera, the average energy content 

of the image irradiance signal over all possible directional light sources can be defined as 

follows , where the representation in Equation 5.11 and the orthogonality relation of the 

,])n matrices l are used. Note that the integral is over the surface normals constructing 

the visible hemisphere O. 

c: = r r [E(a , ,8)]2 dR dW = f (~~=-n ~) AB(n) 
in i SO(3) n=O n + 1 

(5.12) 

where [~ are the lighting coefficients before source rotation and AB(n) are the attenua

tion factors imposed by the surface BRDF on the illumination order n, defined as: 

AB(n) = L L ain-a~r' t 1 ~~~(a,,8)~:;~,(a,,8)dW 
prq p'r'q' m=-n n 

(5.13) 

Using the isotropic Helmhotlz HSH-based reflectance bases, the attenuation factors can 

be written as2 , 

AB(n) 271"2 L (1 + (-1)q15qo) (a~r)2 (N;J,/ (N~ql)2 
prq 

q is even 

{ (N~qlr (~~p)2 + (N~qlr (~~r)2 
+2NlqINlql~q ~q 8 } p ,. np nr pr (5.14) 

In case of directional light source, the average signal energy maintained by the illu

mination order n is constant, i . e. L:~~+l [~ = 4~ [32]. Thus the approximation accuracy 

of the Nth order expansion of the image irradiance can be written as a function of the 

BRDF attenuation factors where the energy due to light can be factored out. 

(5.15) 

Figure 5.2 compares the attenuation factor of the Lambertian reflectance of the proposed 

irradiance basis in contrast to [32] as a function of the illumination order n where all 

degrees m E [n, n] are summed for visualization purposes. Although both bases shows 

lproof is included in Appendix E: Irradiance Signal Energy Content. 
2See Appendix E: Irradiance Signal Energy Content. 
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5.6. Experimental Results 

that 9 bases (2nd order illumination) suffice to capture most of the irradiance energy 

content. Nonetheless, the proposed basis provides a more compact representation due 

to smaller attenuation factors at higher order illumination i. e. n > 2 suppressing higher 

frequencies of illumination. 

Basis by Nillius and Eklundh 
Proposed Basis 

1- . , 
6 7 8 

IDumination Order (n) 

Figure 5.2: Attenuation factors AB(n) in case of Lambertian reflectance as a function 
of the illumination order n. Blue shows the factors based on using Nillius and Eklundh 
[44]. reflectance basis while red shows the factors based on the proposed basis. 

While the Lambertian case only need 9 basis for accurate representation, surfaces 

with non-Lamberti an reflectance need more reflectance modes/basis through which more 

illumination frequencies can survive. Consider the light being reflected from a single 

reflectance mode J{~r , Figure 5.3 shows the attenuation factors AB(n) of reflectance 

modes (p, r, q) up to P = 7. For comparison purposes, the factors of the reflectance 

modes in [32] are also included. While the proposed basis agrees with [32] that the 

spectrum tend to attain a maxima at around the same illumination order n, since this 

basis is based on the Legendre polynomial family, more basis are available for non-

Lambertian surfaces when compared to the Zernike-based basis of [32]. 

5.6 Experimental Results 

This section evaluates the approximation accuracy of the irradiance harmonics based 

on the HSH-based reflectance basis. BRDF measurements are used which are directly 

measured from real surfaces [10, 17]. For accuracy computation, AB(n) l is computed 

as in Equation 5.13 using Monte Carlo integration. In case of the proposed reflectance 

basis, the analytical defintion in Equation 5.14 is used instead for faster evaluation. In 

order to compensate for the infinite series in the denominator of Equation 5.15, the 

1 Assuming single directional light source which has a non-decayable spectrum. 
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5.6. Experimental Results 

'I I[ '. 'j': 
I' I I , 

(a) .A~rq (n) of Nillius and Eklundh Basis (b) .A:
rq (n) of the proposed irradiance basis 

Figure 5.3: Attenuation factors AB(n) of single reflectance modes (p, r, q). The upper 
left corner of (a) and (b) shows a 2-dimensional view of the attenuation factors where 
the color encodes the level of attenuation. Note that the proposed basis provide larger 
number of basis with decayable spectrum when compared to the Zernike-based basis of 
[32]. 

tail of the series is estimated by fitting an exponential curve to the series following an 

asymptotic illumination order at n = 30. 

Figure 5.5 shows rendered images of lettuce-leaf and felt BRDFs [10] using single 

directional light source which was performed similarly to [31]. By visual inspection, 

the rendered image approaches the groundtruth rendering as the illumination order 

increases. 

Figure 5.4 portrays the average approximation accuracy of the irradiance harmonics 

based on the proposed reflectance basis compared to those of Ramamoorthi and Han

rahan in [11 , 31] and Nillius ad Eklundh in [32 , 44]. The average is computed over 

the materials in the given BRDF database as a function of the illumination order n 

where all degrees m E [- n, n] are summed for visualization purposes. Note that the 

irradiance harmonics based on the proposed reflectance basis provide higher accuracy 

at lower illumination orders when compared to the others. 

Figs 5.8 and 5.9 compare between the approximation accuracies of irradiance har

monics based on the proposed basis versus Ramamoorthi and Hanrahan in [11 , 31] and 

Nillius ad Eklundh in [32 , 44] with different truncating illumination orders N. While, 

for most of CUReT and Merl materials, the spherical basis of [31] and Zernike-based 

basis of [44] have comparable accuracies, yet the proposed basis shows higher accuracy 

levels for most of the materials. These observations hold for both diffuse and specular 

materials. 

Figure 5.10 shows the minimum required truncating illumination order to achieve 
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5.6. Experimental Results 
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Figure 5.4: Average approximation accuracy of image irradiance as a function of the 
illumination order n based on (a) CUReT BRDF database [10] and (b) Merl BRDF 
Database [17]. Average is computed over the database materials under the assumption 
of single distant light source having a non-decayable constant spectrum. Note that the 
proposed reflectance basis maintains higher irradiance approximation accuracy at lower 
illumination orders. 

specific level of accuracy when using the proposed isotropic basis compared to those 

of Ramamoorthi and Hanrahan in [11 , 31] and Nillius ad Eklundh in [32, 44]. It can 

be noted that irradiance signals of most of CUReT materials can be represented with 

accuracy of 95% with illumination order less than or equal N = 6, while anisotropic 

materials such as ribbed-paper maintain this level of accuracy at N = 12, yet other 
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5.7. Summary 

~ ~ .. .. .. .. 
'0 '0 .. .. 
0 0 
.: .: 
0 0 
~ ~ 
II II 
.: .: 
's 's 
:I S = 

Figure 5.5: Rendered sphere images of (a) lettuce-leaf and (b) felt BRDFs [10] using 
single directional light source with increasing illumination order N = 0,2,4,6,8 and 
increasing reflectance order P = 0,2 , 4,6. Note as the illumination order increase, the 
rendered image approaches the ground truth rendering. Note the zero illumination order 
acts as the DC component of the irradiance signal. 

reflectance bases need higher orders. 

Figs 5.6 and 5.7 show rendered images of the camel and hippo toys, respectively, of 

the "Weizmann Photometric Stereo Database" [100]. In Figure 5.6, the image is rendered 

under a high-frequency illumination map (Galileo Tomp [55]) with a non-specular BRDF 

(beige-fabric [17]) using irradiance harmonics of illumination order up-to N = 12. While 

in Figure 5.7, the image is rendered under a low-frequency illumination map (Funston 

Beach [55]) with a specular BRDF (blue-metallic paint [17]) using irradiance harmon-

ics of illumination order up-to N = 6. It can be observed that spherical reflectance 

basis performs poorly at capturing the reflectance appearance while the proposed basis 

achieved lowest mean absolute error compared to the groundtruth rendering (achieved 

by path-tracing [30]). 

5.7 Summary 

This chapter formulated the image irradiance basis of isotropic surfaces under arbitrary 

distant illumination. Such bases are termed as image irradiance harmonics. The physi

cal compliance of hemispherical basis for representing BRDFs of isotropic surfaces was 
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5.7. Summary 

O Ramamoorthi 
and Hanrahan 

O Nillius and 
. Eklundh 

o Proposed 

Figure 5.6: Sample of frequency-space rendering: Rendered images for the camel toy 
from "Weizmann Photometric Stereo Database" [100] with beige-fabric BRDF [17] under 
Galileio Tomp (high-frequency) illumination map [55] using the proposed reflectance 
basis (red box) versus that of Ramamoorthi and Hanrahan [31] (blue box) and Nillius 
and Eklundh [44](green box) where N = 12. Path tracing [30] is used to render a unit 
sphere with the BRDF at the top-middle as well as the groundtruth rendering at the 
bottom-left. Mean absolute error (MAE) is shown below each rendered image where 
all intensities are normalized in the range [0,1]. Note that the proposed basis capture 
the appearance of the surface reflectance under high-frequency illumination compared 
to the others. 

addressed while satisfying the Helmholtz reciprocity property. The number of basis 

was proven to be reduced drastically due to isotropy, nonetheless the proposed isotropic 

Helmholtz reflectance basis contains more basis functions when compared to the Zernike-

based ones at a given illumination order. By investigating the energy content maintained 

by the proposed image irradiance basis for natural materials, one found that specular 

materials tend to require more basis functions when compared to diffuse ones. Yet the 

presented basis captures similar cumulative energy content at lower illumination orders 

when compared to similar representations in literature. 
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5.7. Summary 

Figure 5.7: Sample of frequency-space rendering: Rendered images for the hippo toy 
from "Weizmann Photometric Stereo Database" [100] with blue-metallic paint BRDF 
[17] under Funston Beach (low-frequency) illumination map [55] using the proposed 
reflectance basis (red box) versus that of Ramamoorthi and Hanrahan [31] (blue box) 
and Nillius and Eklundh [44](green box) where N = 6. Path tracing [30] is used to render 
a unit sphere with the BRDF at the top-middle as well as the ground truth rendering at 
the bottom-left. Mean absolute error (MAE) is shown below each rendered image where 
all intensities are normalized in the range [0,1]. Note that the proposed basis capture 
the appearance of the surface reflectance under low-frequency illumination compared to 
the others. 
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Figure 5.8: The irradiance approximation accuracy of CUReT database materials [10] for different truncating illumination orders N. It can be observed 
that the proposed reflectance basis captures most of the irradiance energy content at lower truncating illumination orders for almost all CUReT 
materials 
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Figure 5.9: The irradiance approximation accuracy of Merl database materials [17] for different truncating illumination orders N. It can be observed 
that the proposed reflectance basis captures most of the irradiance energy content at lower truncating illumination orders for almost all Merl materials 
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Figure 5.10: Required minimum illumination order for the materials in the CUReT database [10] when using the irradiance harmonics based on (a) the 
proposed isotropic basis, (b) spherical basis deployed by Ramamoorthi and Hanrahan in [11, 31] and (c) Zernike-based hemispherical basis deployed by 
Nillius ad Eklundh in [32, 44]. The dark, medium and light shaded bars show the required illumination order N to achieve irradiance approximation 
accuracy of 75%, 85% and 95%, respectively. Note that missing bars implies the inability of the respective basis to capture the required accuracy levels 
at illumination orders less than 20. 
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CHAPTER 6 

ANALYTIC ApPEARANCE SUBSPACE 

CONSTRUCTION 

Appearance variation due to illumination changes is an inherent challenge in many 

vision tasks such as recognition. Applications concerned with inverse rendering would 

benefit from low-dimensional generative model which captures appearance variations 

w. r. t. illumination conditions and surface reflectance properties. However, conventional 

subspace construction approaches suffer from the need of "large-enough" image ensemble 

rendering numerical methods intractable. This chapter proposes an analytic formulation 

for low-dimensional subspace construction in which shading cues lie while preserving the 

natural structure of an image sample. Thanks to the frequency-space representation of 

the image irradiance equation where the process of finding such subspace can be cast as 

establishing a relation between its principal components and that of a deterministic set of 

basis functions. This resolves the issue of dimensionality since the source of randomness 

in the imaging process becomes the irradiance harmonics coefficients rather than the 

whole image realization. Representing images in their natural dimension, i.e. matrices , 

further lessen the number of parameters to be estimated to define a bilinear projection 

which maps the image sample to a lower-dimensional bilinear subspace. Since irradiance 

harmonics enables decoupling illumination and reflectance from the underlying geometry 

and pose; this enables the incorporation of prior information about natural illumination 

and real world surface materials. Results show significant impact on dimensionality 

reduction with minimal loss of information as well as robustness against noise. 
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6.1. Introduction 

6.1 Introduction 

Various vision tasks are usually confronted by appearance variations due to changes of 

illumination. For instance, in a recognition system, Moses et at. [101] showed that the 

variability in human face appearance is owed to changes to lighting conditions rather 

than person 's identity. Theoretically, due to the arbitrariness of the lighting function , 

the space of all possible images of a fixed-pose object under all possible illumination con-

ditions is infinite dimensional [25]. Nonetheless , Belhumer and Kriegman [23] proved 

that the set of images of a convex Lambertian surface under distant illumination lies 

near a low dimensional linear subspace. This result was also extended to include non-

Lambertian objects with non-convex geometry. As such, vision applications, concerned 

with the recovery of illumination, reflectance or surface geometry from images, would 

benefit from low-dimensional generative model which captures appearance variations 

w. r. t. illumination conditions and surface reflectance properties, enabling the formula-

tion of such inverse problems as parameter estimation. 
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Figure 6.1: Numeric subspace construction typically requires a large set of captured or 
synthesized images under all possible illuminations and materials. 

Typically, subspace construction entails performing a dimensionality reduction scheme, 

e.g. Principal Component Analysis (PCA), on a large set of real or synthesized images 

of object(s) of interest with fixed pose but different illumination conditions e.g. [27], 

see Figure 6.1. Despite the great success of such numerical construction, this approach 

has two major problems. First , the acquired or rendered image ensemble should be 
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6.1. Introduction 

statistically significant vis-a.-vis capturing the full behavior of the sources of variations 

that is of interest, in particular illumination and reflectance l . When the sample data 

dimension is much higher than the number of samples in the ensemble, peA is prone 

to be overfitted to the training ensemble [102]. This is known as the small sample size 

(SSS) problem. Second , the curse of dimensionality hinders numerical methods such as 

Singular Value Decomposition (SVD) which becomes intractable especially with a large 

number of large-sized realizations in the image ensemble. 

One way to bypass the need for large image ensembles is to construct appearance 

subspaces using phenomenological models which capture appearance variations through 

mathematical abstraction of the reflection process, see Figure 6.2. In particular, the 

harmonic expansion of the image irradiance equation [24] can be used to derive an ana

lytic subspace to represent images under fixed pose but different illumination conditions 

[6, 25 , 44]; it has been shown that surface reflectance acts as a low-pass filter on the 

incident illumination [4, 5] where the image irradiance equation has been formulated 

in a convolution framework [6, 7]. This yielded a band-limited reflected light while ac

counting for complex illumination, thus a point light source assumption can be relaxed. 

For specific object geometry under fixed pose, the convolution theory implies a mul

tiplicative framework in the frequency domain where an image is represented as a linear 

combination of pre-computed basis functions , which are termed as irradiance harmonics, 

that are pose and geometry dependent. This leads to a finite-dimensional linear model 

to represent the image irradiance under arbitrary illumination. Usually a large number 

of basis functions is required in order to capture high frequency lighting, sharp shadows 

and glossy reflectance. Hence irradiance harmonics-based representation, although finite 

dimensional, would result in a huge number of parameters than can be estimated given 

shading cues from captured images. This highlights the need for deriving a mechanism 

to find a lower-dimensional subspace in which shading cues lie. 

This chapter takes advantage of the two-fold benefit of the frequency-space represen-

tation of the image irradiance equation. First , it decouples the image formation process 

such that the illumination conditions and surface reflectance characteristics are encoded 

into the coefficients of the irradiance harmonics. This allows the incorporation of prior 

information about natural illumination and real world surface materials in the 

lRelying on an image ensemble to be enough to generate statistics has an implicit assumption that 
the image formation process is an ergodic one. 
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6 .. 1. Introduction 

subspace construction process. Second and more importantly, the process of finding such 

subspace can be cast as establishing a relation between its principal components and that 

of the irradiance harmonics. This resolves the issue of dimensionality since the source of 

randomness in the imaging process becomes the irradiance harmonics coefficients rather 

than the whole image realization. 

PCA, a linear subspace learning algorithm, seeks an optimal linear mapping to a 

lower-dimensional subspace by representing images as samples in a vector space. This 

leads to the estimation of a large number of parameters while breaking the natural struc

ture of the two-dimensional image samples [103]. Recently, multilinear subspace learning 

has attracted the community's attention where images are represented in their natural 

dimension, second/third order tensorial data, preserving their intrinsic dimensionality. 

This further lessen the number of parameters to be estimated to define a bilinear pro

jection which maps the image sample to a lower-dimensional bilinear subspace. The 

presented work is after deriving the subspace of image irradiance in the image space 

taking into account the two-dimensional structure of samples in the image space rather 

than representing an image in the vector space to obtain more compact representation 

with minimal loss of information. 

It is worth mentioning that this work shares the work of Vasilescu and Terzopoulos 

(TensorTextures) [104] in representing appearance variation using multilinear PCA (bi

linear as a special case). Nonetheless, in contrast to their work, an analytic construction 

of the appearance principal components is proposed where all possible illumination con

figurations are incorporated into such construction by analytically rotating light sources; 

an inherent benefit of analytical approaches compared to numerical ones where the syn

thesized or acquired images should exhibit wide variations of illumination conditions. 

FUrther, Vasilescu and Tezopoulos dealt with the image sample in the vector space, 

ignoring the intrinsic structure of the image space. This work studies the spatial rela

tions between image pixels with the effect of illumination and reflectance. As such, one 

focuses on demonstrating the benefit of considering the image space (bilinear subspace) 

versus vector space (linear subspace). 

This chapter proposes an approach for analytic bilinear subspace construction to 

capture the full behavior of appearance variation resulting from non-Lambertian sur

face reflectance when exposed to complex illumination. The spatial correlation of image 

pixels is taken into account while connecting the spatial constraints to the irradiance 
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6.2 . A naly tic Bilinear Subspace Construction 

constraints. This implies applying two linear transforms (hence bilinear) to both the 

left and right sides of the input image irradiance. Whereas the process of finding such 

subspace is cast as establishing a relation between its principal components and that of 

the irradiance harmonics. This resolves the issue of dimensionality since the source of 

randomness in the imaging process becomes the irradiance harmonics coefficients rather 

than the whole image realization. Natural illumination maps from [105] are analyti

cally rotated , while surface reflectance is modeled using a database of real world surface 

materials [17]. One focus on isotropic reflectance yielding a parametric representation 

of image irradiance with smaller number of parameters whilst being a good enough 

approximation for the general case. Results show the superiority of the proposed ap

proach compared to the analytic linear one, e.g. [25 , 44]' in terms of providing significant 

decrease in subspace dimensionality while maintaining higher approximation accuracy. 

Potential applications for the proposed model involve constructing generative ap

pearance models which can be used to render/synthesize images of a fixed-pose object 

under new illumination conditions, i.e. extrapolate appearance. Further, it can be con

sidered as an economical solution for subspace construction for recognition applications 

which resolves the trade-off between the small-sample-size problem and numerical es

timation of appearance subspace basis. Whereas the proposed model can be used to 

construct the basis for the illumination cone [23] which provides a mean to predict ob

ject appearance under unseen imaging conditions. As such, object recognition can be 

performed by assigning the identity of the closest illumination cone based on Euclidean 

distance. 

This low-dimensional representation of image irradiance under unknown arbitrary 

lighting can also be considered as a fundamental process for many computer vision 

tasks such as illumination modeling [6], surface reflectivity estimation/analysis [11, 32]' 

statistical shape and albedo recovery [33, 34, 35], shape from shading [36], photometric 

stereo [37, 38], object detection and recognition [39], to name a few. 

6.2 Analytic Bilinear Subspace Construction 

The main idea of analytic subspace construction is to use the representation in Equa

tion 5.8 directly in an unsupervised subspace learning scheme seeking orthonormal prin

cipal components spanning the subspace where shading cues lie. This work derives such 
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6.2. Analytic Bilinear Subspace Construction 

a subspace taking into account the spatial correlation of the image pixels within a local

ized neighborhood. Matrix-based representation is used in contrast to a vector formed 

by stacking the image's columns. It is worth mentioning that vector space model ad

mits to a simple and closed form solution for subspace learning using SVD of the matrix 

whose columns are realizations from the image space. onetheless, such computation 

restricts its applicability to small data size. 

In the sequel, notations follow the conventions in the multilinear algebra where 

vectors are denoted by lowercase boldface letters, e.g. x and matrices by uppercase 

boldface, e.g. X . Indices are denoted by lowercase letters spanning the range from 1 to 

the uppercase letter of the index, e.g. i = 1,2, ... I. 

6.2.1 Problem Formulation 

Let E E lRHxW be a matrix representation of the image irradiance of the visible surface 

normals to the viewer such that H denotes height and W denotes width. The objective 

is to solve for two linear transformations, hence the name bilinear, D E lRHxH' and 

V E lRw xw' which map the image space lRHxW into a lower-dimensional subspace 

lRH' xw' with H' :S H and W' :S W where!, 

(6.1) 

such that this low-dimensional subspace captures most of the variations observed in the 

image space due to illumination and reflectance. 

Let the image space variation be measured by the total matrix scatter defined as the 

variance of the image projection Y E lRH' xw' in the lower-dimensional subspace. Thus 

the objective is to determine the orthonormal projection matrices which maximize the 

total scatter matrix, 

{D, V} = argmax Wy s.t. Wy = E{IIY - Y II}} (6.2) 
U,V 

where F denotes the matrix Frobenius norm [106] and Y = E{Y} is the origin of the 

desired subspace. One needs to point out that this centering is different from [44] where 

the mean of the image (pixel-centering) rather than t he mean image of the data (image-

1- denotes lower-dimensional. 
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6.2. Analytic Bilinear Subspace Construction 

centering) is subtracted. With image-centering, the joint presence of two images with 

different appearance has a larger impact in the subspace construction when compared to 

the impact of two similar images. With pixel-centering, on the other hand, the impact 

of similar images in a small image ensemble is much pronounced. As such, one opted 

for image-centering to capture appearance variations which can be used for recognition 

applications where the contribution of each image is proportional to its deviation from 

the subspace origin. 

6.2.2 Analytic Bilinear peA Derivation 

The optimization problem in Equation 6.2 does not admit to a closed form solution 

allowing solving for the projection matrices simultaneously. Lu et ai. [106] used alter-

nating projection method to derive a numerical method for multilinear PCA for M-order 

tensors. This work derives the analytical counterpart for M = 2 of such approach where 

the irradiance harmonics-based representation makes it possible to avoid acquiring a 

large ensemble of images under different illumination conditions. Note that, in princi

ple, all possible lighting configurations are required to be taken into account in order to 

model illumination variation. Hence analytical construction of image subspace allows 

for analytically rotating light sources over the domain of 3D rotations 80(3). 

Consider a specific object defined by its shape (i.e. surface normals) under fixed pose 

relative to the imaging sensor, the irradiance harmonics CBs} can be viewed as the back

bone of its appearance, i.e. different appearance is only owed to different illumination 

conditions and/or reflectance characteristics. 

Let B s E lRH xW be the s-th irradiance harmonics of the visible surface normals be 

represented as a matrix. Hence it can be decomposed into a core matrix C~ and two 

orthonormal projection matrices V B E lRH x H ' and VB E lRw xw' such that, 

(6.3) 

The harmonics projection matrices {VB, VB} (column and row projectors, respec

tively) and the core matrices C~ Vs are solved for using Bidirectional PCA (BD-PCA) 

[102] in an offline stage using all irradiance harmonics up to illumination and reflectance 

order (N and P). This process can be summarized as follows. Let {B i , ... ,B s} be the 

set of 8 - irradiance harmonics. Let the s-th harmonics B s be represented as an H -set 
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6.2. Analytic Bilinear Subspace Construction 

of 1 x W row vectors; the row total scatter matrix 1lI~ E lR WxW is defined as, 

S 
HI", ( - )T ( - ) III B = S x H L.- B s - B B s - B 

s=l 

(6.4) 

where 13 is the mean irradiance harmonics. Therefore VB is the matrix containing the 

row eigenvectors corresponding to the first W' largest eigenvalues of 1lI ~. By representing 

the same harmonics as a W -set of H x 1 column vectors, the column total scatter matrix 

1lI~ E lRH xH is defined as, 

s 
1lI~ = S: W L (B s - B) (Bs - 13f 

s=l 

(6.5) 

where U B is the first H' column eigenvectors corresponding to the first largest H' 

eigenvalues of 1lI~. 

BD-PCA reduces the dimensionality in both column and row directions while numer-

ically overcomes the overfitting problem in contrast to PCA. The immediate benefit of 

this step is the determination of the lower dimensions H' and W' based on the variations 

inherited from a deterministic ensemble of matrices , i. e. the irradiance harmonics them-

selves. It is important to emphasis the computational advantage of BD-PCA over PCA 

where BD-PCA requires H x W X H' + H X H' X W' multiplications while PCA requires 

H x W X D' multiplications for D' ::::: H x W, H' ::::: H and W' ::::: W [102]. In addition, 

such decomposition is performed once independent of any color-channel (wavelength). 

As such the image irradiance of the visible surface normals can be rewritten as, 

- ('" B) -T E = U B L: Cs C s V B (6.6) 

According to the linearity property of the expectation operator, the origin of the 

image irradiance subspace can be given by, 

where the harmonics coefficients cs , encoding light and surface BRDF, becomes the 

random variable rather that the image itself. 

In order to simplify the process of finding the projection matrices {U, V} which 

span t he image space of the object of interest, one establishes a relation between the 
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orthonormal columns of f.r and V and those of f.r B and VB , respectively, such that, 

-T -T 
U = A UU B (6.8) 

where A u E lRH' xH' and A v E lRw' xw' are the weighting matrices encoding the rela-

tion of principal components spanning the row and column subspaces of the image space 

with those spanning the row and column subspaces of the irradiance harmonics. This 

renders another benefit of the analytic construction where the optimization problem in 

Equation 6.2 will be solved for less number of parameters, i.e. H' x H' + W' X W' rather 

than H x H' + W X W' with H' :S H and W' :S W. It is worth noting that t he decom-

position of the irradiance harmonics accounts for dimensionality reduction whereas the 

weighting matrices relate the principal components of the row and column subspaces 

to the image formation model while encoding prior information about illumination and 

reflectance through the expectation operator. 

From Equation 6.8 and Equation 6.6, the image projection can be simplified to, 

(6.9) 

where the solution for {Au, A v} matrices is given by the following theorem. 

Theorem 6.1 (Analytic Bilinear PCA). Let {Au, A v} be the solution to Equation 6.2. 

Then, based on Alternating Least Squares (107J, given A v , the weighting matrix A u 

consists of the H' -eigenvectors of T~ such that, 

Tv = L L E{(cs - cs)(cs' - cs, nC: A~Av(Cf,)T (6.10) 
s s' 

and given A u, the weighting matrix A v consists of the W'-eigenvectors of TE such that, 

Tu = L LE{(cs - cs)(cs' - cs,)}(c:f A EA uC f, (6.11) 
8 s' 

Proof. The proof is given in Appendix F: Proof of Analytic Bilinear PCA Theorem. 0 

Since the optimization of both matrices are inter-dependent, this does not admit to 

a closed form solution. Rather an iterative procedure can be devised to solve for the 
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weighting matrices. Truncated full projection [106] can be used to initialize this iterative 

scheme, nonetheless in the presented framework allows for analytic full projection. 

In case of full projection, one has H' = H and W' = W. In order not to abuse 

notation, let (.)* denote matrices with the full dimensions Hand W as opposed to O. 
Thus U * and y * become square matrices where U *-l = U *T and y *-l = y *T. As a 

result one has , 

(6.12) 

where Iw is an identity matrix of size W x W. Similar argument for A il A u = IH . 

Thus Til and Tu becomes independent of the weighting matrices such that , 

Til = L L E{(cs - CS)(CS 1 - CS' )}C;B(C;f3)T (6.13) 
S S' 

and, 

Tu = LLE{(cs -CS)(CS1 -csl)}(C;Bfc ;f3 (6.14) 
s S' 

The optimal A u and Ail are then obtained, directly with no iterations, as the matrices 

containing the eigenvectors of TiT and T il, respectively. While the total scatter in 

the image space would be fully captured, there is no dimensionality reduction gained 

using full projection. Hence, the first H' and W' columns of the full projection matrices 

corresponding to the largest eigenvalues of T ilT and T il are kept to provide initial 

weighting matrices A u and A v, respectively. 

6.2.3 Model-based Bilinear peA 

The major advantage of analytic subspace construction is the explicit relation between 

the principal components spanning the image space and the illumination and reflectance 

coefficients, allowing for a model-based framework for generic subspace generation. Fur

ther, the rotation of the lighting function can be done analytically, reducing the need 

for acquired data drastically. 

Assuming that the lighting function and the surface material/reflectance are inde

pendent, one would have [44], 

(6.15) 
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where the respective indices are given by the ordering function of the irradiance harmon-

ics functions. Nillius and Eklundh [44] derived a closed form for the expectations and 

covariances in Equation 6.15. As such, databases of illumination maps, e.g. [55, 105] 

and real world materials, e.g. [10, 17] can be devised to incorporate prior information in 

a model-based framework for analytic subspace construction. The proposed approach 

is summarized in Algorithm 2. 

