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ABSTRACT 

CARDIOVASCULAR AND HEMATOPOIETIC RESPONSES TO VOLATILE 

BENZENE EXPOSURE 

Wesley T. Abplanalp 

August 2, 2016 

 

The rapid and recent increase in the global epidemic of diabetes and 

cardiovascular disease suggests a strong component of the environment is 

contributing. Benzene is a ubiquitous volatile pollutant generated by cigarette 

smoke, automobile exhaust, wildfires and industrial activities.  Consequently, it is 

found in almost all urban and rural air samples.  Benzene is known to cause 

hematotoxicity and its metabolism generates oxidative stress. Although, benzene 

has been studied for many years, few investigations have probed what influence 

benzene exposure may have on other physiological processes.  Here we 

hypothesize that benzene metabolism by hepatic-CYP450 2E1 generates 

oxidative stress and inflammation, which then promote insulin resistance and 

endothelial dysfunction.  To test this hypothesis, we measured hematological 

progenitor differentiation and circulating blood cell types as well as indices of 

oxidative stress, vascular damage, insulin resistance and stem cell function to 

assess relative sensitivity of hematological and vascular biomarkers. Our findings 

show that benzene-exposed mice exhibit oxidative stress, inflammation, vascular 

damage, insulin resistance, thrombosis with diminished vascular repair capacity 
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at levels similar to hematological changes typically found in acute studies 

assaying for the lowest observed adverse effect level.  These data suggest that 

individuals exposed to this ubiquitous air pollutant are likely to experience 

inflammation and vascular complications.  
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CHAPTER I 

GENERAL INTRODUCTION 

 

Air Pollution – Ancient and Recent 

Since the dawn of the Industrial Revolution Western civilization has gained 

tremendous economic prosperity.  The Industrial Revolution allowed society to 

exponentially increase the production of goods, specialize in division of labor, 

enabled opportunities for greater geographic and social mobility, and it created 

technological innovation that provided relief from much of the physical toil of 

agrarian society. However, the opulence of this movement was shrouded in a fog 

of particulate haze.  The energy driving much of this revolution was primarily 

coal-based, and unclean to burn and handle. Coal-burning furnaces emit many 

noxious chemicals such as benzene, arsenic, lead, cadmium, carbon monoxide, 

particulates, and sulfur and nitrogen dioxides (1).  However, in modern times, 

airborne toxic events like the episodes in the Meuse Valley in 1930, in the town 

of Donora, Pennsylvania in 1948, and in London in 1952 led to undeniable 

evidence that industrial and residential air pollution was negatively impacting 

lives. Though carefully coordinated efforts to mitigate effects of air pollution did 

not begin until recently, the evidence for air pollution adversely affecting human 

health can be found in some of the oldest of human societies.  

Archaeological evidence suggests that pollutants were widely experienced 

in groups that lived before current documentary records.  For example, lung 
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tissue from mummified (intentional or not) human remains can be rehydrated by 

paleopathologists to ascertain pulmonary health at time of death.  In Egypt, it has 

been seen that mummies demonstrate signs of pneumoconiosis (2), a lung 

disease typically associated with inhalation of dust, characterized by 

inflammation, coughing, and fibrosis.  This would be expected in places with high 

concentrations of wind-blown sand (i.e. Egypt).  Moreover, these 

paleopathological studies on pneumoconiosis have been performed on sixteenth 

century Peruvian miners and among East Anglian flint-knappers (3) finding 

similar results.  Additional carbon deposits suggesting anthracosis are seen more 

broadly, as expected in persons frequently exposed to wood smoke over a 

lifetime.  These studies suggest that indoor air pollution has been a hindrance to 

health since man first learned to use fire and would have been a problem 

whether people lived in urban or rural areas, and would have been exacerbated 

by poorly ventilated living conditions.   

The problem of outdoor pollution grew more important with the 

development large cities and industrial activity, and it has been recognized as 

such almost since the dawn of its production.  The astynomoi (city magistrates) 

of ancient Greece were charged with removing malodorous rubbish from town 

and controlling this kind of annoyance.  More to the point, the Roman courts 

heard civil lawsuits over smoke pollution and made some efforts to house 

polluting industries outside of wealthy communities (4).  Additionally, Roman 

senator Sextus Julius Frontinus (c. 40 – 103 Common Era [CE]) in De 

Aqueductibus Urbis Romae felt that it was of utmost importance to supply water 
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to Rome, which would alleviate broader sanitary concerns and purify the air.  

Even the Hippocratic Corpus contains a volume titled Air, Water and Places 

describing the importance of climate and the properties of air (including 

metalliferous content).  Another medical giant, Galen, once wrote to his patient 

Marcus Aurelius that a great part of pestilence was the corruption of air.  

Additionally, the Arab world connected air pollution and health at an early date 

through miasmatic beliefs (5).   

During these times in antiquity wood was a primary fuel (and a source of 

benzene exposure).  It was not until the late 1200s CE that we have 

documentation that London moved to coal during a wood shortage. As quickly as 

coal entered society, people were equally swift to recognize the need to regulate 

its use. In the 1285 CE a petition was sent to a group of officials stating that since 

the switch from wood to sea-coal, the “air is infected and corrupted to the peril of 

those frequenting and dwelling those parts.” Continued enquiry by investigators 

like John Graunt (Natural and Political Observations), John Evelyn (Fumifugium, 

or the Smoake of London Dissipated), John Arbuthnot (Concerning the Effects of 

Air on Human Bodies) and John Hall (Cautions Against the Immoderate Use of 

Snuff) catalogued what demographic and environmental data was available in 

16th, 17th and 18th centuries to infer the health effects of air pollution.   

Two additions to society became notably impactful on personal exposure 

to air pollution.  One such addition was the chimney which allowed for better 

ventilation of homes and use of bituminous coal, which would produce a noxious 

smelling and intense smoke (more so than so-called sea-coal).  The other was 
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the steam engine.  The steam engine could be recognized as a point source for 

soot release.  Still, as areas rapidly scaled up their industry, the emissions 

became universally distributed and distressing (6).   The grey colored rain would 

stain clothes hanging to dry (cream clothes were preferred over white) (7), black 

umbrellas were used to protect the worn clothes on the street, interiors of homes 

used dark wall coverings so as not to be noticeably stained by soot, and the 

sulfur dioxide weathered carved stone and corroded metal works (8). The trend 

in the 19th century was a new interest in the well-being of cities because of the 

mass migration of people into these centers providing employment opportunities.  

This attention brought awareness to the increased mortality in urban areas and 

brought about legislation to mitigate issues (9).  However, while smoke 

abatement and air pollution mitigation acts were frequently brought forth, 

emphasis was placed on commercial growth and so industry maintained an 

advantage with legislators (10).  Additionally, a lack of technologies to control air 

emissions kept industrialists and administrators from realizing a reduction in 

release (11).  It is estimated that in places like London, pollutant concentrations 

would only have begun to decrease when railways systems were installed, 

allowing for a decrease in urban and industrial density, thus a diffusion of air 

pollution (12).  The most reliable surrogate for a direct measurement of air 

pollution in this area was the presence of the iconic London fog.   

Systematic developments in air pollution monitoring networks grew after a 

calling for more quantitative evidence to understand the relationship between 

“fogs” and increased mortality (13).  These networks helped provide data for 



5 
 

epidemiological studies that demonstrated strong associations between pollution 

and negative health outcomes.  However, causal mechanisms were, and are, 

poorly understood.  Primary founts of information and action sprung from 

extreme cases, in which medical experts linked increases in mortality to these 

severe events. The most infamous of these occurred in the Meuse Valley, 

Belgium (1930), Donora, USA (1948), Pozo Rico, Mexico (1950) and London, 

England (1952). An estimated 4000 excess deaths occurred from the 1952 

London fog incident that were associated with angina, suggesting a 

cardiovascular susceptibility.  Moreover, an ordinance passed in Pittsburgh (1946) 

against air pollution may have been the first of its kind in the United States, 

though there was little scientific data to give the directive credence (14).  Work 

since the 1950s has become very sophisticated requiring multidisciplinary teams 

involving aerosol engineers, physiologists and molecular biologists to understand 

how the mechanism by which pollutants effect human health.   

Now in the 21st century, the emissions have become more varied in both 

composition and locality.  While coal-derived emissions were initially limited to 

the Western civilization, they have lost their prevalence in the west and are more 

abundant elsewhere (e.g. China, India, Vietnam, etc.).  In the United States, 

emissions are as much by petroleum combustion engines as coal combustion 

power plants as well as from other industrial emissions.  Additionally, with the 

rampant spread of tobacco smoking in the 20th century, the world’s smoking 

population has reached one billion users (15, 16).  Tobacco smoke, auto exhaust, 

and industrial emissions (including coal, wood smoke, etc.) are the most 
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prevalent sources for human benzene exposure (17).  The intensity of pollution 

will depend on the types of sources unique to an area (personal / commercial 

vehicles, industry), the density of those sources, and the emission rate of those 

sources, as well as by prevailing weather conditions and geography.   

 Accordingly, the very definition of “air pollution” is somewhat broad - “The 

presence in or introduction into the air of harmful or poisonous substances, 

especially as a result of human activity,” according to the Oxford English 

Dictionary. While this umbrella definition covers any noxious air pollutant 

constituents, as described (supra vide) the development and availability of 

technology to understand the composition of our own atmospheres has 

progressed at a surprisingly rapid rate allowing aerosol scientists and 

technologists to detect and quantify the concentration of thousands of chemicals 

in the air. The presence of large air monitoring networks and access to health 

outcomes allows epidemiologists to assess pollutant exposure levels of millions 

of individuals both at home and at work, and to assess the degree to which 

pollutant exposure is associated with different health outcomes. Before these 

networks became available there were no quantifiable toxicological approach to 

assess the dose-response of pollutants.  For instance, during the tragic London 

fog incident of 1952, it is reported that 12,000 people died and 100,000 were laid 

ill by the pollution and stalled weather patterns around downtown London.  

Thousands of tons of black soot, particulates, sulfur dioxide were suspended in 

the air due to substantial coal combustion from factories along the river Thames.  

The PM10 (particulate matter >10m in diameter) concentrations were estimated 
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to be between 3,000 and 14,000g/m3, but there was no accurate method in 

place for measuring this fraction at the time (18, 19).  While the increased rate in 

mortality accompanying the fog was undeniable, no subtle changes in health 

status seemed verifiable.  A similar 1948 incident in the small town (pop. 12,000) 

of Donora, Pennsylvania led to an estimated 20 casualties and 6,000 cases of 

respiratory and cardiovascular distress – half of the town.  Incidents like this led 

to the passing of the Air Pollution Control Act of 1955 by the US congress, citing 

that air pollution is a national priority, but it left the interpretation and enforcement 

of this up to the states.  This act did, however, pave the way for the Clean Air Act 

of 1963 which is considered to be the most influential and comprehensive air 

quality laws in the world (20).  Given the minimal quantitative evidence available 

at the time, this was a notable endeavor.  Not surprisingly therefore, the capacity 

to measure discreet constituents of air pollution and monitor their effect on 

human health has led to increased regulation.  Six of the most monitored 

inhalable contaminants in the United States (by the Environmental Protection 

Agency [EPA]) are particulate matter, ozone, carbon monoxide, lead, sulfur 

dioxide, and nitrogen dioxide. While particularly problematic pollutants may vary 

from region to region, it has become evident that the sum of their actions is 

negative. The World Health Organization estimates that 1.5 billion people are 

exposed to hazardous elevated levels of pollution on a daily basis (21). 

Furthermore, seven million deaths are attributed to air pollution and each year 

with 200,000 of those deaths in the United States (22).  
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 Many air pollutants are associated with negative effects on cardiovascular 

health.  For instance, one of the EPA’s closely monitored pollutants, fine 

particulate matter (PM2.5), has an aerodynamic diameter small enough to be 

easily inhaled and can lodge deep in the lungs where it can stimulate an 

inflammatory response just prior to the left atrium and ventricle or translocate 

across the alveoli of the lungs into the circulation and interact directly with the 

endothelium.  Rigorous epidemiological studies, along with laboratory research, 

have shown that increases in PM2.5 is associated with premature death in 

vulnerable populations (with cardiovascular disease [CVD] or lung disease), 

myocardial infarction, arrhythmia, aggravated asthma, decreased lung function 

and inflamed airways (23-25). Additionally, 80% of the total PM2.5 mortality is due 

to CVD (26).  People with CVD, lung disease, or who are children or elderly are 

the most affected populations. Ultimately, research shows that for every 10g/m3 

of urban PM2.5 the mortality ratio rate (RR) is 1.13, demonstrating a strong 

correlation between pollution levels and mortality (27, 28). 

Another closely monitored pollutant is ozone.  Ozone appears in the 

stratosphere (“ozone layer”) and in the troposphere (the lowest layer of the 

Earth’s atmosphere).  “Nose level” ozone, that of the troposphere, is what 

agencies monitor to assess health impacts.  Troposphere ozone contributes to 

presence of angina, airway inflammation, reduced lung function, emphysema, 

and throat irritation (29-31).  An evaluation between daily mortality counts and 

ambient ozone concentration in 95 large U.S. communities over the period of 

1987-2000 found a 0.5% overall excess risk in non-accidental daily mortality for 
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each 20 ppb ozone increase in the 24-hour average ozone concentration the 

same day and a cumulative 1.04% excess risk for each 20 ppb increase in the 

24-hour average concentration during the previous week (32).  This finding was 

significant even after controlling for confounders like particulate matter or other 

pollutants.   

Other closely monitored constituents like carbon monoxide (CO) reduce 

capacity for blood to deliver oxygen to tissues by competitively binding to 

hemoglobin over oxygen (O2). This hypoxic state primarily affects the 

cardiovascular and nervous systems. Furthermore, CO is generated by the 

incomplete combustion of fossil fuels (making CO rather than CO2) and is 

frequently emitted from automobile exhaust.  Nitrogen dioxide (NO2), another 

byproduct of fossil fuel combustion is a major cause of acid rain (along with sulfur 

dioxide) and greatly inflames bronchial airways, making populations with a 

pulmonary or cardio-pulmonary susceptibility at greater risk for complications 

(33).  Understanding how these pollutants act alone, as well as in mixed model, 

real world scenarios will help to elucidate the true impact of these chemicals on 

population health. 

Pollutants such as benzene, though ubiquitous in urban and rural 

environments (from the National Human Exposure Assessment Survey 

[NHEXAS]), are rarely monitored and thus it is difficult to ascertain the effect of 

these under-monitored chemicals on populations.  While benzene for instance is 

known to be a carcinogen, it is unknown what, if any cardio-metabolic effects this 

pollutant might have.  While a concomitant increase in the atmosphere is 
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corresponds to an increase in CVD, diabetes and obesity is difficult to conclude 

causation from these trends.  However, molecular evidence supports a biological 

plausibility that benzene could cause low-grade inflammation and associated 

pathologies (i.e. CVD, diabetes).  But because of limited monitoring resources, 

assessing the effect of under-monitored chemicals on health will most probably 

have to rely first on animal exposure studies to elucidate possible causality, 

before large scale human monitoring is implemented.   

While the aforementioned pollutants are primarily generated by industrial 

and automotive activities, and accordingly monitored in public spaces, personal 

atmospheres may be further polluted through tobacco smoking activities.  

Environmental tobacco smoke (ETS) is an amalgam of pollutants known to have 

serious health consequences.  Cigarette smoke contains roughly 4,000 different 

chemicals (34, 35).  Solid particulates make up to 10% of tobacco smoke, while 

the rest is considered gases and aerosols. One of the major gases present is 

carbon monoxide, along with formaldehyde, acrolein, ammonia, nitrogen oxides, 

pyridine, hydrogen cyanide, vinyl chloride, N-nitrosodimethylamine, acrylonitrile 

and benzene. ETS comprises both the main and side streams of cigarette smoke.  

Frequency and volume of puffs, as well as the intensity of the “pull” on the 

cigarette contribute to the effect of the main stream cigarette smoke. The 

constituents of tobacco smoke will vary according to brand and country of origin.  

In 2009, the Family Smoking Prevention and Tobacco Control Act was signed 

into law giving the Food and Drug Administration (FDA) the authority to regulate 

the constituents of tobacco smoke found to be harmful.  The FDA wishes to 
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collect more data on these harmful and potentially harmful constituents (HPHCs) 

of tobacco smoke in order to make safer cigarettes (36).  One of these HPHCs is 

benzene, known to be a carcinogen and reproductive toxin, but suspected to be 

a cardiovascular toxicant as well.  Thus, on account of the negative associations 

found with benzene and products containing benzene, there has been a desire to 

know more about industrially- and personally-generated benzene exposure. 

 

Benzene 

Chemical Description 

 Benzene is a clear, colorless aromatic hydrocarbon with an idiosyncratic 

sweet odor with olfaction detection at about 60ppm and olfaction recognition at 

approximately 100ppm (37). Gustation detection for benzene happens 

somewhere between and 4.5 ppm in solution for most people (37).  Benzene 

contains 92.3% carbon and 7.7% hydrogen, with the molecular formula of C6H6 

and molecular weight of 78.11 g/mol.  The benzene molecule is the simplest of 

all aromatic hydrocarbons and can therefore be a source for the production of all 

other aromatic hydrocarbons.  A further description of benzene’s physical and 

chemical characteristics can be found in Table 1. 

 Benzene, the word, is derived from “gum benzoin” (a.k.a. benzoin resin) 

which is an aromatic resin.  This resin has been used by European perfumers 

and pharmacists since the 16th century when it was made available from Asian 

trade routes.  Benzoin resin was processed via sublimation to obtain benzoic 

acid and was known at the time as “flowers of benzoin” (38). Benzene  
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Table 1.  Physical characteristics of benzene. 

.  

Physical characteristics of benzene related to molecular weight, melting point, 

and sensory detection levels.  
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was first isolated by the well-known English chemist Michael Faraday in 1825 

from a substance known as “illuminating gas,” that was a mixture of hydrogen 

and hydrocarbon gases produced by destructive distillation of bituminous coal (or 

peat) commonly used at the time (39).  Nine years later in 1834 the German 

chemist Eilhardt Mitserlich developed another method for isolating benzene by 

heating benzoic acid with lime to produce benzene molecules. Yet another 

isolation technique using the more abundant coal tar was later developed by 

another German chemist A.W. von Hofmann in 1845 (40, 41).  The structure of 

benzene was unknown at this point and would remain so until the mid-1860s 

when German chemists Joseph von Loschmidt and August Kekulé would 

independently propose the six carbon, cyclic arrangement with alternating single 

and double bonds.  August Kekulé allegedly derived his inspiration for the 

benzene structure from the appearance of an ouroboros (i.e. a snake eating its 

own tail) in a dream that suggested the cyclic form of benzene (42). Of course 

the notion for this only gained credulity because of the rigorous experiments 

performed interrogating isomer derivatives of benzene.  In 1929, the British X-ray 

crystallographer Kathleen Lonsdale confirmed that benzene had a single 

structure, composed of a resonance hybrid of August Kekulé’s cyclic, alternating 

double bond theory (43). Studies employing X-ray diffraction show benzene to be 

a planar structure with each carbon-carbon bond distance equal to 1.4 angstroms 

(Å).  
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Industrial and Commercial Uses 

 Benzene has many industrial and consumer uses.  Industry employs 

benzene in adhesives and sealant chemicals, fuels and fuel additives, ion 

exchange agents, laboratory chemicals, plastics, processing aids and solvents 

(for cleaning or degreasing).  Consumer products such as adhesives and 

sealants, automotive care products, cleaning and furniture care products, fuels, 

lubricants, greases, paints and coatings, plastic and rubber all typically involve 

benzene at some point in the production stage (17, 44).   

 Globally, approximately 30% of commercial benzene is produced by 

catalytic reforming.  This process involves aromatic molecules being produced 

from dehydrogenation of cycloparrafins, hydroisomerization of alkyl 

cyclopentanes and the cyclization and subsequent dehydrogenation of parrafins 

(45). 

 Early uses of benzene were found were in rubber solvents in mid to late 

19th century Germany.  Rubber solvents were a crucial part of making bicycle, 

wagon and automobile tires as well as canning seals.  Benzene was such an 

effective solvent that it was used in most all rubber industry processes.  Benzene 

continues to be used in manufacturing, notably in rubber, glue, and plastics 

industries.  It is one of the top 20 chemicals produced by volume in the United 

States (46). Benzene is also found in crude oil petroleum and as such constitutes 

a sub-fraction of the raw products derived from deep drilling processes.  

Consequently, benzene is present in gasoline/petrol used for automotive 

engineers.  The absolute percent composition of benzene in end product 
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gasoline varies by country depending upon local law.  In the United States, it is 

found at approximately 1% v/v in gasoline.   

 While benzene is an intentionally sourced and used chemical, it is often 

found in society as a combustion byproduct.  Benzene is emitted from auto 

exhaust, coal and wood burning and from tobacco smoke.  Tobacco smoke is the 

greatest source of benzene exposure for humans (47).  This is driven by the 

relatively high concentration of benzene in cigarette smoke (35-70 ppm), though 

this varies by cigarette brand and smoking behavior (48).  Tobacco smoke is 

such an abundant source of exposure to humans because of the overwhelming 

prevalence of tobacco smokers in the world.  The World Health Organization 

(WHO) and the Journal of the American Medical Association (JAMA) have 

independently reported that there are approximately one billion smokers in the 

world, approximately 1 in 7 persons, globally (15, 16).  Given that smokers 

expose individuals around them to benzene; it is not surprising that this is the 

primary source of benzene exposure in humans.  However, tobacco smoke is not 

the primary source for anthropogenic benzene being released into the total 

environment though it does typically generate the most concentrated 

atmospheres of benzene in personal environments.  Industrial emissions account 

for the greatest volumetric release of benzene at 3,500 tons per year in the US 

alone (49).  Additionally, combustion engine exhaust contains volatile benzene 

and this is the second major source of exposure for humans.  Benzene levels 

near roadways are elevated compared with up-wind measurements (50). 

