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ABSTRACT  

GLYCINE RECEPTOR ALPHA SUBUNIT (GlyRα) SPECIFIC INHIBITION 

CONTRIBUTES TO GANGLION CELL SIGNALING IN MOUSE RETINA 

  

Chi Zhang 

March 12, 2015 

 

In the retina, numerous types of neurons are wired together in a highly 

specific albeit complex pattern. This sophisticated retinal network allows 

extraction and encoding of more than 20 representations of the visual scene in its 

output neurons, the retinal ganglion cells (RGCs). Within the inner plexiform layer 

(IPL) of retina, glycine receptors (GlyRs) are expressed on different cell classes 

and modulate RGC visual activity to light onset (ON RGCs) and to light offset 

(OFF RGCs), for example, their temporal precision and gain control. There are 

four GlyR alpha subunits (GlyRα1-4) with differential expression patterns in IPL. 

Each mediates spontaneous inhibitory postsynaptic currents (sIPSCs) with 

different decay kinetics. Moreover, GlyR alpha subunit-specific expression was 

discovered across different RGC types. This evidence suggests subunit-specific 

roles for glycinergic inhibitory circuits to modulate the RGC visual outputs. 

However, the details remain largely unknown. 
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To investigate glycinergic subunit-specific modulation, I used GlyRα 

subunit knockout (KO) mouse lines, which lack GlyRα2 (Glra2-/-), GlyRα3 (Glra3-/-) 

or both (Glra2/3-/-). I found that GlyRα2 and GlyRα3 enhance ON RGCs visual 

responses whereas only GlyRα2 enhances OFF RGCs visual responses. Second, 

I used viral tools to manipulate the expression of the GlyRα1 subunit on RGCs to 

examine its role in visual processing. Adeno-associated viruses (AAVs) were 

injected into dorsal lateral geniculate nucleus and transported retrogradely to 

infect RGCs and generate shRNA to selectively knockdown GlyRα1 expression. 

In OFFαTransient RGCs, which predominantly express GlyRα1, shRNA almost 

completely eliminated all glycinergic input and I showed that this input increases 

signal to noise ratio of OFFαTransient RGC visual responses. I expanded our 

understanding of subunit-specificity by surveying subunit specific expression and 

currents across eight identified RGCs in the PVcre mouse. By comparing co-

localization of GlyR α subunit puncta on identified RGC dendrites with the decay 

kinetics of their sIPSCs, I showed that there is subunit-specific expression of 

GlyRs.  

      My data not only support the hypothesis of subunit-specific glycinergic 

inhibitory modulation in retinal signaling, but provide new tools to further explore 

their individual roles in shaping RGC visual function.
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CHAPTER I 

INTRODUCTION 

I. Retinal Cell Classes and Basic Circuitry 

1.1 Retinal Laminar Structure and Their Cell Classes  

The retina is a laminar structure that is a part of the central nervous 

system. It is organized into three nuclear and two synaptic layers and five cell 

classes are selectively distributed across these layers (Figure 1.1). The outer 

nuclear layer (ONL) contains the cell bodies of the photoreceptors (PRs), the 

cones and rods. The inner nuclear layer (INL) contains the cell bodies of bipolar 

(BCs), horizontal (HCs) and amacrine cells (ACs). The ganglion cell layer (GCL) 

contains the cell bodies of ganglion cells (RGCs) and displaced ACs.  

The visual signal arises in the PRs and is relayed via synapses in the 

outer plexiform layer (OPL) to the BCs and HCs. The output of processing in the 

ONL is transmitted to the RGCs via synapses in the inner plexiform layer (IPL). 

The excitatory signal is transmitted vertically from the PRs through the BCs to 

RGCs. These excitatory processes are modulated by lateral inhibitory 

mechanisms that involve the HCs and ACs within OPL and IPL, respectively. 

This modulation shapes both spatial and temporal aspects of the signal. 

Throughout most of the retina, processing occurs via analog signaling and slow 
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potentials. At the level of some of the ACs and all of the RGCs the signal is 

converted to digital in the form of spiking activity, which forms the output to the 

rest of the brain. 

 

Figure 1.1. Schematic view of the retina.  Two types of photoreceptors (rods 

and cones), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs) and 

retinal ganglion cells (RGCs) are arranged in a laminar fashion within the retina. 

Light signals arriving at rods and cones are transmitted across all the layers from 

BCs to RGCs. HCs and ACs act to provide lateral information (ONL, outer 

nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner 

plexiform layer; GCL, ganglion cell layer).  
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1.2 Parallel Pathways Are a Basic Feature of Retinal Signaling 

The retina operates over a very wide range of lighting conditions (10−6 to 

106 cd/m²). To accomplish this versatility, the retina utilizes parallel On and Off  

pathways to encode luminance increments and decrements (Figure 1.2).  

 

 

Figure 1.2. Parallel On and Off retinal pathways.  Cones contact ON and OFF 

cone BCs (CBCs), which in turn directly synapse upon their corresponding ON or 

OFF RGCs. Multiple rods contact a single rod BC (RBC), which uses the AII AC 

as interneuron to relay information to the parallel ON and OFF cone pathways. 

The AII uses a sign-inverting glycinergic synapse ( ) to transmit information to 

the OFF CBCs and OFF RGCs, and a sign-conserving electrical synapse ( ) 

to pass information to the ON CBCs and ON RGCs.  

 



4 

 

 Rods are sensitive to very low luminance levels and are responsible for 

scotopic vision (10−6  to 10−2  cd/m²). They are so sensitive that they can signal a 

single photon (Hecht et al., 1941). Cones are less sensitive and are responsible 

for photopic vision (1 to 106 cd/m²). 

1.2.1 The Depolarizing (ON) and Hyperpolarizing (OFF) Cone Pathways 

Cones synapse onto two different general types of BCs and establish 

separate pathways to signal luminance increments (ON) and decrements (OFF). 

Depolarizing BCs (both rod and cone DBCs) express the metabotropic glutamate 

receptor 6 (mGluR6 receptor or GRM6 protein) on their dendrites in the OPL 

(Masu et al., 1995). In the dark, PRs (rods and cones) constantly release 

glutamate, which keeps the mGluR6 receptor occupied and inactivates its G-

protein coupled cascade. This keeps the TRPM1 cation channel closed and 

DBCs relatively hyperpolarized (Koike et al., 2010; Morgans et al., 2009; 

Snellman et al., 2008). At light onset, PRs reduce glutamate release, which 

activates the mGluR6 G-protein signaling cascade, opens the TRPM1 cation 

channel and depolarizes the DBC. Hyperpolarizing BCs (only cone HBCs) 

express ionotropic glutamate receptors on their dendrites. Currently conflicting 

results indicate that either AMPA and Kainate (DeVries, 2000; Puller et al., 2013) 

or Kainate alone (Borghuis et al., 2014) are responsible for signaling. In contrast 

to the ON pathway, the binding of glutamate onto ionotropic glutamate receptors 

keeps the HBCs relatively depolarized in the dark. At light offset, when glutamate 

levels increase the HBC is depolarized (Kaneko and Saito, 1983; Saito and 

Kaneko, 1983). In mouse retina, there are five types of DBCs and four types of 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004817/#B15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004817/#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004817/#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004817/#B32
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004817/#B32
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HBCs. They are differentiated by their morphology and by the termination 

patterns of their axons at that define the On and Off sublaminae of the IPL 

(Ghosh et al., 2004). DBC axons terminate and make glutamatergic synapses 

with ON ACs and RGCs within the On sublaminae. HBC axons terminate and 

make glutamatergic synapses with OFF ACs and RGCs within the Off 

sublaminae. The glutamatergic BC-to-RGC inputs represent vertical excitatory 

transmission, whereas BC-to-AC inputs drive diverse lateral inhibitory pathways 

and modulate the outputs of BCs and RGCs.                                  

 

Figure 1.3. Three rod signaling pathways in the mammalian retina.  (A) The 

primary rod pathway.  Rods drive rod ON BCs to relay visual information to AII 

AC, which are electrically coupled with ON cone BCs and inhibit OFF cone BCs 

via a glycinergic synapse. (B) The secondary rod pathway.  Rods are electrically 

coupled to cones and allow the rod signal into ON and OFF cone BC pathways to 
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the RGCs. (C) The tertiary rod pathway.  Rods provide a direct glutamatergic 

input to OFF cone BCs. (modified from van Genderen et al., 2009) 

 

 

1.2.2 The Rod Pathways 

Compared to the cone pathway, the rod pathway is more specialized. 

Rods synapse almost exclusively with rod DBCs, which utilize a single 

glycinergic narrow-field bistratified AC, called the AII, to relay signals to both 

sublaminae and through cone DBCs and HBCs onto RGCs (Famigliette and 

Kolb, 1975; Strettoi et al., 1992; Tsukamoto et al., 2001; Völgyi et al., 2004). At 

light onset, rod DBCs provide a glutamatergic excitatory drive to the AII ACs 

(Figure 1.2, 1.3A). AII ACs make a sign-inverting glycinergic synapse with cone 

HBCs or OFF RGCs. They also make a sign-conserving gap junction (electrical 

synapse) with ON cone BCs (Famiglietti and Kolb, 1975; Strettoi et al., 1990). To 

broaden the retinal operating range to higher light levels (van Genderen et al., 

2009; Völgyi et al., 2004)., rods use a secondary pathway to initiate visual 

signaling via gap junctions between rod spherules and cone pedicles or a tertiary 

pathway via a glutamateric synapse with OFF cone BCs (Figure 1.3B & C; 

Raviola and Gilula, 1973; Soucy et al., 1998; Tsukamoto et al., 2001).  
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1.3 The Diversity of Amacrine Cells   

The retina encodes more than just light increments and decrements and it 

is hypothesized that the 30 morphologically different AC types and their synaptic 

organization plays this role. In fact, it is clear that one AC type, the starburst AC 

(SAC) is critical to the direction selectivity found in several RGC types (Yoshida 

et al., 2001; Werblin, 2011). With this and a few other examples, the remaining 

ACs are characterized primarily by their morphology, e.g., dendritic field size, 

shape and lamination pattern within the IPL (MacNeil and Masland, 1998; 

MacNeil et al., 1999) and the neurotransmitter/neuromodulators that they 

express (Karten and Brecha, 1983; Vaney, 1991; Zhu et al., 2014). Wide-field 

ACs (WF-ACs) have large dendritic arbors (>400μm) and are primarily 

GABAergic (Pourcho and Goebel, 1983). Most have narrow lamination patterns 

and stratify within a single IPL laminae or within multiple On or Off sublaminae. 

They are likely to provide widespread lateral inhibition restricted to either the On 

or Off pathway (MacNeil and Masland, 1998; Pérez de Sevilla Müller et al., 2007; 

Pourcho and Goebel, 1983). Narrow-field ACs (NF-ACs) have small dendritic 

arbors (<125μm) and are primarily glycinergic. Most have processes that stratify 

within more than one IPL sublamina (Menger et al., 1998). They are likely to 

provide local inhibition between the On and Off pathways (MacNeil and Masland, 

1998; MacNeil et al, 1999). Medium-field ACs have dendritic arbors that extend 

~200μm, and include starburst and DAPI3 ACs, which are involved in directional 

selectivity, lateral inhibition and gain control, respectively (Werblin, 2011; 

Yoshida et al., 2001).  
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1.4 ON and OFF RGCs and Their Receptive Field Organization 

There are 15-20 different morphological/functional RGCs types in the 

mammalian retina. Each type is thought to represent a unit that specifically 

processes an aspect of the visual image and the fundamental building blocks of 

all subsequent visual processing. Like the ACs, RGCs are characterized 

morphologically on the basis of their soma diameter, dendritic field size and IPL 

stratification pattern (Rockhill et al., 2002; Sun et al., 2002).  

1.4.1 ON and OFF RGCs  

Most RGCs have receptive fields (RFs) with specific spatial organization; 

an excitatory center and a coextensive antagonistic surround (Rodieck and 

Stone, 1965). Functionally, RGCs have been grouped as ON or OFF, based on 

their excitatory response to light increments and decrements presented within 

their RF center. ON RGCs increase their firing rate in response to a luminance 

increment within their RF center; whereas OFF RGCs increase their firing rate in 

response to a luminance decrement in their RF center (Kuffler, 1953). ON RGCs 

have an OFF surround and OFF RGCs have an ON surround (Kuffler, 1953; 

Wiesel, 1959; Rodieck and Stone, 1965; Stone and Pinto, 1993). The RGC RF 

excitatory center represents the summation of excitatory signals from BCs as 

well as local lateral inhibition via ACs. The recruitment of BCs is limited spatially 

by the span of the RGC dendritic arbor (Werblin, 1991) and the RF center 

response represents a relatively linear summation that can be quantified using 

spots of increasing diameter (Kuffler, 1953; Rodieck and Stone, 1965; 
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Sagdullaev and McCall, 2005). For example, small spots of increasing diameter 

and of preferred contrast (positive contrast for ON, and negative contrast for OFF 

RGCs) evoke increasing excitatory responses that reaches a maximum when the 

spot diameter matches the dendritic field size (Figure 1.4). As the spot diameter 

increases beyond the RF center, the excitatory response declines as a result of 

surround inhibition. This functional distinction was subsequently correlated with 

their dendritic stratification in the IPL On and Off sublaminae (Nelson et al., 1978; 

Figure 1.2). 

1.4.2 Transient and Sustained RGCs within the ON and OFF Classes 

Both ON and OFF RGCs can be divided into two subgroups based on the 

temporal properties of their excitatory response within RF center (Cleland et al, 

1971, 1973; Kuffler, 1953). To a light stimulus of appropriate sign (light increment 

for ON and decrement for OFF), sustained RGCs respond with an initial high 

frequency component (peak) followed by a steady-state component (maintained) 

that is matched to the duration of the stimulus. Transient RGCs respond with 

high frequency firing rate at stimulus onset that quickly returns to the level of 

spontaneous activity, usually in less than one second when the stimulus is at 

least 1.5 sec. The basis for RGC temporal specificity may originate from intrinsic 

properties of sustained and transient BCs that provide their excitatory drive 

(Awatramani and Slaughter, 2000), although inhibitory circuits clearly also 

modulate RGC temporal responses (Caldwell and Daw, 1978; Eggers and 

Lukasiewicz, 2011).  
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1.4.3 Inhibitory Surround of RGC Receptive Field 

The inhibitory surround is spatially concentric with the RF center, although 

it extends beyond it. The surround results from a combination of local and 

widespread lateral interactions among the BCs, ACs and RGCs. In the OPL, HCs 

exert inhibitory influences on PRs and BCs to generate BC surround antagonism 

(Sterling, 1995; Thibos and Werblin, 1978; Thoreson and Mangel, 2012). The 

exact synaptic mechanism of HC-mediated inhibition remains highly debated. 

The diverse mechanisms that are potentially responsible include: modulation of 

PR Ca2+ channels via hemichannels (ephaptic mechanism) and/or changes in pH 

at these same synapses (chemical mechanism) to regulate PR glutamate release 

(Hirasawa and Kaneko, 2003; Kamermans and Spekreijse, 1999; Klaassen et al., 

2011; Thoreson and Mangel, 2012; Vroman et al., 2013). A recent study shows 

that at cone synapses, HCs use both ephaptic and chemical mechanisms that 

play distinct temporal kinetics to adjust the output of cones, and GABA release at 

GABA autoreceptors on HCs to modulate the two mechanisms (Kemmler et al., 

2014).     

In the IPL, ACs release neurotransmitters to mediate complex operations 

including not only temporal and spatial tuning of RF center-surround (Cook and 

McReynolds, 1998; Murphy and Rieke, 2006; Nobles et al., 2012; Roska et al., 

2006; van Wyk et al., 2009), but also contrast enhancement, motion detection 

and direction selectivity (Manookin et al., 2008; Münch et el., 2009; Russell and 

Werblin, 2010; Yoshida et al., 2001).  

 

http://www.jneurosci.org/content/21/13/4852.long#ref-35
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II. Inhibitory Receptors and Inhibitory Circuits in the Inner Retina 

In the retina, GABA and glycine are both used as inhibitory 

neurotransmitters by ACs and in approximately equal proportions. Ionotropic 

GABA receptors (GABAARs and GABACRs) and glycine receptors (GlyRs) 

belong to the pentameric acetylcholine receptor (nAchR) superfamily. They are 

ligand-gated transmembrane chloride channels which increase a chloride 

conductance and hyperpolarize cells (Cascio, 2006; Figure 1.5). 

 

Figure 1.4. ON and OFF RGCs RF center summation.  Representative light-

evoked responses of wild type (WT) mouse ON- (A) and OFF- center (B) RGCs. 

Spot stimuli of varying diameter (light increment for ON and decrement for OFF 

RGCs are presented on the same adapting background) elicit excitatory 

response. Spots with RF center size evoke the optimal response. In the presence 

of larger spots, RF center and surround are stimulated simultaneously and the 
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excitatory response is reduced. (modified from dissertation proposal by Nobles, 

2009) 

 

 

 

Figure 1.5. Pentameric structure of ionotropic inhibitory receptors and their 

subunits.  The basic GABAA receptor is composed of α, β and γ subunits. The 

ρ1subunit is critical for GABAC receptor assembling while the composition of the 

receptor still needs to be determined. The synaptic glycine receptor is composed 

of 2 α homomeric subunits and 3 homomeric β subunits. 

(http://www.ifcc.org/ejifcc/vol15no3/ 150309200408. htm) 
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2.1 Ionotropic GABA Receptors 

In mammalian retinas, the GABAAR receptor is composed of α, β and γ 

subunits (Figure 1.5), whereas the GABACR may be either homomeric for the ρ1 

subunit or heteromeric including both ρ1 and ρ2 subunits. If both are expressed, 

only the ρ1 subunit is required for receptor assembly (Enz, 2001; McCall et al., 

2002). The functional properties of GABAARs and GABACRs have been well 

studied, using their selective antagonists, e.g., picrotoxin, Bicuculline or SR95531, 

which block GABAARs and 1,2,5,6-Tetrahydropyridin-4-yl) methylphosphinic acid 

(TPMPA) which blocks GABACRs. GABAARs and GABACRs mediate 

spontaneous and light-evoked inhibitory postsynaptic currents (sIPSCs and 

eIPSCs) with distinct kinetics. GABAAR sIPSCs and eIPSCs exhibit fast time to 

peak and fast decay; whereas GABACR sIPSCs and eIPSCs have slow time to 

peak and slow decay (Table 1.1; reviewed in Eggers and Lukasiewicz, 2011). 

Light-evoked GABAergic inputs have been recorded at the axon terminals across 

all types of BCs. These inputs are mediated by both GABAARs and GABACRs 

and their relative proportions are related to the BC type. Rod BCs receive a large 

GABACR-mediated input and a smaller GABAAR-mediated input. Compared to 

rod BCs, ON cone BCs have larger GABAAR-mediated input while GABACR-

mediated input still dominates. In OFF cone BCs, GABAARs and GABACRs 

mediate the inputs in relatively equal amounts (Eggers et al., 2007; Eggers and 

Lukasiewicz, 2011). The differential distributions of GABAAR- and GABACR-

mediated currents on the BC axon terminals lead to distinct shaping of their 

excitatory output. Furthermore, GABAARs are suggested to mediate inhibitory 
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inputs onto ACs and RGCs to modulate spatial properties of RGC RF (Cook and 

McReynolds, 1998; Eggers and Lukasiewicz, 2010; Flores-Herr et al., 2001; 

O’Brien et al., 2003).  

 

Table 1.1 Parameters for GABAergic sIPSCs and eIPSCs from ON cone BCs 

(modified from Eggers et al., 2007) 

 

 

 2.2 Ionotropic Glycine Receptors 

While GABAARs and GABACRs are the most well characterized inhibitory 

receptors in the retina; GlyRs are less well understood primarily because of the 

lack of selective antagonists to target specific subunits. Five different GlyR 

subunits have been identified with four α subunits (α1, α2, α3, and α4) and one β 

subunit (Figure 1.5). Synaptic GlyRs also are pentameric receptors composed of 

three β subunits and two α subunits of a single type (reviewed in Betz and Laube, 

2006; Dutertre et al., 2012). GlyR α and β subunits are required for assembly, 

ligand binding and gating of the receptor (Grudzinska et al., 2005; Kneussel and 

Betz, 2000). The β subunit binds the structural protein, gephyrin, which is 

Receptor 
sIPSC eIPSC 

τdecay time (ms) Time to peak (ms) τdecay time (ms) 

GABAA 2.1 ± 0.5 136.3 ± 5.8 87.8 ± 19.4 

GABAC 5.2 ± 0.4 207 ± 21.3 242.5 ± 52.0 
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essential for postsynaptic clustering of GlyRs to the cell membrane (Vannier and 

Triller, 1997). All five GlyR subunits are expressed in mouse retina with most of 

the expression located in the IPL (Dutertre et al., 2012; Wässle et al., 2009). 

Consistent with their general role in all glycinergic receptors, GlyR β subunits are 

expressed throughout the IPL. The four GlyRα subunits show distinct expression 

patterns across the IPL sublaminae (Figure 1.6). GlyRα1 is most prominent in the 

Off sublamina. GlyRα2 is ubiquitously distributed throughout the IPL. GlyRα3 is 

expressed in four distinct bands in the IPL with the highest expression within its 

Off sublamina. GlyRα4 is expressed throughout the IPL with highest expression 

in a small band at the border of ON sublamina 3/4 and in close proximity to the 

choline acetyl transferase (ChAT) where ON starburst ACs processes ramify 

(Heinze et al., 2007; Figure 1.7).  

Consistent with the differences in their expression patterns, the four 

different GlyR α subunits (α1-4) are expressed on different retinal cell classes. In 

addition, the subunit composition imposes unique kinetic properties on the 

sIPSCs (Table 1.2). Initial, characterizations of the kinetics of these subunits 

were conducted at 25°C and showed the fastest conducting GlyRs express the 

α1 subunit (decay time constant τ ~4 ms). GlyRs expressing the α2 and α4 

subunits have significantly slower kinetics (τ ~27 ms; ~66 ms, respectively). The 

α3 subunit mediates inputs with medium fast kinetics (τ ~11ms) (Majumdar et al., 

2007; Wässle et al., 2009).  
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Figure 1.6.  Localization of the four GlyRα subunits in the IPL.  (A, D) 

Normarski images of the five retinal layers. (B) GlyRα1 is predominantly 

expressed in the Off sublamina of the IPL with sparse labeling in the OPL. (C) 

GlyRα2 is evenly distributed throughout the IPL. (E) GlyRα3 is localized to four 

distinct bands with the densest label in the Off sublamina. (F) GlyRα4 expression 

is highly concentrated between strata 3/4 of the IPL. Scale bar = 50μm. 

 

 

 

Figure 1.7. Vertical sections of a mouse retina double labeled for GlyRα4 

(red) and ChAT (green).  There is co-localization of GlyRα4 highly concentrated 

band and the ON-cholinergic stratum. Cholinergic cells in GCL are co-registered 

with GlyRα4-positive puncta (arrows), while cholinergic cells in INL are not 

(arrows). Scale bar= 20 μm. (Modified from Heinze et al., 2007) 
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Table 1.2 Different cell types express specific GlyRα subunits with distinct 

kinetics. 

 
Subunit τdecay time(ms) Kinetics Cell Type 

GlyRα1 3.9 ± 2.5     Fast OFF cone BCs; rod BCs; A-type RGCs 

GlyRα2 27 ± 6.8     Slow  NF-ACs; WF GABAergic ACs 

GlyRα3 11.2 ± 0.2    Mid-fast  AII ACs 

GlyRα4 66.2 ± 90   Very slow  ON starburst ACs 

 

 

Electrophysiological studies in mouse retina have shown that the 

predominate inhibitory inputs onto OFF cone BC terminals are glycinergic and 

that they also participate in inhibition on rod BCs. No glycinergic inputs have 

been observed in ON cone BCs (Eggers et al., 2007; Ivanova et al., 2006). 

GlyRα1 is the only GlyRα subunit mediating glycinergic currents in OFF cone 

BCs (Ivanova et al., 2006). The distribution of subunit specificity among specific 

types of RGCs and ACs is less well described. GlyRα1 is the only GlyRα subunit 

mediating glycinergic currents in A-type ganglion cells in mouse (Majumdar et al., 

2007). GlyRα2 has been reported to mediate glycinergic currents in type 5/6 and 

7 NF-ACs (Weiss et al., 2008) and in displaced GABAergic WF-ACs (Majumdar 

et al., 2009). GlyRα3 appears to be responsible for glycinergic currents in AII 

ACs (Weiss et al., 2008). Although there is very little electrophysiological data on 

GlyRα4, Majumdar et al (2009) reported that glycine currents in ON starburst 
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ACs had very slow kinetics (~50 to 70ms), indicating a role for GlyRα4. With 

distinct kinetics and distribution within IPL, the four GlyRα subunits could play 

unique roles in the inhibitory network in the retina to modify different properties of 

RGC activities. However, the contribution and mechanisms of GlyRα subunit-

specific mediated inhibition have not been fully studied due to the lack of 

selective antagonist.   

2.3 Different Inhibitory Circuits Mediated by GABA and Glycine Receptors 

Amacrine cells target different postsynaptic cell classes in the IPL (BCs, 

ACs and RGCs) releasing either GABA or glycine to activate GABAAR, GABACR 

and GlyR currents. This forms a highly complex inhibitory network, which fine 

tunes visual signaling that culminates in the spiking activity of RGCs. Four basic 

inhibitory mechanisms are found in these networks: feedback, feedforward, serial 

and crossover inhibition (Figure 1.8). The first two produce direct inhibition from 

the pre to the post cells, whereas the latter two produce disinhibition in their 

postsynaptic targets. 

 Reciprocal feedback inhibition (Figure 1.8A) occurs between a presynaptic 

excitatory cell that receives inhibitory input from its postsynaptic target. In the 

retina, there are two well-characterized reciprocal feedback inhibitory circuits. 

The A17 AC mediates GABAergic feedback inhibition onto its presynaptic rod 

DBC, which modulates the temporal properties of the rod BC output (Dong and 

Hare, 2003; Lukasiewicz and Werblin, 1994; Menger and Wässle, 2000; Zhang 

and McCall, 2012). Although the identity of the postsynaptic AC is unknown, 

there also is a GABAergic feedback inhibition onto the OFF BC. In both circuits, 
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GABACRs are the primary postsynaptic target of the reciprocal inhibition (Eggers 

and Lukasiewicz, 2010, 2011; Shields et al, 2000).  

