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ABSTRACT 

UTILITY OF A GOODNESS-OF -FIT INDEX FOR THE 

GRADED RESPONSE MODEL WITH SMALL SAMPLE SIZES: 

A MONTE CARLO INVESTIGATION 

Christina R. Studts 

March 28, 2012 

Item response theory (lR T) is expanding to diverse research settings, without 

accompanying access to easily implemented model fit methods. One simple model fit 

approach involves lldjratios. However, its utility is not known across several conditions 

salient to recent applied IR T research. A Monte Carlo simulation was implemented to 

investigate the effects of several factors (sample size, adjustment condition, type of 

misfit, and proportion ofmisfitling items) on x21djratios in the context of the Graded 

Response Model. Results suggested that: (a) adjusted x21djratios were appropriate for the 

largest sample size condition (N=1 0000), but were extremely inflated for small (N=400) 

and medium (N=1500) conditions; (b) lId/ratios were differentially affected across 

sample sizes by type and amount of misfit; and (c) sensitivity of the x2ldj> 3 cut point for 

identifying misfit in single items was notably low across all study conditions. 

Implications, limitations, and future directions are discussed. 
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CHAPTER I 

INTRODUCTION 

Item response theory (IR T) models, developed in the educational and 

psychological testing fi,elds, are gaining prominence in health research and the social 

sciences. These models are used to analyze the response patterns of individuals to sets of 

items which are scored categorically (i.e., each item or question is scored using either 

binary or polytomous ordered or unordered response options). When a given set of items 

is intended to measure a latent variable of interest (e.g., intelligence, depression, health

related quality of life), IRT models can be fit to provide estimates of the measurement 

properties of individual items, groupings of items, and the set of items as a whole, as well 

as to estimate individual respondents' levels of the latent variable of interest. 

Most IRT models are generalized linear fixed-effect or mixed-effect models, 

incorporating parameters which characterize certain qualities of each item in the given set 

(Hambleton & Swaminathan, 1985). Item difficulty (i.e., location) and discrimination 

(i.e., slope) are the most frequently included item-level parameters in these models. By 

estimating item difficulty and discrimination parameters, IR T models facilitate 

comparisons of the amount of measurement information provided by items at specific 

levels of the latent variable of interest (Baker & Kim, 2004). In addition, the consistency 

of item parameter estimates can be evaluated for disparate groups of respondents, 

allowing for the investigation of differential item functioning (DIF), or item bias, among 

1 



different groups of respondents (Teresi, 2001). These and other products of the fitting of 

IR T models are employed in a wide range of practical applications, described further in 

Chapter II. 

Because the development ofIRT models was primarily within the fields of 

educational and psychological standardized testing, sample sizes exceeding 10,000 

respondents are common in many applications. However, recent advances in the 

availability of user-friendly statistical software capable of fitting IRT models, paired with 

increased interest in the use of these models in a wide range of research settings and 

fields, have yielded many applications ofIRT methods employing sample sizes as low as 

200. While the precision and reliability of parameter estimation has been examined for a 

range of sample sizes and IRT models (Tay-Lim & Harwell, 1997), one area relevant to 

the use of small samples which has not yet benefitted from extensive, systematic 

investigation is the evaluation of model fit, for which there is no consensus in the 

literature regarding best approaches. 

For IRT models designed for polytomous items, one fairly simple index of model 

fit is Drasgow and colleagues' (1995) chi-square to degrees of freedom ratio (X2Idj). This 

method of investigating item-fit to a given IR T model involves calculations of l I df ratios 

for all single items, pairs of items, and triplets of items in a given set (i.e., in the 

measurement instrument of interest), comparing observed response pattern counts to 

those expected based on the IRT model fitted. In general, lid/ratios exceeding 3 are 

described by Drasgow et al. (1995) as indicating moderately large to large degrees of 

misfit, and a rule of thumb setting 3 as a cut point for misfit has been employed by 

several authors. Another frequently used convention suggested by Drasgow et al. is the 
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adjustment of sample sizes used to calculate the x2/djratios from the actual sample size to 

a standard sample size (N = 3000), thus allowing comparisons of model fit across studies 

with differing sample sizes. 