Additionally, assessment of benzene within the cabin of automobiles during 
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driving has shown a 100% increase in ambient concentrations (51).  These levels 

increase sharply in poorly ventilated areas.  One study of a Los Angeles freeway 

tunnel measured ambient benzene at a level of >1000 ppm in the midst of rush 

hour traffic (52). Thus, urban benzene levels can vary greatly depending on 

ventilation, the concentration of benzene emitting sources and weather patterns 

that allow for or deprive areas of dispersing and diffusing movement of air. 

Benzene can also be found in the natural environment.  Volcanic eruptions, 

forest fires and other sources of combusting carbon derived substances.   

 It is not uncommon in some industries to be exposed to high levels of 

benzene.  The United States’ Occupational Safety and Health Administration 

(OSHA) has established limits of acceptable occupational exposure loosely 

based upon health research findings.  The exposure limits set by OSHA have a 

legal authority, meaning there’s much greater incentive to follow OSHA 

guidelines (53).  The National Institute for Occupational Safety and Health 

(NIOSH), a separate US government organization, also releases suggested 

thresholds for occupational exposure limits.  However, NIOSH recommendations 

are not legally enforceable (54). NIOSH limits are often somewhat lower than 

OSHA’s terms.  For example, the 40h time weighted average (TWA) permissible 

exposure limit (PEL) is 1 ppm, whereas the NIOSH recommendations are 0.1 

ppm for a 40h TWA PEL.  The OSHA 15 min short term exposure limit (STEL) is 

5 ppm whereas the NIOSH STEL is 1 ppm.  One of the reasons for the conflicting 

limits between the two agencies stems from NIOSH’s ability to update its 

recommendations based on current research findings without consideration of 
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costs to implement such changes in industrial practices.  The OSHA guidelines 

are often said to target optimally reduced exposure levels while balancing 

practicality of implementation.  Of note for contextual purposes, benzene 

concentration in main stream cigarette smoke is approximately 7 – 12 times the 

OSHA STEL.  In 2009, FDA was granted authority to regulate the constituents of 

tobacco smoke and this will likely decrease the abundance of benzene in 

cigarettes.  That said, no safe level of benzene exposure has been determined.  

The most frequently researched health outcome associated with benzene 

exposures is leukemia, and the rate of disease incidence appears to decrease in 

a linear fashion with ambient benzene reduction. Even at 0.3 ppb there is an 

excess lifetime cancer risk of 1 in 1,000,000 (55).  However, this is a model-

generated approximation and as benzene is rarely monitored even in 

metropolitan regions or in occupational environments where benzene exposure is 

likely, it is difficult to approximate the true impact of exposure on health.   

 

Benzene Absorption, Distribution, Metabolism and Excretion 

 The toxicokinetics of benzene have been extensively studied.  While 

inhalation exposure is the primary route of exposure, dermal and oral exposure 

can occur as well.  However, inhalation exposure is most frequent.  Absorbed 

benzene is rapidly distributed throughout the body and whatever is not quickly 

metabolized, accumulates in adipose tissues.  The liver is the primary site of 

benzene metabolism into metabolites with various levels of reactivity.  It is well 

known that benzene exposure is toxic and that this toxicity is dependent upon its 
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metabolism.  However, no single metabolite has been found to be the major 

source of the characteristic hematopoietic and leukemic effects of benzene.  At 

low exposure levels, benzene appears to metabolize quickly and is excreted via 

conjugated urinary metabolites.  At high exposure levels, metabolic processes 

appear to be saturated and parent compounds may be excreted through 

exhalation.  The hypothesis that benzene is rapidly absorbed is supported by 

results from a 23-person study who inhaled 47 – 110 ppm volatile benzene for 2 

– 3h. These participants showed absorption was highest in the first 5 – 10 min of 

the experiment and then rapidly decreased.  The first 5 min of exposure 

demonstrated 70 – 80% absorption, but this was decreased to 50% by 1h (56).  

This latter result was confirmed in a study of 6 volunteers exposed to 52 – 62 

ppm benzene.  Volunteers displayed 47% absorption after 4h of 52-62ppm 

exposure (57).  Individuals exposed to a lower concentration (1.6 or 9.4 ppm) for 

4h had 48% respiratory absorption at 9.4 ppm and those exposed at 1.6 ppm 

exhibited 52% respiratory absorption (58).  Benzene exposure in cigarette smoke 

showed a similar 64% absorbance rate at concentrations of 32 – 69 ppm 

benzene (48).  

 Most data for benzene distribution in humans comes from case studies.  

These data suggest benzene is distributed throughout the body following blood 

absorption.  Benzene deposits at a high rate in adipose tissue, which is in 

keeping with the lipophilic nature of the molecule, though it will be found 

elsewhere.  Two studies have found benzene to be almost equally present in the 

blood and liver while brain contains nearly twice that of liver or blood (59, 60). 
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Benzene has been found to cross the placenta and is measurable in cord blood 

in concentrations equal to or greater than maternal blood (61).  Benzene binds to 

plasma proteins and benzene metabolites can form covalent adducts with 

proteins from human blood and mice (62). However, adduct formation does not 

appear to prevent benzene distribution to other areas of the body.  Furthermore, 

while benzene preferentially deposits in adipose, tissue concentrations will also 

depend on blood perfusion rate to the tissue (possibly explaining the high 

concentration in the brain).  

 Benzene achieves different equilibria in different tissue compartments.  

One experiment with rats exposed to 500 ppm benzene found that benzene 

stopped increasing in concentration in the bone marrow and blood 2 and 4h, 

respectively, after exposure indicating saturation.  Supporting this, benzene 

metabolites phenol, catechol and hydroquinone (HQ) have been detected in the 

blood and bone marrow 6h after exposure, though metabolite concentrations 

were significantly higher in bone marrow (63). A study of dogs exposed to 

benzene at 800 ppm x 20d found 20 times more benzene in adipose, bone 

marrow and urine than blood (64). 

 Prior to metabolism, benzene is not toxic.  However, most mammalian 

species express at least one isoform of the enzyme responsible for benzene 

metabolism.  This enzyme is known as cytochrome P450 2E1 (CYP2E1).  The 

majority of benzene metabolism occurs in the liver and centers on the formation 

of ring hydroxylated compounds.  Early work attempting to delineate pathways of 

benzene metabolism showed hydroxylation of benzene to catechol, phenol, 
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hydroquinone and 1,2,4-benzenetriol (65-67). These hydroxylated metabolites 

are excreted as glucuronides and ethereal sulfates in the urine. However, the 

most commonly used, and debatably the most sensitive urinary metabolite 

currently used in assessing benzene exposure is trans,trans-muconic acid (t,t-

MA). The production of t,t-MA involves a ring opening step to create trans,trans-

muconaldehyde (68, 69). This was most convincingly established by Parke and 

Williams who exposed rabbits to [14C]benzene and were able to reliably detect 

and measure [14C]t,t-MA in the excreted urine (66).  

 The two pathways, ring hydroxylation and ring opening have been 

confirmed in other species (70-73). The hydroxylated compounds are broken 

down to sulfate conjugates and glucuronides and are often termed “detoxification 

products” because the conjugation leads to elimination and inhibits the 

generation of toxic intermediates (derived from hydroxylated benzene 

metabolites).  A less abundant metabolite is S-phenylmercapturic acid (SPMA), 

which is a glutathione (GSH) conjugate.  These metabolites act as a mechanism 

to detoxify the reactive benzene oxide, the first benzene metabolite to be formed.  

Additionally, t,t-muconaldehyde is converted to a less reactive metabolite (t,t-MA).   

 Available human data suggest that exhalation is the primary route of 

excretion for unmetabolized benzene (74).  However, metabolized benzene in 

the form of phenol, SPMA, HQ and t,t-MA is excreted through the urine.  Human 

studies showing respiratory excretion of unmetabolized benzene at 16-40% after 

2-3h of 47-110 ppm benzene exposure also show that only 0.07-0.2% of 

unmetabolized benzene is excreted through the urine (56, 75).  Thus, the 
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remainder is largely metabolized with a small portion of the benzene being 

deposited in lipid substances.  Subsequently these excreted conjugate 

metabolites are used to monitor benzene exposure.  Urinary phenol in workers 

exposed to 1-200 ppm benzene showed a 0.881 correlation coefficient with 

benzene exposure levels (76).  Consequently, SPMA and t,t-MA are also 

frequently used markers of exposure with t,t-MA being demonstrated to be a 

reliable biomarker of low dose benzene exposure (77). 

 

Role of CYP2E1 in Benzene Metabolism and Toxicity 

 As seen in Figure 1, the first step in benzene metabolism involves the 

CYP2E1 catalyzed oxidation of benzene to benzene oxide (78). Benzene oxide is 

in equilibrium with benzene oxepin (79). While several pathways are involved in 

benzene metabolism, CYP2E1 is the most frequently involved enzyme.  The 

predominant pathway in benzene metabolism then involves non-enzymatic 

rearrangement to form phenol (80). Phenol is oxidized in the presence of 

CYP2E1 to catechol or HQ, and these metabolites are further oxidized by 

myeloperoxidase (MPO) to 1,2- and 1,4-benzoquinone (BQ) (81).  This reaction 

is reversible, the metabolites 1,2- and 1,4-BQ are reduced to catechol and HQ, 

respectively, by NAD(P)H;quinone oxidoreductase (NQO1) (81).  Additionally, 

catechol and HQ can be converted to 1,2,4-benzenetriol via CYP2E1 catalysis.  

Each of the phenol-derived metabolites can undergo glucuronic or sulfate 

conjugation (81, 82).  Other pathways involved in benzene oxide metabolism 

involve reaction with glutathione (GSH) to form SPMA (70, 81), and the iron 
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catalyzed ring-opening conversion to t,t-MA, presumably by the trans,trans-

muconaldehyde intermediate (81, 83).  

  In studies using products of CYP2E1 it has been found that 

significant oxidative stress and corresponding hepatotoxicity occurs.  In fact, 

effects such as ethanol-induced liver injury seem to be largely driven by 

CYP2E1-derived oxidative stress. To understand the effects of this enzyme we 

should outline the background of the family of cytochrome P450 enzymes.  The 

cytochrome P450 enzymes (or CYPs) are considered a super family of heme 

proteins acting as terminal oxidases in a mixed function oxidation system that 

metabolize many endogenous and exogenous substrates (e.g. steroids, fatty 

acids, xenobiotics, drugs, toxins) (84). CYPs are present in nearly all organisms 

and a nomenclature was developed for the P450 family based on the sequence 

identity of different enzymes (85, 86). CYPs are involved in mono-oxygenation, 

peroxidation, reduction, de-alkylation, dehalogenation, and epoxidation (87-89). 

Enzymes of the P450 family convert non-polar compounds into more polar 

metabolites that are easily excreted, conjugated with phase II enzymes into 

extractable metabolites.   

Necessary for enzymatic function of CYPs is oxygen activation and this 

can result in production of ROS.  Oxygenated P450 complex can form 

superoxide anion radicals (O2
-), while decay of peroxy P450 -complex or 

dismutation of O2
- may form hydrogen peroxide (H2O2) (90-92). The ROS are  
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Figure 1. 
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Figure 1. Schematic of benzene metabolizing enzymes and metabolites.  

Benzene is metabolized first metabolized by CYP2E1, yielding benzene oxide 

which is in equilibrium with benzene oxepin.  Either of these molecules may 

undergo spontaneous rearrangement to form phenol.  Phenol is then further 

metabolized by CYP2E1 to form hydroquinone or catechol. Hydroquinone and 

catechol can be further metabolized by CYP2E1 to produce 1,2,4-

Trihydroxybenzene.  Hydroquinone can also be metabolized into p-benzoquinone 

by MPO, and p-benzoquinone can be cycled back to hydroquinone by NQO1.  

Catechol can also be metabolized by MPO to generate o-benzoquinone, and this 

can be cycled back to hydroquinone by NQO1. Catechol may also be 

metabolized to benzene diol epoxide. Additionally, the generation of E,E-

muconaldehyde from benzene oxide may then be further metabolized into E,E-

muconic acid, which is the most frequently measured benzene metabolite. 

Benzene oxepin is metabolized by GST to 1-Glutahionyl-2-OH-3,5-

cyclohexadiene that is further metabolized to S-phenylmercapturic acid.  
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implicated in many major disorders such as ischemia-reperfusion injury, 

atherosclerosis, diabetes and inflammation (93-97).  ROS generation from the 

CYP450 family of enzymes is well-documented (92, 98). ROS become toxic to 

cells because they react with most cellular macromolecules.  This causes protein 

denaturation, DNA damage (e.g. breaks, adducts, etc.), DNA base removal or 

modifications that result in mutation, peroxidation of lipids (membrane damage 

and production of 4-hydroxynonenal [4-HNE] and malondialdehyde [MDA]) (99, 

100). Many mechanisms (enzymatic and not) have evolved that confer protection 

of cells from ROS. Examples include catalase and GSH (peroxidase) that 

removes H2O2; superoxide dismutases removal of O2
-; GSTs removal of reactive 

intermediates and lipid aldehydes as well as thioredoxin, metallothioneins, heme-

oxygenases and other enzymes (101, 102). Therefore, oxidative stress or ROS 

toxicity lies in the imbalance in rates of ROS production compared with ROS 

sequestration by anti-oxidant mechanisms along with rate of repair to cellular 

macromolecules.  However, low levels of ROS can be crucial to homeostatic 

signaling transduction and cellular physiology (103). 

 CYP2E1 is a key player in hepatic injury after exposure to its substrates 

(e.g. benzene, EtOH, acetaminophen). In vitro studies with HepG2 cell lines 

demonstrated increased oxidative stress and mitochondrial damage by addition 

of polyunsaturated fatty acids (PUFAs), EtOH, iron or depletion of GSH (104). 

Additionally, oxidative stress induced by exposure to EtOH was reduced in 

CYP2E1KO mice (105). Molecular oxygen is an important substrate for CYP2E1, 

as relative to other CYP enzymes. CYP2E1 demonstrates high NADPH oxidase 
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activity and is loosely coupled with NADPH cytochrome P450 reductase (106, 

107). CYP2E1 has been shown to be a highly efficient initiator of NADPH-

dependent lipid peroxidation.   

 CYP2E1 can be induced by many factors, and many of the substrates of 

CYP2E1 can induce their own metabolism (108, 109). Metabolic conditions may 

also induce CYP2E1.  In chronically obese, high-fat diet fed rats, CYP2E1 levels 

were found to be elevated (110). Also, CYP2E1 has been found to be elevated 

with long term fasting or starvation in rats (111, 112). Diabetes has been shown 

to increase CYP2E1 mRNA and protein levels several fold (113).  Additionally, 

this may be influenced by insulin bioavailability as insulin has been shown to 

decrease CYP2E1 expression at post-transcriptional levels in vitro (rat hepatoma 

cell line) (114, 115). Correspondingly, hepatic CYP2E1 expression is increased 

in rats by streptozocin. 

Data have been accumulated to support the involvement of CYP2E1 in the 

oxidation of benzene.  Quite notably is the protection from any detected toxicity in 

CYP2E1-/- (or CYP2E1KO) mice after exposure to 200ppm benzene 6h/d for 5d.  

The wild type animals in this study experienced severe cytotoxicity and 

genotoxicity.  Pretreatment of mice with pan-CYP inhibitors decreased benzene 

metabolite formation and resulting genotoxicity (determined by alkaline comet 

assay) in benzene-exposed mice.  Additionally, CYP2E1KO mice showed a 

greater than 90% reduction in formation of benzene metabolites like phenol, 

catechol and HQ after benzene exposure (116-118).  Conversely, CYP2E1 

inducers (3-methylcholanthrene and -napthoflavone) increase benzene 
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metabolism and benzene clastogenicity (chromosome breakage) (119). 

Furthermore, to validate toxicological murine studies involving CYP2E1, 

humanized CYP2E1 transgenic mice were compared with wild type mice.  This 

study found substrate metabolism rate and capacity by human and murine 

isoforms of CYP2E1 to be similar in vivo (120). Occupationally, exposed workers 

with a phenotype associated with rapid CYP2E1 metabolism demonstrated 

increased susceptibility to benzene hematotoxicity when compared with slowly 

metabolizing isoforms (121). CYP2E1 is the primary catalyzing enzyme of 

benzene metabolism, though CYP2B1 and CYP2F2 may also play minor roles 

(<5% of benzene metabolism) (122-127). Additionally, ethanol (EtOH) and aniline 

are metabolized by CYP2E1 and are inducers of CYP2E1 expression.  CYP2E1 

is also associated with the generation of hydroxyl radicals, likely by excess 

cycling (126-129). The hydroxyl radical formation by CYP2E1 may also be 

involved in the benzene ring opening pathway, yielding trans,trans-

muconaldehyde.  Metabolites phenol, HQ, BQ and catechol can increase CYPE1 

expression in humans (130). Therefore, increased susceptibility to benzene 

exposure may occur if one is exposed to chemicals that induce CYP2E1 

expression or activity.  The induction of CYP2E1 by benzene (and its metabolites) 

with succeeding generation of oxygen and hydroxyl radicals is likely to be 

associated with known toxicities of benzene exposure (129, 131-139).  

 A growing body of evidence suggests that CYP2E1-mediated toxicity is 

largely driven by oxidative stress.  For example, treating CYP2E1 expressing 

HepG2 cells with EtOH or arachidonic acid (CYP2E1 substrates) results in 
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increased oxidative stress as reflected by increased lipid peroxidation and 

increased dichlorofluorescein fluorescence.  Low levels of arachidonic acid and 

other substrates acted as sensitizing factors.  Moreover, treatment with 

antioxidants like vitamin E, trolox or ascorbic acid prevented toxicity in this cell 

line and similar results have been reported elsewhere (140-143).  Additionally, 

CYP2E1-expressing cell lines generally show increased levels of antioxidant 

enzymes such as GSH, catalase, and heme-oxygenase.  This may be an 

evolved, self-regulating mechanism to mitigate oxidative stress and is likely 

triggered by oxidant stimuli.  Further regulation has been seen when this 

increasing expression of anti-oxidant enzymes is inhibited by treatment with 

exogenous anti-oxidants.  Functionally this proved adaptive as these cells were 

less susceptible to oxidative stress mediated damage after exposure to H2O2, 

MDA or 4-HNE (144, 145). 

 A common model for CYP2E1-dependent oxidative stress and subsequent 

toxicity involves the following.  Increasing CYP2E1 expression is induced by 

presence of substrates, likely via post-transcriptional mechanisms involving 

enzyme stabilization against degradation.  CYP2E1, which is a loosely coupled 

enzyme, generates ROS (e.g. H2O2, O2
-, etc.) during the catalytic cycle. The 

presence of iron causes stronger oxidants to be formed (i.e. ferryl species, 

hydroxide species, and 1-hydroxyethyl radicals).  Following this, hepatic cells 

induce expression of anti-oxidant enzymes as a response to perceived oxidative 

stress.  However, these elements are overwhelmed in time and CYP2E1 

generated oxidants begin to have their effect.  Toxicity may be due to cell 
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membrane damage by lipid peroxidation and production of lipid aldehydes, 

damage to DNA or by protein oxidation and enzymatic inactivation.  Mitochondria 

are also likely to be damaged by CYP2E1 oxidants, that is the decrease of the 

mitochondrial membrane potential (m) driven by increased mitochondrial 

membrane permeability stimulating pro-apoptotic pathways.  Decreased ATP 

production could induce necrosis.  Many CYP2E1 generated ROS can leave 

hepatocytes and influence nearby cells, stimulating collagen production and a 

fibrotic response (146, 147).  Inevitable inflammation and cell damage occurring 

during this process exacerbates hepatocyte sensitivity as cells with increased 

CYP2E1 activity were sensitized to TNF mediated cell death (148), suggesting 

a dangerous positive feedback loop. 

 

Hepatic Inflammation and Insulin Resistance 

 

Summary of Hepatic Insulin Resistance and Pathology 

Chronic inflammation induces insulin resistance in the liver.  Long term 

inflammation corresponds with and is driven by increased levels of cytokines (e.g. 

MIP-1, IL-1, IL-6, TNF-) and/or adipokines (e.g. leptin and resistin). Cytokines 

inhibit insulin signaling in the liver by production and activation of suppressors of 

cytokines (SOCS) proteins, kinases (e.g. IKK, PKC) and protein tyrosine 

phosphatases (e.g. PTEN). These factors inhibit insulin signaling at insulin 

receptor and insulin receptor substrate (IRS) locations.  This impairment can 

decrease glucose production by insulin in liver cells and can trigger 
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hyperglycemia.  Initial incidence of hepatic insulin resistance is concomitant with 

the increased production of hepatic VLDL that occurs through changes in apoB 

synthesis and degradation and de novo lipogenesis, or increased free fatty acid 

flux from adipose to liver. Insulin resistance often stimulates the production of C-

reactive protein (CRP) and PAI-1, which are markers of inflammation.  These 

abnormalities in liver insulin signaling tend to promote atherosclerosis.  Elevated 

glucose levels promote endothelial dysfunction and changes in the extracellular 

matrix, increased cell proliferation and impairment of LDL receptor mediated 

uptake resulting in decreased clearance of LDL. A subset of the LDL fraction, 

small dense LDL (sdLDL) has a higher affinity to intimal proteoglycan driving 

increased infiltration of LDL particles into the arterial wall.   

 The liver plays a key role in metabolism throughout the body involving 

protein, carbohydrate and lipid utilization as well as xenobiotic break down and 

detoxification.  The liver is integral to processes such as glycogenolysis, 

gluconeogenesis glycogenesis, lipogenesis, cholesterol synthesis, coagulating 

factor production (e.g. fibrinogen), conversion of ammonia to urea, synthesis and 

excretion of bile, plasma protein production, and synthesis of inflammatory 

proteins (149).  Several of these functions are rigidly controlled by hormones 

such as insulin, a circulating molecule with widespread effects on metabolism 

throughout the organism.  This hormone facilitates glucose utilization (especially 

in skeletal muscle and adipose tissues) and inhibits hepatic glucose production 

by blocking glycogenolysis and gluconeogenesis.  Insulin is central to additional 

cellular processes like protein production, synthesis and storage of lipids, cellular 
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growth, differentiation and proliferation (150).  In an insulin resistant phenotype, 

standard levels of insulin are no longer able to affect a response in liver, muscle 

and adipose tissues.  The location of the insulin resistance may produce changes 

in how the phenotype presents.  Insulin resistance in liver tissue impairs 

glycogen synthesis, increases glucose production, lipogenesis and protein 

synthesis.  Insulin resistance in skeletal muscle diminishes glucose uptake and 

insulin resistance in adipose tissue increases hydrolysis of triglycerides resulting 

in elevated plasma free fatty acid levels (151).  Combined, this produces a 

phenotypical display of hyperglycemia, hyperinsulinemia, and hyperlipidemia – 

hallmarks of type 2 diabetes mellitus (T2D) and pre-diabetes. 