 Feedforward inhibition (Figure 1.8B) occurs between an inhibitory 

presynaptic cell whose output directly reduces excitation in its postsynaptic target. 

In the retina, there are many examples of this form of inhibition. GABAergic ACs 

use this mechanism to enhance the RF surround of RGCs, via GABAARs (Flores-

Herr et al., 2001; O’Brien et al., 2003; Roska et al., 2000). Similarly, glycinergic 

inhibition from ACs to RGCs modulates excitation of their RF center (Menger et 

al., 1998; Nobles et al., 2012; O’Brien et al., 2003).  

 

Figure 1.8. Illustrations of four basic types of inhibition.  (A) Feedback 

inhibition modulates the release of glutamate from BCs to RGC. (B) Feedforward 
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inhibition provides direct inhibition to BCs or RGCs. (C) Serial inhibition 

disinhibits the activities of BCs or RGCs. (D) Crossover inhibition enables 

reinforcement of signals by crosstalk between On and Off pathways. 

 

 

 Serial inhibition (Figure 1.8C), first observed in salamander retina (Zhang 

et al., 2007), has been observed in both BCs and RGCs in mammalian retina 

(Eggers et al., 2007; Eggers and Lukasiewicz, 2010; Russell and Werblin, 2010; 

Venkataramani and Taylor, 2010). Serial inhibition utilizes inhibition between ACs. 

The presynaptic AC (AC1) inhibitory output reduces excitation in its postsynaptic 

target (AC2), reducing its release of inhibitory neurotransmitter. The lowered 

inhibitory output of AC2 enhances excitation in its postsynaptic target producing 

what is called disinhibition. This mechanism has been observed in both BCs and 

RGCs. In BCs, serial inhibition spatially tunes the BC, using both GABAAR to 

GABACR, and GABAAR to GlyR inhibition (Eggers and Lukasiewicz, 2010, 2011). 

Direct evidence for serial glycinergic inhibition is not possible due to the lack of a 

selective GlyR antagonist. Although indirect, changes in signaling in the 

presence of the non-selective glycinergic antagonist, strychnine, are consistent 

with glycinergic control of GABAergic currents in RGCs (Caldwell and Daw, 1978; 

Stone and Pinto, 1992; Russell and Werblin, 2010). Finally, using subunit specific 

knockout mice, we have observed changes in inhibition that are consistent with 
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subunit specific glycinergic control of GABAergic or other glycinergic subunit 

inhibition in BCs (Nobles et al., 2012).  

Crossover inhibition mediates interactions between On and Off retinal 

parallel pathways (Figure 1.8D). Studies using electrophysiological strategies 

demonstrate that crossover inhibition can originate in either the On or the Off 

pathway and is usually glycinergic. Crossover inhibition is carried by NF-ACs via 

the bi- or multi-stratification of their processes in both On and Off IPL sublaminae 

and influences BCs, other ACs and RGCs (reviewed in Werblin, 2010). Because 

the excitatory input that initiates signaling occurs in the opposite pathway, 

stimulus onset removes inhibition and stimulus offset creates active inhibition in 

the postsynaptic cell. In this way, crossover inhibition enhances excitatory and 

inhibitory conductance in the postsynaptic cell, which creates more active 

antagonist surround within the IPL (Werblin, 2010). Furthermore, crossover 

inhibition is hypothesized to modify an inherently nonlinear synaptic current 

making it more linear to extend the operating range of RGC coding (Molnar et al., 

2009). Many studies have shown modulation from On pathways to OFF BCs and 

RGCs and AII cell is a candidate that mediates crossover interaction (Chen et al., 

2010; Liang and Freed, 2010; Manookin et al., 2008; Murphy and Rieke, 2006, 

2008; van Wyk et al., 2009). Although less studied, Off to On crossover pathway 

inhibition is also observed in the inner retina (Molnar et al., 2009).  

 New serial electron microscopy techniques describe other more 

complicated inhibitory synaptic organization (micronetworks) and indicate that 

nested feedback/feedforward and concatenated inhibition should be present 
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within AC to AC synapses (Anderson et al., 2011; Marc and Liu, 2000). Whether 

or how these circuits translate into synaptic function and visual signaling remains 

to be determined. However, it is clear that there is diversity in AC inhibitory 

circuits that enables the retina to simultaneously process multiple aspects of 

visual signals in a highly complex manner.  

III. Specific Aims 

The preceding review demonstrates that we have made significant 

progress in understanding the retina's vertical circuits, but much less is known 

about the lateral inhibitory circuitry. The inner plexiform layer and the role of the 

diverse types of ACs is the new frontier in retinal research. Specifically, there 

remain many questions related to how the various types of lateral inhibition, as 

well as the various inhibitory receptor subunit composition contribute to 

processing the visual image to produce 20+ representations at the level of RGC 

output. The focus of my dissertation was to begin to define the role of glycine 

receptor alpha subunit-specific inhibition in visual processing at RGC level using 

the mouse retina as a model. While the distinct distribution and decay kinetics of 

inhibitory postsynaptic currents of the four GlyR alpha subunits in the IPL 

suggest the possibility of subunit-specific inhibitory circuits in the IPL, we knew 

little about either subunit specific expression on RGCs or a subunit specific role 

in RGC visual processing. To begin to address these gaps in our understanding, 

I used subunit-specific knockout mouse lines and defined GlyRα2- and GlyRα3-

mediated inhibition in modulating RGC visual responses in circuits that formed 
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their RF center (Nobles et al., 2012) and surround responses (Chapter III). I 

applied viral tool-mediated RNAi to define the role of GlyRα1-mediated inhibition 

in modulating visual activities of specific RGC, the OFFαTransient cell (Zhang et al., 

2014; Chapter IV). Finally, I surveyed the subunit-specific expression across 8 

different RGC types (Chapter V).
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CHAPTER II 

EXPERIMENTAL MATERIALS AND METHODS 

I. Animals  

Fifteen different mouse lines were used for the experiments (Table 2.1), 

including C57BL/6J wild type (WT) mice, GlyRα subunit KO mouse lines which 

lacked GlyRα2 (Glra2-/-), or GlyRα3 (Glra3-/-), or GlyRα4 (Glra4-/-), or both 

GlyRα2 and GlyRα3 (Glra2/3-/-), PVcre mice which has YFP expressed in eight 

identified RGC types, TRHR mice which label a subset of DSGCs and ChAT-

cre/Ai9 mouse line which labels SACs with tdTomato. The PVCre or TRHR mice 

were crossed to GlyR α subunit single KO mouse lines to obtain several different 

mouse lines.  All mice were maintained at the University of Louisville (all 

Chapters) or the Friedrich Miescher Institute (Chapter IV) on a 12:12h light/dark 

schedule. All experimental procedures were conducted in accordance with 

regulations described for the ethical care and treatment of animals in the Society 

for Neuroscience Policies on the Use of Animals in Neuroscience Research and 

with the approval of the individual Institutional Animal Care and Use Committees 

at the University of Louisville and the Friedrich Miescher Institute. 

 

 



25 

 

Table 2.1 List of mouse lines used for experiments. 

Strain name Source/Jackson lab stock# Chapter 

C57BL/6J 000664 III 

Glra2-/- Young-Pearse et al., 2006; 007065 III 

Glra3-/- Harvey et al., 2004; 007065 III 

Glra2/3-/- Glra2-/- X Glra3-/- III 

Glra4-/- Created in our lab V 

PvalbCre Hippenmeyer et al., 2005; 008069 IV, V 

Thy1Stp-EYFP Gift of J. Sanes; Buffelli et al., 2003; 005630 IV, V 

PVCre PvalbCre X Thy1Stp-EYFP ; Farrow et al., 2013; IV, V 

Glra2-/-/PVCre Glra2-/- X PVCre V 

Glra3-/- /PVCre Glra3-/- X PVCre V 

ChAT-cre/Ai9 Gift of W. Guido; ChAT-cre (006410) X Ai9(007905) V 

TRHR-GFP Gift of A. Huberman V 

Glra2-/-/TRHR Glra2-/- X TRHR-GFP   V 

Glra3-/-/TRHR Glra3-/- X TRHR-GFP V 

Glra4-/-/TRHR Glra4-/- X TRHR-GFP V 
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II. In Vivo Electrophysiology Recordings from Optic Nerve Fibers 

(Chapter III) 

2.1 Surgical Preparation  

Surgical procedures were performed at light adapted levels and have 

been previously published (Nobles et al., 2012; Sagdullaev and McCall, 2005). 

Briefly, anesthesia was induced with an intraperitoneal injection of a Ringer’s 

solution containing ketamine and xylazine. In WT mice the induction dose was 

127:12 mg/kg. In Glra2-/- and Glra2/3-/- mice an increase of 12.5% was required to 

induce a surgical plane of anesthesia. Anesthesia was maintained throughout the 

experiments with supplemental subcutaneous injections (50% of initial 

concentration) administered about every 45 min. The head was secured in a 

stereotaxic frame (David Kopf Instruments) with ear cups and a bite bar. Body 

temperature was maintained at 37°C with a feedback controlled heating pad (TC-

1000; CWE). Topical Mydfrin (Phenylephrine hydrochloride ophthalmic solution 

2.5%) and Mydriacyl (Tropicamide ophthalmic solution 1%; Alcon Labs, Inc.) 

were applied to dilate the pupils and paralyze accommodation. To prevent drying 

of the corneas, clear zero-powered lenses (Sagdullaev et al, 2004) moistened 

with artificial tears (Akwa Tears, Akorn, Inc.) were placed over the eyes. A 

craniotomy was performed anterior to the Bregma suture and the overlying cortex 

was removed using suction to expose the optic nerve. 
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2.2 Electrophysiology Recordings from Optic Nerve Fibers 

 Action potentials were recorded extracellularly from single optic nerve 

axons using sharpened tungsten electrodes (A-M Systems, Inc.) with a final 

impedance between 70-100MΩ. A reference electrode was inserted 

subcutaneously. Action potentials from single GC axons were isolated, amplified 

(X3+Cell, FHC), digitized at 15 kHz (Power1401, CED) and stored for offline 

analysis. The isolated spikes were simultaneously displayed on an oscilloscope 

(60MHz, Tektronix Inc.) and computer monitor (Spike2, CED) and played over an 

audio monitor (AM7, Grass Instruments) to obtain direct feedback of the cell’s 

response. Responses were analyzed offline using Spike2 software (Cambridge 

Electronic Design). Spikes were accumulated within a 50ms bin width and 

displayed as post-stimulus time histograms (PSTHs). Each average PSTH was 

smoothed by fitting it with a raised cosine function with a 50ms smoothing 

interval to minimize alteration of the peak firing rate and maximize signal-to-noise 

ratio (Sagdullaev and McCall, 2005). 

2.3 Quantitative Characterization of RGC Visual Response Properties 

The position, spatial extent and RF center sign of each RGC were 

determined first using a handheld light source projected onto a screen located 25 

cm from the anterior nodal point of the eye. All quantitative measures of RGC 

visual responses and receptive field properties were evoked by stimuli 

(VisionWorks; Vision Research) presented a CRT display monitor with a mean 

luminance of 20cd/m2 (Eizo E120 FlexScan FXC7). All stimulus and RF 
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dimensions are presented in degrees of visual angle (corrected for monitor 

distance). 

2.4 Receptive Field Surround Analysis 

Annular stimuli were centered on the RF center and their inner diameter 

varied in eight steps (0, 270, 372, 544, 754, 1043, 1587 and 2616 μm on the 

retina) while their outer diameter was fixed (4425 μm). Each annulus inner 

diameter was presented eight times with a duration of 5 seconds and with 5 

seconds inter-stimulus intervals. These trials were randomly interleaved with 

blank trials. For each inner diameter and for blank trials we computed an average 

PSTH (Figure 2.1). For ON RGCs the luminance of the annulus increased to 

100cd/m2 above the mean luminance (20cd/m2) and for OFF RGCs the 

luminance decreased to 3cd/m2. This represents a 67% contrast change for both. 

The mean spontaneous activity (x̄SA) was measured from blank trials where the 

monitor luminance was 20cd/m2 and a stimulus evoked response was 

considered significant if its amplitude was 3SEM above SA for excitatory or  

3SEM below for suppressive responses. Figure 2.1 illustrates the quantitative 

measures that we derived from each average PSTHs. Each response was 

divided into a transient (within the first 0.4 sec after stimulus onset; between 

cursors 1 and 2) and a maintained (the response that remained significantly 

different from the spontaneous activity from 0.4 – 5 sec; between cursors 2 and                                                                        

3) component. The transient component is referred to as its peak firing rate when 

the response was excitatory or its minimum firing rate when the response was 



29 

 

suppressive. The maintained component of the response is referred to as the 

mean firing rate (which can be either excitatory or suppressive). All responses 

were corrected for x̄SA to compute the response amplitude increments and 

decrements.  For transient suppression, I excluded cells with a minimum firing 

rate equals to 0 spikes/s to avoid underestimating the magnitude. The inner 

diameter that evoked the maximal suppression is referred to as the optimal 

annulus. The duration of the response at the optimal inner diameter was 

determined as the time period when the response dropped below x̄SA. The post-

stimulus peak amplitude at the optimal inner diameter was determined as the 

firing rate above x̄SA after stimulus offset 

.  

Figure 2.1. PSTH response quantification during receptive field surround 

stimulation.  The spiking activity of an ON RGC is suppressed by a bright 

annulus (above) presented within its RF surround for a duration of 5 seconds.  In 

the PSTH (below), the suppressive response begins when the firing rate crosses 

below -3SEM of x̄SA lower dotted line and ends when the response returns to 
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the x̄SA (solid line). The vertical cursors define the transient response 

component (cursors 1-2, 0-0.4sec) and the maintained response component 

(cursors 2-3, 0.4-2.0sec).  

 

 

III. In Vitro Characterization of GlyR Subunit-specific Expression and 

Function (Chapter VI-V) 

3.1 AAV Vector Construction 

The AAV vector plasmid AAV-Ef1a-NLStdTomato-H1 (Figure 2.2) was 

constructed by linearizing the viral vector AAV-Ef1a-NLStdTomato at its PmlI site 

and inserting an H1 promoter. A poly (A) tail was added by seamless cloning 

using GeneArt® 2x enzyme mix (Life technologies) and the vector was then 

linearized with SalI/XbaI. The synthesized shRNA cassettes (Sigma-Aldrich) 

were inserted after the H1 promoter (Figure 2.2). AAV was chosen because of its 

high efficiency and low immunogenicity (reviewed in McClements and MacLaren, 

2013). 

Two 21-mer and one 29-mer shRNA were designed and synthesized to 

target different regions of Glra1 mRNA. A scrambled shRNA, designed to no 

gene was used as a control. The efficiency of each of three Glra1 and a 

scrambled shRNA construct were assessed in cultured HEK293T cells after co-

transfection with a plasmid expressing GlyRα1 (pCMV6-AC-GFP, carrying mouse 

Glra1 cDNA open reading frame (OriGene)). 

Figure 2.1. PSTH response 
quantification during receptive 
field surround stimulation.  The 
spiking activity of an ON RGC is 
suppressed by a bright annulus 
(above) presented within its RF 
surround for a duration of 5 seconds.  
In the PSTH (below), the suppressive 
response begins when the firing rate 
crosses below -3SEM of x̄SA lower 
dotted line and ends when the 
response returns to the x̄SA (solid 
line). The vertical cursors define the 
transient response component 
(cursors 1-2, 0-0.4sec) and the 
maintained response component 
(cursors 2-3, 0.4-2.0sec).  
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Figure 2.2. A schematic diagram of the AAV-RNAi vector backbone, pAAV-

Ef1a-NLStdTomato- H1. The shRNA cassette (Scrambled or Glra1) was 

inserted after the H1 promoter. ITR, flanking inverted terminal repeats; EF-1α, 

elongation factor-1 alpha promoter; NLS, nuclear localization signal for the 

fluorescent protein tdTomato; WPRE, woodchuck hepatitis post-transcriptional 

regulatory element; pA, poly(A) tail. 

 

 

3.2 RNA Isolation and cDNA Preparation  

Forty eight hours after transfection of HEK293 cells, the mRNA level of 

Glra1 was measured. RNA was isolated with TRIzol® LS reagent (Invitrogen) 

according to a standard protocol including DNaseI treatment (Promega) to 

remove residual genomic DNA. The cDNA was synthesized using 1 μg RNA and 

random primers (Promega) according to SuperScript™ III Reverse Transcriptase 

kit (Invitrogen).  

3.3 RT-PCR  

RT-PCR was performed to determine mRNA levels of Glra1 using 

StepOneTM Real-Time PCR System (Applied Biosystems). Each 20 μl reaction 
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mixture included: 2 μl cDNA, 10 μl SYBRGreen mix (Invitrogen) and 1 μl Glra1 or 

18s RNA primer set (10 μM). For each cDNA sample, three PCR replicates were 

performed using each primer set. The PCR cycling conditions were: incubation at 

50°C for 2 min, denaturation at 95°C for 10 min, and 40 cycles of 95°C for 15 sec 

and 60°C for 1 min. With 18s RNA as internal control (Krol et al., 2010), the fold 

change of Glra1 in each cDNA sample was calculated using ΔΔCT method. 

Glra1 RT-PCR primer forward: 5’-CCGTCTGGCCTACAATGAAT-3’ 

Glra1 RT-PCR primer reverse: 5’-CACGTCTGTACATCCATCGG-3’ 

3.4 AAV Production 

Recombinant AAVs (serotype 2/7) were made according to a standard 

triple-plasmid protocol, by co-transfection of HEK293T cells with the AAV vector 

plasmid, AAV helper plasmid (harboring Rep/Cap) and Ad-helper plasmid 

(pGHTI-adeno1). Transfected cells were lysed and treated with benzonase 

(Sigma-Aldrich Cat# E8263). Packaged AAVs were concentrated and purified 

from total cell lysates by iodixanol gradient centrifugation (Sigma-Aldrich, 

OptiprepTM) and collected in the 40% iodixanol band. Genome copy (GC) number 

titration was evaluated using RT-PCR (Applied Biosystems, TaqMan® reagents). 

High titers were produced for both Scrambled shRNA: 1.36×1012 GC/ml and 

Glra1 shRNA: 1.14×1012 GC/ml). 

3.5 Viral Injections in the Dorsal Lateral Geniculate Nucleus (dLGN) 
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Mice were sedated with Chlorprothixene (5mg/kg). Anesthesia was 

induced and maintained throughout the procedure using Isoflurane administered 

through a mask mounted in front of the nose of the mouse. Body temperature 

was maintained at 37°C with a feedback-controlled heating pad. The head of 

mouse was secured in a stereotaxic frame with ear bars and a bite bar. The skull 

was exposed with a midline incision then leveled with reference to sagittal 

sutures. A craniotomy was performed between the Bregma and Lambdoid 

sutures to access to the left dLGN. Tips of borosilicate glass pipettes (inner 

diameter 50-100 µm) were filled with 2-3 µl virus and positioned 2.25 µm 

posterior and 2.25 µm left of Bregma and lowered 2.5-2.7 µm from the brain 

surface into the dLGN. Using pressure, 1-1.5 µl virus was injected into the dLGN. 

Four weeks post AAV injection RGC nuclei were positive for AAV induced 

tdTomato expression and expression was stable up to at least 10 weeks post 

injection. Animals, 4-10 weeks post injection of AAV-Glra1-shRNA and AAV-

Scrambled-shRNA, were used for all experiments.  

3.6 Immunohistochemistry 

Using previously published techniques, retinas were dissected and fixed in 

4% paraformaldehyde in PBS for 15-20 min (Nobles et al., 2012). Whole mount 

retinas were incubated in blocking solution (10% normal goat or donkey serum in 

PBX (0.5% Triton-X 100 in PBS)) for 60 minutes, and then reacted with different 

combinations of antibodies in order to examine expression of GlyRα subunits on 

the dendrites of RGCs. The primary antibodies to label GlyRα subunits include a 
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mouse monoclonal anti-GlyRα1 primary (1:500, Synaptic Systems Cat# 146 111), 

goat polyclonal antibody to GlyRα2 (1:50, Santa Cruz Biotechnology Cat# 

SC17279), rabbit polyclonal antibodies to GlyRα3 (1:100, Chemicon Cat# 

AB5472) and GlyRα4 (1:100, Chemicon Cat# AB9696). The secondary 

antibodies include donkey anti-mouse IgG Alexa 555 (1:200, Life Technologies 

Cat# A31570), donkey anti-goat IgG Cy3 (1:200, Jackson ImmunoResearch Cat# 

115165003), goat anti-mouse IgG Cy3 (1:200, Jackson ImmunoResearch Cat# 

111165003), goat anti-rabbit Cy3 (1:200, Jackson mmunoResearch Cat# 

705165003). The IPL sublamination pattern was defined using goat anti-ChAT 

(1:200, Chemicon Cat# AB144) primary and a donkey anti-goat IgG Alexa 405 

(1:200, abcam Cat# ab175664) secondary antibody. Alternatively, the boundaries 

of IPL were defined using Vectashield mounting medium with DAPI (Vector lab) 

or Hoescht (1:1000, Life technologies Cat# H3570). To visualize their somatic 

and dendritic morphology, PVCre RGCs filled with neurobiotin were reacted with 

Streptavidin-Alexa 633 (1: 200, Life Technologies Cat# S21375) or Streptavidin-

Cy2 (1:300, Jackson ImmunoResearch Cat# 016220084). 

3.7 Confocal Image Acquisition and Co-localization Analysis 

Retinas were imaged both at the FMI (Chapter IV) and at the University of 

Louisville (Chapter V). At the FMI, images were acquired on a Zeiss LSM 700 

confocal microscope. Z-stack images of neurobiotin-filled RGCs were acquired 

with 0.3 μm z-step using a 40× oil immersion lens, NA 1.2; or 0.17 μm z-step 

using a 63× oil-immersion lens, NA 1.3. In Louisville, images were acquired on a 
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Olympus FV1000 confocal microscope. Z-stack images of neurobiotin-filled 

RGCs were acquired with 0.6 μm z-step using a 40× water immersion lens, NA 

1.15; or 0.2 μm z-step using a 60× oil-immersion lens, NA 1.4. For each RGC, 1-

2 non-overlapping dendritic areas (70×70 μm) were randomly selected and 

imaged.  

Prior to co-localization analyses, images were deconvolved using 

Huygens®
 software (Scientific volume imaging). For each RGC, we examined all 

the dendritic processes within the selected areas. Imaris (Bitplane) was used for 

analysis of GlyRα subunit expression. To evaluate co-localization a channel was 

built for each dendritic area (ImarisColoc tool), which contained only areas where 

GlyRα1 puncta were coincident with identified RGC dendrites. Thresholds were 

set to include most potential coincident pixels and exclude non-specific co-

localization due to background noise. The total number of coincident GlyRα 

puncta (POriginal) was counted (Imaris Spot function) and the total length of 

dendrite (LDendrite) was measured (Imaris Filament function). To evaluate specific 

coincidence, I compared this coincidence rate to a coincidence rate (PRandom) I 

measured when we when I flipped the GlyRα positive puncta channel 180 degree 

along its horizontal/vertical/diagonal axis. The corrected rate was computed as 

follows: Coincidence rate = (POriginal - PRandom) / LDendrite 

3.8 Whole Mount Retinal Preparation for Electrophysiological Recordings 

The mouse was sacrificed with CO2 followed by cervical dislocation. Eyes 

were removed and retinas were prepared and dissected under infrared 
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illumination in Ringer’s solution (in mM, 110 NaCl, 2.5 KCl, 1 CaCl2, 1.6 MgCl2, 

10 D-glucose and 22 NaHCO3, bubbled with 5% CO2/95% O2, pH 7.4). They 

were mounted in the center of a piece of filter paper (Millipore) with a 4 x 4 mm 

square aperture and ganglion cell-side up in the microscope recording chamber. 

Alternatively, the retina was cut into four quarters and each quarter was mounted 

on cover slip separately for recording. During the experiment, the retinas were 

superfused with oxygenated Ringer’s solution at 34-35°C. 

3.9 Targeting RGCs Using Two-photon Microscopy 

In WT PVcre retina, RGCs with YFP-positive soma were targeted based on 

the soma size and the morphology of their dendrites (Farrow et al., 2013). AAV 

infected PV5 RGCs were targeted by their YFP-positive soma with tdTomato-

positive nuclei. 

3.10 Electrophysiology and Pharmacology 

Electrophysiological recordings of both spontaneous currents and spiking 

as well as light-evoked currents and spiking were performed both at the FMI 

(Chapter IV) and at the University of Louisville (Chapter IV & V). In both labs, 

whole cell recordings used an Axon Multiclamp 700B amplifier (Molecular 

Devices) and signals were digitized at 10 kHz (National Instruments) and 

acquired using software written in LabVIEW (National Instruments). In Louisville, 

the acquisition rate for spiking activity and for spontaneous and evoked currents 

in WT PVcre RGCs was 10 kHz. Similarly spiking activity for WT PV5 (PV5WT), 

and RGCs infected with AAV-scrambled shRNA (PV5SC) or with AAV-Glra1-
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shRNA (PV5Glra1-KD) were recorded at 10 kHz at the FMI. However, the 

acquisition rate for RGC spontaneous and evoked currents was 1 kHz. PV5 RGC 

spiking activity was recorded in loose patch configuration using electrodes pulled 

from borosilicate glass electrodes (Sutter Instrument) with 3-5 MΩ resistance and 

filled with Ringer’s solution. RGC currents were recorded in under whole-cell 

voltage clamp mode, with 5-8 MΩ electrodes filled with (in mM) 112.5 

CsCH3SO3, 1 MgSO4, 7.8 × 10-3CaCl2, 0.5 BAPTA, 10 HEPES, 4 ATP-Na2, 0.5 

GTP-Na3, 5 lidocaine N-ethyl bromide (QX314-Br), 7.5 neurobiotin chloride (pH 

7.2 adjusted with CsOH). All voltages were corrected for the measured liquid 

junction potential of 17 mV. The calculated Cl reversal potential is -73 mV. 