While Drasgow and colleagues developed this approach in the context of large

scale educational testing applications (N) 10,000), others have recently used the X2/dj 

ratio index of model fit in studies examining such diverse issues as health-related quality 

of life (Fryback, Palta, Cherepanov, Bolt, & Kim, 2010); attention-deficit hyperactivity 

disorder in children (Gomez, 2008); cultural equivalence of measures of depression 

(Kim, Chiriboga, & Jang, 2009); forensic psychopathy (Bolt, Hare, & Neumann, 2007); 

spiritual wellbeing (Gomez & Fisher, 2005); business leadership (Zagorsek, Stough, & 

Jaklic, 2006); financial risk-taking (Lampenius & Zickar, 2005); emotional intelligence 

(Cooper & Petrides, 2010); sexual harassment in the military (Estrada, Probst, Brown, & 

Graso, 2011; Stark, Chernyshenko, Lancaster, Drasgow, & Fitzgerald, 2002); military 

attrition (Stark, Chernyshenko, Drasgow, Lee, White, & Young, 2011); and personality 

assessment (Chernyshenko, Stark, Chan, Drasgow, & Williams, 2001; Maydeu-Olivares, 

2005; Robie, Zickar, & Schmit, 2001; Schmidt, Kihm, & Robie, 2000; Zickar & 

Drasgow, 1996). Sample sizes in these investigations ranged from under 300 (Lampenius 

& Zickar, 2005) to nearly 72,000 (Estrada et aI., 2011), illustrating the multitude of 

settings and designs characterizing current applied research utilizing IRT methods. 

Notably, however, the performance of the x2/djindex of model fit has not been 

investigated systematically across the sets of conditions likely to be encountered in 

practical IRT research. Factors including sample size, type of misfit, and percentage of 

misfitting items within a given set may influence the performance of X2 / dj ratios 
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calculated for single items, pairs, and triplets of items. Clarification of these issues may 

facilitate appropriate use and interpretation of the "lldjratios approach to assess model fit 

in future research employing Samejima's (1969) graded response model (GRM), the 

primary focus of this study. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

As introduced briefly in Chapter I, item response theory (IRT) comprises a class 

of latent variable models that utilize a given set of observed variables (i.e., item 

responses) to measure a single underlying latent variable of interest (Hambleton & 

Swaminathan, 1985). In this chapter, a brief overview ofIRT will be provided, 

addressing the assumptions ofIRT models, several models developed for use with binary 

items, and several models developed for use with polytomous items. A more detailed 

description of Samejima's (1969) graded response model (GRM) will be provided, as 

item fit within the GRM comprises the focus of this study. In addition, examples of 

practical applications of IR T will be offered. Methods for assessing model fit in IR T will 

be reviewed, distinguishing between person-fit and item-fit approaches. The lldjratio 

item-fit method, developed by Drasgow and colleagues (1995) and used in a variety of 

research settings and conditions, will be described in more detail, particularly as it relates 

to IRT applications with small samples. Finally, several research questions of interest will 

be delineated, along with associated hypotheses. 

Brief Overview of Item Response Theory 

Though the foundations ofIRT can be traced to Thurstone's conceptualization of 

latent traits in the 1920s, the development of this class of models is generally attributed to 

pioneering work by Lord (1953). Throughout the 1950s and 1960s, psychometric 
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researchers including Lord, Birnbaum, Rasch, and Wright introduced logistic latent 

variable models and methods for model parameter estimation, highlighting potential 

applications ofIRT methods in education, industry, and psychology (Bock, 1997; 

Hambleton & Swaminathan, 1985). By the 1980s, advances in computer technology and 

software expanded the accessibility ofIRT methods to researchers and practitioners in 

measurement-oriented fields (Hambleton & Jones, 1993). 

At its core, IRT consists of a set of generalized linear models which estimate the 

probability of a particular response to an item based upon (a) the level of the latent trait 

possessed by the respondent, and (b) certain stable characteristics of the item (Embretson 

& Reise, 2000). For a given item with ordered response options measuring a latent 

variable, the probability of endorsement of a higher response category should rise as a 

respondent's level of the latent variable increases. The simplest application of IR T 

modeling is to binary items. In knowledge-based testing, such items may be scored as 

correct or incorrect, while in trait- or symptom-type testing, they may be scored as 

endorsed or not endorsed (Embretson & Reise, 2000). A more complex application is to 

polytomous items, including items with either ordered (e.g., Likert-type) or unordered 

(e.g., nominal multiple choice) response options (Hambleton & Swaminathan, 1985). For 

most types of items, the probability of a randomly selected individual's response to an 

item is represented as a logistic monotonic function of the level of the latent variable, 

determined by certain item characteristics. This relationship is graphically represented by 

the item characteristic curve (ICC) for dichotomous items, and by option characteristic 

curves (OCCs) for polytomous items (sometimes referred to as category response curves; 

Hambleton & Swaminathan, 1985). 
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Assumptions of IRT 

Item response theory models typically rely on three assumptions: (a) 

unidimensionality, (b) conditional independence, and (c) monotonicity. For the following 

discussion, Xvi is the response of individual v E { 1, ... , N} to item i E {I, ... , J}, and 

each item is scored on a categorical scale from m = 0, ... , K i • 

The unidimensionality assumption requires that there is a single, one-dimensional 

latent trait possessed by each respondent in the sample that fully accounts for each 

individual respondent's propensity to select a particular response to a given item. This 

propensity, or the level of the latent variable in individual v, is customarily denoted by Bv. 