 The terms insulin resistance, metabolic syndrome and syndrome x are 

often used in a nearly interchangeable manner.  However, while insulin 

resistance is often highly associated with dyslipidemia, obesity, hypertension, 

and increased urinary albumin, insulin resistance is defined in terms of glucose 

intolerance and insulin resistance.  Metabolic syndrome is defined by presence of 

insulin resistance along with at least two of the other maladies listed (152-154). 

Inflammatory markers have been proposed as additional markers to identify this 

process.  The prevalence of insulin resistance or metabolic syndrome varies 

widely by culture, geographic region and often by gender.  Comparing disparate 

groups across the globe, one sees prevalence rates of insulin resistance as high 

as 53% in Polynesian men (living in New Zealand) but as low as 6% in Chinese 

women (living in China) (155, 156). Within a cultural or geographic group, 

prevalence rates of insulin resistance will vary by sex.  The prevalence of insulin 
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resistance in women is lower than men for Hispanic and Caucasian populations 

(living in the USA) while insulin resistance is less prevalent in men than women 

in many regions of Africa and South Asia (157).  

 

Insulin Signaling and Mechanisms for Insulin Resistance 

Insulin is a crucial telecrine hormone that controls glucose metabolism 

throughout most of the body.  Insulin facilitates glucose uptake by muscle and 

adipose tissue, while inhibiting glucose release by liver and is crucial to metabolic 

homeostasis.  Insulin regulates protein synthesis by controlling amino acid 

uptake and decreasing protein degradation (proteolysis), thus having an anabolic 

effect. Insulin also controls lipid metabolism by increasing fatty acid synthesis, 

promoting esterification of free fatty acids and decreasing lipid breakdown 

(lipolysis).  Insulin is also involved in cellular processes such as growth, 

proliferation, survival and differentiation (158). 

The cellular effects of insulin are mediated by a surface membrane protein 

known as the insulin receptor.  Insulin receptor is a heterotetramer expressed on 

most cells, including liver and skeletal muscle cells.  When insulin binds to its 

receptor, a cascade of events is initiated involving receptor auto-phosphorylation 

of tyrosine residues, tyrosine phosphorylation of docking proteins such as IRS 1-

6, src homology 2 (Shc), Casitas B-lineage lymphoma (Cbl) and GRB-associated 

binder-1 (Gab-1) that successively trigger downstream signaling molecules.  

Data from knockout animal models suggest that specific IRS molecules have 

unique roles in different tissues.  In skeletal muscle, pancreatic  cells and 
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adipose tissue the molecule IRS-1 appears to be the primary mediator of insulin 

signaling (158, 159). However, IRS-2 is the main mediator for insulin signaling in 

liver metabolism and  cell proliferation (160) while IRS-3 likely is an important 

mediator in adipose tissue (161). 

Insulin activates three pathways in cells.  The pathway of greatest interest 

is the phosphitidylinositol-3-kinase (PI3K) pathway, which regulates insulin’s 

metabolic effects (glucose, protein and lipid metabolism).  Phosphorylated IRS 

proteins generate binding sites for PI3K that allows for activation of PI3K.  PI3K 

in turn activates kinases such as 3-phosphoinositide-dependent kinase (PDK) 

(159).  Protein kinase B (PKB), also known as Akt (akt8 virus oncogene cellular 

homolog) and some forms of protein kinase C (PKC) are substrates for PDK 

(162).  Akt regulates the effects of insulin on such things as glucose transport, 

suppression of hepatic gluconeogenesis, protein synthesis and lipogenesis.  A 

second pathway, the mitogen-activated protein kinase (MAPK) pathway controls 

the mitogenic growth and cellular differentiation.  The third pathway is the Cbl 

associated/Cannabinoid receptor type 1/G-binding protein TC-10 (CAP/Cbl/Tc10) 

pathway.  This signaling pathway regulates glucose transporter 4 (GLUT4), in 

muscle and adipose tissue. 

Insulin resistance is characterized by the incidence of normal insulin 

concentrations being unable to sequester circulating glucose in an adequate 

fashion.  That is the pancreatic  cells must secrete more insulin 

(hyperinsulinemia) to overwhelm the elevated circulating glucose levels 

(hyperglycemia). Eventually, it is believed, the pancreas cannot secrete sufficient 
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levels of insulin to maintain homeostatic glucose levels and this inability results in 

frank T2D.   

While much is yet unknown concerning the molecular causation of insulin 

resistance, it is likely that signaling events downstream from the receptor are the 

primary causes for insulin resistance (163).  Factors such as decreased insulin 

production and insulin receptor mutations may play a significant role in 

pathologies at a population level as well.  Yet, a great deal of evidence from 

animal and human investigations supports the model that IR is primarily due to 

defects in signaling pathways in target tissues.  In humans with T2D, decreased 

auto-activation of the insulin receptor has been observed in skeletal muscle (164).  

Additionally, down regulation of Akt or PI3K has been reported muscle of obese 

and lean subjects (165, 166). Thus, reduced levels and decreased 

phosphorylation of insulin signaling pathways have been described in the tissues 

of obese and T2D subjects. 

There are several hypotheses for how particular mechanisms influence 

these signaling pathways (167).  Down regulation or up regulation of specific 

components of insulin signaling like Akt, insulin receptor or IRS-2 can induce 

insulin resistance.  However, differential expression of these signaling 

components will have different global effects depending on the affected tissue 

(149).  A couple of interesting examples include how IRS-1 knockout (KO) mice 

were described to be insulin resistant, but not hyperglycemic (168) while IRS-2 

KO mice were found to be hyperglycemic due to insulin resistance in the liver 

and  cell secretion failure (169). Other pathways may be influenced through 
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post-transcriptional modifications that alter the efficiency of the insulin signaling 

pathway.  Kinases such as stress-activated protein kinase, PKC, and c-Jun N-

terminal kinase (JNK) can phosphorylate IRS-1,2 at threonine and serine 

residues, thus inhibiting insulin signaling (170).  SOCS proteins (notably SOCS-

1,3) are inhibitory factors that influence signal transduction.  These proteins block 

insulin signaling by competing with IRS-1,2 for association with insulin receptor 

and by increasing IRS-1,2 degradation (171). Insulin resistance could also occur 

by an increased activity of phosphatases that dephosphorylate transitional 

signaling molecules.  Two major phosphatases involved in this activity are protein 

tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homologue 

(PTEN) (172, 173).  It has been reported that PTP1B KO mice are resistant to 

weight gain and have greater insulin sensitivity when exposed to a HFD (174).  

Correspondingly, the liver and skeletal muscle tissues of obese, IR and T2D 

subjects tend to have higher levels of PTP1B than insulin sensitive, lean subjects 

(175). Liver overexpression of PTP1B in mice demonstrated hepatic and 

systemic insulin resistance (176). Molecules such as PTEN have been shown to 

inactivate PI3K via dephosphorylation and the inhibition of PTEN expression has 

been found to reverse hyperglycemia in diabetic mice (173).  Other molecules 

such as SH2-containing inositol 5’ phosphatase-2 (SHIP2) have an inhibitory 

effect on insulin signaling (177). 
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Role of Hepatic Insulin Resistance on Glucose Production 

 In subjects with T2D or IR the hallmark hyperglycemia is typically the 

result of two factors: peripheral tissue insulin resistance and uninhibited 

gluconeogenesis/glycogenolysis from hepatic cells resistant to insulin.  

Hepatocyte production of glucose is typical during the fasting state and inhibited 

during the fed state in insulin sensitive cells.  The regulation of glucose 

production in the liver occurs by insulin-mediated inhibition of the gluconeogenic 

enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the glucose-6 

phosphatase (G6Pase).  Of note, Akt appears to be necessary for the 

transcriptional inhibition on PEPCK and G6Pase (177). This action involves the 

phosphorylation of FoxO (a transcription factor), driving cytosolic translocation of 

FoxO proteins, transcriptional inactivation and thus the inhibition of PEPCK and 

G6Pase (178).   

 Impaired insulin signaling molecules in T2D and IR subjects is an 

expected observation and highly correlates with elevated fasting plasma glucose 

(FPG) levels. Hepatic insulin receptor knockout animals demonstrate serious 

glucose intolerance (179), yet deletion of the insulin receptor only in skeletal 

muscle and adipose yielded normoglycemic and normoinsulinemic levels (180, 

181). This indicates that hepatic insulin resistance may play the major role in the 

development of glucose intolerance and hyperglycemia.  Murine experiments 

utilizing a liver-specific IRS-2 KO model found significant insulin resistance and 

elevated FPG (160).  Additionally, insulin resistant mice with the Foxo-1 gene 

knocked down had decreased G6Pase levels (182).  Collectively, these results 
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suggest that resistance to insulin action in the liver leads to elevated FPG levels 

and disease progression towards T2D and CVD.  

  

Dyslipidemia as a Biomarker of Hepatic IR 

 It was previously discussed that IR, metabolic syndrome and T2D are 

often associated with dyslipidemia.  Data from non-diabetic insulin resistant 

subjects suggests that IR plays a crucial role in establishment of dyslipidemia 

(183).  This lipid dysregulation is characterized by an increase in LDL and 

possible increase in triglycerides (TRG) and decrease in HDL (184) and this is 

thought to be associated with excessive hepatic generation of VLDL1 (185). 

 Insulin is implicated in this process because it regulates proteins involved 

in the metabolism of VLDL.  Assembly of VLDL begins with lipidation of 

apolipoprotein B100 (apoB100) by microsomal triglyceride transfer protein (MTP) 

in the rough endoplasmic reticulum of the liver and this leads to generation of 

triglyceride-poor VLDL particles (VLDL2) (186) and additionally lipidated to form 

mature VLDL1 (187). VLDL is secreted from the liver and converted to IDL by 

lipoprotein lipase in the periphery.  IDL is hydrolyzed by hepatic lipase to form 

cholesterol-rich LDL and is removed by LDL receptor-mediated uptake (185). 

 One manner in which insulin regulates this process is by inhibiting the rate 

of apoB synthesis and degradation in hepatocytes (188).  Assembly and 

secretion of VLDL is inhibited by insulin via downregulation of MTP in the liver 

and enhanced post-translational degradation of apoB (189, 190).  Conversely, it 

has been demonstrated in rat hepatocytes that inhibition of PI3K (part of the 
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insulin signaling pathway) increases apoB secretion (191-193).  Correspondingly, 

T2D subjects have reduced PI3K activity and PI3K signaling, which leads to 

elevated VLDL levels (and hyperglycemia) (163).  Another mechanism by which 

insulin may increase circulating lipid levels is by a transcription factor involved in 

de novo lipogenesis.  Insulin promotes lipogenesis via increased transcription 

and activity of sterol response element-binding proteins (SREBP1-c).  SREBP1-c 

controls the expression of several genes regulating the generation and 

absorption of cholesterol, phospholipids, triglycerides and free fatty acids (194).   

 

Thrombosis and Hepatic IR 

 IR and T2D are highly associated with states of increased thrombogenic 

potential.  There are many ways in which thrombosis may be dysregulated in IR 

including platelet hyperactivity, hypercoaguability, endothelial dysfunction and 

hypofibrinolysis which further contribute to IR’s associated increased CVD risk.  

Nitric oxide (NO) inhibits platelet aggregation and NO bioavailability has been 

shown to decrease with inflammation and insulin resistance (195, 196).  

Inhalation of NO protects against human platelet aggregation and overexpression 

of NO in mice protects against high fat diet induced insulin resistance and weight 

gain (197, 198). Oxidative stress often drives decreased NO bioavailability and 

induces inflammation and logically is associated with states of IR and T2D. 

Additionally, increased PAI-1 has been found in states of IR associated with 

increased thrombogenicity (199).  Human population studies have found that 

while elevated PAI-1 predicts myocardial infarction, this predictive ability is lost 
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after adjustment for IR, suggesting that IR may be a requirement for elevated 

PAI-1 in subjects susceptible to myocardial infarction (200-202).  However, the 

primary source of PAI-1 and the mechanisms tied to inflammation and IR that 

might regulate PAI-1 are still poorly understood and debated. 

 

Hepatic IR and Inflammation 

 There are many mechanisms by which inflammation may lead to IR.  IRS-

1,2, critical members of the insulin signaling pathway, are normally 

phosphorylated on tyrosine residues when active. Serine (or aberrant threonine) 

phosphorylation of IRS-1,2 can inhibit their downstream effects, as can the 

inhibition of their phosphorylation.  Additional kinases such as inhibitor of NF-B 

(IKK), PKC and JNK can regulate IR generated by inflammatory factors (203). 

These kinases can regulate transcription factors such as nuclear factor kappa B 

(NF-B) and activator protein-1 (AP-1) and the transcription factors upregulate 

inflammatory gene expression (e.g. MIP-1, IL-1, IL-6, TNF-).  SOCS proteins 

recruited to negatively regulate cytokines can then also inhibit insulin signaling 

via competitive binding with IRS-1,2 to insulin receptor or enhanced degradation 

of IRS-1,2 (203).  Additional evidence supports the ability of kinases and 

cytokines to alter insulin sensitivity.  For instance, IKK- (a regulator of cytokine 

producing NF-B) can block insulin signaling via inhibitory serine residue 

phosphorylation on IRS-1 or activating NF-B (triggering aforementioned 

cytokine generated IR). This cytokine regulating kinase has been shown to be 

important in altering systemic insulin sensitivity of mice in global and liver-specific 
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KO mice (204, 205) supporting the notion that cytokine-induced inflammation 

plays a key role in systemic IR, but also that liver inflammation is sufficient to 

generate systemic IR.   

Additional studies have demonstrated a link between macrophage-

generated cytokines and IR (206-208). Though cytokines may derive from many 

cell types, it is speculated that macrophages are the major systemic source of 

cytokines. Also, as hepatic tissue is responsible for filtration and metabolism of 

toxic products, it is reasonable to speculate that the liver will encounter relatively 

high levels of pro-inflammatory stimuli.  Furthermore, the liver comprises 80-90% 

of the body’s macrophages (208).  Thus, the liver may play an especially critical 

role in macrophage-mediated inflammation and IR. 

 

Goals of the project 

The overarching hypothesis of this project is that exposure to benzene, 

generates, inflammation, insulin resistance, and vascular dysfunction.  It is 

proposed that the oxidative stress caused by benzene metabolism generates 

inflammatory responses hepatically and systemically that could lead to insulin 

resistance.  Given the high prevalence of benzene in the atmosphere and the 

high probability of exposure could make benzene a relevant player in the global 

epidemic of T2D.  Moreover, oxidative injury caused by benzene exposure may 

lead to vascular damage peripherally and impair bone marrow-resident 

endothelial progenitor cells required for the repair of vascular injury.  A reduction 

in repair capacity and increased injury by benzene exposure could contribute to 
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cardiovascular disease.  Studies of smoking populations (high benzene exposure) 

show both increased incidence of diabetes and cardiovascular disease.  Thus, 

understanding the context of how these diseases progress, especially in 

reference to hematotoxicity, will give critical insight not only into whether 

hematological or vascular biomarkers are more sensitive to benzene, but also 

whether benzene exposure has the capacity to induce cardiometabolic injury. 

Hence, the aim of this project was to examine the systemic effects of (Chapter II), 

to elucidate whether benzene exposure affects insulin sensitivity and to 

understand the mechanism underlying benzene toxicity (Chapter III), and lastly to 

assess the effects of benzene exposure on the abundance and function of 

medullary hematopoietic and endothelial stem cells (Chapter IV). 
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CHAPTER II 

 

GENERAL CHARACTERISTICS OF BENZENE EXPOSURE 

Introduction 

Benzene is a ubiquitous environmental pollutant.  In the United States, it is 

one of the top 20 chemicals produced by industrial sources, which yearly release 

over 6.7 million pounds of benzene in the air (17, 49).  Humans are primarily 

exposed to benzene found in mainstream or secondhand cigarette smoke.  

Mainstream cigarette smoke contains 35-70 ppm benzene, and even higher 

concentrations of benzene are generated from other tobacco products such as 

water pipes, cigars and pipe tobacco (48, 209, 210).  Thus, benzene 

concentrations are found at high levels from indoor and outdoor sources (211). 

Although the effects of benzene on hematopoiesis and leukemia have 

been extensively studied, other sensitive biomarkers of benzene toxicity have 

gone largely unreported (212, 213).  Moreover, the hallmark hematological 

changes (e.g. decreased lymphocytes, erythrocytes, hematocrit, T- and B-cells) 

are somewhat variable and dependent upon route of administration (e.g. 

inhalation vs. dermal absorption), dose and duration of exposure (214-216).  The 

highest allowable dose of benzene exposure in a work environment (known as 

the STEL, PEL) is largely determined by the no observed adverse effect level 

(NOAEL) reported by the Agency for Toxic Substances and Disease Registry 
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(53).  Importantly, limits of exposure concentration vary based on the duration of 

the exposure.  These limits are defined as acute (1-14d), intermediate (>14-364d) 

and chronic (365d or greater) exposures (17).  Benzene was recognized as a 

hematotoxic agent in the late 19th century after concentrated, acute exposures 

and has been studied more carefully in low dose, chronic exposures in the 

context of hematopoiesis and circulating bone marrow-derived cells (217, 218).  

As more is understood about benzene metabolism, oxidative stress, and 

associated complications, it is useful to approach these relevant exposure 

studies with a fresh perspective (219, 220).  Our exposure model included acute 

(2wks) and intermediate (6wks) exposure durations.  These sub-chronic 

exposures have benzene concentrations (50 ppm) very similar to that of what is 

found in main-stream cigarette smoke.  Additionally, 50 ppm benzene is well 

within the range found in poorly ventilated, highly trafficked automotive areas, as 

well as that found in industrial activities involving benzene (e.g. plastics, 

petroleum, shoe industries).  These acute and intermediate exposures are at 

relatively low concentrations compared with reported LOAELs (17).   

To investigate what general physiological changes occur after 50ppm 

volatile benzene x 6h/day x 2wks or 6wks, we measured body mass, organ 

weights, complete blood counts and cellular biological outcomes such as platelet-

leukocyte aggregates, immune differential panels, circulating microparticles.  

While aspects of reporting immune cell changes following benzene exposure 

have been published, these data are typically undocumented while traditional 

blood count (WBC, NE, MO, etc.) tests are more frequently reported.  However, 
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because immune cells are derived from the bone marrow and are crucial to the 

survival of any organism because of their protective capacity, the response of 

these cells to environmental exposure tells us much about the ability to fight 

disease, autoimmune dysregulation and inflammation-driven disease processes.  

Additionally, changes in the markers of platelet function and vascular stasis are 

virtually undocumented in benzene-exposed organisms.   

Here we report on novel biomarkers for benzene exposure as well as 

traditional measurements to allow for greater physiological context, and a better 

understanding of systemic toxicity due to benzene exposure.  

 

Methods 

Volatile Benzene Exposures 

All procedures were approved by the University of Louisville Institutional 

Animal Care and Use Committee. C57BL/6J (wild-type; WT) mice were 

purchased from The Jackson Laboratory (Bar Harbor, ME). At 10 and 20wks of 

age, male mice were placed on either a normal chow diet or a 60% high fat diet 

(HFD; Research Diets Inc., #D12492) for the duration of the exposure.  For the 

HFD intervention, animals were placed on this diet for 4 or 14wks prior to start of 

inhalation exposure and were maintained on this diet until necropsy. Water and 

diet were provided ad libitum.  Anti-oxidant, 4-Hydroxy TEMPO (Sigma) was 

administered at 1mM in drinking water ad libitum, changed daily. Benzene 

atmospheres were generated from liquid benzene (Sigma-Aldrich) housed in a 

Kin-Tek Laboratories (La Marque, TX) permeation tube.  A carrier gas (N2) was 
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delivered to the permeation tube at 100mL/min and diluted with 3L/min HEPA 

and charcoal filtered room air where upon the atmospheres were delivered to a 

custom vapor system (Teague Enterprises, Inc., Woodland, CA, USA). 

Throughout the exposures, benzene concentration was continuously monitored 

by an in-line photo ionization detector (ppb RAE, Rae Industries, Sunnyvale, CA, 

USA) upstream of the cage insert vapor delivery unit (Teague Enterprises, Inc.) 

mounted on a standard polycarbonate rat cage (41 cm x 34 cm x 21 cm). Filtered 

air or benzene was distributed through a fine mesh screen at 3L/min with a 

cyclone-type top that distributes air within 10% of the mean concentration at six 

locations in the cage (Figure 2). Mice were exposed to 50ppm benzene (Figure 

3A) for 6 h/day for 2wks or 6wks.  Exposure assessment in individual animals 

was verified by GC/MS measurement of urinary t,t-MA (Figure 3B). 

 

Complete Blood Counts and Plasma Biochemistry 

After exposures, animals were euthanized by intraperitoneal injection of 

100uL of pentobarbital solution (40mM in PBS).  Peripheral blood was collected 

by cardiac puncture in 0.2M EDTA coated syringes.  Peripheral blood was then 

transferred to Eppendorf tubes containing 20L 0.2M EDTA and gently mixed.  

From this aliquot, 25L of blood was used per animal for complete blood count 

analysis (CBC; Hemavet 950FS, Coulter Counter, Oxford, CT). Plasma HDL and 

LDL cholesterol, triglycerides, total protein, albumin (Cholesterol CII Enzymatic 

Kit; L-Type TG-H Kit; Bradford reagent, bromocresol green, Wako, Richmond, 

VA, USA), ALT, AST (Infinity, ThermoElectron, Louisville, CO, USA), levels were 
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measured using commercially available assay reagents as indicated. Assays 

were performed using calibrated standards in 96-well plates.  