EPSCs and IPSCs were isolated while holding the RGC membrane potential at -

77 mV and 0 mV, respectively. For pharmacological characterization of inhibitory 

inputs in RGCs, I blocked GABAAergic inputs by application of 15-20 μM 

picrotoxin (Sigma-Aldrich), GABACergic inputs by 50 μM TPMPA and glycinergic 

inputs by 10 μM strychnine.  

3.11 In Vitro Visual Stimulation 

Stimuli were generated using a DLP projector controlled by custom 

software. The light spectrum ranged from about 400 to 760 nm with a peak at 

~550 nm. The sIPSCs of PV5 RGCs were recorded on a photopic background 

luminance of 24,000 R*·rod-1·s-1, while the ones of other PV RGCs were 

recorded under no illumination (0 R*·rod-1·s-1). Stimulus-evoked responses of 

PV5 RGCs were recorded to a luminance decrement, a dark spot (6,000 R*·rod-
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1·s-1) on the same background or to a luminance increment, the offset of the dark 

spot back to background. The visual stimulation protocol began with 15 seconds 

at background luminance, followed by presentation of a stationary dark spot 

centered on the PV5 RGC soma.  The duration of the stimulus was 2 seconds 

followed by a 5 second inter-stimulus interval and the outer diameter increased in 

six steps from 125 μm to 1250 μm. Spiking responses were recorded first in 

loose patch mode to 5-8 repetitions of this stimulus protocol (25 PV5 RGCs) and 

eEPSCs and eIPSCs were recorded in whole cell voltage clamp mode to 3-5 

repetitions of the protocol (15 PV5 RGCs). Eight PV5 RGCs were recorded using 

loose patch followed by whole cell recording. 

3.12 In Vitro Electrophysiological Data Analysis 

3.12.1 Extracellular Recordings  

Spiking activity was analyzed using Spike2 as described previously (see 

chapter II, section 2.2). Spikes were accumulated within a 50ms bin width and 

displayed as both raster plots of individual trials and PSTHs. Mean spontaneous 

activity was measured from the 15s background illumination at the beginning of 

the stimulation protocol and this mean was subtracted from all measures of the 

stimulus evoked responses. Several aspects of the spiking response were 

measured from the stimulus-evoked average PSTH of the PV5 RGCs. To a 

luminance decrement, the transient peak amplitude (0-0.4s of stimulus onset) 

and the sustained mean firing rate (0.4-2s of stimulus onset) were measured. To 

a luminance increment, the rebound peak firing rate was measured.  
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3.12.2 Whole Cell Patch Clamp Recordings  

Only RGCs with series resistance smaller than 25 MΩ were used for 

analysis. In Chapter V, 50% series resistance compensation was applied to all 

the cells. sIPSCs were analyzed using Mini Analysis Program (Synaptosoft). 

Only sIPSCs that were well separated events with fast rise time, a single peak 

and an amplitude that exceeded 2 times of root mean square of the noise were 

used for analysis. The 10-90% rise time, frequency and interevent interval of 

these sIPSCs were measured and their decay kinetics were estimated from the 

time at which the sIPSC declined to 37% of its peak amplitude (D37; Chapter IV) 

or a least-square fit of 10-90% of the decay phase, using a single exponential 

decay function (τ; Chapter V). The decay time (D37) for PV5WT sIPSCs acquired 

using 10 and 1 kHz (n = 5 and 7 cells) did not differ (2.74±0.04 ms vs. 2.6±0.1 

ms, p>0.05) and were combined for analysis. For comparisons to PV5SC and 

PV5Glra1-KD RGCs, only PV5WT data collected at the same rate (1 kHz) was used.  

Stimulus-evoked eEPSCs and eIPSCs of PV5 RGCs were analyzed using 

Clampfit (Axon Instruments). For each eEPSC and eIPSC, the transient peak (0–

0.4s) and mean sustained current (0.4-2s) at stimulus onset and the charge 

transfer at stimulus offset were measured and corrected for average baseline, 

measured from 2s before each stimulus onset. 

IV Statistical Analysis 

Statistical analyses were performed using Prism5 Software (GraphPad). 

Distributions of each parameter were tested for normality using the D’Agostino 
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and Pearson omnibus test and appropriate parametric or non-parametric 

statistical analyses were used. For each morphological and electrophysiological 

measure, t-test with Welch’s correction was used to compare RGCs with different 

genotypes or antagonist application, or infected with different AAVs. Student’s 

paired t tests were used to compare POriginal and PRandom of the same dendritic 

area, and responses of the same RGC in control and in the presence of 

antagonist. Two-way ANOVA with Bonferroni’s post-hoc tests was used to 

compare response components across spot size across RGCs with different 

genotypes or antagonist application, or infected with different AAVs. The 

Kolmogorov–Smirnov test was used to determine whether the distributions of the 

decay time constants between two datasets were significantly different. In all 

figures, data are plotted as the mean ± SEM and significance is indicated as 

*p<0.05, **p<0.01, ***p<0.001. 

  



41 

 

CHAPTER III 

THE ROLE OF GLYRα2- AND GLYRα3-MEDIATED INHIBITION IN 

THE RECEPTIVE FIELD SURROUND IN RETINAL GANGLION 

CELLS 

Introduction 

 At the first synapse in the retina between the photoreceptors and the 

bipolar cells, the On and Off pathways segregate and create the ability of the 

retina to respond to light increments and decrements. The culmination of these 

On and Off parallel information streams create RGCs with receptive fields that 

respond to light onset (ON), light offset (OFF) and both onset and offset 

(ON/OFF). As early as the bipolar cell, a receptive field exists with an excitatory 

RF center, and a coextensive inhibitory surround (Werblin and Dowling, 1969; 

Werblin, 1991). The same RF organization is found at the level of the retinal 

ganglion cell. Almost all RGCs have a RF center (Kuffler, 1953; Lukasiewicz and 

Werblin, 1990; Rodieck and Stone, 1965; Werblin, 1991), and a coextensive 

antagonistic surround (Kuffler, 1953; Rodieck and Stone, 1965; van Wyk et al., 

2009). ON-center RGCs have OFF surrounds, whereas OFF-center RGCs have 

ON surrounds. This means that a stimulus of the same contrast that evokes an 

excitatory response within RF center at stimulus onset (light increment or light 
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decrement) produces a suppressive response within the isolated RF surround 

(Kuffler, 1953; Rodieck and Stone, 1965).  

The RF surrounds of BCs arise from feedback inhibition via horizontal cell 

inputs to the photoreceptors, although the exact mechanism is not known 

(Sterling, 1995; Thibos and Werblin, 1978; Thoreson and Mangel, 2012; Werblin, 

1974). The RF surrounds of RGCs are conveyed from the BC input but are 

augmented by AC-mediated inhibitory circuits (Eggers et al., 2007; Eggers and 

Lukasiewicz, 2010; Farrow et al., 2013; Flores-Herr et al., 2001; Protti et al., 

2014). The AC-mediated circuits that contribute to the RF surround in the inner 

retina are poorly understood and we do not know if they vary between the On 

and Off pathways. As an added complication, within the On and Off pathways 

another pair of parallel pathways appears to be related to the temporal nature of 

the RGC response and whether it is tuned to transient or sustained stimuli, which 

also are likely to be related to BC and AC-mediated circuits (Caldwell and Daw, 

1978; Eggers and Lukasiewicz, 2011; Nobles et al., 2012). 

Glycine and GABA are the primary inhibitory neurotransmitters utilized by 

ACs and help to divide the morphologically diverse ACs into two general classes: 

narrow field glycinergic ACs whose processes ramify across the On and Off 

strata of the inner plexiform layer (McNeil and Masland, 1998; Menger et al, 

1998) and wide field GABAergic ACs whose processes ramify within the IPL On 

or Off sublaminae. As a consequence of the laminar location of their processes, 

narrow field ACs are thought to mediate local inhibition across the On/Off 

pathways (O’Brien et al, 2003; Chen et al, 2010; Nobles et al, 2012), whereas 

http://jp.physoc.org/content/592/1/49.long#ref-23
http://jp.physoc.org/content/592/1/49.long#ref-23
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wide field GABAergic ACs mediate more widespread inhibition primarily confined 

within a lamina (Cook and McReynolds, 1998; Flores-Herr et al., 2001; Roska et 

al., 2000). This idea of local verses widespread inhibition has been translated 

into an RF surround that is formed by both local glycinergic inhibition, most likely 

coextensive with the RF center, and lateral GABAergic inhibition, most likely 

contributing primarily to the RF surround outside the RF center.  

Several observations suggest, however, that glycinergic inhibition also 

might modulate more widespread GABAergic inhibition in RGCs using serial 

inhibitory circuits. For example, some WF-ACs express glycine receptors 

(Majumdar et al, 2009) and both NF and WF ACs participate in morphologically 

identified concatenated AC circuits (Anderson et al., 2011; Chen et al., 2011; 

Weiss et al, 2009). Glycinergic control of GABAergic currents in RGCs has been 

observed indirectly, using the glycinergic antagonist, strychnine. In the presence 

of strychnine, the light evoked RGC RF center excitatory and surround inhibitory 

response is shorten or abolished, indicating increased GABAergic inhibition 

within the RF center (Caldwell and Daw, 1978; Stone and Pinto, 1992). 

Glycinergic regulation of GABAergic feedback inhibition also has been observed 

in the RF center of a RGC type referred to as the local edge detector (Russell 

and Werblin, 2010). Moreover, we have observed changes in light evoked RGC 

responses in the absence of GlyR α subunits that only can be explained by 

glycinergic control of GABAergic or glycinergic inhibition at the level of the BC 

(Nobles et al., 2012). 
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Both previous publications (Haverkamp et al, 2003; Young-Pearse et al., 

2006) and our own work indicate that the retinas of GlyRα2 (Glra2-/-) or GlyRα3 

(Glra3-/-) subunit specific knockout mice develop without gross morphological 

abnormalities. ERG assays indicate that outer retinal function is normal in Glra2-/- 

mice (Young-Pearse et al., 2006) and that ACs normally express GlyRα2 or 

GlyRα3 retain excitatory synaptic inputs (Majumdar et al., 2009; Weiss et al., 

2008). Expression of the calcium binding protein, calbindin, continues to show 

three characteristic WT AC bands in the IPL in Glra2-/- and Glra3-/- and Glra2/3-/- 

retinas. We have confirmed that the expression of GlyR α subunits in the WT 

retina and their presence/absence in KO mouse retina using immuno-

histochemistry (reprinted from Nobles et al, 2012; Figure 3.1). Each single KO 

retina lacks expression of its targeted GlyRα subunit and the double KO retina 

lacks expression of both GlyRα2 and GlyRα3. In both single and the double KOs 

the expression pattern of the GlyRα1 and GlyRα4 remain the same as WT, 

consistent with an earlier publication (Heinze et al., 2007). Using RT-PCR we 

demonstrated that there is no upregulation at the transcriptional level of GlyRα2 

in the absence of GlyRα3 (Nobles et al. 2012).  All of the evidence is consistent 

and suggests that the absence of GlyRα2 and or GlyRα3 expression does not 

affect the gross retinal morphology or the expression of other subunits.  

 The pharmacological manipulation of glycine receptor mediated inputs is 

limited by available antagonists. Strychnine non-selectively blocks all alpha 

receptor mediated subunit inhibition. Therefore, GlyRα KO mice were used to 

more directly address the question of GlyR subunit specific contribution to the RF 



45 

 

responses of ON- and OFF-center RGCs. The use of these mice can be thought 

of as a substitute for a subunit selective glycine antagonist. Our previous in vivo 

extracellular recordings from optic nerve axons of WT Glra2-/-, Glra3-/- and 

Glra2/3-/- mice (Nobles et al., 2012) showed that both GlyRα2 and GlyRα3 

containing receptors modulate the temporal response properties of RGC RF 

center, consistent with previous observations using strychnine (Caldwell and 

Daw, 1978; Stone and Pinto, 1992). GlyRα2 and GlyRα3 differentially contribute 

to visually-evoked RF center responses of RGCs that received RF center input 

from On and Off retinal pathways. In the On pathway, GlyRα2 and GlyRα3 work 

together to enhance the RF center excitatory responses at luminance increment 

and keep these responses more sustained, whereas only GlyRα2 contributes to 

suppressive response at luminance decrements. In the Off pathway, only GlyRα2 

enhances the RF center responses. GlyRα2-mediated inhibition enhances the 

excitatory responses at luminance decrements and suppressive response at 

luminance increments. GlyRα3-mediated inhibition does not appear to contribute 

to Off pathway signaling in our RGC sample.  

To study GlyR subunit specific contribution to the RF surround of ON- and 

OFF-center RGCs, I also used Glra2-/-, Glra3-/- and Glra2/3-/- mouse lines. Using 

annular stimuli, I isolated the contribution of the RF surround and characterized 

the responses of ON and OFF WT RGCs that also were separated into sustained 

and transient subgroups. Similarly, I characterized these responses in Glra2-/-, 

and Glra3-/- RGCs and compared them to WT. In addition, I compared the Glra2-/- 

or Glra3-/- RGCs to Glra2/3-/- RGCs. My results define the contributions of 
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GlyRα2 and GlyRα3 subunits to the suppressive RF surround of ON and OFF 

RGCs. My results strongly support the following conclusions: (1) neither GlyRα2 

or GlyRα3 subunit-mediated inhibition modulates the RF surround of ON RGCs; 

(2) GlyRa3 does not modulate the RF surround of OFF RGCs; and (3) only 

GlyRα2 modulates RF surround antagonism of OFF RGCs, where it enhances 

the suppressive surround at luminance decrements. 

 

Figure 3.1. Vertical cross sections of mouse retina labeled for the four GlyR 

α subunits. (A-D) GlyRα1puncta are prominent in the outer strata of the inner 

plexiform layers across genotype. (E,G) GlyRα2 puncta are diffuse across all 

strata of the inner plexiform layer. (F, H) GlyRα3 puncta are absent in the Glra2-/- 

and Glra2/3-/-retina (I, J) GlyRα3 puncta are more prominent in the outer strata 

but are also evident to a lesser extent in the inner strata of the inner plexiform 

layer. (K, L) GlyRα3 puncta are absent in the Glra3-/-and Glra2/3-/-retina. (M-P) 

GlyRα4 puncta are localized to a distinct band within the inner plexiform layer 

and are evident across genotype. (Q-T) Retina from each genotype was labeled 
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for calbindin (red) to illustrate normal IPL sublamination patterns for each 

genotype. Scale bar=20 μm (from Nobles et al., 2012). 

Results 

Isolated RF Suppression is Found in Most WT ON and OFF RGCs  

To isolate and study RGC surround antagonism, I used annular stimuli 

with a fixed outer diameter of 4425 μm on the retina and increasing inner 

diameter (ID; 0-2616 μm, see also Chapter II, section 2.4). Annular stimuli with 

small IDs evoked excitatory responses from both WT ON and OFF RGCs, 

indicating that they result primarily from inputs to the RF center (Figure 3.2Ai). As 

annular inner diameter increased, the WT RGC excitatory response declined and 

passed through a null point (Figure 3.2Aii), where the annulus evoked little or no 

response. The null point occurs when the RF center excitatory input and the RF 

surround inhibitory input reach a balance. Further increases in annular inner 

diameter evoked a suppressive response, a significant reduction in the 

spontaneous activity level. This response indicates that the RF surround input 

dominates and, in most cases, is the sole input to the RGC (Figure 3.2Aiii). There 

was usually an optimal annulus ID that evoked maximum suppression (Figure 

3.2Aiii) and with further increase in the annulus ID, the depth of the response 

suppression declines because the area of surround stimulation decreases 

(Figure 3.2Aiv & Av). The presence of a surround was observed in almost all WT 

ON and OFF RGCs (Table 3.1). In 9% of WT ON and 5% of WT OFF RGCs a 

surround was not recorded. In these RGCs, the RF center diameter was larger 
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than the widest ID produced on my computer display. Thus, it is most likely that 

these RGCs had surround suppression but it could not be observed due to 

constraints of the stimulator.  

In all WT RGCs, the suppressive surround response peaked < 400 msec 

after stimulus onset. This transient response was followed by a maintained 

suppressive component whose duration varied compared to the 5 sec stimulus 

duration. I defined the RGC RF surround optimal ID as the annulus that evoked 

the largest transient suppression (minimum transient firing rate). Although with 

the limited size of the display, the majority of WT RGCs, regardless of RF center 

sign, were examined with at least one ID greater than the optimal. By comparison, 

45% ON and 80% OFF WT RGCs were examined with two IDs greater than the 

optimal. In the remaining analyses I investigated the surround suppression at the 

optimal ID in all the RGCs that had suppression response, and the surround 

suppression as a function of the percent annular size compared to the optimal in 

RGCs examined with at least two annulus IDs greater than the optimal (Figure 

3.2B).  

Table 3.1  A comparison of RGC with surround suppression across genotype. 

 

ON GC OFF GC 

# (%) Suppression Total # (%) Suppression Total 

WT 51 (91%) 56 35 (95%) 37 

Glra2-/- 55 (96%) 57 51 (93%) 55 

Glra3-/-            62 (89%) 70 43 (88%) 49 

Glra2/3-/- 29 (85%) 34 41 (87%) 47 
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Figure 3.2. Representative PSTHs from an WT ON sustained RGC in the 

presence of bright annulus with varying inner diameter (ID). (Ai) An annulus 

with ID smaller than RF center (dotted circle) stimulates both RF center and 

surround and produces an excitatory response in the RGC (above mean 

spontaneous activity, SA). (Aii) With increased ID the annulus evokes a reduced 

excitation, which results from the balance between RF center excitation and 

surround suppression. (Aiii) When the annulus ID matches RF center and only 

stimulates RF surround the RGC response is suppressed (below the SA). (Aiv-v) 

The suppression changes as annulus ID gets larger and less RF surround is 

stimulated. (B) The transient suppression of the RGC in A as a function of ID 

indicated as a percentage of the optimal ID (100%).   



50 

 

Isolated RF Suppression is Found in Most WT Sustained and Transient 

RGCs  

 Annular stimulation evoked suppression in the majority (51/56, 91%) of 

WT ON RGCs (Figure 3.3A) and the transient response suppression occurred 

within 0-0.4s of stimulus onset. The maintained suppression (0.4-5 s) of ON 

RGCs showed three temporal profiles (Table 3.2). In 43.1% of WT ON RGCs the 

duration of suppression matched the stimulus (5 s) (Sustained; Figure 3.3Ai), 

indicating a maintained surround inhibitory input. In 27.5% of WT ON RGCs 

(Transient; Figure 3.3Aii) the duration of suppression was transient and returned 

to spontaneous activity levels < 4 s after stimulus onset, indicating a more 

transient surround inhibitory input. In 29.4% of WT ON RGCs (Mixed; Figure 

3.3Aiii) the transient suppression was followed by a significant increase in 

excitatory activity above SA that occurred within 1 s of stimulus onset. The 

duration of this excitatory response varied between 0.5 and 5 s. This indicates an 

interaction between a transient inhibitory input and a maintained excitatory input 

within the isolated surround.  

Annular stimulation evoked suppression in the majority (35/37, 95%) of 

WT OFF RGCs (Figure 3.3B) and the transient response suppression also 

occurred within 0-0.4s of stimulus onset. Their maintained suppression (0.4-5 s) 

showed two profiles (Table 3.3). In 20% of WT OFF RGCs the duration of 

suppression matched the stimulus (Figure 3.3Bi) and in the rest the duration of 

suppression was transient and returned to SA levels < 4 s after stimulus onset 

(Figure 3.3Bii).  
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Table 3.2   Summary of ON RGCs with three different maintained response 

profiles across genotype 

 

 Total Sustained   Transient Mixed 

 WT 51  22 (43.1%)    14 (27.5%)  15 (29.4%) 

Glra2-/- 56 29 (51.8%) 22 (39.3%)  4 (8.9%) 

Glra3-/- 62 33 (53.2%) 15 (24.2%)  14 (22.6%) 

Glra2/3-/- 29 11 (37.9%) 10 (34.5%)   8 (27.6%) 

 

 

 

 
Total Sustained    transient   

WT 35 7 (20.0%)  28 (80.0%) 

Glra2-/- 51 3 (5.9%) 49 (94.1%)  

Glra3-/- 43 9 (20.9%) 34 (79.1%) 

Glra2/3-/- 41 1 (2.4%) 40 (97.6%)  

 

ON and OFF WT RGCs have been separated into different classes based 

on the temporal nature of their RF center response into transient and sustained 

types (Cleland et al., 1971, 1973; Nobles et al., 2012). Published data have 

suggested that there are sustained and transient response channels that arise 

within the ON and OFF IPL sublaminae. However, comparisons between the 

 

Table 3.3 Summary of OFF RGCs with sustained and transient maintained 

response profiles across genotype. 
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temporal characteristics of the RF center and surround in mouse RGCs have not 

been made. I found that the majority of WT ON RGCs (48 of 51) in my sample 

had sustained RF center responses and only 3 ON RGCs were transient. 

Similarly, the majority of WT OFF RGCs (30 of 35) also had a sustained RF 

center response and only 5 were transient. This precluded a comparison of RF 

center and surround temporal characteristics among the transient ON and OFF 

RGCs. My comparison of WT ON and OFF RGCs with sustained RF center 

responses showed no correlation with surround temporal characteristics, the 

duration of the surround response varied widely (data not shown).  

Isolated RF Suppression is Found in Most Single and Double KO ON/OFF 

RGCs  

We previously noted differences in SA levels in Glra3-/- ON and Glra2-/- 

OFF RGCs (Nobles et al., 2012). Similarly, I subtracted the mean SA from all 

responses prior to statistical comparisons. 

Similar to WT, surround suppression was found in almost all Glra2-/-, 

Glra3-/- and Glra2/3-/- ON and OFF RGCs (Figure 3.3 & 3.5). The percentage of 

RGCs with surround suppression was large and similar across genotype (Table 

3.1; Chi-square, ON, p=0.27; OFF, p=0.57).  At least one annulus ID evoked 

response suppression significantly below SA levels in all KO RGCs. As in WT, 

the RF center diameter of the KO RGCs that lacked a response suppression was 

larger than widest inner diameter produced on our computer display. Regardless 

of center sign, part of the KO RGCs were examined with two annulus IDs greater 

than the optimal (Glra2-/-, ON 62%, OFF 59%; Glra3-/-, ON 66%, OFF 86%; 
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Glra2/3-/-, ON 55%, OFF 68%). All RGCs with significant surround suppression 

were included in my quantitative analyses of optimal RF surround suppression 

and comparisons across genotypes; except that the RGCs with a minimum firing 

rate equals to 0 spikes/s were excluded from comparisons of transient 

suppression to avoid underestimating the magnitude. Only RGCs examined 

under at least two annulus IDs greater than the optimal were included for 

comparisons across annulus ID.  
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Figure 3.3. RF optimal surround suppressive responses of WT ON and OFF 

RGCs. Average PSTHs for ON and OFF RGCs evoked by their optimal annulus 

are shown along with raster plots (above) that show responses to individual 

presentations of the stimulus. The stimulus profile (5 second duration) is shown 

at the bottom of each column. A bright annulus (100cd/m2) or dark annulus 

(0cd/m2) was presented on a screen whose average luminance was (20 cd/m2). 

(Ai & Bi) The spiking activities of ON and OFF Sustained RGCs are significantly 

decreased compared to mean spontaneous activity (SA, solid line) in the 

presence of a bright annulus for the whole stimulation (5s). (Aii & Bii) The 

spiking activities of ON and OFF Transient RGCs are significantly decreased to 

below mean SA at stimulus onset and returns to SA level before stimulus offset. 

(Aiii) The spiking activity of ON Mixed RGCs is significantly decreased to below 

mean SA at stimulus onset and increased to above SA level before the 

stimulation offset.  
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Figure 3.4. RF optimal surround suppressive responses of GlyR KO ON and 

OFF RGCs. Average PSTHs for ON and OFF RGCs evoked by their optimal 

annulus are shown along with raster plots (above) representing responses to 

individual presentations of the stimulus. The stimulus profile (5 second duration) 

is shown at the bottom of each column. A bright annulus (100cd/m2) or dark 

annulus (3 cd/m2) was presented on a screen whose average luminance was (20 

cd/m2). (A-C) Representative ON RGCs with three different maintained response 
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profiles in Glra2-/- Glra3-/-, and Glra2/3-/- retina. (D-F) Representative OFF RGCs 

in Glra2-/- Glra3-/-, and Glra2/3-/- retina. The mean spontaneous activity of each 

RGC is indicated with a solid line.  

 

 

Neither GlyRα2 nor GlyRα3 Modulates the RF Surround of WT ON RGCs 

Similar to WT, I found the same maintained surround suppression profiles 

in ON RGCs across Glra2-/-, Glra3-/- and Glra2/3-/- and in numbers equivalent to 

WT (Chi-square; p=0.07). This result indicated that the absence of GlyRα2 or 

GlyRα3 did not contribute to the ON RGC RF surround suppression.  

In ON Sustained, ON Transient and ON Mixed RGCs, transient 

suppression were similar between each single KO (Glra2-/- and Glra3-/-) and WT, 

or and double KO (Glra2/3-/-) at the optimal ID (Figure 3.5A) and at all larger IDs 

(data not shown). Similarly, there also were no differences in maintained 

suppression (0.4-5s) of ON sustained RGCs across these genotype at the 

optimal ID (Figure 3.5B) and at all larger IDs (data not shown). Taken together, 

my results suggest that neither GlyRα2 nor GlyRα3 contribute to surround 

suppression in the input pathways to WT ON RGCs.  
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Figure 3.5. GlyRα2- and GlyRα3 do not contribute to the receptive field 

surround suppression of ON RGCs. (Ai, Bi) Representative PSTHs of WT, 

single and double KO ON RGCs during stimulation of receptive field surround 

with bright annulus. (Ai) Shaded regions represent the transient (0-0.4s) 
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response component and (Bi) the maintained response component (0.4-5s). (Aii) 

The scatter plot shows the distribution of the transient suppression at optimal ID, 

which is similar across genotype and groups. (Bii) The maintained suppression 

in the Sustained group is similar across genotype.  

