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ABSTRACT 

INTEGRATED ANALYSIS OF MIRNA/MRNA EXPRESSION AND GENE METHYLATION USING 

SPARSE CANONICAL CORRELATION ANALYSIS 

Dake Yang 

April 1st, 2016 

MicroRNAs (miRNAs) are a large number of small endogenous non-coding RNA molecules (18-25 

nucleotides in length) which regulate expression of genes post-transcriptionally. While a variety of 

algorithms exist for determining the targets of miRNAs, they are generally based on sequence information 

and frequently produce lists consisting of thousands of genes. Canonical correlation analysis (CCA) is a 

multivariate statistical method that can be used to find linear relationships between two data sets, and here 

we apply CCA to find the linear combination of differentially expressed miRNAs and their corresponding 

target genes having maximal negative correlation.  Due to the high dimensionality, sparse CCA is used to 

constrain the problem and obtain a solution. A novel gene set enrichment analysis statistic is proposed based 

on the sparse CCA results for estimating the significance of predefined gene sets. The methods are illustrated 

with both a simulation study and real miRNA-mRNA expression data. 

DNA methylation is a process of adding a methyl group to DNA by a group of enzymes collectively known 

as DNA methyltransferases which is an epigenetic modification critical to normal genome regulation and 

development. In order to understand the role of DNA methylation in gene differentiation, we analyze 

genome-scale DNA methylation patterns and gene expression data using sparse CCA to find linear 

combinations between the two data sets which have maximal negative correlation. In a similar spirit to the 

miRNA-mRNA study, we create a GSEA statistic with weight vectors from the sparse CCA method and 

assess the significance of predefined gene sets. The method is exemplified with real gene expression / DNA 

methylation data regarding the development of the embryonic murine palate. 
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CHAPTER I 

 BACKGROUND 

MicroRNAs (miRNAs) are a large number of small endogenous non-coding RNA molecules (18-25 

nucleotides in length) processed from 70–100 nucleotide hairpin pre-miRNAs. The miRNAs are transcribed 

by RNA polymerase II from independent genes or represent introns of messenger RNA transcripts. The 

miRNAs have been discovered and found to execute key functions in a ribonucleoprotein complex called 

RNA-induced silencing complex (RISC) and guide the RISC to the target mRNA in both plant and animal 

systems (Nelson and Weiss, 2008). The miRNAs bind to their target mRNA 5’UTR and can down regulate 

gene expression through directly inhibiting their translation and/or resulting in the destabilization of their 

target mRNAs at the posttranscriptional level. Currently, thousands of these small regulators have been 

identified in various species. It is believed that each miRNA potentially targets between 100 and 200 mRNAs, 

and miRNAs regulate between 20%- 30% of all human genes (Flynt and Lai, 2008; Nilsen, 2007). So, the 

potential relationships between miRNAs and mRNAs are extremely complex. Therefore, miRNAs play a 

major role in multiple essential biological processes including development, differentiation, apoptosis and 

cellular proliferation. There is also strong evidence that miRNAs are involved in pathological processes and 

contribute to the occurrence and development of some cancers. Specifically, abnormally expressed miRNAs 

have been shown to be crucial contributors and may serve as biomarkers in many human diseases, as found 

by comparing distinct miRNA expression for human cancers with their normal counterparts.  

The development of microarray technology has equipped scientific researchers with the ability to 

simultaneously study, in a single experiment, the expression patterns of thousands of genes within the cells 

of a biological sample. This technology has been successfully extended to the arena of miRNAs to generate 

“microRNA gene expression profiles" of the cell cycle (Corney, et al., 2007), cell differentiation (Zhan, et 

al., 2007), cell death (Kren, et al., 2009), embryonic development, stem cell differentiation (Lakshmipathy, 

et al., 2007), different types of cancers (Gottardo, et al., 2007), the diseased heart (Tatsuguchi, et al., 2007) 
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and normal as well as diseased neural tissue (Ferretti, et al., 2009). The typical first step in determining the 

important miRNAs for regulation of gene expression is identifying differentially expressed miRNAs. That 

is, miRNAs that are differentially expressed between normal and diseased tissue types, or exhibit changes in 

expression over time. Then, these miRNAs are evaluated to determine which biochemical and molecular 

systems they target. Of critical importance is to discover how the miRNAs are targeting the biological 

pathways, i.e. what specific genes/transcripts (within those pathways) are being regulated by the differentially 

expressed miRNAs. Identifying the putative target transcripts based on sequence complementarity between 

the 3’-UTR of the mRNAs and the ‘seed region’ of the miRNA (nucleotides 2–7) is an important step. There 

are several databases which include lists of miRNA targets which are computationally predicted, including 

miRBase (Kozomara and Griffiths-Jones, 2014), miRanda (John, et al., 2004) and TargetScan (Lewis, et al., 

2003). However, the issue is that computational methods predict hundreds to thousands of target mRNAs for 

each miRNA. Furthermore, the information concerning which of the potential miRNA targets are regulated 

during the biological process of interest is not included. To help solve this problem, we can identify the 

predicted target mRNAs which are inversely correlated with miRNA expression values as the potential 

mRNA-miRNA associations. The motivation behind this approach is that the main regulatory mechanism of 

miRNAs is to bind complementary regions within the 3'-untranslated region of mRNA transcripts which 

results in degradation of the mRNA target transcript. So, a more definitive determination of miRNA-mRNA 

interactions involves integrated analysis from both miRNA and mRNA expression values. These potential 

targets can then be further analyzed for enrichment in certain biological functions or pathways. 

Regulation of gene expression by miRNA binding of mRNA transcripts can be considered one mode of 

epigenetic regulation. Another mode of epigenetic regulation is DNA methylation of cytosine nucleotides, 

which is an epigenetic mechanism that occurs throughout the human genome. This covalent modification is 

a genomic DNA mark that commonly happens at a 5-carbon position of cytosine, generally within a 5’-CpG-

3’ dinucleotide. Approximately 1.5% of human genomic DNA contains this dinucleotide (Lister, et al., 2009) 

which usually forms as clusters of un-methylated cytosine guanosine dinucleotides (CpGs) called CpG 

islands. These islands are generally present in gene promoter regions and do not methylate. DNA methylation 

occurs at the 5' carbon of the cytosine ring by adding a methyl group (Bird, 2002) and forming 5-

methylcytosine. These methyl groups modify the function of DNA and effectively suppress transcription.  
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In general, DNA methylation effects biological processes in two ways. First, DNA methylation can steadily 

change the expression of genes in cells from embryonic cell division and differentiation of stem cells into a 

particular organization. The resulting change is usually one-way and permanent, stopping a cell from turning 

back into a stem cell or converted into different cell types. Second, via deleting hydroxyl methyl groups 

rather than completely removing methyl groups by dilution as cells divide or in a faster active process, DNA 

methylation can be passively deleted (Wossidlo, et al., 2011). DNA methylation is usually deleted and re-

established through continuous cell division in the process of development. 

DNA methylation at the 5’ position of cytosine has been found in each examined vertebrate and generally, 

reduces gene expression with a specific effect. It usually occurs in the CpG dinucleotide context in adult 

somatic cells. However, non- CpG methylation is common in embryonic stem cells (Haines, et al., 2001) and 

also plays a role in neural development (Lister, et al., 2013). In mammalian DNA, 60%- 90% of CpGs are 

methylated, and 5-methylcytosine is primarily found in CpGs (Tucker, 2001). These CpGs play a key role in 

maintenance of cellular functions and the regulation of gene expression (Jones and Takai, 2001). In the 

human genome, these CpG sites exist in less than expected frequencies for the majority of the genome but 

are found more frequently among CpG islands. These CpG islands are generally found in or near promoter 

regions of genes (Herman and Baylin, 2003) and act as potential regulators of gene expression. In the 

promoter region, hypermethylation usually occurs in the CpG island area and is related to gene inactivation. 

Recently, a genome-wide high-resolution DNA methylation analysis of a primary human fibroblast cell line 

demonstrated that in genomic DNA, 4.25% of total cytosines are methylated, 67.7% of CpGs are methylated, 

and 99.98% of DNA methylation occurs in CpG dinucleotides (Lister, et al., 2009). In many disease processes, 

such as cancer (Baylin, 2005), gene promoter CpG islands have abnormal hypermethylation, causing 

transcriptional silencing which can be inherited in the daughter cells after cell division. These changes in 

DNA methylation are considered to be an important part of the development of cancer. Hypomethylation 

generally appears with chromosome instability and loss of imprinting; on the other hand hypermethylation is 

linked with the promoter methylation and possible secondary gene silencing (cancer suppressor genes), but 

may be an epigenetic therapy target. DNA methylation is essential during embryonic development, and DNA 

methylation patterns usually keep high fidelity to the daughter cells. Hypermethylation and hypomethylation 

have been associated with a large number of human malignant tumors compared to normal tissue. Generally 
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speaking, for carcinogenic methylation changes there is an increase in DNA methylation associated tumor 

suppressor genes and a decrease related to oncogenes (Gonzalo, 2010). 

Many studies have explored the association of gene expression and DNA methylation, but only a few reported 

the combination of two features using a gene set enrichment analysis to enhance biological pathway analysis. 

In our research, we develop a statistic to combine gene expression and DNA methylation and performed a 

gene set enrichment analysis to detect relevant pathways to the phenotype of interest. The purpose of the 

integration of two features is to increase the power of detecting significant pathways related to the gene 

expression. 

In this dissertation, we develop methods for integrating miRNA and mRNA expression data, as well as 

mRNA expression and DNA methylation data, based on sparse canonical correlation analysis (SCCA). This 

approach has an advantage relative to pairwise comparisons by reducing the dimension of the data to 

potentially increase both statistical power using this data and biological interpretability. Further, we develop 

a novel gene set enrichment analysis (GSEA) approach based on the integrated analysis using SCCA. GSEA 

allows for testing the potential enrichment of pathways and biological terms of genes that are significantly 

associated with the phenotype of interest. The rest of this dissertation is organized as follows. In Chapter 2, 

we develop an approach for integrated analysis of miRNA and mRNA expression data using SCCA and 

motivate the derivation of our novel test statistic for GSEA based on this analysis. In Chapter 3, we evaluate 

our SCCA-GSEA statistic for miRNA / mRNA expression data using simulated data, and compare it with a 

similar statistic based on pairwise correlation analysis of miRNA / mRNA data. In Chapter 4 we evaluate the 

same SCCA-GSEA statistic for detecting GO terms and KEGG pathways using several real data sets of 

miRNA / mRNA expression data in cancer vs. normal tissue and in tissue related to embryonic development 

of the murine neural tube. In Chapter 5, we develop an analog of the SCCA-GSEA statistic for use with 

integrated analysis of mRNA expression and DNA methylation data. In Chapter 6 we evaluate this statistic 

for detecting regions of epigenetic regulation associated with GO terms in data relating to murine embryonic 

palate development. Finally, in Chapter 7 we finish with some concluding remarks and potential areas for 

future research. 
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CHAPTER II  

METHOD OF INTEGRATED ANALYSIS OF MIRNA AND MRNA EXPRESSION 

2.1. Sparse canonical correlation analysis 

In this research we focus on identifying the predicted target genes which have maximum negative correlation 

with miRNAs of interest, e.g. miRNAs that are down- or up-regulated between two sets of biological samples. 

So, the objective is to find an analytic method which establishes the relationships between sets of 

measurements from the same group of subjects and further reduces the dimensionality of the data. An often 

used method is principal component analysis (PCA). PCA is used for reducing the dimensions of the data 

sets, modeling the potential structure in the data and then aggregating the original variables into composite 

latent variables. As a final step, PCA is often used to model the relationships between the latent variables and 

additional outcome variables, an approach called principal components regression (PCR). But, there are two 

main disadvantages of this approach. One is that in our research we want to measure the correlation between 

two or among more sets of variables from populations, but PCA is mainly to maximize the variance within 

only one set of variables by creating composite measures. Another disadvantage is that with large scale data 

sets, these composite measures are based on thousands of variables. Since PCA creates latent variables 

(principal components) which are linear combinations of the entire sets of variables, the resulting components 

may lack interpretability and be difficult to visualize. The first disadvantage can be solved using the canonical 

correlation analysis (CCA) method. CCA is a classical technique due to Hotelling (1936) that identifies 

relationships among sets of variables on the same set of subjects. Specifically, CCA seeks linear combinations 

of the variables in two populations which have maximal correlation. Suppose there are two data  𝑿1 and 

𝑿2with the same number of observations n. The first data matrix 𝑿1is a 𝑛 × 𝑝1 matrix corresponding to 𝑝1  

variables with 𝑛 observations and the second matrix 𝑿2 is a 𝑛 × 𝑝2 matrix corresponding to 𝑝2  variables on 

the same set of observations. We assume that all columns of the matrices are standardized. The objective of 

CCA is to identify linear combinations of variables in 𝑿1 and 𝑿2 which have maximum positive correlation.
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We define that sample covariance for these standard data in matrices 𝑿1 and 𝑿2 is 
1

𝑛−1
𝑿1

𝑇𝑿2. Then, we define 

the linear combinations of 𝑿1 and 𝑿2 as 𝑼 =  𝑿1𝒖 and 𝑽 =  𝑿2𝒗, where vectors 𝒖 ∈  ℝ𝑝1  and 𝒗 ∈  ℝ𝑝2 are 

the weights used to determine the linear combination of measurements in 𝑿1 and 𝑿2 which are maximally 

correlated with each other. The linear combinations 𝑼 =  𝑿1𝒖  and 𝑽 =  𝑿2𝒗  are termed the sample 

canonical variables. So, CCA aims to find 𝒖 and 𝒗 in order to maximize 𝒖𝑇𝑿1
𝑇𝑿2𝒗, subject to 𝒖𝑇𝑿1

𝑇𝑿1𝒖 = 

𝒗𝑇𝑿2
𝑇𝑿2𝒗 = 1.  

The traditional CCA (Hotelling, 1936) approach fits the linear combinations or canonical vectors by including 

all variables from both data sets. In our research, the number of genomic regions / features of interest under 

consideration often reaches tens of thousands, while the number of samples is typically limited (in the tens 

to hundreds). In this case, linear combinations of the whole set of features lack biological interpretability 

because there are too many variables under consideration. Furthermore, insufficient sample size and high 

dimensional data result in inaccurately estimated parameters and many computational problems 

(Parkhomenko, et al., 2009).  

Sparse CCA (SCCA) is an extension to classical CCA which solves the aforementioned problems concerning 

high dimensional data, and aids in biological interpretability by identifying sparse groups of associated 

variables. Instead of including all the variables in both data sets for finding correlation between two sets of 

variables as with traditional CCA, SCCA uses a penalty term to reduce the dimensionality of the problem. 

Thus, the results of SCCA are expected to be more robust compared to CCA in the high dimensional setting. 

The SCCA method introduced by (Witten and Tibshirani, 2009) maximized 𝒖𝑇𝑿1
𝑇𝑿2𝒗 subject to constraints 

on the norms of the vectors 𝒖 and 𝒗. Specifically, the SCCA criterion proposed in (Witten and Tibshirani, 

2009) is 

maximize𝑢,𝑣 𝒖𝑇𝑿1
𝑇𝑿2𝒗 

subject to ‖𝒖‖2  ≤ 1, ‖𝒗‖2  ≤ 1, 𝑃1(𝒖) ≤  𝑐1, 𝑃2(𝒗) ≤  𝑐2  

Here, the penalty functions 𝑃1 and 𝑃2 are either lasso (with 𝑃1(𝒖) =  ‖𝒖‖1) or fused lasso (with 𝑃1(𝒖) =

 ∑ |𝒖𝑗| + 𝑗 ∑ |𝒖𝑗 − 𝒖(𝑗−1)|𝑗  ) penalties. The lasso penalty results in sparse 𝒖  and/or 𝒗  for appropriately 
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chosen 𝑐1  and 𝑐2  (where 1 ≤  𝑐1 ≤  √𝑝1  and 1 ≤  𝑐2 ≤  √𝑝2), while the fused lasso penalty results in 𝑢 

and/or 𝑣 which are both sparse and smooth. Witten and Tibshirani (2009) introduce algorithms for estimating 

unconstrained 𝑢 and 𝑣 and for when 𝑢 and 𝑣 are constrained to be non-negative (or non-positive).    

Witten and Tibshirani (2009) also introduced the concept of sparse multiple CCA (sparse mCCA) which 

generalizes sparse CCA to the setting of multiple data sets 𝑿1 , … , 𝑿𝐾  where K > 2. Here, the goal is to find 

𝒖1, … , 𝒖𝐾  which maximizes ∑ 𝒖𝑖
𝑇𝑿𝑖

𝑇𝑿𝑗𝒖𝑗𝑖<𝑗  subject to  ‖𝒖𝑖‖
2  ≤ 1, 𝑃𝑖(𝒖𝑖) ≤  𝑐𝑖 , where the 𝑃𝑖 s are again 

convex penalty functions.     

The algorithm proposed by Witten and Tibshirani (2009) for calculating the canonical covariate of the SCCA 

is as follows: 

1. Initialize 𝒘𝟐to have L1 norm 1. 

2. Iterate the following two steps until convergence: 

(a) 𝒘𝟏 ← arg 𝑚𝑎𝑥𝒘𝟏
𝒘𝟏

𝑻𝑿𝟏
𝑻𝑿𝟐 𝒘𝟐 subject to ‖𝒘𝟏‖2 ≤ 1, 𝑃1(𝒘𝟏) ≤ 𝑐1. 

(b) 𝒘𝟐 ← arg 𝑚𝑎𝑥𝒘𝟐
𝒘𝟏

𝑻𝑿𝟏
𝑻𝑿𝟐 𝒘𝟐 subject to ‖𝒘𝟐‖2 ≤ 1, 𝑃2(𝒘𝟐) ≤ 𝑐2. 

If P1 is an L1 penalty then the update has the form  

𝒘𝟏 ←
𝑆(𝒘𝟏

𝑻𝑿𝟐𝒘𝟐,𝛥1)

‖𝑆(𝒘𝟏
𝑻𝑿𝟐𝒘𝟐,𝛥1)‖

2, 

where 𝛥1 = 0, ‖𝒘𝟏‖1 ≤ 𝑐1 ; otherwise, 𝛥1 ≥ 0chosen so that  ‖𝒘𝟏‖1 = 𝑐1 . Here S(.) is a soft-threshold 

operator; that is 𝑆(𝒘𝟏, 𝑐) = 𝑠𝑖𝑔𝑛(𝒘𝟏)(⌊𝒘𝟏⌋ − 𝑐)+. 

In our application 𝑿1 consists of the gene expression measurements of the predicted miRNA target transcripts, 

and 𝑿2 consists of the miRNA expression measurements at corresponding time points.  In each case, the 

columns represent the different miRNAs / mRNAs and the rows are the values from different subjects. Since 

our goal is to find combinations of miRNA and mRNA measurements which are maximally negatively 

correlated, the variables in 𝑿1 and 𝑿2 will be standardized to have mean zero and standard deviation one and 

then either 𝑿1 or 𝑿2 will be multiplied by negative one prior to application of SCCA. Application of SCCA 

to these transformed matrices will identify linear combinations of the original 𝑿1  and 𝑿2  which have 
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maximum negative correlation. As stated previously, the goal of SCCA is to find unit vectors 𝒖 and 𝒗 such 

that 𝒖𝑇𝑿1
𝑇𝑿2𝒗 is maximized subject to constraints on 𝒖 and 𝒗. In our problem, since neither matrix of 

miRNA or mRNA expression measurements is ordered the lasso penalty will be used for both weight vectors 

𝒖 and 𝒗. One exception is that, when the number of miRNAs is small (e.g., ten or fewer), we may use no 

penalty for the miRNA data and retain all the miRNAs in the analysis. Further, for interpretation purposes 

and for construction of our GSEA statistic described below the weights are constrained to be non-negative. 

A permutation procedure will be used for both selecting the optimal set of tuning parameters (c1 and c2) and 

determining the significance of the correlation between the canonical variables 𝑿1𝒖 and 𝑿2𝒗. This procedure 

is advantageous for small samples, since it does not require cross-validation or splitting the sample into 

training and test sets. Subsequent canonical variables can be obtained by applying the procedure to the 

components of 𝑿1 and 𝑿2 which are orthogonal to the previously obtained canonical variables. The SCCA 

was performed using the R package PMA provided by  

(https://cran.r-project.org/web/packages/PMA/PMA.pdf).  

  

https://cran.r-project.org/web/packages/PMA/PMA.pdf
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2.2. Gene set enrichment analysis (GSEA)  

Gene Set Analysis (GSA) is a method for estimating the significance of predefined gene sets, rather than 

individual genes. The gene sets could be derived from different sources, for example the sets of genes 

representing various biological pathways of cells (e.g., Gene Ontology , KEGG (Kanehisa, et al., 2004), 

Biocarta (http://www.biocarta.com), Reactome (http://www.reactome.org), MSigDB (Subramanian, et al., 

2005), Pathway Interaction Database (Schaefer, et al., 2009)). The motivation behind GSA is that these genes 

inside the gene sets are closely related and will have similar expression patterns. Hence, there is potential for 

increased statistical power as well as biological interpretability because of the strong relationships between 

genes within the same gene set.  

The GSA method works roughly as follows. Suppose we have N genes in the data. The initial step is to 

calculate a test statistic for each of the genes, e.g. for studies concerning two sets of samples (diseased and 

control samples) the two sample t-statistic ti (or some variant thereof) is appropriate. The next step is to 

identify the predefined gene sets for all N genes which are denoted 𝐺𝑆𝐾 = (𝑔𝑠1, 𝑔𝑠2, … , 𝑔𝑠𝐾). In GSA we 

use a cut-off for the 𝑡𝑖 (e.g, a threshold for the p-value of the test statistics) to obtain a gene list, and then test 

for association between this gene list and each of the pre-defined gene sets 𝑠1, … , 𝑠𝑘 using Fisher’s exact test. 

An example 2x2 table for GSA is given in Table 2.1, where N = a + b + c + d. Results can be ordered based 

on the p-value from Fisher’s exact test or on the fold-enrichment 
𝑎/(𝑎 + 𝑏)

(𝑎 + 𝑐)/(𝑏 + 𝑑)⁄  of the 

statistically significant gene list for genes from the given gene set. Note that statistically significant results 

can also be found for gene sets having an under- representation within the list of statistically significant genes, 

though this is usually of less practical interest.  

  

http://www.biocarta.com/
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T-test 

Gene set 

In Gene set Not in Gene set 

Significant a b 

Not significant c d 

 

Table 2.1: Example 2x2 table for GSA based on Fisher's test. Letters represent counts in each cell 

An extension to GSA, termed gene set enrichment analysis (GSEA), has an advantage over GSA in that the 

user does not have to specify a significance threshold for inclusion of genes within the gene list but instead 

uses the entire range of information in the collective set of test statistics (Subramanian, et al., 2005). We 

begin with a predefined collection of gene sets 𝐺𝑆𝐾 = (𝑔𝑠1, 𝑔𝑠2, … , 𝑔𝑠𝐾) and compute a test statistic (e.g., a 

t-statistic) 𝑡𝑗 for all 𝑁 genes in our data. Let 𝑻𝑘 = (𝑡1, 𝑡2, . . . , 𝑡𝑛𝑘
) be the gene scores for the 𝑛𝑘 genes in gene 

set 𝑔𝑠𝑘. Then, a gene set score (statistic) 𝑔𝑠𝑘(𝑻𝑘) is computed for each gene set 𝑔𝑠𝑘. For Subramanian’s 

original GSEA this was equal to a signed and weighted version of the Kolmogorov-Smirnov statistic, but 

later authors proposed simpler alternative statistics for 𝑔𝑠𝑘(𝑻𝑘)  including the mean of 𝑻𝑘  (Jiang and 

Gentleman, 2007; Tian, et al., 2005). The idea of characterizing the significance of a gene set is that if some 

or all of the gene set scores within 𝑔𝑠𝑘 are higher (or lower) than expected, their sum of scores 𝑻𝑘 will be 

higher (or lower) than expected. The statistical significance of the gene set scores 𝑔𝑠𝑘(𝑻𝑘) can be determined 

by either permuting the gene scores 𝑡𝑗 or by permuting the phenotypes across the samples and re-calculating 

the gene scores. The former addresses the null hypothesis that the scores in a given gene set do not differ 

from the scores outside of the gene set (the so-called competitive test), while the latter addresses the null 

hypothesis that the gene set does not contain genes whose expression levels are associated with the phenotype 

(the self-contained test) (Tian, et al., 2005). In general, the GSEA method has three specific steps: (1) rank 

all genes with some kind of score for each gene, (2) define a specific overall test statistic for each pre-

specified gene set, (3) conduct a permutation testing procedure to assess the significance of the statistics. 
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2.3. GSEA score based on integrating miRNA / mRNA expression data 

A modified version of GSEA which combines both mRNA and miRNA gene expression measurements is 

constructed based on the SCCA. The GSEA is based on a novel statistic constructed from the two sets of 

weight vectors 𝒖 and 𝒗 obtained from SCCA, with constraints that both 𝒖 and 𝒗 are non-negative. We first 

use function CCA.permute in R package PMA provided by  

(https://cran.r-project.org/web/packages/PMA/PMA.pdf) to obtain the best penalties for both mRNA and 

miRNA data sets. This function automatically selects best penalties for sparse CCA using the penalized 

matrix decompostion. The penalties are selected using a permutation procedure for each predetermined 

penalty value. After the permutation process, the function give z-statistic and p-value for each pair of 

canonical variables resulting from a given predetermined penalty value. The best penalties should have both 

a significant p-value (< 0.05) and best z-statistic (larger z-statistic correspond to better tuning parameter 

values). When the data sets are highly correlated, the CCA.permute function may return a very small penalty 

(a smaller penalty means fewer non-negative values in the 𝒖 and 𝒗 weight vectors are obtained). In this case, 

we can use the one standard error rule which is generally used within cross-validation. That is, we select the 

largest penalty value that has a z-statistic within one standard deviation of the optimal penalty z-statistic (that 

is, within the optimal z-statistic minus 1). Then, we apply the new penalty to SCCA to obtain weight vectors 

𝒖 and 𝒗. After we get the first pair of canonical vectors, a second pair of canonical vectors could be obtained 

from the residual matrices of mRNA and miRNA. 𝑿𝟏
𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝑿𝟏 − �̂�𝟏, �̂�𝟏 = 𝑿𝟏𝒖((𝑿𝟏𝒖)′𝑿𝟏𝒖)−𝟏(𝑿𝟏𝒖)′ 

and 𝑿𝟐
𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝑿𝟐 − �̂�𝟐 ,  �̂�𝟐 = 𝑿𝟐𝒗((𝑿𝟐𝒗)′𝑿𝟐𝒗)−𝟏(𝑿𝟐𝒗)′ . Where 𝑿1  indicates mRNA data, 𝑿2 

indicates miRNA data,  𝒖  and 𝒗  are weight vectors obtained from SCCA. Then, we 

apply 𝑿𝟏
𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝑎𝑛𝑑 𝑿𝟐

𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 with the same procedure of the original mRNA and miRNA data sets to 

obtain the second pair of canonical vectors. We repeat the procedure above until no significant tuning 

parameter is found by the CCA.permute function. Specifically, after application of SCCA we obtain multiple 

weight vectors 𝒖1, … , 𝒖𝑘 and 𝒗1, … , 𝒗𝑘where 𝒖𝒊 = (𝑢1, 𝑢2, … , 𝑢𝑝1
) for the weights associated with mRNAs 

and non-negative weight vector 𝒗𝒊 = (𝑣1, 𝑣2, … , 𝑣𝑝2
) for the weights associated with miRNAs, 𝑖 = 1, 2 … 𝑘. 