 

Metabolite Analysis by GC/MS 

Samples applied for GC/MS analysis were re-dried under vacuum 

desiccation for a minimum of 24h prior to being derivatized under dried nitrogen 

using bistrimethyl-silyl-triflouroacetamide. The GC column was 5% phenyl and 

the temperature ramp was from 40° to 300° C in a 16 min period. Samples were 

analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadruple mass 

spectrometer using electron impact ionization. The instrument was tuned and 

calibrated for mass resolution and mass accuracy on a daily basis. The 

information output from the raw data files was automatically extracted as 

discussed below. 

 

Platelet-Leukocyte Aggregates, Immune Differential Panels, Microparticle  

Detection and Flow Cytometry 

To measure the platelet-leukocyte aggregates (PLAgg), whole blood 

(100L per assay) was diluted with 400L of 1 X Tyrodes solution (Sigma). Cells 

were fixed with 50L 16% paraformaldehyde (PFA) for 10-30min.  The sample 

was then lysed with 2 mL of Milli Q water and centrifuged at 400 x g for 5 min at 

room temperature (RT).  Samples were then decanted and 5l FcBlock (Miltenyi 

Biotec) was added to each tube for 10 min incubation at 4°C. The staining 

cocktail (CD41 FITC, CD45 APC, and CD11b eFluor605NC [eBiosciences]) was 
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then added to the appropriate samples and incubated for 30 min at 4°C, after 

which samples were washed with Tyrodes solution, and centrifuged at 400 x g for 

5 min at RT.  Unstained samples were used as a negative control. Samples were 

again decanted, vortexed and resuspended in 250L Tyrodes.  Samples were 

then acquired on an LSRII flow cytometer on low speed for 10,000 WBC by 

scatter.  Enumeration of PLAggs was achieved by gating for CD45+ cells, along 

with a CD41+ marker and further refinement of the population occurred using 

CD11b+ cells from the parent population. 

For the immune differential, 100L whole blood was aliquoted into a 5mL 

falcon tube and 1mL of 1x BD PharmLyse (BD BioSciences) was added to each 

sample and incubated for 10min at RT.  Samples were then centrifuged at 500 x 

g for 5 min at RT and decanted.  The samples were then washed twice with 1mL 

1% BSA/PBS buffer and centrifuged at 500 x g for 5 min at RT. Samples were 

again decanted, vortexed and 5L of 50g/mL Fc block was added to each tube 

for 10 min at 4°C.  Then appropriate antibodies were added (NK1.1 FITC, Ly6C 

PE, CD8a PerCP-e710, CD62L PE-Cy7, CD19 APC, Gr-1 Alexa 700, CD3e 

APC-e780, CD11b e605 NC, CD4 e605 NC [eBiosciences]) and incubated for 30 

min at 4°C.  Unstained samples were used as a negative control. Samples were 

then washed with 1mL 1% BSA/PBS buffer and centrifuged at 500 x g for 5 min 

at RT, decanted, and vortexed.  The addition of 250L 1% BSA/PBS buffer was 

added to each sample and data was acquired on high speed for 90 s on an LSRII 

flow cytometer.   
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Microparticles of platelet and endothelial origin, were measured using a 

standard protocol (221).  Briefly, 100L of plasma was centrifuged for 2 min at 

11,000 x g at 4°C in a fixed-angle rotor centrifuge. Supernatant was transferred 

to a new 1.5 mL Eppendorf tube and centrifuged for 45 min at 17,000 x g at 4°C. 

The supernatant was then aspirated and resuspended in PBS/ 2.5mM Ca2+.  An 

aliquot of the microparticle suspension was added to separate Falcon FACS 

tubes with appropriate antibodies (Annexin V-Pacific Blue [Life Technologies], 

Flk-1-APC [eBiosciences], CD41a-FITC [eBiosciences], CD62E-PE [BD 

Pharmingen], CD143 [R&D Systems]) and incubated for 30 min while unstained 

samples were used as a negative control.  The anti-mouse CD143 antibody was 

labeled with a Zenon Alexa Fluor 488 Goat Labeling Kit (Life Technologies).  

After staining, 10m counting beads (Spherotech) were added to the sample at 

50 beads/uL of sample.  Size beads (1m, 2m, Life Technologies) were used to 

identify populations less than 1m in diameter.  The samples were then run on 

an LSRII and 20,000 events were collected.  

 

Results 

Exposure to volatile benzene alters CBCs in mice.   C57BL/6, male mice 

exposed to 50ppm volatile benzene for 6h/d x 14d showed little difference in 

complete blood cell counts, with no cytopenias (Table 2) or change in body 

weight.  In contrast, benzene-exposed animals demonstrated a trending increase 

in most cell types but only had a significant increase in neutrophils (0.365±0.117 

k/L HFA, 0.486±0.215 k/L benzene), red blood cells (8.27±0.63 M/L HFA, 
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9.53±2.18 M/L benzene), percent eosinophils, percent basophils and red cell 

distribution width (RDW) (n=38/group).  Mice exposed to 50ppm benzene for 

6h/d x 6wks demonstrated significant cytopenias compared with their HFA-

exposed counterparts.  Benzene-exposed animals demonstrated a significant 

decrease in many cell types, most of myeloid origin (see Table 2, n=20/group).  

These data suggest that the trademark myeloid-associated cytopenias 

associated with benzene exposure do not present in the peripheral blood until 

6wks of benzene exposure. 

 

Liver assessment and plasma biochemistry is disrupted in benzene-

exposed mice.  While no difference was seen in body weight or in the change in 

body weight during an exposure, the liver:body weight ratio was increased after 

2wks of benzene exposure (Figure 4F).  This change was not observed in the 

6wk exposure cohort when compared with HFA controls. 

Mice exposed to benzene for 2wks demonstrated significantly elevated 

plasma alanine aminotransferase (ALT) levels compared with HFA-exposed 

controls (35.6±3.2 IU/L HFA, 47.1±8.6 IU/L Benzene, n=20/group).  However, 

this was not observed after 6wks of exposure (Figure 4A).  Furthermore, 

aspartate aminotransferase (AST) levels were increased in benzene-exposed 

animals compared with HFA-exposed controls (62.5±11.4 IU/L HFA, 88.3±23.9 

IU/L Benzene, n=10/group).  Similar to ALT, there was no corresponding 

increase in AST after 6wks of benzene exposure compared with HFA-exposed 

controls (n=10/group) (Figure 4B) indicating that there may be a compensatory   
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Figure 2. 
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Figure 2. Benzene exposure system.  Schematic showing the benzene 

exposure apparatus used in these studies. Benzene was delivered using a N2 

carrier gas to move concentrated benzene to a line where it was diluted with 

HEPA-filtered air.  The benzene concentration (measured in ppm) was monitored 

by a ppbRAE unit before the gas mixture arrived at the animal chamber.  A 

rotameter placed before the ppb RAE unit allowed personnel to dilute the 

concentrated flow of benzene to a controlled concentration.  Additionally, the 

mass flow controller utilized between the carrier gas supply and the benzene 

permeation tube enabled a constant flow rate of flow through the permeation 

tube while a water bath containing the benzene permeation tube maintained 

constant temperature to allow for controlled benzene vaporization and transport 

by the carrier gas. Mice exposed to HEPA-filtered air have carbon and HEPA-

filter upstream of the animal chamber and air is pumped through the system by a 

GAST pump.  Benzene and HFA are exhausted through carbon and HEPA filters 

before leaving the system in a fume hood validated by the University of 

Louisville’s Department of Environmental Health Services to manage the flow of 

this apparatus.   
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Figure 3. 

A.  

 

B. 
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Figure 3.  Verification of benzene exposure and metabolism. (A) Exposure 

chamber concentrations of benzene were determined by ppbRAE monitor 

logging. Illustrated are minute by minute benzene concentrations over one 14d 

representative exposure. (B) Urine collected from mice exposed to 50 ppm 

benzene or HFA for 14d was analyzed for the benzene-specific metabolite, t,t-

MA. n=5 mice/treatment; *p<0.05.  
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Table 2. Complete blood counts. 

 

Mice were exposed to HFA or benzene for 2wks (second and third columns) or 

6wks (fifth and sixth columns) and complete blood counts were measured.  n=20-

26 mice/treatment;*p<0.05.    
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mechanism providing protection for hepatic and systemic tissue.  Additionally, no 

significant difference was seen in the ALT:AST ratio between 2wk benzene-

exposed and HFA-exposed control animals (Figure 4C), suggesting there is not 

an overt sign of liver (ALT) versus peripheral systemic injury (AST).  Plasma 

albumin levels decreased after 2wks of benzene exposure compared with HFA-

exposed controls (Figure 4D).  Alternately, a small 11%±0.11 increase plasma 

albumin was seen in benzene-exposed animals after 6wks of benzene exposure.  

Corresponding to the decrease in albumin after 2wks of benzene exposure is a 

resultant increase in non-albumin protein levels.  No change in NAP was 

demonstrated between HFA-exposed and benzene-exposed animals after 6wks 

of exposure (Figure 4E). The transient decrease in albumin may be related to 

either damage in the vasculature or an increase in the transport of benzene and 

other metabolites.  The small increase in albumin after 6wks of benzene 

exposure may be associated with an increase in insulin resistance, which has 

been previously documented. 

 Despite changes in ALT and AST levels after 2wks of benzene exposure, 

no significant difference was found between various endothelial-derived 

microparticle (EMP) or platelet-derived microparticle (PMP) levels (Table 3).  

However, after 6wks of benzene exposure, a significant increase in all EMP 

populations (but not PMP) was found, with an average 1.5-fold increase over 

HFA-exposed animals.    

Mild, but significant increases in HDL levels were seen in benzene-

exposed animals after 2 and 6wks of exposure relative to HFA-exposed controls 
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(Figure 5A).  Additionally, a substantial increase in LDL levels were found after 

6wks of benzene exposure (25.6±3.3 mg/dL HFA, 34.2±4.1 mg/dL benzene, 

n=20/group), but not after 2wks of exposure (Figure 5B).  Also, the ratio of 

LDL:HDL was significantly increased after 6wks of benzene exposure compared 

with HFA controls.  Furthermore, benzene-exposed animals demonstrated an 

increase in total cholesterol compared with HFA-exposed controls at 6wks 

(107±5 mg/dL HFA, 120±7 mg/dL Benzene, n=20/group; *p<0.05) but not at 

2wks (Figure 5D).  Alternately, there was no significant increase in triglyceride 

(TRG) levels after 2 or 6wks of exposure. 

 Platelet-leukocyte aggregate formation is enhanced with benzene 

exposure.  A consistent finding after 2 and 6wks of benzene exposure was the 

elevation of numbers of platelet-leukocyte aggregates (PLAggs) which showed 

1.5-fold increase after 2wks of benzene exposure and 1.6-fold increase after 

6wks of exposure (Figure 6).  The relative increase in aggregation does not 

change with exposure duration (2 or 6wks) in our experiments (n=20/treatment; 

*p<0.05).   

Circulating immune cell relative abundance is diminished in mice with 

benzene exposure.  Natural Killer (NK) cells, B cells, CD4+ T cells, CD8+ T cells, 

granulocytes, monocytes and monocyte subpopulations were measured by flow 

cytometry.  While NK cells, B cells and monocytes demonstrated a trending 

decrease with benzene exposure, these changes did not achieve statistical 

significance in 12-14wk old mice.  Additionally, no monocyte subpopulations  
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Figure 4. 
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Figure 4. Benzene and tissue injury.  Mice were exposed to HFA or 50ppm 

benzene for 2wks or 6wks as indicated in 4 separate exposures and blood 

collected at termination of exposure.  Indices of liver injury, ALT (A), and 

systemic injury, AST (B), were measured in collected plasmas. In addition 

ALT:AST (C) and liver:body weight ratios (E) were determined.  Albumin (D) was 

also measured in these plasma samples. n=15-20 mice/treatment; *p<0.05. 
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Figure 5.
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Figure 5. Benzene and plasma lipids.  Mice were exposed to HFA or 50ppm 

benzene for 2wks or 6wks as indicated in 4 separate exposures and blood 

collected at termination of exposure. Plasma levels of HDL (A), LDL (B), total 

cholesterol (D) and triglycerides (E) were measured as outlined in Methods.  We 

also calculated an LDL:HDL ratio (C). n=14-20 mice/treatment; *p<0.05. 
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Table 3. Circulating microparticle levels.  

 

Mice were exposed to HFA or 50ppm benzene for 2wks or 6wks as indicated in 4 

separate exposures and blood collected at termination of exposure.  Listed are 

the levels of 7 types of circulating microparticles.  n=20 mice/treatment;*p<0.05.    
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Figure 6.  
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Figure 6. Benzene and platelet aggregates. Mice were exposed to HFA or 

50ppm benzene for 2 or 6wks in 4 separate exposures and the relative 

abundance of PLAgg in whole blood was determined by flow cytometry. Indicated 

is the relative abundance of PLAgg normalized to HFA-exposed mice. n=16-20 

mice/treatment; p<0.05. 
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were significantly altered after benzene exposure though all trended towards a 

decrease (Figure 8).   

 

Circulating microparticle levels increase after 6wks of benzene exposure.  

Circulating microparticles were measured by flow cytometry methods 

investigating seven microparticle populations defined as: (1) microparticles (not 

specific to cell type of origin), (2) platelet-derived microparticles (PMP), (3) 

activated endothelial-derived microparticles, (4) lung, activated endothelial-

derived microparticles, (5) lung-derived microparticles, (6) endothelial-derived 

microparticles (EMP), (7) lung, endothelial-derived microparticles.  These 

microparticle populations were measured in animals on normal chow diet only 

after 2 and 6wks of benzene or HFA exposure. 

 Mice exposed to benzene for 2wks, compared with filtered air controls 

demonstrated no significant changes in any of the seven microparticle 

populations.  However, mice exposed to benzene for 6wks demonstrated 

increases 6 of the 7 microparticle subpopulations (PMP remained unchanged).  

Total (non-specific) circulating microparticle levels, as well as activated 

endothelial-derived microparticles, lung, activated endothelial-derived 

microparticles, lung-derived microparticles, endothelial-derived microparticles, 

lung, endothelial-derived microparticles were increased from 1.5-fold (lung 

endothelial microparticles, p=0.0015) up to 1.7-fold (lung activated endotehlial 

microparticles, p=0.0001) for specific microparticle subpopulations (Table 3). 
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Mice with benzene exposure plus anti-oxidant intervention have altered 

CBCs.  To test the role of oxidative stress in the development of benzene related 

pathologies, we used an anti-oxidant intervention utilizing 4-Hydroxy TEMPO 

(TEMPOL) at 1 mM in drinking water (ad libitum).  There were no cytopenias 

detected in mice receiving this TEMPOL intervention after 2wks of benzene 

exposure relative to HFA-exposed, TEMPOL administered controls.  Minor 

differences between groups were seen in basophil count, basophil percent, 

percent hematocrit, mean corpuscular volume, and mean corpuscular 

hemoglobin concentration (see Table 4, n=20/group).  However, significant 

differences were detected between the benzene-exposed animals with no 

intervention and the benzene-exposed animals with intervention.  Benzene-

exposed, TEMPOL treated animals demonstrated a decrease in neutrophil count, 

monocyte count, eosinophil count, percent monocytes, erythrocytes, hemoglobin, 

percent hematocrit, mean corpuscular volume and mean corpuscular hemoglobin 

(Table 4).   

When assaying for PLAggs it was noted that with the oxidative stress 

generated by CYP2E1 activity during benzene metabolism, an anticipated 

decrease in bioavailable NO is expected.  One of the physiological roles of NO is 

to inhibit platelet aggregation.  In our anti-oxidant (TEMPOL) intervention cohort 

we assayed for PLAggs and found a trending decrease (p=0.09) in aggregation 

compared with benzene-exposed animals receiving no intervention (Figure 7).   
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Mice exposed to benzene and high fat diet rapidly develop cytopenias.  

While mice 12-14wks of age fed a normal chow showed modest changes in 

circulating cell types (i.e. erythrocyte counts) after benzene exposure, mice on a 

6wks HFD demonstrated cytopenias in WBC, neutrophils and lymphocytes after 

2wks of benzene exposure.  Mice on a HFD for 18wks did not demonstrate a 

more magnified cytopenia after 2wks of benzene exposure compared with NC 

benzene-exposed animals.  However, the age matched 24wk old mice exposed 

to benzene but on a normal chow diet did demonstrate cytopenias (in WBC, 

neutrophils, lymphocytes and monocytes) after just 2wks of benzene exposure. 

Complete description of blood counts comparing benzene-exposed animals may 

be found in Tables 5 and 6.  

Natural Killer (NK) cells, B cells, CD4+ T cells, CD8+ T cells, granulocytes, 

monocytes and monocyte subpopulations were also measured in mice 

administered a HFD in addition to benzene exposure.  HFD increased sensitivity 

of the animals to benzene exposure.  All cell types experienced a significant 

change with at least one of the exposure cohorts, with NK cells and granulocytes 

demonstrating the least change of all populations measured (Figure 8). 

 NK cells demonstrated a significant 74% (p=0.0001) decrease only in 

animals exposed to benzene that were on HFD for 18wks, while other benzene-

exposed groups showed a trending decrease in these cells (n=5/group).  

Granulocytes generally showed a trending decrease after benzene exposure 

compared with controls, though the changes did not reach significance.  

Changes in B cells followed the same downward trend after benzene exposure 
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as seen earlier.  A significant decrease between 18wk HFD fed, benzene-

exposed mice and HFD fed, HFA-exposed control was found as well as was their 

normal chow controls, age matched controls. An additional age-dependent 62% 

decrease (p=0.03, n=5/group) between benzene-exposed 12-14wk old animals 

and 24wk old animals was found (Figure 8). 

 Several changes were seen in the CD4+ T cell population following 

benzene exposure.  Animals on an 18wk HFD and exposed to benzene 

experienced a 62% decrease (p<0.0001) in CD4+ T cells relative to the HFA 

exposed, 18wk HFD fed mice. Mice exposed to 8wk HFD and benzene 

demonstrated a significant decrease in CD4+ T cells compared with NC benzene-

exposed controls.  Additionally, an age dependent decrease was seen in CD4+ T 

cells after 2wks of benzene exposure for animals on a normal chow diet.CD8+ T 

cells were decreased in almost all benzene exposure cohorts (Figure 8).  

Monocytes showed the same cytopenia trend as other cell types following 

benzene exposure.  This diminution reached significance between 18wk HFD fed 

and benzene-exposed animals compared with HFD fed and HFA-exposed mice, 

as well as with their age-matched normal chow controls (Figure 9).  A significant 

decrease was also seen between 8wk HFD fed and benzene animals and age 

matched benzene normal chow animals (61% decrease, p=0.007).   
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Table 4.  Complete blood count panels and TEMPOL. 

 

Mice were exposed to HFA or benzene for 2wks consuming normal drinking 

water (second and third columns) or water supplemented with 1mM TEMPOL 

(fifth and sixth columns) and complete blood counts were measured. n=18-26 

mice/treatment;*p<0.05.  
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Figure 7. 
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Figure 7. PLAgg formation and TEMPOL intervention.  Mice were exposed to 

HFA or benzene for 2wks consuming normal drinking water or water 

supplemented with 1mM TEMPOL in 4 separate exposures and the abundance 

of PLAgg in whole blood was determined by flow cytometry (A). We also 

calculated the abundance relative to each treatment’s control from 2wk (normal 

drinking water and TEMPOL-water) and 6wk HFA and benzene-exposed animals 

(B). n=15-20 total mice/treatment; p<0.05. 
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Table 5. Complete blood count panel and 8wks of HFD. 

 

Mice were exposed to HFA or benzene for 2wks consuming normal chow diet 

(second and third columns) or HFD for 8wks (fifth and sixth columns) and 

complete blood counts were measured. n=10-26 mice/treatment;*p<0.05.  
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Table 6. Complete blood count panel and 18wks of HFD. 

 

Mice were exposed to HFA or benzene for 2wks consuming normal chow diet 

(second and third columns) or HFD for 18wks (fifth and sixth columns) and 

complete blood counts were measured. n=16-26 mice/treatment;*p<0.05.  
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Figure 8.  
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Figure 8. Benzene exposure, circulating immune cells and HFD. Mice were 

exposed to HFA or benzene for 2wks consuming normal chow diet, HFD for 

8wks or HFD for 18wks and immune cell panels were measured by flow 

cytometry. Illustrated are levels of NK cells (A) B cells (B), CD4+ T cells (C), 

CD8+ T cells (D), granulocytes (E) and monocytes (F). n=5 

mice/treatment;*p<0.05. 
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Figure 9.  
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Figure 9. Benzene exposure, monocyte subpopulations and HFD. Mice were 

exposed to HFA or benzene for 2wks consuming normal chow diet, HFD for 

8wks or HFD for 18wks and monocyte subpopulations were measured by flow 

cytometry.  Ilustrated are levels of CD62L-/Ly6c+, CD62L+/Ly6c+, CD62L+/Ly6c-, 

CD62L-/Ly6c- cells. n=5 mice/treatment;*p<0.05. 
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Monocyte subpopulations were divided into four groups, each of which 

has a dynamic response to benzene exposure.  The four populations are defined 

as CD62L-/Ly6c+, CD62L+/Ly6c+, CD62L+/Ly6c- and CD62L-/Ly6c-.  The 

monocyte subpopulation CD62L-/Ly6c+ showed trending decreases for all 

benzene exposure groups that yielded significant diminutions when comparing 

18wk HFD fed and benzene-exposed mice compared with HFD fed and HFA-

exposed controls. This trend was true for the 24-week old normal chow benzene-

exposed animals compared with HFA-exposed controls (Figure 9).  Decreases 

were also seen when comparing NC benzene-exposed animals to 8wk HFD and 

benzene-exposed animals.  The CD62L+/Ly6c+ subpopulation showed significant 

changes in the same cohorts and in the same downward trend in cell abundance. 

