
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2008

Re-engineering the Enigma cipher. Re-engineering the Enigma cipher.

Max Samuel Stoler
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Stoler, Max Samuel, "Re-engineering the Enigma cipher." (2008). Electronic Theses and Dissertations.
Paper 1389.
https://doi.org/10.18297/etd/1389

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1389
mailto:thinkir@louisville.edu

Re-engineering the Enigma Cipher

By

Max Samuel Stoler
B.S., University of Louisville, 2007

A Thesis
Submitted to the Faculty of the

University of Louisville
J. B. Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

July 2008

Re-engineering the Enigma Cipher

Submitted by: ______________________

Max Stoler

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee

Dr. Ahmed Desoky, Thesis Director

Dr. Adel Elmaghraby

Dr. John Naber

Abstract:

 The design of this thesis is to re-engineer the Enigma cipher to make it a viable,

secure cipher for use on current computers. The goal is to create a cipher based on an

antiquated mechanical cryptography device, the Enigma Machine, in software and

improve upon it.

 The basic principle that is being expounded upon here is that while the Enigma

cipher’s security was originally very dependent on security through obscurity, this needs

to be secure on its own. Also, this must be a viable solution for the encryption of data

based on modern standards.

 The Enigma Phoenix, the name for this new cipher, will use Galois functions and

other modern improvements to add an extra level of security to it and to make it the

viable solution that is desired.

Index of Tables

Table 1: XOR Truth Table .. 7
Table 2: Example of IOC calculation on a basic Substitution Cipher 34
Table 3: ASCII Chart of Moby Dick Encrypted with AES .. 44
Table 4: Calculations on ASCII chart Including Sum, Variance, and Entropy 45
Table 5: Calculations on Moby Dick Encrypted with Enigma Phoenix 51

Index of Figures
Figure 1: Feistel Network ... 4
Figure 2: The four steps of AES ... 6
Figure 3: The plugboard of an Enigma machine, showing two pairs of letters swapped: S-
O and J-A. [13] ... 9
Figure 4: Schematic and Wiring Diagram of Mechanical Switches Involved in Encoding
[14] .. 10
Figure 5: (left) Three rotors and the shaft on which they were placed when in use (right)
Stack of rotors inside the enigma consisting of 3 rotors and the Umkehrwalze-B (the
reflector ... 12
Figure 6: Example of the full workings of Enigma from Cryptool, shows the full alphabet
being encoded ... 13
Figure 7: Scrambling action of enigma shown for two consecutive letters, the greyed out
lines represent other possible circuits [15] .. 14
Figure 8: A view of the cipher-block chaining mode encryption. 18
Figure 9: AR-ENIGMA running on pocket PC based handheld as well as a screenshot of
the menu to a simulation [22] ... 30
Figure 10: Simulation of Enigma cipher running in openGL ... 30
Figure 11: Bombe used for breaking the Enigma Cipher ... 32
Figure 12: Formula For Calculating IOC... 35
Figure 13: H(x) being Entropy as well as Conditional Entropy 37
Figure 14: Conditional Entropy with H being the probability of Y given X 37
Figure 15: Entropy of Moby Dick unencrypted (converted to a hex file so that all 256
values are accounted for) .. 38
Figure 16: Entropy for Moby Dick encrypted with 128bit AES 39
Figure 17: Analysis of the periodicity on the AES encrypted Moby Dick turns up no
results .. 39
Figure 18: Periodicity of Moby Dick plaintext file .. 40
Figure 19: Binary Histogram of Moby Dick encrypted with AES 40
Figure 20: Binary Histogram for Moby Dick unencrypted .. 41
Figure 21: Base Histogram of Value Occurences as well as Total Occurences 41
Figure 22: Autocorrelation of Moby Dick in plaintext ... 42
Figure 23: The autocorrelation of Moby Dick encrypted with AES 42
Figure 24: 3D visualization of the randomness in Moby Dick encrypted with AES 43
Figure 25: 3D representation of randomness in Moby Dick plaintext.............................. 43
Figure 26: Battery of FIPS tests being performed on Moby Dick encrypted with AES .. 45
Figure 27: Entropy of Moby Dick encrypted with Enigma Phoenix 47
Figure 28: Checking for periodicity in Enigma Phoenix, no periodicity was found 47
Figure 29: Binary histogram of Moby Dick encrypted with Enigma Phoenix 48
Figure 30: Binary Historgram of Moby Dick encrypted with Enigma Phoenix and
analyzed in Winhex ... 49
Figure 31: Autocorrelation of Moby Dick encrypted with Enigma Phoenix 49
Figure 32: 3D representation of randomness in Moby Dick encrypted with Enigma
Phoenix ... 50
Figure 33: FIPS battery of randomness tests on Moby Dick encrypted with Enigma
Phoenix ... 51

TABLE OF CONTENTS

1

1. Introduction .. 9
1.1 History .. 9
1.1.1 Focus .. 2
1.2 What is Cryptography? ... 2
1.2.1 Basics of Cyrptography, Types of Ciphers 3
1.2.1.1 Basics of AES ... 5
1.2.2 Secret Keys .. 7
1.3 Description of Enigma and its Inner Workings 8
1.3.1 The Plugboard ... 8
1.3.2 The Rotors, Serrations, and Ringstellung 10
1.3.3 The Reflector ... 12
1.3.4 Mathematical Description of Enigma 14

2

2. Software ... 16
2.1 Introduction to Enigma and Changes Being Made

 ... 16
2.2 Brief Description of AES and Comparison 17
2.3 Stream Cipher Vs. Block Cipher 19
2.4 Galois Field ... 20
2.5 Description of Changes in Enigma 22
2.6 Procedure ... 24
2.6.1 Description of Software 24

3

3. Practical Applications ... 28

3.1 Previous Research .. 29

4

4. Cryptanalysis .. 31
4.1 Cryptanalysis of the Original Enigma Cipher 31
4.2 General Cryptanalysis Techniques 33
4.3 Techniques Used For Cryptographic Analysis in

Enigma .. 35

5

5. Statistical Analysis on Modified Enigma Phoenix
and AES ... 38

5.1 Analysis of AES and Plaintext 38
5.2 Cryptanalysis of Enigma Phoenix 46

6

6. Conclusion and Results .. 53

7

7. Recommendations ... 54

8

8. References ... 56

APENDICIES
Appendix A: Design Diagrams
Appendix B: Source Code
Appendix C: ASCII Table of Values for Enigma Phoenix Encrypted File

1

1. Introduction:

1.1 History

 What is being addressed in this thesis is the fact that a cipher (an algorithm for

performing encryption and decryption) used in World War II was not secure, it was

broken. This cipher was called the Enigma cipher. The goal of this thesis is to modify the

Enigma cipher in such a way as to make it secure by using knowledge and functions

gained from modern ciphers as well as modifications of the original cipher that stay true

to the spirit of the original incarnation.

 The field of cryptography goes as far back as ancient Greek and Roman times

when simple transposition and substitution ciphers were used to encrypt sensitive

messages. The process of increasing security in ciphers slowly continued until

mechanical devices became prevalent in the early 20th century. Before this time there had

been attempts at making secure ciphers. In the 16th century Blaise de Vigenere published

his description of an Autokey cipher in 1586 which would be later used in World War I

(though heavily modified) as the Vigenere Cipher. This was actually misattributed to

Vigenere as it was originally Giovan Battista Bellaso who published La cifra del. Sig.

Giovan Battista Bellaso in 1553 describing polyalphabetic substitution cipher

[1][(Wolfram, 2002)].

 After World War I, and the breakdown of the Vigenere Cipher, it was seen that

greater security was needed. It was also determined that a person could not encrypt data

as well as a mechanical device [1][(Wolfram, 2002)]. Hence, the development of the

Enigma Machine was pushed forward. The Enigma Machine was a cipher machine used

to encrypt and decrypt secret messages. The whole Enigma line was a family of electro-

2

mechanical rotor machines with a number of different models. The machine itself was

used commercially from the 1920s onward and was adopted by several different military

and governmental agencies, the most famous of these being Nazi Germany during and

prior to World War II [1][(Wolfram, 2002)].

 The most famous version of the Enigma Machine is the German military version

used during World War II, the Wermacht Enigma. This version of the Enigma machine

has been made famous in history, legend, and Hollywood films. The ironic fact is that the

machine is so famous for its failure to be secure. The Fact that the Allies were able to

break the Enigma was considered to be the best kept secret of World War II second only

to the atomic bomb [1][(Wolfram, 2002)].

 1.1.1 Focus

 The main focus of this thesis is to re-engineer the German military model, the

Wermacht Enigma, and create a derivation of the cipher that is secure on modern

computers. During World War II the German forces had full confidence in the Engima

cipher machine who depended on its security. This was somewhat misplaced confidence;

however, it was based on the fact that the machine had a rather large (for the time) key

space. The first computers were actually created to break the Enigma cipher, those being

the Bombes created by British cryptologists (Alan Turing being a member of this team)

[2][(Berghel, April 2008)].

1.2 What is Cryptography?

Cryptography is the process of taking a set of data and making it secure and secret

by encoding and/or scrambling it. Secret keys, which will be discussed later, are

generated by the cryptographic algorithm (a cipher), and these keys combined with the

3

strength of an algorithm and the type of network it is being used on determine the cipher's

strength [3][(Algred J.Menezes, 1996)]. There are many different types of cryptographic

algorithms. The most basic is a symmetric key encryption. The symmetric key cipher

only requires that a single key be used to encrypt and decrypt the data. That is, the single

key scrambles the data and is placed within the data in a manner allowing for the data to

be unscrambled with the same key, usually using an XORed inverse in some way [4][

(Schneier, 1996)].

Another type of cipher is a two key cipher, called public-key encryption. When

the operations of the two-key asymmetric ciphers are performed, they are quite different

from that of symmetric key encryption. They can be more secure, providing

confidentiality, as well as offering integrity checking and verification of the author for

non-repudiation. However, certain ciphers, like Rijndael's AES are symmetric ciphers

that perform a number of separate operations to make them secure. [5][(Schneier, 1996)]

1.2.1 Basics of Cyrptography, Types of Ciphers

Cryptographic algorithms today consist of a few main structures. Most attempt to

create confusion and diffusion of the input data. One such example of this type of

algorithm is Feistel networks. One of the main advantages to the Feistel Networks is that

their design is much like the Enigma cipher. Encryption and decryption are nearly

identical, the only requirement being that the key schedule is reversed.

4

 Figure 1: Feistel Network

The above Figure 1 [6][(Fiestel Cipher, 2008)] represents the process of

encryption and decryption of a plaintext and ciphertext version of a document. During the

encryption, the block is broken into separate halves. The first block is processed through

by the function F where F performs the diffusion and confusion of the data. This is done

through any method chosen by the cipher. The next half is run through as a step/part of

function F or as a portion of the key K mixed into the data with an XOR. This process is

thus repeated with the two halves swapping places and continuing until the full key has

been utilized. When decrypting it is the same algorithm simply with the stream reversed.

[7][(Schneier, 1996)]

5

 Enigma is a polyalphabetic substitution cipher. However, Enigma is more closely

related to a Feistel network. A polyalphabetic cipher is any cipher based on substitution,

using multiple substitution alphabets. This is not a cipher that is in common use today,

however, as it is what Enigma originally was, it is important to discuss it here. The

Vigenère cipher is one of the most well known examples of a simple polyalphabetic

cipher. [8][(Miller, 2008)]

 1.2.1.1 Basics of AES

The Rijndael cipher, better known as the Advanced Encryption Standard (AES),

is a Substitution Permutation Network cipher. This is a series of linked mathematical

operations used in block ciphers, which is precisely what AES is. These consist of S-

Boxes that transform blocks of input bits into blocks of output bits, usually these are done

through hardware-efficient functions such as exclusive-or (XOR). This borrows a lot

from the mixing functions of Feistel ciphers. Rijndael's cipher consists of more than

simply reversing the key for encryption and decryption. [9][(Vaudenay, 2006)]

6

Above, in the Figure 2 [10], it can be seen that AES consists of four main steps.

These four steps are: AES mixes the key by XORing with the state; AES then substitutes

the bytes of the state using an S-box (Substitution box to obscure the relationship

between the plaintext and the ciphertext); it then shifts the rows in the block; lastly it

mixes the columns in each block. [11][(Vaudenay, 2006)]

The first step above is demonstrating how the block of plaintext, also known as

the state, is XORed with part of the key. Below, in Table 1 is the truth table for XORing

values. The next step in Figure 2 [10] is SubBytes which is used in several Substitution-

XOR Key and State (Confusion)

Substitute Bytes of State (Confusion)

Shift Rows of State (Diffusion)

MixColumns of State (Diffusion)

Figure 2: The four steps of AES

7

Permutation Network (SPN) ciphers (like AES). This uses an S-Box to create unique

output for each input. ShiftRow is a diffusion step which rotates rows in the state.

MixColumns is also a diffusion step. MixColumns uses matrix multiplication in the

Galois Field to diffuse bits within each column among all four column entries. This all

comes together when these functions of confusion and diffusion work together to provide

the security for the algorithm of AES. Only the inverse functions are called in an opposite

order to do decryption. S-boxes, or substitution boxes, are the core of most SPN ciphers.

They are responsible for a great deal of the confusion aspect of the ciphers. How it works

is that an 8-bit S-box contains 256 unique entries. That is, one entry for each of the 256 8-

bit numbers. The input byte, or the starting byte is used as the index for the table and

then the value at that index is then the substitution value. For the reversal of an S-box

there must be an inverse S-box that must stay synced with the S-box for encryption and

decryption to function properly. [11][(Vaudenay, 2006)]

Table 1: XOR Truth Table

1.2.2 Secret Keys

A key is a secret piece of information that is what controls a cryptographic

system. In the encryption of system, the key specifies the transformation from plaintext

into ciphertext or vice versa during the decryption process. Keys have already been

8

discussed above with block ciphers and stream ciphers and where they fit in with each.

Basically a secret key transforms a file into something resembling random noise. It maps

the message onto the ciphertext. One algorithm can encrypt the same thing many

different ways using distinct keys. [12][(Amit Parnerkar, 2003)]

 The key size itself can range from small and easily breakable to a one time pad

which is, given that the key is not revealed, one hundred percent secret. The actual

protection of a key, assuming it is not a poor key and easily broken, is based on people

keeping the key safe. This means not writing it on one’s desk and simply leaving it out in

the open for all to see, or telling someone what it is, or emailing it out. These are all

examples of what not to do and how keys are generally stolen. Keys are still easier to

keep secret then the actual algorithms which are reverse engineered or published for all to

see. [12][(Amit Parnerkar, 2003)]

1.3 Description of Enigma and its Inner Workings

 This section describes the inner workings of the physical Enigma machine to get a

better idea of how it actually functions in the underlying software.

The Enigma Cipher Machine consisted of five variable components:

 1.3.1 The Plugboard

(1.) A plugboard which could contain from zero to thirteen dual wired cables:

9

Figure 3: The plugboard of an Enigma machine, showing two pairs of letters swapped: S-O and J-A.
[13]

The plugboard contributed greatly to the strength of the Enigma machine, far greater then

adding an extra rotor would. Without a plugboard the Enigma ciphers created by these

machines was generally easily defeated by hand. The machine operated with a cable

placed onto the plugboard connecting letters up in pairs, a.l.a. S and O. These were called

steckered1 pairs and this would cause the letters to be swapped (similar to a substitution

cipher) before and after the main rotor scrambling unit. In the case above, the signal sent

to S would be diverted to O. Up to thirteen of these might be used at a single time. [8]

[(Miller, 2008)]

Current was sent from the keyboard through the plugboard and would then

proceed to the entry-rotor or Eintrittswalze. Each letter has two jacks. A plug would have

a top and bottom connector that would disconnect the upper jack from the keyboard and

1Steckered is the German word meaning Plugged.

10

the lower jack to the entry-rotor of the specified letter. The other end of the plug would

be connected to a separate letter which would thereby switch the connections of the two

letters. [8] [(Miller, 2008)]

Figure 4: Schematic and Wiring Diagram of Mechanical Switches Involved in Encoding [14]

1.3.2 The Rotors, Serrations, and Ringstellung

 (2.) Three left to right ordered rotors which wired 26 input to 26 output contact

points on alternate faces of the disc: [8] [(Miller, 2008)]

(3.) Twenty-Six serrations around the outside of the rotors that allowed the

operator to specify an initial rotational position for said rotors: [8] [(Miller, 2008)]

11

(4.) A ringstellung, a ring setting on each rotor controlled the rotational behavior

of the rotor by means of a notch: [8] [(Miller, 2008)]

The rotors (German: walzen) were about 10cm in diameter and had a series of

spring-loaded pins on one face arranged in a circle. On the opposite side of this were a

corresponding number of circular electrical contacts. The pins and contacts represent the

alphabet, usually the 26 letters of the English alphabet. When side-by-side the pins of one

rotor rest against the contacts of a neighboring rotor forming an electrical connection. A

set of 26 wires connects the contacts on one side in a complex pattern to the contacts on

the other side, differing for every rotor. [8] [(Miller, 2008)]

 Basically a rotor on its own does a simple substitution encryption. An example of

this would be S would be wired to C from one side to the other. The strength comes from

using three or more rotors in series with the regular movements of the rotors adding

greater strength. [8] [(Miller, 2008)]

 A rotor can be turned by the operator by hand to one of 26 positions. For the

operators sake, each rotor has a letter ring attached to the outside of the disk which can be

seen through a window indicating the position of the rotor to the operator. The ability to

adjust the alphabet ring to the core wiring was added later to the version in which this

thesis is concerned. The position of the ring is known as the Ringstellung. [8] [(Miller,

2008)]

 The rotors each have a notch or multiple notches that are used to control their

stepping. When the Enigma was first issued there were only three rotors available. In

1938 this changed to five, however, only three were chosen of those five to be placed in

the actual enigma. These had Roman numerals, I, II, III, IV, and V to distinguish them

12

but this ultimately allowed for two separate attack methods to work against it. The Naval

version added VI, VII, and VIII while it also allowed for a fourth rotor within the actual

machine, however it did not replace the reflector. The problem with the fourth was that it

did not step, it could only be manually set to one of 26 positions. [8] [(Miller, 2008)]

Figure 5: (left) Three rotors and the shaft on which they were placed when in use (right) Stack of
rotors inside the enigma consisting of 3 rotors and the Umkehrwalze-B (the reflector

1.3.3 The Reflector

(5.) The last piece in the chain, a reflector, half-rotor to send the input back across

the rotors: [8] [(Miller, 2008)]

 The last "rotor" in the line did not, in fact, rotate. It was called the reflector

(Umkerwhalze, reversal rotor). This was a feature distinctive solely to the Enigma in the

age of the rotor encryption machines. The reflector connected up the last rotor in pairs,

reflecting current back through a different route. The reflection was there to perform

involution. Involution is a mathematical term for a function that is its own inverse. such

that:

 f(f(x)) = x for all x in the domain of f

13

 This ended up meaning that encryption was the same as decryption. A problem

created by the reflector was that no letter would ever be encrypted to itself. This would

later be exploited by the codebreakers at Bletchley Park. In some versions of the enigma

the reflector would step as encryption was occurring, in others it did not. In any case the

reflector had twenty-six positions. [8] [(Miller, 2008)]

 Figure is a good visualization of just how enigma works.

Figure 6: Example of the full workings of Enigma from Cryptool, shows the full alphabet being
encoded

14

Figure 7: Scrambling action of enigma shown for two consecutive letters, the greyed out lines
represent other possible circuits [15]

As can be seen, all of the lines are physically connected. The plugboard is active,

however no letters are turned off. After all 26 letters have been entered, the rotor has

made a full turn and thus the second rotor turns. This is a very basic example with the

starting position of the third rotor beginning at A, had it begun at say M, it would have

turned at Z and then gone through another 13 of the second rotor. The reflector can be

seen as sending the letter next to it back through the algorithm.

1.3.4 Mathematical Description of Enigma

 The transformation of each letter in Enigma can be specified as a production of

permutations.

 Assuming a three-rotor model:

 E: Encryption
 ρ: cyclic permutation

P: plugboard transformation

15

U: reflector
L,M,R: Left, Middle, Right Rotors

The period of a three rotor model would be this: 26 x 25 x 26 = 16,900. The

reason it is not 26 x 26 x 26 is due to the double stepping of the second rotor.

[16][(Vaudenay, 2006)]

E = P*R*M*L*U*(L − 1)(M − 1)(R − 1)(P − 1)

 After each key is pressed, the rotors turn. This changes the transformation. From

that is derived the formula:

E = P(ρiRρ − i)(ρjMρ − j)(ρkLρ − k)U(ρkL − 1ρ − k)(ρjM − 1ρ − j)(ρiR − 1ρ − i)P − 1
[16][(Vaudenay, 2006)]

16

2. Software

 2.1 Introduction to Enigma and Changes Being Made

This algorithm is being named Enigma Phoenix. Why Enigma Phoenix, one might

ask? In ancient mythology, a Phoenix is a bird that dies in flames and is reborn from the

ashes. One could say that the Enigma most certainly died in flames at the hands of good

and will be reborn from those ashes in the same hands.

 Firstly, it is known that the Enigma cipher implemented a polyalphabetic

substitution cipher. Basically a polyalphabetic substitution cipher is any substitution

cipher that uses multiple substitution alphabets. That is, the letters that are being

substituted as it is encrypted are changed based on a shifting set of alpha, numeric, and/or

character sets. The Enigma cipher is also a stream cipher. Enigma is also a cipher whose

encryption and decryption are the same. Thus through software only one function is

needed to perform both.

 The Enigma Cipher has been discussed above including its holes, its

vulnerabilities, and all of its weaknesses. Even into the 2000s there have been attempts to

break some of the original encrypted messages. There are obviously some flaws in the

original model, but it was still an exceptionally secure model for the time and continues

to show its strengths.

 The software being developed here is set to expound upon that principle.

Basically the idea is to take the original workings: the mathematics the algorithms, and

the basic set of rules; and from there the basic set of rules will be modified. These

modifications are intended to update the original Enigma with current technologies and

knowledge gained from 75 years of progress.

17

 From this knowledge what this thesis has set out to do is to modify the Enigma

cipher in such a way that the base rules: the rotors, the reflector, the plugboards, all of

this stays in use. What changes is their actual use. While the rotors still turn in a similar

manner (though simulated), they turn based on a new Galois Field function. Also, the

second rotor which was normally notched and thus double stepped, no longer double

steps. What that function is and how it will actually work will be discussed below. The

reflector works exactly the same way it did in the Enigma cipher. It simply adds another

layer of diffusion to the cipher. The plugboard's actual functionality has been expanded

more then it has been changed. There is still only one plugboard but the full range of the

ASCII chart are its only limits.

 2.2 Brief Description of AES and Comparison

The current model used as the standard is AES, the Advanced Encryption

Standard. The Advanced Encryption Standard (AES), known as Rijndael, is a block

cipher that was adopted fairly recently as an encryption standard used by the U.S.

government. Its predecessor was the Data Encryption Standard, and much like its

forbearer, it has been adopted internationally. After a five year standardization process by

the National Institute of Standards and Technology (NIST) it was announced on

November 25, 2001. It was initially created by two Belgian cryptographers, Joan Daemen

and Vincent Rijmen and was hence submitted as Rijndael. [17][(Jamil, 2004)]

 AES is not strictly Rijndael as Rijndael has a variable block length size as

a possibility. Rijndaels format was chosen as the general method to be used for non-

classified information by the NSA. In 2003 AES was approved for top secret information.

AES itself has a fixed block size of 128 bits and key size of 128, 192, or 256 bits.