Then, the 𝒖 and 𝒗 vectors are the summation of multiple weight vectors 𝒖1, … , 𝒖𝑘 and 𝒗1, … , 𝒗𝑘 separately. 

The test statistic is constructed from two parts. The first part consists of the normalized 𝒖 vector 𝒖norm, such 

https://cran.r-project.org/web/packages/PMA/PMA.pdf
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that the mean of 𝒖norm is zero and the variance is one. This component simply indicates the degree to which 

each putative target gene is represented in the weight vector 𝒖. The second part consists of the weight vector 

𝑣 multiplied with the putative target matrix 𝑷𝑝2×𝑝1
, where 𝑃𝑖𝑗  = 1 if miRNA 𝑖 putatively targets gene 𝑗 and 

is zero otherwise. This part is calculated as 𝒗∗ =  𝒗𝑇𝑷, where the dimension of 𝒗∗ is 1 × 𝑝1. This component 

incorporates the weights associated with each miRNA into the per-gene scores, and also accounts for the 

degree of targeting associated with each miRNA / mRNA. The 𝒗∗ scores are also normalized to have mean 

zero and standard deviation one (𝒗norm
∗ ). Under the null hypothesis miRNA and mRNA are not correlated, 

which means 𝒖norm scores are independent to 𝒗norm
∗ . Both 𝒖norm and 𝒗norm

∗  scores have mean 0 and standard 

deviation 1. Although we do not know the distribution of these scores, we could also normalize the 

summation of 𝒖norm and 𝒗norm
∗  scores to have mean 0 and standard deviation one. So we set the final statistic 

associated with each gene by summing the normalized 𝒖 and 𝒗∗ scores and then dividing by √2, which is 

denoted as 𝒁 =
1

√2
(𝒖norm + 𝒗norm

∗ ).   

Then, we calculate an aggregate gene enrichment score for each gene set, where the gene sets are pre-

determined from e.g. the KEGG and GO databases. Specifically, suppose there are K pre-determined gene 

sets with 𝑛1, 𝑛2, … , 𝑛𝐾 genes in each set. In our terminology, the vector 𝒁𝑗consists of the components of 𝒁 

corresponding to the genes in gene set 𝑗. Then, the GSEA statistic 𝑔𝑠1(𝒁1),  𝑔𝑠2(𝒁2), … , 𝑔𝑠𝐾(𝒁𝐾) for each 

gene set is calculated by the sum of the per gene statistic included in each gene set then divided by the square 

root of the number of genes in each gene set:  

𝑔𝑠𝑘(𝒁𝑘) =  
1

√𝑛𝑘

(∑ 𝑧𝑗

𝑛𝑘

𝑗=1

) , 

where 𝑘 = 1,2, … , 𝐾 and 𝒁𝑘 = (𝑧1,  𝑧2, … ,  𝑧𝑛𝑘
) are the gene statistics for gene set 𝑔𝑠𝑘. 

The motivation for using this statistic is that under the null hypothesis of no association between 𝑿1and 𝑿2, 

each component of 𝒁𝐾  is expected to have mean 0 and standard deviation 1. Presuming that the components 

of 𝒁𝐾  are also independent under the null, then the statistic 𝑔𝑠𝑘(𝒁𝑘) is also expected to have mean 0 and 

standard deviation 1. While the distribution of 𝑔𝑠𝑘(𝒁𝑘) is unknown, the gene sets scores defined in this 

manner then indicate how many standard deviations away from the null expectation the gene set statistic is. 
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When √𝑛𝑘  gets large enough, the distribution of 𝑔𝑠𝑘(𝒁𝑘)  approximately converges to asymptotic 

normal 𝑁(0,1). 

Finally, we calculate the permutation p-value of the GSEA statistic for each gene set using both the 

competitive test and the self-contained test. For the competitive test, we first resample the per-gene statistics 

𝒁 = (𝑧1,  𝑧2, … ,  𝑧𝑝1
) without replacement to obtain permuted statistics 𝒁𝑚 for 𝑚 = 1, … , 𝑀 permutations. 

Next, permuted gene set statistics 𝑔𝑠1
𝑚(𝒁1

𝑚),  𝑔𝑠2
𝑚(𝒁2

𝑚), … , 𝑔𝑠𝐾
𝑚(𝒁𝐾

𝑚)  are calculated for each of the original 

gene sets, where 𝒁𝑘
𝑚 = (𝑧1

𝑚,  𝑧2
𝑚, … , 𝑧𝑛𝑘

𝑚 )  are the permuted gene statistics for each gene set  𝑔𝑠𝑘 . The 

permutation p-value 𝑝perm,𝑘 for each gene-set 𝑘 is then calculated as the proportion of the permuted GSEA 

statistics that are larger than the original GSEA statistic:  

𝑝perm,𝑘 =  
1

𝑀
∑ 𝐼(

𝑀

𝑚=1

𝑔𝑠𝑘
𝑚(𝒁𝑘

𝑚) > 𝑔𝑠𝑘(𝒁𝑘)) , 

where 𝐼(⋅) is the indicator function. 

For the self-contained test, we resample the samples of the mRNA data set without replacement to obtain 

permuted mRNA data. Then, we apply SCCA on the permuted mRNA data and original miRNA data to get 

permuted statistics vector 𝒖𝑚  and vector 𝒗𝑚  for 𝑚 = 1, … , 𝑀 permutations. Then, a permuted per gene 

statistic 𝒁𝑚𝑠 is calculated by 𝒖𝑚 and 𝒗𝑚 using the same procedure as we used to calculate the Z score in the 

competitive-test. Next, the self-contained permuted gene set statistics 

𝑔𝑠1
𝑚𝑠(𝒁1

𝑚𝑠),  𝑔𝑠2
𝑚𝑠(𝒁2

𝑚𝑠), … , 𝑔𝑠𝐾
𝑚𝑠(𝒁𝐾

𝑚𝑠)  are calculated for original gene sets, where 𝒁𝑘
𝑚𝑠 =

(𝑧1
𝑚𝑠,  𝑧2

𝑚𝑠, … , 𝑧𝑛𝑘
𝑚𝑠) are the self- contained permuted gene statistics for gene set 𝑔𝑠𝑘. The permutation p-value 

𝑝self-perm,𝑘 for each gene-set 𝑘 is then calculated as the proportion of the permuted GSEA statistics that are 

larger than the original GSEA statistic:  

𝑝self-perm,𝑘 =  
1

𝑀
∑ 𝐼(

𝑀

𝑚=1

𝑔𝑠𝑘
𝑚𝑠(𝒁𝑘

𝑚𝑠) > 𝑔𝑠𝑘(𝒁𝑘)) , 

where 𝐼(⋅) is the indicator function. 
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2.4. Integrated analysis of miRNA and mRNA expression data based on pairwise correlation analysis 

For comparison purposes, we construct a pairwise correlation (PWC) GSEA statistic based on the pairwise 

Pearson product-moment correlation coefficients between the mRNA (matrix 𝑿1) and miRNA (matrix 𝑿2) 

expression measurements. Let 𝐐𝑋2𝑋1
 denotes the sample correlation matrix between 𝑿2 and 𝑿1 (which we 

abbreviate as 𝐐 in what follows).  To construct the per-gene statistics used for the PWC approach, we filter 

𝐐 in the following manner.  First, all the non-negative correlations are set to be zero.  Second, all correlation 

coefficients with adjusted p-values (based on the Benjamini- Hochberg method for controlling the false 

discovery rate) above a predetermined level 𝛼 are set to be zero as well. Then, we denote the filtered 𝐐 matrix 

as 𝐐∗. In essence, 𝐐∗ contains only significant (after controlling for multiple comparisons) pairwise negative 

correlations between miRNAs and mRNAs (all other elements are zero). This matrix is then multiplied 

element-wise with the putative target matrix 𝑷𝑝2×𝑝1
 which we create in SCCA section and the final PWC 

per-gene statistics obtained as 𝐙pwc
T =  𝑝1

−1𝟏T𝐐∗ ∘ 𝑷, where ∘ denotes the Hadamard product and 𝟏T is a 

vector of ones of length 𝑝1. The GSEA statistic is calculated as the mean of the 𝑧pwc values for each gene set, 

as in the SCCA method. The permutation p-value was calculated by the same process as competitive test for 

the SCCA method. The function rcorr in R package Hmisc (Harrell, 2014) was used to calculate the sample 

correlation matrix.  
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CHAPTER III 

SIMULATION OF INTEGRATED ANALYSIS OF MIRNA AND MRNA EXPRESSION 

 

3.1 Simulation Strategy 

The goal of the simulation study was to compare the ability of the SCCA and PWC methods to detect 

statistically significant gene sets (e.g., biological pathways) between two sets of variables from mRNA and 

miRNA population data sets. We use the same approach as (Witten and Tibshirani, 2009) to simulate 

correlated miRNA and mRNA sample data, while the approach to simulating gene sets was adopted from 

(Efron and Tibshirani, 2007) and (Abatangelo, et al., 2009). Here 𝑿1 is a 𝑛 × 𝑝1 matrix consisting of the 

mRNA expression measurements and 𝑿2  is a 𝑛 × 𝑝2  matrix of miRNA expression measurements on the 

same set of subjects. We presume that only the first 𝑟1 variables in 𝑿1 are highly correlated with the first 𝑟2 

variables in 𝑿2, while the rest of the variables in 𝑿1 and 𝑿2 are uncorrelated. The data sets are simulated as 

follows.  First, we generate a latent random vector for both data sets 𝜸 = [𝛾1, 𝛾2, . . . , 𝛾𝑛]𝑇  from 𝑁(0, 𝜎𝛾
2𝑰𝑛), 

where 𝑰𝑛  is the 𝑛 × 𝑛  identify matrix.  Then, we generate vectors 𝒖 ∈  ℝ𝑝1  and 𝒗 ∈  ℝ𝑝2  where 

𝑢1, 𝑢2, … , 𝑢𝑟1
 are independent and identically distributed (iid) 𝑁(𝜇𝑢, 𝜎𝑢

2), 𝑣1, 𝑣2, … , 𝑣𝑟2
are iid 𝑁(𝜇𝑣, 𝜎𝑣

2), and 

the remaining elements in 𝒖 and 𝒗 are set to zero. The vectors 𝒖 and 𝒗 are the weights used to determine the 

linear combination of measurements in 𝑿1 and 𝑿2 which are maximally inversely correlated with each other. 

So, the values in each data set are generated as follows: 

𝑥1𝑖𝑗 =  𝑢𝑗𝛾𝑖 + 𝑒1𝑖𝑗 for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝1 , 

𝑥2𝑖𝑗 =  −𝑣𝑗𝛾𝑖 +  𝑒2𝑖𝑗 for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝2 , 

where 𝑒1𝑖𝑗 and 𝑒2𝑖𝑗 are both 𝑁(0, 𝜎𝑒
2). The negative sign for the product −𝑣𝑗𝛾𝑖 ensures negative correlation 

between the 𝑟1 variables in 𝑿1 and the 𝑟2 variables in 𝑿2, as long as the parameters for the distributions of 𝒖 

and 𝒗 are chosen appropriately. 
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Lastly, we simulated the putative target matrix 𝑷𝑝2×𝑝1
 which determines whether miRNA 𝑖 putatively targets 

gene 𝑗 (𝑃𝑖𝑗  = 1) or not (𝑃𝑖𝑗 = 0).  First, for each of the 𝑖  miRNAs the number of targeted genes is simulated 

by an integer uniform random number 𝑛target,i  between 𝑛target,min  and 𝑛target,max . Second, which genes are 

targeted by each miRNA is simulated. For the 𝑝2 –  𝑟2 unassociated miRNAs these are generated as a random 

sample without replacement of 𝑛target,i genes from the 𝑝1total number of genes. For the 𝑟2 associated miRNAs 

a fraction 𝑝related of the targets are randomly selected from the 𝑟1 associated genes, and the remaining are 

randomly selected from the 𝑝1 –  𝑟1 other genes. 

 

3.2 Simulation study results – single gene set  

Our initial simulation study consisted of a single significant gene set having inversely correlated mRNA and 

corresponding targeting miRNA expression measurements. The total number of genes (mRNAs) was set to 

1000, the total number of miRNAs to 50, and we assumed 50 gene sets each consisting of 20 genes within 

each set.  All other parameters were fixed.  Details of the simulation study parameters are given in Table 3.1. 

P-values for the significance of each gene set based on the SCCA and PWC approaches were calculated based 

on the competitive test permutation procedures outlined in Sections 2.1 and 2.2, respectively, with adjustment 

for multiple comparisons based on the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) for 

controlling the false discovery rate. Power for each method was calculated as the proportion of times out of 

100 replicates that the associated gene set was declared significant (adjusted p-value < 0.05). The type I error 

rate for each method was calculated as the proportion of times out of 100 replicates that the remaining gene 

sets were declared significant. The simulation studies were performed based on 100 replications and the 

averaged results are presented in figures (3.1- 3.6).  
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Table 3.1: Summary of Parameters in Simulation Studies 

Parameters Description  Value 
n  Sample Size  10, 20, 30, 40, 50 

𝑝1 Total number of mRNAs 1000  

𝑝2 Total number of miRNAs 50 

𝑟1 Number of related mRNAs 5, 10 and 20 

𝑟2 Number of related miRNAs 1, 5 and 20 

𝑛𝑔𝑠 Number of gene sets 50  

𝑛𝑔 Number of genes in each gene set 20 

𝜇𝑢, 𝜇𝑣  Mean for weight vector for 
related mRNAs and miRNAs 

𝜇𝑢 =  𝜇𝑣 = 1  

𝜎𝛾  Standard deviation for latent 
vector relating miRNAs and 
mRNAs 

1 

𝜎𝑢  Standard deviation for weight 
vector for related mRNAs 

0.1 

𝜎𝑣  Standard deviation for weight 
vector for related miRNAs 

0.2 

𝜎𝑒  Standard deviation for error of 
expression measurements (both 
miRNA and mRNA) 

0.5, 1, 1.5 

𝑛target,min Minimum number of putative 
targets for each miRNA 

25 

𝑛target,max Maximum number of putative 
targets for each miRNA 

40 

𝑝related From the 𝑟2  associated miRNAs 
the fraction of targets selected 
from the 𝑟1 associated genes 

0.5 

𝛼 Threshold for PWC method 0.05 
 

Figure 3.1- 3.2. show the results for the simulated data sets where the parameters of the simulated data sets 

were number of related mRNAs 𝑃1 = 5 for all nine data sets, and number of related miRNAs 𝑃2 = 1, 5, 20  

respectively for three of the nine data sets, each row of the plot represents the power of data sets with same 

number of related miRNAs (e.g. first row of plots indicated the three data sets with related miRNAs equaled 

to 20). The columns of the figure represent the power of data sets with different error rates for both miRNA 

and mRNA data sets. In the figure, the x-axis represents the number of samples in each data set (i.e. 𝑛= 10, 

20, 25, etc.), and the y-axis indicates the power or the error rate of detecting the gene sets for each method. 

The solid lines with triangles represent the power or error rate under each sample size for the SCCA method 

and the dotted lines with circles indicate the power or error rate under each sample size for the PWC method. 
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Figures 3.1- 3.2 indicate the power and error rate of the data sets with correlated miRNAs equal to 1, 5 and 

20 respectively shown in each row. For figure 3.1, we can see that under the conditions related miRNA 

equaled to 1, 𝜎𝑒 = 0.5 and 𝜎𝑒 = 1, except the sample size of the data equal to 10 for 𝜎𝑒 = 1, the power of 

the pair wise correlation method is larger than the SCCA method. Also, the power of PWC is larger than 

SCCA when related miRNAs are equal to 5, 𝜎𝑒 = 0.5 and the sample size equal to 25. However, under other 

conditions the power of SCCA method is larger than power of PWC. Second, we can also see that the power 

increased with sample size for both methods and that the power increases when the number of targeting and 

correlated miRNAs increases. Opposite, the power decreases with increasing standard deviation of 

expression measurements for both mRNA and miRNA under same sample size. Figure 3.2 is the error rate 

for both SCCA and PWC methods. We can see that the error rate of the PWC method equals zero under every 

condition. And the error rate for the SCCA method is also small. The largest value of the error rate is 0.002 

which is considerably less than 0.05. We can conclude that while the nominal error rate is not exceeded by 

either method, the methods may be lacking power due to being overly conservative.  

Figures 3.3- 3.4 show the results for the simulated data sets where the parameters of the simulated data sets 

were number of related mRNAs 𝑃1 = 10 for all the nine data sets. And other settings were the same as the 

simulated data sets corresponding to Figure 3.1.  

Figures 3.3- 3.4 indicate the data sets with correlated mRNAs equal to 10. For Figure 3.3, we can see that the 

power of PWC is larger than SCCA only when related number of miRNA= 1 and 𝜎𝑒 = 0.5 and 𝜎𝑒 = 1. For 

other conditions power of pair wise correlation method is less than or equal to the SCCA method. Other 

results are similar to Figure 3.1. Figure 3.4 is the error rate for both SCCA and PWC methods. The results 

are similar to Figure 3.2. The largest value of error rate is 0.0012 which is less than 0.05.  

Figures 3.5 and 3.6 show the results for the simulated data sets where the parameters of the simulated data 

sets were number of related mRNAs 𝑃1 = 20 for all the nine data sets. And other settings were the same as 

the simulated data sets corresponding to Figure 3.1.  

Figures 3.5 and 3.6 indicate the data sets with correlated mRNAs equal to 20. For figure 3.5, the result is 

similar to figure 3.3. The figure 3.6 is the error rate for both SCCA and PWC methods. We can see that the 
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error rate of PWC method equals to 0 under every condition. And the error rate for SCCA method is also 

small. The largest value of error rate is 0.0016 which is less than 0.05.  

In comparing the two methods, the PWC method has larger power than the SCCA when the number of 

miRNAs is small. But it changes when the number of associated miRNAs increases. This separation is 

greatest when the subset size is small and the standard deviation is large, with the power of the methods 

rapidly converging to each other as the sample size increases. Also, we can conclude that the power increases 

as the number of related mRNAs and miRNAs increases. The error rates of both methods are small for all 

conditions, possibly indicating a lack of power due to being overly conservative.  
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Figure 3.1. The average power of both pair-wise correlation and SCCA methods over 100 simulated data sets. 

In each data set, there were five correlated mRNAs, where 𝑃1 = 5, 𝑟2 = 995. There are 9 plots in the figure, 

where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related miRNAs equal 

to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of observations in each 

data set (i.e. 𝑛 =5, 15, 25, etc.), and y- axis indicates the power of detecting the correlated genes by two 

methods. The dotted lines indicate the power under each sample size for PWC. The solid line indicated power 

for SCCA method. 
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Figure 3.2. The average error rate of both pair-wise correlation and SCCA methods over 100 simulated data 

sets. In each data set, there were five correlated mRNAs, where 𝑃1 = 5, 𝑟2 = 995. There are 9 plots in the 

figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related miRNAs 

equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of observations in 

each data set (i.e. 𝑛 = 5, 15, 25, etc.), and y-axis indicates the error rate of detecting the correlated genes by 

two methods. The dotted lines indicate the error rate under each sample size for PWC. The solid line indicated 

error rate for SCCA method.  
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Figure 3.3. The average power of both pair-wise correlation and SCCA methods over 100 simulated data sets. 

In each data set, there were ten correlated mRNAs, where 𝑃1 = 10, 𝑟2 = 990. There are 9 plots in the figure, 

where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related miRNAs equal to 

1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of observations in each data 

set, and y-axis indicates the power of detecting the correlated genes by two methods. The dotted lines indicate 

the power under each sample size for PWC. The solid line indicated power for SCCA method. 
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Figure 3.4. The average error rate of both pair-wise correlation and SCCA methods over 100 simulated data 

sets. In each data set, there were ten correlated mRNAs, where 𝑃1 = 10, 𝑟2 = 990. There are 9 plots in the 

figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related miRNAs 

equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of observations in 

each data set and y-axis indicates the error rate of detecting the correlated genes by two methods. The dotted 

lines indicate the error rate under each sample size for PWC. The solid line indicated error rate for SCCA 

method. 
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Figure 3.5. The average power of both pair-wise correlation and SCCA methods over 100 simulated data sets. 

In each data set, there were twenty correlated mRNAs, where 𝑃1 = 20, 𝑟2 = 980. There are 9 plots in the 

figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related miRNAs 

equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of observations in 

each data set, and y-axis indicates the power of detecting the correlated genes by two methods. The dotted 

lines indicate the power under each sample size for PWC. The solid line indicated power for SCCA method.  
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Figure 3.6. The average error rate of both pair-wise correlation and SCCA methods over 100 simulated data 

sets. In each data set, there were twenty correlated mRNAs, where 𝑃1 = 20, 𝑟2 = 980. There are 9 plots in 

the figure, where  𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set and y-axis indicates the error rate of detecting the correlated genes by two 

methods. The dotted lines indicate the error rate under each sample size for PWC. The solid line indicates 

error rate for SCCA method.  
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3.3. Simulation study results – two gene sets  

The goal of the two data sets simulation study is similar to the one gene set simulation. This simulation study 

consisted of two significant gene sets each having inversely correlated mRNA and corresponding targeting 

miRNA expression measurements. In two gene sets simulation, we generated data sets as follows. We first 

separately created two data sets each with the same parameters and a single significant gene set, then bound 

the two data sets by columns. For each data set, the number of mRNAs was set to 500, the total number of 

miRNAs to 25, and we assumed 25 gene sets each consisting of 20 genes within each set. All other parameters 

were fixed.  Details of the simulation study parameters are given in Table 3.2. P-values for the significance 

of each gene set based on the SCCA and PWC approaches were calculated based on the competitive test 

permutation procedures outlined in Sections 2.1 and 2.2, respectively, with adjustment for multiple 

comparisons based on the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) for controlling the 

false discovery rate. Power for each method was calculated as the proportion of times out of 100 replicates 

that the associated gene set was declared significant (adjusted p-value < 0.05). The type I error rate for each 

method was calculated as the proportion of times out of 100 replicates that the remaining gene sets were 

declared significant. The simulation studies were performed based on 100 replications and the averaged 

results are presented in Figures 3.7 to 3.12. 