Lastly, the CD62L-/Ly6c- population demonstrated significant decreases in both 

24wk old populations (HFD and NC) when comparing benzene-exposed animals 

with diet-matched HFA-exposed controls.   

  

Discussion 

 The major findings of this study are that benzene exposure increases LDL, 

platelet-leukocyte aggregate formation and that high fat feeding coupled with 

benzene exposure induces hematotoxicity more rapidly than benzene exposure 

by itself.  Additionally, these changes happen before hematological disruption 

seen in CBCs in animals on normal chow diet exposed to benzene. Meta-

analyses by groups like the ATSDR allow for comparison of many endpoints at 

different exposure levels, but results are inconsistent between species, among 
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species of varying genotypes and occasionally among species of the same 

genotype (17).  Thus having multiple toxicological endpoints measured at 

separate times will allow for relative toxicity assessment.  This study also 

examines how lifestyle factors (i.e. HFD) may alter susceptibility to benzene 

exposure.  

 Our 2wk benzene exposure (NC diet) CBC data aligns well with what has 

been reported in the literature (215, 222), showing a small increase in 

erythrocytes and trending decreases in B and T cells.   Likewise, the near 

pancytopenias seen after 6wks of 50 ppm benzene exposure (NC diet) 

demonstrates a stepwise progression towards hallmark hematotoxicity.  

Interestingly, TEMPOL intervention in benzene-exposed animals blocked the 

trending increases in circulating cells seen in benzene-exposed animals on 

normal drinking water.  This change was seen in nearly all measured cell types.  

This suggests that oxidative stress plays a role in the early development of 

hematotoxicity.  This notion is confirmed in other studies.  Almost all studies 

studying chronic (i.e. >1 year) exposure to benzene in humans with genetic 

polymorphisms in GSTT1, GSTM1 or NQO1 that decrease function and in 

CYP2E1 or MPO that enhance function suggest that increased susceptibility to 

hematotoxicity is driven by decreased mitigation of oxidative stress (218, 223, 

224).  Quite surprisingly, one of these studies determined that GSTT1 null 

genotypes conferred greater susceptibility to leukopenias in workers chronically 

exposed to benzene than did polymorphisms in MPO or NQO1, which are 

enzymes directly involve in hydroquinone-benzoquinone cycling (223).   
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Importantly, we studied whether a HFD might influence susceptibility to 

benzene exposure.  Given the global epidemic of diet-induced obesity it is 

imperative to recognize any increased risk posed by this ubiquitous pollutant. 

Obesity has been shown to increase the benzene metabolizing enzyme’s 

(CYP2E1) expression and activity (225).  Studies have also shown that CYP2E1 

substrate exposure (i.e. ethanol) enhances sensitivity to benzene toxicity by 

increasing expression and activity of CYP2E1. Yet it is unknown whether diet, 

obesity or diabetes influences susceptibility to benzene toxicity.  Thus we 

hypothesized that vulnerability to benzene exposure might be increased in mice 

fed a high fat diet.  Mice on a HFD for 8wks or 18wks that were exposed to 

benzene demonstrated the same drastic and acute cytopenias.  This may be due 

to enhanced oxidative stress and disruption of the vascular compartment often 

seen with high fat feeding, along with a disturbance in production of 

hematopoiesis.  In obese states, adipocytes expand within the bone marrow 

niche which may then disrupt critical structural and chemical components to 

homeostatic hematopoiesis. Intercellular signaling chemicals (chemokines and 

cytokines) may inhibit cell cycle of renewing HSCs or egress of maturing cells 

from the bone marrow.  This is the first and clearest indication in this study that 

suggests that lifestyle factors may increase susceptibility to benzene exposure. 

Data presented in chapter IV hint that increased adhesion to the bone marrow 

stroma may be an additional factor that potentiates toxicity by inhibiting cell 

egress from the medullary cavity.  Indeed, one study assessing genetic 

polymorphisms in benzene-exposed workers with reduced WBCs found the gene 
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VCAM1 to play a critical role in increasing benzene susceptibility, theoretically 

likely by inhibiting mature cell mobilization (226).   

Monocyte subpopulations were measured in an attempt to assess 

monocyte phenotype and possible functional changes that might suggest 

changes in other disease susceptibility.  These subpopulations were determined 

by whether these cells were positively or negatively staining for markers for Ly6c 

and CD62L.  Ly6c- monocytes have been shown to secrete anti-inflammatory 

factors and promote tissue repair (227), whereas Ly6c+ monocytes are involved 

in phagocytosis and pro-inflammatory processes and are thought to be of relative 

equal abundance in mice with Ly6c- monocytes, depending on the mouse strain 

(227).  CD62L (L-selectin) is a crucial homing receptor which is required to 

initiate monocyte rolling and adhesion and is involved in inflammatory processes 

(228).  However, all monocyte subpopulations show a strong decrease in 

abundance and may infer decreased overall monocyte activity in the organism.   

We measured early endpoints affected by benzene exposure such as ALT, 

AST, albumin, NAP, liver:body weight and PLAggs.  Other investigations have 

documented that benzene exposure increases liver weights in rats, although 

additional hepatic markers were not measured to confirm findings (216).  Here 

we demonstrate that liver:body weight ratios are increased after 2wks of 

exposure with corresponding increases in ALT and AST.  ALT is used as a 

marker of hepatic injury, and increases in plasma levels of ALT reflect liver 

inflammation.  AST is found in many organs such as striated muscle, liver, kidney, 

brain, and erythrocytes.  Elevation of this enzyme is often associated with 
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skeletal muscle or cardiac damage (e.g., it is increased after myocardial 

infarction) (229). This transient increase is also associated with a decrease in 

plasma albumin protein and a corresponding increase in NAP.  These results 

taken together suggest that exposure to benzene induces both hepatic and 

systemic inflammation and injury.  However, albumin is primarily a carrier protein 

and it transports many metabolites, hormones, amino acids and products of toxic 

degradation (230).  Therefore, depletion in albumin may also suggest that 

albumin is being depleted as a result of increased conjugated metabolite 

transport.  Mice exposed to benzene for 6wks demonstrate a return to near 

normal levels of albumin, which may be due to increased hepatic production in 

response to increased demand via conjugated metabolite transport.  Interestingly, 

though, long term insulin resistance is associated with elevated albumin levels in 

human subjects and thus the increase in albumin in benzene-exposed mice is 

likely a composite of increased hepatic production and a byproduct of insulin 

resistance (231).   

Notably, circulating endothelial-derived microparticles (of any 

subpopulation) were not elevated after 2wks of benzene exposure.  While these 

circulating microparticles are often used as a sensitive biomarker for endothelial 

dysfunction, the variability within our measurements due to flow cytometry limits 

of detection does not lend it to be a sensitive biomarker for subtle changes and 

may not be helpful as a determinant of vascular health in this specific instance 

(232, 233).  However, there simply may be no change in circulating 

microparticles at this time.   
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A novel finding of this study is that PLAgg formation increases with 

benzene exposure.  Generation of these aggregates, which is often an indicator 

of endothelial dysfunction, showed consistent, reproducible results and were 

consistently elevated after benzene exposure.  There are many reasons why 

increased aggregation may take place.  The PLAgg may arise due to increased 

oxidative stress and decreased nitric oxide bioavailability (234).  Furthermore, 

PLAgg formation is strongly associated with inflammation (235, 236).  We 

therefore utilized the TEMPOL intervention to assess what role oxidative stress 

may play in driving PLAgg formation following benzene exposure. While a 

trending decrease in PLAgg formation in TEMPOL administered, benzene-

exposed animals was observed relative to benzene-exposed animals, the relative 

increase of PLAgg formation compared with the TEMPOL administered HFA-

exposed animals was not diminished.  This suggests that either ROS do not play 

a role in PLAgg formation following benzene exposure or that the dose of 

TEMPOL administered was not sufficiently high to return the PLAgg levels to 

baseline.   

Another interesting finding from this study was the development of 

hypercholesterolemia in mice after benzene exposure.  While HDL and LDL were 

both increased in mice with benzene exposure, LDL disproportionately increased 

over HDL.  Total cholesterol was increased as well.  The increase in LDL may be 

a sign of hepatocyte injury and insulin resistance.  Other studies (that follow our 

findings in chapter III) have shown early development of hepatic insulin 

resistance and a strong link between hepatic insulin resistance and enhanced 
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LDL secretion.  Treatment of hepatocytes with PI3-K inhibitors has demonstrated 

that the insulin signaling pathway is important for insulin-stimulated reduction in 

apoB secretion (191-193).  Thus, many IR and T2D subjects with diminished PI3-

K signaling show excessive release of LDL (163, 193, 237).  Alternately, insulin 

stimulation can decrease expression of microsomal triglyceride transferase 

protein (MTP) through the MAPK pathway and increased MTP expression has 

been shown to increase LDL production (193, 237). Lastly, increased free fatty 

acid flux to these insulin resistant tissues can provide increased triglyceride 

uptake and therefore substrate for LDL production.  These trends in LDL levels 

are in keeping with the increased HOMA-IR scores of benzene-exposed animals.  

Given the likelihood of hepatotoxicity after benzene exposure, this constellation 

of biological indicators would be likely to appear together as seen in this study.  

 

Conclusions 

 Taken together, these results demonstrate that PLAgg formation, plasma 

enzyme detection are elevated in mice after 2wks of benzene exposure while 

CBCs remained unchanged at this time.  Anti-oxidant intervention with TEMPOL 

appeared to protect from disrupted blood count disturbances and marginally 

decreased PLAgg formation, suggesting that oxidative stress plays a significant 

role in these processes.  Additionally, PLAgg formation has not been associated 

with benzene exposure until this study.  Interestingly, susceptibility to benzene 

exposure appears to increase with age in these animals (comparing 14 and 24 

wk old mice), independent of diet as evidenced by cytopenias detected in CBC 
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and immune panels.  Additionally, mice receiving 8wks HFD feeding and 2wks of 

50ppm benzene exposure showed cytopenias similar to NC fed animals exposed 

to benzene for 6wks suggesting that 14wk old mice relative to 24wk old mice fed 

a HFD increases toxicity of benzene exposure.  
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CHAPTER III 

 

BENZENE EXPOSURE AND INSULIN RESISTANCE 

Introduction 

Benzene is a ubiquitous volatile pollutant and is generated by petroleum, 

plastics, glue and shoe industries, automobile exhaust, wildfires and cigarette 

smoking.  Benzene concentrations in glue, rubber and shoe factories can 

frequently be found to be >100 ppm and poorly ventilated, heavily trafficked 

tunnels have been measured to have >1000 ppm benzene.  Consequently, 

benzene can be found in virtually all air samples (urban and rural) as was 

reported by the National Human Exposure Assessment Survey.  Here we 

hypothesize that benzene metabolism by hepatic-CYP450 2E1 generates 

reactive oxygen species (ROS) which may cause inflammation, insulin resistance 

(IR) (Figure 10).   

In our experiments, we exposed C57Bl/6 mice to 50 ppm benzene for 6h/d 

x 14d or 6wks.  This concentration of benzene is similar to that found in main 

stream cigarette smoke, which is the primary source of global human benzene 

exposure.  To test the role of ROS in these processes we utilized an anti-oxidant 

(4-hydroxy TEMPO, or TEMPOL) intervention to see if benzene induced 

metabolic changes could be mitigated.  Additionally, we examined the effects of 

insulin resistance (IR) induced by a HFD, to assess whether greater CYP2E1 
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ROS generation exaggerates the effects of benzene. These interventions attempt 

to understand how oxidative stress is involved in the physiological response to 

benzene but also to understand how lifestyle choices may confer greater 

susceptibility to benzene toxicity.  Given the pervasive nature of volatile benzene 

and its association with inflammation, we hypothesized that benzene exposure 

may contribute to the rapidly emerging global epidemic of human obesity, 

diabetes and cardiovascular disease.  

 

Methods 

Volatile Benzene Exposures 

All procedures were approved by the University of Louisville Institutional Animal 

Care and Use Committee. Benzene exposures were performed as described in 

Chapter II.  Briefly, mice were maintained on NC or HFD with normal drinking 

water or TEMPOL intervention and subsequently exposed to HFA or volatile 

benzene for 14d or 6wks.  Necropsy was performed immediately after the final 

exposure. 

 

In Vivo Assessment of Glucose Handling 

Fasting plasma glucose levels were recorded following a 6h fast with a standard 

glucose meter (Accu-check, Aviva) and glucose test strips (Accu-check, Aviva 

Plus).  Fasting plasma insulin levels were measured by an ultrasensitive insulin 

ELISA assay (Mercodia) from supernatant of peripheral blood spun at 400 x g for 

20min.  As described before (238), glucose tolerance tests were performed 
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following a 6h fast by injection (i.p.) of D-glucose (1 mg/g) in sterile saline. Insulin 

tolerance tests were performed on nonfasted animals by i.p. injection of 1.0 U/kg 

Humulin R (Eli Lilly, Indianapolis, IN). Tissue specific insulin-stimulated 

phosphorylation of Akt analysis was conducted by injecting saline or insulin 

15min prior to tissue extraction with immediate freezing in liquid nitrogen.  Protein 

and RNA extracts from frozen samples were later obtained for Western blot 

analysis.   

 

Western blotting and qPCR 

Tissue homogenates were prepared from frozen tissue using a pulverizer or 

Dounce homogenizer and used for Western blot protein expression analysis. For 

quantitative RT-PCR, RNA extracted from tissues with a Qiagen miRNA isolation 

kit was used to assess NFB target expression of cytokines MIP-1, IL-1, IL-6, 

TNF-, and adiponectin.  Primers for mRNA targets were obtained from 

Integrated DNA Technologies and qPCR was performed using Universal SYBR 

Green PCR Master Mix (Stratagene).  Analysis of miRNAs utilized the same 

Qiagen isolation kit and TaqMan primers, and master mixes (Applied Biosystems) 

was then used to generate cDNA and perform qPCR.  Western blotting 

conditions were performed under standard conditions.  Briefly, SDS-PAGE was 

performed for 1.25h at 125V, membrane transfers were conducted for 16-18h at 

200mAmps, with blocking at room temperature for one hour with 5% non-fat milk 

solution followed by 2h incubation at room temperature with primary antibody.  

The blot was then washed three times with TBST, and the appropriate secondary 
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antibody was added to the blot with 5% non-fat milk and incubated at room 

temperature for one hour.  The blots were developed using ECL developing 

solution (Thermo Fisher) and the image obtained on a Typhoon 7000 FLA (GE 

Healthcare) imaging system.  Quantification of bands on the western blot was 

performed using ImageJ software (NIH.gov).  Antibodies used for western 

blotting analysis were Akt, phospho-Akt (Ser473), NFB p65, phospho-NFB p65 

(Ser536), phospho-pan-Tyrosine and PTEN (Cell Signaling), SOCS1 and SOCS3 

(AnaSpec), IRS-2 (Abnova).  Secondary antibodies were anti-mouse IgG and 

anti-rabbit IgG, HRP-linked antibodies (Cell Signaling). 

 

Oxidative Stress Measurements 

Glutathione (GSH) measurements were obtained using frozen liver and skeletal 

muscle specimens and analyzed using a kit BIOXYTECH GSH -412TM 

Colorimetric Determination Glutathione Kit (Oxis Research).  Standard protocol 

given by the manufacturer was followed.  Samples in a 96 well plate were read 

on a BioTek plate reader to obtain quantification capacity.  To measure 

intracellular GSH, monochlorobimane dissolved in 100% ethanol to a stock 

concentration of 40 mM and stored at −20 °C was thawed and added to the 

leukocyte suspension from peripheral blood draw to a final concentration of 40 

μM and the cells were maintained at room temperature in the dark for 20min prior 

to analysis of the cells on the LSRII flow cytometer. To measure lipid 

peroxidation product malondialdehyde (MDA), we again utilized frozen liver and 

skeletal muscle tissues and employed the commercially available Lipid 
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Peroxidation (MDA) Assay Kit (Sigma).  As before, we followed the standard 

protocol provided by the manufacturer and read the samples in a 96 well plate on 

a BioTek plate reader to obtain quantification by fluorescence optical density 

measurements (excitation 532nm, emission 553nm).   

 

Results 

Effect of benzene exposure on glucose and insulin levels.  As seen in Figure 

11, mice exposed to volatile benzene for 2wks showed an increase in FPG at 

day 14 of the exposure (p=0.0004). This significant increase in FPG was lost in 

animals exposed to benzene for 6wks, though an upward trend in glucose levels 

still remained (p=0.097).  Additionally, FPI levels were elevated in mice after 2 

(p=0.034) and 6wks (p=0.0008) of benzene exposure.  HOMA-IR was 

significantly increased in benzene-exposed animals at 2 and 6wks (72% and 

80%, respectively).  Giving greater clarity to the phenotype, HOMA- also 

exhibited significantly increased values after 2 and 6wks of benzene exposure 

(65% and 72%, respectively).  Mice exposed to benzene or filtered air for 2wks 

and allowed to remain unexposed for 4wks (Figure 12) demonstrated significantly 

elevated FPG compared with HEPA controls. Correspondingly, FPI and HOMA-

IR also trended towards an increase in animals exposed to benzene, but likely 

did not achieve significance because of the low number of animals available for 

insulin testing (p=0.10, n=3).  HOMA- did not show a significant change or 

strong trend with benzene exposure.   
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Glucose tolerance tests on benzene-exposed animals demonstrate a 

modest, but significant increase in area under the curve (AUC) after 2wks of 

benzene exposure relative to HFA-exposed animals (Figure 13). Interestingly, 

insulin tolerance tests demonstrated a remarkable decrease in insulin sensitivity 

as seen in the insulin tolerance test (ITT) AUC indicating that animals are 

requiring more insulin to sequester less glucose than controls.  This is in keeping 

with a pre-diabetes phenotype. 

Insulin signaling in the liver and skeletal muscle after benzene exposure.  

Animals exposed to benzene for either 2 or 6wks of exposure demonstrated a 

significant decrease in insulin-stimulated phosphorylation of Akt in the liver 

(Figure 14). While 2wk HFA-exposed mice demonstrated a 2.8-fold (p<0.0001, 

n=10) induction of Akt phosphorylation upon insulin stimulation, benzene-

exposed animals demonstrated no induction capacity of Akt phosphorylation.  

Additionally, 6wk benzene-exposed animals also exhibited an ablation in hepatic 

insulin signaling.  Additionally, while skeletal muscle also exhibited a decrease in 

insulin-stimulated phosphorylation of Akt after benzene exposure, the magnitude 

of decrease was less than that seen in liver (Figure 15).  The induction of 

phosphorylation of Akt in skeletal muscle of HFA-exposed mice was 2.5-fold 

(p<0.05, n=10) while benzene-exposed mice demonstrated an insignificant 1.6-

fold increase in Akt phosphorylation (Figure 16), suggesting that benzene 

exposure decreases insulin-induced Akt phosphorylation.     

Evidence of oxidative stress in the liver and skeletal muscle after benzene 

exposure.  Indicators of oxidative stress were measured in the liver, plasma and 
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skeletal muscle by measuring GSH, monochlorobimane (MCB) and 

malondialdehyde (MDA) (Figure 18).  Hepatic GSH levels were decreased from 

12.2±0.7 moles/g tissue in HFA-exposed mice to 9.0±1.3 moles/g tissue in 

2wk exposed benzene animals (p<0.0001, n=9-10).  A 44% reduction (p<0.0001, 

n=9) of GSH was seen in livers of animals exposed to benzene for 6wks.  

Additionally, 6wk exposed animals exhibited an 18% reduction (p=0.028) in 

hepatic GSH compared with animals exposed to benzene for 2wks.  Skeletal 

muscle of 2wk exposed benzene mice also demonstrated a reduction in GSH 

(Figure 18).  MCB, a GSH dye, was measured in stained circulating leukocytes of 

2wk HEPA or benzene-exposed mice.  HFA-exposed mice exhibited higher 

levels of MCB mean fluorescence intensity relative to benzene-exposed animals 

when measured by flow cytometry.  Additionally, MDA, a lipid peroxidation 

product, was found to be of higher abundance in 2wk exposed benzene animals 

than HEPA exposed mice. 

Evidence of inflammation-associated insulin resistance following benzene 

exposure.  To understand whether ROS generation might be driving 

inflammation-driven IR, markers of inflammation such as NFB, cytokines, and 

suppressors of cytokines (SOCS) were assayed. Phosphorylation of NFB 

subunit p65 relative to total NFB (Figure 20) was found to be elevated in livers 

of mice exposed to benzene for 2wks and 6wks.  Congruently, levels of NFB 

subunit p65 phosphorylation relative to total NFB p65 (Figure 21) exhibited an 

increase in skeletal muscle of mice exposed to benzene for 2wks and 6wks.   
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Figure 10. 
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Figure 10. Schematic of benzene-induced liver injury and subsequent 

insulin resistance. In this proposed model for benzene-induced pathology, 

benzene metabolism by CYP2E1 generates oxidative stress, induces 

inflammatory signaling pathways, upregulates cytokines, and upregulates SOCS 

proteins thereby inhibiting insulin signaling pathways. 
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Figure 11. 
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Figure 11. Benzene exposure and glycemic indices. Mice were exposed to 

HFA or 50ppm benzene for 2 or 6wks in 6 separate exposures, FPG and FPI 

were measured, and composite HOMA-IR and HOMA- scores calculated.  

Indicated are absolute FPG (A), FPI (B), HOMA-IR (C) and HOMA- (D). FPG: 

n=20-36 mice/treatment; FPI, HOMA-IR, HOMA-: n=8-18 mice/treatment; 

p<0.05.  
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Figure 12. 
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Figure 12. FPG, FPI, HOMA-IR and HOMA- in animals 4wks-post exposure.  

Glycemic indices were measured in animals exposed to benzene or HFA for 

2wks and then left unexposed for 4wks.  FPG (A), FPI (B), HOMA-IR (C) and 

HOMA- were assayed after a 6h fast.  FPG: n=7 mice/treatment; FPI, HOMA-IR, 

HOMA-: n=3 mice/treatment; p<0.05. 