18

Because of this fixed block size AES operates based on a 4x4 array of bytes called the

‘state’. The calculations for AES are done using Galois fields. [17][(Jamil, 2004)]

 The mode of operation that is commonly used with AES is the Cipher-block

Chaining (CBC). In this mode each block of plaintext is XORed with the previous

ciphertext block before being encrypted. Each ciphertext block is thus dependent on all

plaintext blocks processed to that point. To make each message unique, the

aforementioned initialization vector is used. The main drawback of CBC is that the

encryption is sequential and thus it must be padded to a multiple of the cipher block size.

Even a 1 bit changed in the plaintext propagates itself throughout the ciphertext and a one

bit change in the ciphertext corrupts the entire thing [18][(Vaudenay, 2006)].

Figure 8: A view of the cipher-block chaining mode encryption.

AES uses a variable number of rounds which are fixed. At key of size 128, 10

rounds are used. At key of size 192, 12 rounds are used. At key of size 256, 14 rounds are

used. During each round, four operations take place.

The first of these operations is SubBytes. In this, every byte in the state is

replaced by another using 8-bit Rijndael S-boxes. These S-boxes are derived from the

multiplicative over GF(28).

19

The seconds step is ShiftRow. In this every row in the 4x4 array is shifted a

certain amount to the left. The first row is left unchanged in AES. In the second row, each

is shifted by an offset of one, and then two for the third, etc. For 256 bit, the offset goes

1, 2, 4 etc.

The third step is the MixColumn. In this a linear transformation on the columns of

the state occurs. It takes four bytes as input and outputs four bytes. This step helps

provide diffusion for the cipher.

The fourth step is AddRoundKey. In this each byte of the state is combined with a

round key. Each key is different based on Rijndael’s key schedule. In the final round,

MixColumn is not used and thus it has only three steps in the final round. Thus, AES is a

fair ways different then DES but both are fairly complicated if looked at from above,

however, when broken into pieces one can see exactly what is happening.

2.3 Stream Cipher Vs. Block Cipher

 Stream ciphers tend to be designed to be quite efficient and exceptionally fast,

much faster then a block cipher. As stated before, a stream cipher is a symmetric cipher

where the plaintext bits are encrypted one at a time. A stream cipher is a fairly polar

opposite approach to symmetric encryption to a block cipher (though they are both

symmetric encryptions). Stream ciphers execute at a higher speed and have a lower

hardware complexity than block ciphers. A stream cipher generates a ‘keystream’ (a

sequence of bits used as a key) and the encryption is done by combining the keystream

and the plaintext using a bitwise XOR. Either a synchronous (keystream is independent

of the plain and ciphertexts) or a self-synchronizing (keystream depends on plain and

ciphertexts) stream cipher can be used. Stream ciphers do, however, tend to be more

20

vulnerable to security flaws such as using the same starting state twice would make it

almost completely open to successful attack [19][(Schneier, 1996)].

 A block cipher is a form of symmetric encryption that transforms a fixed length

block of plaintext into a block of ciphertext of the same length. Decryption is done by

applying the reverse transformation to the ciphertext block using the same key. The fixed

length of a block cipher is the block size. A block cipher provides a permuation of the set

of all possible messages. The permutation effected is a secret since it is a function of the

secret key. When a block cipher is used for a message of arbitrary length, modes of

operation are used. To be useful the modes must be as efficient and as secure as the

underlying cipher. Block ciphers and stream ciphers are generally fairly distinct.

[20][(Schneier, 1996)]

 However, the distinctions can blur. A block cipher, when used in certain modes

acts almost exactly the same as a stream cipher. This takes place based on the users secret

key.

2.4 Galois Field

 This version of the Enigma cipher has been modified to use Galois field

mathematics. The math behind the Galois field and the code behind it are somewhat

disconnected. That is, an understanding of the math does not inherently translate to an

understanding of the code and visa-versa. The method for the code chosen here was to

create a separate file containing the Galois operations. This is as opposed to placing them

within the main file or overloading the operators (albeit overloading the operators would

be ever so slightly more efficient, but in the end the time spent doing so is not worth the

minor increase). First it should be mentioned that the functions in galois.h are all uint8_t,

21

that is, an unsigned 8-bit integer. Addition and subtraction are exactly the same. They are

both done with an XOR operation:

uint8_t gadd(uint8_t a, uint8_t b)
{
 return a ^ b;
}
uint8_t gsub(uint8_t a, uint8_t b)
{
 return a ^ b;
}

 Multiplication is a bit more complicated. From [], below is a listed explanation of

the mathematics behind the gmul{} function within the Galois header file using the

numbers seven and three

Take two eight-bit numbers, a and b, and an eight-bit product p

• Set the product to zero.
• Make a copy of a and b, which we will simply call a and b in the rest of this algorithm
• Run the following loop eight times:

1. If the low bit of b is set, exclusive or the product p by the value of a
2. Keep track of whether the high (eighth from left) bit of a is set to one
3. Rotate a one bit to the left, discarding the high bit, and making the low bit have a value of

zero
4. If a's hi bit had a value of one prior to this rotation, exclusive or a with the hexadecimal

number 0x1b
5. Rotate b one bit to the right, discarding the low bit, and making the high (eighth from

left) bit have a value of zero.

The product p now has the product of a and b

 As for the exponentiation and logarithmic tables, they can be generated in the

code included in this program. Instead however, for stability's sake and for efficiency, the

tables have been hardcoded into the actual header file. This means that any logarithmic

operations that are performed can be done using the tables and the exponential tables are

simply the anti-logarithmic tables.

 For division, a function gdiv was written that simply executes a (log(a)-

log(b))mod255. The multiplicative inverse is also done using the lookup table to run a

check and see what it is.

22

An expansion to Enigma would be to use the Galois fields in combination with s-

boxes. The s-boxes would use the Galois field’s multiplication and the inverse-

multiplication functions. [21][(Trenholme, 2008)]

 2.5 Description of Changes in Enigma

The code that is being written for this version of Enigma is somewhat extensible.

That is, it has several components that can be changed and added upon. The first part has

to do with the rotors. The choice that was made was to include a total of five rotors in this

version. Within the realm of the ASCII table that is a total of 1099511627776

possibilities. This means that even in rather large messages the rotors will not spin back

around. Of course, this leads to the problem that if one were to encrypt a document with

the same key over and over again one would get essentially the same results. Should an

attacker intercept the transmission of this document on multiple occasions they would

more then likely be able to form an attack on the cryptographic system. The other

possibility is encrypting different messages with the same key. This would yield a similar

result, an attacker intercepting them would eventually find a pattern and break it.

Going back to the extensibility that was being discussed, it was mentioned that a

total of five rotors are being used in this iteration. Five were selected as they would be

cryptographically secure, and for academic purposes are more then enough. However,

this program was designed so that with the change of a number that could be extended to

as many rotors as are desired or may be deemed necessary.

The main point of this thesis was not to simply modify the original Enigma

cipher. It was to make it cryptographically secure on modern computing systems. The

holes in the original Enigma have been lightly touched upon already. These and more

23

will be touched upon later. For now it is simply needed to be understood that the original

Enigma was not cryptographically secure. It had certain flaws that made it unsafe to use,

especially on large messages (small messages made it difficult to break as there was not

enough data to work with).

What this thesis is about is modifying of Enigma to include Galois mathematics.

These are the same mathematics involved in making a current cryptographically secure

algorithm, Rijndael's Advanced Encryption Standard, secure. Mostly, this is dealing with

s-boxes. How this works is, a key is passed in through a function that generates the s-

boxes. These s-boxes are then used to generate the rotors. The s-box generator includes

the use of the galois multiplication and inverse-multiplication functions. It also includes

an XOR with the generated MD5 key which makes it more secure.

The plugboard is an interesting device. It gave Enigma a great deal of its

cryptographic strength. It was a fairly brilliant and simple idea on the behalf of its

creators to create diffusion on a non-computing system. The plugboard in this version of

Enigma adds a good deal of diffusion as well. However, simply turning off certain

characters at random or at selected intervals is not really practical. What was again

needed here was the use of the Galois Fields to add diffusion and allow for a certain

amount of randomness while still being able to decrypt the message (if it were wholly

random there would be no way to decrypt it).

The reflector has also been modified but only slightly. It now includes the full

range of the ASCII table as well. This is, of course, a necessity. Without the reflector now

having all 256 characters, Enigma would not work. As mentioned above, the process

involves traveling through the rotors, and then the connected lines from the rotors are

24

then translated to the reflector (this is all after the plugboard has been applied). After this

it is sent back through the rotors using the required characters.

 Essentially this is a modernizing of the original Enigma. The question is, what

kind of difference will this make? Can it rival today’s modern block ciphers? Will it be

efficient and does it even do what its supposed to? That’s really what this thesis is

proposing to find out. It’s a simulation of a modernized Enigma.

 2.6 Procedure

 The purpose of this thesis is to propose a secure software version of the

mechanical encryption device, the Enigma machine, that implements the following:

1. A stream cipher based on the Enigma Machine, a polyalphabetic cipher

2. Add a Galois Field function to the cipher that generates the rotors through S-

box generation and using the multiplicative properties of Galois Fields.

3. Add functionality to encrypt and decrypt any binary files

4. Add the full functionality of the ASCII table to it (as opposed to the original

use of the 26 English letters)

5. Use a 128 bit key to encrypt the data through an MD5 sum and use this key

with the S-box function to make it more secure.

6. Make it secure in such a way that knowing the passphrase is the only way to

decrypt the file

2.6.1 Description of Software

There are four main functions behind the Enigma Phoenix cipher. These four

main functions are the same functions that any basic Enigma cipher would need. The first

of these functions is the init_enigma(). What this does is to allocate memory for the

25

rotors. It also sets the default value of the rotors to zero. Beyond that it calls and

initializes the rotors themselves. It also initializes the reflectors and runs through the rotor

lookup.

 The logic works like this:

 Set Number of Rotors = number of rotors desired
 Initialize Rotor Memory Space = array based on number of rotors
 For (0 to NumRotors)
 Initialize all 256 (ASCII) values of Each rotor

 Initialize Reverse Rotors Memory Space = array based on number of rotors
 For (0 to NumRotors)
 Initialize all 256 (ASCII) values of Each rotor
 Create galois object
 Initialize values from 1-256
 Pass values into rotors which are generated from S-box function

 Set default Values of Positions to 0

 Initialize the plugboard (by default all values are 1:1)

 Initialize Rotors (based on Galois function)

 The next function is the rotor_lookup() function. This does essentially what its

nomenclature suggest, it checks the rotor’s arrays for the value at each of the 256

characters in each individual rotor (a.l.a. if the letter a is passed in, it checks on rotor one

to see where that a would be, for example, it would be @ on the rotor).

 The Logic for Rotator Lookup can be seen in Figure :

 For the values 0-255:

 If the rotor is set to the value passed in,

 Return it

26

Char_do_enigma() does a lot of the heavy lifting, it controls the initial and

continuing rotations as well as most of the other functions.

The logic looks like this:

 Rotate first rotor by 1

 check if any of the other rotors need to be rotated

 Go through the plugboard

 Go through the first rotor

 Then go through the rest of the rotors

 Go through the reflectors

 Then go back through the plugboard

 Audit_rotors() checks to see if a rotor has made a full revolution and increments

the next rotor.

 The logic looks like this:

 Make sure current position isn’t greater then 255

 If it is, set it back to 0

On the last rotor, check to make sure the current position isn’t greater than the

number of rotors.

 Increment position

 Call audit_rotors

27

 FileSize() is simply a function that gets the size of the file. File_do_cipher() calls

init_enigma(), reads each character from file, then proceeds to encrypt/decrypt it with

char_encrypt(). Lastly it writes it back to new file.

 The logic looks like this:

 Pass the key to init_enigma()

 Get the file size

 Open the file for reading and writing

 Check to see if there’s an error

 Run through to the size of the file

 Pass characters through char_do_enigma()

 Those are the main functions behind Enigma Phoenix. Besides these the other

main function would be the sbox() function. This generates the s-box for the rotors.

 The logic looks like this:

 Pass in the character from the rotor

 Create a copy of the multiplicative inverse

 Shift it with circular rotates to the left

 XOR it with the MD5 sum key

 Return the value

28

3. Practical Applications

 Will this be useful? That's the main question this thesis sets out to answer. That

answer exists and is listed below. What this section is set about to discuss are the

practical applications assuming the usefulness of the algorithm.

 Even today, Enigma plays an important role. When it was learned in the 1970s the

importance that deciphering the Enigma had played in the Allies winning the war, public

interest was piqued. Even today, there is a project to create a complete simulation on

handheld devices called AR-ENIGMA. This will be used to demonstrate the Enigma's

capabilities for Cryptography classes as well as for major museums (such as the Museum

Of Natural History or the Intelligence Museum in Baltimore, Md.). It is a server-client

product where the server sends out the 3D representation of the Enigma to the handheld

and the interactions on the handheld are sent back to the server. [22][(Volker Paelke,

2002)]

 Certainly for teaching purposes Enigma is an exceptional example to show both

due to its power and due to its deficiencies.

 On an application to application basis the question is not what can be done with

this. The question is more whether or not this is cryptographically secure, that is, is it

capable of keeping data confidential. Is it resistant to a brute force attack? If an attacker is

attempting to break it, can it be made to where it is not worth the amount of time they

would have to put in versus the value of the data.

 Most, if not all of these questions are answered in the Results section below. Once

the dust has cleared it will be shown whether or not Enigma Phoenix is simply an

exercise in academic curiosity or whether it is functionally a useful cipher.

29

 3.1 Previous Research

 There hasn’t been a vast amount of new research done on the Enigma Cipher.

This is mostly because it is considered antiquated, something for the history books,

something to be taught as a failure in classrooms around the world. Why is that? Because

it was a failure, it failed at keeping the enemy’s secrets, for which we are all

exceptionally happy. It failed for one main reason though.

 The premise behind the original Enigma cipher is security through of obscurity.

The premise behind security through obscurity is that inviolability is a consequence of

the enigmatic. The Enigma cipher was assumed to be inviolate due to being enigmatic,

that is, due to its hidden complexity. It was assumed to be secure because it was assumed

that all of the information needed to break it was hidden. This is what is called faith based

security.

 Dating back as far as the 1880s, Auguste Kerckhoffs proposed that no

cryptographic system that claims to be secure should be predicated solely upon an

assumption that people would be unable to figure out its basic functions. The emphasis

should instead be predicated upon robustness of the procedure and key strength. The

German war machine failed to understand the inherent weaknesses in security through

obscurity. This tends to speak in favor of the robustness in open source software.

 Most of the implementations of Enigma have been very similar to AR-ENIGMA,

that is, they are for demonstration purposes. There are many opengl java based or C#

based applications designed to emulate the Enigma machine.

30

Figure 9: AR-ENIGMA running on pocket PC based handheld as well as a screenshot of the menu to
a simulation [22]

 Figure 10: Simulation of Enigma cipher running in openGL

31

4. Cryptanalysis

 4.1 Cryptanalysis of the Original Enigma Cipher

 The Enigma cipher was originally designed to defeat cryptanalysts by continually

changing the substitution alphabet. As mentioned before it implemented a polyalphabetic

substitution cipher. With single-notch rotors, the period of the machine was 16,900, or

26x25x26.

 However, as mentioned above the Enigma is not a base rotor machine. Enigma

added other possibilities. It added a variable starting position, a variable alphabet ring to

each rotor, a reflector, and a plugboard. Despite the complexity of the machine, the key

was very simple to communicate as one could send what rotors to use, what order,

connections, and starting positions. [23][(Kahn, 1991)]

 At the time when the machine's use was prevalent, the fact that encipherment and

decipherment were the same was considered an advantage. They were the same in that, if

the users had the same machine set up (same rotor choices, etc), then the decipherment

process was the same as the encipherment process. The changing of the configuration of

the machines changed the key. The changing of the configuration, and thus the changing

of the keys was set up on a monthly, then weekly, then daily schedule [23][(Kahn,

1991)].

 The different models of the Enigma machine obviously provided different levels

of security. The use of a plugboard (stecker) substantially increased the level of security.

Without a plugboard, Enigma was able to be broken by hand methods. With the

plugboard Enigma required machines to actually be able to break it [23][(Kahn, 1991)].

32

 Enigma had several cryptographic holes that proved exceptionally useful to

cryptanalysts. One of the main flaws was that, save for models A and B which did not

have a reflector, the Enigma machines could not encrypt a letter to itself. This allowed for

cribs – short sections of known plaintext in the ciphertext – to be created. Another

property of Enigma was that it was self-reciprocal, that is, encryption was the same as

decryption. This limited the amount of scrambling it could do (at the time, software

allows for a much more flexible amount of scrambling in separate components)

[23][(Kahn, 1991)].

Figure 11: Bombe used for breaking the Enigma Cipher

33

 4.2 General Cryptanalysis Techniques

There are currently and have been many attempts at analyzing the strength of a

cipher. The main method that many are familiar with is ensuring an adequate key space.

There are a lot of areas where a cipher can fall apart, be it from a weakness in the

algorithm’s design or the implementation thereof (software and hardware). The first and

most basic of these tests is a data histogram. From the processing in any cipher there

should be enough data to produce a uniform frequency histogram for all the bytes. This is

irrespective of the length, verboseness, or other properties of the plaintext file. If this is

not the case then a simple language attack can be made against it which is why the old

Caesar ciphers are very easy to break (and for other reasons). Letters in the English

language and their base limit of 26 make it easy to break poor ciphers. If the base graph is

uniform it will be a step towards showing that the cipher is not trivial to crack.

[4][(Schneier, 1996)]

There’s several major properties that must be discussed, two of the more major

are the Index of Coincidence (IOC) and the Critical Avalanche Effect (CAE). The CAE

says that for one bit in the input byte at least fifty percent of the bits in the output byte

should change [24][(Kari, 1992)]. In AES this is done through the diffusion steps that

have been mentioned with ShiftRow and MixColumn. In Enigma this is done through the

rotors and through the plugboard. The MixColumn in AES performs matrix

multiplication which is done to ensure that every input byte affects four bytes of the

output. The plugboard changes one byte over and then affects the following five as it

goes through the rotors. This combined with the S-boxes for AES makes it meet the solid

34

criterion of CAE. The Enigma also meets this soundly as the infinite expandability of the

rotors makes it very capable but not as elegant.

The IOC is the property of placing two texts next to one another and counting the

number of times identical letters appear in the same position in both texts, figure 12 [25]

shows the formula for calculating the IOC. Due to the randomness of both AES and

Enigma Phoenix they each have very low IOC which is very good. In the original

Enigma, the IOC was very high as it only used the English alphabet to encrypt, now that

the full ASCII table is used it is much lower. These two statistics show that there is a high

possibility, if implemented intelligently that the algorithms will be secure.

Table 2: Example of IOC calculation on a basic Substitution Cipher

One of the problems of AES is that according to some authors [4] [9] the S-boxes

generated in the algorithm are static. This would allow attackers to modify the binary and

discover the secret key and plaintext. Most implementations with static S-boxes are

vulnerable to blanking. This would result, as mentioned, in a discovery of the key.

 Since the static S-boxes are stored in a binary, with AES the attacker could blank

them with zeroes and due to the XORing with an entry from the key, the key would be

outputted in the cipher text. This is generally defended against by protecting the binary in

the operating system or other means. Recently, with dynamic S-boxes, they are able to

defend against these attacks even with direct access to the binary files.

35

 A weakness with Enigma, and even Enigma Phoenix, is that encoding different

plaintexts with the same key could result in an IOC attack that would work. It depends on

the varying sizes of the plaintext but with the same rotors (based on the key) used over

again it would be possible that this could be broken. The problem with this method is that

it would take a large, vested amount of time and testing to do which most would not be

willing to place into it. It would depend on the key and length of this and the plaintext

which is unpredictable. The only way to test this for Enigma Phoenix would be to place it

into practical use which isn’t possible at the moment and thus cannot be tested for, this is

something that would be a recommendation for further study.

Figure 12: Formula For Calculating IOC

 4.3 Techniques Used For Cryptographic Analysis in Enigma

The most basic method for testing a cryptographic algorithm is the data

histogram. After the processing of a file there should be adequate scrambling (through

confusion and diffusion) of the data to produce a uniform frequency histogram for all

byte values to produce a uniform frequency histogram for all the byte values (256).

There are a great number of tests and techniques that can be performed to analyze

the performance of a cipher. Several of the main methods are used here as both tools for

comparison and tools for individual testing of each cipher. As has been stated two ciphers

are being compared, one being AES, and the other being this thesis version of Enigma,

Enigma Phoenix.

36

A major measure used today is Entropy. That is, Shannon entropy also known as

information entropy. This is the measure of the amount of information contained in a

random variable. The amount of information in a message is the minimum number of bits

needed to encode all possible meanings of that message. This is assuming all messages

are equally likely. A constant pattern has an entropy of zero since it requires zero bits to

transfer such a message. Formally, the amount of information in a message M is

measured by the entropy of a message, denoted by H(M). [26][(Schneier, 1996)]

 Generally the entropy of a message measured in bits is log2n, where n is the

number of possible meanings, this assumes that each meaning is equally likely. The

entropy of any given message also measures its uncertainty, that is, the number of

plaintext bits needed to be recovered when the message is scrambled in ciphertext in

order to learn the plaintext.

 Conditional entropy is often used as a measure of secrecy. It provides a measure

of similarity between two discrete random variables. These can be used to determine

whether the two variables are independent or whether they are dependent - and to what

extent - on each other. If the ciphertext were compared to the plaintext and the

conditional entropy were zero, this would mean that the cipher text provides all of the

necessary information to break it, or undo the encryption. To have complete secrecy the

conditional entropy between the plaintext and ciphertext would be equal. This would only

be the case for a one-time pad [26][(Schneier, 1996)]. Figure 13 [27] and Figure 14 [28]

show the formulas for entropy and conditional entropy respectively.

37

Figure 13: H(x) being Entropy as well as Conditional Entropy

Figure 14: Conditional Entropy with H being the probability of Y given X

38

5. Statistical Analysis on Modified Enigma Phoenix and AES

 This section is dedicated to the analysis of the Enigma Phoenix cipher as well and

in comparison to the AES cipher. The techniques being used will be described in this

section. The main tool being used to do the analysis is called Cryptool, it is a very useful

tool for analysis data files, hex files, text files, etc. It will do its own base histogram as

well as calculating entropy. This is necessary to avoid the first order language attacks that

can break simple ciphers like Caesar and so forth.

 5.1 Analysis of AES and Plaintext

 When looking at the statistics and analysis of a cipher there are several main

categories that must be taken into account. It should be noted that any cipher using s-

boxes without the diffusion steps is just as cryptographically insecure as the most basic

Affine shift-cipher. The version of AES that is being tested is the commonly used, and

thought of as secure government AES with 128-bit strength.

Key Used to Encrypt: AABB1A1C1D2A9CD726

Entropy for unencrypted Moby Dick: 4.55

Figure 15: Entropy of Moby Dick unencrypted (converted to a hex file so that all 256 values are
accounted for)

Entropy for Moby dick encrypted with true AES: 7.99

39

Figure 16: Entropy for Moby Dick encrypted with 128bit AES

 Above, in Figure 15 and Figure 16 one can see the entropies for Moby Dick both

encrypted as well as unencrypted. The unencrypted value is only as high as it is due to the

exceptional length of the text being used. Despite it’s somewhat higher than average

entropy for a plaintext document; the encrypted ciphertext is still far higher and is about

as close to eight as can be.

 Related to this is the periodicity. When measuring the periodicity one wants to

make sure that the file itself doesn’t have repeating cycles. This is generally something

that will be seen in the plaintext but should never be seen in a ciphertext that is claimed to

be secret. If there are patterns then it is easier for an attacker to find some sort of attack

vector. Figure 18 shows the periodicity of Moby Dick as a plaintext file. Figure 17 shows

that there is no periodicity in the AES encrypted file.