  



27 

 

Table 3.2: Summary of Parameter in Simulation Studies for each data pair 

Parameters Description Value 
n  Sample Size  10, 20, 30, 40, 50 

𝑝1 Total number of mRNAs 500  

𝑝2 Total number of miRNAs 25 

𝑟1 Number of related mRNAs 5, 10 and 20 

𝑟2 Number of related miRNAs 1, 5 and 20 

𝑛𝑔𝑠 Number of gene sets 25  

𝑛𝑔 Number of genes in each gene set 20 

𝜇𝑢, 𝜇𝑣 Mean for weight vector for 
related mRNAs and miRNAs 

𝜇𝑢 =  𝜇𝑣 = 1  

𝜎𝛾  Standard deviation for latent 
vector relating miRNAs and 
mRNAs 

1 

𝜎𝑢  Standard deviation for weight 
vector for related mRNAs 

0.1 

𝜎𝑣  Standard deviation for weight 
vector for related miRNAs 

0.2 

𝜎𝑒  Standard deviation for error of 
expression measurements (both 
miRNA and mRNA) 

0.5, 1, 1.5 

𝑛target,min Minimum number of putative 
targets for each miRNA 

25 

𝑛target,max Maximum number of putative 
targets for each miRNA 

40 

𝑝related From the 𝑟2  associated miRNAs 
the fraction of targets selected 
from the 𝑟1 associated genes 

0.5 

𝛼 Threshold for PWC method 0.05 
 

Figures 3.7 and 3.8 show the results for two data set simulations, where the parameters for both data sets 

were number of related mRNAs 𝑃1 = 5 for all nine data sets, and number of related miRNAs  𝑃2 =

1, 5, 20 respectively for each corresponding to a single row in the figure. The parameters indicated that there 

were 5 correlated mRNAs included in each data set and 1, 5 and 20 correlated miRNAs respectively in each 

data. In each figure, the x-axis represents the sample size in each data set (i.e. 𝑛= 10, 20, 30, etc.), and the y-

axis indicates the power or the error rate of detecting the gene sets by the two methods. The solid lines with 

triangles represented the power or error rate under each sample size for the SCCA method and the dotted 

lines with circles mean the power or error rate under each sample size for the PWC method. 

Figures 3.7- 3.8 indicate the power and error rate of the data set with correlated mRNAs equal to 5 and 

correlated miRNAs equal to 1, 5 and 20 which respectively correspond to rows of Figure 3.7. We can see 
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that under the conditions when the related miRNAs is one and 𝜎𝑒 = 0.5, the power of pair wise correlation 

is larger than that for SCCA for all the sample sizes. And for 𝜎𝑒 = 1, under the condition that sample sizes 

of the data sets equal to 10 and 20, the average power of the PWC method is less than the SCCA method.  

But when the sample size is larger than 20, the average power of PWC is larger than the average power of 

the SCCA method. However, under other conditions the power of PWC is smaller than SCCA for all the 

sample sizes. We can also see that the power increases as the sample size increases and the number of related 

miRNAs increase for both methods. Opposite, the power decreases with increasing standard deviation of 

expression measurements for both mRNA and miRNA under the same sample size. Figure 3.8 is the error 

rate for both SCCA and PWC methods. We can see that the error rate of the PWC method is zero under every 

condition and the error rate for the SCCA method is also small. The largest value of error rate is 0.018 which 

is less than 0.05. Hence similar conclusions hold as with the single gene set simulation study.   

Figure 3.9 and 3.10 show the results for two data sets simulation, where the parameters for both data sets 

were 𝑃1 = 10 for all nine data sets, and  𝑃2 = 1, 5, 20 respectively. The parameters indicate that there were 

10 correlated mRNAs included in each data set and 1, 5 and 20 correlated miRNAs respectively in each data. 

And other settings were the same as the simulated data sets corresponding to Figure 3.7.    

Figures 3.9- 3.10 indicate the power and error rate of the data set with correlated mRNAs equal to 10 and 

correlated miRNAs equal to 1, 5 and 20 which respectively corresponds to rows of Figure 3.9. The result of 

power of Figure 3.9 is similar to that for Figure 3.7. The Figure 3.10 is the error rate for both SCCA and 

PWC methods. We can see that the result is similar to Figure 3.8, error rate of PWC method equals to 0 under 

every condition. And the largest value of error rates is 0.0015 which are less than 0.05.  

Figure 3.11- 3.12 show the results for two data sets simulation, where the parameters for both data sets 

were 𝑃1 = 20 for all nine data sets, and other settings were the same to the simulated data sets corresponding 

to figure 3.7. Looking at Figures 3.11- 3.12, the result of Figure 3.11 is similar to Figures 3.7 and 3.9. The 

Figure 3.12 is the error rate for both SCCA and PWC methods. The result of Figure 3.12 is similar to Figures 

3.8 and 3.10, error rate of PWC method equals to 0 under every condition. And the largest value of error rates 

is 0.0015 which are less than 0.05.  
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Over all conditions, several general observations can be concluded by looking at the figures. First, both power 

of SCCA and PWC increase with increasing sample size and number of miRNAs and mRNAs, as expected. 

Opposite, the power decreases and as the error rate increases with increasing standard deviation of expression 

measurements for both mRNAs and miRNAs. 

In comparing the two methods, the PWC method has larger power than SCCA only when the number of 

miRNAs is equal to 1, 𝜎𝑒 = 0.5, and 𝜎𝑒 = 1 with a small sample size. But it changes as the number of 

miRNAs associated with the mRNAs in the gene set increases. This separation is greatest when the subset 

size is small and the standard deviation is large, with the power of both methods rapidly converging to each 

other as the subset size increases. The error rates of both methods are small for all conditions and possibly 

indicate that the methods are overly conservative.   
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Figure 3.7. The average power of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each data set, there were five correlated mRNAs, where 𝑃1 = 5, 𝑟2 = 495. There are 9 plots 

in the figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set (i.e. 𝑛 =10, 20, 30, etc.), and y-axis indicates the power of detecting the 

correlated genes by two methods. The dotted lines indicate the power under each sample size for PWC. The 

solid line indicated power for SCCA method.  
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Figure 3.8. The average error rate of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each pair of data sets, there were 5 correlated mRNAs, where 𝑃1 = 5, 𝑟2 = 495. There are 9 

plots in the figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set (i.e. 𝑛 =5, 15, 25, etc.), and y-axis indicates the error rate of detecting the 

correlated genes by two methods. The dotted lines indicate the error rate under each sample size for PWC. 

The solid line indicated error rate for SCCA method. 
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Figure 3.9. The average power of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each data set, there were ten correlated mRNAs, where 𝑃1 = 10, 𝑟2 = 490. There are 9 plots 

in the figure, where  𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set, and y-axis indicates the power of detecting the correlated genes by two methods. 

The dotted lines indicate the power under each sample size for PWC. The solid line indicated power for 

SCCA method.  
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Figure 3.10. The average error rate of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each data set, there were ten correlated mRNAs, where 𝑃1 = 20, 𝑟2 = 480. There are 9 plots 

in the figure, where  𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set, and y-axis indicates the power of detecting the correlated genes by two methods. 

The dotted lines indicate the power under each sample size for PWC. The solid line indicated power for 

SCCA method. 
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Figure 3.11. The average power of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each data set, there were twenty correlated mRNAs, where 𝑃1 = 20, 𝑟2 = 480. There are 9 

plots in the figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set, and y-axis indicates the power of detecting the correlated genes by two methods. 

The dotted lines indicate the power under each sample size for PWC. The solid line indicated power for 

SCCA method. 
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Figure 3.12. The average error rate of both pair wise correlation and SCCA methods over 100 two data sets 

simulation. In each data set, there were twenty correlated mRNAs, where 𝑃1 = 20, 𝑟2 = 480. There are 9 

plots in the figure, where 𝜎𝑒 = 0.5, 𝜎𝑒 = 1 𝑎𝑛𝑑 𝜎𝑒 = 1.5 respectively for each column and number of related 

miRNAs equal to 1, 5 and 20 for each row. In each plot of the figure, x-axis indicates the number of 

observations in each data set, and y-axis indicates the power of detecting the correlated genes by two methods. 

The dotted lines indicate the power under each sample size for PWC. The solid line indicated power for 

SCCA method. 
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CHAPTER IV 

 REAL DATA ANALYSIS 

4.1. Prostate Cancer 

The miRNA and mRNA microarray data sets of human prostate cancer and normal cell we used were 

obtained from the Broad Institute and downloaded from the database:  

(http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi) (Lu, et al., 2005). The original data set 

contained six prostate cancer tumor and six normal human tissues with both miRNA and mRNA 

expression. The miRNA data was filtered by the minimum value of 32 and log2 transformed, so the 

minimum value was 𝑙𝑜𝑔2(32) = 5. The mRNA data were obtained using Affymetrix Genechips. There 

were two chips used in the data, Hu35KsubA and Hu6800. The data totally contained 16,063 probes which 

respectively 8,934 and 7,129 probes in Hu35KsubA and Hu6800 microarrays. Here, we first chose the 

8,934 probes from Hu35KsubA chip to do the initial analysis.  

In the research, we first filtered the data. For original miRNA data, there were 217 miRNAs and 12 samples 

(6 tumor and 6 normal). We filtered out the 9 miRNAs which had a variance 0 across the samples. In mRNA 

expression data, we chose 8,934 mRNAs probes from Hu35KsubA chips. We used the function nsFilter 

within R package genefilter to filter the mRNA data by removing duplicate probes mapping to the same 

Entrez Gene ID (the probe with the highest variance across the samples was retained) and probes with a 

variance below the 50th percentile. After filtering 2,917 probes remained.  

Second, we determined down regulated differentially expressed miRNAs between normal and tumor samples 

using the empirical Bayes method in R package limma (Ritchie, et al., 2015) and (Smyth, 2004). We 

identified 154 significant miRNAs with adjusted p-values (based on Benjamini-Hochberg correction) ≤ 0.05. 

All of the DE miRNAs were down regulated in the tumor tissue. 

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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Third, we determined three lists (see Table 4.1 and Figure 4.1) of target mRNAs which we would use in the 

later gene-set enrichment analysis with DAVID. The first list consisted of putative target genes of the DE 

miRNAs, based on the intersection of targets in the miRBase (Kozomara and Griffiths-Jones, 2014) and 

TargetScan (Lewis, et al., 2003) databases. This resulted in 3,135 putative target genes of the down regulated 

miRNAs. The second list consisted of intersecting this putative target list with the up regulated DE genes. 

We determined up regulated DE genes using the same procedures as for miRNAs. Here we identified 48 up-

regulated and DE (adjusted p-value < 0.05) mRNAs. The intersection of this list with the list of putative 

target genes resulted in 21 total genes. The third list was the overlapped genes between putative target 

mRNAs of miRNAs and significant genes obtained by pair wise correlation method. Here we identified 256 

mRNAs with significant correlation (adjusted p-value < 0.05) between miRNAs and mRNA. The intersection 

of this list with the list of putative target genes resulted in 256 total genes. 

Table 4.1. Description of method of obtaining gene lists 

Method Brief Description 

List 1: Putative target mRNAs for down regulated DE 
miRNAs 

Obtained list of putative targets from down 
regulated DE miRNAs by intersecting putative 
targets from miRBase and TargetScan. Uploaded 
this gene list to DAVID for gene set analysis  

List 2: Intersection of putative targets (List 1) and up 
regulated DE mRNAs 

Obtained gene list by intersecting putative 
target mRNAs (List1) and up regulated DE 
mRNAs of the data set. Uploaded this gene list 
to DAVID for gene set analysis  

List 3: Intersection of putative targets (List 1) and 
significant mRNAs by PWC method 

Obtained gene list by intersecting putative 
target mRNAs (List1) and significant negative 
correlated mRNAs detected by PWC method 
with adjust p-value less than 0.05. Uploaded this 
gene list to DAVID for gene set analysis  
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Down regulated DE miRNAs 

(154 miRNAs) 

List 1: Putative targets (3,135 

genes) 

List 2: Intersection of putative 

targets and up regulated DE 

mRNAs(21 genes ) 

List 3: Intersection of putative 

targets and significant negative 

correlated mRNAs( 256 genes) 

Up regulated DE mRNAs( 48 

genes) 

Figure 4.1. Flow chart for prostate cancer: 
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After getting the three lists, we used the SCCA method based on the 154 significant down-regulated miRNAs 

data and the 2,963 filtered mRNAs expressed data from Hu35KsubA chip. After normalizing each of the 

matrices so that expression measurements for each miRNA / mRNA had mean zero and standard deviation 

one, the miRNA data was multiplied by -1. The CCA.permute function in package PMA (Witten, et al., 2009) 

was used to determine optimal penalty parameters for SCCA with multiple sets of canonical variables. But 

in the result, only the first set of canonical variables had significant permuted p-value. So, the first set of 

canonical variables were used and there were 46 non-zero elements in the 𝑢 vector, which meant that 31 

mRNAs were selected by the SCCA function. And there were 3 non-zero elements in 𝑣  vector, which 

indicated 3 miRNAs were selected. 

The next step was KEGG pathway analysis with the SCCA GSEA method. We first used the 

GeneSetCollection function within the Bioconductor package GSEABase to construct a collection of gene 

sets of pathways from the KEGG database. There were 217 pathways collected from KEGG. FDR adjusted 

p-values from these pathways are given in Table 4.2, where the permuted p-value was calculated by the self-

contained method.  For comparison purposes, the results from DAVID analysis of the KEGG database with 

default parameters based on all 3,315 putative targets, the intersection of these targets with the 48 DE up-

regulated genes, and the intersection of these targets with the genes significantly correlated with the miRNAs 

are given in Tables 4.3-4.5. The former is based on a huge number of genes and identifying germane 

pathways based on this large set is a daunting task. The middle is based on only 21 genes, and returns only a 

single pathway. The latter contains six KEGG pathways. 
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Table 4.2. KEGG pathway analysis by First canonical vector and Self-contained test 

KEGG ID Pathway Statisitc P-value Adj.P-value 

4974 Protein digestion and absorption 2.724 0.005 0.293 

51 Fructose and mannose metabolism 1.908 0.008 0.293 

534 Glycosaminoglycan biosynthesis - heparan sulfate 1.731 0.008 0.293 

520 Amino sugar and nucleotide sugar metabolism 1.387 0.009 0.293 

532 Glycosaminoglycan biosynthesis - chondroitin sulfate 1.168 0.016 0.293 

4672 Intestinal immune network for IgA production 0.330 0.017 0.293 

4973 Carbohydrate digestion and absorption 1.369 0.018 0.293 

100 Steroid biosynthesis 1.085 0.022 0.293 

4970 Salivary secretion 1.433 0.022 0.293 

5332 Graft-versus-host disease 0.230 0.026 0.293 

5221 Acute myeloid leukemia 0.895 0.034 0.293 

4210 Apoptosis 0.844 0.035 0.293 

5020 Prion diseases 0.165 0.036 0.293 

5218 Melanoma 0.821 0.038 0.293 

4664 Fc epsilon RI signaling pathway 0.798 0.043 0.293 

5213 Endometrial cancer 0.722 0.044 0.293 

5214 Glioma 0.757 0.044 0.293 

5223 Non-small cell lung cancer 0.722 0.045 0.293 

5142 Chagas disease (American trypanosomiasis) 0.610 0.048 0.293 

5210 Colorectal cancer 0.691 0.048 0.293 

 

Table 4.2. KEGG pathway found by SCCA and GSEA method in Prostate Cancer data. We list first 20 

pathways with p-value less than 0.05. 
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Table 4.3. KEGG Pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04144:Endocytosis 2.10 p<0.001 0.001 

hsa04722:Neurotrophin signaling pathway 2.33 p<0.001 0.001 

hsa04310:Wnt signaling pathway 2.17 p<0.001 0.001 

hsa04330:Notch signaling pathway 2.87 0.001 0.028 

hsa04910:Insulin signaling pathway 1.93 0.001 0.039 

hsa04120:Ubiquitin mediated proteolysis 1.90 0.001 0.040 

hsa04930:Type II diabetes mellitus 2.46 0.007 0.16 

hsa05200:Pathways in cancer 1.44 0.007 0.14 

hsa05211:Renal cell carcinoma 2.07 0.011 0.19 

hsa04010:MAPK signaling pathway 1.45 0.015 0.23 

hsa04012:ErbB signaling pathway 1.89 0.015 0.21 

hsa00510:N-Glycan biosynthesis 2.31 0.017 0.21 

hsa05210:Colorectal cancer 1.84 0.024 0.27 

hsa04916:Melanogenesis 1.75 0.024 0.25 

hsa04520:Adherens junction 1.88 0.025 0.24 

hsa00730:Thiamine metabolism 4.82 0.041 0.36 

hsa04530:Tight junction 1.51 0.06 0.44 

hsa04140:Regulation of autophagy 2.21 0.06 0.46 

hsa05215:Prostate cancer 1.63 0.07 0.48 

hsa04070:Phosphatidylinositol signaling system 1.70 0.08 0.48 

 

Table 4.3. KEGG pathways found by DAVID online software in Prostate Cancer data. We analyzed predicted 

target gene list of 154 significant down regulated miRNAs by DAVID. The putative target list contained 

3,135 genes.  We list first 20 pathways. 
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Table 4.4. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04150:mTOR signaling pathway 27.94 0.06 0.90 

 

Table 4.4. KEGG pathway found by DAVID online software in Prostate Cancer data. We analyzed 

intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. The intersection list 

contained 21 genes. There was only one pathway found. 

 

 

Table 4.5. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04330:Notch signaling pathway 8.07 0.003 0.27 

hsa04150:mTOR signaling pathway 7.30 0.004 0.21 

hsa04910:Insulin signaling pathway 3.94 0.008 0.24 

hsa05200:Pathways in cancer 2.31 0.025 0.48 

hsa05220:Chronic myeloid leukemia 4.05 0.07 0.80 

hsa05210:Colorectal cancer 3.61 0.09 0.83 

 
 

Table 4.5. KEGG pathway found by DAVID online software in Prostate Cancer data. We analyzed 

intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method of 154 

significant down regulated miRNAs by DAVID. The intersection list contained 256 genes and there were six 

pathways been found. 
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Then, we produced a similar analysis based on the GO database. FDR adjusted p-values for these pathways 

corresponding to the GSEA statistic resulting from the SCCA method are given in Table 4.6. For comparison 

purposes, the results from DAVID analysis of the GO database with default parameters based on all 3,135 

putative targets, the intersection of these targets with the 48DE up-regulated genes and the intersection of 

putative target genes with significant pair-wise correlations are given in Tables 4.7- 4.9.   

Table 4.6. GO pathway analysis by First canonical vector and Self-contained test 

GO ID GO Term Statisitc P-value Adj.P-value 

GO:0016874 ligase activity 4.706 p<0.001 0.327 

GO:0018024 histone-lysine N-methyltransferase activity 6.489 p<0.001 0.372 

GO:0004514 
nicotinate-nucleotide diphosphorylase 
(carboxylating) activity 7.708 0.001 0.372 

GO:0006469 negative regulation of protein kinase activity 4.412 0.001 0.372 

GO:0030278 regulation of ossification 6.947 0.001 0.372 

GO:0007422 peripheral nervous system development 5.632 0.002 0.372 

GO:0008045 motor neuron axon guidance 5.632 0.002 0.372 

GO:0019674 NAD metabolic process 5.416 0.002 0.372 

GO:0035284 brain segmentation 6.995 0.002 0.372 

GO:0071320 cellular response to cAMP 5.672 0.002 0.372 

GO:0071371 cellular response to gonadotropin stimulus 6.947 0.002 0.372 

GO:0009435 NAD biosynthetic process 5.381 0.003 0.372 

GO:0043679 axon terminus 5.302 0.003 0.372 

GO:0048168 regulation of neuronal synaptic plasticity 4.912 0.003 0.372 

GO:0001102 
RNA polymerase II activating transcription factor 
binding 3.982 0.004 0.372 

GO:0006611 protein export from nucleus 4.843 0.004 0.372 

GO:0031105 septin complex 4.558 0.004 0.372 

GO:0033147 
negative regulation of intracellular estrogen 
receptor signaling pathway 5.834 0.004 0.372 

GO:0007611 learning or memory 4.332 0.005 0.372 

GO:0031625 ubiquitin protein ligase binding 2.748 0.005 0.372 

 

Table 4.6. Gene Ontology (GO) terms found by SCCA and GSEA method in Prostate Cancer data. We list 

first 20 GO terms with p-value less than 0.05. 
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Table 4.7. GO analysis by DAVID 

GO Term 
Fold 

Enrichment P-value Benjamini 

GO:0046907~intracellular transport 1.79 p<0.001 1.61E-08 

GO:0044451~nucleoplasm part 1.86 p<0.001 1.61E-08 

GO:0031981~nuclear lumen 1.48 p<0.001 1.09E-08 

GO:0016568~chromatin modification 2.16 p<0.001 9.94E-07 

GO:0005654~nucleoplasm 1.59 p<0.001 2.59E-07 

GO:0008104~protein localization 1.57 p<0.001 2.19E-06 

GO:0030163~protein catabolic process 1.70 p<0.001 1.69E-06 

GO:0044265~cellular macromolecule catabolic process 1.63 p<0.001 2.02E-06 
GO:0051603~proteolysis involved in cellular protein catabolic 
process 1.70 p<0.001 1.72E-06 

GO:0015031~protein transport 1.61 p<0.001 1.99E-06 

GO:0044257~cellular protein catabolic process 1.70 p<0.001 1.74E-06 

GO:0045184~establishment of protein localization 1.60 p<0.001 1.57E-06 
GO:0043632~modification-dependent macromolecule catabolic 
process 1.69 p<0.001 3.89E-06 

GO:0019941~modification-dependent protein catabolic process 1.69 p<0.001 3.89E-06 

GO:0005794~Golgi apparatus 1.56 p<0.001 1.58E-06 

GO:0009057~macromolecule catabolic process 1.58 p<0.001 3.72E-06 

GO:0070013~intracellular organelle lumen 1.36 p<0.001 1.45E-06 

GO:0070727~cellular macromolecule localization 1.82 p<0.001 6.64E-06 

GO:0000123~histone acetyltransferase complex 3.91 p<0.001 2.70E-06 

GO:0034613~cellular protein localization 1.81 p<0.001 9.07E-06 

 

Table 4.7. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data. We analyzed 

predicted target gene list of 154 significant down regulated miRNAs by DAVID. The putative target list 

contained 3,135 genes. We list first 20 GO with p-value less than 0.05. 

  



45 

 

Table 4.8. GO analysis By DAVID  

Term Fold Enrichment P-value Benjamini 

GO:0004672~protein kinase activity 4.51 0.049 0.99 

GO:0006468~protein amino acid phosphorylation 4.27 0.06 1.00 

GO:0005624~membrane fraction 3.72 0.08 0.99 

GO:0043066~negative regulation of apoptosis 6.03 0.08 1.00 

GO:0043069~negative regulation of programmed cell death 5.95 0.08 1.00 

GO:0060548~negative regulation of cell death 5.93 0.08 1.00 

GO:0005626~insoluble fraction 3.58 0.08 0.94 

GO:0016310~phosphorylation 3.56 0.09 1.00 

GO:0005643~nuclear pore 19.03 0.09 0.88 

GO:0032553~ribonucleotide binding 2.23 0.10 0.99 

GO:0032555~purine ribonucleotide binding 2.23 0.10 0.99 

 

Table 4.8. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data. We analyzed 

intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. The intersection list 

contained 21 genes. There were 11 GO pathways found. 
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Table 4.9. GO analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

GO:0008104~protein localization 2.58 p<0.001 0.002 

GO:0015031~protein transport 2.72 p<0.001 0.001 

GO:0045184~establishment of protein localization 2.69 p<0.001 0.001 

GO:0034613~cellular protein localization 3.02 p<0.001 0.036 

GO:0070727~cellular macromolecule localization 3.00 p<0.001 0.032 

GO:0046907~intracellular transport 2.42 p<0.001 0.05 

GO:0006886~intracellular protein transport 2.95 p<0.001 0.07 

GO:0046320~regulation of fatty acid oxidation 12.33 p<0.001 0.12 

GO:0005794~Golgi apparatus 2.06 p<0.001 0.22 

GO:0006605~protein targeting 3.53 0.001 0.18 

GO:0051028~mRNA transport 5.55 0.002 0.22 

GO:0051236~establishment of RNA localization 4.98 0.003 0.33 

GO:0050658~RNA transport 4.98 0.003 0.33 

GO:0050657~nucleic acid transport 4.98 0.003 0.33 

GO:0006403~RNA localization 4.83 0.003 0.34 

GO:0050872~white fat cell differentiation 29.58 0.004 0.39 

GO:0031981~nuclear lumen 1.63 0.005 0.49 

GO:0019217~regulation of fatty acid metabolic process 7.04 0.005 0.45 
GO:0015931~nucleobase, nucleoside, nucleotide and 
nucleic acid transport 4.28 0.006 0.46 

GO:0000398~nuclear mRNA splicing, via spliceosome 3.61 0.007 0.48 

 

Table 4.9. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data. We analysed 

intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method of 154 

significant down regulated miRNAs by DAVID. The intersection list contained 256 genes and we list first 

20 GO pathways with p-value less than 0.05. 
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After we analyzed the 8,934 probes from the Hu35KsubA chip, we did a similar analysis on the 7,129 probes 

in the Hu6800 microarrays. 

After filtering 7,129 probes in Hu6800 microarrays with function nsFilter within R package genefilter, we 

had 2,643 probes left. Then, we used same procedures with Hu35KsubA chip analysis to determined three 

lists of targets mRNAs. The first list consisted of 2,234 putative target genes of the DE miRNAs. The second 

list consisted of 23 intersected genes between putative targets and the 68 up regulated DE genes. The third 

list was based on 233 overlapped genes between putative target mRNAs of miRNAs and mRNAs that had 

significant inverse correlation with the differentially expressed miRNAs.  