6.3 Connection with Analytic PCA 

Nillius and Eklundh in [44] proposed an analytic PCA framework which depends on 

vector spaces. It can be seen that the proposed analytical solution generalizes the 

case of vector spaces in [44] where the image is considered as a vector e E IRP with 

D = H x W. The objective is then to find orthonormal projection matrix W E IRD x D' 

which maps the original vector space IRP into a vector subspace IRD' with D' :::::: D where 

y = W T e. Thus the projection matrix W maximizes the total vector scatter such that , 

W = argmax Wy s. t. Wy = E{lly - sll}} 
VI 

(6.16) 

Let the s-th irradiance harmonics be represented in the vector space as b s E IRD 

which can be written as b s = W BC~ with W B E IRD x D' and c~ E IRD'. The optimal 

W B is determined from the D' - eigenvectors of B = [b l ... bs] corresponding to its 

largest D'-eigenvalues. Relating the principal components of the image space to that 

of the irradiance harmonics in the vector space results in W T = Aw W~ where Aw E 

IRD' x D'. The solution of this matrix is given by the following theorem. 

Theorem 6.2 (Analytic PCA). Let Aw be the solution to Equation 6.16. Then, the 

weighting matrix A w consists of the D'-eigenvectors of yT such that, 

y = L LE{(cs - cs)(cs' - cs,)} c~(c~)T (6.17) 
s s' 

Proof. The proof is given in Appendix G: Proof of Analytic PCA Theorem. D 

Comparing the residual of approximating the image matrix E in the vectorized form 

by the low dimensional subspace W with the matrix form by a low dimensional row 
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Algorithm 2 Model-based Analytic Bilinear PCA 

INPUT: 
(a) Visible surface normals ii(x) = (a , (3) where x = {(x, y) : 1 ~ x ~ W, 1 ~ Y ~ H} 
and a E [0, 7T] and (3 E [0, 21T] , 
(b) Illumination map dataset Lf(,;:h) with k = 1, 2, ... , nL , (c) Maximum illumination 
order N , 
(d) Surface materials dataset It (w~ , w~) with j = 1, 2, . .. , nB , (e) Maximum reflectance 
order P , 
(f) Q : percentage of eigenvalues to be maintained in subspace construction, 
(g) Type of reflectance basis functions , e.g. Helmholtz HSH-based basis. 

OUTPUT: Subspace projection matrices {V, V}. 

1: Build illumination prior: 
(a) Compute illumination spectrum l~k for n E [0, N], m E [-n , n] and k = 
1, 2, . . . , nL. 

(b) Compute illumination expectation E{l;:-'} and covariances E{l~l:"} as in [44]. 

2: Build reflectance prior: 
(a) Compute BRDF spectrum airr,j for p E [0, P] for j = 1,2, ... , nB while {r, q} 
are determined according to the specified reflectance basis functions. 

(b) Compute BRDF expectation E{ a~} and covariances E{ a~a~r'} as in [44]. 

3: Compute irradiance harmonics: 
(a) Compute surface normal distribution p(a, (3). 

(b) Compute Wigner rotation matrices 1)fI(a, (3) where n E [0, N] as in [61]. 

(c) Compute irradiance harmonics 13~~ (a, (3) for n E [0, N] and p E [0, P] and sort 
them according to their average power content to obtain 138 (a, (3) for s = 1, 2, .. . , s. 
(d) Compute harmonics coefficients expectations E{ ca } and covariances E{ cscs'} 
where indices are given by s H {n,m,p,r ,q}. 
(e) Decompose the irradiance harmonics based on BD-PCA [102] with Q% eigen
values to be maintained to obtain VB E 1RH XH' , Y BE 1Rw xw' and C~ E RH'xw' 
for s = 1, 2, ... , S. 

4: Initialization: 
(a) Decompose the irradiance harmonics based on BD-PCA [102] with Q = 100% 
to obtain full projection core matrices C:B E 1RHxW for s = 1, 2, ... , S . 
(b) Compute initial weighting matrix Au as the H'-eigenvectors of TiT in Equa
tion 6.13. 

(c) Compute initial weighting matrix Av as the W'-eigenvectors of T*J' in Equa
tion 6.14. 

5: repeat 
6: Compute the weighting matrix A u as the H'-eigenvectors of T~ in Equation 6.10. 
7: Compute the weighting matrix A v as the W'-eigenvectors of T~ in Equation 6.11. 
8: Compute 1l1~ = min{trace(AuTvA~) , trace(AvTuA~)} where i is the iteration 

index. 
9: until (1l1~ - 1l1~ 1) /1l1~ 1 < 1/ 

10: Compute vT = AuV~ and yT = Avy~ . 
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and column subspaces {U, Y}, the former case is considered a special case where the 

column-mode projection matrix is identity such that, 

v.s. E = UyyT ¢=> (Y ® U)y = e (6.18) 

where ® is the Kronecker product [108] of two matrices, j is the identity matrix and 

the equivalence is due to a property of the Kronecker product [109]. One can see the 

difference between standard PCA and the proposed bilinear approach where the latter 

encapsulates the structure of the image irradiance in the row and column dimensions 

while jointly models different types of spatial structures presented in the irradiance 

signal. In the former case, the image data is projected in the row-mode only while the 

projection in the column-model is ignored. This results in poor expressiveness since the 

spatial interaction between image pixels are ignored. 

6.4 Time and Space Complexities 

In this work, the main objective is to alleviate the expensive computations of linear sub

spaces in case of vector spaces where SVD is considered the main ingredient, whereas 

bilinear transformation leads to lower computational cost in comparison to SVD. Fur

ther, with matrix-based representation, such bilinear subspace is able to capture intrinsic 

local properties in the image irracliance signal which leads to good classification pet·for

mance for recognition applications [110]. Nonetheless, it is important to analyze the time 

and space complexity of the proposed bilinear subspace construction in comparison to 

the linear one. 

6 .4.1 Compression R a tio 

For large and high dimensional datasets , the lack of available space becomes a critical 

issue, as such compression ratio becomes an important factor in applications such as 

recognition and image retrieval. 

Consider a set of K -images in the vector space {edf=l. Since each ek E lRP is 

approximated by W Yk where W E IRD x D ' is common for all images, one needs to 

keep W and {ydf=l for all approximations where Yk E IRD'. Hence this requires 

D x D' + K X D' = (D + K) x D' scalars to store the reduced representation. As such 
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the compression ratio (storage saved) using linear representation is (D!;;~ D" 
In case of bilinear representation, the matrices U E lRH x H' and Y E lRw x w ' and 

{Yd'~l can be used to recover the original image set {EkH~l where each Ek E lRH x W 

is approximated by UY k y T. Hence to store the bilinear representation, one needs 

HxHI+WXWI+Kx(HIXW') scalars with compression ratio HX H'+W~~/!.·S(X (H' X W') ' 

where H' « D' , W'« D' and H x W = D. 

For instance, for a 100 x 100 gray-level image and 20 principal components, a linear 

representation would require 10,000 x 20 + 20 = 200,020 scalars, while the bilinear one 

would require 100 x 20 + 100 x 20 + 20 x 20 = 4400 scalars. As such, the latter presents 

a significant impact on dimensionality reduction while capturing the intrinsic properties 

of an image sample. Note that as H' and W' decrease , the compression ratio increases, 

yet small values of H' and W' may lead to low of the intrinsic information in the original 

image sample. 

6.4.2 Time Complexity 

The most computationally expensive steps in the bilinear subspace construction is the 

formation of the matrices Tv and T u in steps 6 and 7 in Algorithm 2 where it takes 

CJ(82 x H' X W'(H' + W')) time for their computations for 8-irradiance harmonics. 

Nonetheless the key to the low space complexity of the proposed bilinear representation is 

that the formation of the matrices Tv and T u is based on the lower-rank decomposition 

of the irradiance harmonics. 

The computation time for the bilinear representation Y is CJ(H' x W(H + W')) in 

comparison to CJ(D x D') in case of linear representation where H' « D', W' « D' 

and H x W = D. 

Note that the proposed algorithm involves two eigen problems of sizes H' x H' and 

W' x W' while the linear counterpart involves an eigen problem of size D' x D' where 

H' « D' and Wi « D'. Further, the decomposition of irradiance harmonics in the 

linear case needs to solve an eigen problem of size D x D where D = H x W while 

the bilinear case needs two eigen problems with sizes H x Hand W x W. As such, 

the proposed bilinear representation is computationally more efficient when compared 

to the linear one. 
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6.5 Experimental Results 

In the sequel, surface reflectance is modeled using the database provided by Mitsubishi 

Electric Research Laboratories (Merl) [17] which represent a wide variety of surface ma

terials with different diffuse and specular reflection properties (nB = 100). The BRDF 

measurements are fit up to P = 8 to (1) spherical harmonics basis [7], (2) hemispher

ical Zernike-based basis [44] and (3) the proposed isotropic hemispherical harmonics 

(HSH)-based Helmholtz reflectance basis. The main difference between the three types 

of basis is modeling the dependency of the surface BRDF w. r. t. the polar coordinates 

{B~, B~} where associated Legendre polynomials is used in (1) while Zernike polynomials 

and shifted associated Legendre polynomials in (2) and (3), respectively. 

We compute the irradiance harmonics as in Equation 5.4 for the visible part of a 

unit sphere, nonetheless , this analysis is applicable to any other geometrical structure. 

One uses illumination order up to N = 10 and reflectance order up to P = 8 from 

which S-harmonics of the highest average power content are selected where S is chosen 

such that at least 70% of the cumulative power content is maintained. The three types 

of harmonics l are decomposed using BD-PCA [102] to obtain their orthonormal pro

jection matrices spanning the row and column subspaces of the respective harmonics, 

i. e. U B , VB and their corresponding core matrices cf. In addition to their correspond

ing vector subspaces W~ along with cf. 
In the following set of experiments, testing images are rendered using an out-of

training scenario where the illumination maps from sIBL [105] (including a wide variety 

of illumination conditions such as indoor, outdoor, summer and winter conditions) are 

used in training the illumination prior (n£ = 54) whereas ten illumination maps from 

[55] are used to render testing images with randomly drawn views. Further, the BRDF 

that is used to render a testing image is excluded from training the reflectance prior. 

In order to assess the representation accuracy of the proposed appearance subspace, 

testing images are rendered , in a similar manner as in [31], of a sphere for the 100 

materials in the Merl BRDF database under 10 natural illumination maps from [55] 

where for each map 10 randomly drawn views were used resulting in 100 testing images 

per material. 

Given an image with the same geometry but under unknown natural illumination 

1 According to the devised reflectance basis 
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and reflectance. The trained appearance subspace is fit to such an image using number 

of principal components which maintain Q% of harmonics variation. One assesses the 

reconstruction accuracy in accordance to an error estimator which is based on the Mean 

Absolute Error (MAE) between the testing image and the reconstructed one where color 

values are normalized in the range [0, 1]. 

6.5.1 Effect of Initialization 

The iterative scheme implied by Theorem 6.1 raises the concern of whether its con

vergence is dependent on the initialization step. Both random matrices and pseudo 

(truncated) identity matrices are tested along with truncated full projection. Despite 

different initializations, one found that the objective function Wy converged to the same 

point within no more than three iterations. Nonetheless, using truncated full projection 

affects the speed of convergence where only one iteration was needed. This result is 

consistent with that of Lu et ai. in [106]. In the following , pseudo (truncated) identity 

matrices are used for initialization while the appearance bilinear subspace is trained 

using three iterations. 

6.5.2 Effect of Irradiance Harmonics 

Figure 6.3 shows the average reconstruction errors for each material in the Merl BRDF 

database based on linear and bilinear subspace construction. It can be noted that bilin

ear subspace, generally, attain lower error levels for all surface materials when compared 

to the linear one. This highlights the ability of bilinear representation to encode the 

intrinsic spatial properties of an image sample compared to the linear (vector) one. 

Further, it can be observed that HSH-based irradiance harmonics (diamond) provides 

minimal reconstruction error compared to SH-based (circle) and Zernike-based ones 

(square). This emphasizes the importance of accounting for the physical properties 

of non-emitting surfaces where a surface point receives incident illumination from the 

incoming hemisphere oriented by the surface normal at that point. In addition, the 

spectrum based on HSH-based basis captures more BRDF energy content compared to 

that of Zernike-based ones. This is based on the fact that at a specific illumination 

order, the set of associated Legendre polynomials is distinguished by the property that 

it contains a polynomial for every combination of order and degree [82], compared to 

Zernike polynomials which are restricted to even differences between polynomial order 
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Figure 6.3: T he average reconstruction error for each material in the Merl database based 
on the 100 rendered testing images per material where subspaces were constructed based 
spherical and hemispherical irradiance harmonics (refer to the legend) where Q = 98%. 
Note that bilinear subspaces surpass the linear ones while the proposed HSH-based 
irradiance harmonics at tains minimal reconstruction errors for all the surface materials. 

and degree. 
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6.5.3 Effect of Q% 

An important factor which affect the subspace dimensionality is the percentage of har

monic variation Q being maintained when the irradiance harmonics is decomposed (using 

PCA or BD-PCA in case of linear or bilinear subspace, respectively). While lower values 

of Q would inhibit capturing appearance variation due to illumination and reflectance, 

higher values would result in model over-fitting. Typical values lie in the range 95%±4%. 

Figure 6.4 portrays the average reconstruction error as a function of maintained 

harmonic variation percentage for linear and bilinear subspaces, respectively, with range 

Q E [85%,99%]. It can be noted that a bilinear subspace can capture the appearance 

accurately with lower harmonic variation percentage (i. e. lower-dimensional subspace) 

compared to the linear one regardless of the basis used to model surface reflectance. 

Figures 6.5, 6.6 and 6.7 show sample reconstructions for different toys from "Weiz

mann Photometric Stereo Database" [37] using different BRDFs and illumination maps 

[55]. It is worth noting that the proposed bilinear appearance representation is capable 

of capturing the true appearance when compared to the linear one regardless of the per

centage of harmonic variations being maintained. Also Figure 6.5 shows an example of 

over-fitting when the reconstruction error increases at Q = 98%. Note that neither the 

testing BRDF nor the testing illumination map is included in the subspace construction 

process. 

6.5.4 Effect of Noise 

To test the robustness of the proposed subspace w. T. t. to noise, white Gaussian noise is 

added with different signal-to-noise ratio (SNR) levels to each testing image. To conduct 

a fair assessment, one has fixed the harmonic variation that each subspace captures 

such that Q = 98%. Figure 6.8 shows the average reconstruction error as a function 

of SNR levels. One can observe the superiority of bilinear construction in capturing 

surface appearance even at low SNR levels compared to the linear one. This highlights 

the benefit of the proposed bilinear appearance model in terms of robustness against 

noise. Figures 6.9, 6.10 and 6.11 show sample reconstructions for different toys from 

"Weizmann Photometric Stereo Database" [37] using different BRDFs and illumination 

maps [55] where the proposed bilinear representation attains minimal reconstruction 

errors regardless of surface geometry and the deployed reflectance basis. 
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Figure 6.4: The average reconstruction error as a function of the harmonic variation 
percentage (Q%) maintained by the subspace. Averages were computed based on the 
100 rendered testing images for 50 randomly drawn materials from the Merl BRDF 
database_ Surface reflectance is represented using (a) spherical harmonics basis [7], 
(b) hemispherical Zernike-based basis [44] and (c) the proposed isotropic hemispherical 
harmonics (HSH)-based Helmholtz reflectance basis_ 
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Figure 6.5: Sample reconstructions of the bear toy from "Weizmann Photometric Stereo 
Database" [37] using the violet-rubber BRDF [17] under the Funston Beach illumination 
map [55] with different Q(%) using irradiance harmonics that are based on spherical 
basis deployed by Ramamoorthi and Hanrahan in [11 , 31]. Mean absolute error (MAE) 
is shown below each rendered image where all intensities are normalized in the range 
[0,1]. 

6.6 Summary 

This chapter proposed an analytic formulation for subspace reconstruction to capture 

the full behavior of complex illumination and non-Lamberti an reflectance. Thanks to 

the frequency-space representation of the image irradiance equation, one was able to in-

corporate prior information about natural illumination and real world surface materials. 

The process of finding the analytic subspace was cast as establishing a relation between 

its principal components and that of the irradiance harmonics basis functions to resolve 

the issue of dimensionality. By representing images as matrices rather than vectors, 

one was able to lessen the number of parameters to be estimated to define a bilin-

ear projection which maps the image sample to a lower-dimensional bilinear subspace. 

Despite admitting to an iterative scheme, the proposed approach showed robustness 
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Figure 6.6: Sample reconstructions of the elephant toy from "Weizmann Photometric 
Stereo Database" [37] using the special-walnut BRDF [17] under the Campus illumina
tion map [55] with different Q(%) using irradiance harmonics that are based on Zernike
based hemispherical basis deployed by Nillius ad Eklundh in [32, 44]. Mean absolute 
error (MAE) is shown below each rendered image where all intensities are normalized 
in the range [0 , 1]. 

w. 'r. t. initialization while being able to converge in just one iteration when using trun-

cated full projection. The proposed analytic bilinear PCA showed significant decrease 

in dimensionality when compared to the linear counterpart while attaining the lowest 

reconstruction errors. It was further tested against noisy input showing robust image 

representation even at low SNR levels. 
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Figure 6.7: Sample reconstructions of the camel toy from "Weizmann Photometric 
Stereo Database" [37] using the derlin BRDF [17] under the Kitchen illumination map 
[55] with different Q(%) using irradiance harmonics that are based on the proposed 
Helmholtz HSH-based basis. Mean absolute error (MAE) is shown below each rendered 
image where all intensities are normalized in the range [0, 1]. 
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Figure 6.8: The average reconstruction error as a function of the signal-to-noise (SNR) 
ratio in dB . Averages were computed based on the 100 rendered testing images for 
50 randomly drawn materials from the Mer! BRDF database. Surface reflectance is 
represented using (a) spherical harmonics basis [7], (b) hemispherical Zernike-based basis 
[44] and (c) the proposed isotropic hemispherical harmonics (HSH)-based Helmholtz 
reflectance basis. White Gaussian noise was added with different levels of SNR. Linear 
and bilinear subspaces were trained using Q = 98% of harmonic variations. One can 
observe that bilinear subspace still capture appearance even with low SNR levels. 
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Figure 6.9: Sample reconstructions of the camel toy from "Weizmann Photometric 
Stereo Database" [37] using the yellow-phenolic BRDF [17] under the Campus illu
mination map [55] with different SNR levels using irradiance harmonics that are based 
on spherical basis deployed by Ramamoorthi and Hanrahan in [11 , 31]. Mean absolute 
error (MAE) is shown below each rendered image where all intensities are normalized 
in the range [0,1]. 
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Figure 6.10: Sample reconstructions of the hippo toy from "Weizmann Photometric 
Stereo Database" [37J using the pink-fabric BRDF [17J under the Eucalyptus Grove 
illumination map [55J with different SNR levels using irradiance harmonics that are 
based on Zernike-based hemispherical basis deployed by Nillius ad Eklundh in [32 , 44J. 
Mean absolute error (MAE) is shown below each rendered image where all intensities 
are normalized in the range [0 , 1 J. 
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Figure 6.11 : Sample reconstructions of the bear toy from "Weizmann Photometric Stereo 
Database" [37] using the green-latex BRDF [17] under the Funston Beach illumination 
map [55] with different SNR levels using irradiance harmonics that are based on the 
proposed Helmholtz HSH-based basis. Mean absolute error (MAE) is shown below each 
rendered image where all intensities are normalized in the range [0, I] . 
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CHAPTER 7 

HARMONICS PROJECTION FROM 

INCOMPLETE IRRADIANCE 

This chapter considers the problem of reconstructing the image irradiance signal from 

incomplete irradiance signal. Sources of incompleteness might include, for example, 

occlusions due to wearing apparel and makeup for facial images, or even incompliance 

to the imaging model assumptions such as non-convexity which introduce cast shadows. 

This introduces errors in the reconstructed Harmonics Projection (HP) images which 

in turn have a direct impact on subsequent analysis steps. In particular, cast shadow 

pixels and those which belong to occluded areas will be incorporated into the projection 

process unless detected and excluded. 

We propose to cast errors introduced due to irradiance incompleteness as: (1) sta

tistical outliers which are determined and rejected using robust statistics and (2) local 

spatial erroneous continuous regions where Markov Gibbs random field with the homoge

nous isotropic Potts model is adopted to model the incompleteness's spatial interaction. 

The results show the effectiveness of the proposed algorithms in handling high levels of 

contiguous missing information compared to the conventional image projection. 

7.1 Introduction 

After the conclusion drawn by Basri and Jacobs [6], harmonic expansion of the image 

irradiance equation has been an attractive fit for illumination modeling. Nonetheless, 

the main challenge is the computation of what is defined the Harmonics Projection (HP) 

images to be robust against imaging conditions other than illumination. An HP image 

denotes the image resulted from; (1) projecting a given image onto an analytically 
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constructed lower-dimensional subspace , then (2) reconstructing the image from the 

computed projection and the subspace basis functions. This process would benefit many 

applications of practical interests such as illumination transfer for augmented reality 

applications (a.k.a. inverse lighting [111]) , image relighting for shape recovery and 

recognition applications [34, 112] and illumination recovery from images [113]. 

Input image 
(to be reconstructed) 

Basis 
images 

Reconstructed 
image using I"' 9 
harmonic images 

Figure 7.1: Illustration for harmonic-based image reconstruction, the input image is 
reconstructed by projecting it first to the 1st nine spherical harmonics basis images and 
then taking the reverse process by summing the scaled basis images. The reconstructed 
image is visually similar to the input image. 

This chapter considers the problem of reconstructing the image irradiance signal 

from incomplete irradiance signal. The image formation process itself (e.g. perspective 

projection, cast shadows due to surface non-convexity) generates intensity discontinuity 

in the observed image [114]. Other sources of incompleteness include wearing apparel 

such as sunglasses, hats and eyeglasses in case of facial images. Even in the absence of an 

occluding object, the violation of the imaging model assumptions can also be considered 

as a source of incompleteness. This introduces errors in the reconstructed HP images 

which in turn have a direct impact on subsequent analysis steps. In particular, cast 

shadow pixels and those which belong to occluded areas will be incorporated into the 

projection process unless detected and excluded. Hence, robustness against missing 

information is a crucial issue for HP images reconstruction. 

Yuen et al. [114] proposed a heuristic rule within the framework of fast marching to 

handle occlusion due to perspective projection for shape recovery application. With face 

recognition as an application, Zhou et al. [115] used Markov random fields in order to 

detect the spatial support of the occlusion which was discarded in subsequent processing. 

They adopted the classical Ising model for the probability mass function of occlusion 
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spatial support whose parameters were manually set. 

This chapter poses the problem of missing irradiance information as a sparse portion 

of the image is being corrupted. There is no assumption made for the prior knowledge 

of the color, shape, size or number of missing pixels. One is mainly concerned with 

the computation of the HP images to handle reconstruction from partial irradiance 

information. Missing information is viewed as either (1) statistical outliers to an assumed 

model where the field of robust statistics [ll6] can be employed, or (2) local spatial 

erroneous continuous region, assuming that the corrupted pixels are likely to be adjacent 

to each other in the observed image. Their spatial interaction is modeled using Markov 

random fields. Inspired by Zhou et al. [ll5] work, the spatial support of the corrupted 

region is identified using Markov Gibbs Random Field (MGRF) with the homogenous 

isotropic Potts model using an asymmetric Gibbs potential function. Asymmetric Potts 

model is adopted to guarantee that the Gibbs energy function is submodular, hence it can 

be minimized using a standard graph cuts approach [ll7] in polynomial time. In contrast 

to Zhou [ll5], the MGRF parameter is automatically estimated which controls the 

strength of spatial interaction between adjacent pixels; in addition the joint probability 

density function of the occlusion is modeled as a mixture of Gaussians whose parameters 

are estimated using the classical Expectation-Maximization (EM) algorithm. Various 

levels of contiguous missing information are simulated from 1% to 96% by replacing a 

randomly located block of a facial image with the image of (1) a baboon used in [ll5] 

and (2) random noise. 

We consider the statistical shape-from-shading framework proposed by Rara et al. [34] 

as one of the potential applications to the proposed approach. This framework makes 

use of the fact that general lighting can be expressed using low-order spherical harmon

ics (SH) for convex Lambertian objects. As such incompliance to assumptions such as 

diffuse (Lambertian) reflection and non-convexity would introduce discontinuities in the 

given image, rising the issue of incomplete irradiance information. Figure 7.1 illustrates 

the process of SH image reconstruction based on the first nine harmonic basis images. 

Using the USF HumanID 3D face database [ll8] (for simulations) and the extended 

Yale face database B, the results illustrate the sensitivity of Rara et al. [34] approach 

with respect to low levels of missing information. On the contrary, incorporating the 

proposed approach in their framework can handle high levels of missing information 

with small error percentage in the recovered shape. 
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7.2 Harmonic Projection Image Definition 

According to the central hypothesis of this dissertation which comply with previous 

works such as [6, 31 , 44, 119]' the irradiance signal can be represented by a low-

dimensional subspace driven from the harmonic expansion of the image irradiance equa-

tion. Thus the image irradiance E produced by a convex surface of arbitrary reflectance 

with spatially varying albedo can be expressed as a linear combination of pre-computed 

basis functions CBs} as, 
S 

E(x) = p(x) L cs'Bs(x) (7.1) 
s=l 

where p(x) denotes albedo at surface point x. 

In matrix notation, Let E E 1R.H xW be a matrix representation of the image irra-

diance of the visible surface normals to the viewer such that H denotes height and W 

denotes width. Let the image E be considered as a vector e E 1R.D with D = H x W. Let 

the s-th albedo-modulated subspace basis function B s = [p(x)'Bs(x)] Vx be represented 

in the vector space as bs E 1R.D . Consider B = [b 1, b2, ... , bs] E 1R.D xS be the matrix of 

subspace basis functions as its columns, denoted as basis matrix hereafter, where S is 

the number of basis functions, and c E 1R.S X1 vector of image coefficients when projected 

onto the subspace spanned by {'Bs}. 

This results in an over-determined linear system of equations e = Bc which can be 

solved using Singular Value Decomposition (SVD) (see Algorithm 3). If the input image 

and the basis matrix used to compute the coefficients c belong to the same object , one 

can reconstruct the input image from these coefficients, i. e. h = Bc = e. However 

in applications such as illumination transfer and shape recovery, the basis matrix B 

would belong to an object which is different from the one in the input image e, thus 

the reconstructed image h provide a mean of encoding the illumination and/or the 

reflection1 of the input image while maintaining the geometrical structure of the object 

used to derive the basis matrix, See Figure 7.2 for illustration. 

As such, Harmonic Projection (HP) image can be defined as the image resulted from; 

(1) computing the subspace coefficients c given the input image and the basis matrix of 

some object , then (2) reconstructing the image from the computed coefficients and the 

basis matrix. Thus, for example in the framework of statistical shape-from-shaping [34], 

lIn case of assuming Lambertian reflectance, t he coefficients c encode on ly the illumination condi
t ions of the input image. 
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the process of finding the HP image for each human subject in a given database allows 

subjects in this database to share the illumination conditions of the input image. The 

SVD approach is outlined in Algorithm 3. 

Input 
Image 

Harmonic 
Basis 
Images 

Harmonic 
Projection 
Images 

Figure 7.2: Harmonics Projection (HP) Images: when the basis images of a different 
object are used to reconstruct the input image, the HP images encode the illumination 
and/or reflectance conditions of the input but retain the identity of the object involved. 
The pipeline in Algorithm 3 is extended to distinct subjects of the USF database [l18]. 
Note that Active Appearance Modeling (AAM) [120] is used to automatically localize 
facial landmarks which guide the process of aligning the input image to the aligned 
albedo samples of the USF database [l18] using thin-plate-splines warping. 

Algorithm 3 Compute Harmonic Projection (HP) Image 

1: Input: (a) Input image, e E lRP with D = H x W, (b) Basis matrix, B 

2: Output: HP image, h 

3: Compute the SVD decomposition of the basis matrix B: [V , S, V ] = svd(B ) 

4: Retain the first S-columns of V: V = V (:, 1 : S), where S is the number of basis 

functions in the underlying subspace 

5: Retain the first S-singular values in S : S = S (l : S,l : S) 

6: Solve for the coefficient vector c using the least-squares estimate of e = Bc where 

e= VS-1VTe 

7: Compute the HP image; h = Be 
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Figure 7.3: Two samples of input images (b) and (e) illuminated using combined light 
source at (0,0,1) and (0,0.5,0.9) are corrupted by 25% (a) and 50% (d) contiguous 
occlusion, Algorithm 3 was used to reconstruct the input image from the basis images 
of the same subject (see Figure 7.1 ) (c) and (f) , it can be observed that the input image 
was not correctly recovered due to the presence of occluding region which was taken 
into consideration when constructing the linear system of equation e = Bc. 

7.3 HP Images With Missing Information 

Consider the case where the input image is partially occluded or is due to a non-

Lambertian object , HP algorithm based on SVD (Algorithm 3) would fail especially 

having the basis matrix being driven under the diffuse reflectance assumption. This 

is because such an algorithm is based on the construction of a linear system of equa-

tions which depends on the holistic view of the input image, see Figure 7.3. However, 

if the spatial support of the occlusion/missing information can be reliably determined, 

the corrupted pixels can be discarded from this system of equations and estimating the 

coefficients can proceed using the non-corrupted pixels. 

7.3.1 Irradiance Cor ruption as Statistical Outlier 

In [47], the field of robust statistics [116] is deployed to solve the problem of estimating 

the projection coefficients when outliers exist in the input image. The system of equa

tions e = Be can be translated into the robust estimation framework with the following 

minimization; 

m~n ER(e) = m~nL P(e - Be;a) (7.2) 
x 

where a is a scale parameter and p is the robust estimate of the error norm. 

Different p-functions result into various robust estimators in the sense of being insen

sitive to outliers. Two examples are used in this work which are the Geman-McClure l 

1 () x
2 

P X = <1+ X2 
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Figure 7.4: Geman-McClure p and 'l/J functions. Left: p(x) = a~:2' llight: 'l/J(x) 
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Figure 7.5: Lorentzian p and 'l/J functions. Left: p(x) = log (1 + ~ (~)2). llight: 'l/J(x) = 

'( ) 2x P X = 2a2+x2 

(Figure 7.4) and Lorentzian1 p-functions (Figure 7.5) because both are twice difIer-

entiable and gradient descent-based approaches such as simultaneous over-relaxation 

can be used to find the local minima. These p-functions also have the scale param

eter p which makes it attractive to use continuation methods, which can be used to 

find a globally optimal solution of non-convex objective function. Blake and Zisser

man [121] developed the Graduated Non-Convexity algorithm, a type of continuation 

method which constructs a parameterized piecewise polynomial approximation to the 

truncated quadratic. Instead of using truncated quadratic, this work proposes to use 

both Geman-McClure and Lorenztian p-functions and create convex approximations out 

of them. 

