
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

2-2012

Embedded non-interactive CAPTCHA for Fischer Random Chess. Embedded non-interactive CAPTCHA for Fischer Random Chess.

Ryan McDaniel
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
McDaniel, Ryan, "Embedded non-interactive CAPTCHA for Fischer Random Chess." (2012). Electronic
Theses and Dissertations. Paper 944.
https://doi.org/10.18297/etd/944

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143834428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/944
mailto:thinkir@louisville.edu

EMBEDDED NON-INTERACTIVE CAPTCHA FOR FISCHER

RANDOM CHESS

By

Ryan McDaniel

B.S., University of Louisville, 2006

A Thesis

 Submitted to the Faculty of the

 University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

February 2012

ii

APPROVAL PAGE

NON-INTERACTIVE EMBEDDED CAPTCHA

FOR FISCHER RANDOM CHESS

Submitted by:__________________________________

Ryan McDaniel

A Thesis Approved on

(Date)

By the Following Reading and Examination Committee:

Dr. Roman V. Yampolskiy, Thesis Director

Dr. Tim Hardin, Member

Dr. Dar-Jen Chang, Member

iii

ACKNOWLEDGMENTS

I am very thankful to my thesis advisor, Dr. Roman Yampolskiy, whose

encouragement, guidance and support from the initial to the final level enabled me to

develop a better understanding of the subject.

I would also like to make a special thanks to Dr. Annette Littrell, who provided

help and support every step of the way. It wouldn’t have been possible without you.

iv

ABSTRACT

Cheating in chess can take many forms and has existed almost as long as the

game itself. The advent of computers has introduced a new form of cheating into the

game. Thanks to the computational power of modern-day computers, a player can use a

program to calculate thousands of moves for him or her, and determine the best possible

scenario for each move and counter-move. These programs are often referred to as

“bots,” and can even play the game without any user interaction. In this paper, we

describe a methodology aimed at preventing bots from participating in online chess

games. The proposed approach is based on the integration of a CAPTCHA protocol into a

game scenario, and the subsequent inability of bots to accurately track the game states.

Preliminary experimental results provide favorable feedback for further development of

the proposed algorithm.

v

TABLE OF CONTENTS
APPROVAL PAGE ... ii

ACKNOWLEDGMENTS ... iii

ABSTRACT ...iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ..vi

I. THE IMPACT OF BOTS IN ONLINE GAMES .. 1

II. A LOOK INSIDE THE BEHAVIOR OF A BOT / PREVIOUS WORK ... 8

III. PROCEDURE .. 15

IV. RESULTS ... 22

V. CONCLUSION ... 25

REFERENCES .. 27

APPENDIX I. PROGRAM CODE ... 29

APPENDIX II. FEEDBACK FORM ... 68

VITA ... 69

vi

LIST OF FIGURES

FIGURE 1 - A POKER BOT BEING USED IN MULTIPLE GAMES [7]. ... 3
FIGURE 2 - AN EXAMPLE OF FISCHER RANDOM CHESS STARTING POSITIONS [15]. .. 6
FIGURE 3 - A FULLY AUTONOMOUS CHESS BOT IN ACTION [16]. .. 9
FIGURE 4 - A TYPICAL CHESS LOG [13]. ... 10
FIGURE 5 - A BOT COMPARES AN IMAGE IN ITS DATABASE WITH THE IMAGES IT SEES ON THE BOARD [17]. . 11
FIGURE 6 - SEVERAL EXAMPLES OF A TEXT-BASED CAPTCHA TEST [18]. .. 12
FIGURE 7 - A GRAPH SHOWING THE TYPE OF DATA THAT CAN BE GATHERED USING SERVER-SIDE BOT

DETECTION. THE BOTS DEMONSTRATE MUCH MORE REPETITIONS IN THEIR MOVEMENT PATTERN [5]. .. 13
FIGURE 8 - STANDARD CHESS BOARD LAYOUT. ... 16
FIGURE 9 - DISTORTION USING THE TEXT BOX. .. 17
FIGURE 10 - DISTORTION USING THE TRACK BAR. .. 18
FIGURE 11 - FISCHER RANDOM CHESS. .. 21
FIGURE 12 - ALTERNATE SET OF PIECES. .. 21
FIGURE 13 - A CAPTCHA VERSION OF THE KING OF HEARTS [4]. .. 23
FIGURE 14 - THERE ARE MULTIPLE WAYS TO PRESENT THE SAME CHESS PIECE OR POKER CARD. MORE

IMAGE SETS WILL COMPLICATE THE MATCHING PROCESS FOR A BOT [4]. .. 24

1

I. THE IMPACT OF BOTS IN

ONLINE GAMES

 Chess programs have been designed and implemented on computers since the

1950’s. In 1950, Claude E. Shannon published “Programming a Computer for Playing

Chess,” in which he presented a chess computer as possible proof of artificial

intelligence:

 “The chess machine is an ideal one to start with, since: (1) the problem is

sharply defined both in allowed operations (the moves) and in the ultimate goal

(checkmate); (2) it is neither so simple as to be trivial nor too difficult for satisfactory

solution; (3) chess is generally considered to require "thinking" for skillful play; a

solution of this problem will force us either to admit the possibility of a mechanized

thinking or to further restrict our concept of "thinking"; (4) the discrete structure of chess

fits well into the digital nature of modern computers.” [1]

 At first, these chess programs were created only to test the waters of what

computing could do to enhance the game. However, over the years, programs like Rybka

have become very powerful [2]. In 1997, a computer built by IBM, called Deep Blue,

beat then-world champion Garry Kasparov, marking the first time a computer was able to

beat a reigning world champion [3]. Some of the chess programs available today include

2

databases of past games, and provide numerous ways for players to learn the game and

improve their skills. These aspects are certainly positive; however, there are other forms

of computer-assisted chess which are not.

While cheating in chess can take many forms and has existed almost as long as

the game itself, the advent of computers has introduced a new form of cheating into the

game. Robots, or “bots,” are computer programs that can read a chessboard and the

pieces, determine the best possible move to make, and either recommend the move to a

player or make the move for them [4]. These bots are easily accessible, and can be very

difficult to detect. Chess is not the only game plagued by bots, however. These

technology cheats are very common in online games today, from traditional games such

as poker and chess, all the way up to complex Massively Multiplayer Online Roleplaying

Games (MMORPG) games like Blizzard Entertainment’s World of Warcraft [5]. Keeping

bots from ruining the game for honest players requires a constant effort, since whenever a

game update to eliminate bots is implemented, the bot creators update their bot to

circumvent the latest fix [6].

3

FIGURE 1 - A poker bot being used in multiple games [7].

 Although there are different motives for a person to use a bot in an online game,

the most obvious is money. Poker is an easy target in this case, as money can be won by

simply breaking even, thanks to the rewards programs offered through various sites [8].

Chess, on the other hand, is not normally played for the purpose of winning money. This

would not be the situation if it was not for bots. Ranked chess matches are quite popular,

though, and cheating to attain a higher rank is not unheard of. Perhaps the answer lies in

the psychology of winning, which makes people feel better about themselves, even if

they had to cheat to do it [9].

 Cheating in online gaming can have far-reaching impact on honest players. For

example, online poker is played for money, and only one player wins per match. If

someone is cheating with a bot, then they are having a direct impact on the other players

4

by taking money from them [10]. Poker is gambling, however, and whenever money is

involved, you can expect dishonesty as well. Chess, on the other hand, has traditionally

been about the spirit of the game. Quintessentially, chess is a war campaign, with two

players battling it out, planning their short-term and long-term strategies, and utilizing

either an offensive or defensive game plan. Inevitably, some plans end in defeat, some in

victory, and yet still some end with a draw. In this regard, it is easy to see how one player

planning his moves with a computer has a very unfair advantage over the other. The

game is not intended to be played this way, so the chess-playing community gets

frustrated with cheating players. Unknowingly playing a game of chess against a bot may

have varied repercussions. Some players may just brush off the loss, attributing it to a

stronger opponent, and trying to learn from it; they may or may not be suspicious that

cheating was involved. Others may get so frustrated that they quit playing chess

altogether after a few encounters [11]. It is the latter group that makes preventing

cheating so very important. Quickly and accurately identifying a bots’ presence in an

online game is crucial; false positives cannot be tolerated.

 Not everyone agrees that using a computer to assist you in a chess game is

considered cheating. In fact, Gary Kasparov, the same man that played against IBM’s

Deep Blue computer, created a form of chess involving computers called Advanced

Chess. The idea of Advanced Chess is that a human player teams up with a computer to

challenge another human-computer team to a game of chess.

Some advocates of Advanced Chess believe that it can increase competitiveness

in chess matches and show how impressive the game can be when no mistakes are made

and tactics are used at the highest level. The computer’s ability to avoid mistakes and

5

analyze tactics, combined with the strategy of a human player, gives the audience a very

compelling look at the game of chess [12].

Kasparov played against Veselin Topalov in the first Advanced Chess event in

1998, with Kasparov using Fritz 5 [13] to assist him and Topalov using Chessbase 7 [12].

The match went six games, ending in a 3-3 tie [14]. Recognizing there are strengths and

weaknesses in both human and computer players, Advanced Chess attempts to

counterbalance the disparities to make a very impressive game of chess.

A computer chess program has advantages over a human in certain areas, such as

being able to process and evaluate data in fractions of a second. A computer program

may also have access to large databases of opening moves, called opening books, which

give a significant advantage at the beginning of a match. Hash tables can also be used by

a computer opponent towards the end of the game to look up from the database the best

possible moves to make, allowing for a flawless finish to a match [12].

A human chess player has some advantages over a computer as well, though. A

strong human chess player is able to develop long term strategies early on in the match

that a computer will not be able to analyze. Human players also only analyze moves that

will have an impact on the game, as opposed to a computer analyzing every possible

move. The long term effects of a move can be understood by a human player, while

computers still can’t calculate far enough ahead to tell the consequences of moves during

the middle of the game [12]. Advanced Chess illustrates the fact that having computers

involved with chess is not necessarily always a bad thing.