After getting the three lists, we applied the SCCA method based on the 154 significant down-regulated 

miRNAs data and all the 2,643 filtered mRNAs from the Hu6800 chip. In the result, only the first set of 

canonical variables had significant p-value, so, with the first set canonical variables there were 49 non-zero 

elements in the 𝒖 vector, which meant that 49 mRNAs were selected by the SCCA function. And there were 

2 non-zero elements in 𝒗 vector, which indicated 2 miRNAs were selected. 

The next step was KEGG pathway analysis with the SCCA- GSEA method. The pathways are given in Table 

4.10. The results from DAVID analysis of the KEGG database are given in Tables 4.11- 4.13.   
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Table 4.10. KEGG pathway analysis by First canonical vector and Self-contained test 

KEGG ID Pathway Statisitc P-value Adj.P-value 

565 Ether lipid metabolism 4.359 0.01 0.581 

592 alpha-Linolenic acid metabolism 2.757 0.01 0.581 

3010 Ribosome 2.774 0.01 0.581 

3008 Ribosome biogenesis in eukaryotes 3.35 0.01 0.709 

4950 Maturity onset diabetes of the young 3.289 0.02 0.763 

3013 RNA transport 2.883 0.02 0.763 

3022 Basal transcription factors 3.121 0.03 0.790 

4150 mTOR signaling pathway 1.613 0.03 0.790 

 

Table 4.10. KEGG pathway found by SCCA and GSEA method in the Prostate Cancer data with Hu68000 

chip. We list first 8 pathways with p-value less than 0.05. 

  



49 

 

Table 4.11. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa05200:Pathways in cancer 1.84 p<0.001 p<0.001 

hsa04510:Focal adhesion 2.07 p<0.001 p<0.001 

hsa04020:Calcium signaling pathway 2.07 p<0.001 p<0.001 

hsa04010:MAPK signaling pathway 1.84 p<0.001 p<0.001 

hsa04722:Neurotrophin signaling pathway 2.11 p<0.001 p<0.001 

hsa04012:ErbB signaling pathway 2.23 p<0.001 p<0.001 

hsa04910:Insulin signaling pathway 1.90 p<0.001 p<0.001 

hsa04350:TGF-beta signaling pathway 2.16 p<0.001 p<0.001 

hsa04810:Regulation of actin cytoskeleton 1.67 p<0.001 p<0.001 

hsa05215:Prostate cancer 2.11 p<0.001 p<0.001 

hsa05211:Renal cell carcinoma 2.28 p<0.001 p<0.001 

hsa04620:Toll-like receptor signaling pathway 2.03 p<0.001 p<0.001 

hsa04720:Long-term potentiation 2.26 p<0.001 p<0.001 

hsa04512:ECM-receptor interaction 2.10 p<0.001 p<0.001 

hsa04070:Phosphatidylinositol signaling system 2.16 p<0.001 p<0.001 

hsa05214:Glioma 2.26 p<0.001 p<0.001 

hsa04660:T cell receptor signaling pathway 1.90 p<0.001 p<0.001 

hsa05216:Thyroid cancer 2.95 p<0.001 p<0.001 

hsa04730:Long-term depression 2.15 p<0.001 p<0.001 

hsa05221:Acute myeloid leukemia 2.26 p<0.001 p<0.001 

 

Table 4.11. KEGG pathway found by DAVID online software in Prostate Cancer data with Hu68000 chip. 

We analyzed predicted target gene list of 154 significant down regulated miRNAs by DAVID. The putative 

target list contained 2,234 genes. We list first 20 pathways. 
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Table 4.12. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

hsa04020:Calcium signaling pathway 27.94 0.06 0.74 

 

Table 4.12. KEGG pathway found by DAVID online software in Prostate Cancer data with Hu68000 chip. 

We analyzed intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. The 

intersection list contained 23 genes. There was only one pathway discovered. 

 

 

Table 4.13. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

hsa04020:Calcium signaling pathway 2.74 0.016 0.84 
hsa05412:Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 3.52 0.05 0.95 

hsa04142:Lysosome 2.74 0.06 0.93 

hsa04722:Neurotrophin signaling pathway 2.59 0.08 0.91 

hsa05010:Alzheimer's disease 2.30 0.08 0.86 

hsa05215:Prostate cancer 3.01 0.08 0.81 

 

Table 4.13. KEGG pathway found by DAVID online software in Prostate Cancer data with Hu68000 chip. 

We analyzed intersection gene list of predicted target gene list and mRNAs found by pair wise correlation 

method of 154 down regulated miRNAs by DAVID. The intersection list contained 233 genes and there were 

six pathways been found. 
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After KEGG pathway analysis, we did a similar analysis on GO terms based on the Hu6800 microarrays. 

FDR adjusted p-values from these pathways are given in Table 4.14. For comparison purposes, the results 

from DAVID analysis of the GO database with default parameters are given in Tables 4.15- 4.17 for all 

putative targets, all putative targets intersected with significantly up-regulated mRNAs, and all putative 

targets that were significantly inversely correlated with the down-regulated miRNAs.  
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Table 4.14. GO pathway analysis by First canonical vector and Self-contained test 

GO ID GO Term Statisitc P-value Adj.P-value 

GO:0002039 p53 binding 5.729 p<0.001 p<0.001 

GO:0006413 translational initiation 4.969 p<0.001 p<0.001 

GO:0019003 GDP binding 6.519 p<0.001 0.156 

GO:0019068 virion assembly 9.036 p<0.001 0.156 

GO:0019082 viral protein processing 9.036 p<0.001 0.156 

GO:0044267 cellular protein metabolic process 4.183 p<0.001 0.156 

GO:0044822 poly(A) RNA binding 4.151 p<0.001 0.175 

GO:0071236 cellular response to antibiotic 8.104 p<0.001 0.175 

GO:0075733 intracellular transport of virus 8.322 p<0.001 0.260 

GO:0006184 GTP catabolic process 4.825 0.001 0.421 

GO:0015031 protein transport 4.764 0.001 0.484 

GO:0031901 early endosome membrane 5.105 0.001 0.484 

GO:0016197 endosomal transport 5.341 0.002 0.484 

GO:0019058 viral life cycle 4.623 0.002 0.484 

GO:0030914 STAGA complex 8.003 0.002 0.484 

GO:0047497 mitochondrion transport along microtubule 7.709 0.002 0.484 

GO:0060675 ureteric bud morphogenesis 9.23 0.002 0.484 

GO:0060760 
positive regulation of response to cytokine 
stimulus 8.131 0.002 0.484 

GO:1900103 
 positive regulation of endoplasmic reticulum 
unfolded protein response 8.551 0.002 0.484 

GO:0000139 Golgi membrane 3.636 0.003 0.484 

 

Table 4.14. Gene Ontology (GO) found by SCCA and GSEA method in Prostate Cancer data with Hu68000 

chip. We list first 20 of 278 significant GO pathways with p-values less than 0.05. 
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Table 4.15. GO analysis by DAVID 

GO Term Fold Enrichment P-Value Benjamini 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 2.14 p<0.001 p<0.001 

GO:0044459~plasma membrane part 1.59 p<0.001 p<0.001 

GO:0010033~response to organic substance 2.08 p<0.001 p<0.001 
GO:0010604~positive regulation of macromolecule 
metabolic process 1.95 p<0.001 p<0.001 
GO:0051173~positive regulation of nitrogen compound 
metabolic process 2.06 p<0.001 p<0.001 
GO:0045935~positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 2.08 p<0.001 p<0.001 
GO:0010557~positive regulation of macromolecule 
biosynthetic process 2.04 p<0.001 p<0.001 

GO:0042127~regulation of cell proliferation 1.93 p<0.001 p<0.001 

GO:0006793~phosphorus metabolic process 1.82 p<0.001 p<0.001 

GO:0006796~phosphate metabolic process 1.82 p<0.001 p<0.001 

GO:0009891~positive regulation of biosynthetic process 1.99 p<0.001 p<0.001 
GO:0031328~positive regulation of cellular biosynthetic 
process 1.99 p<0.001 p<0.001 

GO:0051254~positive regulation of RNA metabolic process 2.19 p<0.001 p<0.001 

GO:0007242~intracellular signaling cascade 1.67 p<0.001 p<0.001 

GO:0045941~positive regulation of transcription 2.08 p<0.001 p<0.001 

GO:0010628~positive regulation of gene expression 2.06 p<0.001 p<0.001 
GO:0045893~positive regulation of transcription, DNA-
dependent 2.18 p<0.001 p<0.001 
GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 2.36 p<0.001 p<0.001 
GO:0007167~enzyme linked receptor protein signaling 
pathway 2.40 p<0.001 p<0.001 

GO:0030528~transcription regulator activity 1.57 p<0.001 p<0.001 

 

Table 4.15. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data with Hu68000 

chip. We analyzed predicted target gene list of 154 significant down regulated miRNAs by DAVID. The 

putative target list contained 2,234 genes. We list first 20 GO pathways with p-value less than 0.05. 

  



54 

 

Table 4.16. GO analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

GO:0030554~adenyl nucleotide binding 3.29 0.005 0.47 

GO:0001883~purine nucleoside binding 3.24 0.006 0.29 

GO:0001882~nucleoside binding 3.22 0.006 0.21 

GO:0000166~nucleotide binding 2.60 0.010 0.26 

GO:0055117~regulation of cardiac muscle contraction 147.04 0.013 1.00 

GO:0017076~purine nucleotide binding 2.71 0.015 0.31 

GO:0005524~ATP binding 3.08 0.016 0.28 

GO:0032559~adenyl ribonucleotide binding 3.04 0.017 0.26 

GO:0006793~phosphorus metabolic process 3.63 0.018 0.99 

GO:0006796~phosphate metabolic process 3.63 0.018 0.99 

GO:0051173~positive regulation of nitrogen compound 
metabolic process 

4.57 0.019 0.95 

GO:0006809~nitric oxide biosynthetic process 98.03 0.019 0.90 

GO:0046209~nitric oxide metabolic process 90.49 0.021 0.87 

GO:0031328~positive regulation of cellular biosynthetic 
process 

4.29 0.023 0.84 

GO:0009891~positive regulation of biosynthetic process 4.23 0.024 0.81 

GO:0045429~positive regulation of nitric oxide biosynthetic 
process 

56.02 0.034 0.87 

GO:0006942~regulation of striated muscle contraction 53.47 0.035 0.85 

GO:0016310~phosphorylation 3.68 0.038 0.84 

GO:0032555~purine ribonucleotide binding 2.47 0.042 0.48 

GO:0032553~ribonucleotide binding 2.47 0.042 0.48 

 

Table 4.16. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data with Hu68000 

chip. We analyzed intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. 

The intersection list contained 23 genes. There were 20 GO pathways were listed here. 
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Table 4.17. GO analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

GO:0010033~response to organic substance 2.78 p<0.001 p<0.001 

GO:0043566~structure-specific DNA binding 6.18 p<0.001 p<0.001 

GO:0005829~cytosol 2.30 p<0.001 p<0.001 
GO:0006357~regulation of transcription from RNA 
polymerase II promoter 2.67 p<0.001 0.001 

GO:0003690~double-stranded DNA binding 7.25 p<0.001 0.001 
GO:0051173~positive regulation of nitrogen compound 
metabolic process 2.72 p<0.001 0.003 
GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 3.38 p<0.001 0.004 

GO:0042493~response to drug 4.35 p<0.001 0.004 
GO:0031328~positive regulation of cellular biosynthetic 
process 2.56 p<0.001 0.004 

GO:0009891~positive regulation of biosynthetic process 2.52 p<0.001 0.004 

GO:0042802~identical protein binding 2.60 p<0.001 0.003 
GO:0045893~positive regulation of transcription, DNA-
dependent 2.89 p<0.001 0.006 

GO:0051254~positive regulation of RNA metabolic process 2.86 p<0.001 0.006 
GO:0010604~positive regulation of macromolecule 
metabolic process 2.27 p<0.001 0.007 
GO:0010557~positive regulation of macromolecule 
biosynthetic process 2.49 p<0.001 0.008 
GO:0045935~positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 2.51 p<0.001 0.009 

GO:0048732~gland development 5.10 p<0.001 0.009 

GO:0045941~positive regulation of transcription 2.55 p<0.001 0.013 

GO:0016564~transcription repressor activity 3.24 p<0.001 0.015 

GO:0010628~positive regulation of gene expression 2.48 p<0.001 0.019 

 

Table 4.17. Gene Ontology (GO) found by DAVID online software in Prostate Cancer data with Hu68000 

chip. We analyzed intersection gene list of predicted target gene list and mRNAs found by pair wise 

correlation method of 154 significant down regulated miRNAs by DAVID. The intersection list contained 

233 genes and we list first 20 GO pathways with p-value less than 0.05. 
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4.2. Colon Cancer  

The miRNA and mRNA microarray data sets of human colon cancer and normal cell we used were obtained 

from the Broad Institute and downloaded from the database:  

(http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi) (Ting, et al., 2005) 

The original data set contained seven colon cancer tumor and four normal human tissues for both miRNA 

and mRNA expression data. The miRNA data was filtered by minimum value 32 and log2 transformed, so, 

the minimum value was 𝑙𝑜𝑔2(32) = 5. The mRNA data was obtained by using Affymetrix GENECHIP 

analysis software. There were 2 chips Hu35KsubA and Hu6800 in the data. The mRNA contained 16,063 

probes which was 8,934 and 7,129 probes respectively in each chip.  

The first part of the analysis was on the 8,934 Hu35KsubA probes. In the paper, we first filtered out the 18 

miRNAs which variances were 0, and there were 199 miRNAs left. Then, we applied the function nsFilter 

within R package genefilter on the mRNA data. After filtering, 2,917 features were left.  

Second, we determined significant down regulated differentially expressed miRNAs between tumor and 

normal samples. We first made a contrast comparing tumor to normal samples, second fitted the linear model 

to estimate the contrast by the lmFit function under the limma package, then used the empirical Bayes method 

to compute moderated t-statistics and the log-odds of differential expression. We identified 26 significant DE 

miRNAs with adjusted p-values of moderated t-statistics less than or equal to 0.05 with a log fold change 

less than zero. The 26 DE miRNAs were down regulated in the tumor tissue. 

Third, we determined three lists (similarly to the prostate cancer data in Section 4.1) of target mRNAs which 

we would use in the gene set enrichment analysis with DAVID. The first list was consisted of target mRNAs 

of differentially expressed miRNAs. At last, we got 1,354 overlapped putative targeting genes in the list. 

 

The second list consisted of the intersection of putative target mRNAs and up regulated differentially 

expressed genes in the tumor tissues. We determined up regulated differentially expressed mRNA using the 

similar procedures when we determined down regulated differentially expressed miRNAs. We identified 200 

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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up regulated differentially expressed mRNAs. Then we discovered 36 overlapped genes between up regulated 

DE mRNAs and the list of putative gene targets.  

The third list was the overlapped genes between putative target mRNAs of miRNAs and the target mRNAs 

which had significant inverse correlation with the down-regulated miRNAs. We got 100 mRNAs with FDR 

adjusted p-value of pair wise correlation between miRNAs and mRNAs less or equal to 0.05. And all of these 

100 genes were contained in the putative target list.  

Third, we applied the SCCA method based on the 26 significantly down regulated miRNAs in tumor tissues. 

and the 2,963 filtered mRNA expression data from the Hu35KsubA chip. We first normalized both miRNA 

and mRNA data sets so that each miRNA/ mRNA expression vector had mean 0 and standard deviation 1, 

then multiplied the miRNA data by -1. In the SCCA procedure, we first used the function CCA.permute in 

package PMA(Witten, et al., 2009) to determine the optimal penalties to be used in the CCA function for 

obtaining multiple sets of canonical variables. In the result, only first set of canonical variables had significant 

permuted p-values, so, penalties of 0.1 would be used for both mRNA and miRNA expression data. Then, 

we applied the CCA function with the mRNA and miRNA expression data. In the result, there were 390 non-

zero elements in u vector, which meant that 390 mRNAs were selected by the SCCA function. And there 

were 3 non-zero elements in the v vector, which indicated that 3 miRNAs were identified. 

The next step was KEGG pathway analysis with the SCCA- GSEA method. We first used the function 

GeneSetCollection within the R package GSEABase to construct a collection of gene sets from pathways in 

the KEGG database. There were 212 gene sets of pathways collected from KEGG. FDR adjusted p-values 

from these pathways are given in Table 4.18. For comparison, DAVID analysis of the KEGG database with 

default parameters based on the three gene lists we created are given in Tables 4.19- 4.21. The former is 

based on a 1,354 genes and identifies a large number of pathways. The middle is based on only 36 genes, 

and returns only two pathways. The latter contains only one KEGG pathway. Then, we produced a similar 

analysis based on GO terms. The result is in the Table 4.22 for the SCCA-GSEA method. The results of the 

three gene lists analyzed by DAVID are given in Tables 4.23- 4.25. 

  



58 

 

Table 4.18. KEGG pathway analysis by First canonical vector and Self-contained test 

ENTREZID Pathway Statisitc P-value Adj.P-value 

512 Mucin type O-Glycan biosynthesis 3.96 p<0.001 p<0.001 

4614 Renin-angiotensin system 0.90 p<0.001 p<0.001 

5214 Glioma 3.02 0.00 0.03 

4310 Wnt signaling pathway 3.12 0.00 0.06 

4720 Long-term potentiation 4.13 0.00 0.09 

4740 Olfactory transduction 4.80 0.00 0.09 

4971 Gastric acid secretion 3.49 0.01 0.10 

4114 Oocyte meiosis 2.59 0.01 0.16 

4912 GnRH signaling pathway 2.53 0.01 0.18 

4012 ErbB signaling pathway 2.45 0.01 0.18 

4916 Melanogenesis 2.37 0.01 0.18 

4950 Maturity onset diabetes of the young 1.83 0.02 0.22 

3040 Spliceosome 2.07 0.02 0.24 

4722 Neurotrophin signaling pathway 2.00 0.02 0.28 

982 Drug metabolism - cytochrome P450 0.99 0.03 0.34 

4020 Calcium signaling pathway 2.02 0.03 0.34 

830 Retinol metabolism 0.87 0.04 0.35 

 

Table 4.18. KEGG pathway found by SCCA and GSEA method in Colon Cancer data. There were 18 

pathways with p-value less than 0.05. 
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Table 4.19. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04144:Endocytosis 2.55 p<0.001 0.015 

hsa04910:Insulin signaling pathway 2.69 p<0.001 0.032 

hsa04330:Notch signaling pathway 4.09 p<0.001 0.06 

hsa04310:Wnt signaling pathway 2.41 p<0.001 0.05 

hsa04360:Axon guidance 2.48 p<0.001 0.07 

hsa04722:Neurotrophin signaling pathway 2.41 p<0.001 0.10 

hsa05210:Colorectal cancer 2.80 p<0.001 0.10 

hsa04930:Type II diabetes mellitus 3.64 p<0.001 0.09 

hsa04012:ErbB signaling pathway 2.70 p<0.001 0.10 

hsa04370:VEGF signaling pathway 2.85 p<0.001 0.10 

hsa05211:Renal cell carcinoma 2.75 p<0.001 0.17 

hsa04120:Ubiquitin mediated proteolysis 2.03 p<0.001 0.25 

hsa04520:Adherens junction 2.50 p<0.001 0.24 

hsa04660:T cell receptor signaling pathway 2.18 p<0.001 0.24 

hsa04666:Fc gamma R-mediated phagocytosis 2.25 p<0.001 0.26 

hsa05213:Endometrial cancer 2.88 p<0.001 0.25 

hsa04150:mTOR signaling pathway 2.88 p<0.001 0.25 

hsa04920:Adipocytokine signaling pathway 2.55 p<0.001 0.25 

hsa04720:Long-term potentiation 2.51 p<0.001 0.25 

hsa04115:p53 signaling pathway 2.51 p<0.001 0.25 

 

Table 4.19. KEGG pathway found by DAVID online software in Colon Cancer data. We analyzed predicted 

target gene list of 28 down regulated miRNAs by DAVID. The putative target list contained 1,354 genes. We 

list first 20 pathways with p-value less than 0.05. 
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Table 4.20. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04120:Ubiquitin mediated proteolysis 22.27 0.00 0.02 

hsa04330:Notch signaling pathway 43.28 0.04 0.07 

 

Table 4.20. KEGG pathway found by DAVID online software in Colon Cancer data. We analyzed 

intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. The intersection list 

contained 36 genes. There was only two pathway discovered. 

 

 

Table 4.21. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04120:Ubiquitin mediated proteolysis 5.57 0.09 0.89 

 

Table 4.21. KEGG pathway found by DAVID online software in Colon Cancer data. We analyzed 

intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method of 26 

down regulated miRNAs by DAVID. The intersection list contained 100 genes and there was only one 

pathway had been found. 
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Table 4.22. GO pathway analysis by First canonical vector and Self-contained test 

GO ID GO Term Statisitc P-Value Adj.P-value 

GO:0014733 regulation of skeletal muscle adaptation 6.79 p<0.001 0.33 

GO:0051924 regulation of calcium ion transport 8.31 p<0.001 0.33 

GO:0090129 positive regulation of synapse maturation 8.31 p<0.001 0.33 

GO:0004683 calmodulin-dependent protein kinase activity 5.88 0.001 0.36 

GO:0007268 synaptic transmission 3.20 0.001 0.36 

GO:0007369 gastrulation 7.16 0.001 0.36 

GO:0010976 
positive regulation of neuron projection 
development 5.57 0.001 0.36 

GO:0033017 sarcoplasmic reticulum membrane 5.72 0.001 0.36 

GO:0048169 
regulation of long-term neuronal synaptic 
plasticity 6.67 0.001 0.36 

GO:0060333 interferon-gamma-mediated signaling pathway 4.44 0.001 0.36 

GO:0060998 regulation of dendritic spine development 8.08 0.001 0.36 

GO:2001235 
positive regulation of apoptotic signaling 
pathway 4.80 0.001 0.36 

GO:0050885 neuromuscular process controlling balance 3.91 0.002 0.38 

GO:0051233 spindle midzone 4.54 0.002 0.41 

GO:0030666 endocytic vesicle membrane 3.93 0.003 0.41 

GO:0046686 response to cadmium ion 4.40 0.003 0.41 

GO:0072383 
plus-end-directed vesicle transport along 
microtubule 5.96 0.003 0.41 

GO:0005815 microtubule organizing center 2.94 0.005 0.41 

GO:0006606 protein import into nucleus 4.00 0.005 0.41 

GO:0008333 endosome to lysosome transport 4.05 0.005 0.41 

 

Table 4.22. Gene Ontology (GO) found by SCCA and GSEA method in Colon Cancer data. We list first 20 

of 181 GO pathways with p-value less than 0.05. 
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Table 4.23. GO analysis by DAVID 

GO Term Fold Enrichment P-value Benjamini 

GO:0031981~nuclear lumen 1.56 p<0.001 p<0.001 

GO:0016564~transcription repressor activity 2.27 p<0.001 0.004 

GO:0044451~nucleoplasm part 1.94 p<0.001 0.001 

GO:0019898~extrinsic to membrane 1.97 p<0.001 0.002 

GO:0016568~chromatin modification 2.28 p<0.001 0.053 

GO:0005654~nucleoplasm 1.66 p<0.001 0.003 

GO:0005768~endosome 2.19 p<0.001 0.003 

GO:0046907~intracellular transport 1.73 p<0.001 0.052 

GO:0006325~chromatin organization 2.00 p<0.001 0.041 

GO:0010629~negative regulation of gene expression 1.84 p<0.001 0.034 

GO:0012505~endomembrane system 1.66 p<0.001 0.005 

GO:0000123~histone acetyltransferase complex 4.47 p<0.001 0.009 

GO:0043005~neuron projection 2.02 p<0.001 0.010 
GO:0019941~modification-dependent protein catabolic 
process 1.71 p<0.001 0.09 
GO:0043632~modification-dependent macromolecule 
catabolic process 1.71 p<0.001 0.09 

GO:0016481~negative regulation of transcription 1.81 p<0.001 0.08 

GO:0045184~establishment of protein localization 1.60 p<0.001 0.07 

GO:0008104~protein localization 1.54 p<0.001 0.07 

GO:0016570~histone modification 2.79 p<0.001 0.06 

GO:0008536~Ran GTPase binding 9.45 p<0.001 0.09 

 

Table 4.23. Gene Ontology (GO) found by DAVID online software in Colon Cancer data. We analyzed 

predicted target gene list of 28 down regulated miRNAs by DAVID. The putative target list contained 1,354 

genes. We list first 20 GO with p-value less than 0.05. 
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Table 4.24. GO analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

GO:0008270~zinc ion binding 2.289 0.010 0.581 

GO:0016570~histone modification 15.841 0.014 0.990 

GO:0016569~covalent chromatin modification 15.338 0.015 0.912 

GO:0030900~forebrain development 12.714 0.021 0.902 

GO:0030901~midbrain development 80.524 0.023 0.858 

GO:0046914~transition metal ion binding 1.899 0.036 0.785 
GO:0045665~negative regulation of neuron 
differentiation 39.042 0.048 0.960 
GO:0019941~modification-dependent protein catabolic 
process 4.489 0.051 0.943 
GO:0043632~modification-dependent macromolecule 
catabolic process 4.489 0.051 0.943 
GO:0017015~regulation of transforming growth factor 
beta receptor signaling pathway 33.035 0.056 0.934 
GO:0051603~proteolysis involved in cellular protein 
catabolic process 4.295 0.056 0.909 

GO:0044257~cellular protein catabolic process 4.273 0.057 0.884 
GO:0000122~negative regulation of transcription from 
RNA polymerase II promoter 7.265 0.058 0.861 

GO:0048663~neuron fate commitment 30.676 0.060 0.845 

GO:0016568~chromatin modification 7.053 0.061 0.824 

GO:0030163~protein catabolic process 4.143 0.062 0.801 

GO:0000123~histone acetyltransferase complex 26.909 0.068 0.999 

GO:0016573~histone acetylation 26.841 0.069 0.813 

GO:0031625~ubiquitin protein ligase binding 26.714 0.070 0.865 

GO:0046907~intracellular transport 3.922 0.070 0.799 

 

Table 4.24. Gene Ontology (GO) found by DAVID online software in Colon Cancer data. We analyzed 

intersection gene list of predicted target gene list and up-regulated mRNAs by DAVID. We list first 20 of 27 

GO pathways with p-value less than 0.05 
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Table 4.25. GO analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

GO:0000123~histone acetyltransferase complex 16.493 0.002 0.252 

GO:0016573~histone acetylation 15.657 0.002 0.806 

GO:0006473~protein amino acid acetylation 14.453 0.003 0.644 

GO:0008134~transcription factor binding 3.330 0.003 0.427 

GO:0043543~protein amino acid acylation 12.526 0.004 0.644 

GO:0016570~histone modification 7.700 0.004 0.541 

GO:0016569~covalent chromatin modification 7.456 0.004 0.503 

GO:0043966~histone H3 acetylation 21.679 0.008 0.668 

GO:0016568~chromatin modification 4.114 0.014 0.814 

GO:0008015~blood circulation 5.051 0.016 0.813 

GO:0003013~circulatory system process 5.051 0.016 0.813 

GO:0003712~transcription cofactor activity 3.294 0.018 0.851 

GO:0004468~lysine N-acetyltransferase activity 13.486 0.020 0.754 

GO:0004402~histone acetyltransferase activity 13.486 0.020 0.754 

GO:0015672~monovalent inorganic cation transport 3.545 0.026 0.903 

GO:0060177~regulation of angiotensin metabolic process 75.156 0.026 0.881 

GO:0002002~regulation of angiotensin levels in blood 75.156 0.026 0.881 

GO:0007507~heart development 4.370 0.026 0.860 

GO:0006605~protein targeting 4.370 0.026 0.860 

GO:0030695~GTPase regulator activity 2.960 0.029 0.781 

 

Table 4.25. Gene Ontology (GO) found by DAVID online software in Colon Cancer data. We analyzed 

intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method of 26 

down regulated miRNAs by DAVID. The intersection list contained 100 genes and we list first 20 of 65 GO 

with p-value less than 0.05. 
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The next step was the analysis of the 7,071 probes in the Hu6800 microarrays, the process being identical to 

the analysis of the Hu35KsubA chip data. First, we identified 26 significant miRNAs with adjusted p-values 

of moderated t-statistics less than or equal to 0.05 and with a log 2 fold change less than 0, which meant all 

the DE miRNAs were down regulated in colon tumor tissue relative to normal tissue.  