Using simultaneous over-relaxation, the iterative update equations for this minimiza-

tion with respect to the s-th coefficient Cs can be written as; 

(7.3) 
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where 0 < w < 2 is an over-relation parameter that is used to overcorrect the estimate 

c;+l. T(cs ) is an upper bound on the second partial derivative of ER. The complete 

algorithm to compute the robust HP images is shown in Algorithm 4. 

Algorithm 4 Compute Robust Harmonic Projection (HP) Image 

1: Input: (a) Input image, e , (b) Basis matrix , B 
2: Output: HP image, h 

3: Initial coefficients: Solve for cO using the least-squares estimate of e = Bco (use 
Algorithm 3) 

4: Compute partial derivatives: Compute 8ER /fJc s for S E [1, S]. 
5: Coefficient vector update: Update using c;+l = c; - WT(~8) ~~: where w is an 

over-relation parameter. T(cs ) 2: 82ER/8c~. 
6: Robust function parameter update (Graduated Non-convexity): at+I = 

K,at with K E (0,1). 
7: Repeat steps 2-4 until maximum number of iterations or convergence. 
8: Test for outliers: Determine outlying measurements using Ie - Bel 2: T where T 

is determined by the error norm and the control parameter a . 
9: Compute coefficients from non-outlier pixels: solve for c using the least

squares estimate of e = Be (use Algorithm 3) after discarding outlier pixels from 
both the input image and the basis images. 

10: Compute the HP image: h = Be 

7.3.2 Irradiance Corruption as Erroneous Continuous Region 

In the presence of discontinuous intensity regions due to irradiance corruption, the HP 

image can be modeled as e = Bc + € = h + € , where € E IRP is a sparse error vector oc-

curred due to some contiguous irradiance corruption. Its nonzero entries are both sparse 

and spatially continuous, thus it can be recovered by solving the £I-norm minimization 

problem [115]; 

(7.4) 

Figure 7.6: f defines the spatial support of the error € 
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Let f E {- I, I}D defines the error spatial support vector where f (x) = - 1 for non

corrupted pixels and f (x) = 1 for corrupted pixels, see Figure 7.6. Finding this spatial 

support can be posed as an image labeling problem where the objective is to assign 

corrupted or non-corrupted label to each pixel in the error vector. Let ::P = 1,2, ... , D 

be the set of D-pixels representing the error vector. The structure of the input image 

helps to define a geometric neighborhood system 1)1 consisting of a set of all neighboring 

pairs {p, q} where p , q E ::P. The second order neighborhood system is used where the 

eight nearest neighbors are sharing a side with a given pixel are considered. 
Using the maximum-a-posteriori estimation framework [122], one can describe the 

error vector E and its spatial support f by a joint Markov Gibbs random field (MGRF) 

model of independent image signals and interdependent region labels. A two-level prob-

ability model of the error vector and its spatial support is given by a joint distribution 

P(E, f ) = P(f)P(Elf) where P(f) defines the unconditional probability distribution of 

the spatial support, while P(Elf) denotes the conditional distribution of the error vector 

given its spatial support. The Bayesian maximum-a-posteriori estimate of the spatial 

support f can thus be expressed as; 

f * = argmin P(Elf)P(f) 
f E:1' 

(7.5) 

where J'" is the set of all possible labeling. In order to assure that the posterior distri

bution P(Elf) is a Markov random field , one assumes independent noise at each pixel, 

therefore P(Elf) = TIpEP P(Eplfp). Gibbs random field is used to provide a global model 

for the error vector by specifying the probability mass function of its spatial support 

as P(f) = ~ exp ( - I:{P,q} E<J1 Vpq(fp,fq)), where Vpq(.,.) is a two-pixel potential con

trolling the spatial interaction between neighboring pixels. Following Ali et al. [123], 

one adopts the asymmetric pairwise homogenous isotropic MGRF model with Potts 

prior where the asymmetric Potts model is chosen to guarantee that the Gibbs energy 

function is submodular, hence it can be minimized using a standard graph cuts approach 

[117] in polynomial time. The Gibbs potential for asymmetric pairwise co-occurrences of 

labels can be described as V(fP ) fq) = (J(fp =J. fq) where J(.) is the indicator function 

and ( is a parameter which influences the interaction between neighboring pairs. Note 

that the pq-subscript in Vpq is dropped since one is dealing with homogenous isotropic 
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models. Hence the Gibbs probability distribution can be written as [123]; 

P(f) 

(7.6) 

where 'I = {{p, q} : p , q E P, {p, q} E 1J1} is the family of the neighboring pixel 

pairs supporting the Gibbs potentials, with I'JI as its cardinality, Jneq(f) denotes the 

relative frequency of the non-equal labels in pixel pair of'J. It is defined as; Jneq(f) = 

m L{P,q} E'J o(fp =I fq) · In contrast to the work done by Zhou et al [115], the model 

parameter ( is estimated based on the analytical solution proposed by Ali et al. [123], 

where the approximate maximum likelihood estimate (MLE) of ( is computed as (* = 

K (1 - 2Jneq(f )), where K = 2 denotes the number of labels. 

Using the log-likelihood of Equation 7.5, the labeling problem can be formulated as 

the following maximization, 

f * = argmin 
f ET 

This is equivalent to minimizing the following energy function; 

Data Penality Term 

EM(f) = L V(fp , fq) + L~ log (P(€plfp))' 
{P,q}EIJl p E:P 

(7.7) 

(7.8) 

Zhou et al. [115] used a piecewise-constant likelihood function to approximate the 

conditional probability of the error P(€lf). While the precise form of the approximation 

was not essential for their application, through the conducted experimentation, one 

found that such rough approximation affects the data penalty term leading to inaccurate 

HP images. This work approximates the marginal probability density functions of each 

class using a mixture of Gaussians whose parameters are estimated using the classic 

Expectation-Maximization (EM) algorithm [124]. 

In the processing of minimizing EM(f) , one needs to set a threshold T which indicates 

the accepted level of error to consider a nonzero entry in the error vector as resulting from 

occlusion. The conditional probabilities can be used in order to derive such threshold. 

However, in the general case one will be comparing an input image e with an HP image 
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obtained from a subspace constructed from different geometrical structure, hence an 

error results due object identity rather than pixel corruption. However these errors are 

not separable, thus one cannot rely on the error probability density function to give 

such a threshold using conditional probabilities. Following the strategy of Zhou et al. 

[115], the error value is normalized to be in the range of [0, 1] . Therefore 7 is chosen 

adaptively within that range, starting with a relatively large value and reducing it by a 

constant step size at each iteration. 

We use the project-out approach of [120] by iterating between the estimation of 

the error spatial support and the projection coefficients. The complete algorithm to 

compute the MGRF-based HP images is shown in Algorithm 5. 

7 .4 Ex periment al results 

To compare the proposed algorithm to that of Ram et al [34], various levels of contiguous 

occlusion are simulated ranging from 1 % to 96% by replacing a randomly located block 

of a given facial image with (1) the image of a baboon used in [115] and (2) random noise 

(in Yale experiments). For Algorithm 4, the parameters are set as follows; w = 1.995, 

J<i, = 0.95, a = 1 and 7 = a / J3 in case of Geman-McClure norm and 7 = aV2 in 

case of Lorenztian norm. For Algorithm 5, one uses 70 = 0.2 and D-7 = 0.03 (values 

recommended by Zhou in [115]). HP images are reconstructed in 30 iterations in case 

of robust estimation (Algorithm 4) while MGRF takes 12 iterations to estimate a stable 

occlusion spatial support. One uses € = 0.7 to compute the overall occluding region 

given the occlusion spatial support of individual subjects in the database. Ground

truth images EO are formed using the Lambertian model with combined light source 

directions at (0,0,1) and (0,0.5,0.9). The input image E is then formed by replacing a 

randomly located block with an occluder image in order to occlude a certain percentage 

of the facial region. 

We use the following codes; (1) SVD: Algorithm 3, (2) RSL: Algorithm 4 with 

Lorenztian function , (3) RSG: Algorithm 4 with Geman-McClure function , (4) MGRFO: 

Algorithm 5 with ( = 2 (to compare to the case [115]) with piecewise-constant likelihood 

function, (5) MGRF1: same as MGRFO but with automatic estimation of the Gibbs 

potential parameter ( [123], (6) MGRF2: same as MGRF1 with mixture-of-Gaussian 

likelihood function (7) MGRF3: same as MGRF2 with error threshold 7 adaptively 
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Algorithm 5 Compute Harmonic Projection (HP) Image with MGRF and Sparsity 

1: Input: (a) Input image, e , (b) Basis matrix, B 
2: Output: HP image, h 

3: Initial coefficients: Solve for cO using the least-squares estimate of e = Bco (use 
Algorithm 3) 

4: Initialize the error threshold: TO = To 

5: Compute initial error vector: € = Ie - BcOI 
6: Compute initial error spatial support: 

7: repeat 

° {-1 f = 
1 

8: Exclude occluding pixels: B * = BW- 1 = - 1, :) , e* = e (f t- l = - 1) . 
9: Solve the e1-norm minimization problem: 

(e , €) = argmin II Ell l s. t . e*= B *c + E*. 
10: Compute the complete error vector: € = Ie - Bel 
11: Find an initial labeling for the error spatial support 

12: Compute the initial MGRF Potts model parameter: 

(* = K (1 - 2Jneq(f )) 

13: Fit a mixture of two Gaussians using EM-algorit hm to obtain condit ional 
probabilit ies P (Elf = - 1) and P (Elf = 1). 

14: Update the error spatial support using graph cuts: 

f* = argmaxexp (2:: log (P (Eplfp )) - 2:: V(jp, fq )) 
f E:T p E:J> {P,q }E'1l 

15: Update the error threshold: T t+1 = Tt + 6.T 

16: until maximum number of iterations or convergence. 

17: Compute coefficients from non-outlier pixels: solve for c using the least
squares estimate of e = Be (use Algorit hm 3) after discarding outlier pixels from 
both the input image and the basis matrix. 

18: Compute the HP image: h = Be 
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lowered at each iteration with a constant step size. 

7.4.1 HP Images Under Occlusion 

Assuming that HP images are reconstructed using the basis matrix of the same subject. 

The mean absolute error between the ground-truth image E G and the reconstructed HP 

image h. Figure 7.7 shows the mean and standard deviation of the mean absolute error 

measured between the ground-truth images and the reconstructed ones using occlusion 

percentages ranging from 1% to 96%. One can conclude the following: (1) SVD is 

unstable even with low levels of occlusion. (2) MGRF based on automatic estimation 

of Potts potential parameter and fitting mixture-of-Gaussians to the error probability 

distribution (MGRF3) provides significant improvement compared to other approaches 

especially for high levels of occlusion (> 40%) (3) The use of robust statistics (RSL and 

RSG) acts as a midway between SVD and MGRF3. (4) Lorenztian robust estimator 

(RSL) is less sensitive to outliers when compared to Geman-McClure (RSG). (5) The use 

of piecewise-constant approximation of the likelihood functions provides similar results in 

case of automatically estimation the Potts potential parameter (MGRFl) or manually 

setting it (MGRFO). Hence the estimation of the potential parameter does not have 

a significant impact when using such approximation for the likelihood functions. (6) 

Piecewise-constant likelihood functions seem to be more robust to low levels occlusion 

« 40%). However with higher levels of occlusion, the choice of such approximation 

imposes a significant influence on the reconstruction accuracy. 

Figure 7.8 shows sample results of the HP image reconstruction under different oc

clusion percentages. The following can be observed: (1) As the occlusion percentage 

increases, the performance of the classic SVD becomes inferior when compared to the 

other proposed approaches. (2) Modeling the spatial interaction of the occluding re

gion using MGRF provides the best results in terms of the reconstructed HP image and 

the estimated occlusion spatial support. (3) The estimation of the Potts potential pa

rameter provides better results (MGRFl, MGRF2 and MGRF3) since different spatial 

supports will have different values for potential parameter. (4) The estimation of the 

error threshold from the conditional probabilities (MGRF2) leads to inability to accu

rately estimate the occlusion spatial support. This is evident especially in case of very 

high occlusion level where the identity of the subject is mistaken with that of the ba

boon. (5) Piecewise-constant likelihood functions (MGRFO and MGRFl) provide rough 
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Figure 7.7: The mean and standard deviation of the mean absolute error measured 
between the ground-truth images and the reconstructed ones using occlusion percentages 
ranging from 1 % to 96%. 

estimation for the data penalty term which makes the estimation of the spatial support 

unreliable when compared to the mixture-of-Gaussian cases (MGRF2 and MGRF3). 

7.4.2 Shap e R ecovery U nder Occlusion 

We evaluate the performance of the proposed method in recovering the 3D shape given 

a partially occluded facial image. The face models are built using the USF 3D Face 

Database [118]. The database contains 100 subjects of diverse gender and ethnicity. The 

3D shape for 100 out-of-training is recovered. In each experiment, The following error 

metrics are computed: (1) Height Error (reported as percentages) where the recovered 

height map is compared with the ground-truth height map, and (2) Surface Orientation 

Error where the directions of the recovered surface normal vectors are compared to the 

ground-truth ones. The results from SVD, RSL, RSG and MGRF3 are reported, where 

shapes recovered from other variants of MGRF are not included due to their performance 

in previous subsection compared to MGRF3. 

From Figures 7.9 and 7.10, it can be observed that: (1) Algorithms tend to be 

divided into two main groups, (a) SVD and RSL being sensitive to occlusion and (b) 
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Figure 7.8: Sample results ofHP images reconstruction with different levels of occlusions. 
The estimated occlusion spatial support of each algorithm is shown in the even-ordered 
columns. MGRF3 provides the best results in terms of the reconstructed HP image and 
the estimated occlusion spatial support. Note that such spatial support does not exist 
for the SVD algorithm. 

RSG and MGRF3 being robust to contiguous occlusion even in the presence of high 

levels occlusion. (2) RSG provides better performance when compared to RSL. This 

shows the robustness of Geman-McClure function over Lorentzian function in handling 

the errors due to different identities (where basis images used to reconstruct the input 

image does not have the same identity as the input image). 

Figure 7.11 shows sample results in terms of recovered shape and albedo of one out-
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Figure 7.9: Mean and standard deviation of the mean absolute height error (reported as 
percentages) where the recovered height map (shape) is compared with the ground-truth 
height map. 
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Figure 7.10: Mean and standard deviation of the surface orientation error (reported in 
radians) where the directions of the recovered surface normal vectors are compared to 
the ground-truth ones. 

of-training subject using different levels of occlusions. The profile comparison of the 

recovered versus the ground-truth shape is also shown. One can observe the following; 

(1) SVD behaves poorly especially with increasing occlusion level. (2) Geman-McClure 

reconstructions are closer to the ground-truth when compared to that of Lorentzian. (3) 
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The power of MGRF is manifested with high levels of occlusion. 

20% 

40% 
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-...... ~ 

Figure 7.11: Shape and albedo recovery results for one out-of-training sample with 
combined light sources at (0,0,1) and (0,0.5,0.9). Shape and albedo are recovered using 
the SHP images computed from Algorithm 3 (SVD), Algorithm 4 with Lorentzian p
function (RSL) and with Geman-McClure p-function (RSG) and Algorithm 5 (MGRF3). 
The profile comparison is also shown where solid blue is used for ground-truth shape 
and dashed red is used for the recovered shape. 

The next step is to apply the proposed method to real images of the Extended Yale 

Database B [29]. Figures 7.12 and 7.13 show recovered shapes and albedos of out-of-

training samples using SVD versus the proposed algorithms for SHP computation, where 

baboon and random images are used as occluders. Visual inspection illustrates that (1) 

the albedo images belong to the same subject of the input, and (2) the recovered shapes 

based on SVD is significantly affected by higher levels of occlusion, which emphasis the 

need of occlusion handling. 
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Ground-truth image EG 

Figure 7.12: Shape and albedo recovery results for one out-of-training sample of Yale 
Database, where baboon image is used as the occluder . 

Ground-truth image HG 
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Figure 7.13: Shape and albedo recovery results for one out-of-training sample of Yale 
Database, where random occluder is used . 

7.5 Summary 

This chapter considers the problem of reconstructing the image irradiance signal from 

incomplete irradiance signal where sources of incompleteness might include occlusion 

and violation to the assumed image formation assumptions. This introduces errors in 

the reconstructed HP images which in turn has a direct impact on subsequent analy-

sis steps. In particular , cast shadow pixels and those which belong to occluded areas 

will be incorporated into the projection process unless detected and excluded. This 

chapter proposed to use robust estimators based on Lorentzian and Geman-McClure 
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functions within the Graduated Non-Convexity algorithm to estimate the SH coeffi

cients with the presence of statistical outliers (corrupted pixels). On the other hand, 

assuming corrupted pixels to be likely adjacent to each other, their spatial interaction 

was modeled using Markov Gibbs random field with Potts model. The results showed 

the effectiveness of the proposed algorithms in handling high levels of contiguous miss

ing information compared to the conventional image projection. In particular, MGRF 

and robust estimation using Geman-McClure function outperformed the Singular Value 

Decomposition (SVD) performance approach which is very sensitive to the presence of 

missing information even at low levels. In the meantime, the performance of Lorenztian 

function approaches SVD due to the presence of errors caused by fitting an input image 

to subspace bases constructed using different geometrical object. 

To evaluate the performance of the method, it is tested on both relighted (and 

real) images of the USF (and Yale) database. Visual inspection on the Yale database 

reconstructions revealed realistic recovered shape and albedo under high levels of oc

clusion. The following conclusions are drawn: (1) SVD performance is very sensitive 

to the presence of occlusion even at low levels. (2) Geman-McClure function compared 

to Lorenztian function is more robust to errors due to using basis functions of different 

subjects to recover the shape and albedo of an input image. (3) MGRF and robust 

estimation using Geman-McClure function outperform the SVD approach. (4) The per

formance of Lorenztian function approaches SVD due the presence of errors due to using 

basis of different identity than the shape to be reconstructed. 
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CHAPTER 8 

MODEL-BASED FACIAL SHAPE 

RECOVERY FROM SINGLE IMAGE 

Through depth perception, humans have the ability to determine distances based on a 

single 2D image projected on their retina, where shape-from-shading (SFS) provides a 

mean to mimic such a phenomenon. The goal of this chapter is to recover 3D facial 

shape from a single image of unknown general illumination, while relaxing the non

realistic assumption of Lambertian reflectance. Prior shape, albedo and reflectance 

models from real data, which are metric in nature, are incorporated into the shape 

recovery framework. Adopting a frequency-space based representation of the image 

irradiance equation, an appearance model is proposed, termed as Harmonic Projection 

Images, which accounts explicitly for different human skin types as well as complex 

illumination conditions. Assuming skin reflectance obeys Torrance-Sparrow model, it 

is proved analytically that it can be represented by at most 5th order harmonic basis 

whose closed form is provided. The recovery framework is a non-iterative approach which 

incorporates regression-like algorithm in the minimization process. The experiments on 

synthetic and real images illustrate the robustness of the proposed appearance model 

vis-a.-vis illumination variation. 

8.1 Introduction 

The shape-from-shading (SFS) problem, formally introduced by the seminal work of 

Horn [24], involves recovering the 3D shape of an object using the cues of lighting 

and shading available in a single image. Notwithstanding, such a problem is under

constrained because the image formation process involves numerous unknowns in con-
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Figure 8.1: Block diagram of the proposed model-based facial shape recovery: (a) An aligned ensemble of facial shapes and albedos is used to build 
shape/albedo models. (b) Given the albedo and surface normals of a certain subject in the ensemble, harmonic basis images are constructed to encode 
reflectance properties of different skin types. Given an input image under general unknown illumination and a set of facial landmark points including 
both anatomical and pseudo-landmarks: (c) Dense correspondence is established between the input image and each subject in the ensemble, where 
each pixel position within the convex hull of a reference shape corresponds to a certain point on a sample facial scan (shape and albedo) and in the 
same time to a certain point on the input image. (d) The input image, in the reference frame, is projected onto the subspace spanned by the harmonic 
basis of each subject in the ensemble which are scaled (using the projection coefficients) and summed-up to construct the harmonic projection (HP) 
images. A HP image maintains the subject identity of the corresponding harmonic basis while encodes the illumination conditions and the reflectance 
properties of the input image. The HP images are then used to construct a harmonic projection model of the input image. (e) The inherit relation 
between the HP images and the corresponding shape/albedo is cast as a regression framework where the two regression models at work here, namely, 
HP-to-shape and HP-to-albedo models. Principal component regression is used to solve for shape and albedo coefficients to recover the shape and 
albedo of the input image. 
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8.1. Introduction 

trast to the available information at hand. Thus information inference based on shading 

commonly involves adding assumptions to the image formation process such as direc

tional light sources and uniform albedo. 

Previous works in shape recovery can be broadly categorized in two classes; image

centered and model-based approaches. Starting from the pioneering work of Horn [24], 

image-centered algorithms rely entirely on the available shading cues in the given im

age. Zhao and Chellapa [125J proposed a symmetric SFS algorithm using the known 

bilateral symmetry of frontal faces as a geometric constraint . Nonetheless, Prados and 

Faugeras [126J showed that constraining the SFS algorithm to specific class of objects can 

improve the accuracy of the recovered shape, while relaxing the uniform albedo assump

tion. In particular, there has been a significant interest in the recovery of facial shapes 

given single image. Following Zhao and Chellapa, Ahmed and Farag [127J formulated 

the symmetric SFS problem as a partial differential equation solved by Lax-Friedrichs 

sweeping method [128J. 

On the other hand, model-based approaches use statistical prior models which is 

rooted in the cue theory of depth perception; humans learn the connection between cue 

and depth through previous experiences. Atick et al. [129J proposed the first statistical 

SFS method by parameterizing the set of all possible facial surfaces using principal 

component analysis (PCA). Dovgard and Basri [130J added the geometric constraint 

of facial symmetry. Smith and Hancock [131 J embedded a statistical model of surface 

normals within a SFS framework. The morphable model framework of [132J estimates 

the shape and texture coefficients from an input 2D image, together with other scene 

parameters, using an optimization method based on stochastic gradient descent. It 

is a 3D extension of the seminal work of Cootes et al. [133J on Active Appearance 

Models (AAM) , where a coupled statistical model is generated to describe the 2D shape 

and appearance (albedo) information of faces. Castelan et al. [134J developed a coupled 

statistical model to recover 3D shapes from intensity images with a frontal pose where the 

2D shape model in AAM is replaced with a height map model. The main advantage of 

the Castelan approach over the 3D morphable model framework is in the straightforward 

recovery of the 3D face shape, which does not go through a costly iterative optimization 

process, i.e ., shape recovery can be performed using a series of matrix operations. 

One of the main challenges that confront SFS algorithms is dealing with arbitrary 

illumination. Basri and Jacobs in [6J and Ramamoorthi and Hanrahan in [7J proved that 
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images of convex Lambertian object taken under arbitrary illumination conditions can 

be approximated accurately using low-dimensional linear subspace based on spherical 

harmonics (SH). Since then, SH has been incorporated in SFS framework to alleviate 

the problem of illumination assuming Lambertian reflectance [33, 34, 37, 135, 136, 137]. 

Zhang and Samaras [135] primary goal was to recover the SH basis images from a single 

test image. Basri and Jacobs [37] relies on multiple images, i.e. photometric stereo, 

to infer the 3D shape. Ahmed and Farag [136] extended Castelan's coupled statistical 

model [134] by combining shape, appearance/albedo and SH in order to parameterize 

facial surfaces under arbitrary illumination. Rara et al. [137] further extended the work 

of [136] to include 2D shape information in the model. In subsequent work, Rara et 

al. [33] decoupled the coupled model of [134] and [136] to obtain a separate model for 

shape and albedo where the classic brightness constraint in SFS is approximated using 

SH basis images. Castelan and Horebeek [138] and Rara et al. [34] cast their models 

in a regression framework using the Partial Least Squares (PLS) method which uses a 

few matrix operations for shape reconstruction to provide a computationally efficient 

alternative to the iterative methods used in [33 , 134]. 

Despite the simplicity of the Lambertian model, accurately modeling the appearance 

of objects in general and human faces in particular goes far beyond the Lambertian re-

flectance model. The human face is neither Lambertian nor convex, introducing cast 

shadows in concave regions. As such, this inspired oneself to move closer to the realistic 

situation with a non-Lambertian reflectance model, where non-homogeneous surfaces 

with spatially varying reflectance properties are often approximated in vision applica

tions by using a spatially varying texture/albedo which modulates the surface radiance 

[7]. Weyrich et al. [95] provided an experimental proof that skin reflectance deviates 

from the Lambertian assumption by measuring the skin reflectance of 156 subjects of 

varying age, gendre and race. Their reflectance model consists of spatially-varying ana

lytic reflectance model based on Torrance-Sparrow model! [12]. 

This chapter proposes a framework for 3D face shape and albedo recovery from a 

single image under unknown general illumination. The frequency-space based repre-

sentation of the image irradiance equation enables deriving a low-dimensional subspace 

for human faces with different skin types. Assuming skin reflectance obeys Torrance-

IThe reflection of many dielectrics materials including human skin can be modeled using Torrance
Sparrow [12] reflectance model [139], since they do not exhibit any significant back-scattering properties 
[140]. 
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Sparrow model [95], it is proved analytically that it can be compactly represented by 

up to a 5th order harmonic basis which are derived by representing the lighting and the 

surface reflectance functions using spherical harmonics (SH) and the Helmholtz hemi

spherical harmonics (HSH)-based reflectance basis [45], respectively. The core compo

nent of the proposed framework resides in the appearance model, termed as Harmonic 

Projection (HP) Image, which encodes the illumination conditions and the reflectance 

properties of an input image. The classical shape-from-shading iterative equation is 

cast as a regression framework , which can be solved efficiently and non-iteratively using 

Principal Component Regression (PCR). The experiments show the robustness of the 

proposed non-Lambertian appearance model vis-a.-vis illumination variation compared 

to the earlier work in [47] which assumed Lambertian reflectance. 

8.2 Image Irradiance Basis for Torrance-Sparrow Reflec-

tion 

Recall that the image irradiance equation for a non-emitting surface with a spatially

varying albedo p(x) is defined as, 

(8.1) 

Eqn. Equation 8.1 can be represented in the frequency space by means of expressing the 

lighting function Li and the surface reflection fr in terms of spherical harmonics [11] and 

the proposed Helmholtz HSH-based basis, respectively. Due to SH basis orthonormality, 

the rotation process defined in Equation 8.1 is thus a linear operation where coefficients 

between distinct illumination bands don't interact. Thus the frequency-space represen

tation of the image irradiance in Equation 8.1 can be written as follows l , 

E(x) p(x) in: (~m~nmtnl~2)~m/(Q , JJ)Ynm/(w~)) 

( ao + 2 t apJ(~(w~, w~)) cos B~dW~ 
p=l 

(8.2) 

where l~ are the illumination spectrum coefficients when projected onto the subspace 

spanned by the real SH basis, 2)n are Wigner's rotation matrices [59] and w~ = (0 , 7r). 

1')' is arbitrarily set to zero since TS model is isotropic whi le normal-exitance is assumed. 
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Note that Torrance-Sparrow (TS) spectrum coefficients has two components; the 

zeroth order ao which is due to the diffuse component of the BRDF, while the summation 

term is due to the specular part. Thus it is anticipated to have such division being 

reflected on the image irradiance basis. 

The diffuse component is similar to the Lambertian case in [6] and [ll], moving 

terms which are independent of the local incident direction out of the integral results 

00 n n 

L L L l~ao1>~m'(Q,,B) 1, y~'(w~)cosO~dw~) 
n=O m=-n m'=-n ni 

00 n 

= L L l~ao1>~o(Q, ,B)Cn (8.3) 
n=Om=-n 

where, 

n = O 

n=1 
Cn= (8.4) 

n ~ 2, even 

o n ~ 2,odd 

Using series representation of the associated Legendre polynomial, the specular com-

ponent can be written as, 

00 n n 00 

L L L L2l~ap1>~m'(Q,,B) 
n=O m=-n m'=-n p=l 

1 Y m' (~I )rt.rOO (~I ~I) 0' ..1.-;1 
n Wi JLpO Wi' Wo cos i u,wi 

n' , 
00 n 00 

L L L 2l~ap1>~o(Q, ,B)Cnp 
n=Om=-np=l 

(8.5) 

1 All terms vanish except for m' = 0 due to the orthogonality relat ion of the azimuthal function s 
w.r.t. polynomial degree. 
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where, 

+ 

J2P + 1 [(( -l)P J2n + 1 
2 2n 47r 

o 

Ln/2J P (- 1 )k+k' (~)(2n~2k)) 
L L n-2k+k'+2 
k=O k'=O 

n=O 

n=l 

n 2: 2, even 

n 2: 2, odd 

(8.6) 

This suggests that the image irradiance equation of a convex surface with albedo 

p(.) and surface normals n(.) and whose refiectance obeys TS refiection model can be 

represented as a linear combination of harmonic basis functions of the form: 

(8.7) 

In the image space, assuming the light source and the viewer are far from the ob

ject where orthographic projection is a good model for the imaging process, the image 

intensity I can inherit the image irradiance E of the corresponding surface point. 

Formally, let a 3D object with D surface points be defined by its shape s = [n(xo), n(xl), ... , n(xD_l)]T, 

albedo a = [p(xo) , p(xd , ... , p(xD- dV and TS-BRDF parameters 'I/J = {Pd , Ps, a p. One 

computes the harmonic basis functions in Equation 8.7 for each surface point which is 

orthographically projected on the retinal plane through the imaging process. Hence the 

harmonic basis is referred to as images in the image space. 