6

 Another interesting style of chess was created by one of the greatest chess players,

Bobby Fischer, in 1996. Fischer Random Chess, or Chess960, changes the initial starting

position of the pieces. The rules are as follows:

 Pawns are placed on the second row, just like in normal chess

 The king must be placed between the two rooks

 The bishops must be placed on opposite colored squares

 All other pieces are placed randomly

 The black pieces are placed in the same order as the white pieces

The idea is that the back row will be randomized, with the bishops on opposite

colored squares and the king is between the two rooks, as in basic chess. Once one back

row is randomized and set, the other back row is set in the same order.

FIGURE 2 - An example of Fischer Random Chess starting positions [15].

7

This style of chess places more value on creativity than memorizing opening

moves, as in normal chess. Since computer chess programs rely heavily on huge

databases of opening moves to predict and strategize, this style of chess can confuse a

bot. There are 960 possible starting positions in Fischer Random Chess, so the size of a

database with all possible opening moves would be staggering and prohibitive. Fischer

Random Chess, therefore, is a strong candidate for bot prevention.

 This research attempts to use Fischer Random Chess and some graphical User

Interface elements to prevent a bot from having an impact on a game. The focus of chess

should be on strategy and tactics, without concern as to whether or not the other player is

cheating. In standard chess, every piece begins at the same position every game, making

it easy for a bot to simply track the movements and not need to know what a piece looks

like. By using Fischer Random Chess, the bot loses the advantage of knowing where each

piece will start.

8

II. A LOOK INSIDE THE

BEHAVIOR OF A BOT /

PREVIOUS WORK

A robot or “bot”, for the purposes of this research, can be described as an

artificially intelligent program, with either partial or full autonomy, that assists a player in

an online game [4]. One must understand how a bot works before one can discuss how to

combat it. A typical bot program will go through three basic steps, the first of which is

collecting data for the input. The second step is the heart of the program, where the

collected data will be used to create a course of action, predicated by the bots’ purpose

and design. For example, in this step, a poker bot would determine the action a player

should take, while a chess bot would determine which piece should be moved. In step

three, the bot will output the desired action to the player, or even perform that action for

the player, in the case of a fully autonomous bot.

9

FIGURE 3 - A fully autonomous chess bot in action [16].

 Bots commonly collect input data in one of two ways. A chess server may give

the location of pieces in a log file, possibly even in real time, making it very easy to

gather the information needed for a bot to process the locations and determine a move.

10

FIGURE 4 - A typical chess log [13].

If the data is not available via a log file, a second data collection option is called

screen scraping [8]. In the case of chess, the bot will compare the images on the board

with images in its database. The bot can then essentially know which piece is a king,

which is a queen, etc. The position of each piece is also easily determined, since the

board is an image as well. As a result, the bot can look at the board, identify each piece,

11

and its respective location, and process that information to determine the best move to

make.

FIGURE 5 - A bot compares an image in its database with the images it sees on the board [17].

A popular method of ensuring the players involved in a game are, in fact, human

players is “Completely Automated Public Turing test to tell Computers and Humans

Apart” (CAPTCHA). A typical CAPTCHA test will present the player with distorted text,

and then require them to type that text into a box in order to continue. A computer

program will be unable to read the text and respond correctly, preventing the bot from

continuing beyond that point [4].

12

FIGURE 6 - Several examples of a text-based CAPTCHA test [18].

 There are, however, ways to beat a CAPTCHA test. A bug in the CAPTCHA may

be exploited to bypass the CAPTCHA test completely. Also, Optical Character

Recognition (OCR) software is improving, allowing the bot to “read” the CAPTCHA

text. Finally, the bot may present the CAPTCHA to the player as a part of the program.

Due to the limitations of a CAPTCHA test, it is not an ideal solution for bot prevention;

the test can be easily defeated if it is presented at the beginning of the game, and the test

becomes an inconvenience to the player if it is presented during the game [19].

 Research on bot detection and prevention in online games has expanded over the

past few years, with methodologies ranging from direct impact on the player’s game

experience, to total transparency, with varying degrees of success. Input devices could be

used as a type of hardware-based CAPTCHA; for example, a joystick could be used as a

CAPTCHA device, or a specially designed keypad could be used to input a series of

characters at certain points during a game [19]. However, both of these options require

special hardware, and keying in characters on a keypad would have a direct negative

impact on the game experience, as it draws the players’ attention away.

13

 Embedding a CAPTCHA into the game itself is a clever idea. However, it can be

difficult to implement properly. Randomizing certain aspects of the game can make it

much more difficult for a bot to participate. Randomization creates a non-interactive

CAPTCHA type of test, as the bot will have to analyze options; however, it is not a

particularly powerful deterrent since it can be solved. A more formal test could be

presented to a player as well, in the form of a simple text-based or image-based

CAPTCHA, in order to allow access to various aspects of the game [20]. This type of test

would at least force some human interaction, adding only minor disruption to the playing

experience, ensuring that a bot cannot operate completely autonomously.

 Server-side bot detection is a method that is transparent to users, and typically

focuses on the behavioral patterns of game clients. For example, the movement pattern of

a character can be analyzed for overly repetitious actions to determine whether a bot or a

human is in control [5].

FIGURE 7 - A graph showing the type of data that can be gathered using server-side bot detection. The bots

demonstrate much more repetitions in their movement pattern [5].

14

Also, input data from devices such as a mouse or keyboard could be analyzed for

button-press-length and interval to determine if a bot is controlling a character [6].

Server-side bot detection requires some resources to analyze the data that is collected,

however, and could possibly be circumvented by a bot program [21]. Once a bot is

removed from the game, the bot creator can easily change the program to avoid the

behavior that resulted in detection.

This research focuses on a type of embedded CAPTCHA, which can be non-

interactive during gameplay. This is achieved by creating a chess interface which

incorporates user-determined deterrents for bots, including skewing the resolution and/or

rotating the chess pieces. In this type of environment, bot detection actually becomes

secondary to bot prevention. By skewing the resolution and rotation of the chess pieces,

the pieces no longer “fit” into a bot’s repertoire of known chess entities. A further

complication for bots is introduced with a randomization option, which rearranges the

back row of both team’s pieces according to the rules for Fisher Random Chess [15].

Also known as Chess960, this semi-random variant adds a new element to the beginning

of a match.

Conversely, in classical chess, opening moves, or opening books, are finite and

can be studied and memorized. Computers have clear advantages in a classical match, as

they can have access to huge databases of opening books; with that access, a computer

can evaluate the possibilities and choose the optimal move in nanoseconds. The nature of

Fischer Random Chess prevents tracking of pieces from the initial board position, which

would be possible in classical chess.

15

III. PROCEDURE

 Written in C#, the software contains menu, grid, and options elements. The grid

consists of sixty-four separate panels, each representing a single space on a chess board.

Each 100x100 pixel panel is added to a two-dimensional array, arranged in an 8 panel x 8

panel square. This layout makes it simple to place a chess board image behind the

panels, allowing the panels themselves to contain the chess piece images. While standard

functions are used to determine the movability of pieces, it’s the resolution, rotation, and

randomization which provide additional ammunition to prevent bot play, and protect the

players who simply wish to pursue a challenging game of chess against another human

opponent.

 The algorithm is based on two morphing functions:

Rotate Image Function:

 Accepts image data type as argument

 Generate random number between -35 and +35

 Create new bitmap from image passed in

16

 Create new graphics object from bitmap and rotate

 Draw image back to bitmap form and return it

Reduce Resolution Function:

 Accepts image and integer data types as arguments

 Pass image to Rotate Image Function

 Create new bitmap image from rotated image with new size based on input

FIGURE 8 - Standard chess board layout in the developed software.

 As shown in Figure 8, functions to adjust the resolution and rotation of the chess

pieces have been added to the user interface, using a text box on the right-hand side of the

form to accept entry of an integer between zero and ninety-nine. Once a valid number is

entered into the text box and the adjacent “Ok” button is pressed, the resolution of all

17

pieces is decreased by the value entered, as a percentage, and a rotation between -35

degrees and +35 degrees is applied to each piece individually. This will result in all

pieces having the same resolution reduction, but a different rotation for each piece (see

Figure 9).

FIGURE 9 - Distortion using the text box.

Track Bar Function:

 Track bar minimum is 0, maximum is 5, increments by 1

 Generate random number between 5 and 10 and multiply it by track bar value

 Pass image and random number to Resolution Reduction Function

 Repeat steps 2 and 3 for each image to give every piece a different rotation and

reduction

18

 Below the text box is a track bar that can be used to increment the distortion of

the pieces in a slightly different way (Figure 10). The track bar consists of six values,

starting with zero at the bottom and incrementing by one to five at the very top notch.

The track bar starts at zero by default. When incremented, the track bar value is

multiplied by a random number, labeled randNum, between five and ten, and passed on

to the resolution reduction function. A new random number is generated for each chess

piece, giving a certain amount of randomness to the resolution reduction of each

individual piece. Incrementing the track bar increases the value to be multiplied by the

random number, somewhat guaranteeing an increase in distortion as the track bar is

incremented.

FIGURE 10 - Distortion using the track bar.

19

Fischer Random Chess Function:

 Assign const integers to pieces (example: EMPTY = 0, KING = 1, QUEEN = 2,

etc.)