Given Bv, the assumption of conditional independence requires that the elements 

of respondent v's item response vector, Xv = (XvI, ... , XVJ)T, are independent. Thus, Bv 

alone determines a respondent's pattern of responses to items i I through iJ. 

The monotonicity assumption requires that Pr{XVi > t I Bv} be a non-decreasing 

function ofthe individual respondent's propensity Bv, for all i and for all t E ~ . Thus, 

respondents with high Bvare more likely to select higher item response options than those 

with low Bv. 

Models for Binary Items 

A simple example of a basic IR T model is one frequently applied with binary 

items: the two-parameter logistic model (2PL), originally proposed by Birnbaum (1968). 

This model illustrates several common features of most IRT models: 

(i = 1,2, ... , n). (1) 
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(1) provides the 2PL item characteristic junction for a binary item (i.e., correct/incorrect, 

true/false, etc.). In the 2PL, Pice) represents the probability of the endorsement of item i, 

given a particular level of the latent variable, distributed as e ~ N(O,l). The mathematical 

constant e is the base of the natural logarithm. The mathematical constant D represents an 

optional scaling factor, generally set to 1.7; this value makes the item parameters from 

logistic IRT models very similar to the item parameters that would be obtained in normal

ogive IRT models (Hambleton & Swaminathan, 1985). The difficulty of item i is 

represented by bi, and refers to the level of the latent variable (e) at which the probability 

of item endorsement is equal to 0.5. The discrimination of item i is represented by ai, a 

value proportional to the slope of the tangent line to the item characteristic function at its 

steepest point, which is at its difficulty level (i.e., at bJ Steeper slope of the curve at this 

point is associated with greater precision of discrimination between respondents at 

similar levels of e; flatter slopes suggest weaker item capacity to discriminate between 

respondents. 

When the item characteristic function depicted in (1) is graphed for a single item i 

with particular item parameters bi and ai over a range of values of e, the result is the ICC, 

illustrated for a hypothetical binary item in Figure 1. Several features of the ICC graph 

are notable. First, the range of the latent variable e depicted on the x-axis generally 

extends from -3.0 to +3.0, where e is arbitrarily scaled to have a mean of 0 and standard 

deviation of 1.0 (i.e., e ~ N(O,l)). The probability of item endorsement asymptotically 

approaches 0 at decreasing levels of e and 1.0 at increasing levels of e. For the illustrated 

hypothetical item with difficulty level bi = 0.25 and discrimination level ai = 1.0, the 

probability of item endorsement for respondents with a latent trait level 1 standard 
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deviation below the mean is approximately 0.20; for respondents with latent trait levels 2 

standard deviations above the mean, the probability of endorsement is approximately 

0.85; and for respondents at the mean latent trait level, the probability of endorsement is 

approximately 0.45. 

o 

o 
o 

-3 -2 -1 

Item discrimination = 10 ' 
/ 

/ 

/ 

/ 

I 

Item diffi cully = 0.25 

o 
Theta 

1 2 3 

Figure 1. Item characteristic curve (ICC) for a hypothetical item in the two
parameter logistic model (2PL; hi = 0.25, ai = 1.00). 

In a two-parameter model such as the 2PL, both item parameters can vary 

between items. Thus, items can differ in their difficulty levels (i.e., location), as well as in 

their discrimination levels (i.e., slope). One-parameter models exist which constrain the 

discrimination levels of all items to be equal (usually at a = 1.0), and these models are 

often referred to as Rasch models, for their developer (Hambleton & Swami nathan, 
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1985). In addition, three-parameter models are possible, which include an additional 

parameter (Ci) allowing the lower asymptote of the ICC to be greater than 0; these models 

are often applied to knowledge-testing items, in which the probability of guessing 

correctly increases the base level of probability of a correct response (Embretson & 

Reise, 2000). 