  



98 
 

Figure 13. 
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Figure 13. Glucose tolerance tests and insulin tolerance tests after benzene 

exposure.  Mice were exposed to HFA or 50ppm benzene for 2wks and GTTs 

and ITTs were performed as described.  Indicated are absolute glucose levels 

after glucose bolus for GTT (A), AUC score calculated for GTT (B), absolute 

glucose levels after insulin bolus for ITT (C) and AUC score calculated for ITT (D). 

n=10 mice/treatment; p<0.05. 
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Figure 14. 
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Figure 14. Insulin-stimulated Akt phosphorylation in liver.  Mice were 

exposed to HFA or 50ppm benzene for 2wks (A) or 6wks (B) and then injected 

with saline or insulin 15min before euthanasia. Levels of insulin-stimulated 

phospho-Akt were then measured in homogenates of collected livers. Illustrated 

are representative blots of phospho-Akt and pan-Akt (upper panels). Also 

illustrated are grouped data from 2 individual experiments and 5 animals. 

*p<0.05. 
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Figure 15. 
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Figure 15. Insulin-stimulated Akt phosphorylation in skeletal muscle. Mice 

were exposed to HFA or 50ppm benzene for 2wks (A) or 6wks (B) and then 

injected with saline or insulin 15min before euthanasia. Levels of insulin-

stimulated phospho-Akt were then measured in homogenates of collected 

skeletal muscle. Illustrated are representative blots of phospho-Akt and pan-Akt 

(upper panels). Also illustrated are grouped data from 2 individual experiments 

and 5 animals. *p<0.05. 
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Figure 16. 
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Figure 16.  Phospho-Akt induction capacity. The capacity of tissue 

homogenates to induce Akt phosphorylation after insulin stimulation was 

measured by comparing each sample to its HFA control as illustrated for liver (A) 

and skeletal muscle (B) above. n=5 mice/treatment; *p<0.05. 
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Figure 17. 
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Figure 17. Schematic of benzene-induced liver injury and subsequent 

insulin resistance emphasizing ROS production. In this proposed model for 

benzene-induced pathology, benzene metabolism by CYP2E1 generates 

oxidative stress, induces inflammatory signaling pathways, upregulates cytokines, 

and upregulates SOCS proteins thereby inhibiting insulin signaling pathways.  

Here we highlight the ROS production of the schematic. 
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Figure 18. 
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Figure 18. Benzene-induced markers of oxidative stress.  Mice were exposed 

to HFA or 50ppm benzene for 2 or 6wks and euthanized. MCB levels were 

measured in circulating lymphocytes by flow cytometry and normalized to levels 

in filtered air-exposed animals (C).  In addition, levels of GSH was measured in 

homogenates of liver (A) and skeletal muscle (B). MDA was measured in 

homogenates of liver (D). n=8-10 mice/treatment; *p<0.05. 
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Figure 19. 
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Figure 19. Schematic of benzene-induced liver injury and subsequent 

insulin resistance highlighting inflammatory signaling. Benzene metabolism 

by CYP2E1 generates oxidative stress, induces inflammatory signaling pathways, 

upregulates cytokines, upregulating SOCS proteins thereby inhibiting insulin 

signaling pathways.  Here we highlight the inflammatory signaling pathways. 
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Figure 20. 
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Figure 20.  Nuclear factor kappa-B (NFB) phosphorylation in liver.  Mice 

were exposed to HFA or 50ppm benzene for 2wks (A) or 6wks (B) and then 

euthanized. Levels of NFB p65 phosphorylation and total NFB p65 in liver 

homogenates were determined by Western blotting. Illustrated are representative 

blots (upper panels) and normalized data (lower panels). 2wk: n=20 

mice/treatment; 6wk: n=8-10 mice/treatment; *p<0.05. 
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Figure 21. 
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Figure 21. Nuclear factor kappa-B (NFB) p65 phosphorylation in skeletal 

muscle.  Mice were exposed to HFA or 50ppm benzene for 2wks (A) or 6wks (B) 

and then euthanized. Levels of NFB p65 phosphorylation and total NFB p65 in 

skeletal muscle homogenates were determined by Western blotting. Illustrated 

are representative blots (upper panels) and normalized data (lower panels). 2wk: 

n=5 mice/treatment; 6wk: n=10 mice/treatment; *p<0.05. 
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Figure 22. 
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Figure 22. NFB-targeted cytokines.  Mice were exposed to HFA or 50ppm 

benzene for 2wks and then euthanized. Quantitative PCR of selected cytokine 

transcripts was then performed on RNA preparations of liver (A) and skeletal 

muscle (B). Illustrated are the fold changes using GAPDH as housekeeping 

control gene. n=8-10 mice/treatment; *p<0.05. 
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Figure 23. 
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Figure 23. Benzene exposure and cytokine regulating proteins. Mice were 

exposed to HFA or 50ppm benzene for 2wks and then euthanized. Levels of the 

cytokine suppressor proteins SOCS1 (A) and SOCS3 (B) were determined in 

liver homogenates by Western blot analysis. Tubulin blots were used as loading 

controls. Illustrated are representative blots (upper panels) and normalized data 

(lower panels). n=4 mice/treatment; *p<0.05. 
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Figure 24. 
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Figure 24. IRS-2 pan-tyrosine phosphorylation in liver.  Mice were exposed 

to HFA or 50ppm benzene for 2wks and then euthanized. IRS-2 was 

immunoprecipitated from liver homogenates, collected proteins resolved by SDS-

PAGE and transferred to nitrocellulose. The blots were probed with a pan-

phospho-tyrosine antibody and an IRS-2 antibody.  Illustrated are representative 

blots (upper panels) and quantitative data (lower panels). n=5 mice/treatment; 

*p<0.05. 
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To ascertain whether targets of NFB were upregulated a panel of 

cytokines were measured.  Transcripts (mRNA) of inflammatory cytokines IL-1, 

IL-6, TNF, and MIP-1were assayed in liver of benzene and HFA-exposed 

mice. IL-1, IL-6, TNF demonstrated no significant increase in the liver after 

2wks of exposure.  However, MIP-1was upregulated 1.94-fold in liver tissue of 

benzene-exposed animals relative to HFA-exposed mice controls (p=0.007, n=10) 

(Figure 22).  Benzene-exposed animals also displayed a 1.91-fold increase in 

MIP-1in skeletal muscle relative to controls (p=0.003, n=8).  After finding 

cytokine levels elevated in both liver and skeletal muscle, we measured the 

abundance of both SOCS1 and SOCS3 (Figure 23).  In these experiments we 

found SOCS1 elevated (1.74-fold, p=0.004, n=4) in the liver of 2wk benzene-

exposed mice while the upward trend in SOCS3 expression did not reach 

significance (1.28-fold, p=0.058, n=4). Due to the inhibitory relationship of 

SOCS1 expression on IRS2 phosphorylation we immunoprecipitated IRS-2 to 

detect tyrosine phosphorylation of the substrate (Figure 24).  Benzene-exposed 

animals displayed decreased IRS-2 total tyrosine phosphorylation relative to total 

IRS-2 as compared with phosphorylation of HFA-exposed controls.   

Anti-oxidant 4-hydroxy TEMPO intervention and metabolic indices.  Given 

the suggestive evidence that oxidative stress may be mediating the insulin 

resistant phenotype seen in benzene-exposed animals, the anti-oxidant (4-

hydroxy TEMPO, or TEMPOL) was administered via drinking water ad libitum to 

a group of animals.  Mice receiving TEMPOL intervention, but exposed to 

benzene showed significantly lower FPG (Figure 26) than their benzene-exposed 
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counterparts receiving no anti-oxidant intervention (i.e. normal drinking water).  

Additionally, there was no significant increase in FPG of TEMPOL administered, 

benzene-exposed mice compared with TEMPOL administered, HFA-exposed 

mice.  Correspondingly, FPI of benzene-exposed animals receiving TEMPOL 

was decreased when compared with benzene-exposed animals without 

intervention.   There was no significant difference in FPI between HFA exposed 

animals receiving TEMPOL and benzene-exposed animals with TEMPOL 

intervention (p=0.40).  Composite HOMA-IR score of benzene-exposed mice 

without intervention was 34% higher (p=0.018) than benzene-exposed animals 

with TEMPOL intervention.  Correspondingly, benzene-exposed animals 

receiving anti-oxidant intervention received demonstrated normoglycemic 

responses to glucose and insulin bolus in GTT and ITT assays (Figure 27), 

suggesting that altered insulin sensitivity was mediated by oxidative stress. 

 Intracellular insulin signaling appeared to be protected by TEMPOL 

intervention (Figure 28).  Induction of insulin-stimulated phosphorylation of Akt in 

liver of benzene-exposed animals without intervention was significantly less than 

benzene-exposed animals receiving TEMPOL. Animals receiving TEMPOL 

intervention exposed to HEPA or benzene showed no significant difference in 

induction capacity for Akt phosphorylation upon insulin stimulation (p=0.56, n=5).  

Similar results were found in skeletal muscle of TEMPOL treated animals. 

Insulin-stimulated Akt phosphorylation in skeletal muscle of benzene-exposed 

animals receiving intervention was 77% greater than benzene-exposed animals 

without intervention (p=0.05, n=5-12).   
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TEMPOL intervention and measures of oxidative stress.  TEMPOL treated 

animals exposed to volatile benzene displayed greater hepatic GSH 

concentrations (Figure 30) than did benzene-exposed animals without 

intervention. Skeletal muscle measurements of GSH displayed similar trends, 

with anti-oxidant treated, benzene-exposed mice displaying higher 

concentrations of GSH relative to their non-intervention benzene-exposed cohort.  

Another marker of ROS exposure, MDA, showed corresponding trends with anti-

oxidant treated, benzene-exposed animals.  That is, these animals displayed 

significantly lower concentrations of MDA than non-intervention, benzene-

exposed animals (Figure 30).  

TEMPOL intervention and measures of inflammation.  Following 

measurements of reduced levels of oxidative stress in liver and skeletal muscle, 

we then ascertained whether inflammation is also decreased in benzene-

exposed and TEMPOL treated animals relative to benzene without intervention 

cohort (Figure 31).  Levels of phosphorylated NFB p65 relative to total NFB 

p65 were decreased in benzene-exposed, TEMPOL treated animals relative to 

benzene-exposed only animals in liver (p=0.002) and skeletal muscle (p=0.041).  

After documenting decreased NFB p65 activation, we assayed for NFB 

p65 regulated MIP-1 in liver and skeletal muscle (Figure 31).  Transcript of MIP-

1 was found to be decreased in TEMPOL treated, benzene-exposed animals 

relative to benzene-exposed mice in liver (p=0.044) and skeletal muscle 

(p=0.002).  
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Accordingly, suppressors of cytokines (SOCS) proteins in benzene-

exposed, TEMPOL treated mice were measured to assess if corresponding 

changes would occur contemporaneously with lower cytokine levels (Figure 32).  

SOCS1 demonstrated a decrease in benzene-exposed, TEMPOL treated mice 

relative to non-intervention mice in liver (p=0.006).  No change was seen in 

SOCS3 expression with TEMPOL intervention receiving animals. Corresponding 

to the change in SOCS1 expression, benzene-exposed, TEMPOL-treated 

animals exhibited an increase in pan-tyrosine phosphorylation of IRS-2 (Figure 

33) relative to non-intervention benzene-exposed animals. 

Influence of high fat diet (60%) on benzene induced insulin resistance.  

Mice on 6wks of HFD or NC were exposed to filtered air or benzene and 

metabolic indices were measured.  Mice exposed to benzene on HFD 

demonstrated a significant 9.2% increase in FPG levels relative to air exposed 

(Figure 28), HFD mice (p=0.03) and an 8.7% increase in FPG relative to NC fed 

benzene-exposed mice (p=0.01).  However, the relative increase of FPG 

compared with diet matched control for benzene-exposed animals on HFD was 

only a 9.2% increase relative to control while NC animals exposed to benzene 

exhibited a 13.0% increase compared with NC fed, air exposed animals, 

suggesting an additive effect to IR but not potentiating.  Moreover, intracellular 

assessment of insulin signaling in HFD fed, benzene-exposed animals 

demonstrated no further diminishment of insulin-stimulated phosphorylation of 

Akt compared with NC fed benzene-exposed mice (Figure 34).   
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Figure 25. 
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Figure 25. Schematic of benzene-induced liver injury and insulin resistance 

with anti-oxidant intervention. In this proposed model for benzene-induced 

pathology, benzene metabolism by CYP2E1 generates oxidative stress, induces 

inflammatory signaling pathways, upregulates cytokines, and upregulates SOCS 

proteins thereby inhibiting insulin signaling pathways. Here we highlight the point 

of intervention achieved with anti-oxidant 4-hydroxy TEMPO (TEMPOL) 

administration acting through a spin trap mechanism. 
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Figure 26. 

 

  



129 
 

Figure 26. TEMPOL intervention and glycemic indices.  Mice were exposed 

to HFA or 50ppm benzene in 3 separate exposures drinking normal water or that 

supplemented with 1mM TEMPOL. After 2wks of exposure, levels of FPG (A), 

FPI (B), were measured as previously described.  We also calculated a HOMA-

IR score (C). FPG: n=17-34 mice/treatment; FPI and HOMA-IR: n=10-20 

mice/treatment; p<0.05. 
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Figure 27. 
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Figure 27.  TEMPOL reverses glucose intolerance. Mice were exposed to 

HFA or 50ppm benzene drinking normal water or that supplemented with 1mM 

TEMPOL.  After 2wks of exposure, GTTs (A) and ITTs (C) were performed. We 

also determined an AUC for the GTT (B) and the ITT (D). n=10 mice/treatment; 

p<0.05. 
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Figure 28. 
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Figure 28. Anti-oxidant intervention and Akt phosphorylation.  Mice were 

exposed to HFA or 50ppm benzene for 2wks drinking normal water or that 

supplemented with 1mM TEMPOL. The mice were then injected with insulin or 

saline for 15min prior to euthanasia. Levels of phospho-Akt and total Akt were 

determined in homogenates of liver (A), and skeletal muscle (B). Illustrated are 

representative blots (upper panels) and normalized data (lower panels). n=5-10 

mice/treatment; p<0.05. 
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Figure 29. 
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Figure 29. Schematic of benzene-induced liver injury and downstream 

changes influenced in mice by TEMPOL intervention. In this proposed model 

for benzene-induced pathology, benzene metabolism by CYP2E1 generates 

oxidative stress, induces inflammatory signaling pathways, upregulates cytokines, 

and upregulates SOCS proteins, thereby inhibiting insulin signaling pathways. 

Here is highlighted the downstream pathways influenced by TEMPOL 

intervention. 
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Figure 30. 
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Figure 30. TEMPOL and oxidative stress.  Mice were exposed to HFA or 

50ppm drinking normal water or that supplemented with 1mM TEMPOL. After 

2wks of exposure the mice were euthanized and levels of GSH determined in 

homogenates of liver (A) and skeletal muscle (B). MDA levels were also 

measured in liver (C). n=7-10 mice/treatment; p<0.05. 
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Figure 31. 
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Figure 31. TEMPOL intervention and inflammatory signaling.  Mice were 

exposed to HFA or 50ppm benzene for 2wks drinking normal water or 1mM 

TEMPOL and then euthanized. Levels of NFB p65 phosphorylation and total 

NFB p65 in liver (A) and skeletal muscle (B) homogenates were determined by 

Western blotting. Illustrated are representative blots (upper panels) and 

normalized data (lower panels). Quantitative PCR of selected cytokine transcripts 

was performed on RNA preparations of liver (C) and skeletal muscle (D). 

Illustrated are the fold changes using GAPDH as housekeeping control gene. 

n=5-21 mice/treatment; p<0.05. 
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Figure 32. 
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Figure 32.  Anti-oxidant and SOCS proteins.  Mice were exposed to HFA or 

50ppm benzene for 2wks drinking normal water or 1mM TEMPOL supplemented 

water and then euthanized. Levels of the cytokine suppressor proteins SOCS1 (A) 

and SOCS3 (B) were determined in liver homogenates by Western blot analysis. 

Tubulin blots were used as loading controls. Illustrated are representative blots 

(upper panels) and normalized data (lower panels). n=4 mice/treatment; *p<0.05. 
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Figure 33. 
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Figure 33. Anti-oxidant and IRS-2 phosphorylation.  Mice were exposed to 

HFA or 50ppm benzene for 2wks drinking normal water or 1mM TEMPOL 

supplemented water and then euthanized. IRS-2 was immunoprecipitated from 

liver homogenates, collected proteins resolved by SDS-PAGE and transferred to 

nitrocellulose. The blots were probed with a pan-phospho-tyrosine antibody and 

an IRS-2 antibody.  Illustrated are representative blots (upper panel) and 

quantitative data (lower panel). n=3-5 mice/treatment; *p<0.05. 
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Figure 34. 
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Figure 34. HFD-fed mice, benzene exposure and FPG.  Mice were fed a 

normal chow diet or HFD for 6wk and then exposed to HFA or 50ppm benzene 

for 2wks.  At this time fasting plasma glucose levels (A) were measured and a 

relative increase of FPG calculated (B). n=10-34 mice/treatment; p<0.05. 
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Figure 35. 
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Figure 35. Insulin-stimulated Akt phosphorylation and HFD.  Mice were 

exposed to HFA or 50ppm benzene for 2wks and given normal chow diet (A) or 

HFD (B) for 6wks and then injected with saline or insulin 15min before 

euthanasia. Levels of insulin-stimulated phospho-Akt were then measured in 

homogenates of collected livers. Illustrated are representative blots of phospho-

Akt and pan-Akt (upper panels). Also illustrated are grouped data from 1 

individual experiment and 5 animals. *p<0.05  
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Figure 36. 
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Figure 36. miRNAs, PTEN expression and benzene exposure. Mice were 

exposed to HFA or 50ppm benzene for 2 or 6wks and then euthanized. 

Quantitative PCR of selected transcripts was performed on miRNA preparations 

of liver (A) of 2wk exposed mice. Illustrated are the fold changes using sno202 as 

housekeeping control gene. Levels of PTEN and actin in liver (B) homogenates 

from 2wk and 6wk exposd animals were determined by Western blotting. 

Illustrated are representative blots (upper panel) and normalized data (lower 

panel). n=5-14 mice/treatment; p<0.05. 
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Influence of miRNAs and PTEN regulation on benzene induced insulin 

resistance.  Reported miRNAs (i.e. miR-130a, miR-223, miR-320b, miR-let-7) 

affecting PTEN expression were assayed in air and benzene-exposed mouse (no 

intervention) liver.  The miR-320b was found to be elevated after 2wks (p<0.05) 

but a significant increase in PTEN expression was not found until animals had 

been exposed to benzene for 6wks, suggesting PTEN is not involved in the acute 

insulin resistant response following benzene exposure (Figure 36).   

 

Discussion 

The major findings of this study are that acute exposure to volatile 

benzene induces insulin resistance and that administration of anti-oxidant 

TEMPOL, protects against this ROS generated change in metabolism.  These 

results support a causal role for benzene and ROS in regulating insulin signaling.  

These data suggest that this benzene-induced insulin resistance is mediated by 

oxidative stress and inflammation that exert an inhibitory effect on insulin 

signaling.  Given the ubiquitous nature of benzene exposure, these observations 

taken collectively support the notion that benzene exposure may play a role in 

the growing, global epidemic of diabetes.  Previously it has been shown that the 

metabolism of benzene by CYP2E1 generates ROS and inflammation (239).  

Additionally, it has been shown that CYP2E1KO mice are protected against high-

fat diet-induced obesity and insulin resistance (240) and that hepatocyte CYP2E1 

overexpression leads to impaired hepatic insulin signaling (241).  However, it has 

not been shown that exposure to environmentally relevant levels of volatile 
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benzene, acting through CYP2E1 metabolism and ROS generation may be 

sufficient to induce insulin resistance. 

Several lines of evidence collected during this study support the notion 

that volatile benzene exposure induces insulin resistance via oxidative stress 

mediated pathways. Given our current findings we cannot completely rule out the 

minor extent to which reactive benzene-metabolite intermediaries may play a role 

in this process, previous studies demonstrating the extensive ROS generation of 

CYP2E1 and the abundant urinary metabolites suggest that few reactive 

metabolites form adducts and react independently before being conjugated by 

secondary enzymatic processes that facilitate excretion of these molecules.  

Additionally, our global application of anti-oxidant treatment does not provide 

specific answers regarding the most abundant tissue-source of oxidative stress.  

However, previous studies have demonstrated the overwhelming abundance of 

hepatic CYP2E1 relative to other tissues, which suggests most CYP2E1 

generated ROS will be hepatic (242).  Moreover, CYP2E1KO mice exposed to 

benzene generated no genotoxic effects typically without detection of any 

benzene metabolite (243, 244).  This coupled with the finding of this study that 

repeatedly shows tissue specific injury (e.g. increased MDA, proportionally 

increased inhibition of Akt phosphorylation, etc) to liver more than other tissues 

suggest that this is likely the greatest extramedullary location of damage.  Also, 

that benzene exposure results in a ROS mediated occurrence of insulin 

resistance is supported by the application of an antioxidant which may diminish 

the subtle insulin resistant phenotype.   
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How does benzene induce oxidative stress-mediated insulin resistance? 

Our data imply that ROS generated following benzene exposure signals 

inflammatory pathways play an important role in modulating insulin sensitivity.  

Previous studies have demonstrated a decrease in IRS-1 and IRS-2 tyrosine 

phosphorylation in CYP2E1 overexpressing rat hepatocytes (241).  This same 

study demonstrated decreased Akt phosphorylation along with increased lipid 

peroxidation with CYP2E1 overexpression suggesting that insulin signaling and 

oxidative stress are both influenced by CYP2E1.  These studies fully support our 

data that demonstrate an increase in oxidative stress (i.e. increased MDA and 

decreased GSH) and decreased insulin sensitivity (i.e. diminution of Akt serine 

phosphorylation and IRS-2 tyrosine phosphorylation) following benzene exposure 

and increased CYP2E1 activity.  However, our studies are more detailed and 

robust.  We demonstrate whole body physiological responses with changes in 

FPG, FPI, HOMA-IR, GTTs and ITTs.  At the molecular level we can 

demonstrate the presence of oxidative stress in many compartments, but 

primarily in the liver.  Here we see an increase in lipid peroxidation (i.e. MDA), a 

decrease in hepatic GSH, and a decrease in MCB not only in circulating cells but 

in bone marrow derived cells as well.  Clearly, the benzene stimulus is sufficient 

to generate oxidative stress.   