 Create two lists to keep track of empty spaces in the back row, one for odd and

one for even spaces

 Create an array to hold piece positions in the back row

 Generate a random number between 1 and 6 to place the KING

 Place KING into back row array at index just generated

 Generate 2 random numbers for placing ROOK. These must be between 0 and

KING index, KING index and 7

 Place ROOK into back row array, 1 at each index just generated

 Update even and odd lists so no pieces are placed on occupied spaces

 Generate random number between 0 and even list size

 Place BISHOP into back row array at index just generated

 Generate random number between 0 and odd list size

 Place BISHOP into back row array at index just generated

 Update odd and even lists

20

 Consolidate odd and even lists into 1 empty spaces list since no remaining pieces

have an odd or even requirement

 Generate random number between 0 and empty spaces list size

 Place QUEEN into back row array at index just generated

 Update empty spaces list

 Place KNIGHT into back row array at last 2 remaining indices

As illustrated in Figure 11, when the “Randomize!” button below the track bar is

selected, the program rearranges the back row of both team’s pieces according to the

rules set forth for Fischer Random Chess. Another function, RandomResolution, is called

to distort the images as well. A random value, between five and thirty percent, is chosen

for resolution reduction and applied to every piece on the board. Rotation is again applied

to each piece individually. The “Randomize!” button may be pressed as many times as

desired; however, once a piece has been moved, the game is officially started and the

button is disabled. Distortion of the pieces can still be controlled via the other two

methods at any point during the game.

21

FIGURE 11 - Fischer Random Chess as implemented in the developed software.

 Finally, Figure 12 shows that different sets of pieces can be selected to replace the

standard black and white pieces and increase the difficulty of a bot successfully

identifying them.

FIGURE 12 - Alternate set of pieces.

22

IV. RESULTS

 Each user filled out a feedback form during testing, located in Appendix II, and

the results were consistent. The form was used to collect some background information

from the players to get an idea of their skill level at chess and determine how long it took

them to adjust to the distorted pieces. Adjusting to the altered appearance of the pieces

took most users a few seconds regardless of their skill level; after an average of four

moves, none of the players had any trouble differentiating between pieces. Very few

mistakes were made by the players. Some users did mention that additional changes

could be implemented to make distinguishing pieces easier. For example, a letter

representing the piece could be added to the image in a distorted way as well, similar to

the poker card below.

23

FIGURE 13 - A CAPTCHA version of the King of Hearts [4].

Humans are much better than computers at identifying patterns in an image [22].

Most modern text-based CAPTCHAs rely on letters which have been distorted.

Therefore, distorting and rotating an image should prove very difficult for a bot to detect.

Including additional distortion effects will increase the difficulty of programming a bot to

read the pieces. For example, a skewing function would further help to prevent detection.

 However, there are weaknesses to this approach to bot prevention. If there is only

one available set of images for the chess pieces, then a bot simply has to compare the

known images to distorted ones and make a guess based on similarity. This method could

be fairly accurate, so it would be important to include multiple sets of images that can be

used. Tracking piece movements could also give a bot clues as to what the pieces are; the

bot may be fooled at the start, but as the game progresses, the movement trail left by the

opponent may allow the bot to identify the pieces and resume control of the board.

24

FIGURE 14 - There are multiple ways to present the same chess piece or poker card. More image sets will

complicate the matching process for a bot [4].

The feedback, gathered from players with skill levels ranging from beginner to

advanced, is promising. Players rated the difficulty of reading the pieces on a scale of one

to ten, with an average rank of 6.5. However, the average number of moves to adjust to

the distorted pieces was only 3.75, indicating that although this approach has a direct

impact on the game experience, the user’s ability to play the game is not hindered. The

relatively high level of difficulty to read the pieces can be seen as a good indicator that a

bot will have a hard time determining what the pieces are as well. The low number of

moves to adjust to the distortion is a good sign that the player’s experience will not be

affected a great deal.

25

V. CONCLUSION

 The program is designed to prevent a bot’s ability to read a chess board, which

renders the bot harmless and unable to suggest or make moves for the opposing player.

This is accomplished by altering the visual aspects of the chess pieces on the board via

user-controlled changes in resolution and/or rotation of the pieces; this skewing makes

the pieces unrecognizable by a bot, while allowing human players to identify the pieces.

With the added ability to play the game using the rules of Fischer Random Chess, a bot’s

inability to read the piece positions would prevent unfair advantages. However, this

method is not without its disadvantages. For example, a bot may be able to identify a

piece simply by the movement: a piece moving two places forward and one to the left is

clearly a knight. In this manner, a bot could eventually identify each piece on the board.

This is mitigated somewhat by the fact that the game would be well under way by this

point.

 Additional research into bot prevention is clearly needed. One path may be further

altering the area of CAPTCHA tests. For example, added altering of visual elements --

such as skewing or stretching -- could be tested. Other user-interface changes could

include multiple image sets for swapping. These options continually evolve as standard

26

CAPTCHA research moves forward. Additionally, although distorted audio or program-

initiated questioning are alternatives to standard CAPTCHA tests, those methods could

not be used with chess pieces. However, some of these methods are very creative; it is

possible future research could find a way to incorporate an alternative method into the

game of chess.

 Breaking down a CAPTCHA is not always considered a total loss, as there are

some positives that arise from it. For one, a weakness in the CAPTCHA has to be

exposed, which can be fixed to strengthen the test in future revisions. But also, it is

important to note that programming a bot to break a CAPTCHA test can be considered an

advancement in Artificial Intelligence, as a bot has to try to emulate how a human would

think in order to pass the test. This kind of competition is very important for promoting

advancement in the fields of both Artificial Intelligence and security.

27

REFERENCES

[1] C. E. Shannon, "Programming a Computer for Playing Chess," Phil. Mag., 41, March

1950.

[2] "Rybka, for the Serious Chess Player", rybkachess.com, http://rybkachess.com/

(accessed June 2011).

[3] "Ibm Research | Deep Blue | Overview", IBM,

http://www.research.ibm.com/deepblue (accessed January 2011).

[4] Yampolskiy, R. and Govindaraju, V. "Embedded Noninteractive Continuous Bot

Detection." ACM Computers in Entertainment 5, no. 4 (2008).

[5] Mitterhofer, S., Platzer, C., Kruegel, C., and Kirda, E. "Server Side Bot Detection in

Massively Multiplayer Online Games." IEEE Security and Privacy 7, no. 3

(2009): 29-36.

[6] Gianvecchio, S., Wu, Z., Xie, M., Wang, H. "Battle of Botcraft: Fighting Bots in

Online Games with Human Observational Proofs." In 16th ACM conference on

Computer and Communications Security. New York, NY, USA, 2009.

[7] Michalski, Dan, "Rise of the (Real) Poker Bots", Pokerati.com,

http://pokerati.com/2008/06/10/programmer-reveals-his-secrets-rise-of-the-real-

poker-bots-artificial-opponents-emerge-from-dallas-underground-collude-online/

(accessed June 2011).

[8] Devlin, James, "How I Built a Working Poker Bot, Part 1", Coding the Wheel,

http://www.codingthewheel.com/archives/how-i-built-a-working-poker-bot

(accessed January 2011).

[9] Whitbourne, Susan. "Excuses, Excuses, Excuses: Why People Lie, Cheat, and

Procrastinate." In Fulfillment at Any Age: Psychology Today, 2010.

[10] Kushner, D. "On the Internet, Nobody Knows You’re a Bot." Wired Magazine 13,

no. 9 (2005). [accessed January 2011].

[11] "Ethical Cheating in Online Chess", The Chess Corner,

http://amirbagheri.virtuaboard.com/t34-ethical-cheating-in-online-chess (accessed

January 2011).

[12] Friedel, Frederic, "Advanced Chess – General Info", ChessBase,

http://www.chessbase.com/EvenTS/events.asp?pid=133 (accessed January 2011).

[13] "Fritz Chess", Chessbase.com http://www.chessbase.com/shop/product.asp?pid=467

(accessed January 2011).

[14] Friedel, Frederic, "Advanced Chess Match Leon 1998", ChessBase,

http://www.chessbase.com/events/events.asp?pid=68 (accessed June 2011).

http://rybkachess.com/
http://www.research.ibm.com/deepblue
http://pokerati.com/2008/06/10/programmer-reveals-his-secrets-rise-of-the-real-poker-bots-artificial-opponents-emerge-from-dallas-underground-collude-online/
http://pokerati.com/2008/06/10/programmer-reveals-his-secrets-rise-of-the-real-poker-bots-artificial-opponents-emerge-from-dallas-underground-collude-online/
http://www.codingthewheel.com/archives/how-i-built-a-working-poker-bot
http://amirbagheri.virtuaboard.com/t34-ethical-cheating-in-online-chess
http://www.chessbase.com/EvenTS/events.asp?pid=133
http://www.chessbase.com/shop/product.asp?pid=467
http://www.chessbase.com/events/events.asp?pid=68

28

[15] "Fischer Random Chess Starting Positions", frcec.tripod.com,

http://frcec.tripod.com/fischerrandomchessstartingpositions/ (accessed June

2011).

[16] "Chess Buddy", Playbuddy.com http://www.playbuddy.com/chess.php (accessed

January 2011).

[17] Embedded Captcha for Fischer Random Chess. University of Louisville.

[18] "Captcha." 2011. wikipedia.org, http://en.wikipedia.org/wiki/CAPTCHA.

[19] Golle, P. and Ducheneaut, N. "Preventing Bots from Playing Online Games." ACM

Computers in Entertainment 3, no. 3 (2005).

[20] Bushell, David. "In Search of the Perfect Captcha." Smashing Magazine (2011).

http://coding.smashingmagazine.com/2011/03/04/in-search-of-the-perfect-captcha

[accessed June 2011].

[21] Bethea, D., Cochran, R. and Reiter, M. "Server-Side Verification of Client Behavior

in Online Games." In Proceedings of the 17th Annual Network and Distributed

System Security Symposium of the Internet Society. San Diego, California, 2010.