Figure 17: Analysis of the periodicity on the AES encrypted Moby Dick turns up no results

40

Figure 18: Periodicity of Moby Dick plaintext file

Figure 19: Binary Histogram of Moby Dick encrypted with AES

Above, in Figure 19: Binary Histogram of Moby Dick encrypted with AES is the

analysis of the frequency of each ascii character in the document. As can be seen the

frequency is very distributed which is what is wanted. This is a very good example of a

securely encrypted document using AES. A better way to say this would be to point out

that the histogram is uniform, which is what is to be expected. If a cipher is to have a

chance of being better then the simplest affine cipher then the histogram needs to be

41

uniform. Figure 20 shows the histogram for Moby Dick when it is unencrypted and the

difference is obvious.

Figure 20: Binary Histogram for Moby Dick unencrypted

Figure 21: Base Histogram of Value Occurences as well as Total Occurences

Above is another example using the tool WinHex to determine the occurrence of

each character. The y-axis represents the frequency, the x-axis represents the character in

the ASCII table. This is a bit of a more complicated and closer analysis which is why it

gets a better looking uniform, histogram, it doesn’t have any actual numbering so it’s

42

more difficult to interpret. Essentially though, it is another example of the uniformity of

the distribution.

Figure 22: Autocorrelation of Moby Dick in plaintext

Figure 23: The autocorrelation of Moby Dick encrypted with AES

 The autocorrelation is a mathematical tool for finding repeating patterns. It

describes the correlation between the process at different points in time. As can be seen in

Figure 22 and Figure 23 the difference between an encrypted file and the plaintext is vast.

The plaintext has a large grouping of patterns which is why it shows as basically uniform

43

across the top. The ciphertext is all over the place, there aren’t any underlying patterns

that can be found.

Figure 24: 3D visualization of the randomness in Moby Dick encrypted with AES

 Figure 24 is a representation of the randomness of the encrypted Moby Dick. The

inside of the cube represents the randomness in the file.

Figure 25: 3D representation of randomness in Moby Dick plaintext

Figure 25 shows the randomness of the plaintext file and the difference is instantly

recognizable. The plaintext is nowhere nearly as distributed as the encrypted file.

44

Table 3: ASCII Chart of Moby Dick Encrypted with AES

- ~
0.38' 39

6004 0.40> 31.
6751 0.39< 3B
6689 0.39< 3C
6749 0.39< 3D
6.,01 0.39> 31
6652 0.39< 31
6825 0.'0> .0
6753 0.39> 41
6670 0.39> 42
6603 0.39> 43
6710 0.39< 44
6732 0.39< 45
6634 0.39> 46
6835 0.'0> • .,

6709 0.39> ."
6668 0.39< 49
6627 0.39< 4J.
6840 0.'0> 4B
6811 0.'0> 'C
6766 0.'0> 4D
6618 0.39< ..
6663 0.39> ..
6688 0.39> 50
6708 0.39> 51
6611 0.39> 52
6689 0.39< 53
6740 0.39> 54
6637 0.39> 55
6623 0.39> 56
6710 0.39> 5"/
6680 0.39< 58
6688 0.39> 59
6718 0.39> 51.
6651 0.39> 5B
6606 0.39> 5C
6608 0.39> 50
674., 0.39> 51