To determine whether benzene exposure might be associated with 

inflammation associated insulin resistance, markers of inflammation such as 

NFB, cytokines, and suppressors of cytokines (SOCS) were assayed.  The 

transcription factor NFB is a powerful regulator of the inflammatory signaling 
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response and can be activated by ROS.  ROS can phosphorylate IKK, which 

then dissociates IK from NFB subunits p50 and p65.  After NFB subunits 

dissociate from the complex they are capable of being phosphorylated.  

Following phosphorylation, NFB subunits then translocate to the nucleus to 

upregulate mRNAs involved in initiating the inflammatory signaling cascade.  In 2 

and 6wk benzene-exposed mice, phosphorylation of NFB p65 was elevated 

compared with HFA-exposed controls in liver and skeletal muscle.  Relative 

NFB phosphorylation levels increased in liver and increased in statistical 

significance in skeletal muscle tissues with increasing exposure duration.  With 

the elevated phosphorylation of p65 subunit of NFB, targets of NFB were 

measured in liver tissue.  Transcript (mRNA) levels of IL-1, IL-6, TNF 

demonstrated no significant change with benzene exposure while MIP-1was 

upregulated 1.94-fold (p=0.007).  Transcript levels of MIP-1in skeletal muscle 

of benzene-exposed animals were upregulated 1.91-fold (p=0.003).   

Other studies have also demonstrated reported increases in hepatic 

oxidative stress along with NFB subunit phosphorylation followed by partial 

NFB gene target transcription (245) and we surmise the selective gene 

targeting by p65 is likely multifactorial.  There are five subunits or members to the 

mammalian NFB family (p65/RelA, RelB/p100, c-Rel, p50, and p52).  These 

members form numerous dimeric complexes that can activate many target genes 

through attachment to the B enhancer.  While the NFB family collectively 

targets over 150 genes, not all subunits target all 150 genes.  For instance, p100 
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and p52 are closely associated with TNF regulation while p65 tightly regulates 

MIP-1 (a.k.a. CCL3), IFNB and IL-8 (246-250).  This division of tasks required 

by each NFB subunit allows for specificity of response.  Additionally, not all 

varieties of cells respond in the same way to a particular signal because they 

lack the necessary transduction molecules or receptors.  The selectivity of 

response can be altered by what is known as the combinatorial response of 

promoter/enhancer regions, which requires more than one NFB subunit or other 

transcription factor to induce transcription of a particular gene.  As mentioned 

above, selective activation or binding of NFB subunits also plays a role in 

transcription.  Thus, there are many reasons why other gene targets of the five 

member NFB family may not be upregulated.  Additionally, it is reasonable that 

if the liver contains 90% of the body’s macrophages (as tissue-resident Kupffer 

cells), that the primary cytokine response would be the elevation of a cytokine 

dubbed the “macrophage inflammatory protein-1.”  More convincingly though, is 

the tight regulation of MIP-1 by the p65 subunit and the evidenced activation of 

this subunit.   

The association of increased MIP-1 levels with a specific increase in 

SOCS1 expression coupled with a decrease in IRS-2 tyrosine phosphorylation 

highly suggests that SOCS1 recruitment to suppress MIP-1 levels is having an 

ancillary effect of inhibiting IRS-2 phosphorylation.  Studies demonstrating the 

tight regulation of MIP-1 by SOCS1 rather than by SOCS3 reaffirms the 

biological plausibility of these findings (251, 252).  Moreover, the increase in 
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SOCS1 expression likely explains the concomitant decrease in IRS-2 tyrosine 

phosphorylation.   SOCS1 has been shown to inhibit IRS-2 tyrosine 

phosphorylation as well as to facilitate IRS-2 ubiquitination (253, 254). Although 

this study did not detect decreased levels of IRS-2 (suggesting IRS-2 

ubiquitination), data showed decreased IRS-2 tyrosine phosphorylation.  Hence, 

the likelihood that benzene exposure is influencing insulin sensitivity via oxidative 

stress induced inflammation that drives increased SOCS1 levels to inhibit IRS-2 

tyrosine phosphorylation is well supported by our observations.   

The transience of this phenomena was tested by allowing mice exposed to 

benzene for 2wks to remain unexposed for 4wks before assaying for glucose and 

insulin levels.  After 4wks of recovery, benzene-exposed animals surprisingly 

exhibited 20% increase (p=0.0.36, n=7) compared with the filtered air controls 

allowed to rest for the same length of time (Figure 20). FPI and HOMA-IR values 

of four-week recovery benzene-exposed animals also demonstrated a trending 

increase, though because so few animals were available for insulin testing this 

likely kept these values from reaching significance (p=0.1, n=3 for FPI and 

HOMA-IR). HOMA- demonstrated no trending change in this small cohort. 

Due to the suggestive evidence that oxidative stress may be mediating the 

insulin resistant phenotype seen in benzene-exposed animals, we then applied 

an anti-oxidant (4-hydroxy TEMPO, or TEMPOL) intervention to this study.  With 

the administration of TEMPOL we found a return to baseline in in all indices of 

oxidative stress (i.e. GSH, MDA), inflammation (i.e. phospho-NFB p65, MIP-

1levels, SOCS expression) and insulin signaling (Akt serine phosphorylation, 
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IRS-2 tyrosine phosphorylation).  Additionally, this particular anti-oxidant has 

demonstrated the capacity to mitigate the effects of oxidative stress and 

therefore block the subsequent development of insulin resistance, inflammation 

and atherosclerosis (255-257).    

Additionally, we investigated if lifestyle factors, such as HFD, might 

increase sensitivity to benzene exposure.  Other studies have demonstrated an 

increase in the benzene metabolizing enzyme’s (CYP2E1) expression and 

activity in obese organisms and that CYP2E1KO mice are protected from weight 

gain and insulin resistance when maintained on a high fat diet (240, 258).  Also, 

investigations have demonstrated a potentiated CYP2E1-mediated (ethanol) 

injury is seen in obese organisms, suggesting increased sensitivity to the insult 

(259).  Here we hypothesized that animals on a HFD exposed to benzene would 

demonstrate a more severe insulin resistance phenotype than animals exposed 

to benzene on a normal chow diet.  Increased lipid levels coupled with possible 

increases in CYP2E1 activity would plausibly increase lipid peroxidation and 

efficiency of benzene metabolism causing greater concentrations of ROS to 

accumulate acutely.  However, this exaggerated insulin resistance phenotype 

was not demonstrated in HFD fed animals exposed to benzene.  This might be 

due to the subtle nature of the initial observation with normal chow animals along 

with a sufficient level of CYP2E1 endogenously present to metabolize benzene at 

the 50 ppm level of exposure.  Increased CYP2E1 expression beyond that level 

would not necessarily drive a benzene-dependent increase in insulin resistance.  

Additionally, such a change might not be seen at times examined and thus either 
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a longer duration of HFD and/or benzene exposure administration may be 

needed to elicit such effects. 

Finally, we wanted to investigate whether miRNAs may play a role in 

benzene-induced insulin resistance.  It has been reported that specific miRNA 

profiles affecting PTEN expression are altered following benzene exposure (260-

262).  While many miRNAs regulate insulin signaling pathways, we only assayed 

the miRNAs reported to be affected by benzene exposure.  These miRNAs 

largely target PTEN expression, a negative regulator of PI3K.  However, only one 

of the four miRNAs (i.e. miR-320b) tested were elevated and subsequent 

interrogation of PTEN expression suggested that PTEN was unlikely to play a 

role in benzene-induced insulin resistance at after 2wks of exposure.  Thus, 

given the current listing of altered miRNAs following benzene exposure that are 

likely to affect insulin signaling, it seems that miRNA and PTEN play a minimal 

role in the initiation of benzene-induced insulin resistance.   

As the link between insulin resistance and inflammation becomes clearer, 

it is likely that we will begin to see surprising contributors to the global epidemics 

of insulin resistance and diabetes.  Probable actors in this scenario will be 

constituents of air pollution.  For instance, exposure to fine particulate matter 

(PM2.5) has been shown to increase oxidative stress, inflammation, 

atherosclerosis and CV mortality (257, 263, 264). Moreover, it has been reported 

that if the USA reduced the mean levels PM2.5 by just 3.9 g/m3 would prevent 

7,978 heart failure hospitalizations and save $300 million dollars per year (265).  

Other factors like ozone appear to be playing a role not only in generating 
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oxidative stress but insulin resistance (266, 267).  Furthermore, increased 

probability for exhibiting elevated HOMA-IR scores was observed for participants 

carrying risk genotypes in glutathione S-transferase genes (GSTM1, GSTT1, and 

GSTP1). Glutathione S-transferase enzymes mitigate oxidative stress and 

therefore these results suggest that the HOMA-IR increase is mediated by ROS 

(266).  It is likely, that benzene will soon be added to the list of respirable, 

ubiquitous pollutants that generate cardiometabolic disruption.  The hallmark 

profile of generating local and systemic oxidative stress and inflammation sets 

the stage for the promotion of insulin resistance and many other disorders.  A 

study associating the benzene metabolite t,t-MA with HOMA-IR scores in 505 

elderly adults (≥60 years) suggests that increased benzene exposure is 

associated with increased oxidative stress (i.e. urinary MDA) and HOMA-IR 

scores.  While this is the first study to demonstrate such an association, it does 

not rigorously attempt to address a mechanism by which this association is likely, 

while our study conclusively shows a causative effect from benzene exposure on 

insulin signaling.  Interestingly, both of these studies align in that the association 

between t,t-MA and HOMA-IR is driven by elevated fasting plasma insulin levels 

rather than by fasting plasma glucose.  This aberrant increase in FPI rather than 

FPG is also indicative of the current model of T2D progression from insulin 

resistance.   

As insulin resistance and T2D prevalence surges in areas where none 

existed before excessive pollution was generated by industrial complexes, it is 

likely that we will find that genetic susceptibility will only play a minor role in 
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differential prevalence of pathology, and that the environment’s constituents will 

be the overwhelmingly greatest factor in progression of this particular pathology. 

Conclusion 

 Volatile benzene exposure (50 ppm x 6h/d x 14d) appears to 

induce oxidative stress, inflammation and, overall, a subtle hyperglycemic but 

marked hyperinsulinemic phenotype in C57Bl/6 mice.  This phenotype is 

prevented by the administration of anti-oxidant, TEMPOL.  Additionally, under the 

conditions tested, a HFD does not appear to potentiate the insulin resistance in 

benzene-exposed mice.  However, while the oxidative stress-mediated insulin 

resistance does not produce gross pathology (e.g. T2D after 6wks of exposure), 

this environmentally relevant exposure level used for these experiments 

suggests that benzene could be playing a role in the global epidemic of 

inflammation-driven insulin resistance and related diseases.   
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CHAPTER IV 

BENZENE EXPOSURE AND HEMATOPOIETIC AND ENDOTHELIAL 

PROGENITOR CELLS 

Introduction 

Benzene is known to have especially toxic effects to cells residing within 

the medullary cavity (i.e. inner bone marrow), especially hematopoietic stem cells 

(HSCs).  However, many stem cell populations reside within the medullary cavity 

besides HSCs, such as endothelial progenitor cells (EPCs).  One of the first 

signs to suggest the existence of HSCs was found in individuals exposed to 

lethal doses of radiation in 1945, but these cells were more articulately described 

by Till and McCulloch in the 1960s (268).  Though EPCs also reside in the bone 

marrow and had been speculated about since the 1960s, the existence of these 

cells was not substantiated until the 1990s (269).  As such, much less is known 

about the physiology of these cells.  

What is known about EPCs is that they are necessary and sufficient for 

the growth of vascular tissue (angiogenesis and vasculogenesis) and that their 

relative abundance predicts cardiovascular events and mortality in humans.  

These cells are critically important in repairing the damaged endothelium and are 

vital to vascular health.  As benzene has been used to study the behavior of 

bone marrow-resident HSCs, we used benzene to ascertain whether benzene 
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affects bone marrow-resident EPCs.  Additionally, we also investigated the 

relative sensitivity of each of these cell types to the same toxic benzene 

exposure.   

Another component of this study utilized mice placed on a high fat diet 

(HFD) which were then exposed to HEPA-filtered air (HFA) or volatile benzene.  

The HFD plus benzene exposure was of interest for two reasons.  First, obesity 

has been reported to potentiate CYP2E1 mediated toxicities, and thus may 

sensitize animals to benzene exposure.  Second, obesity clearly increases 

vulnerability to diseases and concurrently alters hematopoiesis and decreases 

viability of HSCs.  It is unknown exactly how this disruption occurs, but it is 

speculated that anything from inflammation and ROS to adipocyte intrusion of the 

medullary cavity may alter the processes and viability of these cells (270).  

Additionally, obesity is a risk factor for cardiovascular disease development.  

Moreover, obesity is associated with decreased levels of EPCs (271, 272) 

despite evidence of damaged endothelium, a signal that would recruit EPCs 

under normal physiological conditions. This suggests that EPCs in the bone 

marrow may be depleted, may not be differentiating or that there is a bone 

marrow mobilization defect (as seen with type 2 diabetes [T2D]). 

 

We used benzene not only as a tool to study EPC and HSC physiology, 

also to sustain important information concerning the potential effects of benzene 

on EPCs and therefore cardiovascular health (273). Cardiovascular tissues and 

EPCs have demonstrated a high sensitivity to inhaled pollutants and several 
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studies have shown that inhalation of toxic substances such as cigarette smoke 

and particulate matter (PM2.5) cause significant cardiovascular injury (274-276).  

Understanding the effects of benzene on different stem cell populations residing 

within the same niche may provide novel information relating to future 

development of pathology as well as unique characteristics of these progenitor 

cells.   

 

Methods 

Volatile benzene exposure and HFD administration.  

All procedures were approved by the University of Louisville Institutional Animal 

Care and Use Committee. Benzene exposures were performed as detailed in 

Chapter II.  Briefly, mice were maintained on NC or HFD with normal drinking 

water or TEMPOL intervention and subsequently exposed to HFA or volatile 

benzene for 14d or 6wks.  Necropsy was performed immediately after the final 

exposure. 

 

Peripheral blood EPC detection and bone marrow-derived EPC and 

hematopoietic lineage assay and flow cytometry 

Whole blood (300-400 L) was lysed (4 ml; BD PharmLyse, BD BioSciences, 

San Jose, CA, USA; 10 min, RT) and after centrifugation (5min, 400 x g, RT), the 

supernatant was aspirated and the lysing/centrifugation/aspiration steps were 

repeated. The cell pellet was resuspended in 1 % FBS/PBS and divided into two 
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equal fractions. One fraction was fluorescently-Iabeled with anti-Sca-1 and anti-

Flk-1 antibodies tagged with FITC and APC, respectively. Following 

centrifugation (5min, 400 x g, RT), mononuclear cells were re-suspended in 1 % 

FBS/PBS. The FITC-Sca-1 (BD BioSciences) and APC-Flk-1 (BD BioSciences) 

antibodies were added to cells and incubated for 30min on ice. Cells were then 

washed with 1 % FBS/PBS and centrifuged (5min, 400 x g, RT). Cells re-

suspended in 1 % FBS/PBS (400 L) were analyzed using a LSRII flow 

cytometer (BD BioSciences). Based on forward and side scatter, small non-

debris events in a sub-lymphocyte population (sized using fluorescent beads, BD 

Biosciences) were gated electronically and displayed in a two-color dot plot. Data 

were subsequently analyzed using FACSDiva v6.0 software (BD Biosciences), 

and double positive events were normalized per 50,000 events or per IJI of assay 

volume. For bone marrow-derived EPC detection the same staining procedure 

was performed for aspirates as with peripheral blood EPCs.  The same 

preparatory steps were taken for the hematopoietic lineage assay from bone 

marrow aspirates but lineage markers were used in lieu of more general markers 

for endothelial and stem cell capacity.  Briefly, bone marrow aspirates are 

washed with with 1 mL of PBS/1% BSA and then centrifuged for 500 x g for 5min.  

The supernatant is decanted and the pellet vortexed before being resuspended 

in an antibody master mix solution for 30min on ice.  The master mix contains the 

following markers, Sca-1-FITC, CD16/32 FcgR-PE, lin-e450, CD45-APC, CD34-

Alexa 700, CD117 (C-kit)-APCe780.  After the incubation the cells are washed 

with PBS/BSA, and centrifuged at 500 x g for 5min.  The supernatant is decanted, 
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the pellet vortexed and resuspended in 250 µL PBS/BSA and data is acquired on 

the LSRII flow cytometer.   

 

Cell culture procedures  

Endothelial colony forming cells (ECFCs) were cultured with endothelial basal 

media (Clonetics/Lonza) supplemented with 20% FBS (Invitrogen, Carlsbad, CA, 

USA), human endothelial growth factor (hEGF), hydrocortisone, 

gentamycin/amphotericin B (GA) and bovine brain extract (BBE) (SingleQuot®, 

Clonetics/Lonza) under standard cell culture conditions (3rC, 5% CO2).  Bone 

marrow outgrowth cells were aspirated from the femur and tibia of both legs of 

exposed mice with 1 mL phosphate buffered saline (PBS) (Gibco/Life 

Technologies).  Half of the aspirate was aliquoted for hematopoietic lineage 

assay analysis, 50L was used for the HSC CFU differentiation and the 

remainder was then washed twice in PBS before plating onto fibronectin coated 

6-well plates (Corning) in endothelial basal media (Clonetics/Lonza) 

supplemented with 20% FBS (Invitrogen, Carlsbad, CA, USA), human 

endothelial growth factor (hEGF), hydrocortisone, gentamycin/amphotericin B 

(GA) and bovine brain extract (BBE) (SingleQuot®, Clonetics/Lonza) under 

standard cell culture conditions (3rC, 5% CO2). Cells were allowed to adhere and 

medium was changed every 48h.  After 7-10d of culture, the cells were used for 

functional assays (i.e. proliferation and adhesion assays). For treatment of cells 

with benzene metabolites, cultures were treated with 1,4-benzoquinone (Sigma) 

or hydroquinone (Sigma) overnight before commencing the with the assay. 
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Differentiation assay with bone marrow aspirates. 

Differentiation assay (a.k.a. HSC CFU assay) was performed using bone marrow 

aspirates, which were plated on to 35mm x 10mm tissue culture dishes 

(Falcon/Becton Dickinson) in a differentiation medium (Methocult/StemCell).  

Standard HSC CFU assay protocols were followed via manufacturer’s suggestion.  

Briefly, MethoCult medium was thawed overnight at 2 - 8°C. Animals were 

euthanized and femurs and tibias were removed from each mouse. Bone marrow 

was aspirated from femur and tibia of both legs with 1 mL sterile phosphate 

buffered saline (PBS) (Gibco/Life Technologies), and 50L was aliquoted for 

differentiation assay purposes.  Bone marrow aspirates were kept on ice until 

needed. Cells were counted and 2.5 x 104 cells were added to thawed aliquots of 

MethoCult media, vortexed and allowed to rest before using a luer lock syringe 

attached to a 16 gauge blunt-end needle to dispense the suspended cells onto 

35mm x 10mm tissue culture plates (Falcon/Becton Dickinson).  Cells were 

cultured under normal conditions for 3d before counting by light microscopy. 

 

Proliferation assay of BMO cells and ECFCs. 

To measure proliferation, the CyQuant proliferation assay (Thermo Fisher) was 

used.  Assay was performed according to product specifications and assay was 

performed in a 96 well plate.  Briefly, we added an equal volume of provided 2x 

detection reagent to BMO or ECFCs in culture.  Cells were then incubated with 
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the detection reagent for 60min at 37°C.  Subsequently, fluorescence of the 

plated cells was determined using appropriate wavelengths (i.e., excitation 480 

nm, emission 535 nm). 

 

Adhesion assay of BMO cells and ECFCs. 

To measure adhesion, harvested bone marrow outgrowth cells (BMOs) or 

ECFCs were incubated with 5M calcein AM (Life Technologies) at 37oC for 

30min. The BMOs or ECFCs were washed, centrifuged at 400 x g for 5min and 

resuspended in media and allowed to incubate at 37oC for an additional 30min. 

Cells were then added to confluent S17 bone marrow stromal cells (gift from Dr. 

Kenneth Dorschkind, University of California, Los Angeles) in a 24 well plate at 

105 cells/well. At time points of interest, the wells were aspirated, washed, and 

fluorescence detected in a BioTek plate reader. The percent adhesion was 

determined based upon the maximum fluorescence of 105 cell aliquots.  

Background fluorescence was determined using wells coated with BSA. 

 

Results 

Effect of benzene exposure on bone marrow-resident hematopoietic stem 

cells.  2wks of volatile benzene exposure resulted in a significant decrease of 

megakaryocyte-erythroid progenitor (MEP), granulocyte-monocyte progenitor 

(GMP) and multipotent progenitor (MPP) cell types (Figure 37A).  Common 

myeloid progenitor (CMP) and hematopoietic progenitor (HPC) cell types were 
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unchanged. No corresponding change was evident in the CBC of these mice 

(Chapter II).  6wks of volatile benzene exposure displayed a different 

hematopoietic lineage variance than did 2wks of benzene exposure (Figure 37B).  

After 6wks of benzene exposure GMPs were elevated (p<0.05) were as HPCs 

whereas decreased. 

Effect of benzene exposure on bone marrow derived hematopoietic stem 

cell differentiation.  Bone marrow aspirates were plated for 3d in a 

differentiation medium directly after collection.  Three days after 2wks of benzene 

exposure a 45% decrease in hematopoietic stem cell colony-forming units (HSC 

CFU) of the granulocyte-monocyte phenotype (GM) were found to be decreased 

relative to HFA exposed animals (Figure 38A).  6wks of exposure demonstrated 

a trending 23% reduction (p=0.088) in HSC CFU-GMs relative to HFA.  An 

insignificant trending decrease was displayed in HSC CFUs with a non-

granulocyte-monocyte phenotype (“other”) after 6wks of benzene exposure 

(Figure 38B). 