 

Figure 3.6. Only GlyRα2-mediated inhibition modulates the receptive field 

suppression of OFF RGCs. (Ai-ii) Representative PSTHs of WT, Glra2-/- and 

Glra3-/- RGCs during stimulation of receptive field surround with dark (3cd/m2) 

annulus. (Ai) Shaded regions represent the transient (0-0.4s) response 
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component and (Aii) the maintained response component (0.4-5s). (Bi) The 

scatter plot shows the distribution of the transient suppression and the 

differences across genotype. The transient suppression of Glra2-/- (open circles, 

n=27) is lower than WT (closed circles, n=16) while Glra3-/- OFF GCs (grey 

triangles, n=23) are similar to WT. Glra2/3-/- OFF GCs (open diamonds, n=20) are 

lower compared to Glra3-/- but similar with Glra2-/- . (Bii) The mean transient 

suppression across annulus ID for each genotype (WT, n=12; Glra2-/- , n=14; , 

Glra3-/- n=19; Glra2/3-/-, n=11). (Ci) The maintained suppression of Glra2-/- (n=51) 

is significantly lower than WT (n=35) while Glra3-/- OFF GCs (n=43) are similar to 

WT. Glra2/3-/- OFF GCs (n=41) are significantly lower compared to Glra3-/- but 

similar to Glra2-/- . (Cii) The mean maintained suppression across annulus ID for 

each genotype (WT, n=30; Glra2-/- , n=30; Glra3-/- , n=38; Glra2/3-/-, n=28).  

 

 

Only GlyRα2 Modulates RF Surround Suppression in OFF RGCs 

In contrast to ON RGCs, there were fewer sustained OFF RGCs in Glra2-/- 

compared to WT and fewer Glra2/3-/- OFF RGCs compared to Glra3-/-  (Table 

3.3; Chi-square, p=0.01). In our previous study, we found that the absence of 

either GlyRα2 or GlyRα3 subunit expression significantly altered the temporal 

nature of RGC RF center response (Nobles et al., 2012). This precluded the 

separation of OFF RGCs into sustained/transient types.  
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At the optimal and larger annular IDs, both the transient and maintained 

suppression in Glra3-/- and WT OFF RGCs were similar (Figure 3.6Bi, Ci) and 

this also was true of the duration of their surround suppression (2.2±0.3 vs. 

2.0±0.3 s). These results suggest that GlyRα3 input does not contribute to the 

surround suppression in our sample of OFF RGCs.  

In contrast, all aspects of the RF surround suppression differed when 

Glra2-/- OFF RGCs were compared to WT. Glra2-/- OFF RGCs had significantly 

less transient and maintained surround suppression at their optimal ID compared 

to WT (Figure 3.6Bi; transient, p=0.02; Figure 3.6Ci; maintained, p=0.005). 

These differences persisted as the annulus ID increased (Figure 3.6Cii; Two-way 

ANOVA; transient, p<0.0001; sustained, p<0.0001). I found similar changes in 

the transient and maintained surround suppression at all IDs ≥ optimal ID in 

Glra2/3-/- OFF RGCs compared to Glra3-/- (Figure 3.6B; Two-way ANOVA, 

transient, p<0.0001; Figure 3.6C; maintained, p<0.0001). Consistent with less 

maintained surround suppression, the duration of suppression was significantly 

shorter in Glra2-/- OFF RGCs (1.5±0.2 s; p=0.03) compared to WT, and in 

Glra2/3-/- OFF RGCs (1.0±0.2 s; p=0.0004) compared to Glra3-/-.  

Together with our previous results (Nobles et al., 2012), my results 

suggest that GlyRα2 mediated inhibition enhances both RF center excitation and 

RF surround suppression in the WT Off pathway. They also show that GlyRα3 

mediated inhibition is isolated to the WT On pathway to enhance RF center 

excitation but has no effects in the WT Off pathway. Two circuits in the WT retina 

are proposed to explain the changes between the Glra2-/- and WT OFF RGCs. 
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One is an inhibitory pathway that uses a crossover-feedforward mechanism and 

the other a concatenated circuit (Figure 3.11). These are described and their 

likelihoods evaluated in the Discussion. 

Post-stimulus Excitation in OFF but not ON RGCs is Altered by the 

Absence of GlyRα2 Expression 

The offset of an annulus evokes a post-stimulus excitation in both WT ON 

and OFF RGCs, regardless of whether suppression is sustained or transient 

(Figure 3.7A). I found that the post-stimulus peak amplitude of both WT ON and 

OFF RGCs was significantly correlated with their transient suppression (Figure 

3.7B; ON, r=-0.56, p<0.0001; OFF, r=-0.58, p=0.0003). This suggests that the RF 

surround suppression and post-stimulus excitation in RGCs may be subject to 

the same modulation (see discussion).  

Consistent with this hypothesis, there was no significant difference in the 

post-stimulus peak amplitude in ON RGCs across genotype (Figure 3.7Ci; WT, 

14.8±1.5; Glra2-/-, 13.7±1.3; Glra3-/-, 14.7±1.2, Glra2/3-/-, 14.2±2.1 spikes/s). This 

bolsters my conclusion that neither GlyRα2 nor GlyRα3 contribute to ON RGC 

surrounds. Further, the peak amplitude of post-stimulus excitation in Glra3-/- OFF 

RGCs (34.8±4.8 spikes/s) also was similar to WT (26.6±3.0 spikes/s). 

In contrast, the peak amplitude of post-stimulus excitation was smaller in 

Glra2-/- OFF RGCs (21.2±2.8 spikes/s) compared to WT (Figure 3.7Bii; p=0.04), 

and in Glra2/3-/- OFF RGCs (13.9±2.0 spikes/s) compared to Glra3-/- (p<0.001). 

Again, these results are consistent with other aspects of the response evoked by 
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annular stimuli and reinforces my hypothesis of a selective role for GlyRα2-

mediated inhibition to the OFF RGC RF surround.  I propose that the level of 

post-stimulus excitation could be related to several mechanisms that require 

GlyRα2 mediated inhibition (see discussion).  

 

Figure 3.7. The post-stimulus excitatory peak amplitude of only OFF RGC is 

affected by the absence of GlyRα2 expression. (A) Representative PSTHs of 

WT, Glra2-/- and Glra3-/- ON (Ai) and OFF (Aii) RGCs receptive field surround 
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suppression. Post-stimulus peak amplitudes are indicated with black arrows. (B) 

In both WT ON (Bi, n=51) and OFF (Bii, n=35) RGCs, the transient suppression 

during stimulation is significantly correlated with the post-stimulus peak amplitude. 

(C) The scatter plot shows the distribution and the differences of the post-

stimulus peak amplitude across genotype. (Ci) The post-stimulus peak amplitude 

of ON RGCs is similar across genotype (WT, closed circles, n=51; Glra2-/- , open 

circles, n=56; Glra3-/- , grey triangles, n=62; Glra2/3-/-, open diamonds, n=28). 

(Cii) The post-stimulus peak amplitude of Glra2-/- (n=51) OFF RGCs is smaller 

compared to WT (n=35) but similar to Glra2/3-/- OFF RGCs (n=40). The post-

stimulus peak amplitude of Glra3-/- (n=43) OFF RGCs is similar to WT but larger 

compared to Glra2/3-/- OFF RGCs. 

 

 

GlyR Subunit-specific Inhibition Alters the Balance of RF Excitation and 

Suppression in the On but not Off Pathway. 

The spatial organization of the RF center/surround, their interactions and 

overall sensitivity has been mathematically modeled as a difference of Gaussians 

(Figure 3.8; Rodieck and Stone, 1965). The RF center is modeled by one 

Gaussian excitatory input. The surround is modeled by another Gaussian 

inhibitory input, but include both local inhibition continuous with the RF center as 

well as more wide spread lateral inhibition. The interaction between the RGC RF 

center and surround is critical for temporal and spatial vision. Previously, we 
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established roles for GlyRα2 and GlyRα3 in the RF center response (Nobles et 

al., 2012), which reflects the combined center excitation and local inhibition. Both 

GlyRα2 and GlyRα3 mediate inhibition that enhances the RF center response in 

the On pathway, whereas only GlyRα2 mediates inhibition that enhances the RF 

center responses in the Off pathway. In my study of the contributions of GlyRα2 

and GlyRα3 in the isolated RF surround response, I find that only GlyRα2 

mediates inhibition that enhances to the RF surround and only in the Off 

pathway.  

 

Figure 3.8.  A Difference of Gaussians model for RF center/surround spatial 

organization.  The spatial organization of a RGC receptive field has been 

represented by two co-extensive mechanisms with different sensitivity profiles 

that sum together to create a response profile (purple) for each individual RGC.  

The RF center excitation (blue) with local RF surround (red) creates the RF 

center (+) roughly matching the dendritic span of RGC. The area of the RF 
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surround (-) extends over larger regions of the retina outside the span of the 

dendrites and is dominated by inhibition (red) (modified from Rodieck and Stone, 

1965). 

 

 

If my results and interpretation are correct, certain predictions can be 

tested about changes in the balance between the RF center and surround, a 

metric I define as the balanced-response ID, the annulus diameter where RGCs 

receive equal excitatory and inhibitory inputs across stimulated RF (Figure 3.9A). 

A smaller center:surround ratio requires a smaller ID to recruit more center 

excitation to balance the surround inhibition (Figure 3.9B). 

The predictions are:    

1. The absence of GlyRα2 or/and GlyRα3 expression reduce the RF center 

sensitivity but not the surround sensitivity and neither change the sign of 

RF center or surround (Figure 3.9B). Therefore, this should result in a 

smaller center:surround ratio and balanced-response ID in all KO ON 

RGCs. 

2. The absence of GlyRα2 expression reduces both RF center and surround 

(Figure 3.9C) and GlyRα3 does not play a role in the Off pathway. 

Therefore, this should result in unaltered center:surround ratio and 

balanced-response ID in all KO OFF RGCs. 
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To test these predictions, I compared the balanced-response IDs of RGCs 

across RF center class and genotype. To determine the balanced-response ID, I 

plotted the transient peak/minimum firing rate of each cell as a function of 

annulus ID, and determined the ID where the firing rate equals mean SA (Figure 

3.10A). As predicted, the absence of either GlyRα2 or GlyRα3 expression 

resulted in a significantly smaller balanced-response ID in ON RGCs compared 

to WT (Figure 3.10B; WT, 829.2±62.6; Glra2-/-, 606.0±36.48; p=0.002; Glra3-/-, 

663.0±57.13 μm; p=0.02). The ID of Glra2/3-/- ON RGCs (558.5±59.84 μm) was 

similar to the ID of both single KOs. In contrast, the ID of OFF RGCs was similar 

across all genotypes (Figure 3.10C; WT, 577.9±51.7; Glra2-/-, 679.1±60.37; 

Glra3-/-, 485.8±41.24; Glra2/3-/-, 556.0±63.3 μm). These results support my 

prediction of center:surround ratio and previous conclusion that the pattern of 

glycinergic modulation differs between the On and Off pathway.  

Together with our previous results, my data define the contributions of two 

GlyR α subunits on RF center/surround responses. The results show a consistent 

picture, a shared, but independent contribution from GlyRα2 and GlyRα3 in the 

On pathway that is confined to the RF center. They also show a selective role of 

GlyRα2 in the Off pathway that contributes to both the RF center and surround. 

This suggests that glycinergic input is both local and lateral in the Off pathway. 
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Figure 3.9. A model of altered balanced-response inner diameter of ON but 

not OFF RGCs. (A) Each RGC has an excitatory center (outward curve) and a 

suppressive surround (inward curve). An inner diameter (ID) which gives equal 

size of area a and b is considered as balanced-response ID, evoking same 

amount of center excitation and surround suppression. (B) Compared with WT 

ON RGCs (blue line), Glra2-/- ON GCs (red dash line) have significantly 

decreased center excitation and unaltered surround suppression. As a result, a 

smaller annulus ID is required to reach center-surround balance, where area a’ 

equals to area b’. (C) In Glra2-/- OFF RGCs (red dash line), both center excitation 

and surround suppression are significantly less compared to WT OFF RGCs 

(blue line), presumably with similar extent (same amount of decrease in size of 
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area a and b). As a result, the balanced-response ID stays the same where area 

a” equals to area b”.   

 

 

 Figure 3.10. The absence of GlyRα2 or GlyRα3 alters the balanced-

response inner diameter of ON but not OFF RGCs. (A) Transient annulus 

response function for representative WT ON and OFF RGCs. Transient firing 

rates above SA (straight lines) are the peak amplitudes of RGCs at stimulus 

onset, while transient firing rate below SA are the minimum firing rates of RGCs 

at stimulus onset. The balanced-response IDs are indicated by arrows where the 

transient firing rate equals to SA. (B&C) The scatter plot shows the distribution of 

the balanced-response inner diameter and the differences across genotype. (B) 

ON RGCs. The balanced-response inner diameter of both Glra2-/- (open circles, 
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n=56) and Glra3-/- (grey triangles, n=62) are smaller compared to WT ON RGCs 

(closed circles, n=51). Glra2/3-/- ON RGCs (open diamonds, n=28) are similar 

with both single KOs. (C) OFF GCs. The balanced-response inner diameter of 

both Glra2-/- (n=51) and Glra3-/- (n=43) are similar to WT OFF RGCs (n=35). 

Glra2/3-/- OFF RGCs (n=40) are similar to both single KOs. 

 

 

Discussion 

Glycinergic Inhibition within IPL Modulates Surround Antagonism of OFF 

RGCs at Photopic Light Level 

Previous studies across a number of species indicate that GABAAR-

mediated feedforward and GABACR-mediated feedback inhibition within the inner 

retina shapes surround antagonism of RGCs (Buldyrev and Taylor, 2013; Cook 

and McReynolds, 1998; Daw et al., 1990; Flores-Herr et al., 2001; Kirby and 

Enroth-Cugell, 1976; O’Brien et al., 2003; Roska et al., 2000). Although we and 

others demonstrate a role for glycinergic input in shaping the RF center, the role 

of glycinergic inhibition to RF surround has not been directly observed, although 

there is evidence for this idea in the published literature. Strychnine, an 

antagonist of all GlyR subunits, attenuates the RF surround response of ON and 

OFF X-type cat RGCs (Kirby, 1979). A similar change, the absence of surround 

suppression, also was observed in the ON, OFF and ON-OFF RGCs in the 

spastic mouse that harbors a mutation in the gene coding GlyR β subunit, which 

significantly reduces overall synaptic glycinergic transmission (Stone and Pinto, 
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1992). My study addresses the role of specific GlyR subunits (GlyRα2 and 

GlyRα3) in modulating RGC RF surround. Using extracellular recordings of 

RGCs in vivo and annular stimuli to isolate the RF surround component, I 

compared WT RGC responses with those in Glra2-/- , Glra3-/- and Glra2/3-/- mice. 

The use of KO mice can be considered as a substitute for a subunit selective 

glycine antagonist. My results show that in the WT ON cone pathways neither 

GlyRα2 nor GlyRα3 inhibition contribute to surround suppression. My results also 

show that in the OFF cone pathway only GlyRα2 inhibition contributes to 

surround suppression. Moreover, my results argue that the subunit specific 

contribution of glycinergic modulation of RF center vs. surround differs between 

the On and Off retinal pathway.  

Mechanisms That Contribute to Post Stimulus Rebound Excitation in WT 

OFF RGCs at Luminance Decrement 

Mechanisms that generate spontaneous activity in WT RGCs have been 

shown to include: intrinsically generated spontaneous activity of some WT OFF 

RGCs and modulation by synaptic input (Margolis and Detwiler, 2007). In the 

same WT OFF RGCs, rebound excitation, another intrinsic property, can be 

evoked by application of negative current in the absence of synaptic input and a 

role for low-voltage gated (LVA) Ca2+ channels has been proposed (Margolis et 

al., 2010). I observed significantly less post-stimulus excitation in Glra2-/- OFF 

RGCs. Although I did not measure the currents that underlie the altered post-

stimulus excitatory response in the absence of GlyRα2 mediated inhibition, there 

are three likely mechanisms.  
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1. In the WT retina, the spontaneous activity is modulated by GlyRα2-

mediated inputs that inhibit either a direct tonic inhibitory input onto the 

OFF RGC or onto their OFF cone BC excitatory inputs. A lower 

spontaneous rate is observed in Glra2-/- OFF RGCs compared to WT 

(Nobles et al., 2012). This could result from absence of GlyRα2-mediated 

inhibition of a tonic inhibitory input onto either the OFF RGC or its 

presynaptic OFF BC. In either scenario, the tonic inhibition onto the Off 

pathway is increased, and the resting membrane potential of OFF RGCs 

should be more hyperpolarized. If the excitatory input remains unchanged, 

the amplitude of the post-stimulus excitation will be lower.  

2. Alternatively, in WT OFF RGCs I found that the excitatory drive of the 

post-stimulus excitation was positively related to the suppression during 

stimulation, which is decreased in the Glra2-/- OFF RGCs. The weaker 

surround suppression evoked by the annular stimulus in Glra2-/- OFF RGC 

could compromise the de-inactivation of LVA Ca2+ channels. In this case, 

at stimulus offset (light increment), the RGCs receive less calcium influx 

and have their spiking activity reduced.  

3.  In the WT retina, a GlyRα2-mediated crossover inhibition could be 

involved to disinhibit WT OFF RGCs at the post-stimulus and in turn enhance 

the rebound excitation. Such a crossover inhibitory circuit should be absent in 

Glra2-/-. This crossover circuit is described in the following section (Figure 

3.11). 
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A crossover-feedforward GlyRα2-mediated Circuit Enhances OFF RGC 

Surround Inhibition and Rebound Excitation 

In the absence of GlyRα2 subunit expression, OFF RGCs have weaker 

surround suppression compared to WT. This is unlikely due to the absence of 

GlyRα2-mediated inhibition directly onto OFF RGCs or their presynaptic BCs, 

because: 1) the surround antagonism of OFF RGCs has been observed to be 

generated by GABAergic inhibition from wide-field ACs (Flores-Herr et al., 2001; 

O’Brien et al., 2003); 2) OFF BCs only express GlyRα1 (Ivanova et al., 2006) and 

3) to date many OFF RGC types do not express GlyRα2 (Majumdar et al., 2007; 

Chapter V). Therefore, I propose that GlyRα2 are expressed on ACs where they 

mediate AC-to-AC inhibition (Majumdar et al., 2009; Weiss et al., 2008), which 

would modulate RGC surround antagonism indirectly. The rebound excitation at 

luminance increment evoked by RF surround stimulation of Glra2-/- OFF RGCs 

also is smaller compared to WT. This argues that there is likely to be a GlyRα2-

mediated crossover-feedforward circuit that modulates the OFF RGC (Figure 

3.11A). The crossover inhibition functions as a ‘push-pull’ mechanism to enhance 

the OFF RGC RF surround suppression by inhibition and its post-stimulus 

excitatory response by disinhibition. Glycinergic On-to-Off pathway crossover 

inhibition has been observed in BCs, ACs and RGCs where it fine tunes their 

visual responses (Hsueh et al., 2008; Manookin et al., 2008; Molnar et al. 2009; 

Murphy and Rieke, 2006). In addition, I show a similar GlyRα1-mediated circuit 

contributes to signaling in the PV5 OFF RGC (Zhang et al., 2014 and Chapter IV).  
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In the proposed WT crossover-feedforward circuit, the suppressive 

surround of the OFF RGC is generated by an OFF GABAergic AC, which 

expresses GlyRα2 (Figure 3.11A). This GABAergic AC is postsynaptic to a bi-

stratified glycinergic AC driven by the On pathway (crossover inhibition). Stimulus 

onset (luminance decrement within the RF surround of OFF RGCs) 

hyperpolarizes the presynaptic ON cone BCs (Figure 3.11A, box 1) and 

reduces/eliminates glycinergic inhibition from the bistratified AC onto the 

GABAergic AC (Figure 3.11A, box 2i). This increases the GABAergic input onto 

the OFF RGC and/or its presynaptic OFF BC and enhances its surround 

suppression (Figure 3.11A, box 3i & 5i). Stimulus offset (luminance increment) 

depolarizes the presynaptic ON cone BC (Figure 3.11A, box 1) and increases the 

glycinergic inhibition onto the GABAergic AC (Figure 3.11A, box 2i). The 

decreased output of the GABAergic AC (disinhibition) facilitates excitation in the 

OFF RGC (Figure 3.11A, box3i & 5i). In the absence of GlyRα2 expression, 

GlyRα2-mediated crossover ‘push-pull’ modulation of the GABAergic AC is 

eliminated (Figure 3.11A, box2ii & 3ii) and with it the enhancement of surround 

suppression at luminance decrement as well as post-stimulus rebound excitation 

at luminance increment is eliminated (Figure 3.11A, box 3ii & 5ii). 

A concatenated GlyRα2-mediated Circuit Enhances OFF RGC Surround 

Inhibition  

A concatenated inhibitory circuit (Figure 3.11B) also can explain GlyRα2-

mediated enhancement of RF surround suppression in WT OFF RGCs during the 

stimulation. This circuit requires three ACs that use serial and feedforward 
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inhibition. Either a GABAergic or glycinergic AC (Figure 3.11B, AC2) expresses 

GlyRα2 to receive glycinergic input from a narrow field glycinergic AC (Figure 

3.11B, AC1) and forms a serial inhibitory circuit in the Off sublayer, which 

modulates another GABAergic AC (Figure 3.11B, AC3) that uses feedforward 

inhibition to generate RF surround within the OFF RGC (Figure 3.11B). There is 

precedence in the literature for serial circuits and their disinhibitory mechanism 

(Chen et al., 2011; Eggers et al., 2007; Eggers and Lukasiewicz, 2010; Russell 

and Werblin, 2010; Zhang et al., 1997). Stimulus onset (luminance decrement 

within the RF surround of OFF RGCs) depolarizes the presynaptic OFF cone 

BCs (Figure 3.11B, box 1) and drives the serial AC-to-AC inhibition mediated by 

GlyRα2 to reduce/eliminate the inhibitory inputs in the downstream GABAergic 

OFF AC (Figure 3.11B, box2i &3i) to increase its excitatory response. The 

disinhibited GABAergic OFF AC input drives a feedforward inhibition either 

directly onto the OFF RGC or indirectly onto its presynaptic OFF BC to generate 

the surround suppression (Figure 3.11B, box 4i). As a result, the surround 

suppression is enhanced by the serial circuit disinhibition (Figure 3.11B, box 5i). 

In the absence of GlyRα2, the serial circuit is disrupted (Figure 3.11B, box 2ii) 

and the feedforward inhibition generating the surround lost the enhancement by 

disinhibitory modulation (Figure 3.11B, box 3ii) and results in weaker surround 

(Figure 3.11B, box 4ii & 5ii).  
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Figure 3.11. Schematic diagrams of the proposed roles of GlyRα2 in the WT 

Off mouse retinal pathways.  Each diagram illustrates a basic retina circuit that 

is consistent with the results presented. The diagrams in the upper left corner 

illustrate the stimulus. Within each circuit the numbered boxes represent the 
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current evoked at stimulus onset. N.B., currents are represented with transient 

time course for simplicity. The currents in the boxes do not reflect the temporal 

properties of the currents, as described in the results. (A) GlyRα2 mediates 

inhibition within OFF RGC receptive field surround using crossover-feedforward 

inhibitory circuit. GlyRα2 is expressed on a GABAergic AC (blue) to receive On-

to-Off pathway crossover inhibition from a bi-stratified glycinergic AC (red). The 

GABAergic AC is responsible for generating the suppressive surround of OFF 

RGC at stimulus onset. At stimulus onset, the ON BC (light green) gets 

hyperpolarized (Box 1) and terminates the crossover inhibition onto the 

GABAergic AC (Box 2i), while the OFF BC (dark green) gets depolarized (Box 4) 

and activates the GABAergic AC. The On-to-Off glycinergic disinhibition 

combines with Off direct inhibition within the GABAergic AC and enhances the its 

activity, which in turn increases the surround suppression of the OFF RGC (Box 

3i & 5i). At stimulus offset, the ON BC gets depolarized (Box 1) and drives the 

glycinergic AC to inhibit the GABAergic AC (Box 2i), while the OFF BC gets 

hyperpolarized and remove the excitatory drive of the GABAergic AC (Box 4). 

The glycinergic crossover inhibition combines with the termination of excitation 

within the GABAergic AC and results in further decrease in the GABA release 

onto the OFF RGCs (Box 5i), which facilitates the offset rebound excitation. In 

the absence of GlyRα2, the GABAergic AC no longer receives the crossover 

inhibition (Box 2ii) and results in lower responses at both stimulus onset and 

offset (Box 3ii & 5ii). (B) GlyRα2 mediate inhibition within RGC receptive field 

surround using concatenated inhibitory circuit. Three amacrine cells (ACs) form a 
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train by making inhibitory synapses within the Off sublayer. The GlyRα2 (blue 

rectangle) is expressed on the dendrites of a glycinergic or GABAergic OFF AC 

(grey AC in the middle) to receive inhibition from a glycinergic AC (red) and 

mediate a serial inhibition onto the GABAergic wide field OFF AC (blue), which 

provides direct lateral inhibition onto the ON RGC. At stimulus onset (luminance 

increment), the ACs are driven by OFF cone bipolar cells (BCs), which produce 

inward currents (Box 1a-c). The glycinergic AC (red), via GlyRα2, produces an 

outward current in the middle OFF AC (Box 2i). The summation of outward and 

inward currents in the middle OFF AC results in a reduced outward current in the 

GABAergic OFF AC (Box 3i), which is summed with the inward current produced 

via input from its presynaptic OFF BC (Box 1c). The GABAergic OFF AC, using 

GABA receptors (GABARs, purple triangle), produces an outward current in the 

ON RGC and its presynaptic OFF BC (Box 4i & 5i). In the absence of GlyRα2, 

the serial inhibition is disrupted (Box 2ii) and the GABAergic AC receives larger 

inhibition at luminance increment (Box 3ii). As a result, the OFF RGC received 

reduced GABAergic lateral inhibition within its RF surround (Box 4ii & 5ii). 