Using the Nth order harmonic approximation of the image irradiance equation, the 

image of this object under fixed-pose with arbitrary lighting function can be efficiently 

approximated as a linear combination of the harmonic basis images such that , 

N n 

I(x) ~ L L l~23~(p(x), n(x )) (8.8) 
n=Om=-n 

In matrix notation; Let B denotes D x J( matrix whose columns are the harmonic 

lNote that the BRDF parameters affect t he reflectance spectrum ap Vp ~ O. 
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basis images 13 k Vk = n(n + 1) + m with K = (N + 1)2, typically K = 36 in case of 

human skin (see Figure 4.9). Let e = (lo,h, ... ,lK- 1f denote the lighting coefficients. 

Thus Equation 8.8 can be rewritten as follows , 

(8.9) 

The next section presents how to devise this representation to transfer the illumi-

nation conditions of an input image to a given sample of the statistical prior to aid the 

shape recovery process. 

8.3 Harmonic Projection Images 

The classical brightness constraint in SFS measures the deviation of the input image 

from the image irradiance under the assumed image formation process, it can be defined 

as; 

t = J J [I(x) - E(x)]2 dx (8.10) 

Representing the image irradiance in terms of harmonic basis Equation 8.7 allows 

inferring the illumination conditions of a single image as follows. Given an input image 

I of D-pixels and the harmonic basis matrix B of a corresponding 3D object (a human 

face in particular), the lighting coefficients e = [lo, ... lK_1]T can be deduced as the 

minimal solution of the over-determined linear system of equations I = B e that best 

matches the input image. The least squares solution can be obtained using Singular 

Value Decomposition such that e = YS- 1 U T I where B = USyT. The reconstructed 

image h = B e encodes the illumination conditions of the input image I. 

The harmonic basis matrix works best when a single variable in the image formation 

process is only considered, i. e. illumination. However different human skin types 

(i. e. surface reflectance properties) affect the appearance of the facial surface even if 

illumination is held fixed. It has been shown in [17, 141] that the BRDF of many objects 

can be expressed in terms of fundamental materials in a data-driven context. Thus the 

image irradiance corresponding to the input image can be written as, 

J-1 K-1 
E(x) ~ L Wj L lk13{(p(x),fi(x)) 

j=O k=O 
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where w = [wo, ... , wJ_dT are the weighting factors for the BRDF of different skin types. 

This inspired oneself to exploit the dependency of the harmonic basis images on the 

BRDF parameters, where one can infer surface reflectance properties from the input 

image by incorporating the reflectance properties of different skin types in the prior 

model. This is achieved by assigning multiple BRDFs III = [1/10 , ... , 1/IJ- 1] to a pair of 

shape and albedo, where 1/Ij corresponds to TS parameters of the jth skin type1. Thus 

B{ denotes the basis matrix of the ith shape/albeo-pair with the jth skin type. 

As such, the ith harmonic projection (HP) image h i of an input image is defined as 

the reconstructed image from the process of projecting the input image to the subspace 

spanned by the harmonic basis matrices Bi Vj then taking the reverse process by sum

ming up the scaled basis using the computed harmonic coefficients l:i and the weighting 

factors £Vi, i. e. with B~ = v jsj (vj)T one has, 
t t t t 

J- 1 
hi = L w;B{fJ fJ = v{ (SO -1 (VOT I (8.12) 

j=O 

where the BRDF weights are the least squares solution of the over-determined system 

I = HiWi with H i = [h?, ... , hf - l] be the matrix whose columns h{ = B{b are the 

reconstructed images from the subspace spanning the jth skin type for the ith prior 

sample. 

It is worth noting that h{ encodes the illumination conditions of the input image 

being transferred to the 3D object used to generate basis B{ while maintaining the 

ith object identity and reflectance. Meanwhile hi encodes both the illumination and 

reflectance properties of the input image while maintaining the ith object identity. Thus 

the shape recovery problem can then be formulated as finding the harmonic projection 

image h which maintains the illumination, reflectance and identity of the input image. 

As such, the discrete version of the brightness constraint becomes, 

E = L [I(x) - h(x)]2 (8.13) 
x 

The existence of a statistical prior of shape and albedo aids resolving the bas-relief 

ambiguity [142] which normally occurs when both lighting and shape are unknown. 

Meanwhile, it enables finding the shape and albedo which minimizes the objective func-

lIn the conducted experiments, average parameters for the cheek region of the skin types defined in 
[95] were used, thus J = 6. 
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tion in Equation 8.13 in a regression-like framework which is detailed in the next section. 

8.4 Model-based Shape Recovery 

The statistical SFS framework in this paper involves two offiine models, namely, the 

shape and albedo models and one online model, termed HP-model. By offline one means 

that such models are constructed dming the training stage compared to the online one 

which is formed once the input image is given. The process of constructing the shape 

and albedo models involves two major steps: (a) establishing a dense correspondence 

among an ensemble of human faces and (b) statistical modeling. The model construction 

in this paper is similar to the morphable model construction in [132, 143]. 

Algorithm 6 Principal Component Regression Framework for 3D Shape Recovery 
INPUT: (a) Input image, Iinp (b) Shape and albedo samples: (SI , at) to (sn, an) 
OUTPUT: (a) Recovered shape, s (b) Recovered albedo, ii 

1: Build the shape and albedo models from the samples using PCA: construct 
s = s + P sb s and a = ii+ P ab a. 

2: Construct the basis images for each pair i and for each assigned BRDF 
'l/Jj: B{ = ['B~ i' ... , 'B~_ l i] E lRD x K for each pair (Si'~) 

3: Compute the lighting coefficients for each pair i and for each assigned 
. &_ j ( j) - l( j)T . j_ j j ( j)T BRDF 'l/Jj . ei - V i Si U i Imp where B i - U i Si V i . 

4: Compute the reconstructed images from the j th skin type subspace for 
each pair i : H i = [h?, ... , hI-I] where h{ = B{ e;. 

5: Compute the BRDF weights for each pair i : fiji = V f (Sfr
1 

(U n
T 

Iinp 

where H i = U f Sf (Vff· 
6: Compute the harmonic projection (HP) image for each pair i : h i = 

""J-1 iiJi Bj'j] 
uJ=o J • . 

7: Build the HP model: construct h = h + P hb h. 
8: Replace the shape samples with its coefficients: solve for b si = P'!(Si - s) 
9: Replace the albedo samples with its coefficients: solve for b ai = P;;(~ - ii) 

10: Replace the HP images with its coefficients: solve for bhi = P~(~ - h) 
11: Setup matrices for PCR: T = [bIl"" , bt], U sh = [b~, . .. , b sn ] and U al = 

[b~l ' ... , b~n] 
12: Build two PCR models: 

(T TT )-IT TU al 

- T -1 T -construct C sh = (T T ) TUsh and C al = 

13: Solve for the SHP coefficients of the input image: get b h,inp = Pj[( I inp - h) 
-T -T - -T -T-

14: Solve for the shape and albedo coefficients: get b s = b h C sh and b a = b h C al 
15: Solve for the recovered shape and albedo: s = s + P s b s and ii = ii + P ab a 

The shape and albedo models can be constructed offline by performing principal 

component analysis (PCA) on the aligned set of database samples, the resulting shape 

model is s = s + P sb s where s is the mean shape, P s are the shape eigenvectors and b s 

is the set of shape coefficients. Similarly a = ii + Paba is the albedo model where ii is 
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the mean albedo, P a are the albedo eigenvectors and b a is the set of albedo coefficients. 

These two models can be trained offline. 

The HP model, on the other hand , is trained online to incorporate the illumination 

and reflectance conditions of the input image; given an image I and the basis images B{ 

of object instance i, the HP image hi is obtained as in Equation 8.12. After reconstruct-

ing the HP images of all the instances in the database, the HP images can be modeled 

using PCA as h = fi + Ph bh where fi is the mean HP image, Ph are the HP images 

eigenvectors and bh is the set of HP coefficients. 

There is an inherited relation between the HP images h and shape s and albedo a 

simultaneously, hence shape and albedo recovery can be cast in a regression framework 

having two regression models (a) HP-to-shape and (b) HP-to-albedo. This chapter uses 

Principal Component Regression (PCR) to obtain the relationship between the indepen

dent data (HP images) and the dependent data (shape/albedo) through decomposing 

them into a low-dimensional subspace, i.e., replacing the high-dimensional vectors Si , 

a i, and h i by their respective PCA coefficients (b S i ' b a i , and bh i )' Then, standard mul

tiple linear regression is performed between the low-dimensional representations. This 

method is summarized in Algorithm 6. 

8.5 Experimental Results 

8.5.1 Model Construction 

The shape and albedo models in this paper are derived from 3D scans of the USF 

database [118], where 80 subjects of its 100 samples were deemed to be acceptable to 

build the shape and albedo models. The original 3D scans are converted into a Monge 

patch format [8] which represents the surface as (x,y,f(x,y) )l . The front (for albedo 

information) and depth buffers (for the corresponding height information) within the 

frame buffer in a computer graphics system are simulated [144]. The approach of Patel et 

al. [143] is used to establish the dense correspondence between database samples, where 

a set of sparse landmark points (anatomical and pseudo-landmark points [145]) are 

manually annotated on the resulting albedo data for all database samples. Generalized 

IThis representation is convenient because a unique point on the surface can be determined by 
specifying on ly the image coordinates. Castel an et a l. [134] uses the term , height map, for a similar 
concept. • 
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Procrustes Analysis (G PA) [146] is first performed to align the set of shapes to a common 

reference frame. The average of the aligned shapes define the reference shape which is 

crucial in establishing dense correspondence between USF samples, see Figure 8.1. Each 

pixel within the convex hull of the reference shape corresponds to a certain point on 

each USF sample scan through a physically motivated thin-plate splines [146] warping 

function. 

8.5.2 Synthetic Images 

To quantify the reconstruction accuracy of the proposed framework, one recovers the 

3D shape for 80 out-of-training USF samples illuminated by directional light sources 

defined in the Extended YaleB database [29]' while reflectance properties are randomly 

drawn from the skin reflectance database [95]. For each experiment, the following mea

sures are computed: (a) Height Error - the recovered height map is compared with the 

ground truth height and the mean absolute error Berr is then computed, and (b) Surface 

Orientation Error - the directions of the recovered normal vectors are compared with 

the ground truth data. The average of the difference angle Berr is then computed. 

The histogram of the mean height absolute error and mean surface orientation error 

are displayed in Figure 8.2. The maximum height error is less than 6%, with most 

samples in the (1.5-5%) range, while the mean surface orientation error does not exceed 

0.08 rad. Note the increasing error levels throughout different illumination subsets 

where subset 4 is considered the most challenging compared to other subsets. It is 

worth mentioning that based on one's earlier work in [47], the Lambertian case reported 

average height error of 5.4% with 0.15 rad as average surface orientation error. 

Table 8.1: Mean and standard deviation of the mean height error for 80 out-of-training 
USF samples under Yale light conditions 

Subset 1 Subset 2 Subset 3 Subset 4 

J.LSerr (%) 
aSerr (%) 

3.03 
1.03 

3.09 
1.02 

3.24 
1.04 

3.37 
1.01 

Table 8.2: Mean and standard deviation of the mean surface orientation error for 80 
out-of-training USF samples under Yale light conditions 

Subset 1 Subset 2 Subset 3 

J.LOerr (rad) 
a - (rad) 

Oerr 

0.05 0.05 0.051 
0.0065 0.0069 0.0077 
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Figure 8.2: Error histograms of the recovered shape for 80 out-of-training USF-samples 
under illumination conditions of the extended YaleB database: Top: height error his
togram. Bottom: surface orientation error histogram. 

Figure 8.3 shows the recovered shapes for different out-of-training USF samples 

together with the input image and the ground-truth shape. Notice that the results are 

visually acceptable. The shape error maps indicate that the recovered shapes are close 

to ground-truth values. 

8.5.3 Real Images 

The next step is to apply the proposed method to real images of the Extended Yale 

Database B [29] which is a standard database for illumination studies in vision, esp. 

face recognition. Note that the database subjects are not included in the prior model. 

Figure 8.4 shows the input images under the same illumination conditions as in Fig

ure 8.3, together with the recovered shape and albedo. For visual comparison, the 

shape of each sample is reconstructed using photometric stereo [8]. It is worthwhile to 

note that photometric stereo needs multiple images of a fixed-pose subject under differ

ent known illumination conditions. This explains the detailed shape reconstruction in 

Figure 8.4(b) when compared to Figure 8.4(d). However such luxury might not be avail-

able in case of having a single image under unknown illumination, hence the proposed 
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Figure 8.3: Recovered shapes for different out-of-training USF samples, (a) Input image 
under directional light source of inclination angle e and azimuthal angle <p, (b) ground
truth shape, (c) recovered shapes, (d) recovered albedos and (e) error maps with average 
height error shown in percentages. 

framework provides a solution given the image brightness value per pixel. 

8.6 Summary 

This chapter presented a model-based facial shape recovery framework for general and 

unknown illumination which is made possible through the frequency space representation 

of the image irradiance equation. Based on recent studies of human skin reflectance, 

image irradiance harmonic basis is derived based on Torrance-Sparrow reflection model. 

The classical shape-from-shading equation was cast as a regression problem which results 

in a sequence of matrix operations, enabling shape recovery at higher rate compared to 
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Figure 8.4: Recovered shapes for different YaleB Database subjects under same il
lumination conditions as in Figure 8.3, (a) Input image, (b) recovered shapes from 
photometric stereo using eight images from subsets 1 and 2 with known light directions, 
(c) recovered shapes and (d) recovered albedos. 

the iterative counterparts. To evaluate the performance of the proposed harmonic basis 

for the task of shape recovery, the proposed framework was tested on both relighted (and 

real) images of the USF (and Yale) database. Experiments on the out-of-training samples 

of the USF database provide convincing results. Visual inspection on the Yale database 
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8.6. Summary 

reconstructions reveal realistic recovered shape and albedo compared to the situation 

of photometric stereo which requires multiple images of known light sources. Ongoing 

efforts are directed towards investigating the concave/convex ambiguity resulting from 

from the existence of singular points (i. e. points with maximum brightness). 
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CHAPTER 9 

CLINICAL CROWNS SHAPE 

RECONSTRUCTION - AN 

IMAGE-BASED ApPROACH 

Several existing 3D systems for dental applications rely on obtaining an intermediate 

solid model of the jaw (cast or teeth imprints) from which the 3D information can be 

captured. This chapter proposes a model-based shape-from-shading (SFS) approach 

which allows for the construction of plausible human jaw models in vivo, without ion

izing radiation, using fewer sample points in order to reduce the cost and intrusiveness 

of acquiring models of patients teethfjaws over time. The inherent relation between 

the photometric information and the underlying 3D shape is formulated as a statistical 

model where the coupled effect of illumination and reflectance is modeled using the pro

posed Helmhotlz Hemispherical Harmonics (HSH)-based irradiance harmonics whereas 

the Principle Component Regression (PCR) approach is deployed to carry out the es

timation of dense 3D shapes. Moreover , shape and texture alignment is accomplished 

using a proposed definition of anatomical jaw landmarks which can be automatically 

detected. Vis-a.-vis dental applications, the results demonstrate a significant increase 

in accuracy in favor of the proposed approach. In particular, the proposed approach is 

able to recover geometrical details of tooth occlusal surface as well as mouth floor and 

ceiling as compared to SFS-based approaches. Further, the robustness of the proposed 

approach is investigated in an automated framework for tooth restoration from a sin

gle optical image. The system is evaluated on database of 16 jaws for inlay and onlay 

restorations. Results shows a promising performance for using the proposed approach 
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9.1. Introduction 

in clinical application 1 . 

9.1 Introduction 

Object modeling from a single image, augmented with prior information, facilitates var-

ious studies and applications in art, design, reverse engineering, rapid prototyping and 

basic analysis of deformations and uncertainties. Without the use of ionizing radiation 

(e.g. X-ray and Computer Tomography - CT) , object modeling involves constructing a 

3D representation for the information conveyed in the given 2D images. This problem 

has been studied in the past four decades resulting in many solutions bundled under the 

name shape-from-X. In particular, techniques, such as shape-from-shading (SFS) provide 

promise of image-based 3D reconstruction when the imaging environment is somewhat 

precise. 

To motivate the contribution of this work, one considers a dental application; 3D 

reconstruction of the visible part of the human jaw, a.k.a. clinical crown. Dentistry usu

ally require accurate 3D representation of the teeth and jaw for diagnostic and treatment 

purposes. For instance, the precise knowledge of the 3D shape of the tooth is becoming 

crucial for the treatment of malocclusion problems and several endodontic procedures 

where accurate location and orientation of the tooth 3D shape must be determined for 

the sake of the treatment plan. Further, this 3D representation could playa vital role in 

constructing tooth implants where crowns and bridges of high quality are needed [147]. 

Meanwhile, since teeth are the most durable parts in the body, they are frequently used 

in forensic medicine [148, 149]. As such a good Computer Aided-Design (CAD) sys-

tem should integrate the advantages of constructing surfaces which fit to the existing 

articulation of the tooth along with retaining its morphological features [148]. 

Several existing 3D systems for dental applications found in literature rely on obtain-

ing an intermediate solid model of the jaw (cast or teeth imprints) and then capturing 

the 3D information from that model, e.g. [150]. There may therefore be a demand for 

intraoral measurement that could be fulfilled by photogrammetry which seems to offers 

a reduced cost technique while avoiding the need for castings. 

Our argument of image-based approach for 3D reconstruction as an alternative to 

CT-scanning is based on the following. During the exposure to diagnostic imaging using 

IThis work has been funded by NSF funding Grant NSF IIS-0513974 and University of Louisville, 
"3D Modeling of the Human J aw" . 
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X-ray (ionizing/electromagnetic radiation), the patient's body is penetrated by millions 

of X-ray photons whose ionization can damage the bodys molecules especially DNA in 

chromosomes. Most DNA damage is repaired immediately, but rarely a portion of a 

chromosome may be permanently altered (a mutation) leading ultimately to the forma

tion of a tumor [151]. While doses and risks for dental radiology are small, a number 

of epidemiological studies have provided evidence of an increased risk of brain [152], 

salivary gland [153] and thyroid tumors [154] for dental radiography. Also, pregnant 

mothers undergoing diagnostic or therapeutic procedures involving ionizing radiation, 

or who may be exposed to environmental radiation, there is a great potential for damage 

to the early embryo [155]. These effects are believed to have no threshold radiation dose 

below which they will not occur [156]. On the other hand, CT-scanning is considered 

expensive and not paid by insurance companies unless disease oriented. Meanwhile, 

dental offices in rural areas do not have such a luxury. Thus the intent is to develop 

a purely image-based reconstruction mechanism as a cost-effective information tool for 

the dentist. 

This chapter aims at making it easy and feasible for doctors, dentists, and researchers 

to obtain models of a person 's jaw in vivo, without ionizing radiation, using fewer sample 

points in order to reduce the cost and intrusiveness of acquiring models of patients 

teeth/jaws over time. Tllis is a challenging problem due to the "unfriendly" environment 

of taking measmements inside a person's mouth [157]. Further assumptions of the 

presence of distinct featmes or texture regions on the object in stereo images and the 

photo consistency in space carving are rarely valid in practice. 

Due to the lack of surface texture, shape-from-shading (SFS) algorithms have been 

used to reconstruct the 3D shape of human teeth/jaw due to the significant shading 

cue presented in an intra-oral image, e.g. [158]. Nonetheless, in principle, SFS is an ill

posed problem, Prados and Faugeras [126] showed that constraining the SFS problem 

to a specific class of objects can improve the accuracy of the recovered shape. Thus 

the main objective of the presented work is to develop and validate a holistic approach 

for image-based 3D reconstruction of the human jaw based on statistical shape-from

shading (SSFS), covering regions which the classical SFS approach does not handle, 

using scanned molds and images of the oral cavity to estimate the shape of a human 

jaw in order to create a more accmate jaw 3D model. In specific, the structure of the 

human jaw reveals what can be acquired in terms of prior information to enhance the 
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SFS process where the upper and lower jaws are symmetric and lined up according 

to specific anatomical features and landmarks. This approach is believed to have the 

potential to greatly improve plausibility of the resulting shape from shading models. 

9.2 Related Work 

There has been a substantial amount of work regarding statistical shape recovery for 

human face modeling and biomedical structures with distinct shapes - e.g., modeling the 

corpus callosum, the kidney and spinal cord; it is an active research area under shape and 

appearance modeling (e.g., [34, 131]). Atick et al. [129] proposed the first statistical 

shape-from-shading (SSFS) method where Principal Component Analysis (PCA) was 

used to parameterize the set of all possible facial surfaces. Seminal work of Cootes et al. 

[133] used a coupled statistical model to describe the 2D shape and appearance/albedo 

of faces. In the 3D venue, Blanz and Vetter [132] refined Attick's work by modeling 

both facial shape and texture separately. Then scene parameters such as pose and 

illumination were estimated in the process of a morphable model fitting using a stochastic 

gradient descent-based optimization. By considering the statistical constraint of [129] 

and the geometric constraint of symmetry in [125], Dovgard and Basri [130] introduced 

a statistical symmetric SFS method. Smith and Hancock [131] modeled surface normals 

within the framework of SSFS. Based on Active Appearance Models (AAM) concept 

of Cootes et al. [133], Castelan et al. [134] developed a coupled statistical model to 

recover the 3D shape from intensity images with frontal light source, where the 2D 

shape model in [133] is replaced with a 3D shape model composed of height maps. 

The main advantage of Castelan's approach over the 3D morphable model framework 

[132] is the straightforward recovery of the 3D face shape, without undergoing a costly 

optimization process. 

One of the main challenges that confront SFS algorithms is dealing with arbitrary 

illumination. Basri and Jacobs [6] proved that images of convex Lambertian object 

taken under arbitrary distant illumination conditions can be approximated accurately 

using low-dimensional linear subspace based on Spherical Harmonics (SH). This has also 

been validated for near illumination conditions [65]. Since then, SH was incorporated 

in SFS framework to tackle the problem of illumination [33, 34, 135, 136, 138]. Zhang 

and Samaras [135] primary goal was to recover the SH basis images from a single test 
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image. Basri and Jacobs [37] relied on multiple images, i.e. photometric stereo, to infer 

the 3D shape. Ahmed and Farag [136] extended Castelan's coupled statistical model 

[134] by combining shape, albedo and SH in order to parameterize facial surfaces under 

arbitrary illumination. Rara et al. [137] further extended the work of Ahmed and 

Farag [136] to include 2D shape information in the model. In subsequent work, Rara et 

al. [33] decoupled the coupled model of [159] and [136] to obtain a separate model for 

shape and albedo where the classic brightness constraint in SFS is approximated using 

SH basis images. Castelan and Horebeek [138] and Rara et al. [34] cast their models 

in a regression framework using the Partial Least Squares (PLS) method which uses a 

few matrix operations for shape reconstruction to provide a computationally efficient 

alternative to the iterative methods used in [33, 134]. 

On the other hand, several works have been conducted in the reconstruction of 

tooth occlusal surface based on 3D surface measurements and a training teeth dataset 

[148, 149, 160, 161 , 162]. For instance, Zheng et al. [148, 160] considered teeth anatomical 

features where the snake model proposed in [163, 164] was improved to automatically 

capture the features on the tooth surface such as marginal ridges, cusps and groove 

lines. Constraints were then established based on the corresponding features between the 

standard tooth and a prepared dataset where Radial Basis Function (REF) was applied 

to define a one-to-one point mapping while interpolating the intermediate points. 

Buchaillard et al. [149] relied on manual alignment between each training tooth and 

a generic tooth, in order to have a point-topoint correspondence between different spec

imens. Nonrigid registration using free form deformations and splines was then applied 

to deform the generic tooth to each training tooth in the set where each resulting exam

ple is represented by a vector. A Point Distribution Model (PDM) was then computed 

using PCA to describe the shape variation of a set of aligned sample models where ma

jor deformation modes were defined by the eigenvectors associated with the maximum 

eigenvalues. To reconstruct the 3D tooth shape, initial rigid registration was conducted 

using Iterative Closest Point (ICP) [165] while nonrigid registration was then conducted 

for finding optimum parameter values based on an energy function that minimized the 

distance between the crowns of the two volumes. 

Sporring and Jensen in [161] proposed a statistical model to reconstruct missing 

tooth surface using a selection of tooth shapes and including information the position 

and anatomy of other teeth. They studied shape variations of teeth landmarks using 
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Bayes peA where the estimation of the Bayes covariance matrix was conducted with 

a Gaussian likelihood while an inverted Wishart distribution was used as prior. Their 

system depended on hand picked landmarks. Moreover, it was evaluated on cast models 

scanned by a laser scanner. 

Alternatively, Blanz and Vetter in [162] proposed a statistical model of a selection 

tooth shapes by warping each training shape landmark to a template shape, where the 

mesh of this template is projected onto the shape space before warping landmarks and 

mesh vertices back. Based on this, a 3D morphable model was introduced in [162] that 

used 3D meshes as training data which are morphed to fit the input optical images. Bayes 

estimation was then used to construct the missing tooth, by aligning the patients teeth 

with the statistical model for the non-missing teeth. Yet they rely on manual annotation 

to acheive onlay and inlay restoration while they did not handle the recovery of missing 

crown as there model is a tooth-based model. 

9.3 Contributions 

This work proposes an image-based approach for reconstruction of the tooth crowns 

which can serve as a fully automated framework for tooth restoration from a single 

optical image. The presented approach is based on building statistical models for 3D 

shape and 2D texture of human's visible jaw (clinical crowns). The process starts 

with annotating the jaw at known anatomical landmarks, in order to co-register the 

shapes and textures needed to construct the corresponding models. The key challenge 

is then the estimation of non-rigid transformation between an input image and the 

mean jaw (the origin of the object space). Such transformation is estimated using the 

physically motivated thin-plate splines [146] warping function using a proposed definition 

of anatomical human jaw landmarks that are automatically detected. The need for hand 

picked jaw features is then eliminated using an extended version of Active Shape Model 

(ASM) [166]. 

Our approach can recover the 3D shape of clinical crowns from a single occlusal 

image of the human jaw under arbitrary illumination while relaxing the non-realistic 

assumption of Lambertian reflectance which is commonly assumed, e.g. [34, 49]. Prior 

shape, albedo and appearance (net result of illumination and reflectance) models from 

real data, which are metric in nature, are incorporated into the shape recovery framework 
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in order to resolve the concave/convex ambiguity of conventional SFS approaches. 

With the frequency-space based representation of the image irradiance equation, an 

appearance model is proposed which accounts explicitly for teeth reflectance as well 

as complex illumination conditions. Albedo-modulated irradiance harmonics is used 

to provide the optimal basis for illumination and reflectance representation 1 . Assum-

ing enamel reflectance obeys Wolff-Oren- ayar reflectance model [167], where surface 

roughness is physically measured using optical surface profiler, it is proved that it can 

be represented by at most 3rd order harmonic basis. The recovery framework is a 

non-iterative approach which incorporates regression-like algorithm in the minimization 

process. 

It is worth mentioning that human face and jaw modeling bear similarities as well 

as differences. Facial images can be easily obtained and databases of various imaging 

conditions are already in place, along with a significant body of algorithmic development. 

Human faces are easy to annotate and automate the process of face cropping and feature 

extraction. On the other hand , the human jaw is not a friendly environment to image, 

as indicated before, while no databases exist to carry out a SSFS methodology. 

While in one's earlier work [49], a model-based shape reconstruction for the hu

man jaw was proposed, the simple Lambertian model for tooth reflection was assumed 

whereas the original 3D scans were converted into a longe patch (2.5D) format which 

represents the surface as (x, y, z(x, y)). This inhibits the reconstruction of labial, buccal 

and lingual surfaces as well. This chapter shows how to build the shape model based on 

full 3D information of the jaw molds. 

9.4 Anatomical Jaw Landmarks - Proposed Definition 

9.4.1 Dental Nomenclature 

Human teeth can be classified in two groups [168]; anterior teeth which rip food apart 

and posterior/molar teeth which help chewing food , see Figure 9.1 for illustration. A 

tooth consists of several layers [169] (see Figure 9.2), however it has been believed that 

the enamel and dentine layers have a major impact on the visual appearance of teeth 

[170]; contributions from layers such as pulp may be neglected [171]. 

IBy modulating irradiance harmonics with surface a lbedo one manipulates the low-frequency in
formation that can be predicted by the proposed imaging model , especially illumination effects, while 
preserving the high-frequency texture information of the object at hand 
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(.way from the midline) 

Incisal edge or ridge 
(The biting edge) 

(to\VolrdS the lips for anterior) 

Figure 9.1: Dental nomenclature, common language used in dentisry. Teeth are cate
gorized into two main classes, anterior teeth which rip food apart and posterior/molar 
teeth which chew the food. All anterior teeth exhibit four types of surfaces and one 
edge on their crowns(mesial, distal, lingual and buccal), while posterior teeth have fives 
surfaces on their crowns (mesial, distal, lingual, buccal and occlusal) . Proximal surface 
refer to any surface between two teeth, thus it can be either mesial or distal according 
whether it is towards or away from the midline. 

Figure 9.2: Teeth anatomy: different layers of a human model teeth are shown where 
the enamel and dentine layers are believed to play an important role in characterizing 
teeth appearance. 

204 



9.4. Anatomical Jaw Landmarks - Proposed Definition 

Occlusal 

f 

Lingual 
Lingual 

Anterior Tooth Surfaces Posterior Tooth Surfaces 

Figure 9.3: Tooth surfaces: anterior teeth have four types of surfaces , towards and away 
from the midline (mesial and distal resp.), towards the lips (labial) and towards the 
tongue (lingual) . While posteriors exhibit an additional surface for chewing (occlusal), 
besides the inside surface is named buccal. 

All anterior teeth have four types of surfaces [172] named: (1) Mesial - the surface 

toward the midline, (2) Distal - the surface away from the midline, (3) Labial - the 

outside surface towards the lips and (4) Lingual - the inside surface toward the tongue. 