Then, we determined three gene lists (as with the Hu35KsubA chip) of target mRNAs which we would use 

in the later analysis with DAVID. The first list contained 974 genes, the second list consisted of 36 genes 

and there were 53 genes in the third list. 

After getting the three lists, we used the SCCA method based on the data from the 26 significantly down 

regulated miRNAs and all the 2,643 filtered mRNA expression data from the Hu6800 chip. We first ran the 

CCA function with gene expressed data. We obtained the u and v vectors from the CCA function by the 

SCCA method, where the u vector with length 2643 was the canonical vector for mRNA expressed data and 

v with length 23 was the canonical vector of miRNA data. In the result, there were 950 non-zero elements in 

u vector, which meant that 950 mRNAs were selected by the SCCA function. And 13 non-zero elements in 

v vector, which indicated 13 miRNAs were selected. 

The next step was KEGG pathway analysis with the gene set enrichment analysis method.  The last step of 

GSEA was to calculate the permutation p-value of overall statistic for each pathway. The result is in Table 

4.26. The results of the DAVID analysis of the three gene lists are in Tables 4.27- 4.29. Then, we conducted 

a similar analysis based on GO terms. The result is in Table 4.30 for the SCCA-GSEA method. The results 

of the DAVID analysis of the three gene lists are in Tables 4.31- 4.33. 
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Table 4.26. KEGGpathway analysis by First canonical vector and Self-contained test 

ENTREZID Pathway Statisitc P-value Adj.P-value 

30 Pentose phosphate pathway 2.327 p< 0.001 p< 0.001 

270 Cysteine and methionine metabolism 2.274 p< 0.002 p< 0.002 

450 Selenocompound metabolism 0.000 p< 0.003 p< 0.003 

512 Mucin type O-Glycan biosynthesis 0.000 p< 0.004 p< 0.004 

760 Nicotinate and nicotinamide metabolism 1.400 p< 0.005 p< 0.005 

3018 RNA degradation 1.697 p< 0.006 p< 0.006 

3040 Spliceosome 4.017 p< 0.007 p< 0.007 

3050 Proteasome 1.965 p< 0.008 p< 0.008 

3450 Non-homologous end-joining 0.631 p< 0.009 p< 0.009 

970 Aminoacyl-tRNA biosynthesis 2.637 0.001 0.020 

3010 Ribosome 2.738 0.001 0.020 

310 Lysine degradation 1.168 0.003 0.050 

1040 Biosynthesis of unsaturated fatty acids 1.501 0.003 0.050 

480 Glutathione metabolism 1.531 0.009 0.139 

740 Riboflavin metabolism 1.108 0.011 0.158 

250 Alanine, aspartate and glutamate metabolism 1.987 0.015 0.203 

4512 ECM-receptor interaction 1.437 0.016 0.203 

10 Glycolysis / Gluconeogenesis 1.228 0.025 0.300 

1100 Metabolic pathways 0.962 0.034 0.387 

3013 RNA transport 2.317 0.039 0.413 

 

Table 4.26. KEGG pathway found by SCCA and GSEA method in Colon Cancer data with Hu6800 chip. 

There were first 20 of 24 KEGG pathways with p-value less than 0.05. 
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Table 4.27. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04010:MAPK signaling pathway 2.16 p<0.001 p<0.001 

hsa05014:Amyotrophic lateral sclerosis (ALS) 4.15 p<0.001 p<0.001 

hsa04510:Focal adhesion 2.32 p<0.001 p<0.001 

hsa04012:ErbB signaling pathway 3.16 p<0.001 p<0.001 

hsa04720:Long-term potentiation 3.44 p<0.001 p<0.001 

hsa05410:Hypertrophic cardiomyopathy (HCM) 3.07 p<0.001 p<0.001 

hsa05200:Pathways in cancer 1.89 p<0.001 p<0.001 

hsa04350:TGF-beta signaling pathway 2.84 p<0.001 0.003 

hsa05216:Thyroid cancer 4.74 p<0.001 0.003 
hsa05412:Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 

2.89 p<0.001 0.005 

hsa04360:Axon guidance 2.34 p<0.001 0.005 

hsa04930:Type II diabetes mellitus 3.51 p<0.001 0.006 

hsa04310:Wnt signaling pathway 2.18 p<0.001 0.006 

hsa04910:Insulin signaling pathway 2.24 p<0.001 0.007 

hsa05414:Dilated cardiomyopathy 2.54 p<0.001 0.009 

hsa04114:Oocyte meiosis 2.37 p<0.001 0.008 

hsa04512:ECM-receptor interaction 2.62 p<0.001 0.009 

hsa05210:Colorectal cancer 2.62 p<0.001 0.009 

hsa05213:Endometrial cancer 3.17 p<0.001 0.009 

hsa04722:Neurotrophin signaling pathway 2.22 p<0.001 0.012 

 

Table 4.27. KEGG pathway found by DAVID online software in Colon Cancer data with Hu6800 chip. We 

analyzed predicted target gene list of 28 down regulated miRNAs by DAVID. The putative target list 

contained 974 genes. We list the first 20 of 95 KEGG pathways with p-value less than 0.05. 
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Table 4.28. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04510:Focal adhesion 9.90 p<0.001 p<0.001 

hsa04512:ECM-receptor interaction 15.79 p<0.001 p<0.001 

hsa04810:Regulation of actin cytoskeleton 4.11 0.06 0.61 

 

Table 4.28. KEGG pathway found by DAVID online software in Colon Cancer data with Hu6800 chip. We 

analyzed list 2 by DAVID. The gene list contained 36 genes, and three KEGG pathway were found. 

 

 

Table 4.29. KEGG pathway analysis by DAVID 

Term Fold Enrichment P-value Benjamini 

hsa04510:Focal adhesion 7.85 p< 0.001 p< 0.001 

hsa04512:ECM-receptor interaction 12.52 p< 0.001 0.003 

hsa04810:Regulation of actin cytoskeleton 4.08 0.029 0.49 

hsa05211:Renal cell carcinoma 7.51 0.06 0.64 

 

Table 4.29. KEGG pathway found by DAVID online software in Colon Cancer data with Hu6800 chip. We 

analyzed intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method 

of 28 down regulated miRNAs by DAVID. The intersection list contained 53 genes and there was only one 

pathway had been found. 
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Table 4.30. GO pathway analysis by First canonical vector and Self-contained test 

GO ID GO Term Statisitc P-Value Adj.Pvalue 

GO:0000398 mRNA splicing, via spliceosome 4.154 p< 0.001 p< 0.001 

GO:0002199 zona pellucida receptor complex 4.119 p< 0.001 p< 0.001 

GO:0003697 single-stranded DNA binding 4.158 p< 0.001 p< 0.001 

GO:0003723 RNA binding 3.774 p< 0.001 p< 0.001 

GO:0005515 protein bindin 1.919 p< 0.001 p< 0.001 

GO:0005829 cytosol 2.690 p< 0.001 p< 0.001 

GO:0005832 chaperonin-containing T-complex 4.404 p< 0.001 p< 0.001 

GO:0006457 protein folding 3.148 p< 0.001 p< 0.001 

GO:0007339 binding of sperm to zona pellucida 3.884 p< 0.001 p< 0.001 

GO:0007599 hemostasis 4.536 p< 0.001 p< 0.001 

GO:0008380 RNA splicing 4.492 p< 0.001 0.029 

GO:0009566 fertilization 4.121 p< 0.001 0.029 

GO:0010467 gene expression 4.211 p< 0.001 0.029 

GO:0010899 
regulation of phosphatidylcholine catabolic 
process 4.385 p< 0.001 0.029 

GO:0016032 viral process 3.575 p< 0.001 0.029 

GO:0016070 RNA metabolic process 3.625 p< 0.001 0.029 

GO:0016192 vesicle-mediated transport 3.804 p< 0.001 0.049 

GO:0030529 ribonucleoprotein complex 3.537 p< 0.001 0.049 

GO:0044822 poly(A) RNA binding 6.577 p< 0.001 0.049 

GO:0051082 unfolded protein binding 4.811 p< 0.001 0.070 

 

Table 4.30. Gene Ontology (GO) found by SCCA and GSEA method in Colon Cancer data with Hu6800 

chip. We list first 20 of 292 GO pathways with p-value less than 0.05. 
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Table 4.31. GO analysis by DAVID 

GO Term Fold Enrichment P-Value Benjamini 

GO:0044459~plasma membrane part 1.64 p< 0.001 p< 0.001 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.17 p< 0.001 p< 0.001 

GO:0030528~transcription regulator activity 1.68 p< 0.001 p< 0.001 

GO:0019226~transmission of nerve impulse 2.61 p< 0.001 p< 0.001 

GO:0006796~phosphate metabolic process 1.86 p< 0.001 p< 0.001 

GO:0006793~phosphorus metabolic process 1.86 p< 0.001 p< 0.001 

GO:0005829~cytosol 1.74 p< 0.001 p< 0.001 

GO:0007517~muscle organ development 3.15 p< 0.001 p< 0.001 

GO:0007267~cell-cell signaling 2.12 p< 0.001 p< 0.001 

GO:0007507~heart development 3.09 p< 0.001 p< 0.001 

GO:0007167~enzyme linked receptor protein signaling 
pathway 

2.57 p< 0.001 p< 0.001 

GO:0046907~intracellular transport 2.05 p< 0.001 p< 0.001 

GO:0045202~synapse 2.60 p< 0.001 p< 0.001 

GO:0007268~synaptic transmission 2.65 p< 0.001 p< 0.001 

GO:0044057~regulation of system process 2.61 p< 0.001 p< 0.001 

GO:0051173~positive regulation of nitrogen compound 
metabolic process 

2.03 p< 0.001 p< 0.001 

GO:0005516~calmodulin binding 3.63 p< 0.001 p< 0.001 

GO:0048878~chemical homeostasis 2.17 p< 0.001 p< 0.001 

GO:0060537~muscle tissue development 3.73 p< 0.001 p< 0.001 

GO:0005667~transcription factor complex 3.08 p< 0.001 p< 0.001 

 

Table 4.31. Gene Ontology (GO) found by DAVID online software in Colon Cancer data with Hu6800. We 

analyzed predicted target gene list of 26 down regulated miRNAs by DAVID. The putative target list 

contained 974 genes. We list first 20 GO terms with p-value less than 0.05. 
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Table 4.32. GO analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

GO:0044420~extracellular matrix part 21.14 p< 0.001 0.001 

GO:0005578~proteinaceous extracellular matrix 9.02 p< 0.001 0.005 

GO:0031012~extracellular matrix 8.37 p< 0.001 0.005 

GO:0005201~extracellular matrix structural constituent 18.30 0.001 0.14 

GO:0007155~cell adhesion 4.55 0.001 0.49 

GO:0022610~biological adhesion 4.54 0.001 0.29 

GO:0030198~extracellular matrix organization 15.30 0.002 0.31 

GO:0030199~collagen fibril organization 41.16 0.002 0.26 

GO:0005581~collagen 35.34 0.003 0.09 

GO:0044421~extracellular region part 3.44 0.006 0.14 

GO:0043062~extracellular structure organization 9.76 0.007 0.54 

GO:0032964~collagen biosynthetic process 159.15 0.012 0.67 

GO:0007015~actin filament organization 16.58 0.013 0.64 

GO:0046164~alcohol catabolic process 14.74 0.017 0.68 

GO:0030036~actin cytoskeleton organization 7.04 0.017 0.65 

GO:0005198~structural molecule activity 3.72 0.018 0.67 

GO:0007160~cell-matrix adhesion 13.41 0.020 0.66 

GO:0030029~actin filament-based process 6.60 0.021 0.64 

GO:0007010~cytoskeleton organization 4.56 0.021 0.61 

GO:0030674~protein binding, bridging 12.56 0.022 0.60 

 

Table 4.32. Gene Ontology (GO) found by DAVID online software in Colon Cancer data with Hu6800 chip. 

We analyzed intersection gene list of predicted target gene list and up-regulated mRNAs of 26 down 

regulated miRNAs by DAVID. The intersection list contained 36 genes. We list 20 GO with p-value less 

than 0.05. 
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Table 4.33. GO analysis by DAVID 

Term Fold Enrichment P-Value Benjamini 

GO:0044420~extracellular matrix part 15.24 p< 0.001 0.006 

GO:0005581~collagen 33.97 p< 0.001 0.015 

GO:0005578~proteinaceous extracellular matrix 6.50 0.001 0.029 

GO:0031012~extracellular matrix 6.03 0.001 0.032 

GO:0007155~cell adhesion 3.55 0.003 0.87 

GO:0022610~biological adhesion 3.54 0.003 0.65 

GO:0005201~extracellular matrix structural constituent 13.42 0.003 0.35 

GO:0007264~small GTPase mediated signal transduction 5.43 0.004 0.64 

GO:0030199~collagen fibril organization 28.56 0.005 0.56 

GO:0030198~extracellular matrix organization 10.62 0.006 0.56 

GO:0016071~mRNA metabolic process 4.48 0.010 0.68 

GO:0003697~single-stranded DNA binding 15.74 0.015 0.66 

GO:0005178~integrin binding 14.67 0.017 0.56 

GO:0032964~collagen biosynthetic process 110.43 0.018 0.83 

GO:0043062~extracellular structure organization 6.78 0.020 0.83 

GO:0016564~transcription repressor activity 4.57 0.022 0.54 

GO:0005829~cytosol 2.24 0.026 0.56 

GO:0006397~mRNA processing 4.30 0.027 0.88 

GO:0007015~actin filament organization 11.50 0.027 0.85 

GO:0008544~epidermis development 6.00 0.027 0.83 

 

Table 4.33. Gene Ontology (GO) found by DAVID online software in Colon Cancer data with Hu6800. We 

analyzed intersection gene list of predicted target gene list and mRNAs found by pair wise correlation method 

of 26 down regulated miRNAs by DAVID. The intersection list contained 53 genes and we list first 20 GO 

with p-value less than 0.05. 

  



73 

 

4.3 Birth Defects Center, Dental school neural tube data 

The miRNA and mRNA microarray data sets from the murine embryonic neural tube (NT) development 

study contained four 8.5- NT- arrays, four 9.0-NT-arrays and four 9.5-NT- arrays for both miRNA and 

mRNA expression data. The data were collected at three gestational days (GD), 8.5, 9.0, and 9.5. The miRNA 

expression data was obtained by using AffyBatch analysis software and the annotation of the data was 

mirna20. The number of samples in the miRNA data was 12 and the number of miRNA genes was 20,706. 

The mRNA data totally contained 12 samples and 45,101 features. The mRNA data was obtained by using 

Affymetrix GENECHIP analysis software. The annotation of the data was mouse4302.  

In the analysis, we first filtered the data set. For original miRNA data, there were 20,706 miRNAs and 12 

samples. We kept the miRNAs for which the name of genes started with “mmu-”. As the result of filtering, 

there were 1,412 genes left. In the mRNA expression data, we used the function affy::rma within R package 

pd.mirna.2.0 to filter the mRNA data by removing duplicate probes mapping to the same Entrez Gene ID 

(the probe with the highest variance across the samples was retained) and probes with a variance below the 

50th percentile. After filtering there were 10,336 probes remaining.  

Second, we determined differentially expressed miRNAs between 9.5- NT and 8.5- NT arrays using the 

empirical Bayes method in the R package limma (Ritchie, et al., 2015) (Smyth, 2004). We identified 183 

significant miRNAs with adjusted p-values (based on Benjamini-Hochberg correction) ≤ 0.05. 52 out of 183 

miRNAs with positive log fold change were up regulated on GD 9.5 relative to GD 8.5, and other 131 

miRNAs with negative log fold changes are down regulated. 

Third, we determined three lists of target mRNAs which we would use in the later analysis with DAVID. 

The first part was the result of 52 up regulated miRNAs. The first list consisted of putative target genes of 

the DE miRNAs, based on the intersection of targets in the miRBase (Kozomara and Griffiths-Jones, 2014) 

and TargetScan (Lewis, et al., 2003) databases. This resulted in 5,154 putative target genes of the up regulated 

miRNAs. The second list consisted of intersecting this putative target list with the up regulated DE genes. 

We determined up regulated DE genes using the same procedures as for the miRNAs. Here we identified 

3,037 down regulated and DE (adjusted p-value < 0.05) mRNAs. The intersection of this list with the list of 

putative target genes resulted in 530 total genes. The third list was the overlapped genes between putative 
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target mRNAs of miRNAs and significant genes obtained by pair wise correlation with differentially 

expressed miRNAs. Here we identified 456 mRNAs with significant negative correlation (adjusted p-value 

< 0.05) between miRNAs and mRNA. The intersection of this list with the list of putative target genes 

resulted in 424 total genes. 

After getting the three lists, we used the SCCA method based on the expression data of the 52 up-regulated 

miRNAs and all the 10,336 filtered mRNA expression data from the mouse4302 chip. After normalizing 

each of the matrices so that expression measurements for each miRNA / mRNA had mean zero and standard 

deviation one, the miRNA data was multiplied by -1. The CCA.permute function in package PMA (Witten, 

et al., 2009) was used to determine optimal penalty parameters for SCCA with multiple sets of canonical 

variables. In the result, there were 8,603 non-zero elements in the 𝒖 vector, which meant that 8,603 mRNAs 

were selected by the SCCA function. And there were 43 non-zero elements in 𝒗 vector, which indicated 43 

miRNAs were selected. 

The next step was KEGG pathway analysis with the SCCA GSEA method. We first used the 

GeneSetCollection function within the Bioconductor package GSEABase to construct a collection of gene 

sets of pathways from the KEGG database. There were 224 pathways collected from KEGG. FDR adjusted 

p-values from these pathways are given in Table 4.34. For comparison purposes, the results from DAVID 

analysis of the KEGG database with default parameters based on all 5,154 putative targets, the 416 

intersection of these targets with the 2,838 DE down regulated genes and the 424 intersection of putative 

target genes and significant pair-wise correlation are given in Tables 4.35- 4.37. 

  



75 

 

Table 4.34. KEGG pathway analysis by Multiple canonical vectors and Self-contained test 

pathway Statistic P-value Adj.P-value 

Oxidative phosphorylation 2.065 p< 0.001 p< 0.001 

Glycine, serine and threonine metabolism 1.416 p< 0.001 p< 0.001 

Protein export 1.613 p< 0.001 p< 0.001 

Chemokine signaling pathway 1.825 p< 0.001 p< 0.001 

Lysosome 1.559 p< 0.001 p< 0.001 

Cardiac muscle contraction 2.406 p< 0.001 p< 0.001 

Natural killer cell mediated cytotoxicity 1.751 p< 0.001 p< 0.001 

Fc gamma R-mediated phagocytosis 2.148 p< 0.001 p< 0.001 

Leukocyte transendothelial migration 2.071 p< 0.001 p< 0.001 

Regulation of actin cytoskeleton 1.096 p< 0.001 p< 0.001 

Vitamin digestion and absorption 2.190 p< 0.001 p< 0.001 

Small cell lung cancer 1.975 p< 0.001 p< 0.001 

Rheumatoid arthritis 2.316 p< 0.001 p< 0.001 

Hypertrophic cardiomyopathy (HCM) 1.712 p< 0.001 p< 0.001 

Dilated cardiomyopathy 1.635 p< 0.001 p< 0.001 

Phagosome 2.601 0.001 0.012 

NOD-like receptor signaling pathway 1.053 0.001 0.012 

Bladder cancer 1.442 0.001 0.012 

Fc epsilon RI signaling pathway 1.369 0.002 0.023 

Collecting duct acid secretion 2.265 0.003 0.031 

 

Table 4.34. KEGG pathway found by SCCA and GSEA method in Neural Tube data. We list 20 of 48 KEGG 

pathways with FDR adjusted p-value less than 0.05. 
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Table 4.35 KEGG Pathway analysis of predicted targets of up regulated miRNAs 

Term Fold Enrichment P-value Benjamini 

mmu04360:Axon guidance 3.56 p<0.001 p<0.001 

mmu04010:MAPK signaling pathway 2.54 p<0.001 p<0.001 

mmu05200:Pathways in cancer 2.35 p<0.001 p<0.001 

mmu05210:Colorectal cancer 3.42 p<0.001 0.001 

mmu04910:Insulin signaling pathway 2.76 p<0.001 0.001 

mmu04810:Regulation of actin cytoskeleton 2.23 p<0.001 0.003 

mmu05221:Acute myeloid leukemia 3.64 p<0.001 0.008 

mmu04720:Long-term potentiation 3.21 0.001 0.011 

mmu04310:Wnt signaling pathway 2.32 0.001 0.015 

mmu04150:mTOR signaling pathway 3.52 0.001 0.014 

mmu04510:Focal adhesion 2.09 0.001 0.013 

mmu05211:Renal cell carcinoma 2.96 0.002 0.026 

mmu04660:T cell receptor signaling pathway 2.34 0.003 0.036 

mmu04722:Neurotrophin signaling pathway 2.26 0.003 0.034 

mmu04914:Progesterone-mediated oocyte maturation 2.64 0.003 0.034 

mmu05220:Chronic myeloid leukemia 2.73 0.004 0.038 

mmu04012:ErbB signaling pathway 2.58 0.004 0.036 

mmu04916:Melanogenesis 2.42 0.005 0.040 

mmu05215:Prostate cancer 2.50 0.005 0.042 

mmu04730:Long-term depression 2.64 0.008 0.060 

 

Table 4.35. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed predicted 

target gene list of 52 up regulated miRNAs by DAVID. The putative target list contained 5,154 genes. We 

list first 20 KEGG pathways. 
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Table 4.36 KEGG Pathway analysis of mRNAs from intersection of different data base of up regulated 
miRNAs 

Term Fold Enrichment P-value Benjamini 

mmu00600:Sphingolipid metabolism 6.83 p<0.001 0.06 

mmu04144:Endocytosis 2.64 0.003 0.19 

mmu05412:Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 

3.83 0.009 0.32 

mmu05200:Pathways in cancer 2.03 0.011 0.29 

mmu04960:Aldosterone-regulated sodium reabsorption 4.88 0.018 0.36 

mmu04142:Lysosome 2.76 0.025 0.41 

mmu04666:Fc gamma R-mediated phagocytosis 2.51 0.09 0.81 

mmu00071:Fatty acid metabolism 3.64 0.09 0.79 

 

Table 4.36. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and down-regulated mRNAs by DAVID. The intersection list contained 

530 genes.  
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Table 4.37 KEGG analysis of mRNAs have significant correlation with up regulated miRNAs  

Term Fold Enrichment P-value Benjamini 

mmu04144:Endocytosis 2.86 0.001 0.12 

mmu05412:Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 

3.85 0.009 0.42 

mmu05200:Pathways in cancer 2.04 0.010 0.34 

mmu04960:Aldosterone-regulated sodium reabsorption 4.91 0.018 0.42 

mmu00600:Sphingolipid metabolism 4.91 0.018 0.42 

mmu04666:Fc gamma R-mediated phagocytosis 2.95 0.030 0.52 

mmu04510:Focal adhesion 2.08 0.048 0.63 

mmu04142:Lysosome 2.43 0.07 0.69 

mmu04810:Regulation of actin cytoskeleton 1.90 0.08 0.70 

mmu00071:Fatty acid metabolism 3.67 0.09 0.73 

 

Table 4.37. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and mRNAs with significant correlation by DAVID. The intersection 

list contained 456 genes.  