[22] Strickland, Jonathan, "How Captcha Works", Howstuffworks.com,

http://computer.howstuffworks.com/captcha.htm/printable (accessed June 2011).

http://frcec.tripod.com/fischerrandomchessstartingpositions/
http://www.playbuddy.com/chess.php
http://en.wikipedia.org/wiki/CAPTCHA
http://coding.smashingmagazine.com/2011/03/04/in-search-of-the-perfect-captcha
http://computer.howstuffworks.com/captcha.htm/printable

29

APPENDIX I. PROGRAM CODE

/* Written by Ryan McDaniel for M Eng. thesis in *

 * Computer Engineering and Computer Science *

 * University of Louisville *

 * Email: ryan.mcdaniel@louisville.edu *

 * Last updated March 10, 2011 */

using System;

using System.Drawing;

using System.Drawing.Imaging;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Drawing.Drawing2D;

namespace ChessBotBreaker

{

 public partial class Form1 : Form

 {

 static string workingDirectory;

 static Image king_reduced_bk;

 static Image queen_reduced_bk;

 static Image bishop_reduced_bk;

 static Image knight_reduced_bk;

 static Image rook_reduced_bk;

 static Image pawn_reduced_bk;

 static Image king_reduced_wh;

 static Image queen_reduced_wh;

 static Image bishop_reduced_wh;

 static Image knight_reduced_wh;

 static Image rook_reduced_wh;

 static Image pawn_reduced_wh;

 static Image board;

 int begin; //Flag to disable

Randomize button and Game Type options

 private string gameType = "Standard";

 private int[] backRow = new int[8]; //This array is

used for randomizing the starting positions of the back rows

 private Panel[,] grid = new Panel[8, 8]; //This 8x8 2D array

will represent a 64 square chess board

 private Panel[] moveArray = new Panel[0]; //This array will

represent all possible legal moves a piece can make

 const int EMPTY = 0;

30

 const int KING = 1;

 const int QUEEN = 2;

 const int BISHOP = 3;

 const int KNIGHT = 4;

 const int ROOK = 5;

 ChessBoard chBoard;

 Rook bkRK1, bkRK2, whRK1, whRK2;

 Knight bkKN1, bkKN2, whKN1, whKN2;

 Bishop bkBI1, bkBI2, whBI1, whBI2;

 King bkKI, whKI;

 Queen bkQU, whQU;

 Pawn bkPA1, bkPA2, bkPA3, bkPA4, bkPA5, bkPA6, bkPA7, bkPA8;

 Pawn whPA1, whPA2, whPA3, whPA4, whPA5, whPA6, whPA7, whPA8;

 ChessPiece tempPieceSource, tempPieceDest; //These are

used for picking up and moving a chess piece

 Panel tempSource, tempDest; //These are

used for picking up and moving a chess piece

 bool isMoveValid, isOpposingPiece;

 bool isNorthOrNWFinished, isSouthOrSEFinished,

isEastOrNEFinished; //Used during the creation of the array that

holds all valid moves a piece can make

 int turnFlag = 1; //0 = black

turn, 1 = white turn

 private Rectangle imageBox; //Used in the

RotateImage function to adjust the size of the image

 public Form1()

 {

 InitializeComponent();

 InitializeImages();

 backRow[0] = ROOK;

 backRow[1] = KNIGHT;

 backRow[2] = BISHOP;

 backRow[3] = QUEEN;

 backRow[4] = KING;

 backRow[5] = BISHOP;

 backRow[6] = KNIGHT;

 backRow[7] = ROOK;

 begin = 0;

 BoardSetup();

 //Begin the game with pieces randomly placed according to

Fischer Random Chess rules

 //RandomChess();

 //RandomResolution();

 GridSetup();

 }

 private void GridSetup()

 {

 //Creates a grid to represent a 64 square chess board

 Panel[] rowOne = new Panel[8] { panel2, panel3, panel4,

panel5, panel6, panel7, panel8, panel9 };

 Panel[] rowTwo = new Panel[8] { panel10, panel11, panel12,

panel13, panel14, panel15, panel16, panel17 };

31

 Panel[] rowThree = new Panel[8] { panel18, panel19,

panel20, panel21, panel22, panel23, panel24, panel25 };

 Panel[] rowFour = new Panel[8] { panel26, panel27, panel28,

panel29, panel30, panel31, panel32, panel33 };

 Panel[] rowFive = new Panel[8] { panel34, panel35, panel36,

panel37, panel38, panel39, panel40, panel41 };

 Panel[] rowSix = new Panel[8] { panel42, panel43, panel44,

panel45, panel46, panel47, panel48, panel49 };

 Panel[] rowSeven = new Panel[8] { panel50, panel51,

panel52, panel53, panel54, panel55, panel56, panel57 };

 Panel[] rowEight = new Panel[8] { panel58, panel59,

panel60, panel61, panel62, panel63, panel64, panel65 };

 for (int i = 0; i < 8; i++)

 {

 grid[0, i] = rowOne[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[1, i] = rowTwo[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[2, i] = rowThree[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[3, i] = rowFour[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[4, i] = rowFive[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[5, i] = rowSix[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[6, i] = rowSeven[i];

 }

 for (int i = 0; i < 8; i++)

 {

 grid[7, i] = rowEight[i];

 }

 }

 private void InitializeImages()

 {

 //This function changes the images of the pieces and the

board

 if (gameType == "Standard")

 {

 workingDirectory = @"C:\Users\RCM-MAC\Documents\Visual

Studio 2008\Projects\ChessBotBreaker\ChessBotBreaker\bin\Standard\";

 king_reduced_bk = Image.FromFile(workingDirectory +

@"king_bk.png");

32

 queen_reduced_bk = Image.FromFile(workingDirectory +

@"queen_bk.png");

 bishop_reduced_bk = Image.FromFile(workingDirectory +

@"bishop_bk.png");

 knight_reduced_bk = Image.FromFile(workingDirectory +

@"knight_bk.png");

 rook_reduced_bk = Image.FromFile(workingDirectory +

@"rook_bk.png");

 pawn_reduced_bk = Image.FromFile(workingDirectory +

@"pawn_bk.png");

 king_reduced_wh = Image.FromFile(workingDirectory +

@"king_wh.png");

 queen_reduced_wh = Image.FromFile(workingDirectory +

@"queen_wh.png");

 bishop_reduced_wh = Image.FromFile(workingDirectory +

@"bishop_wh.png");

 knight_reduced_wh = Image.FromFile(workingDirectory +

@"knight_wh.png");

 rook_reduced_wh = Image.FromFile(workingDirectory +

@"rook_wh.png");

 pawn_reduced_wh = Image.FromFile(workingDirectory +

@"pawn_wh.png");

 imageBox = new Rectangle(0, 0, 300, 300);

 board = Image.FromFile(workingDirectory +

@"board.png");

 BoardSetup();

 }

 if (gameType == "UL/UK" && begin == 0)

 {

 workingDirectory = @"C:\Users\RCM-MAC\Documents\Visual

Studio 2008\Projects\ChessBotBreaker\ChessBotBreaker\bin\ULUK\";

 king_reduced_bk = Image.FromFile(workingDirectory +

@"king_ul.png");

 queen_reduced_bk = Image.FromFile(workingDirectory +

@"queen_ul.png");

 bishop_reduced_bk = Image.FromFile(workingDirectory +

@"bishop_ul.png");

 knight_reduced_bk = Image.FromFile(workingDirectory +

@"knight_ul.png");

 rook_reduced_bk = Image.FromFile(workingDirectory +

@"rook_ul.png");

 pawn_reduced_bk = Image.FromFile(workingDirectory +

@"pawn_ul.png");

 king_reduced_wh = Image.FromFile(workingDirectory +

@"king_uk.png");

 queen_reduced_wh = Image.FromFile(workingDirectory +

@"queen_uk.png");

 bishop_reduced_wh = Image.FromFile(workingDirectory +

@"bishop_uk.png");

 knight_reduced_wh = Image.FromFile(workingDirectory +

@"knight_uk.png");

33

 rook_reduced_wh = Image.FromFile(workingDirectory +

@"rook_uk.png");

 pawn_reduced_wh = Image.FromFile(workingDirectory +

@"pawn_uk.png");

 imageBox = new Rectangle(0, 0, 600, 600);

 board = Image.FromFile(workingDirectory +

@"chessboard_golden2b.png");

 BoardSetup();

 }

 if (gameType == "UL/UK2" && begin == 0)

 {

 workingDirectory = @"C:\Users\RCM-MAC\Documents\Visual

Studio 2008\Projects\ChessBotBreaker\ChessBotBreaker\bin\ULUK\";

 king_reduced_bk = Image.FromFile(workingDirectory +

@"king_ul.png");

 queen_reduced_bk = Image.FromFile(workingDirectory +

@"queen_ul.png");

 bishop_reduced_bk = Image.FromFile(workingDirectory +

@"bishop_ul.png");

 knight_reduced_bk = Image.FromFile(workingDirectory +

@"knight_ul.png");

 rook_reduced_bk = Image.FromFile(workingDirectory +

@"rook_ul.png");

 pawn_reduced_bk = Image.FromFile(workingDirectory +

@"pawn_ul.png");

 king_reduced_wh = Image.FromFile(workingDirectory +

@"king_uk.png");

 queen_reduced_wh = Image.FromFile(workingDirectory +

@"queen_uk.png");

 bishop_reduced_wh = Image.FromFile(workingDirectory +

@"bishop_uk.png");

 knight_reduced_wh = Image.FromFile(workingDirectory +

@"knight_uk.png");

 rook_reduced_wh = Image.FromFile(workingDirectory +

@"rook_uk.png");

 pawn_reduced_wh = Image.FromFile(workingDirectory +

@"pawn_uk.png");

 imageBox = new Rectangle(0, 0, 600, 600);

 board = Image.FromFile(workingDirectory +

@"chessboard_2.png");

 BoardSetup();

 }

 this.Refresh();

 }

 public void RandomChess()

 {

 /* Fischer random chess function. Rules are as follows:

 * The black king is placed somewhere between the two black

rooks.

34

 * Bishops are placed on opposite colored squares.

 * White pieces are place in the same positions as the

black pieces.