 

 

GlyRα2-mediated Inhibition Modulate Both RF Center and Surround in WT 

OFF RGCs via Different Circuits 

Center-surround antagonism is the basic RF design of most RGCs and 

their interaction is essential for visual processing of contrast, spatial acuity and 
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temporal selectivity (Cook and McReynolds, 1998; Enroth-Cugell and Robson, 

1966; Greenberg et al., 2011; Kuffler, 1953; Rodieck and Stone, 1965). In the 

absence of GlyRα2, both the RF center and surround responses of OFF RGCs 

are reduced while maintaining their center:surround balance (Figure 3.10C). This 

suggests that GlyRα2-mediated inhibition modulates both the portion of the RF 

where the center and surround are contiguous, as well as in the RF surround that 

extends outside of the RF center. While this could represent a single GlyRa2 

mediated mechanism, there is more evidence that supports the idea that there 

are different GlyRα2-mediated circuits that separately modulate the RF center 

and surround. First, our sample of OFF RGCs are most likely A-type RGCs as 

their large axons are most readily sampled by our electrodes in the optic nerve 

(Boycott and Wässle, 1974; Nobles et al., 2012). A-type OFF RGCs use 

crossover inhibition from the On pathway as the primary input to the RF center 

(Murphy at Rieke et al., 2006; Manookin et al., 2008; van Wyk et al., 2009; Zhang 

et al., 2014), and use feedforward inhibition from the Off pathway as the primary 

input to the RF surround (Cook and McReynolds, 1998; Flores-Herr et al., 2001; 

Roska et al., 2000). Therefore, the RF center and surround in OFF RGCs appear 

to be modulated by two distinct circuits driven by the On and Off pathways 

separately. Moreover, spatially the RF center and surround require ACs with 

different dendritic field sizes to perform this modulation, e.g., narrow field ACs 

modulate the RF center and wide field ACs the RF surround. Therefore, my 

results are most consistent with the interpretation that the RF center and 

surround of OFF RGCs are differentially modulated by GlyRα2-mediated circuits.       
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CHAPTER IV 

ADENO-ASSOCIATED VIRUS-RNAI OF GLYRα1 AND 

CHARACTERIZATION OF ITS SYNAPSE-SPECIFIC INHIBITION IN 

OFF ALPHA TRANSIENT RETINAL GANGLION CELLS 

Introduction 

In the mammalian retina, ACs form complex synaptic networks in a series 

of independent microcircuits (Anderson et al., 2011; Azeredo da Silveira and 

Roska, 2011; Helmstaedter et al., 2013; Marc et al., 2013). To regulate inner 

retinal excitatory signaling and shape the spiking output of retinal RGCs, these 

circuits utilize several mechanisms including feedforward, feedback, crossover 

and serial inhibition (reviewed in Zhang and McCall, 2012). As one of the main 

postsynaptic targets of ACs, GlyRs are critical components of inhibitory circuits 

and shape RGC spontaneous and visually evoked responses, e.g., temporal 

tuning or gain control (Chen et al., 2010, 2011; Manookin et al., 2008; Münch et 

el., 2009; Murphy and Rieke, 2006; Nobles et al., 2012; Pang et al., 2003; Roska 

et al., 2006; Russell and Werblin, 2010; van Wyk et al., 2009). 

Four glycinergic α subunit subunits have been identified in mouse retina 

(Wässle et al., 2009; Dutertre et al., 2012) and each GlyR α subunit exhibits 

unique current decay kinetics and distinct cell class localization (Heinz et al., 
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2007; Ivanova et al., 2006; Majumdar et al., 2007, 2009; Weiss et al., 2008). 

GlyRα1, the subunit with the fastest decay time, is expressed in OFF cone and 

rod bipolar cells (Eggers and Lukasiewicz, 2010; Ivanova et al., 2006) as well as 

in ON and OFF A-type RGCs (Majumdar et al., 2007). The other GlyR α subunits 

are localized on other retinal cell classes (reviewed in Zhang and McCall, 2012). 

The diversity of GlyRs, their different kinetics and retinal localization suggest that 

α subunit-specific circuits regulate visual signaling of either diverse properties 

within distinct circuits or similar properties across circuits. Supporting the idea of 

a role in distinct circuits, we showed that GlyRα2 and GlyRα3 selectively mediate 

inhibition in the retinal On and Off pathways, respectively (Nobles et al., 2012). 

On-to-Off pathway glycinergic crossover inhibition onto presynaptic OFF 

cone BCs (Eggers and Lukasiewicz, 2010; Ivanova et al., 2006), as well as onto 

the RGCs, themselves (Majumdar et al., 2007; Manookin et al., 2008; Murphy 

and Rieke, 2006; Pang et al., 2003; van Wyk et al., 2009; Werblin, 2010) shapes 

the visual responses of OFF RGCs. These results and its retinal expression 

pattern make GlyRα1 the most likely subunit that modulates spontaneous and 

visually evoked activity of mature OFF α RGCs through crossover inhibition.  

The lack of subunit specific antagonists and cell class specific/conditional 

GlyRα1 knockout mice preclude a direct test of this hypothesis. To address this 

dilemma and define the role of direct GlyRα1 input in shaping mature OFF α 

RGC responses, I combined several novel approaches. Namely, I: (1) infected 

adult RGCs with retrogradely transported AAV; (2) generated short hairpin RNA 

(shRNA) against Glra1 to eliminate its expression in RGCs without changing its 
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expression in the upstream circuit; (3) targeted PV5 RGCs (likely OFF αTransient; 

Münch et al., 2009) in a reporter mouse line (PVCre) with eight identified and 

fluorescently labeled RGC types (Farrow et al., 2013) and (4) recorded 

spontaneous and visually evoked responses using two photon microscopy.  

Compared to wild type, RNAi eliminates almost all GlyRα1 expression on 

the dendrites of PV5 (PV5WT) RGCs, as well as all glycinergic sIPSCs and 

eIPSCs. This indicates that the majority of glycinergic input to PV5 RGCs is 

GlyRα1 subunit specific. Because only the direct GlyRα1 input is eliminated in 

RGCs and the upstream circuitry is intact, differences in responses between PV5 

RGCs with and without GlyRα1 input can be used to define its role in shaping the 

PV5WT response. I show that the GlyRα1 subunit mediates a previously 

described On-to-Off crossover synaptic input to OFF αTransient RGCs. I also show 

that in PV5 RGCs, a direct GlyRα1 specific inhibition controls spontaneous 

activity, facilitates excitatory signaling to luminance decrements (OFF response) 

and suppresses excitatory signaling to luminance increments (ON response). 

This improves the signal to noise ratio and maintains the correlation between the 

receptive field OFF center response and the stratification of the PV5WT RGC 

dendrites in the OFF sublaminae of the inner plexiform layer. Together these 

direct inhibitory inputs enhance the fidelity of PV5WT RGCs. I also demonstrate a 

complex interaction between glycinergic and GABAergic inputs at the level of the 

PV5WT RGCs. Namely, a serial GABAAergic input modulates GlyRα1 crossover 

inhibition and a direct GABAAergic inhibition modulates the PV5WT RGC 

response at both luminance increment and decrement. 
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Results 

PV5WT RGCs Express GlyRα1 and Have GlyRα1-mediated Synaptic Inputs 

I first examined the glycinergic subunit specific expression and currents in 

PV5WT RGCs. Previous reports observed expression of GlyRα1 puncta and 

sIPSCs in A2 OFF RGCs (Sun et al., 2002), which should be the equivalent of 

the PV5 RGC type, and their absence in the mouse mutant Glra1spd-ot (Majumdar 

et al., 2007). Using two photon microscopy, I targeted YFP-positive RGCs with 

neurobiotin. I verified their identity as PV5 RGCs in retinas triple-stained for: 

neurobiotin (Figure 4.1), choline acetyltransferase (ChAT; Figure 4.1Aii) and 

GlyRα1 (Figure 4.1B, C & D), using their large soma and dendritic field size as 

well as the stratification of their dendrites, slightly proximal to the Off ChAT band 

in the IPL (Figure 4.1Aii; See also Münch et al., 2009; Farrow et al., 2013). Every 

PV5 WT RGCs (n = 8) had significantly more coincident GlyRα1 positive puncta 

compared to random coincidence (Figure 4.1Di, 0.27±0.03 vs Figure 4.1Dii, 

0.05±0.08 puncta·μm-1 of dendrite; p<0.0001). The corrected GlyRα1 

coincidence, 0.21±0.02 puncta·μm-1, is similar to previous estimates in A2 RGCs 

(Majumdar et al., 2009). This is consistent with the idea that PV5WT are A2 OFF 

RGCs.  
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Figure 4.1. The GlyRα1 subunit is expressed on PV5WT RGC dendrites. (Ai) 

Representative confocal image of a neurobiotin labeled PV5 RGC (green) in a 

retinal wholemount shows its characteristic A2 type morphology. (Aii) A rotated 

view of the same RGC shows its dendritic lamination pattern relative to the bands 

formed by the processes of the cholinergic amacrine cells (magenta) and that 

they are restricted to the Off sublaminae of the IPL. (B) Representative portion of 

the dendritic arbor of the same PV5WT RGC (see box; 70×70 μm area) and the 

punctate pattern of GlyRα1 subunit expression (red). (C) Co-localized GlyRα1 

puncta (white dots) on the dendrite of the same RGC. (Di) A magnified and 

deconvolved image from B (see box). White arrows indicate a subset of 

representative co-localized GlyRα1 puncta on the PV5 dendrite. (Dii) Illustration 

of random association of GlyRα1 puncta that results from superposition of the 

channel containing the dendrite with a duplicated and 180o rotated channel with 

the GlyRα1 puncta. White arrows indicate what are considered co-localized, 



84 

 

albeit random, GlyRα1 puncta. The number of randomly co-localized puncta was 

used to correct GlyRα1 puncta coincidence rate. Abbreviations: INL, inner 

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar = 40 

μm in A; 16 μm for B,C; 2.5 μm for D. 

 

 

In PV5WT RGCs in the presence of the GABAA antagonist, picrotoxin (20 

μM; PTX), the majority (97%) of glycinergic sIPSCs (Figure 4.2Ai and Aii) had 

decay times (D37) < 5 ms and the distribution average was 2.7±0.03 ms (Figure 

4.2B; 699 events; 12 PV5WT RGCs). This is identical to estimates of τ for GlyRα1 

sIPSCs in rat AII cells recorded at physiological temperature (Gill et al., 2006), 

although faster than sIPSCs WT A2 OFF RGCs recorded at 25°C (Majumdar et 

al., 2007). My mean D37 also is much faster than estimates for GlyRα2, α3 and 

α4 subunits (Wässle et al., 2009). In presence of both PTX and strychnine, all 

sIPSCs were eliminated (Figure 4.2Aiii) and the RGCs exhibited oscillatory 

current activity. My immunohistochemical and electrophysiological results 

indicate that that GlyRα1 inputs are the predominant glycinergic synaptic inputs 

of PV5 RGCs. 

Stimulus-evoked Response Profiles of PV5WT RGCs  

Even though I used higher contrast stimuli, the receptive field (RF) center/ 

surround organization and stimulus-evoked spiking response properties of PV5WT 

RGCs are consistent with previous descriptions (Farrow et al., c.f. Figure 2; 
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Münch et al., c.f. Figure 3). Namely, to a luminance decrement, PV5WT RGCs 

respond with an initial transient excitatory response followed by a sustained 

response slightly above spontaneous activity. To a luminance increment, there is 

a suppression in firing rate followed by a rebound excitation when spot diameters 

are small. The eEPSCs and eIPSCs that underlie the spiking response of PV5WT 

RGCs also are consistent with previous descriptions. A luminance decrement 

(onset of a 375 μm dark spot, which matched the RF evokes only an eEPSC; 

whereas a luminance increment (offset of a dark spot) evokes only an eIPSC 

(Figure 4.2D). The magnitude of the eIPSC was unchanged when PTX 

eliminated GABAAergic inhibition (Figure 4.2D; n=3; 205.84±66.01 vs. 

173.34±58.77 nA·ms). In contrast, the eIPSC was completely eliminated when 

strychnine (10 μM) also was included. My morphological and electrophysiological 

results suggest that the previously described, glycinergic input to OFF αTransient 

RGCs is GlyRα1 (Murphy and Rieke, 2006; Münch et al., 2009; van Wyk et al., 

2009) and that this subunit input is a critical element of a crossover circuit, is 

maintained at high luminance and contrast levels. 
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Figure 4.2. GlyRα1-meditated sIPSC and glycinergic eIPSCs are present in 

PV5WT RGCs.  (Ai) Glycinergic sIPSCs were recorded from PV5WT RGCs held at 

0 mV in the presence of picrotoxin (PTX, 20 μM). (Aii) Same trace as Ai with an 

expanded time scale. Stars indicate sIPSCs that met our criterion (see text) and 

were used in our analyses. (Aiii) Average waveform of PV5 WT RGC sIPSCs that 

met the criterion (170 events) and an illustration of their average decay (D37). 

(Aiv) All sIPSCs were eliminated in presence of PTX (20 μM) and strychnine (10 

μM). (B) The frequency of decay times (D37) in sIPSCs of PV5WT RGCs (n = 12; 

699 events). (C) A schematic representation of the visual stimulus, a dark spot 

(6,000 R*/rod/s) centered on the PV5WT RGC soma, presented on a background 

(24,000 R*/rod/s). On average, a spot with outer diameter of 375 μm matches the 
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PV5 RGC dendritic arbor. (D) Averaged PV5WT RGC eIPSC evoked by the offset 

of the stimulus shown in (C) in control solution. Picrotoxin (PTX, 20 μM) 

produced a small reduction in the eIPSC indicating a small GABAergic input. The 

eIPSC was completely eliminated when strychnine also was included (PTX 20 

μM + strychnine 10 μM), indicating that the majority of synaptic inhibitory input is 

glycinergic. 

 

 

AAV-mediated RNAi Eliminates GlyRα1 Expression in PV5Glra1-KD RGCs 

In examining the role of glycinergic input in the responses of RGCs, 

previous studies have used the competitive glycine antagonist, strychnine, which 

eliminates glycinergic signaling throughout the retinal circuit. I tested whether an 

RNAi approach could be used to selectively eliminate direct GlyRα1 subunit 

specific inhibition in RGCs while leaving the remaining upstream glycinergic 

inhibition intact. To this end, I injected AAVs expressing a Glra1-shRNA cassette 

into the dLGN to selectively target the AAV to RGCs. The viral vector plasmid 

(pAAV-Ef1a-NLStdTomato-H1; Figure 2.2) also expressed the tdTomato 

fluorescent protein with a nuclear localization signal, which I used to determine 

the timing and extent of RGC viral infection across the retina. I used RT-PCR and 

the cDNA isolated from HEK293 cells co-transfected with a plasmid expressing 

GlyRα1 along with either a AAV scrambled shRNA construct or one of three AAV 
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Glra1-shRNA (a 29-mer and two 21-mer) constructs and evaluated the change in 

Glra1 transcription compared to a blank control vector (tdTomato only). 

 

               

Figure 4.3. AAV-mediated RNAi significantly knocks down GlyRα1 

expression on PV5 RGC dendrites. (A) RT-PCR results show that AAV-Glra1-

shRNA 21mer-A produced the largest fold reduction in Glra1 mRNA in 

transfected HEK293 cells compared to all other constructs. (Bi) Fluorescence 

confocal image of the contralateral retina of a PvalbCre × Thy1Stp-EYFP mouse, 4 

weeks after injection of AAV-scrambled shRNA into the dLGN. (Bii) Higher 
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power image of the boxed area in Bi, showing YFP positive PV RGCs (green), 

AAV infected RGCs with tdTomato positive nuclei (red) and double labeled PV 

infected RGCs (green with yellow nuclei). (C, D) Representative confocal images 

of neurobiotin filled PV5 RGCs infected with (Di) AAV-Scrambled-shRNA (SC) or 

(Di) AAV-Glra1-shRNA (Glra1-KD). (Cii & Dii) Higher power images of the boxed 

areas in Ci, Di showing the distribution of GlyRα1 expression (red puncta). (E) 

Dendrites of PV5 RGCs infected with AAV-Glra1-shRNA (n=7 cells; N=14 

dendritic fields) have significantly fewer coincident puncta than those infected 

with AAV-Scrambled-shRNA (n=4; N=8), whose expression is similar to PV5WT 

RGCs (n=8; N=16). Scale bars = 600μm (Bi); 50μm (Bii); 45μm (Ci, Di); 3μm (Cii, 

Dii). 

                

 

One AAV construct, 21-mer-A Glra1-shRNA showed the most (81%) 

down-regulation of Glra1 mRNA levels (Figure 4.3A), whereas the scrambled 

shRNA had no effect on Glra1 mRNA levels. All subsequent experiments in vivo 

used 21-mer-A Glra1-shRNA AAV. The sequences of the scrambled and Glra1 

shRNAs are: 

Scrambled shRNA: 5'- GTCGAAACCCGCAATAATAAT  

Glra1 shRNA: 5'- GCACTACAACACAGGTAAATT -3' 

Four weeks after LGN injection, I observed tdTomato nuclear expression 

throughout, but confined to the RGC layer in the contralateral eye (Figure 4.3Bi). 
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Almost all YFP expressing PVcre RGCs (green with yellow nuclei) were infected 

(Figure 4.3Bii). The remaining experiments targeted double labeled PV5 RGCs 

infected with AAVs generating scrambled (PV5SC) or Glra1-shRNA (PV5Glra1-KD).  

To evaluate the effect of knockdown of Glra1 expression, I quantified 

coincident GlyRα1 puncta on the dendrites of PV5SC or PV5Glra1-KD; Figures 4.3C 

& D). When corrected for random coincidence, there were no coincident GlyRα1 

immunoreactive puncta on the dendrites of PV5Glra1-KD (n=7) RGCs (-0.009±0.003 

puncta·μm-1; p=0.02). The density of GlyRα1 immunoreactive puncta on the 

dendrites of PV5SC (n=4) was the same as PV5WT (n=8) RGCs (Figure 4.3E; 

0.20±0.04 and 0.21±0.02 puncta·μm-1). I conclude that AAV-RNAi of Glra1 

significantly down regulates GlyRα1 protein expression in PV5Glra1-KD RGCs and 

that the scrambled construct has no off target effects. For the remainder of the 

experiments, I used PV5SC RGCs as controls. Retrograde AAV-RNAi significantly 

reduces GlyRα1expression and the majority (~95%) of glycinergic synaptic 

inputs. Without this glycinergic input, a PTX sensitive GABAAergic synaptic input 

is seen that is not evident in PV5WT or PV5SC RGCs. I speculate that synaptic 

inhibition to PV5WT RGCs is modulated by two GABAAergic inputs. One inhibits a 

glycinergic AC and modulates spontaneous glycine release onto PV5 RGCs 

(Figure 4.8A, blue pathway). The other (Figure 4.8B, blue) modulates 

spontaneous GABA release onto PV5 RGCs (Figure 4.8B). I speculate that in 

PV5WT and PV5SC RGCs, PTX blocks the first, serial GABAAergic input and 

increases spontaneous glycine release. This offsets a decrease in sIPSC due to 

the PTX block of the direct spontaneous GABA release. The serial GABAAergic 
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pathway is eliminated in PV5Glra1-KD RGCs, the direct GABAAergic synaptic input 

can be observed as a consequence of its sensitivity/elimination by PTX.  

 

 

Figure 4.4. Knockdown of Glra1 eliminates GlyRα1 sIPSCs in PV5 RGCs. (A) 

A representative two photon Z-stack image of a PV5Glra1-KD RGC infected by 

AAV-Glra1-shRNA (red arrow) that expresses YFP (green) in its cytoplasm and 

both YFP and tdTomato in its nucleus (yellow). Other PVcre RGCs types also are 

double labeled (*). RGCs labeled with GFP only represent infected, non PVcre 
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RGC types (red). Scale bar = 40μm. (Bi) Representative sIPSCs in PV5SC and 

PV5Glra1-KD RGCs. (Bii) Representative sIPSCs from the same RGCs in the 

presence of PTX (20μM). (Ci) In control solution, the average frequency of sIPSC 

in PV5Glra1-KD RGCs (n=7) is significantly lower compared to PV5WT (n=7) and 

PV5SC (n=5) RGCs, which are similar. (Cii) In the presence of PTX, the average 

sIPSC frequency in PV5Glra1-KD RGCs (n=7) also is significantly lower compared 

to PV5WT (n=7) and PV5SC (n=5) RGCs, which are similar. Within PV5Glra1-KD 

RGCs, the sIPSC frequency is significantly reduced in control vs PTX. (D) 

Interevent intervals in PV5Glra1-KD RGCs sIPSC are longer than PV5SC RGCs in 

control (i) or in the presence of PTX (ii). Within PV5Glra1-KD RGCs, the interevent 

intervals are significantly longer in PTX vs control.  

 

 

AAV-mediated RNAi Eliminates Stimulus Evoked GlyRα1 Currents in 

PV5Glra1-KD RGCs  

A luminance increment depolarizes ON CBCs which initiates excitatory 

signaling in the On pathway. This stimulus culminates as a glycinergic inhibitory 

input onto PV5WT RGCs (dark spot offset; see Figure 4.2D). The eIPSC total 

charge transfer evoked by this stimulus was similar across PV5WT, PV5SC and 

PV5Glra1-KD RGCs (Figure 4.5 A & Bi; n=3, 5 and 7; 205.83±66.01, 153.33±13.54 

and 136.62±13.34 nA·ms, respectively). However, an initial transient peak, found 

in the eIPSC of both PVWT and PV5SC RGCs, was absent in PV5Glra1-KD eIPSCs 

(Figure 4.5Ai vs Aii, respectively). This flattened their eIPSC and significantly 
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lengthened time to peak (157.6±30.4 vs. 236.4±5.3 ms; p=0.02). In the same 

cells, the presence of PTX did not alter the eIPSC (eIPSCPTX) of PV5SC RGCs 

(Figures 4.5Ai, Aii & C; 114.43±10.43 nA·ms). In contrast, eIPSCPTX in PV5Glra1-KD 

RGCs was significantly reduced the (Figure 4.5Aii; 30.49±6.31 nA·ms; p= 0.001). 

The eIPSCPTX in PV5Glra1-KD RGCs were glycinergic as they were eliminated by 

strychnine (Figure 4.5Aii) and likely result from the few GlyRα1 receptors that are 

expressed in PV5Glra1-KD RGCs. Further, their charge transfer was significantly 

smaller (~27%) than the glycinergic eIPSC in PV5SC RGCs (Figure 4.5A & C; 

p<0.0001). All of these changes in the eIPSC are similar to those observed in 

sIPSCs, suggesting that the same two GABAAergic inputs modulate both 

synaptic and stimulus evoked responses (see Figure 4.8).  

The comparisons of sIPSCs and eIPSCs across PV5WT, PV5SC and 

PV5Glra1-KD RGCs show that: (1) the majority of glycinergic input to PV5WT RGCs 

is mediated by the GlyRα1 subunit, (2) this RNAi approach effectively eliminates 

the majority of the synaptic and evoked glycinergic currents, (3) viral infection 

has no non-specific effect on spontaneous or evoked currents and (4) reveals the 

presence of two GABAAergic mechanisms that modulate synaptic inhibition in 

PV5 RGCs. 
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Figure 4.5. Knockdown of Glra1 eliminates GlyRα1 input to PV5 RGCs at 

luminance increments. (A) Representative eIPSCs evoked by the offset of a 

dark spot (schematic below trace) from PV5SC (Ai; n= 5) and PV5Glra1-KD (Aii; n 

=7) RGCs in: control solution (black traces), in the presence of PTX (dark gray 

traces) and in the presence of both PTX and strychnine (light gray traces). In 

control (Bi) the charge transfer does not differ across PV5WT, PV5SC or PV5Glra1-

KD  groups, whereas the presence of PTX (Bii) significantly reduces the charge 

transfer in PV5Glra1-KD compared to PV5SC RGCs. 
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PV5SC RGC Stimulus-evoked Responses  

Similar to WT, PV5SC RGCs respond to a luminance decrement (onset of 

a dark spot) with a transient excitatory peak (≤ 400 ms of stimulus onset) 

followed by maintained firing whose rate was above SA and matched to stimulus 

duration (2000 ms; Figure 4.6A,C & D). A luminance increment (offset of a dark 

spot) evokes a short latency suppression of spiking that is followed by a small 

rebound excitatory response (~500 ms from stimulus offset; Figure 4.6A & B). 

The amplitude increases and then declines with increasing spot diameter and is 

not significantly above SA once the spot diameter exceeds the cell’s RF center 

(>500 μm). Given the difference in the stimulation conditions, my responses are 

comparable to previously published PV5WT responses (Farrow et al., 2013) and 

do not vary with time after AAV infection.  

GlyRα1 Inhibitory Input Modulates PV5WT RGC Spontaneous Spiking 

Activity and Post Suppression Rebound Responses to Luminance 

Increments 

To define the roles of direct GlyRα1-mediated inhibition in PV5WT RGC 

visual function, I compared and defined the differences in the spontaneous and 

stimulus-evoked spiking responses of PV5SC (n=12) and PV5Glra1-KD (n=13) 

RGCs. Consistent with a role for a tonic GlyRα1 inhibitory synaptic input to 

PV5WT RGCs, the absence of GlyRα1 current significantly increased the 

spontaneous spiking rate in PV5Glra1-KD compared to PV5SC RGCs (Figure 4.6A; 

13.95±2.60 and 4.11±1.02 spikes·s-1; p=0.003).  
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This mismatch in SA precluded quantitative comparisons of spiking 

suppression to a luminance increment (Figure 4.6A). To correct for the difference 

in all other evoked spiking responses I subtracted the mean SA. The absence of 

GlyRα1 input did not alter RF center diameter in PV5Glra1-KD compared to PV5SC 

RGCs (336.54±27.64 vs 343.75±27.20 μm) and therefore I directly compared 

responses as a function of stimulus diameter. 
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Figure 4.6. GlyRα1 input modulates PV5 RGC spontaneous activity and the 

excitatory rebound post stimulus suppression to a luminance increment. (A) 

Average PSTHs and individual raster plots (above) of the spiking responses of 

PV5SC (n=12) and PV5Glra1-KD RGCs (n=13) as a function of spot diameter. The 

mean SA is indicated by horizontal dashed lines on the PSTHs and grey shading 

indicates±2 SE. Spot diameter and the onset/offset of the stimulus (described in 

Figure 3A) are represented in the diagram below the responses. (B) To a 

luminance increment, the rebound firing rate evoked at the offset of a dark spot, 

is significantly higher and a rebound response is retained across spot diameter in 

PV5Glra1-KD compared to PV5SC RGCs. (C) Transient peak amplitude does not 

differ between the two groups, although (D) sustained firing rates of PV5Glra1-KD 

RGCs are significantly lower than PV5SC RGCs. 