Posteriors exhibit mesial, distal and lingual surfaces in addition to Buccal surface which 

is outside toward the cheek and Occlusal surface which is the chewing surface. See 

Figure 9.3 for illustration. 

9.4.2 Landmarks Definition 

This work mainly focuses on the reconstruction of the clinical crowns which are defined 

to be t he portion of the teeth that is visible in the human mouth. As such, the jaw's 

anatomical landmarks are limited to such a space according to their location, i.e. on 

the tooth surface or on the interface between the tooth and the gum. Typically a 

landmark represents a distinguishable point which is present in most of the images under 

consideration, for example, the location of central grooves of each tooth. Figure 9.4 

illustrates the location of 62 landmark points for a jaw containing twelve-teeth. 
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Labial Surface 

Figure 9.4: Illustration of the proposed human jaw anatomical landmarks. The upper 
left corner shows a sample a detected landmarks on a real image using Active Shape 
Model [166]. 

9.4.2.1 Teeth Landmarks 

In case of posterior teeth (i.e. cuspids, premolars and molars) which are responsible for 

chewing food, the coalescence of the crown lobes are of interest. In particular, a central 

pit or groove can be considered as a landmark which is the deepest portion of a tooth 

fossa. While anterior teeth (i.e. incisors) whose job is to rip food apart is identifiable by 

a convex elevation of the crown surface which forms the biting edge. Hence the midpoint 

of the incisal edge or ridge is considered as a landmark for an anterior tooth. 

9.4.2.2 Teeth-Gum Landmarks 

The fibrous tissue covering the alveolar bone and surrounds the necks of the teeth, i.e. 

the gum, forms what is termed as gingival line. This line marks the level of termination 

of the non-attached soft tissue surrounding the tooth. It separates the clinical crown 

and the root. The gingival line midpoint is defined to be the minima (for lower jaws) 

or maxima (for upper jaws) point on the gingival line formed by a single tooth. On the 

other hand, gingival embrasure is the respective point in the open space between the 

proximal surfaces of two adjacent teeth in the same dental arch. 
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9.4.3 Landmark Localization in Optical Images 

In the online stage of the proposed approach, a single image of the visible crowns is 

given from which the defined landmarks should be identified . This guides the alignment 

of the input image to the prior model, e.g. [162]. Hence, it is essential to automate the 

detection of such landmarks. In the training set, one manually annotates an ensemble 

of human jaws surfaces (based on CT-scanning of molds) in order to construct a sparse 

version of the jaw shape. These landmarks serve as a correspondence operator between 

individual training samples where the generalized Procrustes analysis [173] is used to 

filter out translation, scale and rotation. An extended version of ASM [166] is deployed 

to search for the landmarks in the given image. The ASM repeats the following two 

steps until convergence: (i) suggest a tentative shape by adj usting the locations of shape 

points by template matching of the image texture around each point (ii) conform the 

tentative shape to a global shape model. The individual template matches are unreliable 

and the shape model pools the results of the weak template matchers to form a stronger 

overall classifier. The entire search is repeated at each level in an image pyramid, from 

coarse to fine resolution. The initialization of the mean shape onto the given image is 

accomplished by segmenting the teeth region based on fitting a Gaussian mixture to the 

image intensity with two dominant classes; jaw and background. 

9.5 Beyond Lambertian Reflection 

Accurately modeling the appearance of objects in general and human teeth in particular 

goes far beyond the Lambertian reflectance model. Human teeth are neither Lambertian 

nor convex, introducing cast shadows in concave regions. As such, this inspired oneself to 

move closer to the realistic situation with a spatially varying non-Lambertian reflectance 

model. 

9.5.1 Microscopic Surface Model 

Surface reflection depends on, among other factors, the microscopic surface cha.racter

istics [174]. Rough surfaces tend to sca.tter incident light in various directions , favoring 

some directions than others, while smooth surfaces may reflect incident light in a single 

direction. Modeling the microscopic surface irregularities aids the construction of realis

tic/physical reflectance models. A surface can be modeled as a random process, defined 
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by a statistical distribution of some robust feature derived from the surface profile. The 

following discusses the physical measurement of human teeth surface roughness, then 

one of the popular analytic reflectance models is reviewed which take surface roughness 

into consideration. 

Roughness is a measure of the topographic relief of a surface [175]. It can be viewed as 

a textureness measure of a given surface. It can be quantified as the vertical deviation 

( i. e. height variation) of that surface from the mean surface level along the surface 

spatial wavelength. A relative smooth surface has typically peak-to-valley roughness of 

~ O.l/-Lm [175]. 

(a) (b) 

Figure 9.5: Surface height variations of anterior (a) labial and (b) lingual surfaces. Aver
age horizontal and vertical surface profiles are shown on the measured area (0 .35mm2). 
A zoom-in view on an area 0.01mm2 is also shown along with its surface profiles. 

Surface profile (i. e. height variations) measurements, on the microscopic scale, can be 

used to measure the roughness using either one of two probes; light beam for optical/non

contact profilers or mechanical stylus (using diamond stylus) for contact profilers. In 

the latter case, height calibration is required and deconvolution is also needed (yet not 

successful) since the measured profile is a convolution of the true surface profile and the 

stylus radius [175]. On the other hand, neither calibration nor deconvolution are needed 

in case of optical profilers, whereas the requirement of flat surfaces with non-specular 

reflection become the major issue of measuring height variations. 

The University of Louisville has a 3D optical surface profiler, NewView 700s from 

Zygo company which is based on Scanning White-Light Interferometry technology. It 

offers fast , non-contact , high-accuracy, 3D metrology of surface features and include 

proprietary MetroPro software for the ultimate in advanced data analysis . The field of 
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view ranges from 0.35mm to 3.5mm. 
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Figure 9.6: Surface height variations of posterior (a) buccal (b) lingual and (c) occlusal 
surfaces. Average horizontal and vertical surface profiles are shown on the measured 
area (0.35mm2). A zoom-in view on an area 0.01mm2 is also shown along with its 
surface profiles. 

We measured height variations of different visual tooth surfaces (i. e. mesial and distal 

surfaces are ignored) from an area of 0.35mm2 using lOX optical zoom. Figure 9.5 and 

Figure 9.6 show the measured height variations of a sample central incisor and 3rd molar. 

It can be noticed that on a tiny area (0.35mm2) , the tooth surface is not planar causing 

the deviation from a macroscopically flat surface profile. A zoom-in view on an area of 

0.01mm2 shows local variations of surface height with respect to surface point having 

close to normal incidence. The average surface profiles provide a physical validation that 

the appearance of a tooth surface can be modeled using the microfacet-theory [13, 70] 

which assumes that the surface consists of a large number of small flat facets. Microfacet 

reflectance models tend to be intuitive with tractable analytical expressions [94]. 

Vis-a.-vis surface reflection, the slope distribution model is the most popular rough-

209 



9.5. Beyond Lambertian Reflection 

- Labial Sudue 
0.1 

- lingual Surface 
~ 
~ 0.08 - Distal Surface 

- Mesial Sudace " r 
00: 0.06 

1.25 1.5 1.75 2 2.25 2.5 2.75 3 
a (radian,' 

0.07 

0.06 
- Buccal Surface ........ 
- lingual Sudilce I 

~0.05 - Distal Surface .. • r O•04 
00: 
~ 0.03 -~ ',a 

.; 0.02 
....... --co: 

0.01 

0 
0 2.25 2.5 2.75 3 

Figure 9.7: The roughness parameter is estimated based on the measurement of micro
scopic height variation of a 0.35mm2 surface patches of different surface types for incisor 
and molar teeth. The intra-oral camera pixel size was estimated to cover approximately 
0.0075mm2. The measured patch is divided into smaller patches with pixel size where 
the roughness parameter (J' is computed. According to the distribution, the parameter 
tends to lie between 0.7 to 2 radians regardless the tooth surface type. 

ness model [14], where the surface is considered as a collection of planar facets whose 

normal vectors deviate from the surface geometric normal (i. e. mean surface orienta

tion). The distribution of the deviation angle is assumed to follow a Normal distribution 

with zero mean and standard deviation governed by the surface roughness. Figure 9.7 

shows the distribution of the computed roughness parameter for different teeth surface 

types using the microscopic surface height variations, where the deviation angle of the 

surface microfacets compared to the surface geometric normal tends to lie between 0.7 

to 2 radians regardless the tooth surface type. 

9.5.2 Towards a Realistic Model for Human Teeth Reflectance 

Light interaction with tooth surface is a complex process which involves Fresnel theory! 

and subsurface scattering controlled by biological parameters of the enamel and dentin 

layers. While computer graphics community has developed comprehensive models to 

ITeeth are usually wet , giving rise to Fresnel reflect ion due to different refractive indices of the saliva 
and t he tooth material. 
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9.5. Beyond Lambertian Reflection 

account for translucent materials such as human teeth for photo-realistic image synthesis, 

such models require computationally expensive rendering techniques. Thus computer 

vision work has opted for discount subsurface scattering where the notion of surface 

reflectance can be analytically modeled by surface BRDF. 

Despite the simplicity of Lambert's model, it has been proven to be an inaccurate 

approximation to the diffuse component of the surface reflectance [176]. Through a set of 

experiments carried out on real samples, such as plaster , clay, sand and cloth, Oren and 

Nayar [176, 177, 178] showed that all these surfaces demonstrate significant deviation 

from Lambertian behavior. These results motivated them to develop a comprehensive 

reflectance model for rough diffuse surfaces. They used the roughness model proposed 

by Torrance and Sparrow [12] which assumes that the surface is composed of a collection 

of long symmetric V-cavities. Each V-cavity has two opposing facets. The roughness of 

the surface is specified using probability function for the orientations of the facets. In 

order to use geometric optics, the area of each facet is assumed to be much larger than 

the wavelength of the incident light beam, and at the same time much smaller than the 

area of the surface patch being projected onto one pixel, thus the facets covered by one 

pixel can be described by statistical distributions. 

,----------------------------, I n 
I Facet 

! 
• • • • • • I 

The Macroscopic 
Normal direction ii at x 

• I Halfway Vector 
~------------lJ-------------J wh:(8h'~h) 

I 
I 

I Outgoing Ught Ray 

l ! 
I , 

z' Incident Ught Ray 

w::(8:.~D 

, 
r---~--r-----i w~:(8~.~~) 

~ r---l --. ! ....... ~,.~---"":::::-+ y' 
• i :.--.... , , 

____ ~"_"'""!' M!~!~~P..i~_y!!'~ ____ J 

Figure 9.8: Definitions of angles and vectors used in microfacet models. Vector wh is the 
bisector between the light direction and the viewer direction. Note that rough surfaces 
tend to scatter incident light as compared to smooth surfaces. 

The V-cavity geometry implies that only facets facing in direction of the halfway 

vector wh = (Bh' ¢h) affect the BRDF (see Figure 9.8) where masking and shadowing of 

micro-facets are included in the geometric attenuation factor G(w~, w~, wh). Oren and 
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9.5. Beyond Lambertian Reflection 

Nayar [14] conducted analysis of roughness for diffuse surfaces, where the facets covered 

by one pixel described by the statistical distribution of the slope area. The distribution 

function DC7(W~) describes the fraction of the facets oriented in the direction of w~ . It 

is described by a zero mean Gaussian with variance (J2 representing surface roughness, 

determining the fraction of surface area which the facets of the same orientation covers. 

Thus the Oren-Nayar BRDF is given by, 

(9.1) 

The geometric attenuation factor G ranges from 0 (total shadowing) to 1 (no shad-

owing), defining how the incoming light beam interact with the surface locally; the entire 

beam can reflect, a portion of the outgoing beam can be blocked (masking), or a portion 

of the incoming beam can be blocked (shadowing). Thus the geometric attenuation 

factor can be defined as, 

(9.2) 

A simplified version presented by Oren and Nayer [14] is usually used which is defined 

as, 

(9.3) 

where, 
(J2 

A = 1 - 0.5 (J2 + 0.33' 
(J2 

B = 0.45 (J2 + 0.09 (9.4) 

and a = max[B~, B~], fi = min[B~, Bn and Pd is the diffuse albedo. 

While Oren-Nayar model [14] modulates the Lamberts cosine law by a term which 

depends on the squared sine of the incidence angle, resulting in apparent brightening at 

surface patches which move away from the light source; assumed to be in self shadow. 

Wolff [167], on the other hand, has developed a reflection model for smooth surfaces 

which are modeled as a collection of scatterers contained in a uniform medium with 

index of refraction different from that of air. Wolff's model uses an angle dependent 

Fresnel term to account for the refractive attenuation of incident light at the surface

air boundary [179]. This Fresnel term modifies in a multiplicative way the Lambertian 

cosine model. The effect is to depress the surface radiance for near-normal incidence. 
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9.5. Beyond Lambertian Reflection 

Wolff's model assumes the subsurface inhomogeneities isotropically scatter light 

where the Wolff 's BRDF for a dielectric medium with index of refraction TJ is given 

by, 

An approximation for Fresnel formula for dielectrics used by Cook and Torrance [13] 

can be written as, 

c· n - - 1 + F 
l(g -c)2 ( (C(9+C)-1)2 ) 

( , ) - 2 (g + c)2 (c(g - c) + 1)2 
(9.6) 

with g2 = n2 +c2 - l. 

Wolff et at. in [180] has a physically deeper model for diffuse reflectance from shiny 

but slightly rough surfaces where they combined the Oren-Nayar model for rough sur

faces [14] and the Wolff model for smooth surfaces [167]. This combined model (Wolff-

Oren-Nayar) makes the assumption that each V-groove microfacet reflects light accord-

ing to the Wolff model. As such, it is defined as, 

where, 

- {( ( sin 0' ) ) } A=A(I-F(O~jTJ)) x I-F sin-1 ~ j l/TJ (9.8) 

Since the azimuthal part in Equation 9.7 depends on the azimuthal angles difference, 

Wolff-Oren-Nayar BRDF can be expanded in the subspace spanned by the proposed 

isotropic Helmholtz HSH-based basis as, 

(9.9) 

Figure 9.9 compares the average approximation accuracy of Wolff-Oren-Nayar reflec-

tion model under distant illumination using the proposed isotropic basis in comparison 

to bases of Westin et at. [19], Gautron et at. [20], Koenderink et ai. [21], Habel and Wim

mer [22] and the Helmholtz basis of Koenderink et ai. [21] where their isotropic version 

is used. The average is taken over 3750 BRDF samples taken by uniformly sampling the 

roughness (according to Figure 9.7) and the enamel's refractive index domain!, where 

1 As noted by Wang et ai. [181]' the refractive index of t he tooth enamel layer lies in t he range 
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Figure 9.9: The average approximation accuracy of Wolff-Oren-Nayar reflection model 
under distant illumination as a function of the truncating reflectance order P. The 
roughness (according to Figure 9.7) and the enamel's refractive index (1.62 ± 0.02[181]) 
domains are uniformly sampled. The average is taken over 3750 BRDF samples where 
spectrum is obtained by projecting frWON using Monte Carlo integration onto the sub
space spanned by the proposed isotropic basis in comparison to bases of Westin et 
al. [19], Gautron et al. [20]' Koenderink et al. [21], Habel and Wimmer [22] and the 
Helmholtz basis of Koenderink et al. [21] where their isotropic version is used . Note 
that the proposed basis provide higher approximation accuracy at lower reflectance or
ders compared to other bases, hence the proposed representation is capable of providing 
a compact representation of reflectance functions. 

the BRDF spectrum coefficients can be obtained using Monte Carlo integration. One 

can observe that the proposed basis shows higher approximation accuracy especially at 

lower truncating reflectance orders compared to other bases. As such, the presented 

basis provide a compact BRDF representation requiring fewer coefficients to accurately 

model surface BRDFs. 

9.6 Jaw Statistical Model Construction 

The proposed model-based shape recovery involves the construction of three models; 

namely the shape, albedo (also referred to as texture) and appearance (net result of 

illumination and reflectance) models. While the first two models are constructed in an 

offline stage, the appearance model is constructed at runtime when an input image is 

presented to the shape recovery framework. This section presents how the offline jaw 

models can be constructed. The process of constructing these models primarily depends 

on two major steps; (1) establishing dense correspondence between different samples in 

1.62 ± 0.02 . 
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9.6. Jaw Statistical Model Construction 

the training ensemble, and (2) statistical modeling of shape/albedo variations in the 

given ensemble. 

9.6.1 Shape Model 

The jaw's shape model is constructed from a training data ensemble of 3D triangular 

meshes where each mesh is obtained from a high resolution computer tomography (CT) 

scan of human jaw molds where the Expectation-Maximization (EM) algorithm [124] is 

used for segmentation. In order to obtain a compact shape representation, Valette et 

al. approach in [182] is used to re-mesh the extracted iso-surfaces from the segmented 

CT volumetric data where more mesh triangles are maintained where prevailing features 

exist on the teeth surface, see Figure 9.10. 

Hereafter, each 3D jaw surface is represented as a 2-manifold triangular mesh 9 = 

(V, 3',) , where V = {Xl , X2, ... , Xv} is a set of V-vertices with Xv E lR3 and 3" = 

{tl ,t2 , ... ,tF} is a set of F-triangular faces, with the f-th face tj = {XjO,Xjl , Xj2} 

is constructed from three vertices with indices fO, fl and f2. 

Figure 9.10: A sample of extracted iso-surface and a re-meshed (coarsened) version 
using [182] where 25% of mesh vertices are retained. 
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9.6. Jaw Statistical Model Construction 

We follow the work by Patel et al. [143] in obtaining dense correspondence be-

tween different jaw surfaces where a finite set of sparse landmark points, (x~ , y~, z~), 

are manually annotated for all the database samples. Note that this is done once in an 

offiine stage l . There is a total of 72 manually annotated landmark points on a 14 teeth 

jaw. Generalized Procrustes Analysis (GPA) [146] is then performed to provide an initial 

rigid alignment of the dense shapes to a common reference frame where the alignment 

procedure is guided by the sparse set of anatomical jaw landmarks (Figure 9.4). 

To obtain point-to-point dense correspondence between two rigidly aligned jaw shapes 

VI and V2 , a warping function, f: lR.3 -7 lR.3, based on physically motivated thin-plate 

splines [146, 183] is constructed using the landmark points (e.g., (x~l,y~l, z~I) E VI and 

( '2 '2 '2) ) . " ('1) _ '2 'I _ ['1 'I 'l]T Xv ' Yv , Zv E V2 as control pomts, I.e., f Xv - X v , where Xv - x v , Yv , Zv and 

x~2 = [x~2, y~2 , z~2]T. Once the warping function is solved, this warp is applied to all 

vertices in Vl from the first shape, determining their corresponding locations on the 

second shape V2. Note that the warping operation is performed in 3D space. 

In order to obtain a dense correspondence between all shapes in the database, the 

3D thin-plate spline is applied in an iterative manner as follows, where according to the 

experimentation, this algorithm converges in a few iterations. 

1 Choose one sample as an initial estimate of the mean shape - one may 

use the first shape in the ensemble. 

2 Solve for the warping function f between the current mean shape and 

all other samples in the database. 

3 Re-calculate the estimate of the mean from the aligned shapes. 

4 If there is a significant change in the mean, return to step 2. 

The shape information for each aligned shape Vk can be stacked into a vector , Sk 

where for a V-vertices shape one has, 

(9.10) 

Principal Component Analysis (PCA) [184, 185] is then performed on the set of 

shape vectors, Sk. The average (8 = 1< L~=I Sk) is first subtracted from each shape 

vector , d k = Sk - 8, and form the data matrix D = (d 1,' . . , df( ). PCA is performed 

1 A possible direct ion to pursuit is to automatically localize these landmarks in a given triangular 
mesh. 
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9.6. Jaw Statistical M odel Construction 

by computing the the eigenvectors (Sl , S2 ,· ·· ) of the covariance matrix (C = -kDDT) , 

which can be achieved using Singular Value Decomposition (SVD) [186] of D . The 

eigenvalues (u~,k) of C are related to the variance of the data across each eigenvector 

direction. The resulting shape model can be written as, 

1<- 1 

S = S + L At . Sk = S + P sAs 
k=l 

(9.11) 

where P s = [Sl , S2,···] are the shape eigenvectors and .As is the set of shape coefficients. 

Note that the subscript s refer to shape. 

9.6.2 Albedo Model 

Given human jaw molds obtained from a high resolution CT scans and intra-oral images 

of the visible crown (occlusal) surface, it is important to address the issue of incorporat-

ing texture information into the prior information. This involves mapping such texture 

from the image domain to the triangular mesh domain in order to associate each mesh 

vertex Xv with albedo in the red-green-blue channels, Pr(xv), Pg(xv) and Pb(Xv). 

Due to the unfriendly image acquisition scenario for jaw occlusal images, the resulting 

images can not be considered as pure albedo where there are shadows due to non-convex 

jaw regions in addition to non-uniform distribution of illumination. As such, it is needed 

to factor out, as much as possible, t he effect of shape and illumination from the given 

image. This can be accomplished by extracting the reflectance information (albedo) from 

the given texture where the recently proposed intrinsic image decomposition proposed by 

Barron and Malik l in [187] is deployed. Their approach decomposes a single image into 

its constituent images: shape, reflectance and illumination where one is only interested 

in the resulting reflectance image. Figure 9.11 shows a sample of an input occlusal image 

and the estimated reflectance according to [187]. Note that the albedo is only solved for 

using the pixels which lie within the convex hull of the jaw landmarks defined on the 

occlusal image. 

In order to provide a dense correspondence between an occlusal image and its corre-

sponding jaw surface, the sparse jaw landmarks which are located in the image plane are 

assumed to be on the xy-plane in the 3D space where 3D thin-plate spline is used to pro-

vide a warping function between image pixels and surface points using image landmarks 

lWe would like to acknowledge the authors for providing their software and help to apply their 
approach on jaw images. 
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9.6. Jaw Statistical Model Construction 

Figure 9.11 : A sample of estimated reflectance of an input occlusal image using [187]. 
Note the effect of shape and illumination on the resulting image (right) is minimal 
compared to the input image on the left . 

and surface landmarks as control points . Due to the projective nature of the occlusal 

image, the same image pixel can be mapped to an occlusal surface point as well as the 

mold base surface. As such, according to cervical landmark points, a least-squares plane 

is fit to remove such ambiguity, see Figure 9.12. 

Albedo 
Corvic.tllandmuklleut

squarufllpw.e Warped albedo 

Figure 9.12: A sample of albedo being warped to a jaw surface while the cervical 
landmarks least-squares fit plane is used to resolve the ambiguity of having a pixel 
being mapped to two surface points (one above and the other below the plane) where 
mapping in such cases is restricted to the points above the plane. Red cervical landmarks 
lie above the cervical plane while the green ones lie below the plane. Note that vertices 
having no texture mapped to are set of average albedo value, this is apparent in vertices 
belonging to the mold base. Whereas for vertices belonging to the mouth floor (or 
ceiling), the vertices which are closest to the cervical plane are chosen . 

The albedo information for each data sample can be stacked into a vector! , A k , i.e., 

(9.12) 

Exactly the same procedure is done to obtain the texture eigenvectors (ak) and variances 

lWe used t he Lab color space instead of t he RGB one since t he latter suffers from strong correlation 
among its color channels as well as non-linearity, i. e. a small change in one channel does not necessarily 
mean another shade of t he same perceived color. 
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9.7. Model-based Appearance Subspace Construction 

(a~,k)' The resulting albedo model can be written as, 

K - l 

a = a + L Ak . ak = a + P aAa 
k=l 

(9.13) 

where P a = [al' a2, ... ] are the albedo eigenvectors and Aa is the set of albedo coeffi

cients. ote that the subscript a refer to albedo. 

9.7 Model-based Appearance Subspace Construction 

Appearance subspaces can be constructed using phenomenological models which cap

ture appearance variations through mathematical abstraction of the reflection process. 

In particular, the harmonic expansion of the image irradiance equation [24] can be used 

to derive an analytic subspace to represent images under fixed pose but different illumi

nation conditions [6, 25, 44]; it has been shown that surface reflectance acts as a low-pass 

filter on the incident illumination [4, 5] where the image irradiance equation has been 

formulated in a convolution framework [6, 7]. This yielded a band-limited reflected light 

while accounting for complex illumination, thus a point light source assumption can be 

relaxed. 

For a specific object geometry under fixed pose, the convolution theory implies a 

multiplicative framework in the frequency domain where an image is represented as a 

linear combination of pre-computed basis functions, which is termed as irradiance har-

monics, {'Bs}, that are pose and geometry dependent. This leads to a finite-dimensional 

linear model to represent the image irradiance under arbitrary illumination. Represent

ing the illumination by its spherical harmonics (SH) coefficients l~ as in [7, 44] and the 

surface reflectance by its coefficients arn. in the proposed Helmholtz HSH-based basis, 

the image irradiance can be defined as, 

E(o,{3) = L Cs'Bs(o,{3) (9.14) 
s 

where (0, (3) are the spherical coordinates of the surface normal n(x ) in the global 

reference frame, Cs = l~arn. with s and its corresponding indices n, m, p, rand q are 

given by an ordering function of the basis functions based on their average power content. 

The irradiance harmonics {'Bs} encode the orthogonality relation between SH and the 
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9.7. Model-based Appearance Subspace Construction 

deployed reflectance representation. They are defined as, 

(9.15) 

where {YJ} are the real SH bases, P{~r} are the Helmhotlz HSH-based reflectance bases 

and 'J)n are Wigner's rotation matrices [59]. 

This work takes advantage of the two-fold benefit of the frequency-space represen-

tation of the image irradiance equation. First, it decouples the image formation process 

such that the illumination conditions and surface reflectance characteristics are encoded 

into the coefficients of the irradiance harmonics. This allows the incorporation of prior 

information about natural illumination and real world surface materials in the subspace 

construction process. Second and more importantly, the process of finding such sub

space can be cast as establishing a relation between its principal components and that 

of the irradiance harmonics. This resolves the issue of dimensionality since the source of 

randomness in the imaging process becomes the irradiance harmonics coefficients rather 

than the whole image realization. 

The main idea behind constructing a model-based analytic appearance subspace is to 

use the frequency representation of image irradiance directly in an unsupervised subspace 

learning scheme seeking orthonormal principal components spanning the subspace where 

shading cues lie. Let a D -pixel image irradiance be represented in the vector space as 

e E lRP. The objective is to define an orthonormal projection matrix W E JRDxD' 

which maps the image space to a lower-dimensional subspace JRD ', with D' :S D , which 

captures most of the variations due to illumination and reflectance! . Thus the projection 

matrix W should maximize the total vector scatter such that2 , 

W = argmax Wy s. t. Wy = E{lly - srll } } where y = WT e 
Vol 

(9.16) 

Let the s-th irradiance harmonics be represented in the vector space as b s E JRD 

which can be written as b s = W BC~ with W B E JRDxD' and c~ E JRD' . The optimal 

W B is determined from the D' - eigenvectors of B = [b I ... bs] corresponding to its 

largest D'-eigenvalues. Relating the principal components of the image space to that 

of the irradiance harmonics in the vector space results in W T = Aw W~ where Aw E 

1- denotes lower-dimensional. 
2Note that D here connotes the number of visible surface points to the viewer, i.e. D ~ V where V 

is the total number of vertices for a given 3D object. 
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lRP' X D'. The solution of this matrix is given by the D'-eigenvector of yT such that , 

y = LL E{(cs - cs)(cs' - cs,)}c~(c~f (9.17) 
s s' 

where E{(cs - cs)(cs' - cs')} = E{ cscs'} - E{ cs}E{ cs'}' As such, given the shape and 

albedo of a data sample, one can construct its appearance subspace while incorporating 

natural illumination (e.g. [55 , 105]) and teeth reflectance properties. The proposed 

approach is summarized in Algorithm 7. Steps are also illustrated in Figure 9.13. 

9.8 Model-based Shape and Albedo Recovery 

Given a jaw occlusal image, its sparse landmarks are used to infer a warping function 

between image pixels and the vertices of the mean jaw shape s using 3D thin-plate 

spline where the landmarks are assumed to be located on the xy-plane in the 3D space. 

The cervical least-squares plane is then used to remove mapping ambiguity in a similar 

manner as in constructing the albedo model. 

9.B.1 SFS Brightness Constraint 

When the light source and the viewer are far from the object, the image irradiance E 

from surface point x can be defined as the surface radiance being modulated by the 

surface albedo p(x) , i.e. E(x) = p(x )::R(n(x )). The classical brightness constraint in 

SFS measures the total brightness of the reconstructed image irradiance compared to 

the input irradiance, it can be defined as; 

t = J J (E(x) - p(x )::R( n(x )))2 dx (9.18) 

where p(.) is the surface albedo at point x while ::R( .) is the radiance of the surface patch 

with unit normal n(x) = cart(a,,B), also known as surface reflectance function [6]. 

The brightness constraint in Equation 9.18 can be rewritten in the discrete domain 

as a linear combination of pre-computed basis resulted from the harmonic expansion of 

the reflectance function. Thus the image intensity E can be expressed as; 

s 
E(x) = L YsWs(n(x)) (9.19) 

s=1 
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Algorithm 7 Model-based Appearance Subspace Construction of Human Visible 
Crowns 

INPU T : 
(a) Smface normals of the k-th jaw sample: {n(x~) (a~, ,B~ )} where 
~ = {(x~ , y~ ,z~) : 1 :::; v:::; V} E Vk and a~ E [0 , 7r] and,B~ E [0 , 27r], 

(b) The spectrum coefficients {l~( i)} of nL nat mal illumination maps ( e.g. [55, 105]) 
with i = 1, 2, . .. , nL, n E [0, N] and m E [-n, n] such that N is the maximum 
illumination order, 

(c) The spectrum coefficients of teeth reflectance {a~(j)} with p,r E [O,P] and 
q E [0, min(p, r)] where P is the maximum reflectance order. The j-th BRDF is 
defined as Wolff-Oren-Nayar model with surface roughness (7 E [0.7, 2] and enamel 
refractive index 'r/ E 1.62 ± 0.02, 

(d) Q: percentage of eigenvalues to be maintained in subspace construction. 