 */

 //Create lists to keep track of where the empty spaces are

in the back row. Each is updated after a piece is placed

 List<int> emptyOdd = new List<int>();

 List<int> emptyEven = new List<int>();

 //Initialize backRow to all empty and the odd and even

lists to all empty

 for (int i = 0; i < 8; i++)

 {

 backRow[i] = EMPTY;

 if (i % 2 == 0)

 emptyEven.Add(i);

 else

 emptyOdd.Add(i);

 }

 Random rand = new Random();

 //place king in array at index between 1 and 6

 int kingIndex = rand.Next(1, 7);

 backRow[kingIndex] = KING;

 //place rooks at random spaces higher and lower than kings

place

 int rookOneIndex = rand.Next(0, kingIndex - 1);

 int rookTwoIndex = rand.Next(kingIndex + 1, 8);

 backRow[rookOneIndex] = ROOK;

 backRow[rookTwoIndex] = ROOK;

 //Update the odd and even lists so no pieces will be placed

on top of the already placed pieces

 emptyEven.Remove(kingIndex);

 emptyOdd.Remove(kingIndex);

 emptyEven.Remove(rookOneIndex);

 emptyOdd.Remove(rookOneIndex);

 emptyEven.Remove(rookTwoIndex);

 emptyOdd.Remove(rookTwoIndex);

 //place bishops,1 on odd index,1 on even index

 int bishopOneIndex = rand.Next(0, emptyEven.Count - 1);

 int bishopTwoIndex = rand.Next(0, emptyOdd.Count - 1);

 backRow[emptyEven[bishopOneIndex]] = BISHOP;

 backRow[emptyOdd[bishopTwoIndex]] = BISHOP;

 //Update the odd and even lists so no pieces will be placed

on top of the already placed pieces

 emptyEven.RemoveAt(bishopOneIndex);

 emptyOdd.RemoveAt(bishopTwoIndex);

 //Since the Bishops are placed, only 1 list of empty spaces

is needed

 List<int> emptySpaces = new List<int>();

35

 emptySpaces.AddRange(emptyEven);

 emptySpaces.AddRange(emptyOdd);

 //Place queen

 int queenIndex = rand.Next(0, emptySpaces.Count - 1);

 backRow[emptySpaces[queenIndex]] = QUEEN;

 //Update the emptyspaces list so no pieces will be placed

on top of the already placed pieces

 emptySpaces.RemoveAt(queenIndex);

 //Place knights

 int knightOneIndex = emptySpaces[0];

 int knightTwoIndex = emptySpaces[1];

 backRow[knightOneIndex] = KNIGHT;

 backRow[knightTwoIndex] = KNIGHT;

 }

 public Image ReducePieces(Image imgPhoto, int percent)

 {

 //Scales the size of original image by percent

 if (percent == 0)

 return imgPhoto;

 if (gameType == "UL/UK" || gameType == "UL/UK2")

 {

 percent = percent * 2;

 }

 if (imgPhoto == null)

 return null;

 Image tempImage = RotateImage(imgPhoto);

 /*

 If each piece is to be reduced by a different percentage:

 Random rand = new Random();

 int randNum = rand.Next(0, percent);

 tempImage = new Bitmap(tempImage, new Size(imgPhoto.Width /

randNum, imgPhoto.Height / randNum));

 percent becomes the maximum resolution in this case

 */

 tempImage = new Bitmap(tempImage, new Size(imgPhoto.Width /

percent, imgPhoto.Height / percent));

 return tempImage;

 }

 private Image RotateImage(Image imgPhoto)

 {

 //Used to rotate an image randomly up to 35 degrees

 Random rand = new Random();

 int randNum = (int)rand.Next(-35, 35);

 Image tempImage = null;

 if (gameType == "UL/UK" || gameType == "UL/UK2")

 {

 //Some adjustment for size is done here to make the

pieces fit in the squares a little better

 if (imgPhoto == pawn_reduced_wh || imgPhoto ==

pawn_reduced_bk)

 {

 tempImage = new Bitmap(750, 750);

36

 }

 else

 { tempImage = new Bitmap(700, 700); }

 }

 else

 {

 tempImage = new Bitmap(imgPhoto.Width,

imgPhoto.Height);

 }

 Graphics g = Graphics.FromImage(tempImage);

 g.TranslateTransform((float)imgPhoto.Width / 2,

(float)imgPhoto.Height / 2);

 g.RotateTransform(randNum);

 g.TranslateTransform(-(float)imgPhoto.Width / 2, -

(float)imgPhoto.Height / 2);

 g.DrawImage(imgPhoto, imageBox);

 return tempImage;

 }

 public void Rotate()

 {

 //Invokes the RotateImage function to tilt a piece up to 35

degrees

 bkKI.SetImage(bkKI.GetPosition(),

RotateImage(king_reduced_bk));

 bkQU.SetImage(bkQU.GetPosition(),

RotateImage(queen_reduced_bk));

 bkRK1.SetImage(bkRK1.GetPosition(),

RotateImage(rook_reduced_bk));

 bkRK2.SetImage(bkRK2.GetPosition(),

RotateImage(rook_reduced_bk));

 bkKN1.SetImage(bkKN1.GetPosition(),

RotateImage(knight_reduced_bk));

 bkKN2.SetImage(bkKN2.GetPosition(),

RotateImage(knight_reduced_bk));

 bkBI1.SetImage(bkBI1.GetPosition(),

RotateImage(bishop_reduced_bk));

 bkBI2.SetImage(bkBI2.GetPosition(),

RotateImage(bishop_reduced_bk));

 bkPA1.SetImage(bkPA1.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA2.SetImage(bkPA2.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA3.SetImage(bkPA3.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA4.SetImage(bkPA4.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA5.SetImage(bkPA5.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA6.SetImage(bkPA6.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA7.SetImage(bkPA7.GetPosition(),

RotateImage(pawn_reduced_bk));

 bkPA8.SetImage(bkPA8.GetPosition(),

RotateImage(pawn_reduced_bk));

37

 whKI.SetImage(whKI.GetPosition(),

RotateImage(king_reduced_wh));

 whQU.SetImage(whQU.GetPosition(),

RotateImage(queen_reduced_wh));

 whRK1.SetImage(whRK1.GetPosition(),

RotateImage(rook_reduced_wh));

 whRK2.SetImage(whRK2.GetPosition(),

RotateImage(rook_reduced_wh));

 whKN1.SetImage(whKN1.GetPosition(),

RotateImage(knight_reduced_wh));

 whKN2.SetImage(whKN2.GetPosition(),

RotateImage(knight_reduced_wh));

 whBI1.SetImage(whBI1.GetPosition(),

RotateImage(bishop_reduced_wh));

 whBI2.SetImage(whBI2.GetPosition(),

RotateImage(bishop_reduced_wh));

 whPA1.SetImage(whPA1.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA2.SetImage(whPA2.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA3.SetImage(whPA3.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA4.SetImage(whPA4.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA5.SetImage(whPA5.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA6.SetImage(whPA6.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA7.SetImage(whPA7.GetPosition(),

RotateImage(pawn_reduced_wh));

 whPA8.SetImage(whPA8.GetPosition(),

RotateImage(pawn_reduced_wh));

 this.Refresh();

 }

 public void BoardSetup()

 {

 //Creates an object for each piece on the board. The object

stores position and image.

 //Arrays of type Panel for setting up the board initially

 Panel[] backRowPanelsBK = new Panel[8] { panel2, panel3,

panel4, panel5, panel6, panel7, panel8, panel9 };

 Panel[] backRowPanelsBKpawns = new Panel[8] { panel10,

panel11, panel12, panel13, panel14, panel15, panel16, panel17 };

 Panel[] backRowPanelsWHpawns = new Panel[8] { panel50,

panel51, panel52, panel53, panel54, panel55, panel56, panel57 };

 Panel[] backRowPanelsWH = new Panel[8] { panel58, panel59,

panel60, panel61, panel62, panel63, panel64, panel65 };

 int rookFlag = 0;

 int knightFlag = 0;

 int bishopFlag = 0;

38

 chBoard = new ChessBoard(panel66, board);

 //Place pieces in their proper spot on the board depending

on the RandomChess function

 int temp = 0;

 foreach(Panel P in backRowPanelsBK)

 {

 if (backRow[temp] == ROOK)

 {

 if (rookFlag == 1)

 {

 bkRK2 = new Rook(P, rook_reduced_bk, "rook",

"black");

 }

 if (rookFlag == 0)

 {

 bkRK1 = new Rook(P, rook_reduced_bk, "rook",

"black");

 rookFlag = 1;

 }

 }

 if (backRow[temp] == KNIGHT)

 {

 if (knightFlag == 1)

 {

 bkKN2 = new Knight(P, knight_reduced_bk,

"knight", "black");

 }

 if (knightFlag == 0)

 {

 bkKN1 = new Knight(P, knight_reduced_bk,

"knight", "black");

 knightFlag = 1;

 }

 }

 if (backRow[temp] == BISHOP)

 {

 if (bishopFlag == 1)

 {

 bkBI2 = new Bishop(P, bishop_reduced_bk,

"bishop", "black");

 }

 if (bishopFlag == 0)

 {

 bkBI1 = new Bishop(P, bishop_reduced_bk,

"bishop", "black");

 bishopFlag = 1;

 }

 }

 if (backRow[temp] == KING)

 bkKI = new King(P, king_reduced_bk, "king",

"black");

 if (backRow[temp] == QUEEN)

39

 bkQU = new Queen(P, queen_reduced_bk, "queen",

"black");

 temp++;