6720 0.39> 51
6692 0.39> 60
6705 0.39> 61
6841 0.'0> 62
6739 0.39> 63
6721 0.39> 64
673., 0.39< 65
675. 0.'0> 66
6575 0.38' 67
6686 0.39> 68
6689 0.39> 69
6594 0.39< 61.
6686 0.39> bE
6593 0.39> 6C
6629 0.39> 6D
678 6 0.40> 6I
6631 0.39> 6J
6560 0.38' .,0

~~~~ ~.e~ .,1 

" " " .0 

" " " .. ., , .. , 

" " " , " , " . " ~ " , 
" " n 
n 

" " % 

" 
100 d 
M 
M 
103 q 
104 h 

106 ) 
10., k 

'" '" no 
m 
112 p 
113 q 

- .... ~ 
6663 0.39> 72 
6639 0.39> 73 
6781 0.'0> .,. 
665"/ 0.39> 75 
6596 0.39> 76 
6714 0.39> .,., 
6529 0.38' .,8 
6555 0.38' 79 
6663 0.39> 7J. 
6749 0.39> .,B 
6434 0.38' .,C 
6672 0.39> .,D 
6611 0.39> "II 
6688 0.39> "If 
6685 0.39> 80 
6621 0.39> 8 1 
6605 0.39> 82 
6525 0.38' 83 
6670 0.39> 8. 
660., 0.39> 85 
6630 0.39> 86 
6628 0.39> 8., 
6690 0.39> 88 
6738 0.39> 89 
6782 0.'0> 8.0. 
6619 0.39> 8B 
6564 0.38' 8C 
6758 0.'0> 8D 
6763 0.'0> 8 1 
6669 0.39> 8 . 
6700 0.39> 90 
6698 0.39> 9 1 
6699 0.39> 92 
6602 0.39> 93 
6622 0.39> 94 
6833 0.'0> 95 
6729 0.39> 96 
6713 0.39> 97 
6810 0.'0> 98 
664 1 0.39> 99 
6535 0.38' 9J. 
6688 0.39> 9B 
6666 0.39> 90 
6684 0.39> 9D 
6754 0.'0> 9I 
672., 0.39> 9J 
6709 0.39> 1.0 
6719 0.'0> Al 
6569 0.38' 1.2 
6798 0.'0> 1.3 
6629 0.39> A4 
6659 0.39> 1.5 
653., 0.38' A6 
6712 0.39> A" 
6852 0.'0> AS 
6721 0.39< 1.9 
6536 0.38' AA 

121 Y 

'" m 

'" m 
m 
m 
128 € 
129 I 
no 
m 
Be 
m 

'" m 
m 

m 
m 
140 " 
141 I 
142 Z 
143 I 
144 I 

'" '" w ,n 
'" '" m 

'" m 

'" m 
m 
m 

'" 159 Y ,w 
'" '" '" 164 • 
165 ¥ , .. 
'" '" 169 • 

Ilc....-. ... ~ 

6561 0.38' AIl 
6819 0.'0> AC 
6598 0.39> J.D 
659., 0.39> Ai 

6754 0 .• 0> .... 
671., 0.'0> EO 
6764 0.'0> El 
6653 0.39> E2 
667., 0.39> E3 

6523 0.38' B. 
6600 0.39> E5 
6544 0.38' E6 
6762 0.'0> E., 
6678 0.39> E8 
6673 0.39> E9 
6754 0.'0> EA 
65"18 0.38' EE 
668 1 0.39> EC 
6684 0.39> ED 
6726 0.39> EI 
6726 0.39> E . 
6696 0.39< CO 
6715 0.'0> Cl 
6592 0.39> C2 
6713 0.'0> C3 
6666 0.39> C' 
6538 0.38' C5 
6508 0.38' C6 
6689 0.39> C., 

6725 0.39> C8 
665"/ 0.39> C9 
6660 0.39> CA 
6653 0.39> CE 
6765 0.'0> CC 
6844 0.'0> CD 
6684 0.39> CI 
658., 0.39> Of 
667., 0.39> DO 

6712 0.39< Dl 
6760 0.'0> D2 
67.0 0.39> D3 
6572 0.38' D4 
6654 0.39> D5 
668., 0.39< D6 
6644 0.39> D., 
67 • ., 0.39> D8 

6511 0.38' D9 
6635 0.39> DA 
6824 0.'0> DB 
6910 0.'0> DC 
6710 0.'0> DD 
6608 0.39> DE 
6733 0.39> Dr 
672. 0.39< 1 0 
6638 0.39> 11 
6691 0.39> 1 2 
6562 0.38' 1 3 

" " " " " " " " " " .. .. 
" H 

" " " " " " " " .. 
" " " " " 

1 .,4 • 

m 
m 
no 
m 
m 

'" 181 I' 
182 1: ,n 
'" '" '" m 
188 " 
189 .. 
190 .. 
m 
m 
m 
m 
m 
,% 
m 
m 
m 

'" M 

'" '" '" '" '" M 

, , , , , 
1 
• 
I 

208 D 
209 ii 
210 0 
m 
m 
no 

'" '" 216 ~ 

21., ir 
218 ir 
219 ir 
220 U 
221 Y 

223 ~ 

224 a 
225 a 
226 i 
227 i 
228 i-
229 1 

'" m 
m 
en 

'" m 

'" m ,n 
m 

'" 241 n 

'" '" '" '" ,n 
'" ,n 
249 U 
250 U 
251 U 

253 Y 
254 P 
255 v 

lie, ...... ... 
6785 0.'0> 
6713 0.39> 
6746 0.39> 
6699 0.39> 
6719 0.'0> 
6688 0.39> 
6665 0.39> 
6700 0.39> 
6473 0.38' 
6613 0.39> 
6555 0.38' 
663., 0.39> 
667., 0.39> 

6815 0.'0> 
6745 0.39> 
6575 0.38' 
6726 0.39> 
6572 0.38' 
6872 0.'0> 
6660 0.39> 
6562 0.38' 
6588 0.39> 
6595 0.39> 
6589 0.39> 
6669 0.39> 
6738 0.39> 
6584 0.39> 
6865 0.'0> 
6508 0.38' 
667., 0.39> 

6539 0.38' 
6710 0.39> 
6686 0.39> 
6791 0.'0> 
6733 0.39> 
6640 0.39> 
6613 0.39> 
6715 0.'0> 
6701 0.39< 
6568 0.38' 
666., 0.39> 
6630 0.39> 
6652 0.39> 
6782 0.'0> 
6851 0.40> 
6553 0.38' 
6671 0.39> 
6676 0.39> 
6656 0.39< 
6660 0.39> 
6563 0.38' 
6589 0.39> 
665 1 0.39> 
6652 0.39< 
6594 0.39> 
6706 0.39> 
6671 0.39> 
65"10 0.38' 
667., 0.39> 

6685 0.39> 
6662 0.39> 
6650 0.39> 
6819 0.'0> 
65"11 0.38' 
6691 0.39> 
6680 0.39> 
6722 0.39> 
6728 0.39> 
6709 0.39> 
6630 0.39> 
6739 0.39> 
6650 0.39> 
6622 0.39> 
6565 0.38' 
6758 0.'0> 
672., 0.39> 

6699 0.39> 
6694 0.39> 
672., 0.39> 

6 00 5 0.'0> 
668., 0.39> 

6684 0.39> 
6783 0.'0> 
6824 0.'0> 
6711 0.'0> 



45 
 

 Table 3 shows the ASCII chart for Moby Dick encrypted in AES. This is every 

letter and the number and percentage that each takes up in the document. Table 4 contains 

the calculations based on the values above. This was done within excel and gets a closer 

look at the underlying calculations that are being performed by cryptool. 

 

Table 4: Calculations on ASCII chart Including Sum, Variance, and Entropy 
Total Number of Bytes: 231134
Sum of Byte Values: 4242921
Mean Byte:   18.3569747
   
∑(X-µ)^2 :   89746773.4
Variance (∑(X-µ)^2 / N) : 388.288929
   
Entropy:   7.87868995

 

 

Figure 26: Battery of FIPS tests being performed on Moby Dick encrypted with AES 
 



46 
 

 Figure 26 shows a battery of FIPS tests being performed using CrypTool. 

Basically these are a battery of statistical tests to make sure that the encrypted text 

doesn’t reveal any weaknesses or areas which would allow it to be broken. Simple affine 

ciphers as well as basic substitution ciphers will only pass the long run test on a large 

document like Moby Dick, but the rest of the tests will generally fail (long run being a 

test that checks for runs of 26 or more). The mono-bit test treats each output bit of the 

random number generator as a coin flip test, and determines if the observed number of 

heads and tails are close to the expected 50% frequency. In this case it’s based on the bits 

with 1s and 0s. The poker test tests for certain sequences of five numbers at a time and is 

based on hands in poker. The run test, also the Wald-Wolfowitz run test tests for the 

number of bit transitions between 0 bits, and 1 bits, comparing the observed frequencies 

with expected frequency of a random bit sequence. AES also passes a frequency test 

making sure that there aren’t too many patterned similarities in the file. [29][(Hasegawa, 

Kim, 2008)] 

 Basically, what all of this is leading up to is that AES is a very secure algorithm. 

This was something that is widely known just going into this thesis. These calculations 

are just meant to show that simple attacks are unviable against something as strong as 

AES. Also, all of this information is meant to show that it’s not any one part of AES that 

makes it secure, it is the combination of all of its parts that make it what it is, the most 

secure cipher publicly available today.  

5.2 Cryptanalysis of Enigma Phoenix 

 This is the main portion of this thesis, this is the full Enigma Phoenix being tested 

in the same manner as AES above. The same statistical tests are used here as they were 



47 
 

with AES. The original plaintext of Moby Dick is being used again as well. This means 

that all of the analysis of the original plaintext of Moby Dick will be the same, such as 

the entropy being 4.55. Thus, in this section only the analysis of the Enigma Phoenix 

cipher will be discussed.  

Key Used: ilikepancakes 

Entropy: 7.99 

 

Figure 27: Entropy of Moby Dick encrypted with Enigma Phoenix 
 

 Figure 27 shows the entropy of Moby Dick encrypted with the Enigma Phoenix 

cipher. As can also be seen the entropy was 7.99 making it equivalent to AES. This was 

the first good sign that the cipher was strong. This high entropy proved that there was 

good randomness in the file and that no low level attacks would be successful in breaking 

it. This is also about as close to eight as it can be. 

 

Figure 28: Checking for periodicity in Enigma Phoenix, no periodicity was found 
 



48 
 

 Figure 28 is checking for the periodicity of Moby Dick encrypted with Enigma 

Phoenix. Just like AES no periodicity was found in the encrypted file proving that there 

are no easy to detect patterns that could be used to find attack vectors with which to break 

the cipher.  

 

Figure 29: Binary histogram of Moby Dick encrypted with Enigma Phoenix 
 

 Figure 29 shows the binary histogram of Moby Dick encrypted with Enigma 

Phoenix. This is most definitely a uniform histogram with the occasional dip, it is 

actually better then AES. The histogram here shows that it would be less open to low 

level language attacks then even AES which is a feat in and of itself. It also proves that 

the cipher has more randomness through the confusion and diffusion.  



49 
 

 

Figure 30: Binary Historgram of Moby Dick encrypted with Enigma Phoenix and analyzed in 
Winhex 
  

 Figure 30 is the analysis of Moby Dick encrypted with Enigma Phoenix done in 

Winhex. Winhex is a bit more of an advanced tool and it shows some greater dips that 

might prove to be a little weaker then AES. Either way it’s still a very uniform binary 

histogram. This still shows that its quite secure by today’s standards.  

 

Figure 31: Autocorrelation of Moby Dick encrypted with Enigma Phoenix 



50 
 

 Figure 31 shows the autocorrelation of Moby Dick encrypted with Enigma 

Phoenix. The autocorrelation here shows that there isn’t a set pattern in the Enigma 

Phoenix. It’s not quite as good as AES because it doesn’t have the same range but it is 

very, very close to it. For a stream cipher to have this much randomness is unusual and 

really, for any cipher. This is a very strong algorithm and each portion of this analysis 

continues to prove that it is capable of holding its own with AES. 

 

Figure 32: 3D representation of randomness in Moby Dick encrypted with Enigma Phoenix 
 
 Figure 32 is a 3D representation of the randomness in Moby Dick encrypted with 

the Enigma Phoenix cipher. As can be seen the randomness here is visually represented 

and backs up the results that are seen above.  This is fantastic randomness and is well on 

par with AES. When comparing it to AES the distribution is fairly similar. This goes to 

prove that any low level attacks and even high level attacks will have great difficulty in 

finding a weakness solely in the ciphertext itself. 

 

  



51 
 

Table 5: Calculations on Moby Dick Encrypted with Enigma Phoenix 
Total Number of Bytes: 170269
Sum of Byte Values: 3233709
Mean Byte:   18.991766

∑(X-µ)^2 :   83560088.5
Variance (∑(X-µ)^2 / N) : 490.753387

Entropy:   7.87665164
 

 Table 5 contains the calculations based on an excel sheet and the data within has 

been included in the appendix. This just takes a closer look at the file, and, from this, it 

can be seen that while Enigma Phoenix is not quite on par with AES when encrypting the 

same file, it is exceptionally close. These are not necessarily exact calculations as they 

may differ from what CrypTool is outputting but they give  just a better idea of how well 

it’s actually being encrypted. 

 

 
Figure 33: FIPS battery of randomness tests on Moby Dick encrypted with Enigma Phoenix 



52 
 

 Figure 33 contains the FIPS batteries of tests that have all been explained in the 

AES analysis. Basically this continues to prove that the cipher is strong against all of the 

low level general attacks as well as any higher level brute force attacks. It shows that the 

ciphertext is random and that it contains no distinct patterns that can be used as a 

weakness against it.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

6. Conclusion and Results 

 There are several conclusions that can be made from this. Firstly, this has proven 

to be a secure algorithm. Overall this is possibly one of the cryptographically strongest 

stream ciphers that can be made based on its comparison to AES. It is close to as 

cryptographically secure to AES. The addition of Galois functionality has proven to be a 

fruitful addition.  

 That’s not to say that it isn’t without problems. There are still several portions that 

could be improved upon and those are discussed in the recommendations section. 

However, the cipher proved to be solidly strong. It rivals, without any improvements, 

AES. That, in and of itself, is a feat. So what is the conclusion? 

 The conclusion is that re-engineering the Enigma Cipher and attempting to make 

it secure based on modern standards has proven possible. Not only has it proven possible, 

but it has happened. It is secure for today’s computers. It holds up against tests built 

today to stress even the strongest algorithms.   

 

 

 

 

 

 

 

 

 



54 
 

7. Recommendations 

 As has been pointed out in this thesis, there is most definitely a main weakness in 

Enigma. While what has been created here is a very strong example of how secure a 

stream cipher can be, it still holds one main problem. When using the same key over and 

over again for multiple documents it could be possible, through comparison (likely using 

the Index of Coincidence and other methods) to determine what the key is. This is 

because there isn’t a block chaining method that can hide patterns like a block cipher 

would (hence why the most popular and secure cipher today is a block cipher, AES). If 

there were a way to somehow convert the Enigma cipher into a block cipher it would be 

exceptionally secure. 

 Going so far as to say that as a block cipher Enigma would be equally or more 

secure then AES would possibly be a stretch. It is a possibility though. This is something 

that would need to be researched more thoroughly. It was more than likely not as apropos 

to compare AES to the Enigma Phoenix. It would have likely been better to use a similar 

stream cipher. As was discussed above, the only real weakness here though, is the fact 

that it’s a stream cipher. Were it transformed into a block cipher then there would need to 

be a great deal of testing done. 

There are several other recommendations that need to be made. The first of these 

is a general recommendation. This was more of a test than anything else, and that 

includes and is especially in reference to the addition of Galois operations. However, 

since, for the rotors, the Galois operations proved functional and secure, this should be 

extended to other portions. These other portions include the reflector and the plugboard. 

The reflector would be especially easy to generate with Galois fields since it works on a 



55 
 

very similar principle to the rotors. The plugboard would not necessarily work as well 

with any sort of Galois function, but it is foreseeable that it could somehow make use of 

one. The rotors occasionally run into spots where they are equal to the prior rotor just 

because of the way the vectors are set up. This could be modified at a later date to add 

even greater security to the cipher.  

Just using the plugboard and reflector in some way outside of their original 

purpose would probably add a level of security. As far as this thesis goes, the main 

intention here was to modify the rotors to add security and test to see if it was viable. One 

last note is that adding more rotors would make it more secure, at some point it slows the 

algorithm down too much. Setting it to ten or so would probably make it completely 

pointless to even attempt a brute force on the most powerful computer in the world.  

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

8. References 

 [1]  Wolfram, S. (2002). A New Kind of Science. In S. Wolfram, A New Kind of 
Science (pp. 1085-1086). Champaign, Il: Library of Congress Cataloging. 

 
[2] Berghel, H. (April 2008). Faith-Based Security. Communications of The ACM , 

14. 
 
[3] Algred J.Menezes, P. C. (1996). Introduction to Cryptography - Symmetric Key 

Encryption, Handbook of Applied Cryptography (5th ed.). Boca Raton, Florida: 
CRC-Press. 

 
[4] Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 173-174). New York, New York: John Wiley & 
Sons, Inc. 

 
[5]  Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 31-32). New York, New York: John Wiley & 
Sons, Inc. 

 
[6] Public Domain Images, "Wikipedia - Fiestel Cipher," in 

http://en.wikipedia.org/wiki/Image:Feistel.png 2008. 
 
[7] Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 347). New York, New York: John Wiley & Sons, 
Inc. 

 
[8] Miller, D. A. (2008). The Cryptographic Mathematics of Enigma. Retrieved 2008, 

from NSA Publications: http://www.nsa.gov/publications/publi00004.cfm 
 
[9] Vaudenay, S. (2006). A Classical Introduction to Cryptogrpahy. (pp. 42-43) New 

York, New York: Springer. 
 
 
[10] Public Domain Images, "Wikipedia - AES," in 

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard 2008. 
 
[11] Vaudenay, S. (2006). A Classical Introduction to Cryptogrpahy. (pp. 44-46) New 

York, New York: Springer. 
 
[12] Amit Parnerkar, D. G. (2003). SECRET KEY DISTRIBUTION PROTOCOL 

USING PUBLIC KEY CRYPTOGRAPHY. CCSC: Rocky Mountain Conference. 
CCSC. 

 
[13] Public Domain Images, “Wikipedia – Enigma Chiper,” In 

http://en.wikipedia.org/wiki/Image:Enigma-plugboard.jpg 2008. 



57 
 

 
[14] Public Domain Images, “Wikipedia – Enigma Chiper,” In 

http://en.wikipedia.org/wiki/Image:Enigma_wiring_kleur.svg 2008. 
 
[15] Public Domain Images, “Wikipedia – Enigma Chiper,” In 

http://en.wikipedia.org/wiki/Image:Enigma-action.svg 2008. 
 
[16] Vaudenay, S. (2006). A Classical Introduction to Cryptogrpahy. (pp. 8-11) New 

York, New York: Springer. 
 
[17] T. Jamil, "The Rijndael algorithm," Potentials, IEEE, vol. 23, no. 2, pp. 30-32, 

2004. 
 
[18] Vaudenay, S. (2006). A Classical Introduction to Cryptogrpahy. (pp. 25-27) New 

York, New York: Springer. 
 
[19] Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 197-199). New York, New York: John Wiley & 
Sons, Inc. 

 
[20] Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 349-351). New York, New York: John Wiley & 
Sons, Inc. 

 
[21] Sam Trenholme, "AES’ Galois Field," in http://samiam.org/galois.html 2008. 
 
[22] Volker Paelke, J. S. (2002). The AR-ENIGMA – A PDA based Interactive 

Illustration. SIGGRAPH, (p. 260). 
 
[23] Kahn, D. (1991). Seizing the Enigma the Race to Break the German U-Boat 

Codes 1939-1943 (pp. 39-46). New York, New York: Houghton Mifflin. 
 
[24] Jarkko Kari, "Cryptosystems Based on Reversible Cellular Automata, University 

of Turku, Finland," 1992. 
 
[25]  Public Domain Image, "Information Entropy," in 
 http://en.wikipedia.org/wiki/Index_of_coincidence 2008.  
 
[26] Schneier, B. (1996). Applied Cryptography. In B. Schneier, Applied 

Cryptography (Second ed., pp. 233-234). New York, New York: John Wiley & 
Sons, Inc. 

 
[27] Public Domain Image, "Information Entropy," in 

http://en.wikipedia.org/wiki/Information_entropy 2008 
 
 



58 
 

 [28] Public Domain Images, "Conditional Entropy," in 
http://en.wikipedia.org/wiki/Conditional_entropy 2008. 

 
[29] Akio Hasegawa, S.-J. K. (2008). IP Core of Statistical Test Suite of FIPS 140-2. 
 Retrieved from Design Reuse:  

http://www.design-reuse.com/articles/7946/ip-core-of-statistical-test-suite-of-fips-
140-2.html  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



59 
 

Appendix A: Design Diagrams 
 
A1. Enigma Class 
 

 
 
A2. Galois Class 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



60 
 

A3. MD5 and Galois Utility Functionality 
 

 
 
A4. Code Overview 



61 
 

 
 

Appendix B: Code 



62 
 

B1. MD5 Header File 

#ifndef MD5_H 
#define MD5_H 
#include <stdio.h> 
#include <string.h> 
 
typedef struct {  
   unsigned char data[64];  
   unsigned int datalen;  
   unsigned int bitlen[2];  
   unsigned int state[4];  
} MD5_CTX;  
 
void print_hash(char hash[]); 
 
void md5_transform(MD5_CTX *ctx, unsigned char data[]); 
 
void md5_init(MD5_CTX *ctx); 
 
void md5_update(MD5_CTX *ctx, unsigned char data[], unsigned int len); 
 
void md5_final(MD5_CTX *ctx, unsigned char hash[]); 
 
#endif 
 
B2. MD5 Implementation File 
 
// MD5 Hash Digest implementation (little endian byte order)  
#include "md5.h" 
 
// Bah, signed variables are for wimps  
#define uchar unsigned char  
#define uint unsigned int  
 
// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it 
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - c) ++b; a += c;  
#define ROTLEFT(a,b) ((a << b) | (a >> (32-b)))  
 
#define F(x,y,z) ((x & y) | (~x & z))  
#define G(x,y,z) ((x & z) | (y & ~z))  
#define H(x,y,z) (x ^ y ^ z)  
#define I(x,y,z) (y ^ (x | ~z))  
 
#define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \ 