OUTPUT: Subspace projection matrix W = [w Ilw21···] such that a jaw occlusal 
image can be written as e = W y in the vector form. 

1: Build illumination prior: Compute illumination expectation E{l~} and covari
ances E{l~l~/} as in [44]. 

2: Build r eflectance prior: Compute BRDF expectation E{ a~} and covariances 

E{a~a~;r/} as in [44]. 

3: Compute ir radiance harmonics : 
(a) Compute surface normal distribution p(a~, ,B~). 

(b) Compute Wigner rotation matrices 'Dn(a~,,B~) where n E [O,N] as in [61]. 

(c) Compute albedo-modulated irradiance harmonics 13~~(a~ , ,B~) for n E [0, N] 
and p E [0, P] and sort them according to their average power content to obtain 
13 s (a~, ,B~ ) for s = 1, 2, ... , s. 

4: Decompose irradiance harmonics: Perform PCA on B = [b l ... bs] to ob
tain the optimal W B from t he D'-eigenvectors corresponding to its largest D'
eigenvalues where D' is set to maintain Q% of harmonics variation such that D' :::; S. 

5: Compute harmonic coefficients statistics : Compute expectation E{cs} = 
E{l~}E{a~r} and covariances E{cscs/ } = E{l~l~/}E{a~a~;r/} where the respec
tive indices are given by the ordering function of the irradiance harmonics functions 
s -t {n , m , p, r , q}. 

6: Compute Y matrix: 

Y = L L E{(cs - CS )(CSI - CSI )}c:(c:'f 
s Sl 

7: Compute we ighting matrix: Compute the weighting matrix A w as the D'
eigenvectors of y T. 

8: Compute subsp a ce projection matrix: Compute W T = AwW~. 
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9.8. Model-based Shape and Albedo Recovery 

where n(x) = (a(x), (3(x)), W s is the s-th column of W and {Ys} is the weighting vector 

which results from projecting E onto the subspace spanned by {Ws}. 

In matrix notation, let e E lRP be an image vector with D-pixels, W = [W1(n(x)), · · · , Ws(n(x))] E 

IRD xS be the subspace projection matrix having appearance basis as its columns, where 

S is the number of basis, and y E IRs be a vector of irradiance coefficients. Hence the 

discrete version of the brightness constraint becomes, 

€ = L [E(x) - W(n(x))yf = lie - WY II (9.20) 
x 

9.8.2 Harmonic Projection (HP) Irradiance Model 

Representing the surface reflectance function in terms of the proposed appearance basis 

allows inferring the coupled effect of illumination and reflectance of the input irradiance 

signal as follows. Given an input image irradiance E and the appearance basis matrix 

W of a 3D object (a human jaw in particular) derived from its shape and albedo, the 

irradiance coefficients yare deduced to best match the input irradiance. This results in 

an over-determined linear system of equations e = Wy which can be solved for y using 

singular value decomposition (SVD) (See Algorithm 3). 

If the input irradiance and the appearance basis used to compute the coefficients y 

belong to the same object, one can reconstruct the input irradiance from these coeffi

cients, i.e. h = Wy = e , where h denotes what is called harmonics projection (HP) 

irradiance. However in the general case, the basis images W would belong to an object 

which is different from the one that was imaged, nonetheless they belong to the same 

object class e.g. different realizations of a human jaw. Thus the reconstructed irradiance 

h provides a mean of encoding the illumination and reflectance of the input irradiance 

while maintaining the identity of the object whose basis are used in the reconstruction 

process. 

While the shape model s = S + P s A s and the albedo model a = a + P aA a are 

constructed in a pre-processing (offline) step, the HP model is constructed when the 

input irradiance is given to the framework in order to incorporate the illumination and 

reflectance conditions of the given irradiance into the prior information. In particular, 

given the irradiance vector e and the appearance basis matrix W k of object instance k, 
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the HP irradiance for each data sample can be stacked into a vector, H k, i.e., 

- ( 1 T) H k = Wk VS- U e (9.21 ) 

where [U , S , V ] = svd(W k) ' The HP eigenvectors (hk) and variances (a~,k) are obtained 

using the same procedure discussed in case of shape model construction. The resulting 

HP model can be written as, 

K-I 

h = h+ L>~Z·hk =h+ PhAh (9.22) 
k=l 

where Ph = [hI , h2,···] are the HP eigenvectors and Ah is the set of HP coefficients. 

ote that the subscript h refer to harmonic. 

9.8.3 Shape and Albedo Recovery 

While Equation 9.18 can be solved in an iterative manner to infer the underlying shape 

as in [33], the inherit relation between the HP irradiance h and the corresponding shape 

s and albedo a can be cast into a regression framework resulting into the HP-to-shape 

and HP-to-albedo models. In this case, the shape and albedo is solved for using a series 

of matrix operations guaranteeing faster shape recovery when compared to its iterative 

counterpart. This was proven to yield comparable results in terms of reconstruction 

accuracy [34]. 

Dimensionality reduction is performed using PCA to construct 3D shape, albedo 

and HP models where the shape/albedo/HP coefficients are used to build the regression 

models rather than the original shape, albedo and HP instances. Thus, instead of using 

the high dimensional vectors Sk, a k and hk into the regression, they are replaced by 

their respective coefficients A~, A~ and A~, where the HP coefficients are considered the 

independent variable while the shape and albedo coefficients are the dependent variables. 

Principal Component Regression (PCR) [138] is used to avoid random noise which might 

exist in the dependent and independent variables. It also deals with the small-sample

size (SSS) problem where the ratio between observations and variables is usually low. 

Steps are enumerated in Algorithm 8 and Figure 9.8.2 shows a block diagram of the 

ofRine/online processes for the proposed shape/albedo recovery approach. 
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Algorithm 8 Model-based Shape and Albedo Recovery 

INPUT: 
(a) Input image irradiance, E, 
(b) Anatomical jaw landmarks being detected/annotated on E , 
(c) Aligned shape and albedo K-samples: (SI , AI ) to (SK, AK), 
(d) The corresponding appearance basis matrix Wk for each pair (Sk, A k). 

OUTPUT: 
(a) Recovered shape, 5, 
(b) Recovered albedo, ii 

1: Input irradiance warping: Use the given sparse landmarks to infer a warping 
function f between image pixels and the vertices of the mean jaw shape s using 3D 
thin-plate spline such that f( x*) = x, where x* = [x*, y* , 1 jT is an image pixel on 
the xy-plane and x = [x, y, zjT is the mean shape vertex. 

2: Shape and albedo prior: Build the shape and albedo models from the given 
aligned samples using PCA where s = s + P sAs and a = a + P aAa. 

3: HP prior: Given the warped irradiance e in the vector form, solve for the HP 
irradiance for each data sample such that H k = W k (VS-1 U T) e , where [U , S , V l = 
svd(W k)' Then use PCA to construct the HP model such that, h = b. + P hAh. 

4: Samples shape coefficients: Solve for A~ = P; (Sk - s) 
5: Samples albedo coefficients: Solve for A~ = P;['(Ak - a) 
6: Samples HP irradiance coefficients: Solve for A~ = Pj;'(Hk - b.) 

7: Setup matrices for PCR: 
(a) T = [( A~)T, ... ,(A~(fl 
(b) U s = [(A!f ,· ·· ,(A;<fl 
(c) U a = [(A~)T, ... , (A:-fl 

8: Build two PCR models: 
(a) Construct Cs = (T TT )-IT TU s 
(b) Construct Ca = (T TT )-IT TU a 

9: Solve for the HP coefficients of the input irradiance: 'xh = Pj;'(e - b.) 

10: Solve for the shape coefficients of the input irradiance: ,x~ = ,x~ <5s 
-T -T -

11: Solve for the albedo coefficients of the input irradiance: Aa = Ah Ca 

12: Solve for the recovered shape and albedo: 
(a) Compute 5 = s + P s'xs 
(b) Compute ii = a + P a'xa 
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Figure 9.14: Block diagram of the proposed model-based human jaw shape recovery: 
(a) An aligned ensemble of the shapes and albedos of human jaws is used to build the 3D 
shape and albedo models. (b) Given the albedo and surface normals (defining the shape) 
of a certain jaw in the ensemble, appearance bases are constructed using Algorithm 7. 
Given an input oral cavity image under general unknown illumination and a set of human 
jaw anatomical landmark points: (c) Dense correspondence is established between the 
input irradiance and the mean jaw shape using 3D thin-plate splines. (d) The input 
image, in the reference frame, is projected onto the subspace spanned by the appearance 
basis of each sample in the ensemble which are scaled (using the projection coefficients) 
and summed-up to construct the harmonic projection (HP) irradiance which encodes 
the illumination and reflectance conditions of the input image. Such images are then 
used to construct an HP model of the input image. (e,f) The inherit relation between 
the HP irradiance and the corresponding shape and albedo is cast as in a regression 
framework where principal component regression is used to solve for shape and albedo 
coefficients to recover the shape and albedo of the input image. 

9.9 Application to Dental Restoration 

Dental restoration, in particular inlays and onlays (indirect fillings), is a conservative 

alternative to full coverage of dental crowns where it offers a long lasting reparative 

solution to tooth decay or similar structural damage. In contrast to traditional (direct) 

dental fillings which are molded during a dental visit, inlays and onlays are fabricated 

in a dental lab where an appropriate standard tooth model is picked from a tooth 

database. Such process requires dental technicians who are highly trained experts in 

tooth anatomy. Inlay refers to a restoration process where the material is fitted and 
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bonded within the tooth groove, on the other hand onlay restoration is recommended 

when the structural damage requires the inclusion of on or more tooth cusps or even 

full coverage of the bitting surface. See Figure 9.9. 

Inlay Re to ration Onlay Restoration 

Figure 9.15: Illustrative example of inlay versus onlay restorations. Whereas inlay 
involves fitting and bonding a restorative material within the center of the tooth, onlay 
restoration is recommended when the tooth damage extends to include one or more 
cusps. 

Over the past decade, Computer-Aided Design (CAD) and Computer-Aided Manu

facturing (CAM) have become ubiquitous in many major dental groups and laboratories 

[188, 189] where CAD/CAM technologies are used to produce different types of dental 

restorations including inlays and onlays. A typical CAD system consists of three main 

components acquisition, modeling, and milling modules. The success of a restoration 

process primarily rely on the acquisition and modeling of an accurate 3D shape of the 

occlusal surface of interest for manufacturing purposes. 

In literature, various methods have been studied for tooth surface design. The first 

dental CAD/CAM system of Duret, developed in France, is very complex. It can only be 

used for simple restoration design [190]. In the Minnesota system, affine transformation 

of a 3D tooth model was used to adapt to the scanned tooth. Instead of covering all 

kinds of restoration, they mainly considered the production of crowns. In the GN-I 

system [191], the contour line of the tooth surface was determined by selecting the size 

of the reference line and the design area and the occlusal surface was designed through 

simulation. It is difficult to establish a relation due to lack of different forms of tooth 

surface design. In the CEREC system [192], three shape design steps were proposed: 
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extrapolation, correlation, and function, but due to the interactive construction process, 

the surface of missing part had to be modified manually after inserted into tooth cavity. 

This system is based on multi sensor scanner. Sporring et at. [161] proposed a statistical 

model of a selection of tooth shapes and a reconstruction of missing data by including 

information the position and anatomy of other teeth. Their system depends on hand 

picked landmark detection. Moreover, it is evaluated on cast models scanned by 3 

shape laser scanner. Mehl et at. [193] proposed a statistical model of a selected tooth 

shapes which relies on optical images instead of 3D. The manual annotation is still a 

requirement in their system which is on onlay and inlay restoration. It does not include 

the missing crown since it is a tooth based model. Zheng et at. [148] proposed a 3D 

morphing approach which eliminates the manual annotation. Their system based on 

accurate 3D acquisition system. The approach proposed in this chapter can serve as a 

fully automated framework for tooth restoration from a single optical image where the 

need for hand picked jaw features is eliminated using active shape model [166]. 

9.10 Experimental Results 

This section shows experiments to evaluate the performance of the proposed framework 

in recovery 3D models for human jaws. Upper and lower jaw models are constructed 

from eight subjects (5 males and 3 females with ages range from 16 to 46 years old) 

using their oral cavity images and the CT-scan of their respective molds (lower and 

upper jaws) . There are two samples per subject, one pre-repair jaw and another post

repair jaw, referring to the jaw status before and after applying an orthodontic teeth 

alignment process, respectively. The statistical priors (shape, albedo and appearance 

models) are trained using out-of-training samples with pre- and post-repair instances. 

The core hypothesis of this work is that using prior information would enable obtain

ing a plausible and more accurate jaw model for the human jaw while covering regions 

that the classical SFS approach does not handle As such, one compares the proposed 

approach with a recently evaluated SFS approach [194] for tooth surface reconstruction 

based on the work of Ahmed and Farag in [195, 196]. In their work, the image irradiance 

equation was formulated as a Partial Differential Equation (PDE) to solve for surface 

gradients, where the theory of viscosity solutions for Hamilton-Jacobi type equations 

provide a good framework of SFS algorithms [197]. Carter et at. in [194] concluded 
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that, based on quantitative error analysis, the Oren-Nayar reflectance model has been 

proven to be the most ideal SFS formulation for reconstructing tooth crown surface 

from a single image. Nonetheless, their work did not incorporate the object physical 

characteristics such as surface roughness and Fresnel reflection due to different refractive 

indices of the saliva and the tooth material. Hence the proposed approach is compared 

with the one proposed by Ahmed and Farag [196] where Wolff-Oren-Nayar reflectance 

model was assumed. Moreoever, the presented work is compared with one's earlier work 

in [49] which assumes Lambertian reflectance. 

In order to share the same metric coordinate frame, the average jaw shape s (along 

with its anatomical landmarks) is used as a reference to establish a dense correspondence 

between the ground truth CT scan of the jaw mold corresponding to each testing image l 

and the reconstructed shape. The alignment proceeds as follows. Procrustes-based rigid 

registration [173] is used to filter out translation, scale and rotation followed by 3D 

thin-plate splines [146, 183] for non-rigid registration. 

We assess the reconstruction accuracy in accordance to an error estimator which 

is based on the Root Mean Square (RMS) error between the 3D points from the CT 

scan and the corresponding reconstructed surface points. Note that errors are computed 

based on the surface points of the visible crowns to exclude errors which might rise from 

the reconstruction of the mold base. 

9.10.1 Visible Crowns Reconstruction 

To evaluate the proposed approach, out-of-training jaw samples are reconstructed and 

compared against the ground truth CT-scan. Four types of samples are considered: (a) 

pre-repair and (b) post-repair lower jaw, (c) pre-repair and (d) post-repair upper jaw. 

Along with the groundtruth shapes, Figures 9.16 and 9.17 show a sample of shape and 

albedo reconstruction of upper and lower jaws, respectively. It important to note that 

SFS only recovers a height map (2.5D) of the input image where there is no metric 

information reserved. With the metric prior used to train the offline shape model, the 

proposed approach reconstructs the triangular mesh (3D) corresponding to the input 

image. Further, most of SFS approaches assume known parameters of surface reflectance 

and point light source with known direction. In contrast, one's approach explicitly 

accounts for complex illumination and models surface reflectance without the need of the 

1 Note that out-of-training testing scenario is followed. 
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exact reflectance parameters. In Figures 9.16 and 9.17, one can observe the closeness of 

the SSFS-based reconstruction to the groundtruth shape when compared to the recovery 

shape from SFS. This emphasizes the role of incorporating prior-information for shape 

recovery as well as appearance modeling. 

Input Image + Lanclnwica Grollndtnath Shape Recoveml Shape Recoveml Albedo RecovW!d Height Map (SFS) 

Figure 9.16: Sample reconstruction result of an upper (post-repair) jaw (bottom row 
shows the top-view of the occlusal surface). 
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Input Imlge + Landmarks GrollndlTuth Shape Recovered Height Mtp (SFS) 

Figure 9.17: Sample reconstruction result of a lower (post-repair) jaw (bottom row shows 
the top-view of the occlusal surface). 

Table 9.1 reports the RMS error in mm between the 3D points from the CT scan and 

the corresponding reconstructed surface points. For the sake of comparison, one also 

includes one's earlier results in case of assuming Lambertian reflectance [49]. Notice 

that the error values of the SSFS-based reconstructions are minimal when compared 

to SFS-based reconstruction. Pre-repair error values are also smaller than post-repair 

values in most of the samples, indicating that the statistical prior capability of capturing 

irregular tooth shapes and locations. 

A natural question to be asked is how to make use of SFS results and SSFS? Of 

course, SFS is based on the visible surface of the jaw; at best the crown would be 
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Table 9.1: Average whole jaw surface reconstruction accuracy (RMS) in mm 

I Jaw Type I Proposed non-Lambertian SSFS I Lambertian SSFS [49] I SFS [196] I 
Upper, Pre-repair 0 .6289 2.08999 15.2995 
Upper, Post-repair 0 .6689 2.02334 16.3098 
Lower, Pre-repair 0 .6714 3.11911 12.1241 
Lower, Post-repair 0 .8073 2.57112 13.4959 

possibly constructed, while SSFS constructs the entire jaw. On the other hand , SFS 

provides the object-specific constructions. A logical thing would be to enhance the SSFS 

with SFS, by morphing the upper part of the model with the crown portion generated 

from SFS. Another question arises where even smaller reconstruction errors are needed, 

to that end it is worth pointing out that these results are based on a model that is 

being trained on a small ensemble of 16 jaws (8 pre-repair and 8 post-repair). With a 

large enough ensemble of objects, credible shape, albedo and appearance models would 

be possible, which when morphed to the crown reconstructions would produce a more 

realistic jaw. 

9.10.2 Results on Tooth Restoration 

In this section, the performance of the proposed framework in restoration of missing and 

broken human teeth is assessed. The reconstruction experiments are conducted on real 

images of jaw that are manually distorted to mimic the missing and broken tooth as 

shown in Figures 9.18 and 9.19. This allows validation with respect to ground truth 3D 

information. The test is done on 8 subjects with different distortion, inlays and onlays, 

on different premolars and molars. One-of-out training is still used such that the testing 

subject is not included in the model training. 

Tables 9.2 and 9.3 show the average reconstruction error in mm for inlay and onlay 

restorations, respectively. The results show that, on average, the small tooth damage 

(i.e. inlay) leads to smaller errors when compared to bigger ones where one or more 

cusps are missing, i. e. onlay. 

9.11 Summary 

This chapter presented an affordable, flexible, automatic dental tool for the reconstruc-

tion of the clinically visible part of the human jaw. It was based on a single captured 
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Table 9.2: Average inlay surface reconstruction accuracy (RMS) in mm 

I Jaw Type I Proposed SSFS I SFS [196] I 
Upper, Pre-repair 0.6808 13.1934 
Upper, Post-repair 0.5859 12.6267 
Lower, Pre-repair 0.7559 13.7182 
Lower, Post-repair 0 .6901 12.8085 

Table 9.3: Average onlay surface reconstruction accuracy (RMS) in mm 

I Jaw Type I Proposed SSFS I SFS [196] I 
Upper, Pre-repair 0.6337 16.0437 
Upper, Post-repair 0.6399 16.8294 
Lower, Pre-repair 0 .8143 15.0697 
Lower, Post-repair 0.9675 15.4122 

Input Image Groundtruth Shape Recovered Shape Recovered Height Map (SFS) 

Figure 9.18: Sample inlay reconstruction result of an upper (post-repair) jaw (bottom 
row shows a zoom-in view of the damaged teeth). 

optical image and a statistical shape recovery approach which makes use of a small num

ber of measured points to construct a plausible 3D model through a learned correspon-

dence based on a measured human jaw dataset. While most shape-from-shading (SFS) 

approaches assume known parameters of surface reflectance and point light source with 

known direction, the presented work has relaxed such assumptions using the harmonic 

expansion of the image irradiance equation where one was able to incorporate prior 

information about natural illumination and real world surface materials. To provide 

optimal appearance basis of occlusal surfaces, an analytic formulation for appearance 

subspace reconstruction is proposed to capture the full behavior of complex illumina

tion and teeth reflectance characteristics. The brightness constraint was then cast as a 
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Input Image Groundtruth Shape Recovered Shape Recovered Height Map (SFS) 

Figure 9.19: Sample onlay reconstruction result of a lower (post-repair) jaw (bottom 
row shows a zoom-in view of the damaged teeth). 

regression problem, which allows for the rapid computation of the solution. Principal 

Component Regression (PCR) algorithm was deployed which is composed of a sequence 

of matrix operations; the approach in this work can recover 3D shapes much faster than 

its iterative counterpart , without compromising the integrity of the results. The results 

demonstrated the effect of adding statistical prior as well as appearance (illumination 

and reflectance) modeling on the accuracy of the recovered shape. The applicability 

of the proposed approach to a dental application encompassing tooth restoration was 

investigated. The system showed ability to handle different missing and broken parts, 

inlay and onlay, with comparable accuracy to the existing methods without manual 

intervention from a single image. The restoration surfaces match smoothly well with 

adjacent tooth, the morphological character of the tooth are retained. The next step 

is to investigate the fusion of SFS and SSFS where SFS provides the object-specific 

constructions while SSFS is perform shape recovery based on partial information. 
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CHAPTER 10 

EPILOGUE 

The shape and reflectance of a three-dimensional object provide invariant properties 

to changes in the imaging formation process, e.g. illumination and viewpoint changes. 

Extraction of such information given a single image, as an under-constrained problem, 

is an inherent challenge in many vision tasks such as recognition. This involves adding 

assumptions to the image formation process such as point light source, known reflectance 

model with homogenous characteristics. 

The appearance of an object, i.e. shading, is given by the image irradiance equation 

[24], where its low-dimensional representation under unknown arbitrary lighting and 

reflectance is a fundamental process for many computer vision tasks including illumi

nation modeling [6], surface reflectivity estimation/analysis [11 , 32]' shape and albedo 

recovery [33, 34, 35, 37], shape from shading [36, 196, 198], photometric stereo [38], 

object detection and recognition [39], to name a few. 

Theoretically, due to the arbitrariness of the lighting function, the space of all pos

sible images of a fixed-pose object under all possible illumination conditions is infinite 

dimensional [25]. Yet , statistical modeling is widely devised to provide a low-dimensional 

linear subspace of image irradiance by performing Principal Component Analysis (PCA) 

on a large set of images under various imaging conditions[27]. However , this approach 

suffers from the need of special acquisition setup to control and measure the lighting 

function while keeping the camera and the object fixed. In addition, the constructed 

subspace is biased towards the sampled illumination directions. Moreover, either surface 

reflectance properties are assumed or known a-priori. 

On the other hand, appearance models can be constructed using phenomenologi

cal models which capture variations of surface appearance with respect to illumination 

conditions and surface reflectance properties through mathematical abstraction of the 
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reflection process. In particular, the harmonic expansion of the image irradiance equa

tion can be used to derive an analytic subspace to approximate images under fixed pose 

but different illumination conditions; it has been shown that surfaces acts as a low-pass 

filter on the incident illumination, yielding a band-limited reflected light, introducing 

the frequency-space representation of image irradiance. 

This dissertation has presented a theoretical framework allowing for the derivation 

of low-dimensional appearance subspace under natural illumination and arbitrary sur

face reflectance while taking into account the intrinsic dimensionality of the imaging 

domain. With a low-dimensional generative model for image irradiance, one was able 

to incorporate prior information about complex illumination and real-world materials. 

One also demonstrated how the presented work can be applied in the context of vision 

algorithms that determine surface geometry. 

With the theoretical and practical components of this dissertation, the sequel dis

cusses the dissertation's main contributions, the bigger picture, highlight some limita

tions and end by discussing directions for future research. 

10.1 Summary of Contributions 

This dissertation has proposed a number of advances in modeling image irradiance along 

with potential applications which go some way to addressing the research questions 

formulated in Chapter 1. The findings from this dissertation make several contributions 

to the current literature which can be summarized as follows: 

• Surface reflectance basis: In Chapter 4 a complete, orthonormal basis was 

proposed to provide a compact and efficient representation for surface bidirec

tional reflectance distribution function (BRDF), which is defined on the cartesian 

product of two hemispheres. The proposed basis, which are defined in terms of 

hemispherical harmonics (HSH) , preserve the Helmholtz reciprocity property of 

BRDFs while avoid the computational complexity inherited from Zernike polyno

mials that are usually used to construct hemispherical basis. By analytical and 

experimental comparison, the proposed basis captured surface reflectance charac

teristics with lower reflectance order compared to similar basis in literature. These 

results were validated based on analytical reflectance models as well as scattered 

BRDF measurements. 
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• Image irradiance harmonics: Through the mathematical modeling of the re

flection process, in Chapter 5 the definition of image irradiance harmonics was 

formulated which enabled decoupling illumination and reflectance from the un

derlying geometry and pose. These harmonics encode the orthogonality relation 

between spherical harmonics basis used for illumination representation and the 

deployed reflectance basis. The image irradiance representation was further vali

dated based on the proposed reflectance basis compared to similar representations 

in literature using different surface materials. By investigating the energy content 

maintained by the proposed image irradiance basis for natural materials, one found 

that specular materials tend to require more basis functions when compared to dif

fuse ones. Yet the presented basis captures similar cumulative energy content at 

lower illumination orders when compared to similar representations in literature. 

• Analytic subspace construction : In Chapter 6, a bilinear approach was pro

posed to analytically construct irradiance subspace in order to tackle the inherent 

problem of small-sample-size and curse of dimensionality. The process of finding 

the analytic subspace was posed as establishing a relation between its principal 

components and that of the irradiance harmonics basis functions. One further 

showed how to incorporate prior information about natural illumination and real

world surface reflectance characteristics in order to capture the full behavior of 

complex illumination and non-Lambertian reflectance. The proposed analytic bi

linear PCA showed significant decrease in dimensionality when compared to the 

linear counterpart while attaining the lowest reconstruction errors. It was further 

tested against noisy input showing robust image representation even at low SNR 

levels. 

• Missing irradiance information: In Chapter 7, one proposed to cast errors 

introduced due to irradiance incompleteness as: (1) statistical outliers which were 

determined and rejected using robust statistics and (2) local spatial erroneous con

tinuous regions where Markov Gibbs random field with the homogenous isotropic 

Potts model was adopted to model the incompleteness's spatial interaction. Re

sults demonstrated the effectiveness of the proposed algorithms in handling high 

levels of contiguous missing information compared to the conventional image pro

jection. In particular, MGRF and robust estimation using Geman-McClure func-

237 



10.2. Limitations and Suggested Future Directions 

tion outperformed the Singular Value Decomposition (SVD) performance approach 

which is very sensitive to the presence of missing information even at low levels. 

In the meantime, the performance of Lorenztian function approaches SVD due 

to the presence of errors caused by fitting an input image to subspace bases con

structed using different geometrical object. The approach was further incorporated 

in a model-based shape from shading framework which assumed Lambertian re

flectance which gave rise to incompliance to the assumed model. One showed that 

conventional SVD was very sensitive to the presence of missing information even at 

low levels while the proposed harmonic projection handled corrupted irradiances. 

• Shape recovery based on appearance modeling: In Chapters 8 and 9, the 

application of the proposed imaging model was presented to construct appearance 

models for human faces and clinical crowns of human jaws. While most shape

from-shading (SFS) approaches assume known parameters of surface reflectance 

and point light source with known direction, this work has relaxed such assump

tions using the harmonic expansion of the image irradiance equation where one was 

able to incorporate prior information about natural illumination and real world 

surface materials. The results showed the effectiveness of the proposed appearance 

model in reconstructing the geometrical structure of the object of interest. 

One of the more significant findings to emerge from this dissertation is that frequency

based image irradiance representation has made constructing appearance models afford

able where the need for capturing a "large enough" ensemble of images under different 

illumination conditions is eliminated. The relevance of representing hemispherical sur

face reflectance using hemispherical basis is clearly supported by the current dissertation 

findings. 

10.2 Limitations and Suggested Future Directions 

Our analysis also lead to a number of interesting observations, some of which may be 

considered as lines of future research. Below one outlines some limitations as well as 

several important directions of further research . 

• Global illumination: This dissertation has addressed complex illumination as 

well as arbitrary reflectance. Further steps may be taken towards encompassing 
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effects such as inter-reflections and cast shadows to lower the complexity of global 

illumination simulations while achieving interactive rendering. 

• Pose and geometry: While the proposed appearance model captures variations 

due to illumination and reflectance, in order to complete the view, one might 

need to investigate adding variable surface geometry and camera poses. As such 

completing the two aspects of image formation , photometric (tlus dissertation) 

and geometric aspects. 

• High frequency illumination: Whereas one's focus was to accurately model 

surface reflectance, using spherical harmonics to represent light assumes low

frequency illumination. One suggests investigating appearance models based on 

different illumination representation to capture all-frequency light and non-convex 

geometrical objects. 

• Human perception: This work has focused on the physical computational aspect 

of the image irradiance. Nonetheless, human perception response is logarithmically 

related to the physical intensity. As such, an important future direction of research 

is considering the perceptual aspect of the image formation process to bridge the 

gab between photorealism and interactivity. 

• More generalized reflectance model: One suggests employing a more gen

eralized reflectance model which may be obtained if the Lambertian component 

in Cook-Torrance model is replaced by a more realistic diffuse model such as 

Oren-Nayar model or Wolff-Oren-Nayar model. The new model will have three 

parameters that control the percentages of the diffuse and the specular reflections, 

in addition to the degree of the surface roughness. However, various types of vali

dation tests and experiments on real data samples for object reflectance are needed 

to be performed before this model can be used to model visual appearance. 

• Image-based reflectance modeling: There are different approaches exist for 

BRDF estimation from one or more images. Most of them rely on the availability of 

prior information such as object's shape and known/controlled illumination. The 

relaxation of the required apriori lighting information is still a challenge which 

needs to be addressed. One believes that modeling surface roughness will aid the 
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10.3. Summary 

illumination recovery process. Furthermore, cast shadows inherited from the non

convexity of the object 's surface can be exploited to recover lighting directions. 