 }

 bkPA1 = new Pawn(backRowPanelsBKpawns[0], pawn_reduced_bk,

"pawn", "black");

 bkPA2 = new Pawn(backRowPanelsBKpawns[1], pawn_reduced_bk,

"pawn", "black");

 bkPA3 = new Pawn(backRowPanelsBKpawns[2], pawn_reduced_bk,

"pawn", "black");

 bkPA4 = new Pawn(backRowPanelsBKpawns[3], pawn_reduced_bk,

"pawn", "black");

 bkPA5 = new Pawn(backRowPanelsBKpawns[4], pawn_reduced_bk,

"pawn", "black");

 bkPA6 = new Pawn(backRowPanelsBKpawns[5], pawn_reduced_bk,

"pawn", "black");

 bkPA7 = new Pawn(backRowPanelsBKpawns[6], pawn_reduced_bk,

"pawn", "black");

 bkPA8 = new Pawn(backRowPanelsBKpawns[7], pawn_reduced_bk,

"pawn", "black");

 whPA1 = new Pawn(backRowPanelsWHpawns[0], pawn_reduced_wh,

"pawn", "white");

 whPA2 = new Pawn(backRowPanelsWHpawns[1], pawn_reduced_wh,

"pawn", "white");

 whPA3 = new Pawn(backRowPanelsWHpawns[2], pawn_reduced_wh,

"pawn", "white");

 whPA4 = new Pawn(backRowPanelsWHpawns[3], pawn_reduced_wh,

"pawn", "white");

 whPA5 = new Pawn(backRowPanelsWHpawns[4], pawn_reduced_wh,

"pawn", "white");

 whPA6 = new Pawn(backRowPanelsWHpawns[5], pawn_reduced_wh,

"pawn", "white");

 whPA7 = new Pawn(backRowPanelsWHpawns[6], pawn_reduced_wh,

"pawn", "white");

 whPA8 = new Pawn(backRowPanelsWHpawns[7], pawn_reduced_wh,

"pawn", "white");

 rookFlag = 0;

 knightFlag = 0;

 bishopFlag = 0;

 temp = 0;

 foreach (Panel P in backRowPanelsWH)

 {

 if (backRow[temp] == ROOK)

 {

 if (rookFlag == 1)

 {

 whRK2 = new Rook(P, rook_reduced_wh, "rook",

"white");

 }

 if (rookFlag == 0)

 {

 whRK1 = new Rook(P, rook_reduced_wh, "rook",

"white");

 rookFlag = 1;

40

 }

 }

 if (backRow[temp] == KNIGHT)

 {

 if (knightFlag == 1)

 {

 whKN2 = new Knight(P, knight_reduced_wh,

"knight", "white");

 }

 if (knightFlag == 0)

 {

 whKN1 = new Knight(P, knight_reduced_wh,

"knight", "white");

 knightFlag = 1;

 }

 }

 if (backRow[temp] == BISHOP)

 {

 if (bishopFlag == 1)

 {

 whBI2 = new Bishop(P, bishop_reduced_wh,

"bishop", "white");

 }

 if (bishopFlag == 0)

 {

 whBI1 = new Bishop(P, bishop_reduced_wh,

"bishop", "white");

 bishopFlag = 1;

 }

 }

 if (backRow[temp] == KING)

 whKI = new King(P, king_reduced_wh, "king",

"white");

 if (backRow[temp] == QUEEN)

 whQU = new Queen(P, queen_reduced_wh, "queen",

"white");

 temp++;

 }

 }

 public void RandomResolution()

 {

 //Raduces the resolution of images by 5 - 30 percent

 Random rand = new Random();

 int randNum = rand.Next(10, 21);

 textBox1.Text = Convert.ToString(randNum);

 //Reduce the resolution of the images to make it harder for

a bot to detect the pieces

 bkKI.SetImage(bkKI.GetPosition(),

ReducePieces(king_reduced_bk, randNum));

 bkQU.SetImage(bkQU.GetPosition(),

ReducePieces(queen_reduced_bk, randNum));

41

 bkRK1.SetImage(bkRK1.GetPosition(),

ReducePieces(rook_reduced_bk, randNum));

 bkRK2.SetImage(bkRK2.GetPosition(),

ReducePieces(rook_reduced_bk, randNum));

 bkKN1.SetImage(bkKN1.GetPosition(),

ReducePieces(knight_reduced_bk, randNum));

 bkKN2.SetImage(bkKN2.GetPosition(),

ReducePieces(knight_reduced_bk, randNum));

 bkBI1.SetImage(bkBI1.GetPosition(),

ReducePieces(bishop_reduced_bk, randNum));

 bkBI2.SetImage(bkBI2.GetPosition(),

ReducePieces(bishop_reduced_bk, randNum));

 bkPA1.SetImage(bkPA1.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA2.SetImage(bkPA2.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA3.SetImage(bkPA3.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA4.SetImage(bkPA4.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA5.SetImage(bkPA5.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA6.SetImage(bkPA6.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA7.SetImage(bkPA7.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 bkPA8.SetImage(bkPA8.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 whKI.SetImage(whKI.GetPosition(),

ReducePieces(king_reduced_wh, randNum));

 whQU.SetImage(whQU.GetPosition(),

ReducePieces(queen_reduced_wh, randNum));

 whRK1.SetImage(whRK1.GetPosition(),

ReducePieces(rook_reduced_wh, randNum));

 whRK2.SetImage(whRK2.GetPosition(),

ReducePieces(rook_reduced_wh, randNum));

 whKN1.SetImage(whKN1.GetPosition(),

ReducePieces(knight_reduced_wh, randNum));

 whKN2.SetImage(whKN2.GetPosition(),

ReducePieces(knight_reduced_wh, randNum));

 whBI1.SetImage(whBI1.GetPosition(),

ReducePieces(bishop_reduced_wh, randNum));

 whBI2.SetImage(whBI2.GetPosition(),

ReducePieces(bishop_reduced_wh, randNum));

 whPA1.SetImage(whPA1.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA2.SetImage(whPA2.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA3.SetImage(whPA3.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA4.SetImage(whPA4.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA5.SetImage(whPA5.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

42

 whPA6.SetImage(whPA6.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA7.SetImage(whPA7.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 whPA8.SetImage(whPA8.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 this.Refresh();

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 }

 private void trackBar1_Scroll(object sender, EventArgs e)

 {

 //Scroll bar for selecting how much to reduce the

resolution of the pieces.

 //The goal here is to reduce the resolution of each piece

differently

 trackBar1.Maximum = 5;

 trackBar1.Minimum = 0;

 trackBar1.TickFrequency = 1;

 //Create a random number

 Random rand = new Random();

 //Multiply the random number by the trackbar value to

somewhat guarantee

 //an increase in distortion as the trackbar moves up.

 //Values should end up between 5% (trackbar1.Value = 1 and

randNum = 5) and 50% (trackbar1.Value = 5 and randNum = 10).

 int randNum = rand.Next(5, 11) * trackBar1.Value;

 textBox1.Text = null;

 //textBox1.Text = Convert.ToString(randNum);

 //Reduce the resolution of the images to make it harder for

a bot to detect the pieces

 bkKI.SetImage(bkKI.GetPosition(),

ReducePieces(king_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkQU.SetImage(bkQU.GetPosition(),

ReducePieces(queen_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkRK1.SetImage(bkRK1.GetPosition(),

ReducePieces(rook_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkRK2.SetImage(bkRK2.GetPosition(),

ReducePieces(rook_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkKN1.SetImage(bkKN1.GetPosition(),

ReducePieces(knight_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkKN2.SetImage(bkKN2.GetPosition(),

ReducePieces(knight_reduced_bk, randNum));

43

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkBI1.SetImage(bkBI1.GetPosition(),

ReducePieces(bishop_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkBI2.SetImage(bkBI2.GetPosition(),

ReducePieces(bishop_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA1.SetImage(bkPA1.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA2.SetImage(bkPA2.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA3.SetImage(bkPA3.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA4.SetImage(bkPA4.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA5.SetImage(bkPA5.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA6.SetImage(bkPA6.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA7.SetImage(bkPA7.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 bkPA8.SetImage(bkPA8.GetPosition(),

ReducePieces(pawn_reduced_bk, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whKI.SetImage(whKI.GetPosition(),

ReducePieces(king_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whQU.SetImage(whQU.GetPosition(),

ReducePieces(queen_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whRK1.SetImage(whRK1.GetPosition(),

ReducePieces(rook_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whRK2.SetImage(whRK2.GetPosition(),

ReducePieces(rook_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whKN1.SetImage(whKN1.GetPosition(),

ReducePieces(knight_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whKN2.SetImage(whKN2.GetPosition(),

ReducePieces(knight_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whBI1.SetImage(whBI1.GetPosition(),

ReducePieces(bishop_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whBI2.SetImage(whBI2.GetPosition(),

ReducePieces(bishop_reduced_wh, randNum));

44

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA1.SetImage(whPA1.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA2.SetImage(whPA2.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA3.SetImage(whPA3.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA4.SetImage(whPA4.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA5.SetImage(whPA5.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA6.SetImage(whPA6.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA7.SetImage(whPA7.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 randNum = rand.Next(5, 10) * trackBar1.Value;

 whPA8.SetImage(whPA8.GetPosition(),

ReducePieces(pawn_reduced_wh, randNum));

 this.Refresh();

 }

 private void Ok_Click(object sender, EventArgs e)

 {

 //Reduces resolution by a percentage input by user

 string input = textBox1.Text;

 try

 {

 int intInput = Convert.ToInt32(input);

 //Reduce the resolution of the images by percent

 bkKI.SetImage(bkKI.GetPosition(),

ReducePieces(king_reduced_bk, intInput));

 bkQU.SetImage(bkQU.GetPosition(),

ReducePieces(queen_reduced_bk, intInput));

 bkRK1.SetImage(bkRK1.GetPosition(),

ReducePieces(rook_reduced_bk, intInput));

 bkRK2.SetImage(bkRK2.GetPosition(),

ReducePieces(rook_reduced_bk, intInput));

 bkKN1.SetImage(bkKN1.GetPosition(),

ReducePieces(knight_reduced_bk, intInput));

 bkKN2.SetImage(bkKN2.GetPosition(),

ReducePieces(knight_reduced_bk, intInput));

 bkBI1.SetImage(bkBI1.GetPosition(),

ReducePieces(bishop_reduced_bk, intInput));

 bkBI2.SetImage(bkBI2.GetPosition(),

ReducePieces(bishop_reduced_bk, intInput));

 bkPA1.SetImage(bkPA1.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

45

 bkPA2.SetImage(bkPA2.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA3.SetImage(bkPA3.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA4.SetImage(bkPA4.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA5.SetImage(bkPA5.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA6.SetImage(bkPA6.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA7.SetImage(bkPA7.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 bkPA8.SetImage(bkPA8.GetPosition(),