 

 

To parse the role of GlyRα1 in feedforward and crossover inhibitory 

mechanisms, I examined responses to luminance increments and decrements, 

respectively. In PV5SC RGCs, a luminance increase induced a suppression in the 

spiking response that was followed by a post suppression rebound response, as 

long as the spot diameter was ≤ the RGC RF center diameter. In PV5Glra1-KD the 

rebound response did not decline significantly with increasing spot diameter, 

although it was significantly larger than PV5SC RGCs at all but the smallest spot 

diameter (Figure 4.6A & B; Two-way ANOVA, p<0.0001). The rebound response 
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had a slow onset and had no directly associated eEPSC. Although a small 

inward current was recorded with similar timing (Figure 4.7A), it did not differ 

across PV5WT, PV5SC and PV5Glra1-KD RGCs. This result along with the 

observation that an intrinsic rebound response can be induced in WT OFF RGCs 

by injecting negative current (Margolis and Detwiler, 2007), suggests that an 

absence of tonic GlyRα1 input causes PV5Glra1-KD RGCs resting membrane 

potential to be more depolarized. At the end of spike suppression, that results 

from a release from inhibition, spiking threshold is reached sooner in the more 

depolarized PV5Glra1-KD RGCs and results in an enhanced rebound response.  

    

Figure 4.7. Stimulus evoked responses to luminance decrement is 

modulated by glycinergic and GABAAergic inputs.  (A) To a luminance 
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decrement (375 μm diameter spot), the average eEPSC of PV5SC (black, n = 4) 

and PV5Glra1-KD RGCs (grey, n=5) are similar. (B) To the same stimulus, the 

average eIPSC of PV5Glra1-KD (n=7) is significantly elevated compared to PV5SC 

RGCs (n=5) in control solution (black) and in the presence of PTX (grey). (C) The 

subtraction of the average eIPSC of PV5Glra1-KD  from PV5SC under control (black) 

show a prominent decrease in eIPSC at luminance decrement, suggesting a 

disinhibition. This decrease also is seen in the presence of PTX (grey). (D) The 

mean sustained eIPSC of PV5SC (black circles) and PV5Glra1-KD RGCs (grey 

squares) in control solution (solid symbols) and in the presence of PTX (open 

symbols) as a function of spot diameter. The significantly elevated eIPSC level in 

PV5Glra1-KD RGCs in control and in the presence of PTX indicates the elimination 

of glycinergic disinhibition. The absence of glycinergic disinhibition unmasks a 

GABAAergic input in PV5Glra1-KD RGCs,  which is blocked by PTX. (E) eIPSC from 

a PV5WT RGC in the presence of strychnine (grey) exhibits a similar response 

profile to PV5Glra1-KD  RGCs in control solution that differs from control (black). 
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GlyRα1 Disinhibitory and GABA Inhibitory Inputs Use A Push-pull 

Mechanism to Modulate PV5 WT RGC Responses to Luminance Decrements  

A luminance decrease depolarizes OFF CBCs and initiates excitatory 

signaling in the Off pathway that culminates with an excitatory response in PV5WT 

RGCs was similar (Figure 4.6C), but the sustained firing rate was significantly 

lower in PV5Glra1-KD RGCs across spot diameter (Figures 4.6D; p<0.0001). This 

result appears inconsistent with the observation that no inhibitory current is 

evoked in PV5WT RGCs to this stimulus (Figure 4.7E; see also Münch et al., 

2009). To address this discrepancy, I characterized and compared the stimulus-

evoked currents of PV5SC and PV5Glra1-KD eIPSCs to a luminance decrement.  

The transient component of the responses of PV5WT, PV5SC and PV5Glra1-

KD RGCs held at 0 mV, appears as an inward current (Figure 4.2C & 4.7B; See 

also Münch et al., 2009). This reflects incomplete voltage clamp (e.g., space 

clamp) due to the large dendritic fields and gap junctional coupling in PV5 RGCs. 

Since the AAV-RNAi does not affect presynaptic inputs and the eEPSCs are 

similar between PV5SC and PV5Glra1-KD RGCs (Figure 4.7A), I conclude that 

space clamp is similar between the two groups and the absence of GlyRα1 input 

does not affect the gap junctional coupling or the dendritic field electrotonic 

properties of PV5 RGCs. Therefore, differences between PV5SC and PV5Glra1-KD 

eIPSCs reflect the role of GlyRα1 input in their stimulus evoked responses.  

A luminance decrement evoked a prominent sustained eIPSC in PV5Glra1-

KD RGCs that was absent in PV5SC RGCs (Figure 4.7Bi). Consistent with this, the 
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mean sustained eIPSC was significantly higher in PV5Glra1-KD compared to PV5SC 

(Figure 4.7C & D; n=7 vs. 5) in both control (p<0.0001) and in the presence of 

PTX (p<0.0001) and this difference was significant across spot diameters (Figure 

4.7D). These results define a role for GlyRα1 subunit input in a previously 

described crossover glycinergic mechanism that facilitates excitation in OFF 

RGCs to a luminance decrement (Murphy and Rieke, 2006; Manookin et al., 

2008). Moreover, the glycinergic modulation is spatially invariant and is not 

altered by recruitment of lateral inhibitory mechanisms with increasing spot 

diameter.  Because the sustained eIPSC eliminated by PTX in PV5Glra1-KD RGC 

was not evident in PV5SC RGCs (Figure 4.7Bii & D; p=0.01), I eliminated 

glycinergic input in PV5WT RGCs with 10 μM strychnine and determined that a 

GABAAergic eIPSC was present to a luminance decrement that could be reduced 

by PTX (Figure 4.7E).  

My data show that to a luminance decrement, the responses of PV5WT 

RGCs are modulated by GlyRα1 using a mechanism that has been previously 

described as an On-to-Off crossover glycinergic disinhibition that enhances 

sustained spiking activity (Pang et al., 2003; Murphy and Rieke, 2006; Manookin 

et al., 2008; van Wyk et al., 2009). In addition, my data define a GABAAergic 

input that is driven through the Off pathway and reduces spiking activity in PV5 

RGCs. This suggests that a combination of GABAergic and glycinergic inputs 

uses a “push/pull” mechanism to control PV5WT RGCs to a luminance decrement 

(Figure 4.8).  
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Discussion  

As an image processor, the retina dynamically encodes visual inputs using 

distinct RGC types where different inhibitory mechanisms modulate the excitatory 

signal and shape visual function. Much of our view of this signaling in the retina 

has relied on pharmacological manipulations, which alter not only the direct 

effects of the agonist/antagonist but also effects on these inputs in the upstream 

circuit. I show that viral RNAi can be used to selectively eliminate both 

expression and a subunit-specific current in an OFF RGC subtype, the PV5 

RGC, while maintaining their upstream circuit intact. In addition, I show that this 

approach can be used to evaluate the role of a specific glycinergic subunit in 

visual function in identified RGCs. My results show that GlyRα1 input to PV5 

RGCs is the predominant crossover glycinergic input described previously in 

OFF αTransient RGCs (Manookin et al., 2008; Murphy and Rieke, 2006; Pang et al., 

2003; van Wyk et al., 2009). In addition, the data show that both glycinergic and 

GABAergic inputs shape PV5 RGC spontaneous and visually-evoked responses 

and modulate their interaction differentially at luminance increment and 

decrement.  

AAV-mediated Infection of RGCs with shRNA Reduces GlyRα1 Expression 

and Currents  

AAV-RNAi has been adopted in a variety of biological systems to induce 

and/or eliminate gene expression (reviewed in Borel et al., 2014). In the retina, 

AAVs have been used primarily in gene therapy approaches to treat retinal 
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disease (reviewed in McClements and MacLaren, 2013; Sahel and Roska, 2013) 

and more recently in combination with pseudotyped rabies virus to trace 

presynaptic partners (Cruz-Martin et al., 2014) or target and characterize the 

visual response properties of identified RGC types (Farrow et al., 2013; 

Yonehara et al., 2013).  

My study shows a novel use of retrogradely transported AAV-RNAi 

eliminates expression of a subunit-specific receptor in an identified RGC type. I 

use the approach to define the receptor’s role in shaping the visually-evoked 

response properties of PV5 RGCs and the underlying excitatory and inhibitory 

currents. The advantages of this AAV-RNAi approach include: (1) its use in 

mature tissue to circumvent developmental complications and (2) its relatively 

rapid expression (≤ 4 weeks) and (3) its long-term stability of expression (up to 

10 weeks in my study) and (4) its selectivity to its target. Retrogradely 

transported AAV-RNAi is a particular benefit, when a circuit, like the retina, 

expresses a receptor subunit at multiple locations (e.g., glycinergic and 

GABAAergic inputs) and when subunit specific agonist/antagonists do not exist. 

My results show that AAV-RNAi can be used to selectively eliminate the majority 

of GlyRα1-mediated inputs to an identified RGC, the PV5. Finally, my results 

show that the approach dissects complex interactions between GABAergic and 

glycinergic inputs. Given that retrograde transport is similar throughout the 

central nervous system, this approach should be broadly applicable to both 

inhibitory and excitatory receptor mediated inputs.  
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Tonic GlyRa1 Input Modulates Spontaneous Activity and Rebound 

Excitation of PV5WT RGCs.  

I used differences between PV5Glra1-KD and PV5SC RGC responses to 

define GlyRα1 mediated inputs to PV5WT RGCs that are initiated in both the On 

and Off pathways. In general, the glycinergic mechanisms that modulate PV5 

RGC spontaneous and stimulus-evoked responses act to enhance the fidelity of 

their spiking responses and the signal that they convey to the rest of the brain.  

Under a steady background, a GlyRα1-mediates a tonic input to PV5 

RGCs that reduces their spontaneous spiking activity. This is likely the same as 

the glycinergic current that has been previously observed to lower spontaneous 

activity and improve the signal to noise ratio in OFF RGCs (Margolis and 

Detwiler, 2007; Pang et al., 2003; Zaghloul et al., 2003). I conjecture that this 

control occurs via a GlyRa1 input that helps to set the resting membrane 

potential of the PV5 RGCs. In the absence of GlyRα1-mediated currents, I found 

GABAAergic synaptic inputs whose role is unknown.  

A luminance increment depolarizes ON CBCs and culminates in a 

transient suppression of spiking activity followed by rebound excitation in PV5WT 

RGCs. The absence of GlyRα1 input enhances this rebound excitation. I 

observed a small inward current that is temporally related to this response, which 

could be generated by the excitatory input from BCs (Kastner and Baccus, 2013; 

Nikolaev et al., 2013) or could be related to the intrinsic rebound response that is 

evoked when negative current is applied and all synaptic input is blocked to OFF 

RGCs (Margolis and Detwiler, 2007).   Alternatively, if GlyRα1 input contributes 
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to the PV5 RGC resting membrane potential it should make the PV5 RGC more 

hyperpolarized and lower the probability that the release from inhibition will 

initiate an excitatory response to a luminance increase. Regardless of its exact 

role, the presence of GlyRα1 input maintains the correlation between PV5 RGC 

dendritic lamination in the Off IPL sublaminae and their RF OFF center response. 

Both Feedforward and Crossover Inhibitory Circuits Regulate PV5WT RGCs 

Light Responses at Luminance Decrement 

A luminance decrement depolarizes OFF CBCs (Figure 4.8A, box 4, 

inward current), whereas ON CBCs hyperpolarize (Figure 4.8A, box 1, outward 

current). This culminates in a large transient spiking response in PV5WT RGCs, 

which is followed by a much lower sustained spiking response matched in 

duration to the stimulus. The absence of GlyRα1 input does not alter the transient 

peak or their eEPSC, but results in a significantly lower sustained spiking rate 

compared to PV5SC and PV5WT RGCs. This suggests that the GlyRα1 inhibitory 

input is likely to be a previously described glycinergic On-to-Off crossover tonic 

input (Demb and Singer, 2012; Ke et al., 2014; Münch et al., 2009; Murphy and 

Rieke, 2008), facilitates excitation in PV5 RGCs (glycinergic disinhibition; Figure 

4.8A, box 3i & 5i).  If this is the case, this means that the AII, defined as the 

presynaptic AC in the crossover circuit operates at the high background and 

contrast levels used here. Alternatively, one of the other multistratifed ACs 

(Buldyrev et al., 2012; Menger et al., 1998) could be the presynaptic AC. I found 

that this stimulus evokes a direct GABAAergic input (Figure 4.8B, box 4), which 
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should suppress spiking activity and indicates that a push-pull mechanism 

mediated by GABAAergic and GlyRα1 inputs set the spiking output of PV5WT 

RGCs to a luminance decrement.  

 

  

Figure 4.8. The light evoked responses of PV5WT RGCs are modulated by 

both GlyRα1 and GABAAergic inputs.  Schematic diagrams of the circuits 
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controlling light evoked responses of PV5WT RGCs. (Upper right). A diagram 

illustrating the stimulus, a dark spot presented on a light adapting background 

and centered on the RF center. Below the bars indicate the timing of spot onset 

(luminance decrement) and offset (luminance increment). NOTE: Current onset 

and offset are accurately depicted, but all currents are shown as transient. (A) A 

GlyRα1-mediated crossover inhibitory circuit modulates the responses of PV5 

RGCs at luminance increment and decrement. PV5WT, PV5SC and PV5Glra1-KD ON 

CBCs (Box 1) drive bistratified glycinergic ACs (Box 2). In PV5WT and PV5SC this 

glycinergic input produces inhibition via their GlyRα1 postsynaptic receptors 

(rectangle on dendrite). A synaptic rectification occurs between the ON CBC and 

the bistratified glycinergic AC resulting in a small outward current at luminance 

decrement and a large inward current at luminance increment (Box 2). Through 

this receptor the glycinergic ACs evoke currents of inverted polarity in the PV5 

RGC (Box 3i). The net result (Box 5i) is disinhibition at luminance decrement and 

inhibition at luminance increment. Knockdown of Glra1 eliminates this crossover 

inhibition and reduces excitation at luminance decrement and inhibition at 

luminance increment (Box 3ii, 5ii). The glycinergic AC is regulated by serial 

GABAAergic input (triangle) at luminance decrement and increment (Box 6). (B) 

A feedforward GABAAergic inhibition arises in both the ON and the OFF pathway 

and suppresses PV5WT, PV5SC and PV5Glra1-KD RGC responses at luminance 

increment and decrement, respectively (Box 4 & 6). It is conducted by 

multistratified GABAergic ACs (Box 3). 
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Glycine and GABA Inputs Suppress PV5 RGCs Light Responses at 

Luminance Increment 

The sustained suppression to a luminance increment (discussed above) is 

followed by a rebound excitatory response. Although a fast, transient GlyRα1 

input is eliminated in PV5Glra1-KD RGCs, the suppressive response remains. This 

suggests that spiking suppression is produced through an On to Off crossover 

pathway consisting of a transient GlyRα1 and a prolonged GABAAergic input. 

Unlike the push-pull combination of feedforward GABAAergic and crossover 

glycinergic inputs at luminance decrement, the GABAAergic and glycinergic 

crossover inputs at luminance increment work together.  

A Serial GABA-glycine Circuit Masks the Direct GABAAergic Input in PV5WT 

RGCs 

In the retina, serial connections among amacrine cells (Anderson et al., 

2011; Chen et al., 2011) are thought to fine tune downstream activity. Serial 

GABA-to-glycine or glycine-to-GABA inhibition has been observed in both RGCs 

and BCs (Eggers et al., 2007; Eggers and Lukasiewicz, 2010) and modulates 

RGC RF center activity (Russell and Werblin, 2010; Venkataramani and Taylor, 

2010; Zhang et al., 1997). I interpret my results to indicate that PV5 (OFF 

αTransient) RGCs receive a serial GABA-glycine inhibition (Figure 4.8A, box 6) and 

a direct GABAergic inhibition (Figure 8B, box 4) both mediated by GABAAR. In 

the presence of the GABAAR antagonist, picrotoxin, both serial and direct 

GABAergic inhibition are blocked, producing offsetting conductance changes. 
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This makes it virtually impossible to separate the two mechanisms. The selective 

elimination of the direct glycinergic input in PV5Glra1-KD RGCs also eliminates the 

GABA-glycine serial modulation, and unmasked the direct GABAAergic input. 

Providing support for this hypothesis, I also could observe a GABAAergic 

component in PV5WT RGCs when glycinergic input was eliminated in the 

presence of stychnine (Figure 4.7E). While this scenario represents a complex 

interaction, there is other support for my hypothesis. For example, the likely 

amacrine cell that provides glycinergic crossover inhibition onto the PV5 RGC is 

the AII, which receives GABAergic input, a required element in my proposed 

circuit (Bloomfield and Xin, 2000; Zhou and Dacheux, 2004). Further, a sustained 

GABAAergic current has been observed in mouse ON α and OFF αSustained RGCs 

(Di Macro et al., 2013; Murphy and Rieke, 2006) and a similar, albeit unidentified 

inhibitory input, was observed in guinea pig OFF αTransient RGCs (Manookin et al., 

2008). Finally, I found no change in GABAergic signaling in PV5Glra1-KD compared 

to PV5SC when I examined the transcription of GABA-related genes using RNA 

microarray and deep sequencing strategies (data not shown).  

GlyRα1-mediated Crossover Inhibition Directly onto PV5 RGC Improves the 

Fidelity of RGC Responses 

In the retina, glycinergic inhibition has been primarily associated with an 

On-to-Off crossover pathway, which appears to: enhance excitatory/inhibitory 

responses of OFF RGCs to luminance decrement/increment (Buldyrev et al., 

2012; Buldyrev and Taylor, 2013; Demb and Singer, 2012; Liang and Freed, 
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2010; Manookin et al., 2008; Murphy and Rieke, 2006; Nobles et al., 2012; 

Roska et al., 2006), regulate contrast gain control (Beaudoin et al., 2008), 

contribute to the linearity of the retinal output (Molnar et al., 2009) and shape 

RGCs responses to specific visual stimuli (Cafaro and Rieke, 2013; Münch et al., 

2009).  

Within the IPL On-to-Off crossover inhibition has been observed both at 

the dendrites of OFF RGCs, contributing to an inhibitory conductance, and at the 

terminals of OFF CBCs, contributing to an excitatory conductance in the OFF 

RGCs (Manookin et al., 2008; Molnar and Werblin, 2007; Münch et al., 2009; 

Murphy and Rieke, 2006; Roska et al., 2006).  Although these studies inferred a 

role for glycinergic inhibition at both levels of crossover inhibition, the lack of a 

subunit specific glycine antagonist made it difficult to directly isolate synapse-

specific glycinergic regulation and separate it from GABAergic regulation at the 

same synaptic level. As a consequence, the relative contribution of modulation at 

each input level OFF RGC visual activity remains unclear.  

For example, direct inhibition is the major drive to OFF αTransient RGC under 

rod-dominant conditions or when both rods and cones are active (Manookin et 

al., 2008; Murphy and Rieke, 2006). Other studies under similar light levels, 

suggest crossover modulation at the CBC level and its control of excitation in 

OFF RGCs is critical (Pang et al., 2003; van Wyk et al., 2009). Moreover, the 

contribution of excitation vs. inhibition appears to change with increasing contrast 

(Manookin et al., 2008). By eliminating GlyRα1 expression in PV5 RGCs, I show 

that glycinergic crossover inhibition at the RGC level is critical for regulating 
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cone-driven responses within the RF center. Specifically, GlyRα1 inputs lower 

the spontaneous spiking activity to improve signal to noise ratio in PV5 RGCs. 

GlyRα1 inputs reduce/eliminate rebound excitation at luminance increment, as 

well as enhance the excitation response at luminance decrement via 

disinhibition. Together these mechanisms enhance the fidelity of OFF αTransient 

RGC RF center response relative to its dendritic stratification and maintain its 

ability to primarily encode luminance decrements. 
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CHAPTER V 

SUBUNIT SPECIFIC EXPRESSION OF GLYCINE RECEPTOR 

ACROSS MORPHOLOGICALLY IDENTIFIED MOUSE RETINAL 

GANGLION CELLS 

Introduction 

The retina is composed of numerous circuits that are tailored to encode 

spatial, temporal and chromatic aspects of the environment. As the output 

neuron of the retina, different types of retinal ganglion cells represent the 

culmination of these circuits and form selective information channels tuned to 

various aspects of the visual scene (Azeredo da Silveira and Roska, 2011; Dunn 

and Wong, 2014).  

Within these retinal circuits, the diversity of both inhibitory interneurons 

and their postsynaptic receptors significantly contribute to the differential RGC 

visual coding properties (MacNeil and Masland, 1998; Menger et al., 1998; Lin 

and Masland, 2006; Werblin, 2011). Glycine receptors mediate approximately 

half of the inhibitory modulation within the inner retina, with broad expression in 

RGCs and their presynaptic cells, such as bipolar cells and amacrine cells 

(Pourcho, 1996; Wässle et al., 2009; Zhang and McCall, 2012). Synaptic GlyRs 
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are pentameric structures thought to be composed of three β subunits and two α 

subunits of a single type (reviewed in Betz and Laube, 2006; Dutertre et al., 

2012). There is only one type of β subunit in GlyRs. In contrast, there are four 

types of GlyR α subunit (α1, 2, 3 and 4) and all are expressed differentially 

across the sublaminae of the inner plexiform layer of mouse retina (Wässle et al., 

2009). GlyRs containing individual α subunits display distinct kinetic properties 

and their localization is known on several retinal cell classes and subclasses 

(Wässle et al., 2009).  GlyRα1 has the fastest decay kinetics (Table 1.2) and is 

known to mediate inhibition in rod and OFF cone BCs, as well as A-type RGCs 

(Majumdar et al., 2007; Ivanova et al., 2005). GlyRα3 is the second fastest and is 

expressed on AII ACs (Weiss et al., 2008). GlyRα2 and GlyRα4 are significantly 

slower and are localized on dendrites of some narrow field ACs (Weiss et al., 

2008), a variety of displaced widefield ACs and ON starburst ACs (Majumdar et 

al., 2009).  

Except for A-type RGCs (A1, A2-ON and A2-OFF) which express GlyRα1 

(Majumdar et al., 2007), the type of GlyR α subunit expressed in different RGCs 

remains largely unknown. This gap in our knowledge restricts our understanding 

of why four different α subunits with different kinetics are expressed as separate 

inhibitory elements in the retinal circuit. Before the new approach I developed 

and used in Chapter IV, e.g. AAV-RNAi  strategy can be applied to a large-scale 

study of glycinergic subunit specific inhibition of RGC function, it is critical to 

characterize the specific expression of GlyR α subunit across morphologically 

identified RGCs. To this end, I identified the GlyR α subunit(s) expressed in eight 
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morphologically identified RGC types, using the reporter mouse line PvalbCre × 

ThyStp-EYFP (PVcre). The retina of this mouse has eight morphological RGC 

types that express YFP and have different visual responses within their RF 

center (Table 5.1). These RGCs have been denoted as PV0 - PV7 (Farrow et al., 

2013). In a representative sample of most of these RGC types, I measured decay 

kinetics of pharmacologically isolated glycinergic spontaneous IPSCs and 

examined the co-localization incidence of GlyR α subunit expression on the same 

RGC dendrites. My results indicate striking diversity in the GlyR α subunits 

across morphologically identified RGCs. Some types of RGCs predominantly 

express one type of GlyR α subunit. For example, four PV RGCs (PV1, 2, 5 and 

6) express GlyRα1. In contrast, some PV RGCs express more than one type of 

GlyR α subunit. Among my sample, when more than one is expressed the 

subunits appear to be matched in terms of their temporal kinetics. For example, 

PV0 RGCs express the slower subunits, GlyRα2 and GlyRα4; whereas PV4 

RGCs express the two faster subunits, GlyRα1 and GlyRα3. In contrast to the 

others, PV7 RGCs predominantly receive not only GlyRα3- but also GlyRα2-

mediated synaptic input. Thus, the results support the existence of subunit and 

cell specific glycinergic regulation within the retina and provide important new 

information about subunit selective synaptic input to identified RGCs. This 

information forms a solid framework for future work to investigate the role of 

subunit-specific glycinergic modulation in the retina, which may be more broadly 

found throughout the rest of the central nervous system. 
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Table 5.1 Types of RF center response across PV RGC type (summarized from 

Farrow et al., 2013).  

RGC Cell Type RF Center Response 

PV0 Transient ON & Transient OFF 

PV1 Sustained ON 

PV2 Transient ON 

PV3 Sustained ON & Transient OFF 

PV4 Transient OFF 

PV5 Transient OFF 

PV6 Sustained OFF 

PV7 Transient OFF 

 

 

Results 

Morphological Characterization of PV RGCs  

In PVcre mouse retina, whole cell recordings characterized sIPSCs from 

the eight types of YFP positive RGCs. The exact morphological identity was 

confirmed using immunohistochemistry and confocal microscopy on recorded 

RGCs that were filled with neurobiotin or Lucifer Yellow included in the 

intracellular solution. The majority (136 of 146, 93%) of recorded and filled RGCs 

could be classified into the eight already identified PV morphological RGC types 

(PV0-PV7; Farrow et al., 2013; c.f. Figure S1). I also used the same dendritic 

morphological criteria: shape, size and stratification pattern within the IPL, as 
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defined by their relationship to the ChAT bands (Figure 5.1). When PVcre mice 

were crossed and backcrossed to GlyR knockout mice, the morphology of YFP 

positive RGCs was similar compared to WT across PV RGC types. The 

morphology of each PV RGC type is described in detail in the following 

corresponding sections. Because only one PV3 RGC was recorded in my study, 

it is not discussed in the result.  About 11% of the recorded YFP-positive RGCs 

could not be matched to any PV0 - PV7 RGC types. These RGCs were 

heterogeneous in morphology and were excluded from the analysis.  

 

Figure 5.1 Summary of morphological quantification of recorded PV RGCs. 

Using conventions similar to Farrow et al., 2013, the dendritic area size of each 

PV RGC is plotted against their dendritic stratification depth within the inner 
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plexiform layer in (A). The two blue horizontal bands indicate the position of On 

and Off ChAT bands (n=27). The soma diameter of each PV RGC is plotted in 

(B). Each RGC type is color coded and each symbol represents a single RGC. 