• Subsurface scattering: This work ignored subsurface transport to reduce the 

domain of surface reflectance. This is a reasonable approximation for most of com

puter vision tasks. Yet , one wonders if similar analysis can be done to the general 

rendering equation which incorporate subsurface scattering where physically-based 

models for subsurface scattering of light provide attractive tools for accurate image 

synthesis. 

• Statistical m odeling: there are many open questions related to statistical mod

eling of prior information. This involves: (1) the amount of training data needed 

to build a statistical model that accurately generalize to any class realization, (2) 

the effect of dimensionality of the object space and (3) the effect of nonlinear 

analysis in contrast to linear subspace learning. 

• Sim u ltaneous estimation of scene parameters: One interesting question is 

whether one can incorporate the proposed appearance model in a unified frame

work which allow the estimation of illumination and reflectance with geometry 

estimation. 

10.3 Summ ary 

In brief, this dissertation has presented an analytical framework for appearance subspace 

construction which lead to a low-dimensional generative model for image irradiance while 

taking into account the intrinsic dimensionality of the imaging domain. One showed 

how to incorporate prior information about illumination and reflectance in the process 

of constructing appearance bases. The presented approach can be used in graphics as 

well as vision where the presented theory has lead to a new model-based shape recovery 

where the hitherto assumed Lambertian assumption is relaxed. One believes that there 

is still much progress to be made in the future. 
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ApPENDIX A: THE POLAR 

INTEGRAL OF SHIFTED ASSOCIATED 

LEGENDRE POLYNOMIALS 

In this appendix, the closed form of the following integral is derived, 

where , 

with a normalization factor defined as, 

2n + I (n - m)! 

27r (n + m)! 

and the shifted associated Legendre polynomials are given by, 

Hence it can be shown that, 

N~ 10 j5~(cose)dw 
- r27r rl2 

-N~ J
o 

d¢ J
o 

P~(cose)sinede 

r l2 
-V27r(2n+l) Jo P~(cose)sinede 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

Switching to the cartesian representation, such that z = cos e, thus dz = - sin ede , 
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while the integration domain changes from [0 , 7r /2] to [1,0]' 

/27r(2n + 1) 10 

P~(z)( - dz ) 

/27r(2n + 1) 10
1 

Pn(Z)dZ 

Appendix A 

(A-6) 

Using the series representation of the shifted Legendre polynomials [199], 

(A-7) 

Thus, the integration in Equation A-6 can be simplified as , 

10
1 

Pn(z )dz = 10
1 

((-lt~(-I)k(~) ( n;k) zk) dz 

(-It ~(_I)k (~) ( n; k) (10
1 

zkdZ) (A-8) 

where, 

Zk+1 11 
k+l 0 

1 

k + l 

Therefore, it can be shown that , 

(- I)n/27r(2n + 1) ~(_I) k (~) ( n; k) k: 1 

. n n (- I )k(n+k)! 
(- 1) /27r(2n + 1) t; (k + 1)(k!)2(n - k) ! 

where the first few terms are 1 , 

C;o ~ 2.5066 

C;n ~ 0 '<In ~ 1 

IThese values were validated using Monte Carlo integration . 
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ApPENDIX B: TORRANCE SPARROW 

SPECTRUM COEFFICIENTS 

Since there is no azimuthal dependance in Equation 4.45, it can be expanded using zonal 

basis of the isotropic Helmholtz HSH-based basis 9{~, centered at surface normal n(x), 

where q is set to zero. The zonal basis can be written as, 

1 (2p + 1)(2r + 1) 

2n 2 + 20pr 

x [Pp(cosB~)Pr(cosB~) 

+ Pr( cos BDPp( cos e~)] (B-1) 

where Pp is shifted associated Legendre polynomials [20] with order p ~ O. Thus TS

BRDF can be expanded in the subspace spanned by the Helmholtz HSH-based basis 

as, 

(B-2) 

where the spectrum coefficients can be obtained as l , 

(B-3) 

where dpr and Bpr denote the diffuse and specular integrals of the TS spectrum coeffi-

cients, respectively. 

INote that the complex-conjugate is discarded since the focus here is real-form basis. 
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The diffuse integral can be derived as follows; 

r r 9-C~(w~,w~)dW~dW~ 
Jn~ In; 

,------

1 (2p + 1)(2r + 1) {1 n ( ()')d -'l n ( ()')-1.-!, 
2~ 2 2' rp cos t wt rr cos 0 UWo " + Upr n; n~ 

+ r Pr(cos()DdW~ r Pp(COS()~)dW~} In; Jn~ 
(B-4) 

Using variable substitution z = cos () -+ dz = - sin ()d() and the orthogonality relation 

of the shifted-associated Legendre polynomial (with zero-degree), 

1- 11 - 2n Pn(cos())dW = 2n Pn( z)dz = --DnO 
n 0 2n + 1 

(B-5) 

Substituting in dpr will lead to , 

4n D D 
J(2 + 2Dpr)(2p + 1)(2r + 1) pO rO 

{ 

2n p = 0, r = 0 

o otherwise 

(B-6) 

Thus the diffuse/Lambertian component of the TS-BRDF is encoded in the first com-

ponent. On the other hand , the specular integral Bpr can be written as, 

with 

1 

2n 
(2p + 1)(2r + 1) [C (()' ) C (()' )] 

2 + 2Dpr x pr 0' a + rp 0' a 
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Appendix B 

According to the orthogonality relation of the shifted Legendre polynomials, all terms 

in the integral in Equation B-8 will vanish except for r = O. 

4?r2 

2r + 1 8ro 

x r /2 sin ()()~ exp [_ ( ()~ ) 2] Pp( cos ()Dd()~ 
io cos i 20" 
, I 

v 

Ap(lI~,CT) 

(B-9) 

A closed form of Ap( ()~ , 0") can be derived using the series representation of shifted 

Legendre polynomials [199J and the exponential function , followed by variable substitu

tion z = cos ()~ and Taylor series expansion of cos- 1 z. Nonetheless the closed form of 

the (shifted) Legendre polynomials suffer from numerical instabilities with high orders 

[60]. In this case, it is more efficient to use stable recurrence relations [99J. 

Therefore, the specular integral can be writhen as, 

2?rAo(()~, 0") P = O, r = 0 

2?r J2Pi 1 Ap(()~, 0") P > O,r = 0 
Bpr( ()~ , 0") = 

2?rJ2r+l A (()I 0") P = O,r > 0 2 r 0' 

(B-lO) 

0 otherwise 

This implies that apo = aop, thus a single index for spectrum coefficients can be used, 

where 

-' Ps F(cos()~;1]) ( ' ) 
2PdU pO + 2 ()I F( ) Bp ()o,o" ?r0" cos 0 1; 1] 

(B-11) 

where 

p = O 
(B-12) 

p>O 

According to the definition of the isotropic Helmholtz HSH-based basis, it can be 

262 



Appendix B 

shown that 9{~ = 9{8p' hence the TS-BRDF can be represented as, 

00 

ao(B~) + L ap(B~)9{~(w~, w~) 
p=l 

00 

+ L ap(B~)9{8p(w~,w~) 
p=l 

00 

ao(B~) + 2 L ap(B~)9{~(w~, w~) 
p=l 

o 
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ApPENDIX C: ApPROXIMATION 

ACCURACY OF DIRECTIONAL 

HEMISPHERICAL BASIS 

In this appendix, the total energy of a surface BRDF under fixed incident direction 

wi' will be derived, where the total squared energy of the BRDF can be obtained by 

integrating [!r(wi' , w~W over the cartesian product of the incoming and outgoing hemi

spheres l . 

(C-l) 

Since, the BRDF can be represented in terms of the expansion coefficients a~~ in Equa

tion 4.58 as follows , 

00 r 

f ( ~'o ~I) 1 OO( ~'o) 1 '" '" OS( ~'o) [HS( ~I) H S( ~'o)] ,. Wi ,Wo = 27Taoo Wi + 2V1F ~ ~ aOr Wi r Wo + r Wi 
r = l s=-r 

(C-2) 

The integral in Equation C-l can be expanded as follows, 

IHaving a fixed incident direction does not eliminate the integration with respect to it . 
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00 r 

2 1 1 OO( -'0) '" '" OS( -'0) r [HS( - ' ) HS( -'0)] dw' + 2n 2J7faoo wi ~ ~ aOr Wi if:' r Wo + r Wi 0 
r=l s=-r no 

Using the orthonormality of HSH basis Equation 4.6 and the fact that H8(w~) = ~, 
v2tr 

it can be shown that, 

Also, 

in, [H:(w~) + H:(w~O)] dw~ 
o 

r H:(w~)dw~ + r H:(w~O)dw~ 
i n'o in'o 
..j2; r H:(w~)H8(w~)dw~ + 2nH:(w~0) 

in' o 

..j2;brobso + 2nH:(w~0) 

in, [H:(w~) + H:(w~O)] [H:: (w~) + H:: (w~O) ] dw~ 
o 

Setting r = r' and 8 = 8 ' yields, 

in, [H:(w~) + H:(w~O)] [H::(w~) + H::(w~O) ] dw~ 
o 

= 1 + 2..j2; H: (w~ O)brobso + 2n [H: (w~ 0) ] 2 

Embedding Equation C-4 and Equation C-6 into Equation C-3 leads to, 

{
I ( 00(_'0) ) 2 = 2n 2n aOO Wi 
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00 r 

+ L L {2J7fagg(w~O)ag~(w~O)H:(w~O) 
r=18= -r 

(C-7) 

Considering the Pth order function approximation, such an approximation captures 

a certain amount of the function 's total energy defined as the cumulative sum of energies 

maintained by individual harmonic terms, (this cumulative energy can also be referred 

to as function approximation accuracy since the more energy the harmonic terms cap-

ture from the function to be approximated, the more accurate the harmonic expansion 

is). Thus the approximation accuracy (or the energy captured by the Pth order approx

imation) can be defined as, 

ACCB(R; w~O) = 
(ag8(w;0 )f 

R = O 

( 
OO( -' 0)) 2+",n ",r 

aOO Wi L."r= l L." s=- r 

R > O 

(C-8) 

o 
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ApPENDIX D: ANALYTIC 

DERIVATION OF C~pr(a) 

This appendix derives the analytic expression of the integral in Equation 5.9 which is 

used to define the irradiance harmonics of the proposed reflectance basis after moving 

terms which are independent of the local incident direction out of the integral, where 

(D-1) 

The solution of this integral encodes how much the spherical harmonics basis func

tions yn
m' resembles the proposed isotropic Helmholtz HSH-based reflectance basis J{Zr. 

The real spherical harmonics (SH) basis is defined as, 

(D-2) 

with n ~ 0 denoting the harmonic order, m' E [-n, n] denoting the harmonic degree, 

, Im'l Im'l e~ E [0,7r] and ¢~ E [0, 27r]. The polar part is given by e~ (eD = N n Pn (cos e~) where 

P;:" (z) is the associated Legendre polynomials defined over the interval [-1, 1]. They 

are defined in terms of the m'th derivative of the Legendre polynomials as1, 

n ~ 0, m' E [0, n] (D-3) 

lIn [56], the associated Legendre polynomials is defined with an additional (_l)m' , which seems a 
complication that can be ignored at this point. It will be included in t he definition of the spherical 
harmonics later. 
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The azimuthal part is defined as, 

flm,(¢} ~ ! y'2 cos( m' ¢D m'>O 

1 m'=O 

(_1)m' y'2 sin( -m' ¢~) m' < 0 

(D-4) 

The normalization factor N:;;-' which accounts for basis orthonormality is defined as, 

N'!!"= n 
2n + 1 (n - m')! 

47r (n + m')! 
(D-5) 

Analogical to spherical harmonics definition, the real hemispherical harmonics can 

be written as [20]1, 

(D-6) 

The polar part is given by e~(ll') = N~qlp~ql(cose') where P$(z) = P$(2z - 1) is the 

shifted associated Legendre polynomials defined over the interval [0,1], the azimuthal 

part is defined in Equation D-4 and N$ being defined as the normalization factor, 

2p + 1 (p - q)! 
27r (p + q)! 

(D-7) 

where the harmonic order p 2': 0, the harmonic degree q E [-n, n], e' E [0, 7r / 2] and 

¢' E [0, 27r]. 

Thus the reflectance basis for isotropic surfaces can be defined in terms of the polar 

and azimuthal parts of the hemispherical harmonics as, 

']{~r(e~, e~ , /:::"¢') = 

N$r [e~(eDe~(e~) + e~(e~)e~(e~)] iI>q(/:::"¢') 

where the normalization factor is defined as, 

q > O 

q=O 

q < O 

(D-8) 

(D-9) 

INote the difference between us and [20] in the factor of (- l)q , since it is preferred to include 
this factor in the harmon ics definition rather than including it in the associated Legendre polynomial 
definition. 
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The solution of the integral in Equation D-l can be derived as follows. 

e~~(a) = N$r fo27r <I>m/(¢D<I>q(I¢~ - 7Tl)d¢~ 

X fo7r /2 e~' (B~) [e~(B~)e~(B~) + e~(B~)e~(B~)] 
x cos B~ sin B~dB~ (D-IO) 

Since q ~ 0 (the normalization factor N;h- for negative degree basis is zero) , thus the 

azimuthal part becomes [32], 

Thus all terms in Equation D-IO vanish except for m' = q. 

e~pr(a) = 7T N$r( - l)q V2(1 + 8qQ ) 

{ eq(B')NlqliVlql:)q + eq(B')NlqliVlql:)q } ron p np p 0 n r nr 

where, 

1
7r/2 -

:)q = plql (cos B')plql (cos B') cos B' sin B'dB' np n t p t t t t 
Q 

The associated Legendre polynomial in its explicit form [98] is written as, 

x 

L n- Iql J 
(n+lql)!sinlqIB' ~ (_l)lql+k 

2nn! t ~ 
k=Q 

(n) (2n - 2k) n-lql-2k fI' 
k n + Iql cos U t 

The shifted associated Legendre polynomials is given by, 

P;J(cosB~) = P$(2cosB~ - 1) 

(D-ll) 

(D-12) 

(D-13) 

(D-14) 

(D-15) 

Since B~ ~ 0 and Iql ~ 0, sin1ql B~ in Equation D-14 can be expressed as (I - cos BDlql /2, 
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thus the shifted associated Legendre can be expressed explicitly as, 

p.plql(cosB~) = (p+ iqi) ! [1- (2cosB'-1)2]lql/2 
2Pp! t 

L P- 21ql J 
x L (_l) lql+l(P) (2P - 2l) 

1=0 l p + iqi 
[2cosB~ _ 1]p- lql - 21 (D-16) 

Using variable substitution, z = cos B~ --+ dz = - sin B~dB~ , the explicit forms in 

Equation D-14 and Equation D-16 can be re-written as follows. 

and 

k=O 

x (n) (2n - 2k) zn-lql - 2k 
k n+ iqi 

LP-
1ql J 

(p + iql) ! [4z(1 - z)]lql/2 ~ (_ l)lql+l 
2Pp! L...J 

1=0 

x (p) (2P - 2l) [2z _ 1]p- lql -21 
l p+ iqi 

(D-17) 

(D-18) 

Putting all together , the closed form of the integral 'J~P can be derived as follows, 

x ( n) (2n - 2k) (p) (2P - 2l) 
k n + iqi l p + iqi 
r1 

JtJJ. x 10 (1 - z2 ) 2 zn-lql -2k+l 

[4z(1 - z )] ¥ (2z - 1)p-lql - 21dz 

(D-19) 

The integral in Equation D-19 can be re-written as; 

(D-20) 
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Using the binomial theorem which restricts q to be even, 

(D-21) 

and 
p-lql-21 

(2z - 1)p-lql-21 = L (p - Iql - 2l) (2z)j (_ 1)p-lql-21-j (D-22) 
j=o J 

Substituting in Equation D-20, 

Using the Euler Beta integral [99] leads to, 

Iql/2p-lql-21 . (W) ( _ I 1 - 2l) 
21ql L L 2J 2 P q 

i=O j=O Z J 

(n - ~ - 2k + 1 + i + j)!(lql)! 

(n + ~ - 2k + 2 + i + j)! 

Thus the closed form of :J~p is given by, 

L n- Iql J L E=M J 
(n+lql) !(p +lql)! ~ ~ (_1)2 Iql +k+l 

2n+p n!p! ~ ~ 
k=O 1=0 
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ApPENDIX E: IRRADIANCE SIGNAL 

ENERGY CONTENT 

The energy of the irradiance signal perceived by the camera is given by In [E(a, .8)]2 dw, 

where the integral is over the surface normals constructing the visible hemisphere n. As-

suming directional light source (modeled as a delta function with non-decayable spec

trum), the decay of the irradiance spectrum will be due to the spectrum coefficients 

of the surface BRDF. Eliminating the effect of the light direction, consider all possible 

3D rotations applied on a directional light source, the average irradiance energy is then 

obtained as, 

€ = 1 r [E(a, .8)f dR dW 
n J SO(3) 

(E-1) 

When a light source, with spectrum coefficients [~, undergoes a 3D rotation R, the 

coefficients becomes, 
n 

l~ = L ~1)~o(R) (E-2) 
o=-n 

where 1)n are Wigner's rotation matrices [59]. Thus the average signal energy of each 

illumination mode over all possible 3D rotations can be written as, 

r [l~]2dR = r l~l~f dR 
} SO(3) } SO(3) 

o=-no'=-n' 

(E-3) 

From the orthogonality relation of the 1)n matrices [11], it can be shown that, 

(E-4) 
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where dR = 8~ sin adad(3d"{. Thus Equation E-3 simply becomes, 

r [l;:'12dR = _1_ t ([~) 2 
J SO(3) 2n + 1 o=-n 

(E-5) 

The average energy content of the irradiance signal E over all possible directional 

light sources can be written as, 

C L r l;:'l:" dR 
nm J SO(3) 

n'm' 

(E-6) 

According to Equation E-4, all terms in Equation E-6 vanish except n = n' and 

m=m', 

C = f= (L~=-n [~) AB(n) (E-7) 
2n+ 1 n=O 

where, 

AB(n) L q' a~rap'r' 
prq 

p'r'q' 

X t 113;:':,.(a,(3)13~;~,(a,(3)cUJ (E-8) 
m=-n n 

with l , 

13;:'p~(a, (3) = n~q(a,(3)e~pr(a) (E-9) 

Thus the average energy now depends on the illumination order n where each terms is the 

product of the average energy content of the illumination band n and the corresponding 

attenuation factor AB imposed by the surface BRDF on the illumination signal. 

INote that e~pr(Q) vanishes when q is odd. 
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The 'Dn matrices l can be expressed in a compact form [32], 

x p;::,q ( cos a) 

(E-1O) 

with 

sgn(x) = { 1 
- 1 

x~O 
(E-11) 

x< O 

where p:::,q are the generalizations of the associated Legendre functions [200] which 

are given by the Rodriguez formula, 

(_l)n-m (n + m)! 
2n (n - q)!(n + q)!(n - m)! 

(m+q) 'l.=!'!:. 
X (1 + z)- 2 (1 - z ) 2 

dn - m 
x -- [(1 - z)n-q(l + z)n+q] 

dzn - m (E-12) 

Since isotropic surfaces is of concern, 'Y can be arbitrary set to 0 and q ~ 0, thus the 

azimuthal functions that depend on 'Y in Equation E-10 become, 

and 

q ~ O 

q = O 

Therefore, in case of isotropic surfaces, the 'Dn matrices can be written as, 

~ [<I>m CB)P;::,q (cos a) 

'D~q(a,,B) = +(-l)q<I>m (,B)p::: ,-q (cos a)] q ~ 0 

q=O 

17 is set to zero for isotropic surfaces. 
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In a more compact form, 

p:;"q (cos a) + ( - l)q p:;,,-q (cos a) <Pm (/J) 

)2(1 + <lqo) 

ll~ ,q(a)<pmCB) 

Appendix E 

(E-16) 

This leads to a polar-azimuth factorization of the basis functions in Equation E-9 such 

that, 

(E-17) 

where, 

(E-18) 

Thus the integral in AB(n) Equation E-8 can be re-written as follows where the orthog

onality relation of the azimuth functions eliminates the dependency on the azimuthal 

angle (3, 

10 13~(a,(3)13~;~,(a,(3)dW = 

fo 27r <pm((3) <pm((3)d(3 
... " v 27r 

r/2 

x io e~(a)e~;~,(a)sinada 

Moving the summation over m inside the integral of Equation E-8, 
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where, 

n 
L ~~,q (a) ~~,ql (a) 

m=-n 
1 

2J(1 + bqo)(l + bq1o) 

x {m'f;.n P;;-,q ( cos a) p::::,q' (cos a) 

n 
+ (- l)ql L p::::,q ( cos a) P::::' _q' (cos a) 

m=-n n 
+ (- l)q L p::::,- q(cosa)P::::,q' (cos a) 

m=-n 

+ (- l)q+ql m'f;.n p::::,- q(cosa)p::::,-ql (cos a) } 

However , the p;("q functions obey the following relation [32], 

n 

L p::::,q(Z)P::::,ql (z ) = bqql 

m=-n 
Noting that q, q' ~ 0, hence bq,_q' 

summation of Equation E-23 boils tol , 

n 

L ~~,q(a)~~,ql(a) 
m=-n 
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(E-21) 

(E-22) 

bqq l , thus the 

(E-23) 



Thus all terms in Equation E-20 vanish except for q = q', 

AB(n) L 2n a~a~'r' 
prq 
p'r' 

q is even 

Appendix E 

(E-24) 

Using Equation D-12, the polar integral in Equation E-24 can be expanded as follows, 

r/2 

10 e~pr(a)e~p".,(a) sin ada 

2n2 (1 + 8qo )NZrN;'r' (N~qi) 2 

x { iViqilViqi:Jq:Jq r/2 
eq(a)eq (a) sin ada 

p p' np np' lor r' 

+ iViqilViqi:Jq:Jq r/2 
eq(a)eq (a) sin ada 

p r' np nr' lor p' 

+ iViqilViqi:Jq:Jq r/2 
eq(a)eq (a) sin ada r p' nr np' lop r' 

+ iViqilViqi:Jq:Jq r/2 
eq(a)eq (a) sin ada } r r' nr nr' lo p p' 

(E-25) 

where the orthogonality relation of the shifted associated Legendre polynomials causes 

the 8-integral to simply becomes l , 

(E-26) 

1 Using var iable substitution z = cos a --t dz = - sin ada. 

277 



Appendix E 

Therefore, Equation E-25 becomes, 

r/2 

Jo e~pr(a)e;'p'r,(a) sin ada 

w(l + c5qo ) (N$r)2 (N~qif 

x {(N~qif (:J~p)2 + (N~qif (:J~r)2 

+ 2 i\i:iqi Niqi:Jq :Jq c5 } c5 c5 p r np nr pr 'PP' rr' 

(E-27) 

such that q is even. Therefore, the BRDF attenuation factors can be written as, 

AB(n) 2w2 L (1 + c5qo ) (a;;,l (N$r)2 (N~qif 
prq 

q is even 

{ (N~qif (:J~p)2 + (N~qif (J~r)2 

+2Niqii\i:iqi :J
q 

:J
q 

c5 } p r np nr pr (E-28) 

o 
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ApPENDIX F: PROOF OF ANALYTIC 

BILINEAR peA THEOREM 

Proof. Based on Alternating Least Squares [107], given A v , the weighting matrix A u 

maximizes the objective function given by, 

Wy = E{IIY - YII~} (F-l) 

Using the property of matrix trace and the linearity property of the expectation operator, 

it can be shown that, 

Wy = trace (E {(Y _ Y) (Y _ y)T}) (F-2) 

where, 

y - y A u ( ~ csC~ ) Af - E { A u (~ csC~ ) Af } 

A u (~ (cs - cs) C~) Af (F-3) 

with Cs = E{cs}. Therefore, 

(Y _ Y)(Y _ y) T = 

A u (~ (cs -cs) C~) A f A v (~ (CSI - CSI) (C:)T ) AE (F-4) 

Thus, for a given A v , Wy is maximized if and only if trace(A u T v A E) is maximized 

where, 

T v = L L E{(cs - CS)(CSI - CSI)}C~ AfAv(c:f (F-5) 
s s' 
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Since A u and Tv are square matrices, this is equivalent to maximizing trace(A'{;T~Au) 

which is obtained if and only if A u consists of the H'-eigenvectors of T~ . 

Similarly, given A u, the weighting matrix A v maximizes the objective function 

given by, 

w~ E{ll y T _ -yTII}} 

trace ( E { (yT _ -yT) (yT _ -yT) T}) (F-6) 

where, 

(yT _ -yT) (yT _ -yT) T = 

A v (~ (cs - cs) (C~{) A '{; A u (~ (cs, - cs') C~) A~ (F-7) 

Thus, for a given A u, w~ is maximized if and only if trace(AvTuA~) is maximized 

where, 

T u = L LE{(cs - cs)(cs' - cs,)}(C~f A'{;AuC~ (F-8) 
s s' 

which is equivalent to maximizing trace(A~T'{;Av) that is attained if and only if A v 

consists of the W'-eigenvectors of T'{;. 

In case of full projection, H' = H and W' = W. In order not to abuse notation, let 

(.)* denote matrices with the full dimensions Hand W as opposed to O. Thus U * and 

V * become square matrices where U *-l = U *T and V *- l = V *T. As a result , 

(F-9) 

where I w is an identity matrix of size W x W. Similar argument for A rJ A u = I H . 

Thus T v and Tu becomes independent of the weighting matrices such that , 

T v = L L E{(cs - cs)(cs' - cS ' )}C;B(C;f3)T (F-IO) 
s s' 

and, 

Tu = LLE{(cs - cs)(cs' - cs,)}(C;Bfc ;f3 (F-l1) 
s s' 

The optimal A u and A v are then obtained, directly with no iterations, as the matrices 

containing the eigenvectors of TiT and TrJ , respectively. 
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ApPENDIX G: PROOF OF ANALYTIC 

peA THEOREM 

Proof. Consider the frequency-space representation of image irradiance in the vector 

space, 

(G-l) 
s s 

The weighting matrix A w maximizes the objective function given by, 

Illy = E{lly - yll}} = trace (E { (y _ y) (y _ y)T} ) (G-2) 

where, 

-T -T - (" B) y = w e=Aw~ L:CsCs 
IdD , 

(G-3) 

and, 

y = E{y} = Aw (~ E{Cs}C~) (G-4) 

Thus the objective function in Equation G-2 can be rewritten as, 

Illy = trace (E {AwYA~}) (G-5) 

where, 

Y = L L E{(cs - cs)(cs' - cs,)}c~(c~f (G-6) 
s s' 

Therefore, the maximum of Wy is attained when the matrix Aw contains the D'-

eigenvectors of the matrix yT. o 
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ApPENDIX H: (HEMI)SPHERICAL 

FUNCTIONS 

Definition 

A unit sphere S2 in JR3 is a 2-dimensional manifold which refer to the set of points whose 

Euclidean distance from the origin is unity, i. e. , 

(H-l) 

The unit sphere can be parameterized by the spherical polar coordinates. If x = 

(x, y, z) are the Cartesian coordinates in JR3, then the spherical polar coordinates can be 

defined by the polar angle B E [0,7r] from the z-axis and the azimuthal angle ¢ E [0,27r] 

in the xy-plane. The distance from the origin of the coordinate system is defined by 

the radius r, where r = 1 in case of normalized coordinates which lie on a unit sphere, 

see F igure 10.1 for illustration. Cartesian coordinates are related to their spherical ones 

by, 

x r sin B cos¢ 

y rsinBsin¢ 

z rcosB (H-2) 

In case of hemispherical functions , the south-pole of the unit sphere is mapped to 

the xy-plane, where the domain of the polar angle is modified such that B E [0, 7r /2]. 

Thus a unit hemisphere n in JR3 is a 2-dimensional manifold defined as, 

(H-3) 
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A spherical function r provides a mapping of points on the surface of a unit sJ9here 

S2 to a scalar value, it can be defined as r E L2(S2) to be the Hilbert space! of 

square integrable2 functions on the two dimensional sphere S2, such that, assuming 

real-valued functions, r : S2 -+ JR. Similarly, a hemispherical function f~ can be 

defined as a mapping of points on the surface of a unit hemisphere r2 to a real number, 

i.e. f~ : r2 -+ JR, where f~ E L2(r2) . 

y 

Figure 10.1: The spherical polar coordinate system: it is defined by the polar angle from 
the z-axis e and the azimuthal angle ¢ in the xy- plane. The distance from the origin 
of the coordinate system is defined by the radius r 

Visualization 

A spherical function r(e , ¢) can be visualized in one of two ways: (1) A textured unit 

sphere S2 can be displayed such that a point x = (x, y, z) = cart( l , e, ¢) on its surface 

has the intensity of r(e,¢), see Figure 10.2(b). (2) The points on the surface of a unit 

sphere can be deformed such that x = (x,y,z) = cart( lr(e,¢)I, e,¢), i.e. each point 

is scaled radially by the absolute value of the function , see Figure 1O.2(a) . Note that 

cart(r, e, ¢) denotes the operator which converts spherical to cartesian coordinates, it is 

defined by Equation H-2. Similarly, a hemispherical function with () E [0, 7r / 2] can be 

visualized as in Figure 10.3. 

lHilbert space, a genera lization of Euclidean space, is a vector space having the structure of inner 
product and allowing t he measurement of length and angles. 

2 An L 2 -function defi ned over a domain :D such that f : :D -t lR. is called a square integrable function 
if In If l2dJ.L < 00 w.r.t. some measure J.L. 
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z z 

.8 

.6 

y y 

(a) (b) 

Figure 10.2: An example of spherical function , r(O, ¢) = t [cos3 (60) + sin4(¢) + 1] vi
sualized as (a) a unit sphere being deformed such that the distance between the sphere's 
center and the surface points encodes the function absolute values at different spherical 
coordinates, this is accomplished by the relation between the spherical and cartesian 
coordinates, (b) a textured unit sphere where the color of its surface points encodes the 
function values. Note that 0 E [0,7r] and ¢ E [0, 27r]. 

z 
z .9 

y 
v 

x 

(a) (b) 

Figure 10.3: An example of hemispherical function, f~(O , ¢) = t [cos3 (60) + sin4(¢) + 1] 
visualized as (a) a unit hemisphere being deformed such that the distance between 
the hemisphere's center and the surface points encodes the function absolute values at 
different spherical coordinates, this is accomplished by the relation between the spherical 
and cartesian coordinates, (b) a textured unit hemisphere where the color of its surface 
points encodes the function values.Note that 0 E [0, 7r /2] and ¢ E [0, 27r]. 