 

Then, we produced the similar process of KEGG pathway analysis on GO analysis. FDR adjusted p-values 

from these pathways are given in Table 4.38. For comparison purposes, the results from DAVID analysis of 

the GO database with default parameters based on all 5,154 putative targets, the 530 intersection of these 

targets with the 3,037 DE down regulated genes and the 456 intersection of putative target genes and those 

with significant negative pair-wise correlation are given in Tables 4.39- 4.41.   
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Table 4.38. GO pathway analysis by Multiple canonical vectors and Self-contained test 

GO GO Term Statistic P-Value 
Adjust P-

value 

GO:0000086 G2/M transition of mitotic cell cycle 0.52 p< 0.001 p< 0.001 

GO:0000122 
negative regulation of transcription from RNA 
polymerase II promoter 1.74 

p< 0.001 p< 0.001 

GO:0000165 MAPK cascade 0.82 p< 0.001 p< 0.001 

GO:0000187 activation of MAPK activity 0.394 p< 0.001 p< 0.001 

GO:0000266 mitochondrial fission 0.363 p< 0.001 p< 0.001 

GO:0000904 cell morphogenesis involved in differentiation 1.417 p< 0.001 p< 0.001 

GO:0001501 skeletal system development 0.432 p< 0.001 p< 0.001 

GO:0001503 ossification 1.125 p< 0.001 p< 0.001 

GO:0001525 angiogenesis 0.873 p< 0.001 p< 0.001 

GO:0001568 blood vessel development 0.986 p< 0.001 p< 0.001 

GO:0001569 patterning of blood vessels 0.467 p< 0.001 p< 0.001 

GO:0001570 vasculogenesis 2.483 p< 0.001 p< 0.001 

GO:0001649 osteoblast differentiation 1.626 p< 0.001 p< 0.001 

GO:0001656 metanephros development 0.452 p< 0.001 p< 0.001 

GO:0001657 ureteric bud development 1.815 p< 0.001 p< 0.001 

GO:0001658 branching involved in ureteric bud morphogenesis 1.928 p< 0.001 p< 0.001 

GO:0001666 response to hypoxia 2.633 p< 0.001 p< 0.001 

GO:0001701 in utero embryonic development 1.708 p< 0.001 p< 0.001 

GO:0001708 cell fate specification 0.728 p< 0.001 p< 0.001 

GO:0001709 cell fate determination 0.931 p< 0.001 p< 0.001 

 

Table 4.38. GO pathway found by SCCA and GSEA method in Neural Tube data. We list first 20 pathways 

with p-value less than 0.05. 
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Table 4.39. GO analysis of predicted targets mRNAs of up regulated miRNAs 

GO Term Fold Enrichment P-Value Benjamini 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.17 p<0.001 p<0.001 

GO:0045449~regulation of transcription 1.53 p<0.001 p<0.001 

GO:0051252~regulation of RNA metabolic process 1.60 p<0.001 p<0.001 

GO:0006355~regulation of transcription, DNA-dependent 1.59 p<0.001 p<0.001 

GO:0030528~transcription regulator activity 1.64 p<0.001 p<0.001 

GO:0010604~positive regulation of macromolecule 
metabolic process 

1.87 p<0.001 p<0.001 

GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 

2.20 p<0.001 p<0.001 

GO:0016568~chromatin modification 2.54 p<0.001 p<0.001 

GO:0006350~transcription 1.46 p<0.001 p<0.001 

GO:0045893~positive regulation of transcription, DNA-
dependent 

2.08 p<0.001 p<0.001 

GO:0051254~positive regulation of RNA metabolic process 2.07 p<0.001 p<0.001 

GO:0045941~positive regulation of transcription 1.99 p<0.001 p<0.001 

GO:0010628~positive regulation of gene expression 1.97 p<0.001 p<0.001 

GO:0000267~cell fraction 1.88 p<0.001 p<0.001 

GO:0009792~embryonic development ending in birth or 
egg hatching 

2.04 p<0.001 p<0.001 

GO:0048514~blood vessel morphogenesis 2.62 p<0.001 p<0.001 

GO:0045935~positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 

1.91 p<0.001 p<0.001 

GO:0043009~chordate embryonic development 2.02 p<0.001 p<0.001 

GO:0003677~DNA binding 1.42 p<0.001 p<0.001 

GO:0046872~metal ion binding 1.25 p<0.001 p<0.001 

 

Table 4.39. GO pathway found by DAVID online software in Neural Tube data. We analyzed predicted 

target gene list of 52 up regulated miRNAs by DAVID. The putative target list contained 5,154 genes. We 

list first 20 pathways. 
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Table. 4.40. GO analysis of mRNAs from intersection of different data base of up regulated miRNAs 

Term 
Fold 

Enrichment P-value Benjamini 

GO:0003700~transcription factor activity 2.69 p<0.001 p<0.001 

GO:0009792~embryonic development ending in birth or egg 
hatching 

3.22 p<0.001 p<0.001 

GO:0030528~transcription regulator activity 2.10 p<0.001 p<0.001 

GO:0043565~sequence-specific DNA binding 2.80 p<0.001 p<0.001 

GO:0043009~chordate embryonic development 3.04 p<0.001 p<0.001 

GO:0007389~pattern specification process 3.57 p<0.001 p<0.001 

GO:0007507~heart development 3.96 p<0.001 p<0.001 

GO:0001944~vasculature development 3.71 0.001 p<0.001 

GO:0035239~tube morphogenesis 4.39 0.001 p<0.001 

GO:0003677~DNA binding 1.75 0.001 p<0.001 

GO:0001568~blood vessel development 3.62 0.001 p<0.001 

GO:0048729~tissue morphogenesis 3.52 0.002 0.002 

GO:0045893~positive regulation of transcription, DNA-
dependent 

2.76 0.003 0.002 

GO:0035295~tube development 3.34 0.003 0.001 

GO:0051254~positive regulation of RNA metabolic process 2.74 0.003 0.001 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.36 0.004 0.001 

GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 

2.83 0.004 0.003 

GO:0045941~positive regulation of transcription 2.51 0.005 0.003 

GO:0048568~embryonic organ development 3.30 0.005 0.004 

GO:0048705~skeletal system morphogenesis 4.41 0.008 0.004 

 

Table 4.40. GO pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and down-regulated mRNAs by DAVID. The intersection list contained 

530 genes.  
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Table. 4.41. GO analysis of mRNAs have significant correlation with up regulated miRNAs  

Term Fold Enrichment P-value Benjamini 

GO:0010033~response to organic substance 2.80 p<0.001 p<0.001 

GO:0043566~structure-specific DNA binding 2.16 p<0.001 p<0.001 

GO:0005829~cytosol 3.20 p<0.001 p<0.001 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.73 p<0.001 p<0.001 

GO:0003690~double-stranded DNA binding 3.03 p<0.001 p<0.001 

GO:0051173~positive regulation of nitrogen compound 
metabolic process 

1.80 p<0.001 p<0.001 

GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 

3.44 p<0.001 0.001 

GO:0042493~response to drug 3.81 p<0.001 0.001 

GO:0031328~positive regulation of cellular biosynthetic 
process 

3.57 p<0.001 0.001 

GO:0009891~positive regulation of biosynthetic process 4.22 p<0.001 0.001 

GO:0042802~identical protein binding 3.48 p<0.001 0.001 

GO:0045893~positive regulation of transcription, DNA-
dependent 

3.39 p<0.001 0.003 

GO:0051254~positive regulation of RNA metabolic process 3.22 p<0.001 0.003 

GO:0010604~positive regulation of macromolecule 
metabolic process 

2.65 p<0.001 0.003 

GO:0010557~positive regulation of macromolecule 
biosynthetic process 

2.63 p<0.001 0.003 

GO:0045935~positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 

2.27 p<0.001 0.003 

GO:0048732~gland development 4.86 p<0.001 0.010 

GO:0045941~positive regulation of transcription 2.73 p<0.001 0.005 

GO:0016564~transcription repressor activity 1.63 p<0.001 0.005 

GO:0010628~positive regulation of gene expression 4.25 p<0.001 0.006 

 

Table 4.41. GO pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and mRNAs with significant correlation by DAVID. The intersection 

list contained 456 genes.  
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The second part was the results of 131 down regulated miRNAs, the process of analyzing was similar to the 

analysis of the 52 up regulated miRNAs. First, we determined three lists of target mRNAs which we would 

use in the later analysis with DAVID. The first list contained 8,804 genes, the second list consisted of 671 

genes and there were 1,114 genes in the third list. 

After getting the three lists, we used the SCCA method based on the expression data from the 131 down-

regulated miRNAs on GD 9.5 relative to GD 8.5and all the 10,336 filtered mRNA expression data from the 

mouse4302 chip. After normalizing each of the matrices so that expression measurements for each miRNA / 

mRNA had mean zero and standard deviation one, the miRNA data was multiplied by -1. The CCA.permute 

function in package PMA (Witten, et al., 2009) was used to determine optimal penalty parameters for SCCA 

with a single set of canonical variables.  In the result, there were 5,479 non-zero elements in the 𝒖 vector, 

which meant that 5,479 mRNAs were selected by the SCCA function. And there were 43 non-zero elements 

in 𝒗 vector, which indicated 43 miRNAs were selected. 

The next step was KEGG pathway analysis with the SCCA GSEA method. We first used the 

GeneSetCollection function within the Bioconductor package GSEABase to construct a collection of gene 

sets of pathways from the KEGG database. There were 224 pathways collected from KEGG. FDR adjusted 

p-values from these pathways are given in Table 4.42. For comparison purposes, the results from DAVID 

analysis of the KEGG database with default parameters based on all 8,804 putative targets, the 671 

intersection of these targets with the 2,838 DE up-regulated genes and the intersection of putative target genes 

and 1,114 genes with significant negative pair-wise correlation with the differentially expressed miRNAs are 

given in Tables 4.43- 4.45.   

  



84 

 

Table 4.42. KEGG pathway analysis by Multiple canonical vectors and Self-contained test 

Pathway Statistic P-value Adj.P-value 

Fatty acid elongation in mitochondria 3.527 p< 0.001 p< 0.001 

Steroid biosynthesis 1.627 p< 0.001 p< 0.001 

Pyrimidine metabolism 3.092 p< 0.001 p< 0.001 

One carbon pool by folate 4.865 p< 0.001 p< 0.001 

DNA replication 3.348 p< 0.001 p< 0.001 

Nucleotide excision repair 1.509 p< 0.001 p< 0.001 

Mismatch repair 2.181 p< 0.001 p< 0.001 

Parkinson's disease 3.070 p< 0.001 p< 0.001 

Oxidative phosphorylation 2.096 0.003 0.065 

Protein export 2.222 0.003 0.065 

Aminoacyl-tRNA biosynthesis 1.330 0.005 0.091 

Ribosome biogenesis in eukaryotes 2.825 0.005 0.091 

Ribosome 2.310 0.010 0.168 

RNA polymerase 1.042 0.014 0.218 

Selenocompound metabolism 0.867 0.030 0.436 

Huntington's disease 1.104 0.033 0.436 

Terpenoid backbone biosynthesis 1.175 0.035 0.436 

Valine, leucine and isoleucine degradation 1.131 0.036 0.436 

RNA transport 2.386 0.039 0.447 

 

Table 4.42. KEGG pathway found by SCCA and GSEA method in Neural Tube data. We list first 20 KEGG 

pathways with p-value less than 0.05. 
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Table 4.43 KEGG Pathway analysis of preticted targets of down regulated miRNAs 

Pathway Fold Enrichment P-value Benjamini 

mmu04360:Axon guidance 3.00 p< 0.001 p< 0.001 

mmu05200:Pathways in cancer 2.15 p< 0.001 p< 0.001 

mmu04510:Focal adhesion 2.47 p< 0.001 p< 0.001 

mmu04310:Wnt signaling pathway 2.48 p< 0.001 p< 0.001 

mmu04810:Regulation of actin cytoskeleton 2.18 p< 0.001 p< 0.001 

mmu04010:MAPK signaling pathway 2.02 p< 0.001 p< 0.001 

mmu05210:Colorectal cancer 2.84 p< 0.001 p< 0.001 

mmu05211:Renal cell carcinoma 2.84 p< 0.001 p< 0.001 

mmu04722:Neurotrophin signaling pathway 2.19 p< 0.001 p< 0.001 

mmu04520:Adherens junction 2.62 p< 0.001 p< 0.001 

mmu04350:TGF-beta signaling pathway 2.48 p< 0.001 p< 0.001 

mmu05218:Melanoma 2.64 p< 0.001 p< 0.001 

mmu05220:Chronic myeloid leukemia 2.54 p< 0.001 p< 0.001 

mmu04530:Tight junction 2.11 p< 0.001 p< 0.001 

mmu04012:ErbB signaling pathway 2.42 p< 0.001 p< 0.001 

mmu05221:Acute myeloid leukemia 2.79 p< 0.001 p< 0.001 

mmu04144:Endocytosis 1.86 p< 0.001 p< 0.001 

mmu04910:Insulin signaling pathway 2.06 p< 0.001 p< 0.001 

P00034:Integrin signalling pathway 1.60 p< 0.001 p< 0.001 

mmu04666:Fc gamma R-mediated phagocytosis 2.26 p< 0.001 p< 0.001 

 

 

Table 4.43. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed predicted 

target gene list of 131 down regulated miRNAs by DAVID. The putative target list contained 8,804 genes. 

We list first 20 KEGG pathways. 
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Table. 4.44. KEGG Pathway analysis of mRNAs from intersection of different data base of down 
regulated miRNAs 

Pathway Fold Enrichment P-value Benjamini 

mmu04360:Axon guidance 4.76 p< 0.001 p< 0.001 

mmu04310:Wnt signaling pathway 3.66 p< 0.001 p< 0.001 

mmu04510:Focal adhesion 3.15 p< 0.001 p< 0.001 

mmu05200:Pathways in cancer 2.41 p< 0.001 p< 0.001 

mmu05210:Colorectal cancer 4.23 p< 0.001 p< 0.001 

mmu04010:MAPK signaling pathway 2.55 p< 0.001 p< 0.001 

mmu04666:Fc gamma R-mediated phagocytosis 3.71 p< 0.001 p< 0.001 

mmu04330:Notch signaling pathway 5.19 p< 0.001 p< 0.001 

mmu05220:Chronic myeloid leukemia 4.10 p< 0.001 p< 0.001 

mmu05214:Glioma 4.46 p< 0.001 p< 0.001 

mmu05221:Acute myeloid leukemia 4.56 p< 0.001 p< 0.001 

mmu05213:Endometrial cancer 4.49 p< 0.001 p< 0.001 

mmu05223:Non-small cell lung cancer 4.33 p< 0.001 p< 0.001 

mmu04664:Fc epsilon RI signaling pathway 3.48 p< 0.001 p< 0.001 

mmu04912:GnRH signaling pathway 3.21 p< 0.001 p< 0.001 

mmu04914:Progesterone-mediated oocyte maturation 3.36 p< 0.001 p< 0.001 

mmu04810:Regulation of actin cytoskeleton 2.27 p< 0.001 p< 0.001 

mmu05212:Pancreatic cancer 3.61 p< 0.001 p< 0.001 

mmu04660:T cell receptor signaling pathway 2.86 p< 0.001 p< 0.001 

mmu05215:Prostate cancer 3.17 p< 0.001 p< 0.001 

 

Table 4.44. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and down-regulated mRNAs of 131 down regulated miRNAs by DAVID. 

The intersection list contained 671 genes.  
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Table. 4.45. KEGG analysis of mRNAs have significant correlation with down regulated miRNAs  

Pathway Fold Enrichment P-Value Benjamini 

mmu04360:Axon guidance 4.62 p< 0.001 p< 0.001 

mmu04310:Wnt signaling pathway 3.76 p< 0.001 p< 0.001 

mmu04010:MAPK signaling pathway 2.79 p< 0.001 p< 0.001 

mmu04510:Focal adhesion 3.06 p< 0.001 p< 0.001 

mmu05210:Colorectal cancer 4.17 p< 0.001 p< 0.001 

mmu05200:Pathways in cancer 2.36 p< 0.001 p< 0.001 

2.7.11.1 2.35 p< 0.001 0.005 

mmu04810:Regulation of actin cytoskeleton 2.48 p< 0.001 0.001 

mmu04666:Fc gamma R-mediated phagocytosis 3.43 p< 0.001 0.001 

mmu05214:Glioma 4.20 p< 0.001 0.001 

mmu05220:Chronic myeloid leukemia 3.83 p< 0.001 0.001 

P00057:Wnt signaling pathway 1.76 p< 0.001 0.016 

mmu04660:T cell receptor signaling pathway 3.04 p< 0.001 0.002 

mmu04330:Notch signaling pathway 4.48 p< 0.001 0.003 

mmu04910:Insulin signaling pathway 2.76 p< 0.001 0.004 

mmu05213:Endometrial cancer 4.31 p< 0.001 0.004 

mmu04012:ErbB signaling pathway 3.35 p< 0.001 0.004 

mmu05223:Non-small cell lung cancer 4.15 p< 0.001 0.004 

P00005:Angiogenesis 1.87 p< 0.001 0.029 

mmu05221:Acute myeloid leukemia 3.93 p< 0.001 0.006 

 

Table 4.45. KEGG pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and mRNAs with significant correlation by DAVID. The intersection 

list contained 1,114 genes. 
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Then, we produced a similar analysis on based on the GO database. FDR adjusted p-values from these terms 

for the SCCA-GSEA method are given in Table 4.46. For comparison purposes, the results from DAVID 

analysis of the GO database with default parameters based on all 8,804 putative targets, the 671 intersection 

of these targets with the 2,838 DE up-regulated genes and the 1,114 intersection of putative target genes and 

significant pair-wise correlation are given in Tables 4.47- 4.49. 
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Table 4.46. GO pathway analysis by Multiple canonical vectors and Self-contained test 

GO ID GO Term Statistic P-Value 
Adjust P-

value 

GO:0000028 ribosomal small subunit assembly 0.438 p< 0.001 p< 0.001 

GO:0000038 very long-chain fatty acid metabolic process 2.59 p< 0.001 p< 0.001 

GO:0000056 ribosomal small subunit export from nucleus 1.324 p< 0.001 p< 0.001 

GO:0000076 DNA replication checkpoint 0.482 p< 0.001 p< 0.001 

GO:0000245 spliceosomal complex assembly 3.839 p< 0.001 p< 0.001 

GO:0000506 
glycosylphosphatidylinositol-N-
acetylglucosaminyltransferase 1.805 

p< 0.001 p< 0.001 

GO:0000778 condensed nuclear chromosome kinetochore 0.432 p< 0.001 p< 0.001 

GO:0000785 chromatin 2.181 p< 0.001 p< 0.001 

GO:0000801 central element 3.039 p< 0.001 p< 0.001 

GO:0001940 male pronucleu 4.261 p< 0.001 p< 0.001 

GO:0003406 retinal pigment epithelium development 0.602 p< 0.001 p< 0.001 

GO:0003723 RNA binding 3.199 p< 0.001 p< 0.001 

GO:0003729 mRNA binding 2.598 p< 0.001 p< 0.001 

GO:0003735 structural constituent of ribosome 3.731 p< 0.001 p< 0.001 

GO:0003777 microtubule motor activity 4.139 p< 0.001 p< 0.001 

GO:0003796 lysozyme activity 1.708 p< 0.001 p< 0.001 

GO:0003857 3-hydroxyacyl-CoA dehydrogenase activity 2.991 p< 0.001 p< 0.001 

GO:0004111 creatine kinase activity 2.848 p< 0.001 p< 0.001 

GO:0004322 ferroxidase activity 2.041 p< 0.001 p< 0.001 

GO:0004402 histone acetyltransferase activity 2.504 p< 0.001 p< 0.001 

 

Table 4.46. GO pathway found by SCCA and GSEA method in Neural Tube data. We list first 20 GO 

pathways with p-value less than 0.05. 
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Table. 4.47. GO analysis of preticted targets mRNAs of down regulated miRNAs 

Term Fold Enrichment P-value Benjamini 

GO:0045449~regulation of transcription 1.53 p< 0.001 p< 0.001 

GO:0003677~DNA binding 1.56 p< 0.001 p< 0.001 

GO:0006350~transcription 1.56 p< 0.001 p< 0.001 

GO:0030528~transcription regulator activity 1.71 p< 0.001 p< 0.001 
GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.01 
p< 0.001 p< 0.001 

GO:0045941~positive regulation of transcription 2.00 p< 0.001 p< 0.001 
GO:0045935~positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 

1.95 
p< 0.001 p< 0.001 

GO:0010628~positive regulation of gene expression 1.97 p< 0.001 p< 0.001 
GO:0045893~positive regulation of transcription, DNA-
dependent 

2.06 
p< 0.001 p< 0.001 

GO:0051254~positive regulation of RNA metabolic process 2.04 p< 0.001 p< 0.001 

GO:0003700~transcription factor activity 1.72 p< 0.001 p< 0.001 
GO:0051173~positive regulation of nitrogen compound 
metabolic process 

1.90 
p< 0.001 p< 0.001 

GO:0010604~positive regulation of macromolecule 
metabolic process 

1.81 
p< 0.001 p< 0.001 

GO:0043009~chordate embryonic development 2.01 p< 0.001 p< 0.001 
GO:0009792~embryonic development ending in birth or 
egg hatching 

2.00 
p< 0.001 p< 0.001 

GO:0010557~positive regulation of macromolecule 
biosynthetic process 

1.88 
p< 0.001 p< 0.001 

GO:0045944~positive regulation of transcription from RNA 
polymerase II promoter 

2.10 
p< 0.001 p< 0.001 

GO:0031328~positive regulation of cellular biosynthetic 
process 

1.84 
p< 0.001 p< 0.001 

GO:0009891~positive regulation of biosynthetic process 1.84 p< 0.001 p< 0.001 

GO:0051252~regulation of RNA metabolic process 1.44 p< 0.001 p< 0.001 

 

Table 4.47. GO pathway found by DAVID online software in Neural Tube data. We analyzed predicted 

target gene list of 131 down regulated miRNAs by DAVID. The putative target list contained 8,804 genes. 

We list first 20 GO pathways. 
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Table. 4.48. GO analysis of mRNAs from intersection of different data base of down regulated 
miRNAs 

GO Term Fold Enrichment P-value Benjamini 

GO:0045449~regulation of transcription 1.81 p< 0.001 p< 0.001 

GO:0003677~DNA binding 1.88 p< 0.001 p< 0.001 

GO:0006350~transcription 1.81 p< 0.001 p< 0.001 

GO:0030528~transcription regulator activity 2.01 p< 0.001 p< 0.001 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.33 p< 0.001 p< 0.001 

GO:0016568~chromatin modification 3.35 p< 0.001 p< 0.001 

GO:0030182~neuron differentiation 2.68 p< 0.001 p< 0.001 

GO:0010629~negative regulation of gene expression 2.61 p< 0.001 p< 0.001 

GO:0005856~cytoskeleton 1.92 p< 0.001 p< 0.001 

GO:0010558~negative regulation of macromolecule 
biosynthetic process 

2.56 p< 0.001 p< 0.001 

GO:0032990~cell part morphogenesis 3.33 p< 0.001 p< 0.001 

GO:0016481~negative regulation of transcription 2.65 p< 0.001 p< 0.001 

GO:0044451~nucleoplasm part 2.46 p< 0.001 p< 0.001 

GO:0048667~cell morphogenesis involved in neuron 
differentiation 

3.53 p< 0.001 p< 0.001 

GO:0031327~negative regulation of cellular biosynthetic 
process 

2.49 p< 0.001 p< 0.001 

GO:0005654~nucleoplasm 2.31 p< 0.001 p< 0.001 

GO:0009890~negative regulation of biosynthetic process 2.47 p< 0.001 p< 0.001 

GO:0007409~axonogenesis 3.68 p< 0.001 p< 0.001 

GO:0048812~neuron projection morphogenesis 3.53 p< 0.001 p< 0.001 

GO:0051252~regulation of RNA metabolic process 1.68 p< 0.001 p< 0.001 

 

Table 4.48. GO pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and down-regulated mRNAs of 131 down regulated miRNAs by DAVID. 