ReducePieces(pawn_reduced_bk, intInput));

 whKI.SetImage(whKI.GetPosition(),

ReducePieces(king_reduced_wh, intInput));

 whQU.SetImage(whQU.GetPosition(),

ReducePieces(queen_reduced_wh, intInput));

 whRK1.SetImage(whRK1.GetPosition(),

ReducePieces(rook_reduced_wh, intInput));

 whRK2.SetImage(whRK2.GetPosition(),

ReducePieces(rook_reduced_wh, intInput));

 whKN1.SetImage(whKN1.GetPosition(),

ReducePieces(knight_reduced_wh, intInput));

 whKN2.SetImage(whKN2.GetPosition(),

ReducePieces(knight_reduced_wh, intInput));

 whBI1.SetImage(whBI1.GetPosition(),

ReducePieces(bishop_reduced_wh, intInput));

 whBI2.SetImage(whBI2.GetPosition(),

ReducePieces(bishop_reduced_wh, intInput));

 whPA1.SetImage(whPA1.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA2.SetImage(whPA2.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA3.SetImage(whPA3.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA4.SetImage(whPA4.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA5.SetImage(whPA5.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA6.SetImage(whPA6.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA7.SetImage(whPA7.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 whPA8.SetImage(whPA8.GetPosition(),

ReducePieces(pawn_reduced_wh, intInput));

 this.Refresh();

 }

 //Error checking

 catch

 {

 MessageBox.Show("Please input an integer between 0 and

99.");

46

 }

 }

 private void textBox1_KeyPress(object sender, KeyPressEventArgs

e)

 {

 //Ensures that only numbers and "delete" are accepted in

the text box

 const char Delete = (char)8;

 e.Handled = !char.IsDigit(e.KeyChar) && e.KeyChar !=

Delete;

 }

 private void Randomize_Click(object sender, EventArgs e)

 {

 //Calls the RandomChess function

 if (begin == 0)

 {

 RandomChess();

 BoardSetup();

 RandomResolution();

 this.Refresh();

 }

 }

 ChessPiece MovePiece(Panel input)

 {

 //Function to handle moving a chess piece

 if (bkRK1.GetPosition() == input)

 return bkRK1;

 if (bkRK2.GetPosition() == input)

 return bkRK2;

 if (whRK1.GetPosition() == input)

 return whRK1;

 if (whRK2.GetPosition() == input)

 return whRK2;

 if (bkKN1.GetPosition() == input)

 return bkKN1;

 if (bkKN2.GetPosition() == input)

 return bkKN2;

 if (whKN1.GetPosition() == input)

 return whKN1;

 if (whKN2.GetPosition() == input)

 return whKN2;

 if (bkBI1.GetPosition() == input)

 return bkBI1;

 if (bkBI2.GetPosition() == input)

 return bkBI2;

 if (whBI1.GetPosition() == input)

 return whBI1;

 if (whBI2.GetPosition() == input)

 return whBI2;

 if (bkKI.GetPosition() == input)

 return bkKI;

 if (bkQU.GetPosition() == input)

 return bkQU;

 if (whKI.GetPosition() == input)

47

 return whKI;

 if (whQU.GetPosition() == input)

 return whQU;

 if (bkPA1.GetPosition() == input)

 return bkPA1;

 if (bkPA2.GetPosition() == input)

 return bkPA2;

 if (bkPA3.GetPosition() == input)

 return bkPA3;

 if (bkPA4.GetPosition() == input)

 return bkPA4;

 if (bkPA5.GetPosition() == input)

 return bkPA5;

 if (bkPA6.GetPosition() == input)

 return bkPA6;

 if (bkPA7.GetPosition() == input)

 return bkPA7;

 if (bkPA8.GetPosition() == input)

 return bkPA8;

 if (whPA1.GetPosition() == input)

 return whPA1;

 if (whPA2.GetPosition() == input)

 return whPA2;

 if (whPA3.GetPosition() == input)

 return whPA3;

 if (whPA4.GetPosition() == input)

 return whPA4;

 if (whPA5.GetPosition() == input)

 return whPA5;

 if (whPA6.GetPosition() == input)

 return whPA6;

 if (whPA7.GetPosition() == input)

 return whPA7;

 if (whPA8.GetPosition() == input)

 return whPA8;

 return null;

 }

 void PossibleMoves(ChessPiece ch, int row, int column)

 {

 //Function to create an array of valid moves for a chess

piece

 if (ch == null)

 return;

 if (ch.GetName() == "rook")

 {

 ChessPiece testPiece;

 //Check possible moves to the South

 try

 {

 testPiece = MovePiece(grid[row + 1, column]);

 if (isSouthOrSEFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

48

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row + 1, column);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isSouthOrSEFinished == false)

 return;

 //Check possible moves to the North

 isSouthOrSEFinished = true;

 try

 {

 testPiece = MovePiece(grid[row - 1, column]);

 if (isNorthOrNWFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row -

1, column];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row - 1, column);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isNorthOrNWFinished == false)

 return;

 //Check possible moves to the East

 isNorthOrNWFinished = true;

 try

 {

49

 testPiece = MovePiece(grid[row, column + 1]);

 if (isEastOrNEFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row, column + 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column + 1];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isEastOrNEFinished == false)

 return;

 //Check Possible moves to the West

 isEastOrNEFinished = true;

 try

 {

 testPiece = MovePiece(grid[row, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row, column - 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column - 1];

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column])

 return;

 return;

 }

50

 if (ch.GetName() == "knight")

 {

 if (ch == null)

 return;

 ChessPiece testPiece;

 //Possible moves to the North

 try

 {

 testPiece = MovePiece(grid[row + 2, column + 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 2,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 2,

column + 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row + 2, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 2,

column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 2,

column - 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row + 1, column + 2]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

51

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column + 2];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column + 2];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row + 1, column - 2]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column - 2];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column - 2];

 }

 }

 catch { }

 //Diagonal

 try

 {

 testPiece = MovePiece(grid[row - 2, column + 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 2,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 2,

column + 1];

52

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 2, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 2,

column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 2,

column - 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column + 2]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column + 2];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column + 2];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column - 2]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

53

 moveArray[moveArray.Length - 1] = grid[row - 1,

column - 2];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column - 2];

 }

 }

 catch { }

 return;

 }

 if (ch.GetName() == "bishop")

 {

 if (ch == null)

 return;

 ChessPiece testPiece;

 //Check possible moves to the Southeast

 try

 {

 testPiece = MovePiece(grid[row + 1, column + 1]);

 if (isSouthOrSEFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row + 1, column + 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column + 1];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isSouthOrSEFinished == false)

 return;

 //Check possible moves to the Northwest

 isSouthOrSEFinished = true;

 try

 {

54

 testPiece = MovePiece(grid[row - 1, column - 1]);

 if (isNorthOrNWFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row - 1, column - 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column - 1];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isNorthOrNWFinished == false)

 return;

 //Check possible moves to the Northeast

 isNorthOrNWFinished = true;

 try

 {

 testPiece = MovePiece(grid[row - 1, column + 1]);

 if (isEastOrNEFinished == false)

 {

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row - 1, column + 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column + 1];

 }

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column] &&

isEastOrNEFinished == false)

55

 return;

 //Check Possible moves to the Southwest

 isEastOrNEFinished = true;

 try

 {

 testPiece = MovePiece(grid[row + 1, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 PossibleMoves(ch, row + 1, column - 1);

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column - 1];

 }

 }

 catch { }

 if (ch.GetPosition() != grid[row, column])

 return;

 return;

 }

 if (ch.GetName() == "king")

 {

 if (ch == null)

 return;

 ChessPiece testPiece;

 //Vertical and Horizontal

 try

 {

 testPiece = MovePiece(grid[row + 1, column]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column];

 }

56

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row, column + 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column + 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column - 1];

57

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row,

column - 1];

 }

 }

 catch { }

 //Diagonal

 try

 {

 testPiece = MovePiece(grid[row + 1, column + 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column + 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row + 1, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row + 1,

column - 1];

 }

 }

 catch { }

58

 try

 {

 testPiece = MovePiece(grid[row - 1, column + 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column + 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column + 1];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column - 1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column - 1];

 isOpposingPiece = true;

 }

 else if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row - 1,

column - 1];

 }

 }

 catch { }

 return;

 }

 if (ch.GetName() == "queen")

 {

 //Create array of possible moves for queen by adding

rook moves and bishop moves

 ch.SetName(ch, "rook");

 PossibleMoves(ch, row, column);

 isNorthOrNWFinished = false;

 isEastOrNEFinished = false;

 isSouthOrSEFinished = false;

 ch.SetName(ch, "bishop");

59

 PossibleMoves(ch, row, column);

 ch.SetName(ch, "queen");

 }

 if (ch.GetName() == "pawn")

 {

 if (ch == null)

 return;

 ChessPiece testPiece;

 if (ch.GetTeam() == "black")

 {

 //Create array of possible moves for black pawn

 try

 {

 testPiece = MovePiece(grid[row + 1, column]);

 if (row == 1)

 {

 if (MovePiece(grid[row + 2, column]) ==

null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] =

grid[row + 2, column];

 }

 }

 if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column];

 }

 }

 catch{}

 try

 {

 testPiece = MovePiece(grid[row + 1, column +

1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column + 1];

 isOpposingPiece = true;

 }

 }

 catch{}

 try

 {

60

 testPiece = MovePiece(grid[row + 1, column -

1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

+ 1, column - 1];

 isOpposingPiece = true;

 }

 }

 catch { }

 }

 if (ch.GetTeam() == "white")

 {

 //Create array of possible moves for white pawn

 try

 {

 testPiece = MovePiece(grid[row - 1, column]);

 if (row == 6)

 {

 if (MovePiece(grid[row - 2, column]) ==

null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] =

grid[row - 2, column];

 }

 }

 if (testPiece == null)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column];

 }

 }

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column +

1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column + 1];

 isOpposingPiece = true;

 }

 }

61

 catch { }

 try

 {

 testPiece = MovePiece(grid[row - 1, column -

1]);

 if (testPiece != null && SameTeam(testPiece) ==

false)

 {

 Array.Resize<Panel>(ref moveArray,

moveArray.Length + 1);

 moveArray[moveArray.Length - 1] = grid[row

- 1, column - 1];

 isOpposingPiece = true;

 }

 }

 catch { }

 }

 }

 return;

 }

 bool SameTeam(ChessPiece ch)

 {

 //Simple check to see if 2 peices are the same color

 if (ch != null && ch.GetTeam() ==

tempPieceSource.GetTeam())

 return true;

 else if (ch == null)

 {

 return false;

 }

 else

 {

 return false;

 }

 }

 private void panel_MouseDown(object sender, MouseEventArgs e)

 {

 //Checks the panel the user has clicked on, determines what

piece is there, and calls

 //the function PossibleMoves to determine what spaces it

can move to.