PV0, n=15; PV1, n=10; PV2, n=8; PV4, n=18; PV5, n=5; PV6, n=13; PV7, n=42.  

 

 

PV1, 2, 5 and 6 RGCs Express GlyRα1 Subunits and Synaptic Currents   

In addition to PV5 (transient OFFα RGCs), which were described 

previously (Zhang et al., 2014; also see in Chapter IV), three other RGC types 

(PV1, PV6 and PV2) predominantly express GlyRα1.  

 The PV1 has been described as the sustained ONα RGC. A luminance 

increment within their RF center evokes a sustained response that matches the 

duration of the stimulus (Farrow et al., 2013, c.f. Figure 2; Pang et al., 2003). 

PV1 RGCs have large soma diameters (Figure 5.1B). Their large dendritic fields 

(Figure 5.1A) stratify on the inner side of the ON ChAT band (Figure 5.2Ai) and 

proximal to the ganglion cell layer.  

 The PV6 RGC has been described as the sustained OFFα RGC. A 

luminance decrement within their RF center evokes a sustained response that 

matches the duration of the stimulus (Farrow et al., 2013, c.f. Figure 2; Pang et 

al., 2003). As PV1 RGCs, PV6 RGCs also have large soma diameters and large 

dendritic fields (Figure 5.1), but stratify on the outer side of the OFF ChAT band 

(Figure 5.2Bi), very near to the inner nuclear layer.  
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 The PV2 RGC is a type of ON RGC. Unlike PV1 and PV6 RGCs, the 

physiological properties of PV2 have not been investigated well, except that a 

luminance increment within their RF center evokes a transient response, shorter 

than the duration of the stimulus (Farrow et al., 2013, c.f. Figure 2). PV2 RGCs 

also have large soma diameters (Figure 5.1B). Their dendritic fields are 

significantly smaller than PV1 (Figure 5.1A; t-test, p<0.0001) and they stratify 

along the ON ChAT band (Figure 5.2Ci). Morphologically PV2 is similar with both 

the B3i (Sun et al., 2002) and G6 RGCs (Völgyi et al., 2012). 
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Figure 5.2 The GlyRα1 subunit is expressed on PV1, PV6 and PV2 RGCs. 

(Ai, Bi, Ci) Top, representative en face wholemount confocal images of 

neurobiotin labeled (green) PV1, 6 and 2 RGC ; Bottom, rotated view of the same 

RGC that show its dendritic stratification relative to the bands formed by the 

processes of the cholinergic amacrine cells (ChAT bands, magenta). (Aii, Bii, Cii) 

Representative images showing double labeling of GlyRα1 (red) and neurobiotin 

labeled RGC dendrites (green). The white arrows indicate subsets of co-localized 

GlyRα1 puncta on the dendrites of each type of RGCs. (D) The original (Ori) 

density of co-localized GlyRα1 puncta in each type of RGCs was significantly 

higher than the random density (Ran), suggesting prominent expression of 

GlyRα1 in PV5 (n=4, N=8), PV1 (n=8 cells, N=15 areas), PV6 (n=9, N=16) and 

PV2 (n=8, N=12). (E) The corrected puncta density on the dendrites of each 

RGC type. Abbreviations: INL, inner nuclear layer; IPL, inner plexiform layer. 

Scale bar = 40 μm in Ai, Bi & Ci; 5 μm for Aii, Bii & Cii. 

 

 

 Picrotoxin (15 μM) and TPMPA (50 μM) block GABAA and GABAC 

receptor mediated currents and were used to isolate and characterize the 

glycinergic sIPSCs in these RGCs. Like PV5 (Chapter IV), PV1, 6 and 2 RGCs 

all received prominent sIPSCs in the presence of PTX and TPMPA (Figure 5.3A) 

and all were eliminated when strychnine was subsequently added to the bath, 

suggesting that they are glycinergic (Figure 5.3A). Similar with previous studies 

in RGCs and ACs (Majumdar et al., 2007, 2009; Veruki et al., 2007), all sIPSC 
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decays across RGC types in my study could be well fit with a single exponential 

function (Figure 5.3A-C) and this function was used to derive their decay time 

constant (τDecay). For each recorded cell, there was no correlation between rise 

time (10-90% of peak) and amplitude or between amplitude and τDecay regardless 

of different size and shape of dendritic field (data not shown). These results 

suggest that the decay is not affected by dendritic filtering. Within each group of 

PV RGCs, the mean τDecay was similar regardless of whether I averaged the 

mean value of each cell or averaged the value of every single event from all the 

cells. All the values reported here are the averages of all the single events. The 

τDecay of the glycinergic currents of all WT PV1, 2, 5, and 6 RGCs overlapped and 

ranged from 1 to 11 ms with >95% events faster than 6 ms (Figure 5.3D&E; 

Kolmogorov-Smirnov test, all p>0.05). The mean τDecay of all events was ~ 3 ms. 

This result suggests that all four types of RGC receive glycinergic sIPSC with fast 

decay kinetics that match those mediated by GlyRs containing the α1 subunit 

(Gill et al., 2006; τDecay =2.9 ms at 34°C).  

GlyRα1 subunits expression extends across the entire IPL, although it is 

found in higher density in the Off sublamina (Figure 1.6). Consistent with the fast 

kinetics of their glycinergic IPSCs, the immunohistochemical analysis also 

showed that similar to PV5, WT PV1, 6 and 2 RGCs had significant expression of 

GlyRα1 on their dendrites. The coincidence rate of GlyRα1 puncta associated 

with the dendrite was significantly higher than an estimate of random coincidence 

(Figure 5.2; paired t-test, all p<0.0001). The overall density of GlyRα1 expression 
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on PV1 and PV6 were similar and both were significantly higher than PV2 (Figure 

5.2C-E; t-tests, PV1, p=0.01; PV6, p=0.02). The density in PV5 was significantly 

higher than PV1, 6 and 2 (t-tests, PV1, p=0.02; PV6, p=0.006; PV2, p=0.001). 

Because my results are consistent with a previous study that showed two 

A-type RGCs (A1 and A2-OFF) that are morphologically similar to PV1 and PV6 

RGCs also predominantly express GlyRα1, I did not examine expression of other 

GlyR α subunits (Majumdar et al., 2007). In conclusion, previously published and 

these results show that WT PV1, PV2, PV5 and PV6 express GlyRα1, which 

mediates the majority of their synaptic glycinergic input. 
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Figure 5.3 PV1, 2, 5 and 6 RGCs receive GlyRα1-mediated spontaneous 

inhibitory postsynaptic currents (sIPSC). (A) Representative sIPSCs recorded 

from a PV2 RGC under control condition (Ai), in presence of picrotoxin (PTX, 15 

μM) and TPMPA (50 μM) without (Aii) and with (Aiii) strychnine (10 μM). (B) 

sIPSCs recorded from the same cell in Aii at higher temporal resolution. Stars 

indicate sIPSCs that met my criterion (see methods) and were used in the 

analysis. (C) Average waveform of the sIPSCs from the same recording in Aii that 

met the criterion (134 events). The decay constant was 2.4 ms with a single 

exponential fitting (10-90% of decay). The 10-90% of peak rise time was 1.1 ms. 
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(D) The frequency of τ
Decay

 of sIPSCs in WT PV5 (n=4 cells, N=166 events), PV1 

(n=8, N=568), PV6 (n=6, N=273) and PV2 RGCs (n=8, N=634). (E) The 

cumulative frequency distribution of sIPSCs τ
Decay

 of WT PV5, PV1, PV6 and PV2 

RGCs overlap with each other, suggesting similar distribution. 

 

 

PV4 RGCs Express both GlyRα1 and GlyRα3 Subunits and Synaptic 

Currents  

The PV4 RGC is a type of transient OFF RGCs. The physiological 

properties of PV4 have not been well investigated, except that a luminance 

decrement within their RF center evokes a transient response that is shorter than 

the duration of the stimulus (Farrow et al., 2013, c.f. Figure 2).  PV4 RGCs have 

small somas (Figure 5.1B) and their dendritic fields stratified at the same IPL 

depth as the PV5 RGC, which has a significantly larger dendritic field (p=0.002; 

Figure 5.1, 5.8A). The morphology of the PV4 RGC resembles both the B1 (Sun 

et al., 2002) and G4 RGCs (Völygi et al., 2009).  

WT PV4 RGCs received glycinergic sIPSCs (Figure 5.5A&B) whose τDecay 

of ranged from 1 ms to 20 ms, with a mean of 5.2±0.1 ms (Figure 5.5C&E). The 

mean τDecay in WT PV4 RGCs was slower compared to PV1, 2, 5 and 6 RGCs 

that express GlyRα1 (Kolmogorov-Smirnov test, all p<0.001) and faster than 

GlyRα3-mediated sIPSCs (~11 ms; Table 1.5). These results show that WT PV4 
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RGCs are likely to express more than one type of GlyR α subunit that have fast 

kinetics, such as GlyRα1 and GlyRα3. 

In support of this hypothesis, the frequency of glycinergic sIPSCs recorded 

from Glra3-/- PV4 RGCs was significantly lower (Figure 5.5D; t-test, p=0.03) and 

their τDecay faster compared to WT (Figure 5.5E-G; Kolmogorov-Smirnov test, 

p<0.001). More than 90% of the remaining sIPSCs in Glra3-/- PV4 RGCs are fast 

events with τDecay <6 ms, suggesting GlyRα1-dominant currents. However, the 

τDecay of the remaining sIPSCs in Glra3-/- PV4 RGCs was slower than GlyRα1-

dominant mean τDecay of PV1, 2, 5 and 6 (Kolmogorov-Smirnov test, all p<0.001). 

This could mean that there also is low expression of other GlyR α subunits with 

slower kinetics. Because the sIPSC in Glra2-/- PV4 RGCs had the same 

frequency and same mean τDecay compared to WT, I do not think the remaining 

current are mediated by GlyRα2 in PV4 RGCs.  

Consistent with the electrophysiological data that indicated sIPSC 

mediated by both GlyRα1 and GlyRα3 in WT PV4 RGCs, there were 

immunoreactive puncta GlyRα1 and GlyRα3 that co-localized with the PV4 

dendrites (Figure 5.4B&C). However, only GlyRα1 showed significant co-

localization (Figure 5.4D&E). This failure to demonstrate co-localization of 

GlyRα3 could be due to a low expression level and further analysis will require a 

more sensitive assey.   

In WT, Glra2-/- and Glra3-/- retina, I recorded from RGCs with PV4 

morphology (WT, n=1; Glra2-/-, n=2; Glra3-/-, n=1) but with much higher sIPSCs 



125 

 

frequency (>18 Hz) than in the majority of PV4 RGCs. These cells had sIPSCs 

with GlyRα1-dominated decay kinetics (mean τDecay <4 ms). Although they could 

not be morphologically distinguished from the other PV4 RGCs, these RGCs 

might represent a functionally different group. More studies are required to 

further classify these PV4 morphology RGCs, such as specific light stimulation. 

 

Figure 5.4. PV4 RGCs significantly express GlyRα1 subunits on their 

dendrites. (A) Top, representative en face wholemount confocal images of 

Lucifer Yellow labeled PV4 RGC (green); Bottom, rotated view of the same RGCs 

that show their dendritic stratification pattern relative to the inner plexiform layer 

defined by Hoescht nuclear staining (magenta). (B&C) Representative images 

showing double staining of GlyRα1 or GlyRα3 (red) and labeled PV4 RGC 
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dendrites (green). The white arrows indicate subsets of co-localized GlyRα 

puncta on the dendrites of each type of RGCs. (D) Comparisons of the original 

(Ori) and random (Ran) density of co-localized GlyRα1 (n=6 cells, N=11 areas) 

and GlyRα3 (n=3, N=5) in PV4 RGCs. (F) The corrected puncta density of 

GlyRα1 and GlyRα3 on the dendrites of PV4 RGCs. Abbreviations: INL, inner 

nuclear layer; IPL, inner plexiform layer. Scale bar = 40 μm in A; 5 μm in B&C. 
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Figure 5.5. PV4 receive sIPSCs that are mediated both by GlyRα1 and 

GlyRα3.  (A) Representative sIPSCs recorded from a PV4 RGC under control 

condition (Ai), in presence of picrotoxin (PTX, 15 μM) and TPMPA (50 μM) 

without (Aii) and with (Aiii) strychnine (10 μM). (B) sIPSCs recorded from the 

same cell in Aii at higher temporal resolution. Stars indicate sIPSCs that met my 
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criterion (see methods) and were used in the analysis. (C) Average waveform of 

the sIPSCs from the same recording in Aii that met the criterion (62 events). The 

decay constant was 5.1 ms with a single exponential fitting (10-90% of decay). 

The 10-90% of peak rise time was 1.2 ms. (D) The frequency of glycinergic 

sIPSCs of Glra3-/- (n=4) PV4  RGCs are lower than WT PV4 RGCs (n=4), 

whereas Glra2-/- PV4 (n=5) are the same with WT. (E) The frequency distribution 

of the sIPSC τDecay of WT PV4 (n=4 cells, N=361 events) is similar to Glra2-/- (n=5, 

N=532) but significantly different compared to (G) Glra3-/- (n=4, N=234) PV7 

RGCs, which is faster. (F) Cumulative frequency distribution of sIPSC τDecay of 

PV4 RGCs across genotype.  

 

 

PV7 RGCs Express both GlyRα3 and GlyRα2 Subunits and Synaptic 

Currents  

The PV7 RGC is a type of transient OFF RGC. A luminance decrement 

within their RF center evokes a transient response that is shorter than the 

duration of stimulus (Farrow et al., 2013; c.f. Figure 2). PV7 RGCs have small 

soma diameters (Figure 5.1B) and a distinct asymmetric wedge-shaped dendritic 

field; all of the dendrites are found on one side of the cell soma. PV7 RGCs 

usually have 1-3 primary dendrites that extend from the soma and branch in the 

middle of IPL and further ramify into a bushy dendritic field that ascends to the 

outermost Off sublamina of IPL, proximal to the INL (Figure 5.1 & 5.6A). In a 

previous study (Farrow et al., 2013), PV7 has been suggested to be synonymous 
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with the JAMB RGC, which is a direction selective cell sensitive to upward motion 

(Kay et al., 2011; Kim et al., 2008, 2010). However, the size of the dendritic field 

of PV7 RGCs in my sample and in Farrow et al. (2013) is significantly smaller 

than the JAMB RGCs (average dendritic area size ~10.000 µm2 vs. ~35,000 µm2; 

Kim et al., 2010), indicating that PV7 and JAMB are more likely different types of 

RGC. Morphologically the PV7 RGC is similar to G15 (Völgyi et al., 2012) and the 

monostratified cluster 6 RGC (Badea and Nathans, 2004). More studies are 

required to characterize the physiological properties of PV7.  

 

 



130 

 

Figure 5.6. PV7 RGCs significantly express GlyRα3 subunits on their 

dendrites.  (A) Top, representative en face wholemount confocal images of 

neurobiotin labeled PV7 RGC (green); Bottom, rotated view of the same RGCs 

that show the dendritic stratification within the inner plexiform layer defined by 

Hoescht nuclear staining (magenta). (B-D) Representative images of double 

labeling of GlyRα3, GlyRα2,or GlyRα1(red) and neurobiotin labeled PV7 RGC 

dendrites (green) in the On and Off sublamini. The white arrows indicate subsets 

of co-localized GlyRα puncta on the dendrites of PV07RGCs. (E) The 

comparisons of the original (Ori) and random density (Ran) density of co-

localized GlyRα3 (n=9 cells, N=11 areas), GlyRα2 (n=4, N=5) and GlyRα1 (n=9, 

N=10). (F) The corrected puncta density of GlyRα3, GlyRα2 and GlyRα1 on the 

dendrites of PV7 RGCs. Abbreviations: INL, inner nuclear layer; IPL, inner 

plexiform layer. Scale bar = 40 μm in A; 5 μm in B-D. 

 

 

In the presence of PTX and TPMPA, WT PV7 RGCs receive glycinergic 

sIPSCs (Figure 5.7A), that could be eliminated by application of strychnine. 

Single exponential fitting of the isolated glycinergic sIPSCs in WT PV7 RGCs 

showed a τDecay that ranged from 2 to 26 ms with a mean of 6.6±0.1 ms (Figure 

5.7). The τDecay of WT PV7 RGCs was significantly slower than τDecay of GlyRα1-

mediated sIPSCs in PV1, 2, 5 and 6 RGCs. They are also significantly slower 

than the sIPSCs in PV4 RGCs that are likely a combination of GlyRα1 and α3 

(Kolmogorov-Smirnov test, all p<0.001). Because theτDecay of PV7 RGCs is much 
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faster than GlyRα2- and GlyRα4-mediated current (>20 ms; Table 1.2), that the 

subunit expressed in WT PV7 RGCs is most likely to be GlyRα3.  

In order to test whether GlyRα3 was the main subunit mediating 

glycinergic input, I recorded sIPSCs in PV7 RGCs in Glra3-/- retina. In the 

absence of GlyRα3 expression, the frequency of glycinergic sIPSCs in Glra3-/- 

PV7 RGCs was significantly lower compared to WT (Figure 5.7D; t-test, 

p<0.0001). The remaining sIPSCs could be eliminated by strychnine and had 

slower τDecay compared to WT (Figure 5.7E-G; Kolmogorov-Smirnov test, 

p<0.001), suggesting that other GlyR α subunits also are expressed in PV7 

RGCs. Consistent with this observation, the absence of GlyRα2 expression also 

significantly lowered the frequency of glycinergic sIPSCs (Figure 5.7D; t-test, 

p=0.001) and slowed the τDecay of glycinergic sIPSCs in Glra2-/- PV7 RGCs 

compared to WT (Figure 5.7E-G; Kolmogorov-Smirnov test, p<0.001). These 

results suggest that GlyRα2 and GlyRα3 contribute to the glycinergic synaptic 

input. Although GlyRα2 and GlyRα3 have very different kinetics, the remaining 

glycinergic sIPSCs in Glra2-/- and Glra3-/- PV7 RGCs showed similar τDecay 

distributions (Figure 5.7F&G; Kolmogorov-Smirnov test, p=0.13). This is an 

unexpected result.  
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Figure 5.7. PV7 receive sIPSCs mediated by GlyRα3 and GlyRα2. (A) 

Representative sIPSCs recorded from a PV7 RGC under control condition (Ai), 

in presence of picrotoxin (PTX, 15 μM) and TPMPA (50 μM) without (Aii) and 

with (Aiii) strychnine (10 μM). (B) sIPSCs recorded from the same cell in Aii at 
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higher temporal resolution. Stars indicate sIPSCs that met my criterion (see 

methods) and were used in the analysis. (C) Average waveform of the sIPSCs 

from the same recording in Aii that met the criterion (90 events). The decay 

constant was 6.7 ms with a single exponential fitting (10-90% of decay). The 10-

90% of peak rise time was 1.1 ms. (D) The frequency of glycinergic sIPSCs of 

Glra2-/- (n=5) and Glra3-/- (n=9) PV7 RGCs were both significantly lower than WT 

PV7 RGCs (n=15). (E) The frequency distribution of the sIPSC τDecay of WT PV7 

(n=15 cells, N=760 events) is significantly different from (G) Glra2-/- (n=5, N=231) 

and Glra3-/- (n=9, N=192) PV7 RGCs. (F) Cumulative frequency distribution of 

sIPSC τDecay of PV7 RGCs across genotype. 

 

 

The expression of GlyRα3 forms four bands within the IPL with the 

densest band in the Off sublamina which is closer to the ONL than the OFF 

ChAT band (Figure 1.6). Consistent with the electrophysiological data, my 

immunohistochemical analysis using the GlyRα3 antibody in WT PV7 RGCs 

showed significant co-localization on the dendrites (Figure 5.6). In contrast, there 

was no significant co-localization of GlyRα1 or GlyRα2 on WT PV7 dendrites 

although immunoactive puncta were found (Figure 5.6). These results suggest 

that WT PV7 RGCs predominantly express GlyRα3. GlyRα2 is likely to be 

expressed at relatively lower levels compared to GlyRα3 in PV7 RGCs. This 

made detection difficult by the co-localization approach that I used. 
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PV0 RGCs Express GlyRα2 and GlyRα4 Subunits and Synaptic Currents  

The PV0 RGC is a type of ON-OFF bi-stratified RGC. Both luminance 

increments and decrements within its RF center evoke a transient response that 

is shorter than the duration of stimulus (Farrow et al., 2013; c.f. Figure 2). PV0 

RGCs have medium soma diameters (Figure 5.1B) and their small dendritic fields 

co-localize with the On and Off ChAT bands (Figure 5.1A, 5.8A). Their 

morphology resembles a previously described symmetric ON-OFF direction 

selective RGC (DSGCs; Huberman et al., 2009; Kay et al., 2011). These RGCs 

are subgroup of GFP labeled cells in the TRHR mouse line (Figure 5.8B; Rivlin-

Etzion et al., 2011). Because PV0 and TRHR RGCs appear to be 

morphologically similar, I did not compare their visual activity or determine their 

direction preference.  I recorded the glycinergic sIPSCs in both PVCre and TRHR 

lines. 

In the presence of PTX and TPMPA, prominent sIPSCs remained in both 

WT PV0 and TRHR RGCs (Figure 5.9Aii). These sIPSC were completely blocked 

by strychnine (Figure 5.9Aiii). The isolated glycinergic sIPSC recorded from WT 

PV0 RGCs displayed a slow mean τDecay (21.4±0.5 ms), which was similar to the 

τDecay of WT TRHR RGCs (22.2±0.6 ms; Figure 5.9E&F; Kolmogorov-Smirnov 

test, p>0.05). The majority (~85%) of glycinergic sIPSCs in both PV0 and TRHR 

had a τDecay between 10 to 30 ms (Figure 5.9E). In addition to their morphological 
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similarities, my results indicate that PV0 and TRHR RGCs also receive the same 

glycienrgic sIPSCs.  
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Figure 5.8 The morphology of PV0 and TRHR RGCs and expression of 

different GlyRα subunits on PV0 dendrites. (A-C) Top, representative en face 

wholemount confocal images of neurobiotin labeled (green) PV0, TRHR RGC 

and ON SAC ; Bottom, rotated view of the same RGCs that show the bi-stratified 

dendritic lamination pattern within the inner plexiform layer defined by Hoescht 

nuclear staining (magenta). (D-F) Representative images of double labeling of 

GlyRα2 (D) or GlyRα4 (E, red) with neurobiotin labeled PV0 RGC dendrites 

(green) in the On and Off sublamini, and GlyRα4 with ON SAC dendrites (F). The 

white arrows indicate subsets of co-localized GlyRα puncta on the dendrites of 

cells. (G) Comparisons of the original (Ori) and random density (Ran) of co-

localized GlyRα2 puncta (Gi) in PV0 (n=6 cells, N=8 areas) and TRHR (n=3, 

N=5) RGCs, and GlyRα4 puncta (Gii) in PV0 (n=3, N=6), TRHR (n=3, N=5) 

RGCs and ON SACs (n=2, N=3). (H) The corrected puncta density of GlyRα2 on 

the dendrites of PV0 and TRHR RGCs, and GlyRα4 on the dendrites of PV0, 

TRHR RGCs and ON SACs. Abbreviations: INL, inner nuclear layer; IPL, inner 

plexiform layer. Scale bar = 40 μm in A-C; 5 μm in D&E; 3 μm in F. 

 

 

Because of the slow decay of their sIPSCs, either GlyRα2 or/and GlyRα4 

are the likely candidates in PV0/TRHR RGCs. To determine whether PV0 and 

TRHR RGCs express GlyRα2 and/or GlyRα4, I recorded and characterized 

sIPSCs in Glra2-/- PV0 and TRHR RGCs and Glra4-/- TRHR RGCs. The absence 

of GlyRα2 expression in Glra2-/- PV0 and TRHR RGCs did not alter the τDecay or 
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frequency of glycinergic sIPSCs compared to WT (Figure 5.9D-F).  The τDecay of 

glycinergic sIPSCs was slower in the absence of GlyRα4 expression in Glra4-/- 

TRHR RGCs compared to WT (Figure 5.9F; Kolmogorov-Smirnov test, p=0.02). 

However, the frequency of sIPSCs were the same with WT (Figure 5.5D). This 

suggests that these RGCs express other GlyR α subunits. I recorded the 

glycinergic sIPSCs from ON SACs, which predominantly express GlyRα4-

mediated synaptic currents (Majumdar et al., 2009). I used the distribution 

ofτDecay in ON SACs to compare to the PV0 and TRHR RGCs. The mean τDecay 

measured from my ON SACs glycinergic sIPSC was faster than previously 

reported (Majumdar et al., 2009), most likely due to the physiologically recording 

temperature in my study (28.0±0.7 ms at 34°C vs. Majumdar et al., 66.2±90 ms 

at 25°C; Figure 5.9E&F). The τDecay of sIPSCs in ON SACs were significantly 

slower compared to PV0 and TRHR RGCs and the distribution had more 

events >30 ms (Figure 5.9E; Kolmogorov-Smirnov test, both p<0.001). These 

results suggest that GlyRα4 contributes to the synaptic input in WT PV0 and 

TRHR RGCs, but is not the only GlyR α subunit responsible for glycinergic 

synaptic input. The other GlyRα subunit that also could be expressed is likely to 

be GlyRα2 and not GlyRα1 or GlyRα3, because 1) GlyRα1 or GlyRα3 mediate 

much faster currents (Weiss et al., 2008; mean τDecay ≤11 ms) while the majority 

of events in WT PV0 and TRHR were around 15-20 ms (Figure 5.9E); 2) sIPSCs 

with slow kinetics persist in Glra3-/- TRHR RGCs and have the same frequency 

and mean τDecay compared to WT (Figure 5.9D&F); 3) the immunostaining of 
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GlyRα1 (N=2) and GlyRα3 (N=2) in PV0 and TRHR RGCs showed no significant 

co-cocalization (data not shown); 4) previous studies on small/wide field and 

displaced wide field ACs found glycinergic sIPSC with slow τDecay and suggested 

expression of both GlyRα2 and GlyRα4 on these cells (Lee et al., 2015; 

Majumdar et al., 2009; Veruki et al., 2007; Weiss et al., 2008).  