                            a = b + ROTLEFT(a,s); } 



63 
 

#define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \ 
                            a = b + ROTLEFT(a,s); } 
#define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \ 
                            a = b + ROTLEFT(a,s); }  
#define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \ 
                            a = b + ROTLEFT(a,s); }  
 
void print_hash(char hash[])  
{ 
    int idx; 
    int x; 
 
    for (idx=0; idx < 16; idx++) {    
            printf("%02x",hash[idx]&0x000000ff);  
    } 
 
    printf("\n");  
}    
 
void md5_transform(MD5_CTX *ctx, uchar data[])  
{   
   uint a,b,c,d,m[16],i,j;  
    
   // MD5 specifies big endian byte order, but this implementation assumes a little  
   // endian byte order CPU. Reverse all the bytes upon input, and re-reverse them  
   // on output (in md5_final()).  
   for (i=0,j=0; i < 16; ++i, j += 4)  
      m[i] = (data[j]) + (data[j+1] << 8) + (data[j+2] << 16) + (data[j+3] << 24);  
    
   a = ctx->state[0];  
   b = ctx->state[1];  
   c = ctx->state[2];  
   d = ctx->state[3];  
    
   FF(a,b,c,d,m[0],  7,0xd76aa478);  
   FF(d,a,b,c,m[1], 12,0xe8c7b756);  
   FF(c,d,a,b,m[2], 17,0x242070db);  
   FF(b,c,d,a,m[3], 22,0xc1bdceee);  
   FF(a,b,c,d,m[4],  7,0xf57c0faf);  
   FF(d,a,b,c,m[5], 12,0x4787c62a);  
   FF(c,d,a,b,m[6], 17,0xa8304613);  
   FF(b,c,d,a,m[7], 22,0xfd469501);  
   FF(a,b,c,d,m[8],  7,0x698098d8);  
   FF(d,a,b,c,m[9], 12,0x8b44f7af);  
   FF(c,d,a,b,m[10],17,0xffff5bb1);  
   FF(b,c,d,a,m[11],22,0x895cd7be);  



64 
 

   FF(a,b,c,d,m[12], 7,0x6b901122); 
   FF(d,a,b,c,m[13],12,0xfd987193);  
   FF(c,d,a,b,m[14],17,0xa679438e);  
   FF(b,c,d,a,m[15],22,0x49b40821);  
    
   GG(a,b,c,d,m[1],  5,0xf61e2562);  
   GG(d,a,b,c,m[6],  9,0xc040b340);  
   GG(c,d,a,b,m[11],14,0x265e5a51);  
   GG(b,c,d,a,m[0], 20,0xe9b6c7aa); 
   GG(a,b,c,d,m[5],  5,0xd62f105d);  
   GG(d,a,b,c,m[10], 9,0x02441453);  
   GG(c,d,a,b,m[15],14,0xd8a1e681);  
   GG(b,c,d,a,m[4], 20,0xe7d3fbc8); 
   GG(a,b,c,d,m[9],  5,0x21e1cde6);  
   GG(d,a,b,c,m[14], 9,0xc33707d6);  
   GG(c,d,a,b,m[3], 14,0xf4d50d87);  
   GG(b,c,d,a,m[8], 20,0x455a14ed); 
   GG(a,b,c,d,m[13], 5,0xa9e3e905);  
   GG(d,a,b,c,m[2],  9,0xfcefa3f8);  
   GG(c,d,a,b,m[7], 14,0x676f02d9);  
   GG(b,c,d,a,m[12],20,0x8d2a4c8a); 
    
   HH(a,b,c,d,m[5],  4,0xfffa3942);  
   HH(d,a,b,c,m[8], 11,0x8771f681);  
   HH(c,d,a,b,m[11],16,0x6d9d6122);  
   HH(b,c,d,a,m[14],23,0xfde5380c);  
   HH(a,b,c,d,m[1],  4,0xa4beea44);  
   HH(d,a,b,c,m[4], 11,0x4bdecfa9);  
   HH(c,d,a,b,m[7], 16,0xf6bb4b60);  
   HH(b,c,d,a,m[10],23,0xbebfbc70);  
   HH(a,b,c,d,m[13], 4,0x289b7ec6);  
   HH(d,a,b,c,m[0], 11,0xeaa127fa);  
   HH(c,d,a,b,m[3], 16,0xd4ef3085);  
   HH(b,c,d,a,m[6], 23,0x04881d05);  
   HH(a,b,c,d,m[9],  4,0xd9d4d039);  
   HH(d,a,b,c,m[12],11,0xe6db99e5);  
   HH(c,d,a,b,m[15],16,0x1fa27cf8);  
   HH(b,c,d,a,m[2], 23,0xc4ac5665);  
       
   II(a,b,c,d,m[0],  6,0xf4292244);  
   II(d,a,b,c,m[7], 10,0x432aff97);  
   II(c,d,a,b,m[14],15,0xab9423a7);  
   II(b,c,d,a,m[5], 21,0xfc93a039);  
   II(a,b,c,d,m[12], 6,0x655b59c3);  
   II(d,a,b,c,m[3], 10,0x8f0ccc92);  
   II(c,d,a,b,m[10],15,0xffeff47d);  



65 
 

   II(b,c,d,a,m[1], 21,0x85845dd1);  
   II(a,b,c,d,m[8],  6,0x6fa87e4f);  
   II(d,a,b,c,m[15],10,0xfe2ce6e0);  
   II(c,d,a,b,m[6], 15,0xa3014314);  
   II(b,c,d,a,m[13],21,0x4e0811a1);  
   II(a,b,c,d,m[4],  6,0xf7537e82);  
   II(d,a,b,c,m[11],10,0xbd3af235);  
   II(c,d,a,b,m[2], 15,0x2ad7d2bb);  
   II(b,c,d,a,m[9], 21,0xeb86d391);  
    
   ctx->state[0] += a;  
   ctx->state[1] += b;  
   ctx->state[2] += c;  
   ctx->state[3] += d;  
}   
 
void md5_init(MD5_CTX *ctx)  
{   
   ctx->datalen = 0;  
   ctx->bitlen[0] = 0;  
   ctx->bitlen[1] = 0;  
   ctx->state[0] = 0x67452301;  
   ctx->state[1] = 0xEFCDAB89;  
   ctx->state[2] = 0x98BADCFE;  
   ctx->state[3] = 0x10325476;  
}   
 
void md5_update(MD5_CTX *ctx, uchar data[], uint len)  
{   
   uint t,i; 
    
   for (i=0; i < len; ++i) {  
      ctx->data[ctx->datalen] = data[i];  
      ctx->datalen++;  
      if (ctx->datalen == 64) {  
         md5_transform(ctx,ctx->data);  
         DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);  
         ctx->datalen = 0;  
      }   
   }   
}   
 
void md5_final(MD5_CTX *ctx, uchar hash[])  
{   
   uint i; 
    



66 
 

   i = ctx->datalen;  
    
   // Pad whatever data is left in the buffer.  
   if (ctx->datalen < 56) {  
      ctx->data[i++] = 0x80;  
      while (i < 56)  
         ctx->data[i++] = 0x00;  
   }   
   else if (ctx->datalen >= 56) {  
      ctx->data[i++] = 0x80;  
      while (i < 64)  
         ctx->data[i++] = 0x00;  
      md5_transform(ctx,ctx->data);  
      memset(ctx->data,0,56);  
   }   
    
   // Append to the padding the total message's length in bits and transform.  
   DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],8 * ctx->datalen);  
   ctx->data[56] = ctx->bitlen[0];  
   ctx->data[57] = ctx->bitlen[0] >> 8;  
   ctx->data[58] = ctx->bitlen[0] >> 16;  
   ctx->data[59] = ctx->bitlen[0] >> 24;  
   ctx->data[60] = ctx->bitlen[1];  
   ctx->data[61] = ctx->bitlen[1] >> 8;  
   ctx->data[62] = ctx->bitlen[1] >> 16;   
   ctx->data[63] = ctx->bitlen[1] >> 24;  
   md5_transform(ctx,ctx->data);  
    
   // Since this implementation uses little endian byte ordering and MD uses big endian,  
   // reverse all the bytes when copying the final state to the output hash.  
   for (i=0; i < 4; ++i) {  
      hash[i]    = (ctx->state[0] >> (i*8)) & 0x000000ff;  
      hash[i+4]  = (ctx->state[1] >> (i*8)) & 0x000000ff;  
      hash[i+8]  = (ctx->state[2] >> (i*8)) & 0x000000ff;  
      hash[i+12] = (ctx->state[3] >> (i*8)) & 0x000000ff;  
   }   
 
}    
 
B3. Galois Header File 
 
#ifndef GALOIS_H 
#define GALOIS_H 
#include <iostream> 
#include <fstream> 
#include <stdint.h> 



67 
 

#include <stdlib.h> 
#include <math.h> 
 
/*uint8_t key[16] = 
{0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38,0x40,0x48,0x50,0x58,0x60,0x68,0x70,0x7
8};  
uint8_t state[16]; */ 
 
using namespace std; 
class galois 
{ 
 
public: 
    uint8_t gmulInverse(uint8_t in); 
    unsigned char sbox(unsigned char in, char * key); 
//    void sub_bytes(char streamLetter, unsigned char *key)  
  
    uint8_t gadd(uint8_t a, uint8_t b); 
    uint8_t gsub(uint8_t a, uint8_t b); 
    uint8_t gmul(uint8_t a, uint8_t b); 
    uint8_t gmulLookup(uint8_t a, uint8_t b); 
    uint8_t gdiv(uint8_t a, uint8_t b); 
    void generateGmulInverse(); 
}; 
 
#endif 
 
B4. Galois Class File 
 
#include "galois.h" 
 
uint8_t gmulInv[256]; 
uint8_t seed; 
 
const uint8_t generators[128] = { 
                                    0x03, 0x05, 0x06, 0x09, 0x0b, 0x0e, 0x11, 0x12, 0x13, 0x14, 
0x17, 0x18, 0x19, 0x1a, 0x1c, 0x1e, 
                                    0x1f, 0x21, 0x22, 0x23, 0x27, 0x28, 0x2a, 0x2c, 0x30, 0x31, 0x3c, 
0x3e, 0x3f, 0x41, 0x45, 0x46, 
                                    0x47, 0x48, 0x49, 0x4b, 0x4c, 0x4e, 0x4f, 0x52, 0x54, 0x56, 0x57, 
0x58, 0x59, 0x5a, 0x5b, 0x5f, 
                                    0x64, 0x65, 0x68, 0x69, 0x6d, 0x6e, 0x70, 0x71, 0x76, 0x77, 
0x79, 0x7a, 0x7b, 0x7e, 0x81, 0x84, 
                                    0x86, 0x87, 0x88, 0x8a, 0x8e, 0x8f, 0x90, 0x93, 0x95, 0x96, 0x98, 
0x99, 0x9b, 0x9d, 0xa0, 0xa4, 



68 
 

                                    0xa5, 0xa6, 0xa7, 0xa9, 0xaa, 0xac, 0xad, 0xb2, 0xb4, 0xb7, 0xb8, 
0xb9, 0xba, 0xbe, 0xbf, 0xc0, 
                                    0xc1, 0xc4, 0xc8, 0xc9, 0xce, 0xcf, 0xd0, 0xd6, 0xd7, 0xda, 0xdc, 
0xdd, 0xde, 0xe2, 0xe3, 0xe5, 
                                    0xe6, 0xe7, 0xe9, 0xea, 0xeb, 0xee, 0xf0, 0xf1, 0xf4, 0xf5, 0xf6, 
0xf8, 0xfb, 0xfd, 0xfe, 0xff 
                                }; 
 
unsigned char ltable[256] = { 
0x00, 0xff, 0xc8, 0x08, 0x91, 0x10, 0xd0, 0x36,  
0x5a, 0x3e, 0xd8, 0x43, 0x99, 0x77, 0xfe, 0x18,  
0x23, 0x20, 0x07, 0x70, 0xa1, 0x6c, 0x0c, 0x7f,  
0x62, 0x8b, 0x40, 0x46, 0xc7, 0x4b, 0xe0, 0x0e,  
0xeb, 0x16, 0xe8, 0xad, 0xcf, 0xcd, 0x39, 0x53,  
0x6a, 0x27, 0x35, 0x93, 0xd4, 0x4e, 0x48, 0xc3,  
0x2b, 0x79, 0x54, 0x28, 0x09, 0x78, 0x0f, 0x21,  
0x90, 0x87, 0x14, 0x2a, 0xa9, 0x9c, 0xd6, 0x74,  
0xb4, 0x7c, 0xde, 0xed, 0xb1, 0x86, 0x76, 0xa4,  
0x98, 0xe2, 0x96, 0x8f, 0x02, 0x32, 0x1c, 0xc1,  
0x33, 0xee, 0xef, 0x81, 0xfd, 0x30, 0x5c, 0x13,  
0x9d, 0x29, 0x17, 0xc4, 0x11, 0x44, 0x8c, 0x80,  
0xf3, 0x73, 0x42, 0x1e, 0x1d, 0xb5, 0xf0, 0x12,  
0xd1, 0x5b, 0x41, 0xa2, 0xd7, 0x2c, 0xe9, 0xd5,  
0x59, 0xcb, 0x50, 0xa8, 0xdc, 0xfc, 0xf2, 0x56,  
0x72, 0xa6, 0x65, 0x2f, 0x9f, 0x9b, 0x3d, 0xba,  
0x7d, 0xc2, 0x45, 0x82, 0xa7, 0x57, 0xb6, 0xa3,  
0x7a, 0x75, 0x4f, 0xae, 0x3f, 0x37, 0x6d, 0x47,  
0x61, 0xbe, 0xab, 0xd3, 0x5f, 0xb0, 0x58, 0xaf,  
0xca, 0x5e, 0xfa, 0x85, 0xe4, 0x4d, 0x8a, 0x05,  
0xfb, 0x60, 0xb7, 0x7b, 0xb8, 0x26, 0x4a, 0x67,  
0xc6, 0x1a, 0xf8, 0x69, 0x25, 0xb3, 0xdb, 0xbd,  
0x66, 0xdd, 0xf1, 0xd2, 0xdf, 0x03, 0x8d, 0x34,  
0xd9, 0x92, 0x0d, 0x63, 0x55, 0xaa, 0x49, 0xec,  
0xbc, 0x95, 0x3c, 0x84, 0x0b, 0xf5, 0xe6, 0xe7,  
0xe5, 0xac, 0x7e, 0x6e, 0xb9, 0xf9, 0xda, 0x8e,  
0x9a, 0xc9, 0x24, 0xe1, 0x0a, 0x15, 0x6b, 0x3a,  
0xa0, 0x51, 0xf4, 0xea, 0xb2, 0x97, 0x9e, 0x5d,  
0x22, 0x88, 0x94, 0xce, 0x19, 0x01, 0x71, 0x4c,  
0xa5, 0xe3, 0xc5, 0x31, 0xbb, 0xcc, 0x1f, 0x2d,  
0x3b, 0x52, 0x6f, 0xf6, 0x2e, 0x89, 0xf7, 0xc0,  
0x68, 0x1b, 0x64, 0x04, 0x06, 0xbf, 0x83, 0x38 }; 
 
unsigned char etable[256] = { 
0x01, 0xe5, 0x4c, 0xb5, 0xfb, 0x9f, 0xfc, 0x12,  
0x03, 0x34, 0xd4, 0xc4, 0x16, 0xba, 0x1f, 0x36,  
0x05, 0x5c, 0x67, 0x57, 0x3a, 0xd5, 0x21, 0x5a,  



69 
 

0x0f, 0xe4, 0xa9, 0xf9, 0x4e, 0x64, 0x63, 0xee,  
0x11, 0x37, 0xe0, 0x10, 0xd2, 0xac, 0xa5, 0x29,  
0x33, 0x59, 0x3b, 0x30, 0x6d, 0xef, 0xf4, 0x7b,  
0x55, 0xeb, 0x4d, 0x50, 0xb7, 0x2a, 0x07, 0x8d,  
0xff, 0x26, 0xd7, 0xf0, 0xc2, 0x7e, 0x09, 0x8c,  
0x1a, 0x6a, 0x62, 0x0b, 0x5d, 0x82, 0x1b, 0x8f,  
0x2e, 0xbe, 0xa6, 0x1d, 0xe7, 0x9d, 0x2d, 0x8a,  
0x72, 0xd9, 0xf1, 0x27, 0x32, 0xbc, 0x77, 0x85,  
0x96, 0x70, 0x08, 0x69, 0x56, 0xdf, 0x99, 0x94,  
0xa1, 0x90, 0x18, 0xbb, 0xfa, 0x7a, 0xb0, 0xa7,  
0xf8, 0xab, 0x28, 0xd6, 0x15, 0x8e, 0xcb, 0xf2,  
0x13, 0xe6, 0x78, 0x61, 0x3f, 0x89, 0x46, 0x0d,  
0x35, 0x31, 0x88, 0xa3, 0x41, 0x80, 0xca, 0x17,  
0x5f, 0x53, 0x83, 0xfe, 0xc3, 0x9b, 0x45, 0x39,  
0xe1, 0xf5, 0x9e, 0x19, 0x5e, 0xb6, 0xcf, 0x4b,  
0x38, 0x04, 0xb9, 0x2b, 0xe2, 0xc1, 0x4a, 0xdd,  
0x48, 0x0c, 0xd0, 0x7d, 0x3d, 0x58, 0xde, 0x7c,  
0xd8, 0x14, 0x6b, 0x87, 0x47, 0xe8, 0x79, 0x84,  
0x73, 0x3c, 0xbd, 0x92, 0xc9, 0x23, 0x8b, 0x97,  
0x95, 0x44, 0xdc, 0xad, 0x40, 0x65, 0x86, 0xa2,  
0xa4, 0xcc, 0x7f, 0xec, 0xc0, 0xaf, 0x91, 0xfd,  
0xf7, 0x4f, 0x81, 0x2f, 0x5b, 0xea, 0xa8, 0x1c,  
0x02, 0xd1, 0x98, 0x71, 0xed, 0x25, 0xe3, 0x24,  
0x06, 0x68, 0xb3, 0x93, 0x2c, 0x6f, 0x3e, 0x6c,  
0x0a, 0xb8, 0xce, 0xae, 0x74, 0xb1, 0x42, 0xb4,  
0x1e, 0xd3, 0x49, 0xe9, 0x9c, 0xc8, 0xc6, 0xc7,  
0x22, 0x6e, 0xdb, 0x20, 0xbf, 0x43, 0x51, 0x52,  
0x66, 0xb2, 0x76, 0x60, 0xda, 0xc5, 0xf3, 0xf6,  
0xaa, 0xcd, 0x9a, 0xa0, 0x75, 0x54, 0x0e, 0x01 }; 
 
uint8_t getSBoxValue(uint8_t num) 
{ 
uint8_t sbox[256] =   { 
//0     1    2      3     4    5     6     7      8    9     A      B  C     D     E     F 
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 
0x2b, 0xfe, 0xd7, 0xab, 0x76, //0 
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 
0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1 
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 
0xf1, 0x71, 0xd8, 0x31, 0x15, //2 
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 
0xe2, 0xeb, 0x27, 0xb2, 0x75, //3 
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 
0xb3, 0x29, 0xe3, 0x2f, 0x84, //4 
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 
0x39, 0x4a, 0x4c, 0x58, 0xcf, //5 



70 
 

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 
0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6 
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 
0x21, 0x10, 0xff, 0xf3, 0xd2, //7 
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 
0x3d, 0x64, 0x5d, 0x19, 0x73, //8 
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 
0x14, 0xde, 0x5e, 0x0b, 0xdb, //9 
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 
0x62, 0x91, 0x95, 0xe4, 0x79, //A 
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 
0xea, 0x65, 0x7a, 0xae, 0x08, //B 
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 
0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C 
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 
0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D 
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 
0xe9, 0xce, 0x55, 0x28, 0xdf, //E 
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 
0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F 
return sbox[num]; 
} 
 
 
uint8_t galois::gmulInverse(uint8_t in) 
{ 
    if (in == 0) 
        return 0; 
    else 
        return etable[(255 - ltable[in])]; 
} 
 
unsigned char galois::sbox(unsigned char in, char * key) { 
        unsigned char c, s, x; 
        s = x = gmulInverse(in); 
        for(c = 0; c < 4; c++) { 
                /* One bit circular rotate to the left */ 
                s = (s << 1) | (s >> 7); 
                /* xor with x */ 
                x ^= s; 
        } 
        x ^= (int)key;//99; /* 0x63 */ 
//        cout << x; 
        return x; 
} 
 



71 
 

uint8_t galois::gadd(uint8_t a, uint8_t b) 
{ 
    return a ^ b; 
} 
 
uint8_t galois::gsub(uint8_t a, uint8_t b) 
{ 
    return a ^ b; 
} 
 
uint8_t galois::gmul(uint8_t a, uint8_t b) 
{ 
    uint8_t p = 0; 
    uint8_t counter; 
    uint8_t hi_bit_set; 
    for(counter = 0; counter < 8; counter++) 
    { 
        if ((b & 1) == 1) 
            p ^= a; 
        hi_bit_set = (a & 0x80); 
        a <<= 1; 
        if (hi_bit_set == 0x80) 
            a ^= 0x1b; 
        b >>= 1; 
    } 
    return p; 
} 
 
uint8_t galois::gmulLookup(uint8_t a, uint8_t b) 
{ 
    int s; 
    int q; 
    int z = 0; 
    s = ltable[a] + ltable[b]; 
    s %= 255; 
    s = etable[s]; 
    q = s; 
    if (a == 0) 
    { 
        s = z; 
    } 
    else 
    { 
        s = q; 
    } 
    if (b == 0) 



72 
 

    { 
        s = z; 
    } 
    else     
    { 
        q = z; 
    } 
    return s; 
} 
 
uint8_t galois::gdiv(uint8_t a, uint8_t b) 
{ 
    uint8_t c = ltable[a]-ltable[b]; 
    return c%255; 
} 
 
void galois::generateGmulInverse() 
{ 
    gmulInv[0] = 0; 
    for (int c=1;c<256;c++) 
    { 
        gmulInv[c] = gmulInverse(c); 
    } 
} 
 
B5. Enigma Header File 
 
#ifndef ENIGMA_H 
#define ENIGMA_H 
 
//#include "galois.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
//#include <iostream.h> 
#include <string.h> 
#include <math.h> 
#include <fstream> 
#include <cstdio> 
#include <stdint.h> 
#include <sys/stat.h> 
#include <iostream> 
#include <vector> 
#include "md5.h" 
#include "galois.h" 
 



73 
 

//uses 128 bit key 
using namespace std; 
 
/*typedef struct ListStruct { 
    int val; 
    struct ListStruct * ptr; 
} List;*/ 
 
//int delete_list_entry(List * list, int entry); 
 
class enigma 
{ 
    public: 
        enigma(); 
        ~enigma(); 
        int file_do_cipher(char * infile, char * outfile, char * key); 
         
    private: 
        int FileSize(const char* sFileName); 
        char char_do_enigma(uint8_t x); 
        void init_enigma(char * key); 
        void audit_rotors(int currPosition); 
        uint8_t rotor_lookup(uint8_t x, int rotor);  
               
        int num_rotors; 
        uint8_t ** rotors; 
        uint8_t ** rotors_r; 
        int * position; 
         
        int reflector[256]; 
        int plugboard[256]; 
}; 
 
#endif 
 
 
 
 
B6. Enigma Class File 
 
#include "enigma.h" 
//stl vectors 
 
 
enigma::enigma() { 
 



74 
 

} 
 
/* free up memory for  char ** rotors, and  int * positions */ 
enigma::~enigma() { 
    //free up memory! 
    for(int i=0; i<num_rotors; i++)  
        delete []rotors[i]; 
         
    delete []rotors; 
    delete []position; 
} 
 
int enigma::FileSize(const char* sFileName) 
{ 
    ifstream f; 
    f.open(sFileName, ios_base::binary | ios_base::in); 
    if (!f.good() || f.eof() || !f.is_open()) { return 0; } 
    f.seekg(0, ios_base::beg); 
    ifstream::pos_type begin_pos = f.tellg(); 
    f.seekg(0, ios_base::end); 
    return static_cast<int>(f.tellg() - begin_pos); 
} 
 
/* call init_enigma, read each character from file, encrypt/decrypt it with 
char_encrypt, then write it back to new file */ 
int enigma::file_do_cipher(char * infile, char * outfile, char * key)  
{ 
    init_enigma(key); 
    //FILE *inf, *of; 
   // struct stat results; 
     
    int fsize = FileSize(infile); 
    /*if (stat(infile, &results) != 0) { 
        printf("Cannot open file, quitting \n"); 
        exit(1); 
    }*/ 
    //inf = fopen(infile, "rb"); 
    //of = fopen(outfile, "wb+"); 
     
    /*int filesize = results.st_size;*/ 
     
    uint8_t x; 
    int p=0; 
     
    ifstream inf; 
    inf.open(infile, ifstream::in|ifstream::binary); 



75 
 

    ofstream outf;  
    outf.open(outfile, ofstream::out|ofstream::binary); 
     
    if(!inf) { 
        printf("An error occured opening the file!\n"); 
        return 1;     
    } 
     
    char y; 
     
/*    while(p<fsize) 
    {*/ 
    for(int i = 0; i<fsize; i++) 
    { 
        while(p<fsize) 
        { 
            inf.read(&y, 1); 
            y = char_do_enigma((uint8_t) y); 
            outf.write(&y, 1); 
            p++; 
        } 
    } 
    //} 
    //printf("encrypted/decrypted characters: %d\n", p); 
} 
 
/* checks to see if a rotor has made a full revolution 
and increments the next rotor */ 
void enigma::audit_rotors(int currPosition) { 
    if(position[currPosition] > 255) { 
        position[currPosition] = 0; 
        if(currPosition < num_rotors) { //on the last rotor, so we don't increment other rotors 
            position[currPosition+1]++; 
            audit_rotors(currPosition+1); 
        } 
    }  
    return; 
} 
 
uint8_t enigma::rotor_lookup(uint8_t x, int rotor) { 
   // printf("rotor lookup, x: %d, rotor: %d\n", x, rotor); 
    for(int i=0; i<256; i++) { 
        if(rotors[rotor][i] == x) 
            return (uint8_t)i; 
    } 
} 



76 
 

 
char enigma::char_do_enigma(uint8_t x) { 
     
    //rotate first rotor by one 
      position[0]++;    
    //check if any of the other rotors need to be rotated 
      audit_rotors(0); 
       
   // printf("initial: %d\n", x); 
     
    uint8_t temp; 
    //go through the plug board 
    temp = (uint8_t)plugboard[x]; 
 
    // printf("plugboard: %d\n", temp); 
    //go through the first rotor 
    if(rotors[0][(temp+position[0])%256] - position[0] < 0) 
        temp = rotors[0][(temp+position[0])%256] - position[0] + 256; 
    else  
        temp = rotors[0][(temp+position[0])%256] - position[0]; 
         
   // printf("rotor 0: %d\n", temp); 
    //go through the rest of the rotors 
    for(int i=1; i<num_rotors; i++) { 
        if(rotors[i][(temp+position[i])%256] - position[i] < 0 ) 
            temp = rotors[i][(temp+position[i])%256] - position[i] + 256; 
        else 
            temp = rotors[i][(temp+position[i])%256] - position[i]; 
        
    //    printf("rotor %d: %d\n", i, temp);     
    } 
  
    //go through relflector 
   // printf("before reflector: %d\n", temp); 
    temp = reflector[temp]; 
   // printf("after reflector: %d\n", temp); 
     
    uint8_t temp1; 
     
    for(int i=(num_rotors-1); i>=0; i--) { 
        if (rotors_r[i][(temp+position[i])%256] - position[i] < 0) 
            temp = rotors_r[i][(temp+position[i])%256] - position[i] + 256; 
        else  
            temp = rotors_r[i][(temp+position[i])%256] - position[i]; 
      //  printf("position: %d\n", position[i]); 
      //  printf("rotor %d: %d\n", i, temp);    



77 
 

    } 
         
    //back through plugboard here 
    for(int i=0; i<256; i++) { 
        if(plugboard[i] == (int)temp)  {  
         //   printf("plugboard: %d\n", i);   
            return (char) i;   
        } 
    } 
} 
 
/* set up char ** rotors, int * positions, refelector, plugboard, and numrotors  