 Panel source = (Panel)sender;

 tempSource = source;

 tempPieceSource = MovePiece(source);

 if (tempPieceSource == null)

 return;

 if (turnFlag == 0 && tempPieceSource.GetTeam() == "white")

 {

 tempPieceSource = null;

 }

 if (turnFlag == 1 && tempPieceSource.GetTeam() == "black")

 {

 tempPieceSource = null;

62

 }

 if (tempPieceSource == null)

 return;

 int row = 0, column = 0;

 for (int i = 0; i < 8; i++)

 {

 for (int j = 0; j < 8; j++)

 {

 if (grid[i, j] == tempPieceSource.GetPosition())

 {

 row = i;

 column = j;

 }

 }

 }

 isOpposingPiece = false;

 isNorthOrNWFinished = false;

 isEastOrNEFinished = false;

 isSouthOrSEFinished = false;

 Array.Resize<Panel>(ref moveArray, 0);

 PossibleMoves(tempPieceSource, row, column);

 DoDragDrop(source.BackgroundImage, DragDropEffects.Move);

 //If a piece is moved, set the image for the vacated space

to null

 if (tempSource != tempDest && isMoveValid == true)

 {

 source.BackgroundImage = null;

 if (turnFlag == 0)

 turnFlag = 1;

 else turnFlag = 0;

 //Disable the randomize function once a game is in

progress

 begin = 1;

 }

 }

 private void panel_DragEnter(object sender, DragEventArgs e)

 {

 //Grabs image data

 if (e.Data.GetDataPresent(typeof(Bitmap)))

 {

 e.Effect = DragDropEffects.Move;

 }

 else

 {

 e.Effect = DragDropEffects.None;

 }

 }

 private void panel_DragDrop(object sender, DragEventArgs e)

 {

 //This executes when the mouse button is realesed after

pickup up a piece and moving it over the desired destination.

 //If the destination panel is in the moveArray, the image

that was picked up replaces the destination image.

63

 Panel destination = (Panel)sender;

 tempDest = destination;

 tempPieceDest = MovePiece(destination);

 isMoveValid = false; //Used to make sure the

background image isn't removed unless the move is valid

 //Check the array of possible moves against the destination

of the Drag/Drop operation and move the piece if allowed

 foreach(Panel P in moveArray)

 {

 if(destination == P)

 {

 //If user tries to move a piece on top of their own

piece, this statement will prevent it

 if (SameTeam(tempPieceDest) == true)

 {

 break;

 }

 //If user captures an opposing piece, remove the

captured piece from the board

 if (tempPieceDest != null && isOpposingPiece ==

true)

 {

 tempPieceDest.SetPosition(panel67);

 }

 isMoveValid = true;

 tempPieceSource.SetPosition(destination);

 destination.BackgroundImage =

(Bitmap)e.Data.GetData(typeof(Bitmap));

 }

 }

 }

 private void exitToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 Application.Exit();

 }

 private void newToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 Application.Restart();

 }

 private void standardToolStripMenuItem1_Click(object sender,

EventArgs e)

 {

 gameType = standardToolStripMenuItem1.Text;

 textBox1.Text = null;

 InitializeImages();

 }

 private void uLUKToolStripMenuItem1_Click(object sender,

EventArgs e)

 {

64

 gameType = uLUKToolStripMenuItem1.Text;

 textBox1.Text = null;

 InitializeImages();

 }

 private void uLUK2ToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 gameType = uLUK2ToolStripMenuItem.Text;

 textBox1.Text = null;

 InitializeImages();

 }

 private void aboutToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 MessageBox.Show(@" White pawns are placed on their

normal home squares.

 The white king is placed somewhere between the two white rooks.

 The white bishops are placed on opposite-colored squares.

 The black pieces are placed equal-and-opposite to the white

pieces.

 For example, if white's king is placed on b1, then black's king

is placed on b8.", "Fischer Random Chess");

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 }

 }

}

65

using System;

using System.Collections.Generic;

using System.Linq;

using System.Windows.Forms;

using System.Drawing.Imaging;

using System.Drawing;

namespace ChessBotBreaker

{

 class ChessPiece : Form

 {

 protected Panel position;

 protected string name;

 protected string teamColor;

 public ChessPiece()

 {

 }

 public void SetPosition(Panel pan)

 {

 this.position = pan;

 }

 public Panel GetPosition()

 {

 return position;

 }

 public void SetImage(Panel pos, Image img)

 {

 pos.BackgroundImage = img;

 }

 public string GetName()

 {

 return name;

 }

 public void SetName(ChessPiece ch, string na)

 {

 ch.name = na;

 }

 public string GetTeam()

 {

 return teamColor;

 }

 }

 //Individual pieces inherit from ChessPiece

 class King : ChessPiece

 {

 public King(Panel pos, Image img, string pieceName, string

team)

66

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class Queen : ChessPiece

 {

 public Queen(Panel pos, Image img, string pieceName, string

team)

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class Rook : ChessPiece

 {

 public Rook(Panel pos, Image img, string pieceName, string

team)

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class Knight : ChessPiece

 {

 public Knight(Panel pos, Image img, string pieceName, string

team)

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class Bishop : ChessPiece

 {

 public Bishop(Panel pos, Image img, string pieceName, string

team)

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class Pawn : ChessPiece

67

 {

 public Pawn(Panel pos, Image img, string pieceName, string

team)

 {

 this.teamColor = team;

 this.name = pieceName;

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

 class ChessBoard : ChessPiece

 {

 public ChessBoard(Panel pos, Image img)

 {

 this.position = pos;

 pos.BackgroundImage = img;

 }

 }

}

68

APPENDIX II. FEEDBACK FORM

Embedded Non-Interactive

CAPTCHA for Fischer Random Chess

Adjust the distortion to desired level.

Try playing the game for at least 5-10 minutes.

What level of distortion was

applied?

(eg. 17% or trackbar tick #2)

Your gender Male Female

Your age

Chess skill (Beginner,

Intermediate, Advanced)
 Beginner Intermediate Advanced

How many times have you

played online chess?
 0 <10 >10

How recently have you played

online chess?

 Less than a 1-6 months >6 months ago

 month ago ago

On a scale of 1 – 10, with 10

being very difficult, how

difficult was it to recognize

pieces after distortion?

Approximately how long did it

take to get used to the look of

the distorted pieces?

 Less than 3 4-7 >8 moves

 moves moves

Have you ever played Fischer

Random Chess?
 Yes No

Comments

69

VITA

Professional

Experience Technology Specialist Senior

 2007-Present

 Provide first-level user support within the President’s Office and

Office of Community Engagement for 36 users, including

troubleshooting and training

 Provide support for the University of Louisville Foundation and its

subsidiaries, which includes NUCLEUS and the University of

Louisville Development Corporation (ULDC)

 Manage projects to add and upgrade AV equipment, both on

campus and off

 Assist NUCLEUS and ULDC in making decisions on the

technology aspects of construction projects

Administrative Support Specialist University of

Louisville, Louisville, KY

 2001-2007

 Provide first-level user support within the President’s Office for 23

users, including troubleshooting and training

 Create and maintain websites vital to the mission of the university

 Support and maintain computer and servers within the department’s

LAN, including disaster recovery preparedness

 Serve as liaison between the President’s Office and the university’s

central IT group

 Plan and coordinate acquisition and management of desktop and LAN

technologies, including data, voice, and video

 Set up and maintain enterprise and personal email for Blackberry

Technology Solutions Group Brown-Forman

Corp., Louisville, KY

 2003 (Co-op Position)

 Provided set up and implementation of new machines

 Managed users via Active Directory

 Provided first-level support for a userbase of 4000

Retail Customer Service Kroger Co., Louisville,

KY

 1998-2001

 Customer Service

 Bagging, dairy department, pricing department

Technical

Proficiency  Microsoft Word (2000/XP/2003)
 Microsoft Excel (2000/XP/2003)
 Microsoft Access (2000/XP/2003)
 Microsoft Exchange(2007/2010)
 Microsoft PowerPoint (2000/XP/2003)

 Novell Groupwise
 Symantec Ghost
 MySQL
 Microsoft Visio 2003
 Microsoft Visual Studio .NET

70

 Macromedia Dreamweaver
 Lotus Notes

 Sungard Advance

 Windows 2000/XP/Vista/7
 Windows 2003/2008 Server
 VMware ESXi
 Macintosh OSX
 Linux

 TCP/IP
 NetBui

Education and

Certification BS in Computer
Engineering &
Computer Science

University of Louisville, Louisville, KY

MS in Computer
Engineering

University of Louisville, Louisville, KY

MCP (2007)
MCSA (In progress)

	Embedded non-interactive CAPTCHA for Fischer Random Chess.
	Recommended Citation

	tmp.1423685735.pdf.Si8Ju