The GlyRα2 subunit is expressed evenly throughout the IPL and GlyRα4 is 

mainly expressed in a band that co-localizes with ON ChAT band (Figure 1.6 & 

1.7). Immunohistochemical analysis showed significant expression of GlyRα4 

puncta on both PV0 and TRHR RGC dendrites (Figure 5.8). In contrast, although 

some GlyRα2 immunoreactive puncta co-localize with their dendrites in both On 

and Off sublaminae (Figure 5.8D), the original and random coincidence rates 

were similar (Figure 5.8G&H). This suggests low expression level of GlyRα2 and 

my co-localization analysis may not be sufficiently sensitive to show a difference.  
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Figure 5.9 PV0 and TRHR RGCs receive sIPSC with slow decay constant. (A) 

Representative sIPSCs recorded from a PV0 RGC under control condition (Ai), 

in presence of picrotoxin (PTX, 15 μM) and TPMPA (50 μM) without (Aii) and 

with (Aiii) strychnine (10 μM). (B) sIPSCs recorded from the same cell in Aii at 
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higher temporal resolution. Stars indicate sIPSCs that met my criterion (see 

methods) and were used in the analysis. (C) Average waveform of the sIPSCs 

from the same recording in Aii that met the criterion (90 events). The decay 

constant was 20.1 ms with a single exponential fitting (10-90% of decay). The 10-

90% of peak rise time was 1.8 ms. (D) The frequency of the glycinergic sIPSCs 

in PV0, TRHR RGCs in WT and GlyRα knockout mouse retina. (E) The 

frequency distribution of the τ
Decay

 in sIPSCs of WT PV0 (n=10 cells, N=435 

events), TRHR (n=7, N=338) RGCs and ON SACs (n=8, N=444). (F) Cumulative 

frequency distribution of the τ
Decay

 in PV0, TRHR RGCs and ON SACs in WT and 

GlyRα knockout mouse retina. Glra2-/- PV0, n=7, N=322; Glra2-/- TRHR, n=5, 

N=172; Glra3-/- TRHR, n=6, N=298; Glra4-/- TRHR, n=5, N=195.  

 

 

 Discussion 

Diversity in Glycinergic Synaptic Input to Morphologically Identified RGC 

Types 

In the mammalian retina, subunit-specific glycinergic synaptic inputs have 

been observed in various classes of cells including BCs (Ivanova et al., 2006), 

ACs (Frech et al., 2001; Gill et al., 2006; Majumdar et al., 2009; Veruki et al., 

2007; Weiss et al., 2008) and RGCs (Majumdar et al., 2007). My study extends 

these previous surveys across more morphologically identified RGCs and I find 

that all four GlyR α subunits mediate synaptic glycinergic input in subsets of 
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RGCs (Table 5.2). Previous studies in rats (Protti et al., 1997) and mice (Tian et 

al., 1998) suggest that only half of the recorded RGCs receive glycinergic sIPSC. 

The difference between the previous findings and my results could be due to 1) 

the type of sampled RGCs might be different, although it can not be confirmed 

since the RGC types in previous studies were not reported; 2) the recording 

tempareture is different (25 vs. 34 °C) and the spontaneous release of 

neurotransmitter within the retina might be more active at physiological 

temperature in my study; 3) TPMPA was used in my study to block GABACRs, 

which could result in more active spontaneous release of glutamate from BCs 

and increased downstream AC inhibitory output. Therefore, the estimated 

frequency of the glycinergic sIPSC in my study might not represent the actual 

level of spontaneous glycinergic input in the RGCs and I only compared the 

frequency between WT and GlyR KO mice to determine whether any specific 

GlyR α subunit contributes to the synaptic glycinergic input in RGCs. 

Nevertheless, my results are consistent with the study in rats where all the RGCs 

receive glycine-evoked IPSCs, indicating expression of GlyRs across different 

RGCs (Protti et al., 1997). 

The GlyRα1 subunit is the most widely expressed in the central nervous 

system (Dutertre et al., 2012). Similarly more than half of the PV RGCs (PV1, 2, 

4, 5 and 6) express GlyRα1 on their dendrites and this subunit mediates the 

majority of their glycinergic sIPSCs. Although GlyRα1 is expressed more densely 

in the Off than On IPL sublamina, the puncta density on RGC dendrites is not 

correlated with this expression pattern. For example, PV1 (ON) RGCs have 
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similar GlyRα1 density to PV6 (OFF) RGCs. Instead the higher density of GlyRα1 

in the Off sublamina is more likely related to its expression on the axon terminals 

of all of the OFF cone BCs.  

The GlyRα3 subunit is expressed and sIPSCs with moderaly fast τ
Decay

 are 

found predominantly in PV4 and PV7 (OFF) RGCs. In GlyR KO mice, the 

absence of its expression lowered the frequency of glycinergic sIPSC in both 

RGC types. The remaining sIPSCs had either faster τ
Decay

 in PV4 RGCs or 

slower τ
Decay

 in PV7 RGCs compared to WT. The decrease in frequency could be 

due to a decrease in presynaptic tonic glycine release and/or number of 

postsynaptic GlyRα3 receptors. The changes in the decay kinetics of sIPSCs 

indicate a change in subunit composition of the postsynaptic GlyRs.  

The GlyRα4 subunit is expressed on PV0 and on TRHR RGCs. Consistent 

with this finding, the glycinergic sIPSCs of these RGCs had slow τ
Decay

 and there 

were significant co-localization of GlyRα4 with their dendrites. My recordings 

suggest that GlyRα2 also could be co-expressed with GlyRα4 in PV0 and TRHR 

RGCs and with GlyRα3 in PV7 RGCs. This idea is not supported by my 

immunostaining results that said I could not demonstrate GlyRα2 co-localization 

with the dendrites of any of these PV RGCs. This negative result may indicate 

that GlyRα2 is not expressed in these RGCs, but more likely is due to the low 

expression level of GlyRα2 on the RGC dendrites, and/or high uniform density of 

GlyRα2 throughout the IPL. This results in a high random puncta coincidence 

rate that is difficult to distinguish from the original coincidence rate. Another 

possibility is that unlike the other GlyR α subunits, GlyRα2 is unevenly distributed 
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across the RGC dendritic field and that makes it difficult to assess without a 

complete examination of the dendritic arbor.  

 

Table 5.2 Summary of GlyR subunit-specific sIPSC properties in PV RGCs 

 RGC Cell Type 
Rise Time 

(ms) 
τDecay  

(ms) 

Amplitude 
(pA) 

GlyRα 
Subunit 

TRHR ON-OFF DS 3.2±0.07 22.2±0.6 54.4±1.6 GlyRα2, α4 

PV0 ON-OFF DS 2.9±0.06  21.4±0.5 55.7±1.5 GlyRα2, α4 

PV1 Sustained ONα 1.2±0.02 3.0±0.1 41.6±1.1 GlyRα1 

PV2 Transient ON 1.0±0.02 2.9±0.1 53.4±1.9 GlyRα1 

PV4 Transient OFF 1.6±0.03 5.2±0.1 33.0±0.8 GlyRα1, α3 

PV5 Transient OFFα 1.2±0.03 2.9±0.1 76.8±4.7 GlyRα1 

PV6 Sustained OFFα 1.2±0.03 2.7±0.1 129.3±5.9 GlyRα1 

PV7 Transient OFF 1.6±0.02 6.6±0.1 32.4±0.6 GlyRα2, α3 

 

 

 

Homomeric and Heteromeric GlyRs in RGCs 

 Two types of GlyRs has been discovered in mammalian CNS: the 

homomeric GlyRs that contain five α subunits and heteromeric GlyRs that 

contain two α subunits and three β subunits (Betz and Laube et al., 2006; 

Dutertre et al., 2012; Lynch et al., 2009).  The glycinergic sIPSCs that I recorded 

are most likely mediated by heteromeric glycine receptors, because 1) 
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eliminating the expression of gephyrin, a protein that binds to GlyR β subunits to 

localize GlyRs on the membrane,   prevents clustering of synaptic GlyRs, 

suggesting β subunits are present in all the synaptic GlyRs (Feng et al., 1998; 

Fischer et al., 2000); 2) homomeric GlyRs that contain only α1, α2 or α3 subunits 

are much more sensitive to picrotoxin than the heteromeric GlyRs containing 

both α and β subunits (Pribilla et al., 1992; Yang et al., 2007). With the 

concentration of PTX used in my study (15μM), the majority of the currents 

mediated by homomeric GlyRs containing (α1, α2 or α3), should be completely 

blocked, leaving all the recorded sIPSCs mediated by heteromeric GlyRs; 3) an 

immunohistochemical study using GlyR subunit-specific antibodies showed that 

more than 90% of the GlyRα1, 2 and 3 clusters were also GlyRβ-immunoreactive 

(Weltzien et al., 2012).  In contrast, in the same analysis 50% of the synaptically 

localized GlyRα4 puncta in layer 3/4 of the IPL, where the ON ChAT band is 

located and GlyRα4 had the highest density, was found to lack GlyR β and 

gephyrin immunostaining. To date the sensitivity of homomeric α4 GlyRs to 

picrotoxin remains unclear. Therefore, there are likely to be both homomeric and 

heteromeric GlyRα4 receptors mediating synaptic currents in my study. 

Homogeneous and Heterogeneous Composition of GlyRα Subunit in RGCs 

In the mouse retina, some retinal cells predominantly express one type of 

GlyR α subunit. For example, polyaxonal amacrine-S4, wide-field amacrine 

(WA)-S3 and WA-multi cells express GlyRα2 (Majumdar et al., 2009). Rod BCs 

and all types of OFF BCs and A-type RGCs express GlyRα1 (Ivanova et al., 

2006; Majumdar et al., 2007).  Similarly in my study, there are PV RGCs 
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predominantly expressing GlyRα1 (PV1, 2, 5, and 6). This study does not 

exclude the possibility of very low expression level of other GlyR α subunits in 

these RGCs. However, RNAi of GlyRα1 in PV5 RGCs eliminated almost all 

glycinergic synaptic input (Zhang et al., 2014) and knockout of GlyRα1 in 

immature A-type RGCs (most likely, PV1, 5 and 6) eliminated 93% of glycinergic 

sIPSCs (Majumdar et al., 2007). Taken together the data suggest homogeneous 

expression of α1β receptors in these RGCs. Although PV1, 2, 5 and 6 RGCs all 

have large soma size (Figure 5.1B), they represent ON and OFF, sustained and 

transient response classes. Whether there is any correlation between RGC 

morphology/function and GlyR subunit-specific expression requires more 

investigation.  

On the other hand, the composition of GlyRs is more complex in other 

retinal cells; some express more than one type of GlyR α subunit. For example, 

type 5, 6, 7 and A8 ACs express both GlyRα2 and GlyRα4 subunits (Lee et al., 

2015; Weiss et al., 2008). Although ON SACs receive GlyRα4-predominant 

glycinergic synaptic input, the absence of GlyRα2 expression reduced half of 

their glycine-induced current, suggesting a co-expression of GlyRα2 

extrasynaptically (Majumdar et al., 2009).  In AII ACs, the absence of GlyRα3 

expression eliminated all spontaneous synaptic input but only part of glycine-

induced currents, suggesting co-expression of other GlyR α subunits (Weiss et 

al., 2008). Similarly, some PV RGCs (PV0, 4 and 7) express multiple GlyR α 

subunits, as their glycinergic sIPSCs could not be eliminated in any single GlyR α 

subunit KO mouse. PV0 RGCs might express both GlyRα2 and GlyRα4, which is 
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the same case for several types of ACs (Lee et al., 2015; Majumdar et al., 2009; 

Weiss et al., 2008). PV4 RGCs are likely to express both GlyRα1 and GlyRα3 

given the shift to faster mean decay constants in the absence of GlyRα3 

expression. PV7 RGCs seem to primarily express GlyRα3, while GlyRα2 also 

appears to mediate glycinergic sIPSCs.  

Scenarios for the Heterogeneous Composition of GlyR α Subunit in RGCs 

There are several possible scenarios for the heterogeneous composition 

of GlyRs in PV0, 4 and 7 RGCs. First, the RGC expresses two types of GlyRs 

containing different α subunits at different postsynaptic dendritic sites and receive 

different presynaptic input. Alternatively, these GlyRs could be expressed at the 

same postsynaptic site and receive the same presynaptic input. Finally, although 

not discovered in retina yet, functional recombinant GlyRs containing different α 

subunits will form in Xenopus oocytes (Kuhse et al., 1993). Therefore, there 

might be glycinergic channels that contain different GlyR α subunits expressed in 

RGCs, which have different decay kinetics compared to GlyRs containing single 

type of α subunit. The first scenario is the most likely in PV4 RGCs, since GlyRα1 

and GlyRα3 rarely co-localized in the retina (Haverkamp et al., 2003). The 

second or third scenario is the more likely in PV0 and PV7, since there are many 

GlyRα2 receptors expressed throughout the IPL and localize close to GlyRα3 

and GlyRα4 (Haverkamp et al., 2004; Heinze et al., 2007; Weiss et al., 2008). 

A heterogeneous composition of GlyR α subunits makes it difficult to 

estimate receptor decay constant because it depends on not only the average, 

but also the proportion of each α subunit in the cell or receptors. For example, by 
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using GlyR α1-3 subunit single KO/mutants, the decay constant of α4 containing 

GlyRs was estimated to be ~66 ms in some small field ACs and ON SACs 

(Heinze et al., 2007; Majumdar et al., 2009). However, in several types of 

displaced ACs that present GlyRα2 kinetics of their sIPSCs (24ms), the absence 

of GlyRα2 expression did not alter the mean τDecay in Glra2-/- mice (26 ms), and 

these ACs were also hypothesized to express GlyRα4 (Majumdar et al., 2009). It 

was the similar case for PV0 and TRHR RGCs in my study. These evidence 

suggest that either 1) there are homomeric and heteromeric synaptic α4 GlyRs 

that results in different kinetics of sIPSCs in different types of RGCs; or 2) 

GlyRα4 could be exclusively expressed in a GlyR and/or co-expressed with α2 

within the same GlyR, creating variety in the kinetics of GlyRα4-mediated 

currents.  

Although α2β GlyRs have much slower kinetics than α3β GlyRs (Zhang et 

al., 2015), the absence of GlyRα2 and GlyRα3 expression in PV7 RGCs 

unexpectedly resulted in same slower kinetics in the remaining sIPSCs. This 

result suggests that either 1) there are other GlyR α subunits that also 

contributes to synaptic inputs in PV7; or 2) although less likely, up-regulation of 

other GlyR α subunits in the absence of GlyRα2 or GlyRα3 could create 

complexity to estimate the GlyR composition in PV7 RGCs. Therefore, a different 

approach is required to solve this question. For example, AAV-RNAi could be 

used in adult WT mice to knockdown one or more types of GlyRs within specific 

groups of RGCs to isolate single type GlyR-mediated currents and avoid 
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potential compensation during development, although there is little precedence in 

the literature for compensation in glycinergic subunits (Zhang et al., 2014). 

In conclusion, the large diversity in the GlyR composition across RGC type 

results in various kinetics of the glycinergic synaptic inputs that indicate specific 

inhibitory regulation of RGC visual responses (Figure 5.10).  

 

 

Figure 5.10. Cumulative frequency distribution of Τdecay of glycinergic 

sIPSCs in PV RGCs. The kinetics of tonic synaptic glycinergic input in PV0 

(black), PV2 (red), PV4 (purple) and PV7 (green) are different from each other 

(Kolmogorov-Smirnov test, all p<0.001). 
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CHAPTER VI 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

Four GlyR α subunits are expressed in the mammalian CNS and together 

with a single type of β subunit compose GlyRs with distinct decay kinetics 

(Dutertre et al., 2012; Wässle et al., 2009). The diversity in GlyRs raises the 

question that whether this is simply genetic redundancy or necessary for specific 

modulation of neuronal activities. The mouse retina expresses all four α subunits, 

and given our extensive knowledge of its cell classes and functional circuits this 

makes it the optimal model to explore this question. Overwhelming anatomical 

and physiological evidence are in favor of the hypothesis of subunit-specific 

modulation, as each of these four GlyR α subunits is selectively expressed 

across different retinal cells (Gill et al., 2006; Majumdar et al., 2007, 2009; 

Ivanova et al., 2006; Veruki et al., 2007; Weiss et al., 2008). What is less clear is 

the GlyR α subunit-specific inhibitory modulations at the functional level within 

the retinal pathways. My study addressed this question in 3 separate 

experiments. My results show 1) a distinct role of GlyRα1 in an identified type of 

RGC (Chapter IV), 2) selective roles for GlyRα2 and GlyRα3 (Chapter III) in

tuning the visual activities within the On and Off pathway, and 3) a survey of the 

GlyR subunit expression across identified RGC types (Chapter V). 



150 

 

Together with our previous study that describes the roles of GlyRα2 and 

GlyRα3 on RF center response properties of RGCs, my in vivo study using GlyR 

α subunit KO mice (Glra2-/-, Glra3-/- and Glra2/3-/-) in Chapter III showed that: 

1. GlyRα2 and GlyRα3 play different roles in modulating RGC visual 

responses.  

2. GlyRs containing GlyRα2 contribute to both the On and Off retinal 

pathways. In WT, GlyRα2-mediated inhibition enhances the RF center 

response of ON RGCs; while enhancing both the center and surround 

response of OFF RGCs.  

3. GlyRs containing GlyRα3 contribute to only the On retinal pathway. In 

WT, GlyRα3-meidated inhibition enhances the RF center response of 

ON RGCs. 

4. Different AC circuits participate in GlyR subunit-specific inhibitory 

modulation.  

These results provide strong evidence supporting the distinct functional 

roles of different GlyR α subunit, while leaving more questions that are crucial to 

be answered. Previously we suggested that GlyRα2 is expressed in WT OFF 

RGCs to mediate On-to-Off crossover inhibitory circuit that modulated the RF 

center responses (Nobles et al., 2014), and the RGCs are most likely to be A-

type RGCs which have large axons (Boycott and Wässle, 1974; Nobles et al., 

2012). However, A-type OFF RGCs predominantly express GlyRα1 (Majumdar et 

al., 2007; Zhang et al., 2014), not GlyRα2. There are two explanations for this 

discrepancy: 1) either the OFF RGCs that are under the GlyRα2-mediated 
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modulation are not A-type, or 2) GlyRα2 indirectly mediates the RF center 

response of these OFF RGCs via other ACs, instead of a direct On-to-Off 

crossover circuit. One type of bistratified ACs (A8) was recently found to express 

GlyRα2 and make synaptic contacts with OFF BCs (Lee et al., 2015), suggesting 

a candidate cell to mediate On-to-Off crossover inhibition onto the OFF RGCs 

and receive GlyRα2-mediated inhibition which indirectly modulates RF center 

responses. To continue to enhance our understanding we need to identify the 

exact RGC types that are subject to GlyRα2/GlyRα3-mediated modulation and 

responsible AC circuits. We need to examine the underlying excitatory and 

inhibitory currents using whole cell patch clamp recording and post-recording 

immunohistochemistry (Chapter IV and V). The results will allow the correlation 

of the physiology and morphology of the RGCs. Transgenic mouse lines that 

have specific type of RGCs labeled by fluorescence proteins, such as PVcre 

(Farrow et al., 2013), could be used to further focus the study. Once the types of 

RGCs are defined, the recombinant G protein-deleted rabies virus could be used 

to retrogradely trace the presynaptic partners of the infected RGCs (Farrow et al., 

2013; Wall et al., 2010). Also, the retinal connectome constructed using electron 

microscopy data could be explored for candidates of the proposed circuits 

(Anderson et al., 2011; Marc et al., 2013).  

In Chapter IV, I designed and used AAV-mediated RNAi to perform 

subunit- and synapse-specific investigation of the role of GlyRα1 in an identified 

RGC type. Compared to my in vivo study using GlyR KO mouse lines, my in vitro 

study had following advantages: 1) it used whole cell patch clamp recording and 



152 

 

targeted at specific RGCs using a reporter mouse line. This focused my study to 

a single type of RGCs, the OFF αTransient RGCs; 2) the AAVs generate shRNAs 

that specifically and almost completely eliminated expression of a single type of 

GlyR α subunit, GlyRα1. An added benefit of this approach was that a 

corresponding KO mouse or subunit selective antagonist was not available ; 3) 

the AAVs were injected into dLGN to specifically infect RGCs, leaving expression 

of GlyRα1 intact in the rest of the retina. This localized the study to a specific 

synaptic level-the direct input onto the identified RGCs. With this AAV-RNAi 

approach, the results showed that: 

1. The application of AAV-RNAi almost completely eliminated GlyRα1 

expression in infected OFF αTransient RGCs.  

2. GlyRα1 is responsible for the majority of glycinergic synaptic and 

visually evoked inputs in OFF αTransient RGCs, as the AAV-RNAi 

eliminated most of the glycinergic currents. 

3. The elimination of glycinergic input not only directly demonstrated a 

‘push-pull’ mechanism of On-to-Off crossover inhibition onto OFF 

RGCs, which had been suggested by several previous studies, but 

also revealed two feedforward GABAergic inhibitory circuits that 

participate in the modulation of OFF αTransient RGC RF center response.  

In general, the AAV-RNAi approach allows for much more thorough study 

of retinal circuitry, which could be applied in future work. First of all, it could be 

used to eliminate GlyRα1 input to other types of RGCs that significantly express 
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GlyRα1 (Chapter V) to compare the role that GlyRα1 plays to shape visual 

responses. This can lead to a better understanding of whether there is a specific 

role of GlyRα1 in retinal processing. In addition, similar experiments could 

examine identified RGCs that express other GlyR α subunits (see Chapter V). 

More advanced AAV vectors could be constructed to knockdown specific subunit 

in other identified retinal cell classes. The AAV vectors could perform Cre-driven 

generation of shRNA targeting at desired genes in transgenic mouse lines where 

specific groups of retinal cells express Cre recombinase (Zhu et al., 2014). This 

could also be a follow-up project for my in vivo study to examine the effect on 

RGC visual activities while eliminating GlyRα2 and/or GlyRα3 expression in 

specific ACs that potentially modulate the responses of identified RGCs. Finally, 

this AAV-RNAi approach could also be used to study any other circuits of interest.  

My survey in Chapter V showed the subunit-specific expression of GlyRs 

in different types of RGCs that could be related to specific visual function: 

1. PV1, PV2, PV5 and PV6 RGCs predominately express the GlyRα1 

subunit which mediates sIPSCs with fast kinetics.   

2. PV0 and TRHR RGCs (DSGCs) are likely to co-express GlyRα2 and 

GlyRα4 which mediate sIPSCs with slow kinetics.  

3. PV7 RGCs predominantly express GlyRα3 which mediate moderately 

fast sIPSCs. 

4. PV4 RGCs are likely to co-express both GlyRα1 and GlyRα3 which 

create a different distribution of decay kinetics compared to other PV 

RGCs.  
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With these data, subunit-specific AAV-RNAi (Chapter IV) could be 

performed to examine each type of RGC to further understand the GlyR subunit-

specific modulation. Furthermore, the study suggests co-expression of two 

different GlyR α subunits in the same type of RGC, such as GlyRα2 and GlyRα4 

in PV0/TRHR RGCs. GlyRα2 is suggested to be predominantly expressed in 

mammalian CNS during embryonic stage to mediate the majority of the 

glycinergic transmission, given the slow kinetics of synaptic glycinergic currents 

(Becker et al., 1988; Hoch et al., 1989; Singer et al., 1998). Surprisingly, the 

elimination of GlyRα2 in Glra2-/- is not lethal and the mice are phenotypically 

normal (Young-Pearse et al., 2006). This suggests other subunits also could be 

expressed in the embryo. If slow currents are required, GlyRα4 would be a good 

candidate and is found to be transcribed in chicken embryonic spinal cord and 

sympathetic nervous system (Harvey et al., 2000; Majumdar et al., 2009). 

Similarly, in the absence of either GlyRα2 or GlyRα4 expression, the kinetics of 

synaptic glycinergic currents in TRHR RGCs did not change significantly 

compared to WT. On the other hand, the results from my in vivo study in Glra2-/- 

show a significant change in ON and OFF RGCs visual activities, which suggest 

that the absence of GlyRα2-mediated inhibition cannot be simply compensated. 

Therefore, three questions remain to be addressed: 1) whether GlyRα4 is 

significantly expressed in embryonic WT and/or Glra2-/- mouse retina; 2) if both 

GlyRα2 and GlyRα4 is are present in mouse embryonic retina, is this co-

expression a compensation mechanism during development or 3) are they both 

expressed for the purpose of diversity in glycinergic modulation.  
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Immunohistochemistry using GlyRα4 antibody in mouse embryonic retina could 

address the first question. To address the second and third questions, AAV-RNAi 

could be performed to knockdown the expression of GlyRα2 subunit in mature 

retina to examine the effect on PV0/TRHR RGCs, which avoids any possible 

developmental compensation in transgenic KO mice.  

In summary, to have a full picture of glycinergic inhibition in the retina, 

many more questions need to be answered. There are approximately 30 types of 

ACs and 20 types of RGCs in the mammalian retina that differ in their 

morphology, and/or response profiles to visual stimuli (MacNeil and Masland, 

1998; MacNeil et al., 1999; Masland, 2001; Lin and Masland, 2006; Sun et al., 

2002; Rockhill et al., 2002; Wässle, 2004). Previous studies (Majumdar et al., 

2007, 2009; Weiss et al., 2008) together with my survey (Chapter V) have only 

examined the GlyR subunit-specific expression in 50% of the ACs and 30% of 

the RGCs. Therefore, a larger scale survey needs to be performed to cover all 

the ACs and RGCs. To complete the puzzle of subunit-specific glycinergic 

circuitry, the connectivity between different ACs and RGCs needs to be 

examined. To understand the functional roles of these subunit-specific 

glycinergic circuits, genetic manipulation and electrophysiological approach 

needs to be combined to serve this purpose. Given there is transition of 

predominant subunit GlyR α subunit (GlyRα2 to GlyRα1) from 

embryonic/neonatal to postnatal stage in the other area in the CNS (Dutertre et 

al., 2012), the retina needs to be examined to determine whether it also 

experiences such transition and whether GlyRα3 and GlyRα4 subunit also vary in 
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the expression level during the development. Whether the transition in subunits 

plays significant functional roles in the maturation of retinal connectivity will be 

intriguing question to be answered.   
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