in future, will use galois field class                                        */ 
void enigma::init_enigma(char * key) { 
    num_rotors = 5; 
     
    // allocate memory for rotors 
    rotors = new uint8_t*[num_rotors]; 
        for (int i = 0; i < num_rotors; ++i) 
            rotors[i] = new uint8_t[256]; 
 
    rotors_r = new uint8_t*[num_rotors]; 
        for (int i = 0; i < num_rotors; ++i) 
            rotors_r[i] = new uint8_t[256]; 
     
    position = new int[num_rotors];         
    // set the default position to zero 
    for(int i=0; i < num_rotors; i++) { 
        position[i] = 0; 
    } 
     
    // initialize plug board  
    for(int i=0; i < 256; i++) { 
        plugboard[i] = i; 
    } 
     
/*    List * temp_list = NULL; 
    List * temp_head; 
     
    temp_list = (List *)malloc(sizeof(List)); 
    temp_head = temp_list; 
  
    for(int i=0; i<256; i++) { 
        temp_list->val = i; 
        temp_list->ptr = (List *) malloc(sizeof(List)); 
        temp_list = temp_list->ptr; 



78 
 

    } 
    int upper_range = 255; 
    for(int i=0; i<256; i++){ 
        upper_range -= i; 
        delete_list_entry(temp_head, randvar); 
    }*/ 
 
    galois g; 
    /*srand((unsigned)time(0));  
    int random_integer;  
    int low=0, high=255;  
    int range=(high-low);  
    for(int ind=0; ind<256; ind++){  
        for(int i=0; i < num_rotors; i++){ 
            random_integer = low+int(range*rand()/(RAND_MAX + 1.0));  
            rotors[i][ind] = (uint8_t)g.sbox(random_integer); 
        } 
    } */ 
 
    vector<int> valueVector; 
    for(int i=0; i<256; i++) { 
        valueVector.push_back(i); 
    }             
    sort(valueVector.begin(), valueVector.end()); 
    for(int i=0; i<num_rotors; i++){  
        for(int j=0; j<256; j++) { 
            rotors[i][j] = (uint8_t)g.sbox(valueVector[j], key); 
            sort(valueVector.begin(), valueVector.end()); 
        } 
    } 
     
/*    rotors[0][0] = 210; 
    rotors[0][1] = 128; 
    rotors[0][2] = 234; 
    rotors[0][3] = 158; 
    rotors[0][4] = 63; 
    rotors[0][5] = 49; 
    rotors[0][6] = 108; 
    rotors[0][7] = 135; 
    rotors[0][8] = 37; 
    rotors[0][9] = 1; 
    rotors[0][10] = 189; 
    rotors[0][11] = 14; 
    rotors[0][12] = 133; 
    rotors[0][13] = 141; 
    rotors[0][14] = 24; 



79 
 

    rotors[0][15] = 196; 
    rotors[0][16] = 228; 
    rotors[0][17] = 64; 
    rotors[0][18] = 57; 
    rotors[0][19] = 89; 
    rotors[0][20] = 243; 
    rotors[0][21] = 109; 
    rotors[0][22] = 104; 
    rotors[0][23] = 0; 
    rotors[0][24] = 169; 
    rotors[0][25] = 240; 
    rotors[0][26] = 72; 
    rotors[0][27] = 47; 
    rotors[0][28] = 30; 
    rotors[0][29] = 6; 
    rotors[0][30] = 33; 
    rotors[0][31] = 252; 
    rotors[0][32] = 54; 
    rotors[0][33] = 82; 
    rotors[0][34] = 55; 
    rotors[0][35] = 183; 
    rotors[0][36] = 138; 
    rotors[0][37] = 197; 
    rotors[0][38] = 81; 
    rotors[0][39] = 192; 
    rotors[0][40] = 69; 
    rotors[0][41] = 245; 
    rotors[0][42] = 168; 
    rotors[0][43] = 136; 
    rotors[0][44] = 23; 
    rotors[0][45] = 179; 
    rotors[0][46] = 208; 
    rotors[0][47] = 140; 
    rotors[0][48] = 10; 
    rotors[0][49] = 32; 
    rotors[0][50] = 78; 
    rotors[0][51] = 155; 
    rotors[0][52] = 237; 
    rotors[0][53] = 130; 
    rotors[0][54] = 76; 
    rotors[0][55] = 253; 
    rotors[0][56] = 94; 
    rotors[0][57] = 176; 
    rotors[0][58] = 172; 
    rotors[0][59] = 62; 
    rotors[0][60] = 117; 



80 
 

    rotors[0][61] = 44; 
    rotors[0][62] = 129; 
    rotors[0][63] = 97; 
    rotors[0][64] = 255; 
    rotors[0][65] = 251; 
    rotors[0][66] = 3; 
    rotors[0][67] = 166; 
    rotors[0][68] = 68; 
    rotors[0][69] = 200; 
    rotors[0][70] = 191; 
    rotors[0][71] = 11; 
    rotors[0][72] = 198; 
    rotors[0][73] = 71; 
    rotors[0][74] = 190; 
    rotors[0][75] = 214; 
    rotors[0][76] = 48; 
    rotors[0][77] = 27; 
    rotors[0][78] = 60; 
    rotors[0][79] = 142; 
    rotors[0][80] = 95; 
    rotors[0][81] = 162; 
    rotors[0][82] = 131; 
    rotors[0][83] = 182; 
    rotors[0][84] = 150; 
    rotors[0][85] = 38; 
    rotors[0][86] = 34; 
    rotors[0][87] = 21; 
    rotors[0][88] = 120; 
    rotors[0][89] = 193; 
    rotors[0][90] = 118; 
    rotors[0][91] = 149; 
    rotors[0][92] = 224; 
    rotors[0][93] = 74; 
    rotors[0][94] = 107; 
    rotors[0][95] = 22; 
    rotors[0][96] = 122; 
    rotors[0][97] = 80; 
    rotors[0][98] = 152; 
    rotors[0][99] = 248; 
    rotors[0][100] = 20; 
    rotors[0][101] = 195; 
    rotors[0][102] = 213; 
    rotors[0][103] = 5; 
    rotors[0][104] = 212; 
    rotors[0][105] = 52; 
    rotors[0][106] = 205; 



81 
 

    rotors[0][107] = 91; 
    rotors[0][108] = 8; 
    rotors[0][109] = 105; 
    rotors[0][110] = 125; 
    rotors[0][111] = 25; 
    rotors[0][112] = 29; 
    rotors[0][113] = 239; 
    rotors[0][114] = 15; 
    rotors[0][115] = 199; 
    rotors[0][116] = 246; 
    rotors[0][117] = 99; 
    rotors[0][118] = 201; 
    rotors[0][119] = 249; 
    rotors[0][120] = 222; 
    rotors[0][121] = 45; 
    rotors[0][122] = 59; 
    rotors[0][123] = 229; 
    rotors[0][124] = 145; 
    rotors[0][125] = 9; 
    rotors[0][126] = 84; 
    rotors[0][127] = 174; 
    rotors[0][128] = 218; 
    rotors[0][129] = 180; 
    rotors[0][130] = 123; 
    rotors[0][131] = 244; 
    rotors[0][132] = 170; 
    rotors[0][133] = 92; 
    rotors[0][134] = 207; 
    rotors[0][135] = 236; 
    rotors[0][136] = 167; 
    rotors[0][137] = 219; 
    rotors[0][138] = 75; 
    rotors[0][139] = 231; 
    rotors[0][140] = 203; 
    rotors[0][141] = 230; 
    rotors[0][142] = 161; 
    rotors[0][143] = 194; 
    rotors[0][144] = 42; 
    rotors[0][145] = 254; 
    rotors[0][146] = 124; 
    rotors[0][147] = 16; 
    rotors[0][148] = 184; 
    rotors[0][149] = 77; 
    rotors[0][150] = 223; 
    rotors[0][151] = 116; 
    rotors[0][152] = 115; 



82 
 

    rotors[0][153] = 137; 
    rotors[0][154] = 12; 
    rotors[0][155] = 148; 
    rotors[0][156] = 93; 
    rotors[0][157] = 221; 
    rotors[0][158] = 50; 
    rotors[0][159] = 73; 
    rotors[0][160] = 227; 
    rotors[0][161] = 41; 
    rotors[0][162] = 88; 
    rotors[0][163] = 146; 
    rotors[0][164] = 70; 
    rotors[0][165] = 250; 
    rotors[0][166] = 177; 
    rotors[0][167] = 119; 
    rotors[0][168] = 18; 
    rotors[0][169] = 226; 
    rotors[0][170] = 160; 
    rotors[0][171] = 43; 
    rotors[0][172] = 235; 
    rotors[0][173] = 206; 
    rotors[0][174] = 217; 
    rotors[0][175] = 65; 
    rotors[0][176] = 36; 
    rotors[0][177] = 132; 
    rotors[0][178] = 83; 
    rotors[0][179] = 225; 
    rotors[0][180] = 154; 
    rotors[0][181] = 143; 
    rotors[0][182] = 4; 
    rotors[0][183] = 151; 
    rotors[0][184] = 58; 
    rotors[0][185] = 238; 
    rotors[0][186] = 90; 
    rotors[0][187] = 35; 
    rotors[0][188] = 178; 
    rotors[0][189] = 216; 
    rotors[0][190] = 126; 
    rotors[0][191] = 106; 
    rotors[0][192] = 87; 
    rotors[0][193] = 98; 
    rotors[0][194] = 53; 
    rotors[0][195] = 86; 
    rotors[0][196] = 7; 
    rotors[0][197] = 220; 
    rotors[0][198] = 85; 



83 
 

    rotors[0][199] = 102; 
    rotors[0][200] = 157; 
    rotors[0][201] = 147; 
    rotors[0][202] = 139; 
    rotors[0][203] = 163; 
    rotors[0][204] = 31; 
    rotors[0][205] = 67; 
    rotors[0][206] = 233; 
    rotors[0][207] = 181; 
    rotors[0][208] = 153; 
    rotors[0][209] = 19; 
    rotors[0][210] = 121; 
    rotors[0][211] = 127; 
    rotors[0][212] = 241; 
    rotors[0][213] = 100; 
    rotors[0][214] = 46; 
    rotors[0][215] = 247; 
    rotors[0][216] = 144; 
    rotors[0][217] = 110; 
    rotors[0][218] = 66; 
    rotors[0][219] = 156; 
    rotors[0][220] = 209; 
    rotors[0][221] = 232; 
    rotors[0][222] = 171; 
    rotors[0][223] = 13; 
    rotors[0][224] = 204; 
    rotors[0][225] = 134; 
    rotors[0][226] = 79; 
    rotors[0][227] = 51; 
    rotors[0][228] = 113; 
    rotors[0][229] = 114; 
    rotors[0][230] = 26; 
    rotors[0][231] = 61; 
    rotors[0][232] = 40; 
    rotors[0][233] = 101; 
    rotors[0][234] = 39; 
    rotors[0][235] = 202; 
    rotors[0][236] = 96; 
    rotors[0][237] = 28; 
    rotors[0][238] = 215; 
    rotors[0][239] = 2; 
    rotors[0][240] = 173; 
    rotors[0][241] = 111; 
    rotors[0][242] = 187; 
    rotors[0][243] = 17; 
    rotors[0][244] = 103; 



84 
 

    rotors[0][245] = 56; 
    rotors[0][246] = 159; 
    rotors[0][247] = 175; 
    rotors[0][248] = 188; 
    rotors[0][249] = 185; 
    rotors[0][250] = 211; 
    rotors[0][251] = 112; 
    rotors[0][252] = 242; 
    rotors[0][253] = 186; 
    rotors[0][254] = 165; 
    rotors[0][255] = 164; 
     
    rotors[1][0] = 105; 
    rotors[1][1] = 91; 
    rotors[1][2] = 6; 
    rotors[1][3] = 47; 
    rotors[1][4] = 225; 
    rotors[1][5] = 121; 
    rotors[1][6] = 130; 
    rotors[1][7] = 132; 
    rotors[1][8] = 20; 
    rotors[1][9] = 217; 
    rotors[1][10] = 39; 
    rotors[1][11] = 50; 
    rotors[1][12] = 18; 
    rotors[1][13] = 82; 
    rotors[1][14] = 252; 
    rotors[1][15] = 106; 
    rotors[1][16] = 96; 
    rotors[1][17] = 139; 
    rotors[1][18] = 114; 
    rotors[1][19] = 231; 
    rotors[1][20] = 138; 
    rotors[1][21] = 45; 
    rotors[1][22] = 194; 
    rotors[1][23] = 84; 
    rotors[1][24] = 254; 
    rotors[1][25] = 163; 
    rotors[1][26] = 206; 
    rotors[1][27] = 111; 
    rotors[1][28] = 193; 
    rotors[1][29] = 171; 
    rotors[1][30] = 230; 
    rotors[1][31] = 54; 
    rotors[1][32] = 58; 
    rotors[1][33] = 0; 



85 
 

    rotors[1][34] = 61; 
    rotors[1][35] = 63; 
    rotors[1][36] = 233; 
    rotors[1][37] = 123; 
    rotors[1][38] = 154; 
    rotors[1][39] = 158; 
    rotors[1][40] = 191; 
    rotors[1][41] = 151; 
    rotors[1][42] = 44; 
    rotors[1][43] = 211; 
    rotors[1][44] = 178; 
    rotors[1][45] = 208; 
    rotors[1][46] = 15; 
    rotors[1][47] = 107; 
    rotors[1][48] = 55; 
    rotors[1][49] = 8; 
    rotors[1][50] = 34; 
    rotors[1][51] = 156; 
    rotors[1][52] = 159; 
    rotors[1][53] = 180; 
    rotors[1][54] = 155; 
    rotors[1][55] = 95; 
    rotors[1][56] = 67; 
    rotors[1][57] = 125; 
    rotors[1][58] = 69; 
    rotors[1][59] = 161; 
    rotors[1][60] = 160; 
    rotors[1][61] = 182; 
    rotors[1][62] = 77; 
    rotors[1][63] = 24; 
    rotors[1][64] = 246; 
    rotors[1][65] = 94; 
    rotors[1][66] = 209; 
    rotors[1][67] = 229; 
    rotors[1][68] = 108; 
    rotors[1][69] = 166; 
    rotors[1][70] = 57; 
    rotors[1][71] = 253; 
    rotors[1][72] = 174; 
    rotors[1][73] = 175; 
    rotors[1][74] = 97; 
    rotors[1][75] = 157; 
    rotors[1][76] = 212; 
    rotors[1][77] = 185; 
    rotors[1][78] = 127; 
    rotors[1][79] = 135; 



86 
 

    rotors[1][80] = 237; 
    rotors[1][81] = 117; 
    rotors[1][82] = 238; 
    rotors[1][83] = 64; 
    rotors[1][84] = 140; 
    rotors[1][85] = 71; 
    rotors[1][86] = 234; 
    rotors[1][87] = 112; 
    rotors[1][88] = 137; 
    rotors[1][89] = 207; 
    rotors[1][90] = 216; 
    rotors[1][91] = 72; 
    rotors[1][92] = 199; 
    rotors[1][93] = 176; 
    rotors[1][94] = 33; 
    rotors[1][95] = 103; 
    rotors[1][96] = 23; 
    rotors[1][97] = 235; 
    rotors[1][98] = 188; 
    rotors[1][99] = 201; 
    rotors[1][100] = 131; 
    rotors[1][101] = 46; 
    rotors[1][102] = 43; 
    rotors[1][103] = 28; 
    rotors[1][104] = 198; 
    rotors[1][105] = 10; 
    rotors[1][106] = 192; 
    rotors[1][107] = 60; 
    rotors[1][108] = 150; 
    rotors[1][109] = 204; 
    rotors[1][110] = 169; 
    rotors[1][111] = 215; 
    rotors[1][112] = 243; 
    rotors[1][113] = 153; 
    rotors[1][114] = 165; 
    rotors[1][115] = 239; 
    rotors[1][116] = 25; 
    rotors[1][117] = 152; 
    rotors[1][118] = 5; 
    rotors[1][119] = 214; 
    rotors[1][120] = 42; 
    rotors[1][121] = 29; 
    rotors[1][122] = 136; 
    rotors[1][123] = 134; 
    rotors[1][124] = 21; 
    rotors[1][125] = 74; 



87 
 

    rotors[1][126] = 242; 
    rotors[1][127] = 40; 
    rotors[1][128] = 41; 
    rotors[1][129] = 70; 
    rotors[1][130] = 86; 
    rotors[1][131] = 200; 
    rotors[1][132] = 126; 
    rotors[1][133] = 116; 
    rotors[1][134] = 27; 
    rotors[1][135] = 31; 
    rotors[1][136] = 218; 
    rotors[1][137] = 35; 
    rotors[1][138] = 14; 
    rotors[1][139] = 32; 
    rotors[1][140] = 12; 
    rotors[1][141] = 62; 
    rotors[1][142] = 220; 
    rotors[1][143] = 1; 
    rotors[1][144] = 251; 
    rotors[1][145] = 120; 
    rotors[1][146] = 22; 
    rotors[1][147] = 232; 
    rotors[1][148] = 245; 
    rotors[1][149] = 109; 
    rotors[1][150] = 142; 
    rotors[1][151] = 37; 
    rotors[1][152] = 236; 
    rotors[1][153] = 66; 
    rotors[1][154] = 202; 
    rotors[1][155] = 247; 
    rotors[1][156] = 196; 
    rotors[1][157] = 187; 
    rotors[1][158] = 181; 
    rotors[1][159] = 3; 
    rotors[1][160] = 19; 
    rotors[1][161] = 53; 
    rotors[1][162] = 190; 
    rotors[1][163] = 168; 
    rotors[1][164] = 226; 
    rotors[1][165] = 222; 
    rotors[1][166] = 224; 
    rotors[1][167] = 255; 
    rotors[1][168] = 48; 
    rotors[1][169] = 90; 
    rotors[1][170] = 30; 
    rotors[1][171] = 219; 



88 
 

    rotors[1][172] = 227; 
    rotors[1][173] = 241; 
    rotors[1][174] = 75; 
    rotors[1][175] = 38; 
    rotors[1][176] = 7; 
    rotors[1][177] = 13; 
    rotors[1][178] = 11; 
    rotors[1][179] = 210; 
    rotors[1][180] = 98; 
    rotors[1][181] = 79; 
    rotors[1][182] = 141; 
    rotors[1][183] = 183; 
    rotors[1][184] = 143; 
    rotors[1][185] = 80; 
    rotors[1][186] = 223; 
    rotors[1][187] = 197; 
    rotors[1][188] = 244; 
    rotors[1][189] = 203; 
    rotors[1][190] = 83; 
    rotors[1][191] = 170; 
    rotors[1][192] = 133; 
    rotors[1][193] = 177; 
    rotors[1][194] = 167; 
    rotors[1][195] = 93; 
    rotors[1][196] = 240; 
    rotors[1][197] = 9; 
    rotors[1][198] = 36; 
    rotors[1][199] = 164; 
    rotors[1][200] = 189; 
    rotors[1][201] = 248; 
    rotors[1][202] = 102; 
    rotors[1][203] = 81; 
    rotors[1][204] = 124; 
    rotors[1][205] = 149; 
    rotors[1][206] = 184; 
    rotors[1][207] = 104; 
    rotors[1][208] = 122; 
    rotors[1][209] = 92; 
    rotors[1][210] = 110; 
    rotors[1][211] = 99; 
    rotors[1][212] = 147; 
    rotors[1][213] = 186; 
    rotors[1][214] = 26; 
    rotors[1][215] = 89; 
    rotors[1][216] = 100; 
    rotors[1][217] = 146; 



89 
 

    rotors[1][218] = 205; 
    rotors[1][219] = 51; 
    rotors[1][220] = 195; 
    rotors[1][221] = 87; 
    rotors[1][222] = 179; 
    rotors[1][223] = 59; 
    rotors[1][224] = 221; 
    rotors[1][225] = 249; 
    rotors[1][226] = 162; 
    rotors[1][227] = 73; 
    rotors[1][228] = 56; 
    rotors[1][229] = 52; 
    rotors[1][230] = 16; 
    rotors[1][231] = 49; 
    rotors[1][232] = 88; 
    rotors[1][233] = 76; 
    rotors[1][234] = 85; 
    rotors[1][235] = 173; 
    rotors[1][236] = 172; 
    rotors[1][237] = 118; 
    rotors[1][238] = 128; 
    rotors[1][239] = 65; 
    rotors[1][240] = 113; 
    rotors[1][241] = 228; 
    rotors[1][242] = 148; 
    rotors[1][243] = 144; 
    rotors[1][244] = 17; 
    rotors[1][245] = 2; 
    rotors[1][246] = 78; 
    rotors[1][247] = 129; 
    rotors[1][248] = 68; 
    rotors[1][249] = 250; 
    rotors[1][250] = 4; 
    rotors[1][251] = 213; 
    rotors[1][252] = 145; 
    rotors[1][253] = 101; 
    rotors[1][254] = 115; 
    rotors[1][255] = 119; 
  
     
    rotors[2][0] = 110; 
    rotors[2][1] = 156; 
    rotors[2][2] = 28; 
    rotors[2][3] = 76; 
    rotors[2][4] = 219; 
    rotors[2][5] = 64; 



90 
 

    rotors[2][6] = 68; 
    rotors[2][7] = 45; 
    rotors[2][8] = 52; 
    rotors[2][9] = 16; 
    rotors[2][10] = 65; 
    rotors[2][11] = 20; 
    rotors[2][12] = 224; 
    rotors[2][13] = 69; 
    rotors[2][14] = 139; 
    rotors[2][15] = 220; 
    rotors[2][16] = 50; 
    rotors[2][17] = 61; 
    rotors[2][18] = 172; 
    rotors[2][19] = 164; 
    rotors[2][20] = 107; 
    rotors[2][21] = 83; 
    rotors[2][22] = 41; 
    rotors[2][23] = 96; 
    rotors[2][24] = 222; 
    rotors[2][25] = 209; 
    rotors[2][26] = 6; 
    rotors[2][27] = 147; 
    rotors[2][28] = 128; 
    rotors[2][29] = 66; 
    rotors[2][30] = 163; 
    rotors[2][31] = 194; 
    rotors[2][32] = 141; 
    rotors[2][33] = 175; 
    rotors[2][34] = 217; 
    rotors[2][35] = 158; 
    rotors[2][36] = 11; 
    rotors[2][37] = 202; 
    rotors[2][38] = 98; 
    rotors[2][39] = 30; 
    rotors[2][40] = 82; 
    rotors[2][41] = 255; 
    rotors[2][42] = 113; 
    rotors[2][43] = 47; 
    rotors[2][44] = 176; 
    rotors[2][45] = 106; 
    rotors[2][46] = 9; 
    rotors[2][47] = 170; 
    rotors[2][48] = 36; 
    rotors[2][49] = 78; 
    rotors[2][50] = 225; 
    rotors[2][51] = 135; 



91 
 

    rotors[2][52] = 143; 
    rotors[2][53] = 149; 
    rotors[2][54] = 241; 
    rotors[2][55] = 226; 
    rotors[2][56] = 168; 
    rotors[2][57] = 117; 
    rotors[2][58] = 253; 
    rotors[2][59] = 125; 
    rotors[2][60] = 13; 
    rotors[2][61] = 191; 
    rotors[2][62] = 137; 
    rotors[2][63] = 185; 
    rotors[2][64] = 54; 
    rotors[2][65] = 88; 
    rotors[2][66] = 212; 
    rotors[2][67] = 5; 
    rotors[2][68] = 229; 
    rotors[2][69] = 236; 
    rotors[2][70] = 24; 
    rotors[2][71] = 92; 
    rotors[2][72] = 144; 
    rotors[2][73] = 109; 
    rotors[2][74] = 70; 
    rotors[2][75] = 245; 
    rotors[2][76] = 160; 
    rotors[2][77] = 10; 
    rotors[2][78] = 130; 
    rotors[2][79] = 35; 
    rotors[2][80] = 166; 
    rotors[2][81] = 33; 
    rotors[2][82] = 204; 
    rotors[2][83] = 213; 
    rotors[2][84] = 171; 
    rotors[2][85] = 215; 
    rotors[2][86] = 40; 
    rotors[2][87] = 197; 
    rotors[2][88] = 243; 
    rotors[2][89] = 60; 
    rotors[2][90] = 75; 
    rotors[2][91] = 238; 
    rotors[2][92] = 132; 
    rotors[2][93] = 37; 
    rotors[2][94] = 232; 
    rotors[2][95] = 3; 
    rotors[2][96] = 173; 
    rotors[2][97] = 169; 



92 
 

    rotors[2][98] = 42; 
    rotors[2][99] = 104; 
    rotors[2][100] = 208; 
    rotors[2][101] = 93; 
    rotors[2][102] = 57; 
    rotors[2][103] = 205; 
    rotors[2][104] = 239; 
    rotors[2][105] = 99; 
    rotors[2][106] = 91; 
    rotors[2][107] = 1; 
    rotors[2][108] = 89; 
    rotors[2][109] = 116; 
    rotors[2][110] = 223; 
    rotors[2][111] = 127; 
    rotors[2][112] = 85; 
    rotors[2][113] = 72; 
    rotors[2][114] = 58; 
    rotors[2][115] = 56; 
    rotors[2][116] = 2; 
    rotors[2][117] = 12; 
    rotors[2][118] = 221; 
    rotors[2][119] = 235; 
    rotors[2][120] = 31; 
    rotors[2][121] = 26; 
    rotors[2][122] = 162; 
    rotors[2][123] = 115; 
    rotors[2][124] = 201; 
    rotors[2][125] = 247; 
    rotors[2][126] = 123; 
    rotors[2][127] = 246; 
    rotors[2][128] = 155; 
    rotors[2][129] = 7; 
    rotors[2][130] = 59; 
    rotors[2][131] = 34; 
    rotors[2][132] = 177; 
    rotors[2][133] = 183; 
    rotors[2][134] = 112; 
    rotors[2][135] = 227; 
    rotors[2][136] = 25; 
    rotors[2][137] = 18; 
    rotors[2][138] = 74; 
    rotors[2][139] = 62; 
    rotors[2][140] = 187; 
    rotors[2][141] = 79; 
    rotors[2][142] = 174; 
    rotors[2][143] = 242; 



93 
 

    rotors[2][144] = 27; 
    rotors[2][145] = 190; 
    rotors[2][146] = 120; 
    rotors[2][147] = 86; 
    rotors[2][148] = 95; 
    rotors[2][149] = 134; 
    rotors[2][150] = 152; 
    rotors[2][151] = 138; 
    rotors[2][152] = 203; 
    rotors[2][153] = 251; 
    rotors[2][154] = 14; 
    rotors[2][155] = 153; 
    rotors[2][156] = 73; 
    rotors[2][157] = 8; 
    rotors[2][158] = 121; 
    rotors[2][159] = 184; 
    rotors[2][160] = 87; 
    rotors[2][161] = 233; 
    rotors[2][162] = 179; 
    rotors[2][163] = 55; 
    rotors[2][164] = 38; 
    rotors[2][165] = 122; 
    rotors[2][166] = 136; 
    rotors[2][167] = 19; 
    rotors[2][168] = 81; 
    rotors[2][169] = 230; 
    rotors[2][170] = 186; 
    rotors[2][171] = 111; 
    rotors[2][172] = 165; 
    rotors[2][173] = 100; 
    rotors[2][174] = 193; 
    rotors[2][175] = 198; 
    rotors[2][176] = 228; 
    rotors[2][177] = 211; 
    rotors[2][178] = 102; 
    rotors[2][179] = 108; 
    rotors[2][180] = 157; 
    rotors[2][181] = 118; 
    rotors[2][182] = 44; 