Effect of benzene exposure on bone marrow derived and circulating EPCs.  

Opposing changes in circulating EPC abundance was displayed after 2 and 6wks 

of benzene exposure (Figure 39A).  2wks of benzene exposure corresponded to 

a 40% increase in circulating EPCs while 6wks of exposure showed a 48% 

significant decrease in circulating EPCs.  No significant change in EPC 

abundance following benzene exposure was seen until 6wks of inhalation 

wherein a 58% decrease was observed (Figure 39B).  In addition, 

monochlorobimane (MCB) mean fluorescence intensity (MFI) was reduced by 66% 
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and 76% in peripheral blood and bone marrow derived EPCs, respectively.  This 

suggests that while cell abundance is not altered, they were under oxidative 

stress. 

Effect of benzene exposure plus HFD on bone marrow-resident 

hematopoietic stem.  HFA versus HFA exposed, HFD fed animals 

demonstrated a significant change in many hematopoietic lineage cell types, 

including relative increases in MEPs and HPCs and decreases in GMPs and 

MPPs (Figure 40).   Reductions in benzene-exposed, HFD fed animals compared 

with HFA exposed, HFD fed mice demonstrated decreases in MEPs and HPCs, 

while reduction in benzene-exposed, HFD fed mice compared with benzene 

exposure alone was seen in GMPs and HPCs.  

Effect of benzene exposure plus HFD on bone marrow derived 

hematopoietic stem cell differentiation.  Mice administered HFD demonstrated 

an additive depletion of HSC CFU-GMs compared with NC animals (Figure 41A).  

Benzene-exposed, HFD fed mice displayed a similar relative reduction in HSC 

CFU-GMs that was seen when comparing HFA to benzene.  However, the lower 

decrease of HSC CFU-GMs in HFA exposed HFD fed mice compared with HFA 

exposed suggests that HFD conferred additional differentiation defect 

susceptibility independent of benzene exposure. Mice belonging to the HFA 

exposed, HFD fed cohort demonstrated an increase in relative HSC CFU-other 

relative to HFA (Figure 41B).  While benzene-exposed, HFD fed mice displayed 

a diminution in development relative to HFA exposed, HFD fed mice, it is clear 

that benzene-exposed, HFD fed animals did not display a significant HSC  
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Figure 37.   
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Figure 37. Benzene exposure and bone marrow-resident hematopoietic 

stem cell populations.  Mice were exposed to HFA or 50ppm benzene for 2wks 

or 6wks and euthanized and bone marrow flushed in sterile PBS. Samples from 4 

separate exposures were analyzed to assess relative abundance of cells within 

the hematopoietic lineage by cytometry. The results document CMP, MEP, GMP, 

HPC, and MPP from 2wk (A) and 6wk (B) exposures are displayed in the above 

figure. n=10-30 mice/treatment; p<0.05. 
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Figure 38. 
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Figure 38. Benzene exposure and HSC CFU outgrowth.  Mice were exposed 

to HFA or 50ppm benzene for 2wks or 6wks and euthanized and bone marrow 

flushed in sterile PBS.  Samples from 4 separate exposures were analyzed to 

assess relative abundance of cluster forming units of granulocyte-monocyte 

(HSC CFU-GM) (A) or other units (HSC CFU-Other) (B). 2wk: n=20-27 

mice/treatment; 6wk: n=9-10 mice/treatment; p<0.05. 
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Figure 39. 
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Figure 39. Circulating and bone marrow-derived EPCs and benzene 

exposure.  Mice were exposed to HFA or 50ppm benzene for 2wks or 6wks and 

euthanized, peripheral blood was collected and bone marrow flushed in sterile 

PBS.  Samples from 4 separate exposures were analyzed to assess relative 

abundance of and oxidative stress in circulating and bone marrow-derived EPCs.  

The results document relative abundance of circulating EPCs (A) BM-derived 

EPCs (B) and circulating and BM-derived EPC relative MCB fluorescence. 2wk 

PB and BM EPCs: n=25-28 mice/treatment; 6wk PB and BM EPCs: MCB in 

EPCs: n=8-10 mice/treatment; p<0.05. 
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CFU-other increase or decrease.  Many of the HSC CFU-other populations are 

thought to be largely composed of erythrocyte progenitors, which in agreement 

with the increase in MEP levels with HFA exposed, HFD fed mice compared with 

HFA exposed animals.   

Effect of benzene exposure plus HFD on bone marrow-derived and 

circulating EPCs.  While HFA exposed, HFD-fed animals demonstrated no 

change in baseline circulating EPCs compared with HFA, it is apparent that 

benzene-exposed, HFD fed animals demonstrated a 56% decrease in these cells 

relative to HFA exposed animals on HFD (Figure 42A).  Additionally, HFD plus 

benzene-exposed mice displayed a significant diminution of circulating EPCs 

relative to benzene-exposed animals.  The bone marrow EPCs from mice on 

HFD displayed significant reductions with or without benzene exposure (Figure 

42B) relative to their NC, exposure-matched counterparts.  Additionally, 

benzene-exposed, HFD fed animals displayed a slight increase in BM EPCs 

relative to HFA exposed animals on HFD. 

EPCs show functional defects with exposure to benzene or benzene 

metabolites.  Bone marrow derived EPCs from benzene-exposed animals 

showed increased rates of adhesion to bone marrow stromal S17 cells relative to 

HFA ex vivo (Figure 43A), while a similar increase in adhesion of ECFCs is seen 

to stromal S17 cells in vitro with benzene metabolite treatment relative to vehicle 

controls (Figure 43B).  Additionally, ECFCs treated in vitro with benzene 

metabolites show a decreased rate of proliferation relative to controls (Figure 

43C). 
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Figure 40. 
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Figure 40. HFD, benzene exposure and bone marrow-resident 

hematopoietic stem cells. Mice were exposed to HFA or 50ppm benzene for 

2wks and fed a normal chow diet or HFD for 8wks. Animals were euthanized and 

bone marrow flushed in sterile PBS.  Samples from 4 separate exposures were 

analyzed to assess relative abundance of cells within the hematopoietic lineage 

by cytometry. Illustrated are results for CMP, MEP, GMP, HPC, and MPP. n=20-

30 mice/treatment; p<0.05. 
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Figure 41. 
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Figure 41. Benzene, HFD and HSC CFUs. Mice were exposed to HFA or 

50ppm benzene for 2wks and fed normal chow diet or HFD.  Animals were 

euthanized and bone marrow flushed in sterile PBS. Samples from 4 separate 

exposures were analyzed to assess relative abundance of cluster forming units 

of granulocyte-monocyte (HSC CFU-GM) (A) or other units (HSC CFU-Other) (B). 

n=10-20 mice/treatment; p<0.05. 
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Figure 42. 
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Figure 42. Benzene, HFD and circulating and BM EPCs. Mice were exposed 

to HFA or 50ppm benzene for 2wks and fed normal chow diet or HFD. Animals 

were euthanized, peripheral blood was collected and bone marrow flushed in 

sterile PBS.  Samples from 4 separate exposures were analyzed to assess 

relative abundance of circulating (A) and bone marrow-derived (B) EPCs.  n=10-

28 mice/treatment; p<0.05  
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Figure 43. 
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Figure 43. EPC adhesion, proliferation and benzene exposure.  Mice were 

exposed to HFA or 50ppm benzene for 2wks. Animals were euthanized, and 

bone marrow flushed in sterile PBS. BM outgrowth cells were cultured as 

described.  Samples from 2 separate exposures were analyzed to assess ex vivo 

adhesion of bone marrow-derived outgrowth endothelial progenitor cells (A) to 

S17 bone marrow stromal cells.  Human endothelial progenitor cells (endothelial 

colony forming cells [ECFCs]) were incubated with benzene metabolites as 

described in methods and in vivo adhesion (B) to S17 bone marrow stromal cells 

and proliferation rates (C) were analyzed. Panel A: n=4 mice/treatment; Panel B: 

n=3-6 experiments; Panel C: n=3 experiments; p<0.05. 
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Discussion 

 This study is the first of its kind to document the differential susceptibility 

of bone marrow derived hematopoietic and endothelial stem cells to benzene 

exposure in vivo, ex vivo and in vitro.  Additionally, this study provides new 

biomarkers that precede and predict peripheral cytopenia alterations most 

commonly measured as indicators of benzene exposure.  Results from this study 

clearly show a dynamic equilibrium in the bone marrow niche specific to duration 

of benzene exposure and diet.  Interestingly, while stem cell abundance was the 

primary measurement for sensitivity, other endpoints (e.g. MCB, adhesion rates, 

proliferation rates) proved a remarkable predictor of stem cell abundance.  Thus 

future studies would be greatly edified by researching further the functional and 

adaptive changes of these various populations. 

The outcomes of these experiments generated a glimpse into the health 

and response of the stem cell niche in response to benzene exposure while 

suggesting interesting biomarkers for assessment of benzene exposure.  While 

CBCs are the standard, easily measured variable, frequently used to assess 

current susceptibility to benzene exposure, we have found in these NC mice to 

have altered hematopoietic differentiation that precedes and predicts altered 

CBCs.  Depletion of HSC CFU-GMs was also found to arise as an indicator of 

future CBC changes.  While we used bone marrow for HSC CFU assays, this 

experiment can be completed with cells from the peripheral blood and may be a 

more reliable indicator of acute exposure.  However, HSC CFU-GMs and 

hematopoietic lineage did not show the same depletions after 6wks of benzene 
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exposure relative to their HFA controls, suggesting that these effects may be 

transient or briefly compensated in a manner after initial depletion. Interestingly, 

peripheral blood and bone marrow EPCs demonstrated a progressive diminution 

in both compartments after 6wks of benzene exposure, possibly implying that 

effects on these cells is more cumulative and lasting than in HSCs.   

With benzene-exposed, HFD-fed animals, the effect on these stem cell 

populations was markedly pronounced.  Large depletions were seen in 

hematopoietic lineage subtypes GMP and HPC relative to benzene and HFA 

while MPP and MEP remained suppressed in benzene-exposed, HFD-fed 

animals relative to HFA exposed controls.  The change is striking when coupled 

with the depletion of the HSC CFU-GMs of the differentiation assay along with 

significant reduction of neutrophils and lymphocytes of benzene-exposed, HFD-

fed mice relative to HFA-exposed, HFD-fed controls.  EPCs showed a response 

in animals of the benzene-exposed, HFD-fed cohort that demonstrate both a 

general EPC depletion in the bone marrow relative to HFA, but an increase in 

cells relative to HFA-exposed, HFD-fed animals.  These benzene-exposed, HFD-

fed animals also show a decrease in PB EPCs relative to HFA-exposed, HFD-fed 

and HFA-exposed controls.  Though a HFD may be the primary driver of 

depleted BM EPCs at this time point, it appears that benzene exposure is 

inhibiting EPC egress from the bone marrow to the peripheral blood.  This might 

explain the relative increase in BM EPCs but the significant decrease in PB 

EPCs of benzene-exposed, HFD-fed mice relative to HFA-exposed, HFD-fed 

controls.  Interestingly, bone marrow outgrowth EPCs from benzene-exposed 
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mice demonstrate an increased rate of adhesion to bone marrow stromal S17 

cells relative to HFA controls.  This increased adhesion rate is replicated with 

benzene metabolite treatment of human EPCs (ECFCs) relative to vehicle 

treated control.  Additionally, ECFCs treated with benzene metabolites show 

decreased proliferation rates.  These proliferation assays suggest that benzene 

may also be playing a role in the diminution of EPC abundance in the benzene-

exposed, HFD-fed mice. 

Damage to the bone marrow tissue will be phenotypically reflected in the 

tissues into which these bone marrow-derived, differentiated cells will come to 

function.  Most crudely this is exemplified in bone marrow irradiation and inherent 

subsequent depletion of hematopoietic stem cells driving pancytopenia.  A 

subtler and more specific example may be reflected in type 2 diabetics (T2D) 

having diminished abundance of circulating endothelial progenitor cells (EPCs) 

while still maintaining a population within the bone marrow having a mobilization 

defect.  This lack of circulating EPCs inhibits the repair of accumulating vascular 

injury, leading to a dysfunctional endothelium and greater cardiovascular risk. 

Here, we use benzene, an agent especially toxic to the bone marrow, as an 

effective tool in assessing relative sensitivity of bone marrow derived stem cells 

to toxicity.  Our focus in these investigations assesses responses in the stem cell 

niche to benzene exposure coupled with interventions and attributing relative 

rapidity and intensity of response by hematopoietic progenitor cells, cardiac 

progenitor cells and endothelial progenitor cells.   
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There may be many reasons why stem cell subpopulations have variance 

in vulnerability to particular stimuli.  Decreased proximity to the source of the 

insult (i.e. oxidative stress) may inherently expose a cell to higher concentrations 

of a particular agent.  This is quite plausible, as the bone marrow niche is 

composed of many discrete areas defined by their proximate location to 

anatomical landmarks.  The endosteal niche (or the endosteum) is a slender 

piece of vascular, connective tissue coating the interior surface of the medullary 

cavity.  This area is home to quiescent HSCs and 80% of less differentiated 

hematopoietic stem cells (HSCs).  As HSCs differentiate they move towards the 

perivascular niche where they may egress from the BM by way of vasculature.  

Thus, more differentiated cells are likely to be affected by vascular stressors.  In 

our hematopoietic lineage assays we see a greater effect on more differentiated 

cells (MEPs and GMPs) with less effect on CMPs, MPPs and HPCs.  Given the 

relative distance of exposure that these cells have to any vascular driven 

disruption, these changes would be in agreement with this possibility.  

Additionally, if the source of stress happens because the cell expresses a 

particular enzyme that catalyzes a reaction with noxious byproducts (e.g. the 

conversion of hydroquinone to benzoquinone via myeloperoxidase, prevalent in 

granulocyte precursors) then those cells are more likely to be negatively 

influenced.  Again, the repeated depletion of GMPs and HSC CFU-GMs suggest 

that this may be a reason why HSC CFU-GMs are more affected than HSC CFU-

others and why GMPs deplete more readily than MEP populations.  Conversely, 

cells may have decreased expression or activity of enzymes capable of 
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mediating benzene metabolite-induced oxidative stress (e.g. glutathione, 

superoxide dismutase, etc).  This could happen with age or if additional stress is 

added to the system (e.g. HFD).      

This differential toxicity may result in abnormal proliferation of progenitor cells 

or blocked differentiation pathways leading to deficits in fully differentiated cells.  

Additionally, a decrease in fully differentiated cells may result from decreased 

mobilization of cells from the perivascular niche to the peripheral vasculature 

thus resulting in fewer cells reaching the tissue in which they play a functional 

role.  In these investigations we see strong potential for decreased proliferation 

rates and decreased EPC egress to play a role in cardiovascular pathological 

development with intermediate to chronic benzene exposure.  

Given that the health of progenitor populations is a sensitive predictor of 

physiological outcomes in the respective differentiated cell and tissue populations 

it is imperative to understand which progenitor population is influenced by a 

particular pollutant. While the specific mechanism conferring susceptibility to 

each stem cell type is beyond the scope of this study, we seek to draw attention 

to the relative susceptibility of certain stem cell populations exposed benzene in 

order to ascertain relative risk of disease (i.e. hematological versus 

cardiovascular) following benzene exposure. 

These studies show that hematopoiesis is acutely sensitive to benzene 

exposure, while intermediate and long term exposures have varied responses 

with regard to relative abundance of precursor cells.  EPCs demonstrate a 

diminution with 6wks of benzene exposure with altered function after 2wks of 
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exposure.  Cells treated with benzene metabolites BQ and HQ demonstrate 

similar results in function along with additional decreased proliferation rates.  

While it is not abundantly clear from these studies whether hematopoiesis or 

cardiovascular health will be more greatly affected by benzene exposure, it is 

abundantly clear that cardiovascular health will likely be affected by benzene 

exposure due to depleted EPC abundance and function.  This possibility for 

cardiovascular injury is novel and has remained largely unstudied.  Furthermore, 

it is clear that HFD plays a clear role in disrupting the bone marrow niche and 

that benzene exposure and HFD feeding potentiates injury to stem cells implying 

that lifestyle factors will strongly alter susceptibility to hematopoietic and 

cardiovascular health.   
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CHAPTER V 

CONCLUDING DISCUSSION 

These studies were carried out to expand the understanding of the effects 

of volatile benzene exposure on the cardiovascular and hematopoietic systems.  

More specifically, our hypothesis addressed whether the effects of benzene-

induced, hepatic CYP2E1-generated ROS would play a role in inflammation, 

tissue injury, insulin resistance, and vascular repair.  To this end, we 

characterized the general response of mice to benzene exposure measuring 

indices of tissue injury, vascular health while monitoring complete blood counts 

(Table 7).  We also assessed markers of oxidative stress, inflammation, glycemic 

indices and insulin signaling pathways (Table 8).  Lastly, we looked how benzene 

exposure influences hematopoietic progenitor cells and endothelial progenitor 

cells (in vivo and ex vivo) (Table 9).  These results tell us that volatile benzene 

exposure induces oxidative stress, inflammation, insulin resistance, tissue 

damage and possibly deficiencies in vascular repair. Notably, these data also 

show that changes in these outcomes occur at levels similar to the lowest 

observed adverse effect levels in hematotoxicity studies.  Therefore, these signs 

of inflammation, oxidative stress and vascular disruption are just as likely to be 

having acute effects following benzene exposure as is hematotoxicity.   
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While we cannot rule out changes due to oxidative stress generated by 

extra-hepatic CYP2E1-mediated ROS or by damage caused by reactive 

metabolite adduct formation, previous studies suggest that these are unlikely 

scenarios.  To further address the former statement, it would be beneficial to 

utilize a transgenic animal model overexpressing an antioxidant (e.g. superoxide 

dismutase) to validate that the oxidative stress-induced changes are liver specific.  

However, previously mentioned studies have provided detailed tissue expression 

data for CYP2E1 and have demonstrated that the enzyme is primarily hepatic.  

Furthermore, studies involving CYP2E1KO animals exposed to benzene exhibit 

complete protection from hematopoietic and genotoxic effects, while generating 

no significant level of benzene metabolite.  Additional investigations with 

overexpressing CYP2E1 hepatocytes demonstrated increased oxidative stress. 

These studies show that CYP2E1 is primarily hepatic, necessary for benzene 

metabolism and toxicity and generate increased levels of oxidative stress that 

reduce cell viability.  Other studies have shown protection from HFD-induced 

weight gain and insulin resistance in CYP2E1KO mice compared with wild type 

animals.  Increased activity of CYP2E1 is strongly associated with weight gain 

and loss in humans, a condition highly associated with oxidative stress and 

inflammation.  Lastly while reactive benzene metabolites are briefly formed, most 

metabolites are conjugated and excreted before forming adducts with other 

molecules.  These studies provide biological plausibility for the data shown here.   

Notably, these changes are occurring at levels nearing the LOAEL in 

animal models acutely exposed to benzene.  Given that the benzene-induced IR 
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phenotype presents before hallmark benzene-associated cytopenias suggests 

that changes in insulin sensitivity may be a better indicator of benzene exposure 

than altered circulating blood populations.  One study looking at elderly men’s 

level of urinary benzene metabolite (i.e. t,t-MA), HOMA-IR score and oxidative 

stress levels confirm our results.  This study found positive correlations between 

t,t-MA and HOMA-IR as well as with t,t-MA and oxidative stress.   

Our results also suggest that vascular damage occurs at 2 and 6wks of 

exposure as seen with elevated PB EPCs and increased circulating endothelial-

derived microparticle levels at 2 and 6wks of exposure, respectively.  A likely 

disruption in vascular repair capacity may be inferred due to diminished PB and 

BM-derived EPC levels at 6wks of exposure.  This suggests that acute and 

chronic exposure may play a role in development of accumulating vascular 

damage which could lead to development of CV complications. 

Together, these data give plausibility for simultaneous disruption of 

cardiovascular, metabolic, and hematopoietic processes following benzene 

exposure.  Given the increased environmental release of benzene through 

industrial activities and worldwide exposure to benzene through cigarette 

smoking that is commensurate with the rapid increase in pre-diabetes and CVD 

prevalence it is possible that chronic, ubiquitous benzene exposure is playing a 

role in the development of these pathologies. 
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Table 7.  Characteristics of response to benzene exposure. 

 

Illustrated are the changes in general characteristics seen in mice after indicated 

exposures.   

↑ = moderate increase (0.1 – 1.4-fold, p<0.05) for indicated exposure; ↑↑ = 

greater increase (≥1.5-fold, p<0.05), - = no change (p≥0.05), NM = not measured; 

↓ = moderate decrease (0.1-1.4-fold, p<0.05), ↓↓ = greater decrease (≥1.5-fold, 

p<0.05) 
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Table 8.  Indices of oxidative stress, inflammation and IR. 

 

Illustrated are the changes in oxidative stress, inflammation and IR seen in mice 

after indicated exposures.   

↑ = moderate increase (0.1 – 1.4-fold, p<0.05) for indicated exposure; ↑↑ = 

greater increase (≥1.5-fold, p<0.05), - = no change (p≥0.05), NM = not measured; 

↓ = moderate decrease (0.1-1.4-fold, p<0.05), ↓↓ = greater decrease (≥1.5-fold, 

p<0.05)  
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Table 9.  Hematopoietic and endothelial progenitor cells. 

 

Illustrated are the changes in hematopoietic and endothelial progenitor cells seen 

in mice after indicated exposures.   

↑ = moderate increase (0.1 – 1.4-fold, p<0.05) for indicated exposure; ↑↑ = 

greater increase (≥1.5-fold, p<0.05), - = no change (p≥0.05), NM = not measured; 

↓ = moderate decrease (0.1-1.4-fold, p<0.05), ↓↓ = greater decrease (≥1.5-fold, 

p<0.05) 
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