The intersection list contained 671 genes.  
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Table. 4.49. GO analysis of mRNAs have significant correlation with down regulated miRNAs  

Term Fold Enrichment P-value Benjamini 

GO:0045449~regulation of transcription 1.76 p< 0.001 p< 0.001 

GO:0003677~DNA binding 1.83 p< 0.001 p< 0.001 

GO:0030528~transcription regulator activity 2.00 p< 0.001 p< 0.001 

GO:0006350~transcription 1.77 p< 0.001 p< 0.001 

GO:0030182~neuron differentiation 2.71 p< 0.001 p< 0.001 

GO:0044451~nucleoplasm part 2.51 p< 0.001 p< 0.001 

GO:0006357~regulation of transcription from RNA 
polymerase II promoter 

2.25 p< 0.001 p< 0.001 

GO:0005654~nucleoplasm 2.33 p< 0.001 p< 0.001 

GO:0032990~cell part morphogenesis 3.22 p< 0.001 p< 0.001 

GO:0048667~cell morphogenesis involved in neuron 
differentiation 

3.44 p< 0.001 p< 0.001 

GO:0007409~axonogenesis 3.61 p< 0.001 p< 0.001 

GO:0016568~chromatin modification 3.06 p< 0.001 p< 0.001 

GO:0048812~neuron projection morphogenesis 3.45 p< 0.001 p< 0.001 

GO:0010629~negative regulation of gene expression 2.45 p< 0.001 p< 0.001 

GO:0031981~nuclear lumen 1.97 p< 0.001 p< 0.001 

GO:0048858~cell projection morphogenesis 3.19 p< 0.001 p< 0.001 

GO:0048666~neuron development 2.73 p< 0.001 p< 0.001 

GO:0031175~neuron projection development 3.05 p< 0.001 p< 0.001 

GO:0051252~regulation of RNA metabolic process 1.63 p< 0.001 p< 0.001 

GO:0010558~negative regulation of macromolecule 
biosynthetic process 

2.36 p< 0.001 p< 0.001 

 

Table 4.49. GO pathway found by DAVID online software in Neural Tube data. We analyzed intersection 

gene list of predicted target gene list and mRNAs with significant correlation by DAVID. The intersection 

list contained 1,114 genes.  
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CHAPTER V  

METHOD OF INTEGRATED ANALYSIS OF MRNA AND METHYLATION 

5.1. Application of sparse mCCA to Murine Palate Methylome data 

In our previous chapters, we showed that sparse CCA can perform an integrative analysis on two data sets 

with the same number of samples but different variables. But now, we need to analyze more than two data 

sets. (Gifi, 1990) introduced a number of methods that generalized CCA to more than two data sets, and 

Witten and Tibshirani (Witten and Tibshirani, 2009) extended their sparse CCA approach to sparse multiple 

CCA (mCCA).  Here, we briefly review their methodology with the context of applying it to our genomewide 

methylation data. In our application we use methylated DNA probes from 21 chromosomes collected from 

the murine embryonic palate during gestational days (GDs) 12 to 14 (three arrays per GD) (Seelan, et al., 

2013). We have M = 21 data sets 𝑿𝟏, 𝑿𝟐 … 𝑿𝟐𝟎, , and there are 𝒑𝒎 variables (here, probes in methylated 

regions) and 𝑛 samples for data set 𝑿𝒎 where m= 1,2…21, n= 9 in our research. We normalized each variable 

in the data sets to have mean 0 and standard deviation 1. Then, the criterion of multiple CCA for obtaining 

weight vectors 𝒘𝟏, 𝒘𝟐 … 𝒘𝟐𝟎 is to maximize  

∑ 𝒘𝒊
𝑻𝑿𝒊

𝑻𝑿𝒋𝒊<𝒋 𝒘𝒋 subject to 𝒘𝒎
𝑻 𝑿𝒎

𝑻 𝑿𝒎𝒘𝒎 = 1, ∀𝑚,  where 𝑤𝑚 ∈ ℝ𝑝𝑚 . 

As can be seen, when M = 2 multiple CCA reduces to traditional CCA. Following this logical spirit, Witten 

and Tibshirani (2009) extended the criterion for SCCA with two data sets to sparse multiple CCA. Again, we 

suppose the samples within each data set are independent so that 𝑿𝒎
𝑻 𝑿𝒎 = 𝑰 for any m. Then the criterion 

for sparse mCCA is: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒘𝟏,𝒘𝟐…𝒘𝑴
∑ 𝒘𝒊

𝑻𝑿𝒊
𝑻𝑿𝒋𝒊<𝒋 𝒘𝒋 subject to ‖𝒘𝒊‖

2 ≤ 1, 𝑃𝑖(𝒘𝒊) ≤ 𝑐𝑖 , ∀𝑖 , 

where 𝑃𝑖  is a lasso or fused lasso penalty. When 𝑐𝑖is set appropriately, the canonical vector 𝒘𝒊 which related 

to data set 𝑿𝒊 will be sparse and smooth. 
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The algorithm of Witten and Tibshirani (2009) for calculating the canonical weight vectors of the sparse 

mCCA is:1. Set initial value for each.𝒘𝒊 ∈ ℝ𝑝𝑚2. For every data set, we repeat iteration until the canonical 

vector 𝒘𝒊converges:  

𝒘𝒊 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝒘𝒊
𝒘𝒊

𝑻𝑿𝒊
𝑻(∑ 𝑿𝒋𝒋≠𝒊 𝒘𝒋) subject to ‖𝒘𝒊‖

2 ≤ 1, 𝑃𝑖(𝒘𝒊) ≤ 𝑐𝑖 For the example of L1 penalty of 𝑃𝑖  

the update of 𝒘𝒊 follows the form as: 

𝒘𝒊 ←
𝑆(𝑿𝒊

𝑻(∑ 𝑿𝒋𝒋≠𝒊 𝒘𝒋), Δ𝑖)

‖𝑆(𝑿𝒊
𝑻(∑ 𝑿𝒋𝒋≠𝒊 𝒘𝒋), 𝛥𝑖)‖

2

 

When ‖𝒘𝒊‖1 = 𝑐𝑖 we choose Δ𝑖 > 0, in addition`Δ𝑖 = 0 when ‖𝒘𝒊‖1 < 𝑐𝑖. 

Witten and Tibshirani (2009) used the sparse mCCA approach to investigate genome wide correlation in 

copy number patterns. In our research, we posed a similar question concerning whether the methylated probes 

on separate chromosomes have similar changes in pattern.  Hence, we apply sparse mCCA on data sets 𝑋𝑖 

where 𝑖 = 1,2 … 21, each contains methylated probes on chromosome i. Because the methylated probes are 

ordered along the chromosome, a fused lasso penalty is used on all data sets. 

 

5.2. Integrated analysis of methylated regions of interest (MRIs) measurements and mRNA expression 

using SCCA 

In this part we first identify the DE mRNAs (up and down-regulated between GD 12 and 14) which have 

maximum negative correlation with MRIs. We determine the correlation between MRIs and mRNAs by the 

SCCA method which we described in the previous section. The procedure is similar to the integrated analysis 

of miRNA and mRNA expression using SCCA. Suppose there are two types of data sets 𝑿𝒊𝟏 and 𝑿𝒊2 with 

the same number of observations n, where 𝑖 = 1,2 … , 21 (the total number of chromosomes). In our 

application, the first type of data matrix 𝑿𝒊𝟏has dimension 𝑛 × 𝑝𝑖1 (𝑝𝑖1 variables with n observations, where 

𝑖 = 1,2 … 21) indicates DE mRNAs in each chromosome.  The second type of data matrix 𝑿𝒊𝟐 has dimension 

𝑛 × 𝑝𝑖2 (𝑝𝑖2 variables with n observations, where 𝑖 = 1,2 … 21) represents MRIs in each chromosome. For 

any pair of these two data sets under same chromosome, we first identify DE genes (up and down-regulated 

between GD 12 and 14) and MRIs. Second, for each chromosome the entire set of DE gene expression 
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measurements and the entire set of MRIs will be analyzed using SCCA to determine how the global changes 

in methylation patterns along the chromosome impact gene expression patterns on the chromosome.  Since 

methylation measurements are ordered along the chromosome, we should follow (Witten and Tibshirani, 

2009) and use the lasso penalty (Tibshirani, 1996) on the matrix of mRNA expression measurements and the 

fused lasso penalty (Tibshirani, et al., 2005) on the matrix of methylation measurements. However, for GSEA 

we need to create the gene set scores from the weight vectors obtained from SCCA and hence we need the 

weight vectors to be positive. Since the SCCA software requires using the same penalty for each data set to 

obtain positive weight vectors, we also use the lasso penalty on the MRIs matrix. After the SCCA process, 

we again create a GSEA statistic on the basis of the SCCA analysis, similar in spirit to the statistic for 

integrating miRNA and mRNA expression data.   

Since we apply integrated analysis of MRIs and mRNA on separate chromosomes, we create GSEA statistics 

for each chromosome. After the SCCA procedure, we obtain the weight vectors 𝒖𝒊 and 𝒗𝒊 on chromosome i, 

where i= 1, 2…21, 𝒖𝒊 is the weight vector of mRNA expression matrix of chromosome i with dimensional 

1 × 𝑝𝑖1and 𝒗𝒊 is the weight vector of MRI probe intensity matrix of chromosome i with dimensional 1 × 𝑝𝑖2.  

The test statistic is constructed from two parts. The first part consists of the normalized 𝒖𝒊 vector 𝒖𝒊norm
, such 

that the mean of 𝒖𝒊norm
 is zero and the variance is one. This component simply indicates the genes that are 

represented in the weight vector 𝒖𝒊 . The second part consists of the averaged MRI probe scores which 

correlate with specific genes selected by SCCA. This component incorporates the weights associated with 

MRI probe scores into the per-gene scores. We first map the MRI probes to the nearest gene. Second, we 

calculated the averaged score of MRI probes for each gene and called the new vector 𝒗𝒊
∗with dimension 1 ×

𝑝𝑖1; same with 𝒖𝒊 The 𝒗𝒊
∗ scores are also normalized to have mean zero and standard deviation one (𝒗𝒊norm

∗ ). 

Lastly, we set the final statistic associated with each gene by summing the normalized 𝒖𝒊 and 𝒗𝒊
∗ scores and 

then dividing by √2, which is denoted as 𝒁𝒊 =
1

√2
(𝒖𝒊 norm + 𝒗𝒊norm

∗ ).  

Then, we calculate an aggregate gene enrichment score for each pre-determined gene set. Suppose there are 

K pre-determined gene sets with 𝑛1, 𝑛2, … , 𝑛𝐾 genes in each set.  In our terminology, the vector 𝒁𝑖𝑗consists 

of the components of 𝒁𝒊  corresponding to the genes in gene set 𝑗 . Then, the GSEA statistic 
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𝑔𝑠1(𝒁𝑖1),  𝑔𝑠2(𝒁𝑖2), … , 𝑔𝑠𝐾(𝒁𝑖𝐾) for each gene set is calculated by the sum of the per gene statistic included 

in each gene set then divided by the square root of the number of genes in each gene set:  

𝑔𝑠𝑘(𝒁𝑖𝑘) =  
1

√𝑛𝑘

(∑ 𝑧𝑖𝑗

𝑛𝑘

𝑗=1

) , 

where 𝑘 = 1,2, … , 𝐾 and 𝒁𝑖𝑘 = (𝑧𝑖1,  𝑧𝑖2, … ,  𝑧𝑖𝑛𝑘
) are the gene statistics for gene set 𝑔𝑠𝑘. 

Finally, we calculate the permutation p-value of the GSEA statistic for each gene set using competitive test. 

We first resample the per-gene statistics 𝒁𝒊  = (𝑧𝑖1,  𝑧𝑖2, … ,  𝑧𝑖𝑝1
) without replacement to obtain permuted 

statistics 𝒁𝒊
𝑝 for 𝑝 = 1, … , 𝑃 permutations. Next, permuted gene set statistics 

𝑔𝑠1
𝑝

(𝒁𝑖1
𝑝

),  𝑔𝑠2
𝑝

(𝒁𝑖2
𝑝

), … , 𝑔𝑠𝐾
𝑝

(𝒁𝑖𝐾
𝑝

)  are calculated for each of the original gene sets, where 𝒁𝑖𝑘
𝑝

=

(𝑧𝑖1
𝑝

,  𝑧𝑖2
𝑝

, … , 𝑧𝑖𝑛𝑘

𝑝
) are the permuted gene statistics for each gene set 𝑔𝑠𝑘. The permutation p-value 𝑝perm,𝑘 for 

each gene-set 𝑘 is then calculated as the proportion of the permuted GSEA statistics that are larger than the 

original GSEA statistic: 𝑝perm,𝑘 =  
1

𝑃
∑ 𝐼(𝑃

𝑝=1 𝑔𝑠𝑘
𝑝

(𝒁𝑖𝑘
𝑝

) > 𝑔𝑠𝑘(𝒁𝑖𝑘)) , 

where 𝐼(⋅) is the indicator function.   
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CHAPTER VI 

REAL DATA ANALYSIS OF MURINE PALATAL METHYLOME DATA 

The original methylation data set obtained from the developing secondary palate of mouse embryos was 

collected using NimbleGen 2.1M mouse promoter arrays (Seelan, et al., 2013). Data were analyzed using the 

Bioconductor package Ringo(Toedling, et al., 2007). It contained three arrays per each gestational day (GD), 

GD 12, 13, and 14. The total number of samples in the original methylation data was 9 and the number of 

probes was 2,064,266. The mRNA data was collected in prior studies using Affymetrix GENECHIP analysis 

software and the annotation of the data was mgu74av2. The number of samples in the mRNA data was 9 

(three per GD) and the number of genes was 21,706. Since the gene expression data was collected in prior 

studies and the samples were different for the methylation data, we averaged the data by GD when we did 

integrated gene expression and methylation data analysis. 

In the analysis, we first filtered the data set. For the original methylation data, there were 2,064,266 probes 

and 9 samples. We kept the 70,072 methylation probes which were in methylated regions (Seelan et al, 2013) 

and averaged the data by GD day. In the mRNA expression data, we used the function nsFilter within R 

package genefilter to filter the mRNA data by removing duplicate probes mapping to the same Entrez Gene 

ID (the probe with the highest variance across the samples was retained) and probes with a variance below 

the 50th percentile. After filtering 12,488 probes remained and we again averaged the data by GD day.  

Second, we used sparse multiple CCA to calculate the canonical vectors at whole methylated regions to 

identify which methylated regions are correlated with each other (to identify methylated regions which have 

correlated changes). The result is in Figure 6.1 
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Figure 6.1. Sparse mCCA treating each chromosome as a separate data set, in order to identify genomic 

regions that have correlated methylation patterns. The canonical vectors w1, …, w21 are shown. Positive values 

of the canonical vectors are shown in red, and negative values are in green. 
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Third, we determined differentially expressed mRNAs between GD-14 and GD-12 arrays on chromosome 1 

using the empirical Bayes method in R package limma (Ritchie, et al., 2015) (Smyth, 2004). We identified 

42 significant mRNAs with adjusted p-values (based on the Benjamini- Hochberg correction) ≤ 0.05. Nine 

out of the 42 mRNAs had a negative log fold change and were down regulated in GD-14 compared to GD-

12, and the other 33 mRNAs had a positive log fold changes and were up regulated. 

Fourth, we used the SCCA method based on the 9 down-regulated mRNAs data and the 3,157 methylated 

probes on chromosome 1. After normalizing each of the matrices so that expression measurements for each 

mRNA / Methylation had mean zero and standard deviation one, the mRNA data was multiplied by -1. The 

CCA.permute function in package PMA (Witten, et al., 2009) was used to determine the optimal penalty 

parameters for SCCA with a single set of canonical variables. In the result, there were 9 non-zero elements 

in the 𝒖 vector, which meant that 9 mRNAs were selected by the SCCA function. And there were 210 non-

zero elements in 𝒗 vector, which indicated 210 methylated probes were selected. 

The next step was GO pathway analysis with the SCCA GSEA method. We first used the GeneSetCollection 

function within the Bioconductor package GSEABase to construct a collection of gene sets of pathways from 

the GO database. There were 380 pathways collected from GO. FDR adjusted p-values from these pathways 

are given in Table 6.1. For comparison purposes, the results from DAVID analysis of the GO database with 

default parameters based on the 80 genes which mapped to the methylated probes with positive loadings in 

the SCCA method is given in Table 6.2. 
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Table. 6.1. GO pathway analysis 

GO ID GO Term Statistic P-Value Adj.pvalue 

GO:0016311 dephosphorylation 0.274 0.007 0.820 

GO:0031225 anchored component of membrane 0.276 0.008 0.820 

GO:0005886 plasma membrane 0.666 0.010 0.820 

GO:0030016 myofibril 0.273 0.010 0.820 

GO:0005515 protein binding 1.242 0.012 0.820 

GO:0009986 cell surface 0.351 0.021 0.820 

GO:0016020 membrane 0.940 0.029 0.820 

GO:0005622 intracellular 0.491 0.042 0.820 

GO:0004035 alkaline phosphatase activity 0.183 0.049 0.820 

GO:0016791 phosphatase activity 0.183 0.049 0.820 

 

Table 6.1. GO pathway found by SCCA and GSEA method in chromosome 1 of the murine palate data.  
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Table 6.2. GO analysis with DAVID 

Term Genes 
Fold 

Enrichment P-value 
Benja
mini 

GO:0006928~cell motion enabled homolog (Drosophila);  3.778 0.040 1.000 

 
similar to SH2/SH3 adaptor protein; 
neuron navigator 1;        

  
Fc receptor, IgE, high affinity I, gamma 
polypeptide;       

  GLI-Kruppel family member GLI2       

GO:0009084~glutamine 
family amino acid 
biosynthetic process 

predicted gene 4949, glutamate-
ammonia ligase (glutamine 
synthetase);  36.974 0.052 1.000 

 
pyrroline-5-carboxylate reductase 
family, member 2       

 LMBR1 domain containing 1;   6.460 0.076 1.000 

GO:0019842~vitamin 
binding 

solute carrier family 19 
(sodium/hydrogen exchanger), 
member 3;       

  selenocysteine lyase       

GO:0005212~structural 
constituent of eye lens 

crystallin, gamma D, crystallin, gamma 
A 24.814 0.076 0.999 

 RNA binding motif protein 8a;   2.007 0.090 1.000 
GO:0070013~intracellular 
organelle lumen 

UDP-glucose ceramide 
glucosyltransferase-like 1;        

  
 isoleucine-tRNA synthetase 2, 
mitochondrial;         

  inhibitor of growth family, member 5;       

  
 staufen (RNA binding protein) 
homolog 2 (Drosophila);       

   death effector domain-containing;        

  
calsequestrin 1;  RIKEN cDNA 
6430706D22 gene       

  RNA binding motif protein 8a;   2.001 0.091 0.998 
GO:0043233~organelle 
lumen 

UDP-glucose ceramide 
glucosyltransferase-like 1;        

  
 isoleucine-tRNA synthetase 2, 
mitochondrial;       

 inhibitor of growth family, member 5;       
 60 genes from our list 
are not in the output. 

 staufen (RNA binding protein) 
homolog 2 (Drosophila);       

   death effector domain-containing;        

  
calsequestrin 1;  RIKEN cDNA 
6430706D22 gene       

 

Table 6.2. GO pathway found by DAVID software in the murine palate data. We analyzed the list of genes 

on chromosome 1 which mapped to the methylated probes with positive loadings in SCCA with DAVID. 

The list contained 80 genes.  
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Then, we did a similar analysis of chromosome 1 on chromosome 2. First, we determined differentially 

expressed mRNAs between GD-14 and GD-12 arrays on chromosome 2 using the empirical Bayes method 

in R package limma (Ritchie, et al., 2015) (Smyth, 2004). We identified 42 significant mRNAs with adjusted 

p-values (based on Benjamini-Hochberg correction) ≤ 0.05. Twelve out of 40 mRNAs with negative log fold 

change were down regulated on GD-14 versus GD-12, and the other 28 mRNAs had a positive log fold 

change and were up regulated. 

Fourth, we used the SCCA method based on the 12 down-regulated mRNAs and the 3,157 methylated probes 

on chromosome 2. After normalizing each of the matrices so that expression measurements for each mRNA 

/ methylation probe had mean zero and standard deviation one, the mRNA data was multiplied by -1. The 

CCA.permute function in package PMA (Witten, et al., 2009) was used to determine optimal penalty 

parameters for SCCA with a single set of canonical variables. In the result, there were 12 non-zero elements 

in the 𝒖 vector, which meant that 12 mRNAs were selected by the SCCA function. And there were 733 non-

zero elements in 𝒗 vector, which indicated 733 methylated probes were selected. 

The next step was GO pathway analysis with the SCCA GSEA method. We first used the GeneSetCollection 

function within the Bioconductor package GSEABase to construct a collection of gene sets of pathways from 

the GO database. There were 380 pathways collected from GO. FDR adjusted p-values from these pathways 

are given in Table 6.3. For comparison purposes, the results from DAVID analysis of the GO database with 

default parameters based on 76 genes which mapped to the methylated probes with positive loadings in the 

SCCA method is given in Table 6.4.  
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Table 6.3. GO Pathway analysis  

GO ID GO Term Statistic P-Value Adj.pvalue 

GO:0009791 post-embryonic development 0.434 0 0.000 

GO:0035116 embryonic hindlimb morphogenesis 0.434 0 0.000 

GO:0042995 cell projection 0.547 0 0.000 

GO:0001894 tissue homeostasis 0.334 0.001 0.012 

GO:0001958 endochondral ossification 0.334 0.001 0.012 

GO:0003924 TPase activity 0.334 0.001 0.012 

GO:0004871 signal transducer activity 0.334 0.001 0.012 

GO:0005834 heterotrimeric G-protein complex 0.334 0.001 0.012 

GO:0006112 energy reserve metabolic process 0.334 0.001 0.012 

GO:0006306 DNA methylation 0.334 0.001 0.012 

GO:0007186 G-protein coupled receptor signaling pathway 0.334 0.001 0.012 

GO:0007189 
adenylate cyclase-activating G-protein coupled 
receptor signaling pathway 0.334 0.001 0.012 

GO:0007191 
adenylate cyclase-activating dopamine receptor 
signaling pathway 0.334 0.001 0.012 

GO:0007606 sensory perception of chemical stimulus 0.334 0.001 0.012 

GO:0019001 guanyl nucleotide binding 0.334 0.001 0.012 

GO:0030425 dendrite 0.334 0.001 0.012 

GO:0031234 
extrinsic component of cytoplasmic side of plasma 
membrane 0.334 0.001 0.012 

GO:0031683 G-protein beta/gamma-subunit complex binding 0.334 0.001 0.012 

GO:0031852 mu-type opioid receptor binding 0.334 0.001 0.012 

GO:0035255 ionotropic glutamate receptor binding 0.334 0.001 0.012 

 

Table 6.3. GO pathway found by SCCA and GSEA method in chromosome 2 of the murine palate data.  
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Table 6.4 GO pathway analysis  

Term Fold Enrichment P-value Benjamini 

GO:0030326~embryonic limb morphogenesis 11.674 0.005 0.908 

GO:0035113~embryonic appendage morphogenesis 11.674 0.005 0.908 

GO:0035137~hindlimb morphogenesis 24.978 0.006 0.799 

GO:0035108~limb morphogenesis 9.846 0.007 0.721 

GO:0035107~appendage morphogenesis 9.846 0.007 0.721 

GO:0060173~limb development 9.515 0.008 0.651 

GO:0048736~appendage development 9.515 0.008 0.651 

GO:0008219~cell death 3.350 0.030 0.958 

GO:0016265~death 3.273 0.033 0.945 

GO:0009791~post-embryonic development 9.761 0.036 0.937 

GO:0042981~regulation of apoptosis 3.071 0.041 0.936 

GO:0043067~regulation of programmed cell death 3.033 0.043 0.923 

GO:0010941~regulation of cell death 3.017 0.044 0.905 

GO:0009886~post-embryonic morphogenesis 40.440 0.047 0.900 

 

Table 6.4. GO pathway found by DAVID software in the murine palate data. We analyzed list of genes on 

chromosome 2 which mapped back to the methylated probes with positive loadings in SCCA with DAVID. 

The list contained 76 genes.  
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CHAPTER VII 

DISCUSSION 

In this research, we developed a novel GSEA approach for integrated analysis of miRNA / mRNA expression 

data and miRNA / methylation data. Our methodology uses sparse CCA to find correlated sub-dimensions in 

the two data sets, and bases the GSEA statistic on the weight vectors from this analysis.  We tested our 

methodology using multiple real and simulated data sets and compared it with standard approaches in the 

literature based on pairwise correlation analysis or the intersection of gene lists from differentially expressed 

up and down-regulated mRNAs / miRNAs.  