    rotors[2][183] = 161; 
    rotors[2][184] = 200; 
    rotors[2][185] = 240; 
    rotors[2][186] = 67; 
    rotors[2][187] = 4; 
    rotors[2][188] = 129; 
    rotors[2][189] = 167; 



94 
 

    rotors[2][190] = 124; 
    rotors[2][191] = 80; 
    rotors[2][192] = 206; 
    rotors[2][193] = 237; 
    rotors[2][194] = 32; 
    rotors[2][195] = 105; 
    rotors[2][196] = 97; 
    rotors[2][197] = 133; 
    rotors[2][198] = 182; 
    rotors[2][199] = 140; 
    rotors[2][200] = 94; 
    rotors[2][201] = 63; 
    rotors[2][202] = 90; 
    rotors[2][203] = 151; 
    rotors[2][204] = 71; 
    rotors[2][205] = 43; 
    rotors[2][206] = 196; 
    rotors[2][207] = 154; 
    rotors[2][208] = 0; 
    rotors[2][209] = 195; 
    rotors[2][210] = 29; 
    rotors[2][211] = 103; 
    rotors[2][212] = 84; 
    rotors[2][213] = 114; 
    rotors[2][214] = 51; 
    rotors[2][215] = 146; 
    rotors[2][216] = 189; 
    rotors[2][217] = 148; 
    rotors[2][218] = 249; 
    rotors[2][219] = 192; 
    rotors[2][220] = 188; 
    rotors[2][221] = 39; 
    rotors[2][222] = 216; 
    rotors[2][223] = 250; 
    rotors[2][224] = 46; 
    rotors[2][225] = 178; 
    rotors[2][226] = 159; 
    rotors[2][227] = 15; 
    rotors[2][228] = 150; 
    rotors[2][229] = 48; 
    rotors[2][230] = 207; 
    rotors[2][231] = 244; 
    rotors[2][232] = 254; 
    rotors[2][233] = 23; 
    rotors[2][234] = 180; 
    rotors[2][235] = 53; 



95 
 

    rotors[2][236] = 119; 
    rotors[2][237] = 218; 
    rotors[2][238] = 234; 
    rotors[2][239] = 231; 
    rotors[2][240] = 126; 
    rotors[2][241] = 101; 
    rotors[2][242] = 252; 
    rotors[2][243] = 248; 
    rotors[2][244] = 77; 
    rotors[2][245] = 145; 
    rotors[2][246] = 142; 
    rotors[2][247] = 214; 
    rotors[2][248] = 199; 
    rotors[2][249] = 17; 
    rotors[2][250] = 49; 
    rotors[2][251] = 131; 
    rotors[2][252] = 22; 
    rotors[2][253] = 181; 
    rotors[2][254] = 21; 
    rotors[2][255] = 210; 
 
    rotors[3][0] = 42; 
    rotors[3][1] = 157; 
    rotors[3][2] = 81; 
    rotors[3][3] = 34; 
    rotors[3][4] = 151; 
    rotors[3][5] = 255; 
    rotors[3][6] = 13; 
    rotors[3][7] = 146; 
    rotors[3][8] = 4; 
    rotors[3][9] = 118; 
    rotors[3][10] = 49; 
    rotors[3][11] = 138; 
    rotors[3][12] = 193; 
    rotors[3][13] = 218; 
    rotors[3][14] = 182; 
    rotors[3][15] = 205; 
    rotors[3][16] = 24; 
    rotors[3][17] = 227; 
    rotors[3][18] = 0; 
    rotors[3][19] = 38; 
    rotors[3][20] = 124; 
    rotors[3][21] = 140; 
    rotors[3][22] = 112; 
    rotors[3][23] = 2; 
    rotors[3][24] = 128; 



96 
 

    rotors[3][25] = 211; 
    rotors[3][26] = 44; 
    rotors[3][27] = 115; 
    rotors[3][28] = 125; 
    rotors[3][29] = 224; 
    rotors[3][30] = 212; 
    rotors[3][31] = 131; 
    rotors[3][32] = 98; 
    rotors[3][33] = 221; 
    rotors[3][34] = 119; 
    rotors[3][35] = 36; 
    rotors[3][36] = 78; 
    rotors[3][37] = 248; 
    rotors[3][38] = 135; 
    rotors[3][39] = 199; 
    rotors[3][40] = 175; 
    rotors[3][41] = 84; 
    rotors[3][42] = 110; 
    rotors[3][43] = 23; 
    rotors[3][44] = 53; 
    rotors[3][45] = 147; 
    rotors[3][46] = 139; 
    rotors[3][47] = 165; 
    rotors[3][48] = 8; 
    rotors[3][49] = 89; 
    rotors[3][50] = 83; 
    rotors[3][51] = 102; 
    rotors[3][52] = 169; 
    rotors[3][53] = 172; 
    rotors[3][54] = 141; 
    rotors[3][55] = 203; 
    rotors[3][56] = 51; 
    rotors[3][57] = 148; 
    rotors[3][58] = 149; 
    rotors[3][59] = 69; 
    rotors[3][60] = 136; 
    rotors[3][61] = 113; 
    rotors[3][62] = 22; 
    rotors[3][63] = 194; 
    rotors[3][64] = 26; 
    rotors[3][65] = 170; 
    rotors[3][66] = 95; 
    rotors[3][67] = 241; 
    rotors[3][68] = 233; 
    rotors[3][69] = 226; 
    rotors[3][70] = 214; 



97 
 

    rotors[3][71] = 127; 
    rotors[3][72] = 80; 
    rotors[3][73] = 196; 
    rotors[3][74] = 20; 
    rotors[3][75] = 191; 
    rotors[3][76] = 77; 
    rotors[3][77] = 52; 
    rotors[3][78] = 10; 
    rotors[3][79] = 1; 
    rotors[3][80] = 30; 
    rotors[3][81] = 55; 
    rotors[3][82] = 70; 
    rotors[3][83] = 15; 
    rotors[3][84] = 14; 
    rotors[3][85] = 156; 
    rotors[3][86] = 39; 
    rotors[3][87] = 5; 
    rotors[3][88] = 143; 
    rotors[3][89] = 152; 
    rotors[3][90] = 121; 
    rotors[3][91] = 60; 
    rotors[3][92] = 230; 
    rotors[3][93] = 82; 
    rotors[3][94] = 177; 
    rotors[3][95] = 243; 
    rotors[3][96] = 3; 
    rotors[3][97] = 126; 
    rotors[3][98] = 249; 
    rotors[3][99] = 176; 
    rotors[3][100] = 90; 
    rotors[3][101] = 183; 
    rotors[3][102] = 64; 
    rotors[3][103] = 29; 
    rotors[3][104] = 47; 
    rotors[3][105] = 56; 
    rotors[3][106] = 216; 
    rotors[3][107] = 239; 
    rotors[3][108] = 185; 
    rotors[3][109] = 65; 
    rotors[3][110] = 123; 
    rotors[3][111] = 134; 
    rotors[3][112] = 76; 
    rotors[3][113] = 236; 
    rotors[3][114] = 21; 
    rotors[3][115] = 137; 
    rotors[3][116] = 144; 



98 
 

    rotors[3][117] = 96; 
    rotors[3][118] = 88; 
    rotors[3][119] = 242; 
    rotors[3][120] = 195; 
    rotors[3][121] = 79; 
    rotors[3][122] = 86; 
    rotors[3][123] = 179; 
    rotors[3][124] = 130; 
    rotors[3][125] = 237; 
    rotors[3][126] = 247; 
    rotors[3][127] = 186; 
    rotors[3][128] = 108; 
    rotors[3][129] = 57; 
    rotors[3][130] = 43; 
    rotors[3][131] = 197; 
    rotors[3][132] = 66; 
    rotors[3][133] = 253; 
    rotors[3][134] = 181; 
    rotors[3][135] = 215; 
    rotors[3][136] = 168; 
    rotors[3][137] = 229; 
    rotors[3][138] = 209; 
    rotors[3][139] = 198; 
    rotors[3][140] = 37; 
    rotors[3][141] = 178; 
    rotors[3][142] = 101; 
    rotors[3][143] = 220; 
    rotors[3][144] = 234; 
    rotors[3][145] = 63; 
    rotors[3][146] = 32; 
    rotors[3][147] = 97; 
    rotors[3][148] = 189; 
    rotors[3][149] = 50; 
    rotors[3][150] = 120; 
    rotors[3][151] = 129; 
    rotors[3][152] = 153; 
    rotors[3][153] = 155; 
    rotors[3][154] = 35; 
    rotors[3][155] = 244; 
    rotors[3][156] = 18; 
    rotors[3][157] = 114; 
    rotors[3][158] = 100; 
    rotors[3][159] = 93; 
    rotors[3][160] = 206; 
    rotors[3][161] = 61; 
    rotors[3][162] = 200; 



99 
 

    rotors[3][163] = 75; 
    rotors[3][164] = 62; 
    rotors[3][165] = 9; 
    rotors[3][166] = 59; 
    rotors[3][167] = 11; 
    rotors[3][168] = 254; 
    rotors[3][169] = 240; 
    rotors[3][170] = 25; 
    rotors[3][171] = 161; 
    rotors[3][172] = 91; 
    rotors[3][173] = 87; 
    rotors[3][174] = 12; 
    rotors[3][175] = 246; 
    rotors[3][176] = 173; 
    rotors[3][177] = 158; 
    rotors[3][178] = 150; 
    rotors[3][179] = 204; 
    rotors[3][180] = 67; 
    rotors[3][181] = 188; 
    rotors[3][182] = 111; 
    rotors[3][183] = 238; 
    rotors[3][184] = 99; 
    rotors[3][185] = 154; 
    rotors[3][186] = 251; 
    rotors[3][187] = 164; 
    rotors[3][188] = 104; 
    rotors[3][189] = 162; 
    rotors[3][190] = 223; 
    rotors[3][191] = 207; 
    rotors[3][192] = 73; 
    rotors[3][193] = 28; 
    rotors[3][194] = 17; 
    rotors[3][195] = 201; 
    rotors[3][196] = 68; 
    rotors[3][197] = 159; 
    rotors[3][198] = 31; 
    rotors[3][199] = 192; 
    rotors[3][200] = 122; 
    rotors[3][201] = 94; 
    rotors[3][202] = 167; 
    rotors[3][203] = 19; 
    rotors[3][204] = 54; 
    rotors[3][205] = 225; 
    rotors[3][206] = 231; 
    rotors[3][207] = 107; 
    rotors[3][208] = 202; 



100 
 

    rotors[3][209] = 213; 
    rotors[3][210] = 92; 
    rotors[3][211] = 235; 
    rotors[3][212] = 103; 
    rotors[3][213] = 116; 
    rotors[3][214] = 16; 
    rotors[3][215] = 142; 
    rotors[3][216] = 27; 
    rotors[3][217] = 160; 
    rotors[3][218] = 45; 
    rotors[3][219] = 145; 
    rotors[3][220] = 228; 
    rotors[3][221] = 109; 
    rotors[3][222] = 166; 
    rotors[3][223] = 48; 
    rotors[3][224] = 250; 
    rotors[3][225] = 58; 
    rotors[3][226] = 6; 
    rotors[3][227] = 219; 
    rotors[3][228] = 85; 
    rotors[3][229] = 222; 
    rotors[3][230] = 133; 
    rotors[3][231] = 232; 
    rotors[3][232] = 33; 
    rotors[3][233] = 252; 
    rotors[3][234] = 210; 
    rotors[3][235] = 72; 
    rotors[3][236] = 208; 
    rotors[3][237] = 41; 
    rotors[3][238] = 117; 
    rotors[3][239] = 245; 
    rotors[3][240] = 46; 
    rotors[3][241] = 7; 
    rotors[3][242] = 105; 
    rotors[3][243] = 187; 
    rotors[3][244] = 190; 
    rotors[3][245] = 180; 
    rotors[3][246] = 217; 
    rotors[3][247] = 132; 
    rotors[3][248] = 174; 
    rotors[3][249] = 71; 
    rotors[3][250] = 40; 
    rotors[3][251] = 163; 
    rotors[3][252] = 74; 
    rotors[3][253] = 106; 
    rotors[3][254] = 184; 



101 
 

    rotors[3][255] = 171; 
     
    rotors[4][0] = 35; 
    rotors[4][1] = 175; 
    rotors[4][2] = 205; 
    rotors[4][3] = 178; 
    rotors[4][4] = 28; 
    rotors[4][5] = 164; 
    rotors[4][6] = 191; 
    rotors[4][7] = 159; 
    rotors[4][8] = 171; 
    rotors[4][9] = 9; 
    rotors[4][10] = 26; 
    rotors[4][11] = 233; 
    rotors[4][12] = 210; 
    rotors[4][13] = 160; 
    rotors[4][14] = 0; 
    rotors[4][15] = 95; 
    rotors[4][16] = 114; 
    rotors[4][17] = 249; 
    rotors[4][18] = 150; 
    rotors[4][19] = 85; 
    rotors[4][20] = 199; 
    rotors[4][21] = 223; 
    rotors[4][22] = 173; 
    rotors[4][23] = 182; 
    rotors[4][24] = 23; 
    rotors[4][25] = 1; 
    rotors[4][26] = 64; 
    rotors[4][27] = 84; 
    rotors[4][28] = 112; 
    rotors[4][29] = 128; 
    rotors[4][30] = 153; 
    rotors[4][31] = 20; 
    rotors[4][32] = 200; 
    rotors[4][33] = 251; 
    rotors[4][34] = 49; 
    rotors[4][35] = 82; 
    rotors[4][36] = 148; 
    rotors[4][37] = 103; 
    rotors[4][38] = 69; 
    rotors[4][39] = 13; 
    rotors[4][40] = 192; 
    rotors[4][41] = 67; 
    rotors[4][42] = 16; 
    rotors[4][43] = 96; 



102 
 

    rotors[4][44] = 252; 
    rotors[4][45] = 176; 
    rotors[4][46] = 177; 
    rotors[4][47] = 131; 
    rotors[4][48] = 89; 
    rotors[4][49] = 187; 
    rotors[4][50] = 107; 
    rotors[4][51] = 196; 
    rotors[4][52] = 108; 
    rotors[4][53] = 38; 
    rotors[4][54] = 40; 
    rotors[4][55] = 237; 
    rotors[4][56] = 117; 
    rotors[4][57] = 79; 
    rotors[4][58] = 124; 
    rotors[4][59] = 231; 
    rotors[4][60] = 149; 
    rotors[4][61] = 116; 
    rotors[4][62] = 215; 
    rotors[4][63] = 47; 
    rotors[4][64] = 140; 
    rotors[4][65] = 46; 
    rotors[4][66] = 180; 
    rotors[4][67] = 105; 
    rotors[4][68] = 110; 
    rotors[4][69] = 94; 
    rotors[4][70] = 184; 
    rotors[4][71] = 80; 
    rotors[4][72] = 104; 
    rotors[4][73] = 156; 
    rotors[4][74] = 122; 
    rotors[4][75] = 90; 
    rotors[4][76] = 98; 
    rotors[4][77] = 3; 
    rotors[4][78] = 87; 
    rotors[4][79] = 119; 
    rotors[4][80] = 211; 
    rotors[4][81] = 224; 
    rotors[4][82] = 181; 
    rotors[4][83] = 168; 
    rotors[4][84] = 142; 
    rotors[4][85] = 75; 
    rotors[4][86] = 92; 
    rotors[4][87] = 220; 
    rotors[4][88] = 5; 
    rotors[4][89] = 100; 



103 
 

    rotors[4][90] = 226; 
    rotors[4][91] = 7; 
    rotors[4][92] = 240; 
    rotors[4][93] = 14; 
    rotors[4][94] = 158; 
    rotors[4][95] = 166; 
    rotors[4][96] = 74; 
    rotors[4][97] = 130; 
    rotors[4][98] = 137; 
    rotors[4][99] = 154; 
    rotors[4][100] = 81; 
    rotors[4][101] = 44; 
    rotors[4][102] = 51; 
    rotors[4][103] = 58; 
    rotors[4][104] = 101; 
    rotors[4][105] = 11; 
    rotors[4][106] = 254; 
    rotors[4][107] = 144; 
    rotors[4][108] = 121; 
    rotors[4][109] = 246; 
    rotors[4][110] = 195; 
    rotors[4][111] = 188; 
    rotors[4][112] = 118; 
    rotors[4][113] = 27; 
    rotors[4][114] = 17; 
    rotors[4][115] = 97; 
    rotors[4][116] = 247; 
    rotors[4][117] = 228; 
    rotors[4][118] = 190; 
    rotors[4][119] = 127; 
    rotors[4][120] = 193; 
    rotors[4][121] = 155; 
    rotors[4][122] = 163; 
    rotors[4][123] = 55; 
    rotors[4][124] = 151; 
    rotors[4][125] = 113; 
    rotors[4][126] = 32; 
    rotors[4][127] = 18; 
    rotors[4][128] = 31; 
    rotors[4][129] = 229; 
    rotors[4][130] = 37; 
    rotors[4][131] = 8; 
    rotors[4][132] = 172; 
    rotors[4][133] = 133; 
    rotors[4][134] = 93; 
    rotors[4][135] = 62; 



104 
 

    rotors[4][136] = 136; 
    rotors[4][137] = 77; 
    rotors[4][138] = 244; 
    rotors[4][139] = 73; 
    rotors[4][140] = 66; 
    rotors[4][141] = 147; 
    rotors[4][142] = 143; 
    rotors[4][143] = 208; 
    rotors[4][144] = 33; 
    rotors[4][145] = 42; 
    rotors[4][146] = 102; 
    rotors[4][147] = 53; 
    rotors[4][148] = 204; 
    rotors[4][149] = 167; 
    rotors[4][150] = 236; 
    rotors[4][151] = 59; 
    rotors[4][152] = 145; 
    rotors[4][153] = 162; 
    rotors[4][154] = 125; 
    rotors[4][155] = 91; 
    rotors[4][156] = 76; 
    rotors[4][157] = 198; 
    rotors[4][158] = 52; 
    rotors[4][159] = 120; 
    rotors[4][160] = 65; 
    rotors[4][161] = 161; 
    rotors[4][162] = 174; 
    rotors[4][163] = 48; 
    rotors[4][164] = 25; 
    rotors[4][165] = 45; 
    rotors[4][166] = 183; 
    rotors[4][167] = 30; 
    rotors[4][168] = 115; 
    rotors[4][169] = 135; 
    rotors[4][170] = 141; 
    rotors[4][171] = 255; 
    rotors[4][172] = 68; 
    rotors[4][173] = 213; 
    rotors[4][174] = 203; 
    rotors[4][175] = 238; 
    rotors[4][176] = 6; 
    rotors[4][177] = 56; 
    rotors[4][178] = 43; 
    rotors[4][179] = 235; 
    rotors[4][180] = 21; 
    rotors[4][181] = 88; 



105 
 

    rotors[4][182] = 241; 
    rotors[4][183] = 22; 
    rotors[4][184] = 197; 
    rotors[4][185] = 218; 
    rotors[4][186] = 24; 
    rotors[4][187] = 222; 
    rotors[4][188] = 36; 
    rotors[4][189] = 57; 
    rotors[4][190] = 209; 
    rotors[4][191] = 248; 
    rotors[4][192] = 86; 
    rotors[4][193] = 170; 
    rotors[4][194] = 169; 
    rotors[4][195] = 253; 
    rotors[4][196] = 217; 
    rotors[4][197] = 132; 
    rotors[4][198] = 216; 
    rotors[4][199] = 70; 
    rotors[4][200] = 219; 
    rotors[4][201] = 19; 
    rotors[4][202] = 12; 
    rotors[4][203] = 63; 
    rotors[4][204] = 179; 
    rotors[4][205] = 243; 
    rotors[4][206] = 10; 
    rotors[4][207] = 123; 
    rotors[4][208] = 225; 
    rotors[4][209] = 129; 
    rotors[4][210] = 15; 
    rotors[4][211] = 202; 
    rotors[4][212] = 138; 
    rotors[4][213] = 152; 
    rotors[4][214] = 111; 
    rotors[4][215] = 139; 
    rotors[4][216] = 194; 
    rotors[4][217] = 234; 
    rotors[4][218] = 232; 
    rotors[4][219] = 157; 
    rotors[4][220] = 71; 
    rotors[4][221] = 206; 
    rotors[4][222] = 212; 
    rotors[4][223] = 165; 
    rotors[4][224] = 186; 
    rotors[4][225] = 185; 
    rotors[4][226] = 99; 
    rotors[4][227] = 60; 



106 
 

    rotors[4][228] = 239; 
    rotors[4][229] = 201; 
    rotors[4][230] = 41; 
    rotors[4][231] = 78; 
    rotors[4][232] = 126; 
    rotors[4][233] = 146; 
    rotors[4][234] = 207; 
    rotors[4][235] = 109; 
    rotors[4][236] = 29; 
    rotors[4][237] = 250; 
    rotors[4][238] = 34; 
    rotors[4][239] = 214; 
    rotors[4][240] = 227; 
    rotors[4][241] = 39; 
    rotors[4][242] = 4; 
    rotors[4][243] = 61; 
    rotors[4][244] = 134; 
    rotors[4][245] = 72; 
    rotors[4][246] = 221; 
    rotors[4][247] = 245; 
    rotors[4][248] = 83; 
    rotors[4][249] = 2; 
    rotors[4][250] = 54; 
    rotors[4][251] = 106; 
    rotors[4][252] = 50; 
    rotors[4][253] = 242; 
    rotors[4][254] = 189; 
    rotors[4][255] = 230;*/ 
     
    reflector[244] = 197; 
    reflector[197] = 244; 
    reflector[8] = 44; 
    reflector[44] = 8; 
    reflector[110] = 143; 
    reflector[143] = 110; 
    reflector[14] = 28; 
    reflector[28] = 14; 
    reflector[73] = 249; 
    reflector[249] = 73; 
    reflector[10] = 33; 
    reflector[33] = 10; 
    reflector[208] = 108; 
    reflector[108] = 208; 
    reflector[58] = 60; 
    reflector[60] = 58; 
    reflector[49] = 196; 



107 
 

    reflector[196] = 49; 
    reflector[81] = 112; 
    reflector[112] = 81; 
    reflector[69] = 203; 
    reflector[203] = 69; 
    reflector[166] = 107; 
    reflector[107] = 166; 
    reflector[39] = 210; 
    reflector[210] = 39; 
    reflector[158] = 47; 
    reflector[47] = 158; 
    reflector[141] = 195; 
    reflector[195] = 141; 
    reflector[230] = 4; 
    reflector[4] = 230; 
    reflector[226] = 202; 
    reflector[202] = 226; 
    reflector[79] = 101; 
    reflector[101] = 79; 
    reflector[214] = 183; 
    reflector[183] = 214; 
    reflector[144] = 78; 
    reflector[78] = 144; 
    reflector[153] = 128; 
    reflector[128] = 153; 
    reflector[67] = 218; 
    reflector[218] = 67; 
    reflector[125] = 38; 
    reflector[38] = 125; 
    reflector[240] = 206; 
    reflector[206] = 240; 
    reflector[66] = 199; 
    reflector[199] = 66; 
    reflector[64] = 19; 
    reflector[19] = 64; 
    reflector[190] = 181; 
    reflector[181] = 190; 
    reflector[94] = 160; 
    reflector[160] = 94; 
    reflector[135] = 104; 
    reflector[104] = 135; 
    reflector[146] = 17; 
    reflector[17] = 146; 
    reflector[194] = 98; 
    reflector[98] = 194; 
    reflector[2] = 75; 



108 
 

    reflector[75] = 2; 
    reflector[31] = 11; 
    reflector[11] = 31; 
    reflector[85] = 173; 
    reflector[173] = 85; 
    reflector[61] = 165; 
    reflector[165] = 61; 
    reflector[56] = 191; 
    reflector[191] = 56; 
    reflector[111] = 155; 
    reflector[155] = 111; 
    reflector[204] = 20; 
    reflector[20] = 204; 
    reflector[157] = 142; 
    reflector[142] = 157; 
    reflector[253] = 167; 
    reflector[167] = 253; 
    reflector[95] = 48; 
    reflector[48] = 95; 
    reflector[216] = 187; 
    reflector[187] = 216; 
    reflector[201] = 26; 
    reflector[26] = 201; 
    reflector[90] = 5; 
    reflector[5] = 90; 
    reflector[96] = 0; 
    reflector[0] = 96; 
    reflector[46] = 232; 
    reflector[232] = 46; 
    reflector[136] = 186; 
    reflector[186] = 136; 
    reflector[178] = 145; 
    reflector[145] = 178; 
    reflector[1] = 37; 
    reflector[37] = 1; 
    reflector[6] = 164; 
    reflector[164] = 6; 
    reflector[102] = 93; 
    reflector[93] = 102; 
    reflector[92] = 42; 
    reflector[42] = 92; 
    reflector[15] = 35; 
    reflector[35] = 15; 
    reflector[13] = 252; 
    reflector[252] = 13; 
    reflector[156] = 62; 



109 
 

    reflector[62] = 156; 
    reflector[236] = 71; 
    reflector[71] = 236; 
    reflector[222] = 137; 
    reflector[137] = 222; 
    reflector[255] = 53; 
    reflector[53] = 255; 
    reflector[239] = 116; 
    reflector[116] = 239; 
    reflector[113] = 171; 
    reflector[171] = 113; 
    reflector[233] = 224; 
    reflector[224] = 233; 
    reflector[228] = 77; 
    reflector[77] = 228; 
    reflector[227] = 68; 
    reflector[68] = 227; 
    reflector[88] = 51; 
    reflector[51] = 88; 
    reflector[25] = 86; 
    reflector[86] = 25; 
    reflector[127] = 231; 
    reflector[231] = 127; 
    reflector[161] = 65; 
    reflector[65] = 161; 
    reflector[105] = 243; 
    reflector[243] = 105; 
    reflector[205] = 76; 
    reflector[76] = 205; 
    reflector[251] = 242; 
    reflector[242] = 251; 
    reflector[114] = 134; 
    reflector[134] = 114; 
    reflector[177] = 22; 
    reflector[22] = 177; 
    reflector[12] = 219; 
    reflector[219] = 12; 
    reflector[225] = 246; 
    reflector[246] = 225; 
    reflector[234] = 54; 
    reflector[54] = 234; 
    reflector[151] = 211; 
    reflector[211] = 151; 
    reflector[121] = 217; 
    reflector[217] = 121; 
    reflector[106] = 82; 



110 
 

    reflector[82] = 106; 
    reflector[192] = 83; 
    reflector[83] = 192; 
    reflector[229] = 180; 
    reflector[180] = 229; 
    reflector[45] = 198; 
    reflector[198] = 45; 
    reflector[148] = 34; 
    reflector[34] = 148; 
    reflector[29] = 152; 
    reflector[152] = 29; 
    reflector[179] = 213; 
    reflector[213] = 179; 
    reflector[103] = 89; 
    reflector[89] = 103; 
    reflector[184] = 175; 
    reflector[175] = 184; 
    reflector[18] = 122; 
    reflector[122] = 18; 
    reflector[237] = 223; 
    reflector[223] = 237; 
    reflector[80] = 55; 
    reflector[55] = 80; 
    reflector[30] = 139; 