Integration 

The integration over a spherical domain can be viewed as summing infinitesimal patches 

on the surface of a unit sphere. Using spherical polar coordinates causes these patches to 

be bigger as the equator is approached and vanishes as towards the poles, such an effect 

can be encoded by defining the element of integration as sin OdOd¢. Thus an integral 

over a unit sphere can be explicitly written in terms of the spherical coordinates as, 

r r(w)dW = r 7r r r(O, ¢) sinOdOd¢ JS2 Jo Jo (H-4) 
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where w is a unit vector of polar angle e and azimuthal angle ¢. In a similar manner, 

an integral over the surface of a unit hemisphere can be defined as, 

(H-5) 

In spherical coordinates, the inner product on the surface of the unit sphere is given 

by, 

(H-6) 

While the inner product on the surface of the unit hemisphere can be defined analogically 

as, 

(H-7) 

Note that the complex conjugate is dropped in case of real-valued functions. 

Convolution 

Consider the convolution on the real line; the convolution of two signals iI, 12 : IR -+ IR 

can be defined as, 

(H-8) 

In the context of group representation theory, iI ,h E L2(IR) are square integrable 

functions on the group of real numbers with addition as the group composition operator. 

In general, the convolution of two functions iI (g) and 12 (g) on a general compact group 

9 can be defined as [201 ], 

(H-9) 

where the convolution is not, in general, commutative, i.e. iI * h(g) -=I=- 12 * iI(g). 

Let iI, 12 E L2(S2) be square integrable functions defined over the spherical domain, 

the (left) convolution operator for the function iI can be defined as sweeping the entire 

sphere by taking all rotations of the north pole rJ = (0,0,1), 

(H-10) 

where dRa ,/3 ,'Y = ~ sin adad(3d"{ in terms of the Euler angle coordinates [202]. 
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It worth mentioning that a popular method to evaluate spherical convolution is to 

first project a discrete version of the spherical functions onto the subspace spanned 

by spherical harmonics basis functions (to be discussed later) and then perform the 

convolution in the fourier domain via simple multiplication. Theoretical guarantees for 

such approach has been presented in [202] where the sampling theorem ensures that 

there is no aliasing caused by function discretization. Yet, such guarantee only holds 

for the latitudinal-longitudinal sampling (i. e. gridding) where samples are not evenly 

distributed over the sphere (more samples near the poles). 
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ApPENDIX I: PROJECTION ONTO 

BASIS - MONTE CARLO 

INTEGRATION 

Orthogonal Functions 

A set of functions {B k (X)} of degree k ~ ° are said to be orthogonal over an interval 

[a, b] [203] if and only if V k, k' ~ 0, 

(I-I) 

for real-valued functions , where Ck = Ck' is the constant of the orthogonality relation 

and Okk' denotes the Kronecker delta, defined by, 

{

I k = k' 
Okk' = ° k 1= k' 

(1-2) 

w(x) is a non-negative weighting function. If Ck = c~ = 1 V k , k' ~ 0, this set obeys 

the orthonormality criterion. 

If the set {Bk (x)} satisfies the orthogonality / orthonormality criterion, i. e. linearly 

independent, it is said to form an orthogonal/orthonormal basis which spans the space 

of functions defined over the interval [a , b]. Thus any piecewise continuous function f 

over the interval [a, b] can be represented as a linear combination of an infinite series of 

these basis functions. This means that the basis functions Bk can be considered as small 

pieces of information, which can be scaled and combined to produce either the original 

function f or a band-limited approximation j , depending on the number of basis used 

for function representation (i.e. infinite versus finite). Examples of basis are polynomial 
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basis, e.g. Legendre polynomial, and sinusoidal basis, e.g. Fourier basis. 

In contrast to non-orthonormal basis, using orthonormal ones for function represen-

tation has two-fold benefits [30]: projecting the functions onto the basis becomes easier 

and the integration of the functions product in the basis can be computed efficiently. 

This can be realized in the following. 

In order to approximate a given function f, it is required to compute the expansion 

coefficients ak which encodes how much a basis function Bk is similar to f. This can be 

accomplished by integrating the L2-inner product of the function and the basis over the 

full domain of f. This process is called projection or expansion. 

(1-3) 

The expansion coefficients can be used to scale the corresponding basis in a linear 

combination to reconstruct either the original function or a band-limited version of the 

function where a truncated series of basis is used. 

00 K 

f(x) = L akBk(x) or j(x) = L akBk(x) (1-4) 
k=O k=O 

If two functions f(x) and g(x) are represented into the basis {Bk} by two sets of 

coefficients {ak} and {bd respectively. Efficient integration can be achieved by taking 

advantage of the orthonormality criterion in Equation I-I with w(x) = 1 and Ck = l. 

Hence the integral of the two functions in the basis can be evaluated by simple inner 

product of their respective coefficients. 

l
bf

(X)g(X)dX = lb(~akBk(x)) (~)k'BdX))dX 
L L akbk' Ib Bk(X)Bk,(x)dx 

k k' a 

Lakbk 
k 

(1-5) 

In case of orthonormal! basis functions, considering the Kth order function approx

imation, the first (K + 1) terms are of interest, thus such approximation captures a 

certain amount of the function's total energy defined as the cumulative sum of energies 

lOrthogonal basis functions can be normalized to be orthonormal by scaling each basis by a nor

malization factor given by !I VCi: 
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maintained by individual series terms, (this cumulative energy can also be referred to 

as function approximation accuracy since the more energy the expansion terms capture 

from the function to be approximated, the more accurate the expansion is). Thus the 

approximation accuracy can be defined as l , 

-vK 2 
K _-i-D=k:.==""O_a-"k,--e = J: If(x)l2dx 

(1-6) 

In the following subsections, the orthogonal/orthonomal polynomials are investigated 

which are used to form the (hemi)spherical orthonormal basis whose definition is divided 

into polar and azimuthal parts, where (shifted) associated Legendre polynomials are used 

to define the polar part while sine and cosine functions are used to define the azimuthal 

part. 

It is important to note that the integral in Equation 1-3 is defined in the continuous 

domain. Approaches to evaluate such integral can be categorized in two broad classes 

according to the form of the function at hand. In case of having an analytical form of 

the function f(x) , Monte Carlo based methods can be used which utilize the power of 

randomness to evaluate the expected value of the integral. While, on the other hand , 

if the function values are only known at specific sample points, i.e. scattered data, 

least-squares based methods are available to find the best estimate for the expansion 

coefficients, defining the series Equation 1-4 which passes near to the sampling points in 

the least squares sense. This dissertation is interested in integrals which involve analytic 

forms , as such in this appendix, the Monte Carlo integration process is reviewed. But 

first an example which demonstrate projecting a ID function onto the subspace spanned 

by Legendre polynomials functions is presented. 

lThis can be proved by representing the function f as a linear combination of the basis functions 
Bk and embed this into the integral f: If(xWdx where the orthonormality property can be used to find 
a closed form for the integral. 
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Example: Legendre Polynomials 

Most of the special functions of mathematical physics can be generated/defined by a 

generating function 1 of the form [204], 

g(t, x) = L Bk(X)tk 

k 

(1-7) 

Consider Legendre polynomials Pn(x) which construct a complete, orthogonal set of 

functions over the interval [-1,1], whose generating function is given by [204]' 

00 

g(t, x) = (1 - 2xt + t 2)-1/2 = L Pn(x)tn, It I < 1 (1-8) 
n=O 

where n denotes the polynomial order. These polynomials can be explicitly defined in 

terms of a power series defined as [204], 

Ln/2J 
" k (2n - 2k)! n-2k 

Pn(x) = L (-1) 2nk!(n _ k)!(n _ 2k)!x 
k=O 

(1-9) 

Starting with Po(x) = 1 and P1(x) = x, a three-term recurrence relation can be 

used to efficiently evaluate such polynomials2 instead of direct evaluation of the series 

in Equation 1-9 (Table 10.1 gives the explicit formula of Legendre polynomials up to the 

eighth order) [204]' 

(n + I)Pn+t(x) = (2n + l)xPn(x) - nPn-l(x) n = 1,2,3, ... (1-10) 

Legendre polynomials satisfy the orthogonality condition with weighting function 

w(x) = 1, over the interval x E [- 1,1]' such that, 

1
1 2 

Pn(x)Pnl(x)dx = --8nn, 
-1 2n + 1 

(1-11 ) 

This property can be proved using the Rodrigues' formula of Legendre polynomials 

1 A generating function is a formal power series in one indeterminate, whose coefficients construct a 
set of orthogonal basis functions. 

2Recurrence relations are usually used to evaluate series-defined functions due to their numerical 
robustness and linearity in the total number of basis functions [205]. On the other hand, direct evaluation 
of functions ' series can suffer from catastrophic floating-point cancellat ion . 
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Table 10.1: Legendre Polynomials up to 8-th order 

Po(x) = 1 

P1(x) = x 

P2(x) = ~(3x2 - 1) 

P3(x) = ~(5x3 - 3x) 

P4 (x) = i(35x4 
- 30x2 + 3) 

P5 (x) = i(63x5 
- 70x3 + 15x) 

P6 (x) = 1~(231x6 - 315x4 + 105x2 - 5) 

P7(X) = -h(429x7 - 693x5 + 315x3 - 35x) 

Ps(x) = Ik(6435xS - 12012x6 + 6930x4 
- 1260x2 + 35) 

defined as [204], 

Appendix I 

(1-12) 

According to Equation 1-11, the Legendre polynomials can be normalized to construct 

orthonormal basis for function approximation as follows, 

(1-13) 

In order to comprehend the projection/reconstruction process, let's consider the 

function f(x) = 1.75x3 + 0.6X2 + 0.21x - 0.06 for x E [- 1, 1]. Since it is a third-

degree polynomial, the normalized Legendre polynomials up to third-order are used (see 

Table 10.1). Figure 10.4 shows the projection process where the L2-inner product of the 

function f and each normalized Legendre polynomial Pn(x) is integrated over the domain 

of f to obtain the expansion coefficients an, which were used to scale such polynomials 

to reconstruct the original function (see Figure 10.5). 

Figure 10.6 shows the energy captured by individual expansion coefficient, which is 

the square of the corresponding coefficient divided by the total energy maintained by the 

function to be approximated. The function approximation accuracy eN is also shown to 

reach to 100% at thlrd-degree function approximation. 

292 



Appendix I 
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Figure 10.4: The projection of f( x ) = 1.75x 3+ O.6x2+O.21x - 0.06 in red onto normalized 
Legendre polynomials up to the third order , where the expansion/ projection coefficients 
are evaluated using Monte Carlo integration. 
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Figure 10.5: The reconstruction of f (x) = 1.75x 3 + 0.6X2 + 0.21 x - 0.06 (dashed red) 
using the normalized Legendre polynomials up to the third order . 

Monte Carlo Integration 

Finding an analytic form for the integral in Equation I-3 is a challenge or even worse 

when t he function is not continuous. Consider the ID case where the integral J: f( x)dx 

is needed to be evaluated , one way to go around this is to equally divide the interval [a, b] 

into J intervals with width (b - a)/J and summate the areas covered by the function a t 

each interval to approximate the integral value. This is called the quadrature integration. 
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Otdtt - N Otdtt -N 

Figure 10.6: Left: the amount of energy captured by each individual expansion coeffi-
2 

cient, evaluated as J~l 1;(~)I2dX' Right: function approximation accuracy eN of N-order 

function approximation using normalized Legendre polynomials, where eO = 0.0301 , e1 = 
0.8433 , e2 = 0.8925 and e3 = l.00. 

In general, the error decreases rapidly as J increases, however this is not the case when 

it comes to higher dimension. 

Monte Carlo integration becomes advantageous at higher dimensions where the error 

bound is always function of the number of intervals/samples regardless of dimensionality, 

in addition to its robustness in case of discontinuities. It uses the power of randomness 

to sample the domain of integration according to a probability density function1, where 

the expected value of the Monte Carlo estimate converges to the actual value of the 

integral. 

The axioms of probability imply that the probability density function p(x) should 

have non-negative values such that , 

I: p(x)dx = 1 s. t. p(x) 2: 0 (1-14) 

The expected value of a function of a random variable can be defined as, 

E{f(x)} = In f( x)p(x)dx (1-15 ) 

According to the Law of Large Numbers, the mean of a large number of random 

samples J from the function f(x) converges towards the expected value of the function 

as J --+ 00, i.e. , 
1 J-1 

E{f(x )} ~ J L f( xj) 
j=O 

(1-16) 

1 Probability Density Function (PDF) p(x) is the possibility of a specific outcome of a random variable 
x. 
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Using Equation 1-15 and Equation 1-16, a Monte Carlo estimator for the function 

integral can be defined as follows, 

C f(x)dx = r f(x) p(x)dx = E {f (X) } 
J~ Ji) p(x) p(x) 

1 J-1 f(xj) _ 1 J-1 

;;::: J f; p(Xj) - J f; w(xj)f(xj) (1-17) 

In case of spherical functions , where the integration is over the surface of a unit 

sphere, the integration domain can be uniformly sampled such that, 

r p(w)dW = c r dW = 1 
JS2 JS2 

(1-18) 

Thus p(w) = c = 1/47r, where fS2 dW = 47r. Consider two independent random 

variables (1 and (2 which follow uniform distribution U[O, 1], their cartesian product 

U[O, 1] x UfO, 1] is mapped to the spherical coordinates using the following transforma-

tion , 

() 2 cos-1 
( ~) 

(1-19) 

In order to guarantee a uniform sampling of the unit sphere, stratified sampling [206] 

is used where the domain [0,1] x [0,1] is divided into J x J sample cells where a random 

sample is picked inside each cell. Thus the spherical integration can be evaluated as, 

J2- 1 

at ;;::: ~: L r(()j, ¢j)Bit(()j, ¢j) 
j=O 

(1-20) 

where a% is the expansion coefficient encoding how much a spherical basis function 

Bit is similar to f where both have been evaluated at the randomly picked samples 

In case of hemispherical functions, the integration domain (unit hemisphere) can be 
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uniformly sampled such that, 

1 p(w)dw = c 1 dw = 1 
n n 

(1-21 ) 

Thus p(w) = c = 1/27r, where In dw = 27r. Consider two independent random 

variables (1 and (2 which follow uniform distribution U[O, 1], their cartesian product 

U[O, 1] x U[O, 1] is mapped to the hemispherical coordinates using the following trans-

formation, 

o cos- 1 (~) 

(1-22) 

Using stratified sampling, the hemispherical integral can be evaluated as, 

J2-1 

aZ ~ ~: L f~(Oj, <pj)f2(Oj, <Pj) 
j=O 

(1-23) 

where aZ is the expansion coefficient encoding how much a hemispherical basis func

tion B% is similar to f where both have been evaluated at the randomly picked samples 
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NOMENCLATURE 

Greek Symbols 

(0:,/3,')') 

(r, 0, 1» 

E 

0' o 

The angular coordinates of the surface orientation. Noting that')' is 

only important for anisotropic surfaces, which controls the rotation of 

the local tangential plane about the surface normal. 

Spherical polar coordinates, where r is the radial distance from the 

origin of the coordinate system, 0 is the polar angle from the z-axis 

and 1> is the azimuthal angle from the x-axis in the xy-plane. 

A sparse error vector occurred due to some contiguous irradiance cor-

ruption. 

The Kronecker delta where Jkk , = 1 {==} k = k'. 

Radius of a small sphere. 

Surface refractive index. 

Scalars used in the process of linearly transforming the domain of a 

function/ polynomial. 

radiant flux/power, measured in Watt (W) having the dimension of 

energy per unit time or joules/second. 

Surface of a unit hemisphere. 

A unit hemisphere of directions, located at surface point x and ori-

ented by the surface normal at this point, where primed coordinates 

are used to denote local reference frame. Subscripts i and 0 are used 

to refer to incoming and outgoing hemispheres, respectively. 

Outgoing upper hemisphere. 
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¢' 

p(x) 

Pd 

(J 

0' 

Wi 

w~ = (O~, ¢~) 

NOMENCLATURE 

Distant light source direction defined in the global reference frame. 

The azimuth/tilt angle of the orthogonal projection of a light ray Wi 

arriving to or leaving from the surface point x on the surface tangent 

plane at this point measured from a fixed reference direction on that 

plane e.g. t, where primed coordinates are used denote local reference 

frame. Subscripts i and 0 are used to refer to incoming and outgoing 

angles, respectively. 

The total matrix scatter. 

The surface albedo/texture at surface point x. 

Diffuse reflection or surface albedo. 

Scale parameter. 

The inclination/slant angle of a light ray Wi arriving to or leaving 

from the surface point x, measured from the surface normal ii, where 

primed coordinates are used denote local reference frame. Subscripts i 

and 0 are used to refer to incoming and outgoing angles, respectively. 

Sampling points in the (hemi)spherical domain with ° :s: j < J. 

The integral of the HSH polar part of order n over the incoming or 

outgoing upper hemisphere. 

A unit vector of polar angle 0 and azimuthal angle ¢, i.e. w = cart(l, 0, ¢). 

A light ray (direction) arriving to or leaving from the surface point 

x, where primed coordinates are used to denote local reference frame. 

Subscripts i and 0 are used to refer to incoming and outgoing light 

rays, respectively. 

The half-way vector. 

Incident light ray, measured with respect to the local coordinate frame 

of a surface point x, where O~ E [0, 7r /2] and ¢~ E [0, 27r]. 

Outgoing/reflected light ray, measured with respect to the local coor

dinate frame of a surface point x, where O~ E [0, 7r /2] and ¢~ E [0,27r]. 
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A unit vector defining the point light direction as perceived locally 

from the surface patch centered at x. 

The ideal specular reflection. 

A parameter which influences the interaction between neighboring pix-

els. 

Independent random variables following uniform distribution UfO, 1]. 

Roman Symbols 

(x,y,z) Cartesian coordinates in the three-dimensional Euclidean space lR 3 . 

The average albedo vector. 

The average harmonic projection vector. 

The average shape vector. 

A vector containing the albedo coefficients. 

A vector containing the harmonic projection coefficients. 

A vector containing the shape coefficients. 

j A band-limited function approximation of a piecewise continuous func-

tion f defined over the interval [a, b]. 

a A albedo vector obtained from the albedo model. 

The albedo information of data sample k being stacked into a vector. 

Au,Av The weighting matrices, in lR H' X H' and lR w' x w' respectively, encoding 

the relation of principal components spanning the row and column 

subs paces of the image space with those spanning the row and column 

subspaces of the irradiance harmonics. 

Aw The weighting matrix which relates the principal components of the 

image space to that of the irradiance harmonics in the vector space. 

The matrix representation of the s-th irradiance harmonics of the vis-

ible surface normals. 
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The vector representation of the s-th image irradiance harmonics Bs. 

c Subspace coefficients 

A lower-dimensional representation in IRH'xw' of the s-th irradiance 

harmonics Bs. 

Lower-dimensional representation of the image irradiance harmonics 

vector b s . 

E A matrix representation in IRHxW of the image irradiance of the visible 

surface normals to the viewer such that H denotes height and W 

denotes width. 

e The vector in IRD representation of the image irradiance E where 

DHxW. 

h A harmonic projection vector obtained from the harmonic projection 

model. 

h Harmonic projection irradiance vector 

The harmonic projection irradiance of data sample k being stacked 

into a vector. 

A matrix having its columns as the albedo eigenvectors. 

A matrix having its columns as the harmonic projection eigenvectors. 

A matrix having its columns as the shape eigenvectors. 

s A shape vector obtained from the shape model. 

The shape information of data sample k being stacked into a vector. 

U,S,V The SVD decomposition of a given matrix. 

x Surface point (spatial position) E IR3. 

y A lower-dimensional representation in IRH'xw' of the image irradiance 

E. 

y Lower-dimensional representation of the image vector e. 
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9 

S' 

'J 

ID' 

f 

u,v 

b(x) 

n(x) 

NOMENCLATURE 

A general compact group. 

The set of D-pixels representing the error vector. 

Local spherical integral domain. 

The surface of a unit sphere in IR3. 

The family of the neighboring pixel pairs supporting the Gibbs poten

tials. 

Local integral domain. 

M-dimensional Euclidean space. 

General domain of integration. 

A geometric neighborhood system. 

A warping function for triangular meshes. 

Projection matrices (linear transformations) in IRHxH' and IR wxw', 

respectively, which map the image space IRHxW into a lower-dimensional 

subspace IRH'xw' with H' ::; Hand W' ::; W. 

Projection matrices (linear transformations) in IRHxH' and IR wxw', 

respectively, which map the irradiance harmonics space IRHxW into a 

lower-dimensional subspace IRH'xw' with H' ::; Hand W' ::; w. 

Orthonormal projection matrix in IRDxD' which maps the original 

vector space IRD into a vector subspace IRD' with D' ::; D. 

D' -eigenvectors of B = [bI ... bs 1 corresponding to its largest D'

eigenvalues. 

Surface binomial vector at surface point x, corresponding to x' -axis, 

where primed coordinates are used to denote local reference frame, 

b(x) = n(x) x t(x). 

Surface normal (unit) vector at surface point x, corresponding to 

z' -axis, where primed coordinates are used denote to local reference 

frame, where n(x) = (nx, ny, nz). 
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t(x) 

{p,q} 

S,qs 
apr 

NOMENCLATURE 

A vector from the surface point x and the light source . 

Surface tangent vector at surface point x, corresponding to y'-axis, 

where primed coordinates are used denote to local reference frame. 

Estimated subspace coefficients 

Neighboring pixels in a geometric neighborhood system 1)1. 

Expansion/projection coefficients used to approximate/reconstruct a 

function f. 

The expansion/projection coefficients of the isotropic reflectance ker-

nel represented using the Helmholtz HSH-based basis. It is also called 

the isotropic bidirectional surface reflectance spectrum (IBSRS). 

The isotropic surface reflectance spectrum of Lambertian reflectance 

kernel. 

The expansion/projection coefficients of the reflectance kernel repre-

sented using the Helmholtz HSH-based basis. It is also called the 

bidirectional surface reflectance spectrum (BSRS). 

The spectral components (expansion coefficients) of the mirror-like 

reflectance kernel. 

The constant of the orthogonality relation of orthogonal set of func-

The coefficient of the s-th image irradiance harmonics. 

The estimated s-th coefficient at iteration t. 

Function approximation accuracy (i. e. amount of energy captured by 

the expansion/projection coefficients) using K-degree/order approxi

mation of a function f. 

The BRDF energy content. 

The illumination signal energy content. 
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f 

H',W' 

H,W 

J 

K 

lm 
n 

r 

Xj 

9 

v 

Other Symbols 

E{f(x)} 

(1, g) 

f(x) 

NOMENCLATURE 

An arbitrary one dimensional piecewise continuous function defined 

over the interval [a, b]. 

Height and width of a reduced representation for an image, respec-

tively. 

Height and width of an image, respectively. 

radiant intensity, the radiant power per unit solid angle, measured in 

Wsr~l. 

Number of random samples picked in a ID space. 

Maximum degree/order/number-of-terms used to approximate a func-

tion f as a linear combination of basis functions. 

The illumination spectrum coefficients when projected onto the sub-

space spanned by the real spherical harmonics basis. 

Distance from the origin of a (hemi)sphere and sometimes refer to the 

distance between a surface patch and a light source. 

j-th sample drawn randomly from the function f(x). 

A set of F -triangular faces of a 2-manifold triangular mesh 

2-manifold triangular mesh 

A set of V -vertices with Xv E 1R3 of a 2-manifold triangular mesh 

The expected value of a function of a random variable X. 

The inner product of two square integrable functions, i.e. L2-integrable, 

defined as the integral for their product over their domain. 

A set of orthogonal functions of degree k 2: o. 

The spatial support of the error E. 

The attenuation factors imposed by the surface BRDF on the illumi-

nation order n. 
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~(n(x)) 

~neq(f) 

cart 

sph 

p(x) 

8~(e) 

e~(e) 

P~(x) 

ACCE(N) 

AccdN) 

NOMENCLATURE 

The single-index notation of image irradiance harmonics 13~fo. where 

the index s is given by a sorting/ordering function. 

Image irradiance harmonics at surface point whose normal vector has 

spherical coordinates (0:,;3). 

Wigner's rotation matrices for spherical harmonics. 

Helmholtz HSH-based basis for isotropic reflectance. 

Proposed Helmholtz HSH-based basis. 

The surface radiance. 

The relative frequency of the non-equal labels in pixel pair of T. 

The operator which converts spherical coordinates to their correspond-

ing cartesian ones, such that (x,y,z) = cart(r,e,¢). 

The operator which converts cartesian coordinates to their correspond-

ing spherical ones, such that (r, e, ¢) = sph(x, y, z). 

The azimuthal part of the real (hemi)spherical harmonics. 

Robust estimate of the error norm. 

The polar part of the real spherical harmonics. 

The polar part of the real hemispherical harmonics. 

The normalization factor of the hemispherical harmonics. 

Shifted associated Legendre polynomial of degree m and order /band

index n, where n 2 0 and mE [0, n], defined over the interval x E [0,1]. 

The approximation accuracy of BRDF representation up to reflectance 

order P. 

The approximation accuracy of the Nth order expansion of the image 

irradiance. 

The illumination representation approximation accuracy up to illumi-

nation order N. 
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D((}~; 0") 

d(;j' 

dA 

E{eL} 

F(c; n) 

f~ 

NOMENCLATURE 

The facet slope distribution function. 

Differential incident flux. 

The differential solid angle representing the angular size of a light ray 

w' as well as its direction. Subscripts i and 0 are used to refer to 

incoming and outgoing solid angles, respectively. 

Differential solid angles of incident and outgoing/reflected light rays 

respectively. 

The energy transmitted by a patch/source into an infinitesimal region 

of solid angle dw' per unit time per unit foreshortened area. 

A matrix defining the y-axis rotation. 

Area of an arbitrary small planar surface patch. 

Surface irradiance (incident), measured in W.m- 2 , defined according 

to a differential solid angle dw:. 

Differential reflected radiance, i. e. surface radiance. 

Image irradiance which is proportional to the surface total radiance. 

The average illumination signal energy content. 

Light source exitance which measures the internally generated power 

radiated by a light source per unit area on the radiating surface. 

The average energy content maintained by the n-th illumination order. 

The maximum liklihood energy function. 

Robust estimation objective function. 

Fresnel formula for dielectrics. 

Hemispherical function, f~ : n -+ R 

Spherical function, r : S2 -+ R 

Bidirectional Reflectance Distribution Function. 
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f WON(W' w') r 2' 0 

g(t,x) 

H;[,(O, 1» 

L(x, W') 

L~ (O~, 1>~) 

p(a,{3) 

NOMENCLATURE 

BRDF of homogeneous surface, where the surface has the same BRDF 

everywhere, thus spatial dependency is dropped. 

The BRDF of ideal specular surface. 

The BRDF of a Lambertian surface. 

The Oren-Nayar BRDF model. 

The Torrance-Sparrow (TS) BRDF. 

The Wolff-Oren-Nayar BRDF model. 

The Wolff BRDF model. 

The geometric attenuation factor. 

Generating function used to define most of the special function of 

mathematical physics. 

The real-form of the hemispherical harmonics with nand m denote 

the order (band-index) and degree, respectively. 

Radiance which is the amount of energy traveling at some point x in 

a specific direction w', per unit time, per unit foreshortened area, per 

unit solid angle, measured in Wm- 2sr- 1 . Subscripts i and r are used 

to refer to incident and reflected radiance, respectively. 

The incident radiance to the surface at point x from the incident 

direction wD. 

Total surface radiance at specific local outgoing direction. 

Specular surface radiance. 

The normalization factor of the spherical harmonics. 

The normalization factor of the Helmholtz HSH-based basis for isotropic 

reflectance. 

The normalization factor of the Helmholtz HSH-based basis. 

The surface normal distribution function. 
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p(w) 

p(x) 

P{13~} 

P:;'(x) 

Rz,Ry 

SO(3) 

w(x) 

Acronyms 

BSRS 

NOMENCLATURE 

Probability density function of a variable defined in the spherical do-

main. 

Probability Density Function (PDF) of a random variable x. 

The average power content (i.e. second moment) of the irradiance 

harmonics. 

Legendre polynomial of order n ;::;. ° where x E [-1,1]. 

Normalized Legendre polynomial of degree n used to construct or-

thonormal basis for function representation/approximation. 

Associated Legendre polynomial of degree m and order/band-index n, 

where n ;::;. ° and m E [0, n], defined over the interval x E [-1, 1]. 

The rotation matrices about the z-axis and y-axis, respectively. 

Euler angle representation of 3D rotations with ZYZ-convention, cor-

responding to three consecutive counterclockwise rotations about the 

z-, y- and z- axis respectively. 
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Special orthogonal group whose elements are 3 x 3 real orthogonal ma

trices of unit determinant parameterized by the Euler angles (0:, (3, 'Y) 

with 0: E [0,7r], (3 E [0,27r] and 'Y E [0,27r]. 

Foreshortening factor. 

A two-pixel potential controlling the spatial interaction between neigh
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A non-negative weighting function. 

Weighting function at a random sample Xj. 

The real-form of the spherical harmonics with nand m denote the 

order (band-index) and degree, respectively. 

Bidirectional Surface Reflectance Spectrum 
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PCR Principal Component Regression 

PDE Partial Differential Equation 
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PLS Partial Least Squares 

RBF Radial Basis Function 

RMS Root Mean Square 

SFS Shape From Shading 
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SVD Singular Value Decomposition 

TS Torrance-Sparrow 

USF Database University of South Florida database 

WON Wolff-Oren-Nayar 
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