In the simulation study for integrated GSEA of miRNA and mRNA expression data, the PWC method has 

larger power than SCCA when the number of targeting miRNAs is small. But the SCCA method outperforms 

the PWC approach as the number of targeting miRNAs increases. This separation is greatest when the sample 

size is small and the standard deviation is large, with the power of the methods converging to each other as 

the sample size increases. As we expected, the whole simulation results support that the power of two 

methods increase as the sample size of the simulated data and the number of correlated miRNAs and mRNAs 

increase. Inversely, the power decreases as the error rate of the simulated data increases. In general we found 

that the SCCA method had better performance (higher power) than PWC.   

In the real data analysis of miRNA / mRNA expression, the SCCA-GSEA method may give a more 

reasonable number of pathways compared to DAVID analysis (gene-set analysis) using all putative targets 

of differentially expressed (DE) miRNAs and the intersection of this list with DE mRNAs. Since the number 

of putative target genes of DE miRNAs is usually quite large (several thousands), the number of significantly 

enriched pathways based on this list is correspondingly large as well. And intersecting this list with DE 

mRNAs based on a hard p-value threshold may result in the opposite problem of too few genes inthe list. 

Hence, integrated analysis using our SCCA- GSEA approach may result in a nice compromise of obtaining 

a focused list of germane pathways and biological gene sets.
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In our research, we have introduced sparse canonical correlation analysis as a method for doing integrated 

miRNA / mRNA analysis. There are also other methods for this purpose, including MMIA(Nam, et al., 2009), 

mirAct (Liang, et al., 2011), and MAGIA (Sales, et al., 2010). A drawback of the above approaches is that 

evaluating all potential miRNA / mRNA interactions using pairwise correlations can lead to significant 

reduction in power due to the number of comparisons involved. And methods that focus on pairing 

significantly up-regulated mRNAs with down-regulated miRNA counterparts (and vice-versa) (e.g., MMIA) 

potentially lose information by using a hard threshold for determining the differentially expressed (DE) list 

of mRNAs and miRNAs. As an alternative, sparse CCA is a data reduction technique that has been effective 

in the high-throughput setting for integrating gene expression and other types of ‘omics’ data. 

There are quite a few other methods for doing integrated GSEA based on multiple data sets. Poisson et al. 

(Poisson, et al., 2011) introduce two methods of integrated GSEA using both gene expression and metabolite 

information. The first is logistic regression analysis with 2-df Wald test, a multivariate extension of the 

competitive logistic regression test. In this method, they first separately modeled genes and metabolites with 

absolute per-element t-statistic. The null hypothesis of the joint test is that both regression coefficients are 

zero. Under the null hypothesis, the test statistic follows chi-square distribution with two degrees of freedom. 

The second is sum of squared statistics with a 2-dimensional permutation test, a multivariate extension of the 

self-contained sum of squared statistics. They create observed pair and null pair enrichment test statistics for 

genes and metabolites, then calculate the Mahalanobis distance from observed and null statistic pairs to the 

centroid of the sets of null pairs. Then, they calculate the joint permutation p-value as the proportion that the 

Mahalanobis distances corresponding to observed statistics are larger than or equal to the null statistic 

Mahalanobis distance.  

One obvious issue for both methods is that they are joint assessment approaches which connect per-gene and 

per-metabolite test statistics as a single vector. In most cases, gene expression and metabolites have a 

different sample size, so two-sample t statistics are not directly comparable (due to differing degrees of 

freedom). Use of p-values solves the comparability problem, but in this case the empirical p-value will lack 

precision and lose directionality. Our method avoids this issue by creating test statistics separately from both 

data sets and mapping them to the gene level. For miRNA / mRNA integrated analysis this is done by 
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incorporating the targeting matrix of miRNAs. For mRNA / methylation analysis, we map MRIs back to 

correlated genes and use averaged values of methylation probes to obtain two lists with the same size. 

Although there are many differences between our method and that of Poisson et al., the overall procedure is 

similar. First, create per-element test statistics. Then, define gene sets and create a GSEA score. Lastly, 

calculate a permutation based p-value corresponding to each gene set.  

Jiang and Gentleman (Jiang and Gentleman, 2007) start from the original GSEA which is described in 

(Subramanian, et al., 2005) and (Tian, et al., 2005). Then, they extend the method of obtaining the test statistic 

with linear modeling and posterior probabilities. They further extend the gene set aggregation function by 

using the median and sign-test rather than the mean gene set score. In the paper, they also apply the method 

on acute lymphoblastic leukemia (ALL) data to produce an incidence matrix for showing the association 

between genes and phenotypes (pre-defined gene sets). However, they do not integrate any other kind of data 

with mRNA expression data. In our research, we create putative targeting gene matrix of miRNA, in this 

case, we generate the per-gene statistic with the information both miRNA and mRNA data sets. In their paper 

they create gene statistic with three method, two-sample t-statistic, linear modeling and posterior probability 

as gene statistic. All of these methods depend on hard threshold, but our SCCA method using a soft-threshold 

to detecting the weight vectors for both data sets. In the Jiang’s paper, they create gene set statistics by three 

different summaries of the evidence for each gene set, mean, median and sign-test. Following, they produce 

a competitive permutation test with 5000 permutations for obtaining P-values for each pathway. In our 

research, we use square root mean as the evidence of gene set, the reason we choose this has been stated in 

previous section. For real data analysis in our research, we produce a self-contained test for GESA method. 

Lai et al. (Lai, et al., 2014) introduce a concordant integrative gene set enrichment analysis method. This 

research focuses on low-sample expression data, and they apply the method on two microarray gene 

expression data sets. They choose traditional two-sample student’s t-test to screen genes. Then, they propose 

a mixture model with three normal distributions which represent three conditions (genes not differentially 

expressed, up-regulated and down-regulated) for each individual gene expression data set. The model is 

estimated by the E-M algorithm. After this, they derive the probability for a gene to be in a pre- defined gene 

set, then calculate the concordant gene set enrichment score by a partial concordance/discordance (PCD) 
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model. For computational convenience, a Monte Carlo approximation is produced. Lastly, a p-value is 

obtained based on the likelihood ratio test. This method is quite different from ours, in that they create a 

mixture modeling statistical method for concordant integrated gene set enrichment analysis. So, before 

integrated analysis they can statistically test for genome-wide concordance. Second, it is convenient for 

calculating the FDR due to using a probabilistic framework for integrated analysis of gene sets. But on the 

other hand, there are several disadvantages. The mixture model is simple due to being restricted to the two-

sample situation. Second, they assume that genes are independent. In our research, we do not need the 

restrictive assumption of independent among genes, and we use SCCA to investigate the correlation trend 

throughout the entire data set.    

There are several advantages for the sparse canonical correlation method. First, it does not consider individual 

pairwise correlations but rather the correlation pattern on a global (genome-wide) scale. Sparse CCA can 

provide the main characteristics of the data by condensing the variables into a smaller dimension. In our case, 

for instance, genes contained in the same pathway may have a similar effect from the variations in multiple 

regulatory elements (e.g., miRNA expression and methylation patterns). Second, the GSEA score contains 

contributions from both mRNA expression and miRNA expression / gene methylation. For integrating 

miRNA and mRNA expression into a GSEA score we create putative target matrix of the miRNAs and then 

combine this with the measurements from the miRNA expression using SCCA. Hence this procedure 

explicitly takes miRNA expression into account in the GSEA score. In previous methods (e.g. MMIA(Nam, 

et al., 2009), mirAct (Liang, et al., 2011), and MAGIA (Sales, et al., 2010)), they generally simply take list 

of up regulated differentially expressed genes intersected with targeting genes of down regulated 

differentially expressed miRNAs. 

Some limitations of our approach include the computational burden associated with calculating the optimal 

penalty for SCCA (Witten and Tibshirani, 2009). In the GSEA test for this research, we first calculated the 

permuted p-value of each gene set using the competitive test. This approach permuted the statistic associated 

with each gene and re-calculated the gene-set scores for each permutation, and had the advantage of being 

computationally fast. However, the competitive test evaluates the null hypothesis that the composite score 

for a given gene set is different from the other gene sets (hence the term competitive). In contrast, the self-
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contained test (which permutes the samples for calculating the null distribution) addresses the null hypothesis 

of more direct biological interest, that the gene set does not contain genes whose expression levels are 

associated with the phenotype of interest. Further, the re-sampling strategy of the competitive test is gene-

based (as opposed to sample-based), which is not in-line with the experimental design and has the underlying 

assumption that the statistics associated with all the genes are independent.  Hence in our real data analysis 

we opted for using the self-contained test to evaluate the alternative that the gene set contains genes that are 

differentially expressed (associated with the phenotype) and also regulated by miRNAs. But since there is an 

additional permutation procedure to obtain the optimal shrinkage penalty in SCCA (e.g., using the 

CCA.permute function), the self-contained test is quite computationally burdensome (i.e. one permutation 

for finding multiple canonical vectors takes 10-20 minutes). So, despite the limitations we used the 

competitive test method for the simulation study. And though we used the self-contained test for real data 

analysis, we used the same shrinkage penalty from the original data set for each permutation.  

In our simulation study involving multiple gene sets, we found that when the sample size increased the 

permuted optimal parameter λ for SCCA might be very restrictive. This means that very few miRNAs and 

mRNAs will have non-zero loadings on the canonical correlation weight vectors. In this case, the power of 

SCCA will start to decrease for larger sample sizes. However, this situation is addressed by using the one 

standard deviation rule to select a larger λ and hence involve more miRNAs and mRNAs. 

Another possible extension to our SCCA-GSEA approach is to directly incorporate covariates. In our current 

research, we first detected down regulated differentially expressed miRNAs and then applied SCCA on these 

DE miRNAs and whole mRNA data sets to calculate canonical weight vectors. But in CCA we can directly 

incorporate a phenotype to identify features that are correlated across the whole miRNA and mRNA data sets 

and also correlated with the phenotype (Witten and Tibshirani, 2009). Then, we could use SCCA on the 

complete miRNA and mRNA data sets coupled with the covariates. The alternative approach allows 

extensions to survival data, multiple class data or quantitative data.   

SCCA often overlooks the structural or group effect within genomic data, which can be important (e.g., 

methylation probes in a MRI interact and work together as a group). In this case, group sparse canonical 

correlation analysis (Lin, et al., 2013) is introduced to analyze the relationship between two different types 
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of genomic data (i.e., methylated probes and gene expression in our research). We did do a preliminary 

application of the group SCCA method (Lin, et al., 2013) on our mRNA expression / gene methylation data. 

We start by obtaining initial canonical weight vectors by applying SCCA on the two data sets. Then, we treat 

each MRI as a group, and use the iterative group sparse CCA algorithm to obtain updated canonical weight 

vectors starting from the initial estimates from SCCA. Next, we create a GSEA score with the new canonical 

vectors based on the group SCCA approach by the same method we described in Chapter V. In future studies, 

we will conduct a simulation study for the group SCCA method and compared it with SCCA for detecting 

enriched gene sets.   

In conclusion, in this research we applied sparse canonical correlation analysis for both integrated analysis 

of mRNA expression / miRNA expression and mRNA expression / gene methylation. We then developed 

two novel gene set enrichment analysis statistics based on these integrated analysis using SCCA, and 

evaluated the performance on both real and simulated data sets. The performance of the proposed statistics 

shows promise for identifying biological pathways enriched for genes regulated by miRNA expression or 

gene methylation. Potential future extensions include using more sophisticated penalty functions and 

incorporating phenotypes directing into the GSEA statistic based on SCCA.    



111 

 

REFERENCES 

Abatangelo, L., et al. Comparative study of gene set enrichment methods. BMC bioinformatics 

2009;10:275-275. 

 

Baylin, S.B. DNA methylation and gene silencing in cancer. Nature clinical practice. Oncology 2005;2 

Suppl 1:S4-11. 

 

Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach 

to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57(1):289-

300. 

 

Bird, A. DNA methylation patterns and epigenetic memory. 2002(0890-9369 (Print)). 

 

Corney, D.C., et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell  

proliferation and adhesion-independent growth. Cancer research 2007;67(18):8433-8438. 

 

Efron, B. and Tibshirani, R. On testing the significance of sets of genes. 2007:107-129. 

 

Ferretti, E., et al. MicroRNA profiling in human medulloblastoma. International journal of cancer. Journal 

international du cancer 2009;124(3):568-577. 

 

Flynt, A.S. and Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid 

diversity. Nature reviews. Genetics 2008;9(11):831-842. 

 

Gifi, A. Nonlinear Multivariate Analysis. Wiley; 1990. 

 

Gonzalo, S. Epigenetic alterations in aging. Journal of applied physiology (Bethesda, Md. : 1985) 

2010;109(2):586-597. 

 

Gottardo, F., et al. Micro-RNA profiling in kidney and bladder cancers. Urologic Oncology: Seminars and 

Original Investigations 2007;25(5):387-392. 

 

Haines, T.R., Rodenhiser, D.I. and Ainsworth, P.J. Allele-specific non-CpG methylation of the Nf1 gene 

during early mouse development. Developmental biology 2001;240(2):585-598. 

 

Herman, J.G. and Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. 

The New England journal of medicine 2003;349(21):2042-2054. 

 

Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936;28:321. 

 

Jiang, Z. and Gentleman, R. Extensions to gene set enrichment. Bioinformatics (Oxford, England) 

2007;23(3):306-313. 

 

John, B., et al. Human MicroRNA Targets. PLoS Biol 2004;2(11):e363.

 

Jones, P.A. and Takai, D. The role of DNA methylation in mammalian epigenetics. Science (New York, 

N.Y.) 2001;293(5532):1068-1070. 

 



112 

 

Kanehisa, M., et al. The KEGG resource for deciphering the genome. Nucleic Acids Research 

2004;32(Database issue):D277-D280. 

 

Kozomara, A. and Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep 

sequencing data. Nucleic Acids Research 2014;42(Database issue):D68-D73. 

 

Kren, B.T., et al. microRNAs identified in highly purified liver-derived mitochondria may play a role in 

apoptosis. RNA biology 2009;6(1):65-72. 

 

Lai, Y., et al. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample 

expression data sets. BMC Genomics 2014;15(Suppl 1):S6. 

 

Lakshmipathy, U., et al. Micro RNA expression pattern of undifferentiated and differentiated human 

embryonic stem cells. Stem cells and development 2007;16(6):1003-1016. 

 

Lewis, B.P., et al. Prediction of Mammalian MicroRNA Targets. Cell 2003;115(7):787-798. 

 

Liang, Z., et al. mirAct: a web tool for evaluating microRNA activity based on gene expression data. 

Nucleic Acids Research 2011;39(Web Server issue):W139-W144. 

 

Lin, D., et al. Group sparse canonical correlation analysis for genomic data integration. BMC 

bioinformatics 2013;14(1):1-16. 

 

Lister, R., et al. Global Epigenomic Reconfiguration During Mammalian Brain Development. Science 

(New York, N.Y.) 2013;341(6146). 

 

Lister, R., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. 

Nature 2009;462(7271):315-322. 

 

Lu, J., et al. MicroRNA expression profiles classify human cancers. Nature 2005;435(7043):834-838. 

 

Nam, S., et al. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological 

functions of microRNA expression. Nucleic Acids Research 2009;37(Web Server issue):W356-W362. 

 

Nelson, K.M. and Weiss, G.J. MicroRNAs and cancer: past, present, and potential future. Molecular cancer 

therapeutics 2008;7(12):3655-3660. 

 

Nilsen, T.W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends in genetics : TIG 

2007;23(5):243-249. 

 

Parkhomenko, E., Tritchler, D. and Beyene, J. Sparse Canonical Correlation Analysis with Application to 

Genomic Data Integration. In, Statistical Applications in Genetics and Molecular Biology. 2009. p. 1. 

 

Poisson, L.M., Taylor, J.M. and Ghosh, D. Integrative set enrichment testing for multiple omics platforms. 

BMC bioinformatics 2011;12(1):1-11. 

 

Ritchie, M.E., et al. limma powers differential expression analyses for RNA-sequencing and microarray 

studies. Nucleic Acids Res 2015. 

 

Sales, G., et al. MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids 

Research 2010;38(Web Server issue):W352-W359. 

 

Schaefer, C.F., et al. PID: the Pathway Interaction Database. Nucleic Acids Research 2009;37(Database 

issue):D674-D679. 

 



113 

 

Seelan, R.S., et al. Developmental profiles of the murine palatal methylome. Birth defects research. Part A, 

Clinical and molecular teratology 2013;97(4):171-186. 

 

Smyth, G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in 

Microarray Experiments. In, Statistical Applications in Genetics and Molecular Biology. 2004. p. 1. 

 

Subramanian, A., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting 

genome-wide expression profiles. Proceedings of the National Academy of Sciences 2005;102(43):15545-

15550. 

 

Tatsuguchi, M., et al. Expression of microRNAs is dynamically regulated during cardiomyocyte 

hypertrophy. Journal of molecular and cellular cardiology 2007;42(6):1137-1141. 

 

Tian, L., et al. Discovering statistically significant pathways in expression profiling studies. Proceedings of 

the National Academy of Sciences of the United States of America 2005;102(38):13544-13549. 

 

Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. 

Series B (Methodological) 1996:267-288. 

 

Tibshirani, R., et al. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology) 2005;67(1):91-108. 

 

Ting, A.H., et al. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells 

in the absence of DNA methylation. Nature genetics 2005;37(8):906-910. 

 

Toedling, J., et al. Ringo--an R/Bioconductor package for analyzing ChIP-chip readouts. BMC 

bioinformatics 2007;8:221. 

 

Tucker, K.L. Methylated cytosine and the brain: a new base for neuroscience. Neuron 2001;30(3):649-652. 

 

Witten, D.M., Tibshirani, R. and Hastie, T. A penalized matrix decomposition, with applications to sparse 

principal components and canonical correlation analysis. Biostatistics 2009;10(3):515-534. 

 

Witten, D.M. and Tibshirani, R.J. Extensions of Sparse Canonical Correlation Analysis with Applications 

to Genomic Data. Statistical Applications in Genetics and Molecular Biology 2009;8(1):Article 28. 

 

Wossidlo, M., et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic 

reprogramming. Nature communications 2011;2:241. 

 

Zhan, M., et al. MicroRNA expression dynamics during murine and human erythroid differentiation. 

Experimental hematology 2007;35(7):1015-1025. 

 

  



114 

 

CURRICULUM VITA 

Dake Yang 

 Department of Biostatistics & Bioinformatics                                            Phone: (502) 432-2129                 

 University of Louisville                                                               Email:d0yang03@Louisville.edu 

 School of Public Health and Information Sciences 

 485 E. Gray St, Louisville, KY  40202 

 

EDUCATION 

 Ph.D. in Biostatistics                                                                              Sep. 2011 - present 

      Department of Biostatistics & Bioinformatics, University of Louisville 

      Advisor: Guy Brock, Ph.D 

 M.S. in Biostatistics                                                                                Sep. 2009 - May 2011 

      Department of Biostatistics & Bioinformatics, University of Louisville 

      Advisor: Guy Brock, Ph.D 

 B.S. in Statistics                                                                                      Sep. 2004 - May 2008 

Department of Mathematics, Beijing Institute of Technology, P. R. China. 

 

RESEARCH INTERESTS 

 Integrated analysis of miRNA-mRNA data and mRNA-methylation data



115 

 

 Empirical evaluation of methods to detect differentially expressed genes 

 Statistical bioinformatics, genomics, and high dimensional data 

 

PUBLICATIONS 

Published  

1. Yang, D., Parrish, R. S., & Brock, G. N. (2014). Empirical Evaluation of Consistency and Accuracy 

of Methods to Detect Differentially Expressed Genes Based on Microarray Data. Computers in 

Biology and Medicine, 46, 1–10. (Honorable Mention Paper (Top 10%), Computers in Biology and 

Medicine, 2014) 

2. Li, M., Yang, D., Brock, G. N., Knipp, R. J., Bousamra, M., Nantz, M.H., and Fu, X. A. (2015). 

Breath Carbonyl Compounds as Biomarkers of Lung Cancer. Accepted to Lung Cancer. 

3. Alton, T., Brock, G. N., Yang, D., Wilkings, D. A., Hertweck, S. P., Loveless, M. B. (2012). 

Retrospective Review of Intrauterine Device in Adolescent and Young Women. Journal of Pediatric 

and Adolescent Gynecology, 25(3), 195-200.  

 

In progress 

 Yang, D., Mukhopadhyay, P., Greene, R. M., Pisano, M. M., and Brock, G.N. (2015+). 

Integrated Analysis of miRNA-mRNA Expression profiles using Sparse Canonical Correlation Analysis.  

(planned submission to BMC Bioinformatics). 

 Mukhopadhyay, P., Brock, G., Yang, D., Greene, Robert. M., and Pisano, M. M. (2015+). 

Developmental gene expression profiling of mammalian, embryonic neural tube. (planned submission 

to Birth Defects Research, part A). 

 



116 

 

PRESENTATIONS 

 Poster presentations 

 “Integrated analysis of miRNA-mRNA expression profiles,” at Joint Statistical Meetings, 

Seattle, Washington. (August 2015, scheduled) 

 “Integrated analysis of miRNA-mRNA expression profiles,” at UT-KBRIN Bioinformatics 

summit, Buchanan, Tennessee. (March 2015) 

 “Consistency of Differentially Expressed Gene Rankings Based on Subsets of Microarray Data,” 

at UT-ORNL-KBRIN Bioinformatics Summit, Memphis, Tennessee. (March 2011) 

 

RESEARCH EXPERIENCE 

 Graduate Research Assistant                                                                     Sep 2011- present 

Department of Biostatistics & Bioinformatics, University of Louisville 

 

Methodological Research 

 Develop methods for integrated analysis of miRNA- mRNA expression profiles. MicroRNAs 

(miRNAs) are a large number of small endogenous non-coding RNA molecules (18-25 

nucleotides in length) which regulate expression of genes post-transcriptionally. While a variety 

of algorithms exist for determining the targets of miRNAs, they are generally based on sequence 

information and frequently produce lists consisting of thousands of genes. Canonical 

correlation analysis (CCA) is a multivariate statistical method that can be used to find linear 

relationships between two data sets, and here we apply CCA to find the linear combination of 

differentially expressed miRNAs and their corresponding target genes having maximal negative 

correlation.  Due to the high dimensionality, sparse CCA is used to constrain the problem and 

obtain a solution.  A novel gene set enrichment analysis statistic is proposed based on the sparse 



117 

 

CCA results for estimating the significance of predefined gene sets. The methods are illustrated 

with both a simulation study and real miRNA-mRNA expression data concerning the murine 

embryonic developing neural tube, and also other cancer data sets. 

  

Collaborative Research 

 Statistical support for the project “Confirmation of a VOC profile characteristic of lung cancer 

from exhaled human breath using chemoselective silicon microreactors,” (PI: Dr. Xiaoan Fu, 

J.B., Speed School of Engineering, University of Louisville), including developing 

classification models to assess the relationship between VOC markers and lung cancer cases / 

controls, and making ROC plots. 

 Statistical support for Dr. Emma M. Sterrett (Family Therapy Program Kent School of Social 

Work, University of Louisville) to assess the relationship between various types of adolescent 

support and delinquency / drinking age.  

 Statistical support for the project “Effects of Educational Intervention on Long-Term Outcomes 

of Hospitalized Children with Asthma,” (PI: Dr. Tania Condurache, Department of Pediatrics, 

University of Louisville School of Medicine), including testing for differences between the 

control and intervention groups on frequency of hospital visits, number of missed school days, 

etc. 

 Statistical support for the project “Predicting Percent Weight Loss in BARIA Surgical Patients 

Using EGG 7 Weeks Following Surgery” (PI: Dr. Thomas L. Abell., Department of Medicine, 

Gastroenterology, Hepatology and Nutrition, University of Louisville) including analyzing the 

BARIA study data to develop a multivariable model to predict the percent weight loss for 

various study groups. 

  

 



118 

 

COMPUTATIONAL SKILLS 

 Statistical software: proficient in R, SAS. 

 Applications: proficient in MS Office and LaTeX. 

 

HONORS AND AWARDS 

 University Fellowship at University of Louisville.                                                  2011 - 2013 

 Outstanding Student Award, Beijing Institute of Technology, P. R. China.            2005 - 2008 

 

REFERENCES 

 Guy Brock, Ph.D. 

Associate Professor, Department of Bioinformatics and Biostatistics, University of Louisville.   

guy.brock@louisville.edu, (502) 852-3444. 

 

 KB Kulasekera, Ph.D. 

Chair and Professor, Department of Bioinformatics and Biostatistics, University of Louisville.   

kb.kulasekera@louisville.edu, (502) 852-6422. 

 

 Maiying Kong, Ph.D. 

Associate Professor, Department of Bioinformatics and Biostatistics, University of Louisville.   

maiying.kong@louisville.edu, (502) 852-3988. 

mailto:guy.brock@louisville.edu
mailto:kb.kulasekera@louisville.edu
mailto:maiying.kong@louisville.edu


119 

 

 Dongfeng Wu, Ph.D. 

Associate Professor, Department of Bioinformatics and Biostatistics, University of Louisville.   

dongfeng.wu@louisville.edu, (502) 852-1888

 

mailto:dongfeng.wu@louisville.edu

	Integrated analysis of miRNA/mRNA expression and gene methylation using sparse canonical correlation analysis.
	Recommended Citation

	tmp.1461261563.pdf.b8hJ0