    reflector[139] = 30; 
    reflector[131] = 118; 
    reflector[118] = 131; 
    reflector[215] = 147; 
    reflector[147] = 215; 
    reflector[193] = 24; 
    reflector[24] = 193; 
    reflector[154] = 162; 
    reflector[162] = 154; 
    reflector[129] = 32; 
    reflector[32] = 129; 
    reflector[91] = 140; 
    reflector[140] = 91; 
    reflector[36] = 74; 
    reflector[74] = 36; 
    reflector[57] = 9; 
    reflector[9] = 57; 
    reflector[120] = 87; 
    reflector[87] = 120; 
    reflector[212] = 130; 
    reflector[130] = 212; 
    reflector[150] = 43; 



111 
 

    reflector[43] = 150; 
    reflector[63] = 23; 
    reflector[23] = 63; 
    reflector[248] = 221; 
    reflector[221] = 248; 
    reflector[172] = 185; 
    reflector[185] = 172; 
    reflector[169] = 138; 
    reflector[138] = 169; 
    reflector[209] = 84; 
    reflector[84] = 209; 
    reflector[72] = 50; 
    reflector[50] = 72; 
    reflector[247] = 70; 
    reflector[70] = 247; 
    reflector[16] = 168; 
    reflector[168] = 16; 
    reflector[170] = 235; 
    reflector[235] = 170; 
    reflector[200] = 133; 
    reflector[133] = 200; 
    reflector[149] = 7; 
    reflector[7] = 149; 
    reflector[176] = 123; 
    reflector[123] = 176; 
    reflector[59] = 159; 
    reflector[159] = 59; 
    reflector[3] = 124; 
    reflector[124] = 3; 
    reflector[97] = 189; 
    reflector[189] = 97; 
    reflector[238] = 109; 
    reflector[109] = 238; 
    reflector[182] = 188; 
    reflector[188] = 182; 
    reflector[52] = 163; 
    reflector[163] = 52; 
    reflector[117] = 174; 
    reflector[174] = 117; 
    reflector[27] = 132; 
    reflector[132] = 27; 
    reflector[207] = 254; 
    reflector[254] = 207; 
    reflector[241] = 245; 
    reflector[245] = 241; 
    reflector[21] = 100; 



112 
 

    reflector[100] = 21; 
    reflector[99] = 126; 
    reflector[126] = 99; 
    reflector[220] = 40; 
    reflector[40] = 220; 
    reflector[41] = 250; 
    reflector[250] = 41; 
    reflector[115] = 119; 
    reflector[119] = 115; 
  
     for(int i=0; i<num_rotors; i++) { 
        for(int j=0; j<256; j++) { 
            rotors_r[i][j] = rotor_lookup(j, i); 
        }     
    } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C: ASCII Table of Values for Enigma Phoenix Encrypted File 
 
Hex Dec Chr No % Sum (X-µ)^2 Entropy 



113 
 

0 0 . 4908 0.39% 0 1770252.65 -
0.03120901

1 1 . 4810 0.38% 4810 1557014.52 -
0.03055118

2 2 . 4811 0.38% 9622 1389032.45 -
0.03055118

3 3 . 5068 0.40% 15204 1296072.98 -
0.03186314

4 4 . 4861 0.39% 19444 1092524.56 -
0.03120901

5 5 . 4933 0.39% 24665 965731.017 -
0.03120901

6 6 . 4975 0.40% 29850 839710.266 -
0.03186314

7 7 . 5118 0.41% 35826 735980.945 -
0.03251366

8 8 . 4940 0.39% 39520 596845.461 -
0.03120901

9 9 . 4970 0.40% 44730 496181.874 -
0.03186314

0A 10 . 4798 0.38% 47980 387927.202 -
0.03055118

0B 11 . 4906 0.39% 53966 313337.994 -
0.03120901

0C 12 . 5001 0.40% 60012 244472.842 -
0.03186314

0D 13 . 4863 0.39% 63219 174587.825 -
0.03120901

0E 14 . 4952 0.39% 69328 123392.587 -
0.03120901

0F 15 . 4806 0.38% 72090 76579.7439 -
0.03055118

10 16 . 4955 0.39% 79280 44350.5382 -
0.03120901

11 17 . 4990 0.40% 84830 19795.9871 -
0.03186314

12 18 . 5017 0.40% 90306 4934.71989 -
0.03186314

13 19 . 4889 0.39% 92891 0.33147051 -
0.03120901

14 20 . 4911 0.39% 98220 4992.2076 -
0.03120901

15 21 . 4921 0.39% 103341 19846.4123 -
0.03120901

16 22 . 4887 0.39% 107514 44224.7696 -
0.03120901

17 23 . 4963 0.40% 114149 79735.2604 -
0.03186314

18 24 . 4871 0.39% 116904 122176.41 -
0.03120901

19 25 . 4767 0.38% 119175 172083.343 -
0.03055118

1A 26 . 4968 0.40% 129168 244005.03 -
0.03186314

1B 27 . 4907 0.39% 132489 314694.803 -
0.03120901



114 
 

1C 28 . 4972 0.40% 139216 403469.25 -
0.03186314

1D 29 . 4955 0.39% 143695 496316.328 -
0.03120901

1E 30 . 4892 0.39% 146760 592818.511 -
0.03120901

1F 31 . 5033 0.40% 156023 725746.946 -
0.03186314

20 32   4313 0.34% 138016 729820.64 -
0.02788085

21 33 ! 4933 0.39% 162789 968005.652 -
0.03120901

22 34 4894 
0.39% 
 
23 35 # 
4962 
0.40% 
 
24 36 $ 
4854 
0.39% 
 
25 37 % 
4917 
0.39% 
 
26 38 & 
4853 
0.39% 
 
27 39 ' 
4788 
0.38% 
 
28 40 ( 
4915 
0.39% 
 
29 41 ) 
4951 
0.39% 
 
2A 42 * 
4819 
0.38% 
 
2B 43 + 
4853 
0.39% 
 
2C 44 , 
4832 
0.38% 
 
2D 45 - 

  0 0 0 



115 
 

4830 
0.38% 
 
2E 46 . 
4909 
0.39% 
 
2F 47 / 
4972 
0.40% 
 
30 48 0 
4767 
0.38% 
 
31 49 1 
4892 
0.39% 
 
32 50 2 
4880 
0.39% 
 
33 51 3 
4945 
0.39% 
 
34 52 4 
4848 
0.39% 
 
35 53 5 
4895 
0.39% 
 
36 54 6 
4919 
0.39% 
 
37 55 7 
4933 
0.39% 
 
38 56 8 
4972 
0.40% 
 
39 57 9 
4827 
0.38% 
 
3A 58 : 
4894 
0.39% 
 
3B 59 ; 



116 
 

4971 
0.40% 
 
3C 60 < 
4979 
0.40% 
 
3D 61 = 
5007 
0.40% 
 
3E 62 > 
4918 
0.39% 
 
3F 63 ? 
4880 
0.39% 
 
40 64 @ 
4960 
0.39% 
 
41 65 A 
4911 
0.39% 
 
42 66 B 
4952 
0.39% 
 
43 67 C 
4969 
0.40% 
 
44 68 D 
4937 
0.39% 
 
45 69 E 
4836 
0.38% 
 
46 70 F 
4829 
0.38% 
 
47 71 G 
4777 
0.38% 
 
48 72 H 
5013 
0.40% 
 
49 73 I 



117 
 

4917 
0.39% 
 
4A 74 J 
5058 
0.40% 
 
4B 75 K 
4916 
0.39% 
 
4C 76 L 
4862 
0.39% 
 
4D 77 M 
4873 
0.39% 
 
4E 78 N 
4942 
0.39% 
 
4F 79 O 
4875 
0.39% 
 
50 80 P 
4977 
0.40% 
 
51 81 Q 
4960 
0.39% 
 
52 82 R 
4891 
0.39% 
 
53 83 S 
4799 
0.38% 
 
54 84 T 
4976 
0.40% 
 
55 85 U 
4850 
0.39% 
 
56 86 V 
4937 
0.39% 
 
57 87 W 



118 
 

4907 
0.39% 
 
58 88 X 
4963 
0.40% 
 
59 89 Y 
4897 
0.39% 
 
5A 90 Z 
4929 
0.39% 
 
5B 91 [ 
4907 
0.39% 
 
5C 92 \ 
4966 
0.40% 
 
5D 93 ] 
4961 
0.39% 
 
5E 94 ^ 
4986 
0.40% 
 
5F 95 _ 
4967 
0.40% 
 
60 96 ` 
4781 
0.38% 
 
61 97 a 
4703 
0.37% 
 
62 98 b 
4832 
0.38% 
 
63 99 c 
5032 
0.40% 
 
64 100 d 
4916 
0.39% 
 
65 101 e 



119 
 

4466 
0.36% 
 
66 102 f 
4804 
0.38% 
 
67 103 g 
4915 
0.39% 
 
68 104 h 
4681 
0.37% 
 
69 105 i 
4624 
0.37% 
 
6A 106 j 
4959 
0.39% 
 
6B 107 k 
4891 
0.39% 
 
6C 108 l 
4865 
0.39% 
 
6D 109 m 
4795 
0.38% 
 
6E 110 n 
4642 
0.37% 
 
6F 111 o 
4587 
0.37% 
 
70 112 p 
4828 
0.38% 
 
71 113 q 
4938 
0.39% 
 
72 114 r 
4764 
0.38% 
 
73 115 s 



120 
 

4615 
0.37% 
 
74 116 t 
4593 
0.37% 
 
75 117 u 
4889 
0.39% 
 
76 118 v 
4922 
0.39% 
 
77 119 w 
4832 
0.38% 
 
78 120 x 
4915 
0.39% 
 
79 121 y 
4760 
0.38% 
 
7A 122 z 
4990 
0.40% 
 
7B 123 { 
4959 
0.39% 
 
7C 124 | 
4991 
0.40% 
 
7D 125 } 
4937 
0.39% 
 
7E 126 ~ 
4924 
0.39% 
 
7F 127 � 
4845 
0.39% 
 
80 128 € 
4905 
0.39% 
 
81 129 � 



121 
 

4869 
0.39% 
 
82 130 ‚ 
4765 
0.38% 
 
83 131 ƒ 
5005 
0.40% 
 
84 132 „ 
4813 
0.38% 
 
85 133 … 
4911 
0.39% 
 
86 134 † 
4969 
0.40% 
 
87 135 ‡ 
5053 
0.40% 
 
88 136 ˆ 
4758 
0.38% 
 
89 137 ‰ 
4913 
0.39% 
 
8A 138 Š 
4948 
0.39% 
 
8B 139 ‹ 
4930 
0.39% 
 
8C 140 Œ 
4877 
0.39% 
 
8D 141 � 
4911 
0.39% 
 
8E 142 Ž 
5006 
0.40% 
 
8F 143 � 



122 
 

4859 
0.39% 
 
90 144 � 
5020 
0.40% 
 
91 145 ‘ 
4950 
0.39% 
 
92 146 ’ 
4973 
0.40% 
 
93 147 “ 
5012 
0.40% 
 
94 148 ” 
4869 
0.39% 
 
95 149 • 
4958 
0.39% 
 
96 150 – 
5011 
0.40% 
 
97 151 — 
4964 
0.40% 
 
98 152 ˜ 
4880 
0.39% 
 
99 153 ™ 
4969 
0.40% 
 
9A 154 š 
4970 
0.40% 
 
9B 155 › 
4740 
0.38% 
 
9C 156 œ 
5107 
0.41% 
 
9D 157 � 



123 
 

4859 
0.39% 
 
9E 158 ž 
4981 
0.40% 
 
9F 159 Ÿ 
4891 
0.39% 
 
A0 160   
4835 
0.38% 
 
A1 161 ¡ 
4844 
0.39% 
 
A2 162 ¢ 
5005 
0.40% 
 
A3 163 £ 
4974 
0.40% 
 
A4 164 ¤ 
4906 
0.39% 
 
A5 165 ¥ 
5040 
0.40% 
 
A6 166 ¦ 
4882 
0.39% 
 
A7 167 § 
4889 
0.39% 
 
A8 168 ¨ 
4895 
0.39% 
 
A9 169 © 
4933 
0.39% 
 
AA 170 ª 
4915 
0.39% 
 
AB 171 « 



124 
 

4983 
0.40% 
 
AC 172 ¬ 
4815 
0.38% 
 
AD 173  
4968 
0.40% 
 
AE 174 ® 
4945 
0.39% 
 
AF 175 ¯ 
4910 
0.39% 
 
B0 176 ° 
4906 
0.39% 
 
B1 177 ± 
4951 
0.39% 
 
B2 178 ² 
4976 
0.40% 
 
B3 179 ³ 
4851 
0.39% 
 
B4 180 ´ 
4966 
0.40% 
 
B5 181 µ 
4887 
0.39% 
 
B6 182 ¶ 
4924 
0.39% 
 
B7 183 · 
4953 
0.39% 
 
B8 184 ¸ 
4908 
0.39% 
 
B9 185 ¹ 



125 
 

4918 
0.39% 
 
BA 186 º 
4824 
0.38% 
 
BB 187 » 
4795 
0.38% 
 
BC 188 ¼ 
4876 
0.39% 
 
BD 189 ½ 
4830 
0.38% 
 
BE 190 ¾ 
4916 
0.39% 
 
BF 191 ¿ 
4956 
0.39% 
 
C0 192 À 
4925 
0.39% 
 
C1 193 Á 
5033 
0.40% 
 
C2 194 Â 
4976 
0.40% 
 
C3 195 Ã 
4923 
0.39% 
 
C4 196 Ä 
4865 
0.39% 
 
C5 197 Å 
4896 
0.39% 
 
C6 198 Æ 
4918 
0.39% 
 
C7 199 Ç 



126 
 

4896 
0.39% 
 
C8 200 È 
5059 
0.40% 
 
C9 201 É 
4923 
0.39% 
 
CA 202 Ê 
4803 
0.38% 
 
CB 203 Ë 
5084 
0.40% 
 
CC 204 Ì 
5069 
0.40% 
 
CD 205 Í 
4877 
0.39% 
 
CE 206 Î 
4987 
0.40% 
 
CF 207 Ï 
4932 
0.39% 
 
D0 208 Ð 
4890 
0.39% 
 
D1 209 Ñ 
4902 
0.39% 
 
D2 210 Ò 
4933 
0.39% 
 
D3 211 Ó 
4960 
0.39% 
 
D4 212 Ô 
4878 
0.39% 
 
D5 213 Õ 



127 
 

4882 
0.39% 
 
D6 214 Ö 
4965 
0.40% 
 
D7 215 × 
4886 
0.39% 
 
D8 216 Ø 
5004 
0.40% 
 
D9 217 Ù 
4816 
0.38% 
 
DA 218 Ú 
4942 
0.39% 
 
DB 219 Û 
4891 
0.39% 
 
DC 220 Ü 
5055 
0.40% 
 
DD 221 Ý 
4866 
0.39% 
 
DE 222 Þ 
4886 
0.39% 
 
DF 223 ß 
5019 
0.40% 
 
E0 224 à 
4921 
0.39% 
 
E1 225 á 
5044 
0.40% 
 
E2 226 â 
4797 
0.38% 
 
E3 227 ã 



128 
 

4959 
0.39% 
 
E4 228 ä 
4996 
0.40% 
 
E5 229 å 
4929 
0.39% 
 
E6 230 æ 
4936 
0.39% 
 
E7 231 ç 
4922 
0.39% 
 
E8 232 è 
4968 
0.40% 
 
E9 233 é 
4918 
0.39% 
 
EA 234 ê 
4963 
0.40% 
 
EB 235 ë 
4955 
0.39% 
 
EC 236 ì 
4920 
0.39% 
 
ED 237 í 
5020 
0.40% 
 
EE 238 î 
4883 
0.39% 
 
EF 239 ï 
4872 
0.39% 
 
F0 240 ð 
4878 
0.39% 
 
F1 241 ñ 



129 
 

5031 
0.40% 
 
F2 242 ò 
4818 
0.38% 
 
F3 243 ó 
5041 
0.40% 
 
F4 244 ô 
4823 
0.38% 
 
F5 245 õ 
4925 
0.39% 
 
F6 246 ö 
4903 
0.39% 
 
F7 247 ÷ 
4911 
0.39% 
 
F8 248 ø 
4869 
0.39% 
 
F9 249 ù 
5000 
0.40% 
 
FA 250 ú 
5087 
0.40% 
 
FB 251 û 
4952 
0.39% 
 
FC 252 ü 
4926 
0.39% 
 
FD 253 ý 
4824 
0.38% 
 
FE 254 þ 
4960 
0.39% 
 
FF 255 ÿ 



130 
 

5018 
0.40% 

24 36 $ 16 0.40% 576 4628.4804 -
0.03186314

25 37 % 17 0.43% 629 5513.04038 -
0.03380422

26 38 & 14 0.35% 532 5058.38145 -0.0285545 
27 39 ' 15 0.38% 585 6004.94143 -

0.03055118
28 40 ( 13 0.33% 520 5737.49666 -

0.02720295
29 41 ) 13 0.33% 533 6296.71075 -

0.02720295
2A 42 * 19 0.48% 798 10058.1978 -0.0369732 
2B 43 + 20 0.50% 860 11527.906 -

0.03821928
2C 44 , 14 0.35% 616 8755.76477 -0.0285545 
2D 45 - 14 0.35% 630 9469.99532 -0.0285545 
2E 46 . 18 0.45% 828 13130.0047 -

0.03508137
2F 47 / 17 0.43% 799 13335.8399 -

0.03380422



131 
 

30 48 0 10 0.25% 480 8414.77642 -
0.02160964

31 49 1 13 0.33% 637 11706.4234 -
0.02720295

32 50 2 22 0.55% 1100 21153.2327 -
0.04128494

33 51 3 21 0.53% 1071 21515.068 -0.0400669 
34 52 4 11 0.28% 572 11984.9787 -0.023745 
35 53 5 14 0.35% 742 16191.8397 -0.0285545 
36 54 6 19 0.48% 1026 23285.9525 -0.0369732 
37 55 7 24 0.60% 1320 31118.23 -

0.04428493
38 56 8 22 0.55% 1232 30131.4065 -

0.04128494
39 57 9 20 0.50% 1140 28892.5171 -

0.03821928
3A 58 : 14 0.35% 812 21302.9925 -0.0285545 
3B 59 ; 16 0.40% 944 25610.5406 -

0.03186314
3C 60 < 13 0.33% 780 21861.7784 -

0.02720295
3D 61 = 15 0.38% 915 26470.3759 -

0.03055118
3E 62 > 13 0.33% 806 24046.2065 -

0.02720295
3F 63 ? 17 0.43% 1071 32924.3193 -

0.03380422
40 64 @ 24 0.60% 1536 48617.7871 -

0.04428493
41 65 A 14 0.35% 910 29634.6064 -0.0285545 
42 66 B 22 0.55% 1452 48615.0295 -

0.04128494
43 67 C 18 0.45% 1206 41486.2296 -

0.03508137
44 68 D 18 0.45% 1224 43232.526 -

0.03508137
45 69 E 6 0.15% 414 15004.9408 -

0.01407123
46 70 F 14 0.35% 980 36425.7591 -0.0285545 
47 71 G 15 0.38% 1065 40572.8461 -

0.03055118
48 72 H 15 0.38% 1080 42148.0931 -

0.03055118
49 73 I 22 0.55% 1606 64171.5655 -

0.04128494
4A 74 J 14 0.35% 1036 42362.6814 -0.0285545 
4B 75 K 18 0.45% 1350 56464.601 -

0.03508137
4C 76 L 13 0.33% 988 42249.2037 -

0.02720295
4D 77 M 13 0.33% 1001 43744.4178 -

0.02720295
4E 78 N 11 0.28% 858 38301.6885 -0.023745 
4F 79 O 14 0.35% 1106 50413.8341 -0.0285545 
50 80 P 16 0.40% 1280 59552.0739 -



132 
 

0.03186314
51 81 Q 13 0.33% 1053 49985.2741 -

0.02720295
52 82 R 17 0.43% 1394 67490.6384 -

0.03380422
53 83 S 16 0.40% 1328 65552.8644 -

0.03186314
54 84 T 12 0.30% 1008 50712.8459 -

0.02514247
55 85 U 10 0.25% 850 43570.8696 -

0.02160964
56 86 V 12 0.30% 1032 53881.2411 -

0.02514247
57 87 W 15 0.38% 1305 69376.7984 -

0.03055118
58 88 X 16 0.40% 1408 76194.1818 -

0.03186314
59 89 Y 18 0.45% 1602 88220.751 -

0.03508137
5A 90 Z 18 0.45% 1620 90759.0474 -

0.03508137
5B 91 [ 14 0.35% 1274 72592.6008 -0.0285545 
5C 92 \ 11 0.28% 1012 58632.2246 -0.023745 
5D 93 ] 21 0.53% 1953 115021.593 -0.0400669 
5E 94 ^ 15 0.38% 1410 84393.5276 -

0.03055118
5F 95 _ 13 0.33% 1235 75104.2713 -

0.02720295
60 96 ` 16 0.40% 1536 94884.2897 -

0.03186314
61 97 a 27 0.68% 2619 164302.684 -0.0489617 
62 98 b 18 0.45% 1764 112361.419 -

0.03508137
63 99 c 15 0.38% 1485 96019.7627 -

0.03055118
64 100 d 17 0.43% 1700 111559.678 -

0.03380422
65 101 e 24 0.60% 2424 161408.411 -

0.04428493
66 102 f 22 0.55% 2244 151588.072 -

0.04128494
67 103 g 14 0.35% 1442 98803.3674 -0.0285545 
68 104 h 15 0.38% 1560 108395.998 -

0.03055118
69 105 i 18 0.45% 1890 133153.494 -

0.03508137
6A 106 j 16 0.40% 1696 121126.925 -

0.03186314
6B 107 k 19 0.48% 2033 147163.536 -0.0369732 
6C 108 l 13 0.33% 1404 102992.054 -

0.02720295
6D 109 m 12 0.30% 1308 97217.7863 -

0.02514247
6E 110 n 29 0.73% 3190 240192.461 -

0.05181458



133 
 

6F 111 o 15 0.38% 1665 126982.727 -
0.03055118

70 112 p 10 0.25% 1120 86505.316 -
0.02160964

71 113 q 18 0.45% 2034 159075.865 -
0.03508137

72 114 r 13 0.33% 1482 117345.339 -
0.02720295

73 115 s 14 0.35% 1610 129046.134 -0.0285545 
74 116 t 19 0.48% 2204 178801.352 -0.0369732 
75 117 u 7 0.18% 819 67239.2976 -

0.01641202
76 118 v 18 0.45% 2124 176447.347 -

0.03508137
77 119 w 14 0.35% 1666 140023.056 -0.0285545 
78 120 x 17 0.43% 2040 173445.277 -

0.03380422
79 121 y 21 0.53% 2541 218519.276 -0.0400669 
7A 122 z 13 0.33% 1586 137939.052 -

0.02720295
7B 123 { 12 0.30% 1476 129812.553 -

0.02514247
7C 124 | 18 0.45% 2232 198481.126 -

0.03508137
7D 125 } 16 0.40% 2000 179803.931 -

0.03186314
7E 126 ~ 18 0.45% 2268 206113.719 -

0.03508137
7F 127 � 17 0.43% 2159 198318.237 -

0.03380422
80 128 € 10 0.25% 1280 118827.951 -

0.02160964
81 129 � 18 0.45% 2322 217832.608 -

0.03508137
82 130 ‚ 9 0.23% 1170 110905.452 -

0.02015755
83 131 ƒ 13 0.33% 1703 163095.978 -

0.02720295
84 132 „ 18 0.45% 2376 229875.497 -

0.03508137
85 133 … 16 0.40% 2128 207966.039 -

0.03186314
86 134 † 18 0.45% 2412 238084.09 -

0.03508137
87 135 ‡ 13 0.33% 1755 174952.835 -

0.02720295
88 136 ˆ 19 0.48% 2584 260127.61 -0.0369732 
89 137 ‰ 18 0.45% 2466 250666.979 -

0.03508137
8A 138 Š 20 0.50% 2760 283259.195 -

0.03821928
8B 139 ‹ 17 0.43% 2363 244833.596 -

0.03380422
8C 140 Œ 12 0.30% 1680 175715.912 -

0.02514247



134 
 

8D 141 � 20 0.50% 2820 297720.183 -
0.03821928

8E 142 Ž 21 0.53% 2982 317751.538 -0.0400669 
8F 143 � 12 0.30% 1716 184536.505 -

0.02514247
90 144 � 17 0.43% 2448 265659.996 -

0.03380422
91 145 ‘ 13 0.33% 1885 206414.976 -

0.02720295
92 146 ’ 15 0.38% 2190 241966.373 -

0.03055118
93 147 “ 15 0.38% 2205 245791.62 -

0.03055118
94 148 ” 9 0.23% 1332 149788.12 -

0.02015755
95 149 • 17 0.43% 2533 287336.396 -

0.03380422
96 150 – 15 0.38% 2250 257447.361 -

0.03055118
97 151 — 21 0.53% 3171 365949.651 -0.0400669 
98 152 ˜ 15 0.38% 2280 265367.855 -

0.03055118
99 153 ™ 20 0.50% 3060 359164.136 -

0.03821928
9A 154 š 18 0.45% 2772 328090.019 -

0.03508137
9B 155 › 10 0.25% 1550 184982.397 -

0.02160964
9C 156 œ 12 0.30% 1872 225255.074 -

0.02514247
9D 157 � 15 0.38% 2355 285694.09 -

0.03055118
9E 158 ž 11 0.28% 1738 212556.18 -0.023745 
9F 159 Ÿ 13 0.33% 2067 254829.973 -

0.02720295
A0 160   11 0.28% 1760 218716.543 -0.023745 
A1 161 ¡ 15 0.38% 2415 302495.078 -

0.03055118
A2 162 ¢ 11 0.28% 1782 224964.905 -0.023745 
A3 163 £ 24 0.60% 3912 497720.915 -

0.04428493
A4 164 ¤ 6 0.15% 984 126164.328 -

0.01407123
A5 165 ¥ 21 0.53% 3465 447686.492 -0.0400669 
A6 166 ¦ 19 0.48% 3154 410616.997 -0.0369732 
A7 167 § 16 0.40% 2672 350502.997 -

0.03186314
A8 168 ¨ 15 0.38% 2520 333051.807 -

0.03055118
A9 169 © 13 0.33% 2197 292532.114 -

0.02720295
AA 170 ª 12 0.30% 2040 273641.841 -

0.02514247
AB 171 « 12 0.30% 2052 277278.039 -

0.02514247



135 
 

AC 172 ¬ 18 0.45% 3096 421407.354 -
0.03508137

AD 173  18 0.45% 3114 426933.651 -
0.03508137

AE 174 ® 17 0.43% 2958 408468.394 -
0.03380422

AF 175 ¯ 9 0.23% 1575 219047.122 -
0.02015755

B0 176 ° 20 0.50% 3520 493031.711 -
0.03821928

B1 177 ± 10 0.25% 1770 249666.02 -
0.02160964

B2 178 ² 15 0.38% 2670 379254.277 -
0.03055118

B3 179 ³ 19 0.48% 3401 486450.064 -0.0369732 
B4 180 ´ 16 0.40% 2880 414778.423 -

0.03186314
B5 181 µ 14 0.35% 2534 367453.351 -0.0285545 
B6 182 ¶ 17 0.43% 3094 451718.634 -

0.03380422
B7 183 · 16 0.40% 2928 430379.213 -

0.03186314
B8 184 ¸ 13 0.33% 2392 353960.325 -

0.02720295
B9 185 ¹ 18 0.45% 3330 496057.208 -

0.03508137
BA 186 º 16 0.40% 2976 446268.004 -

0.03186314
BB 187 » 19 0.48% 3553 536308.567 -0.0369732 
BC 188 ¼ 19 0.48% 3572 542711.88 -0.0369732 
BD 189 ½ 17 0.43% 3213 491347.594 -

0.03380422
BE 190 ¾ 7 0.18% 1330 204706.713 -

0.01641202
BF 191 ¿ 20 0.50% 3820 591736.651 -

0.03821928
C0 192 À 16 0.40% 3072 478909.585 -

0.03186314
C1 193 Á 17 0.43% 3281 514740.714 -

0.03380422
C2 194 Â 12 0.30% 2328 367534.584 -

0.02514247
C3 195 Ã 14 0.35% 2730 433704.578 -0.0285545 
C4 196 Ä 18 0.45% 3528 563974.468 -

0.03508137
C5 197 Å 16 0.40% 3152 506990.902 -

0.03186314
C6 198 Æ 12 0.30% 2376 384527.374 -

0.02514247
C7 199 Ç 14 0.35% 2786 453641.5 -0.0285545 
C8 200 È 12 0.30% 2400 393167.769 -

0.02514247
C9 201 É 12 0.30% 2412 397523.967 -

0.02514247
CA 202 Ê 15 0.38% 3030 502380.206 -



136 
 

0.03055118
CB 203 Ë 13 0.33% 2639 440167.392 -

0.02720295
CC 204 Ì 18 0.45% 3672 616104.84 -

0.03508137
CD 205 Í 15 0.38% 3075 518985.947 -

0.03055118
CE 206 Î 19 0.48% 3914 664469.512 -0.0369732 
CF 207 Ï 15 0.38% 3105 530206.441 -

0.03055118
D0 208 Ð 21 0.53% 4368 750206.363 -0.0400669 
D1 209 Ñ 17 0.43% 3553 613753.193 -

0.03380422
D2 210 Ò 20 0.50% 4200 729682.909 -

0.03821928
D3 211 Ó 12 0.30% 2532 442405.943 -

0.02514247
D4 212 Ô 13 0.33% 2756 484278.319 -

0.02720295
D5 213 Õ 27 0.68% 5751 1016258.26 -0.0489617 
D6 214 Ö 14 0.35% 2996 532394.959 -0.0285545 
D7 215 × 16 0.40% 3440 614707.645 -

0.03186314
D8 216 Ø 9 0.23% 1944 349310.198 -

0.02015755
D9 217 Ù 15 0.38% 3255 588108.911 -

0.03055118
DA 218 Ú 11 0.28% 2398 435647.049 -0.023745 
DB 219 Û 13 0.33% 2847 520042.818 -

0.02720295
DC 220 Ü 16 0.40% 3520 646468.962 -

0.03186314
DD 221 Ý 10 0.25% 2210 408073.266 -

0.02160964
DE 222 Þ 14 0.35% 3108 576972.803 -0.0285545 
DF 223 ß 13 0.33% 2899 541051.674 -

0.02720295
E0 224 à 7 0.18% 1568 294198.632 -

0.01641202
E1 225 á 20 0.50% 4500 848787.85 -

0.03821928
E2 226 â 14 0.35% 3164 599933.725 -0.0285545 
E3 227 ã 14 0.35% 3178 605743.956 -0.0285545 
E4 228 ä 10 0.25% 2280 436844.419 -

0.02160964
E5 229 å 10 0.25% 2290 441034.584 -

0.02160964
E6 230 æ 15 0.38% 3450 667867.122 -

0.03055118
E7 231 ç 9 0.23% 2079 404527.422 -

0.02015755
E8 232 è 11 0.28% 2552 499097.585 -0.023745 
E9 233 é 12 0.30% 2796 549594.291 -

0.02514247
EA 234 ê 18 0.45% 4212 832113.733 -



137 
 

0.03508137
EB 235 ë 12 0.30% 2820 559914.686 -

0.02514247
EC 236 ì 20 0.50% 4720 941851.473 -

0.03821928
ED 237 í 8 0.20% 1896 380220.721 -

0.01793157
EE 238 î 20 0.50% 4760 959292.131 -

0.03821928
EF 239 ï 20 0.50% 4780 968072.461 -

0.03821928
F0 240 ð 15 0.38% 3600 732669.593 -

0.03055118
F1 241 ñ 7 0.18% 1687 345013.592 -

0.01641202
F2 242 ò 18 0.45% 4356 895188.104 -

0.03508137
F3 243 ó 10 0.25% 2430 501796.889 -

0.02160964
F4 244 ô 14 0.35% 3416 708801.875 -0.0285545 
F5 245 õ 13 0.33% 3185 664036.384 -

0.02720295
F6 246 ö 18 0.45% 4428 927589.29 -

0.03508137
F7 247 ÷ 18 0.45% 4446 935779.586 -

0.03508137
F8 248 ø 16 0.40% 3968 839116.34 -

0.03186314
F9 249 ù 17 0.43% 4233 899364.391 -

0.03380422
FA 250 ú 22 0.55% 5500 1174025.69 -

0.04128494
FB 251 û 9 0.23% 2259 484450.386 -

0.02015755
FC 252 ü 17 0.43% 4284 922978.231 -

0.03380422
FD 253 ý 20 0.50% 5060 1095197.07 -

0.03821928
FE 254 þ 12 0.30% 3048 662746.441 -

0.02514247
FF 255 ÿ 20 0.50% 5100 1113997.73 -

0.03821928
 


	Re-engineering the Enigma cipher.
	Recommended Citation

	Microsoft Word - Max Stoler thesis