In Figure 2, three hypothetical ICCs in the 2PL are depicted with differing 

difficulty and discrimination parameters. In creating a measurement instrument, if one 

were interested in including items which precisely measured respondents with levels of 

the latent trait between 1 and 2 standard deviations above the mean, of these three items, 

Item 3 would be the most informative. For Item 1 (b l = -2.0, GI = 1.2), all respondents 

with e levels above the mean would share high probabilities of endorsing the item. For 

Item 2 (b2 = 0.0, G2 = 0.5), the probabilities of item endorsement change very slowly for 

the e levels of interest, obscuring distinctions between respondents at similar, but not 

identical, levels of e. In contrast, Item 3 (b3 = 1.5, G3 = 1.8) can discriminate well 

between respondents at the desired levels of e. This example illustrates the applicability 

oflRT modeling to the identification and selection of items with specific, desired 

measurement properties. 

Models for Polytomous Items 

For polytomous items, multiple functions characterize each item, each 

representing the probability of choosing a particular item response option given a specific 

level of the latent variable (Hambleton & Swaminathan, 1985). In a polytomous item, the 

probability of choosing a particular response option is a function of the levels of the 

latent variable; if response options are ordered, respondents with higher levels of e are 
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a 

a 
a 

-3 -2 -1 o 
Theta 

1 2 3 

Figure 2. Three hypothetical item characteristic curves (ICCs) with differing item 
parameters (hI = -2.0, QI = 1.2; h2 = 0.0, Q2 = 0.5; and h3 = 1.5, Q3 = 1.8). 

more likely to choose higher response options. These option characteristic functions can 

be graphically represented by OCCs, just as binary item characteristic functions are 

depicted by ICCs. The points of intersection of the OCCs for a single polytomous item 

indicate the levels of () at which shifts in selection of response options are most likely for 

that item. Points of intersection of OCCs are referred to as difficulty thresholds, of which 

there are always one fewer than response options. 

Many IRT models have been developed which can be applied to items with 

multiple nominal response categories (Bock, 1972), as well as to items with Likert-type 

polytomous ratings (i.e., those with ordered response options). Models for polytomous 

items with ordered response options include the graded response model (Samejima, 

1969), the partial credit model (Masters, 1982), the ordinal model (Thissen & Steinberg, 
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1986), and the generalized partial credit model (Muraki, 1992). The current study will 

focus on the graded response model (Samejima, 1969), described in detail below. 

The Graded Response Model. When item responses can be ordered into more 

than two categories along a continuum, Samejima's (1969) graded response model 

(GRM) may be an appropriate polytomous IRT model. While dichotomization of 

polytomous item responses is often conducted to allow fitting of simpler IR T models 

(e.g., the Rasch or 2PL models), preserva!ion of the ordinal nature of item responses 

provides more psychometric information than is yielded by binary models with 

comparable item parameters (Agresti, 2002; Samejima, 1977). The two-parameter 

polytomous GRM is an extension ofthe 2PL described earlier in this chapter, and, as 

with the 2PL, use of the logistic function in the model is generally preferred to the 

cumulative normal function to preserve computational efficiency. 

In this overview of the GRM, hypothetical items with three ordered response 

options are used for illustration. Each hypothetical item, therefore, has K = 3 ordered 

response options, coded k = 0, 1, and 2. Parallel to the manner in which item 

characteristic functions are estimated for binary items, in the GRM, option characteristic 

functions must be estimated for each response option in an item (Samejima, 1969). The 

option characteristic functions are derived from the 2PL presented in (1), by estimating 

item responses as one of the two dichotomies captured in the cumulative response 

thresholds: (a) response option 0 versus options 1 and 2; and (b) response options 0 and 1 

versus option 2. The probability of endorsing option 0 or higher is defined as 1.0, and the 

probability of endorsing an option higher than option 2 is defined as 0, since no option 

higher than 2 is provided. The option characteristic functions associated with a 
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hypothetical item with K = 3 ordered response options (k = 0, 1, 2) are as follows: 

p(kde) = 
e DUi ( 9-bit) e Dui(9-biZ) 

1 +eDui( 9-bil) 1 +eDui( 9-biZ) 

eDUiC9-biZ) 

1 +eDuiC9-biZ) 

(2) 

In (2), P(ki I e) represents the probability of the endorsement of response option k 

for item i, given a particular level of the latent variable, represented bye. The 

mathematical constants e and D (the scaling factor which mayor may not be used) are 

identical to their values in the 2PL. The parameter bi/ represents the value of e at the 

threshold (i.e., intersection) between response options 0 and 1, and the parameter bi2 

represents the value of e at the threshold between response options 1 and 2. In the two-

parameter polytomous GRM, item discrimination is constrained as constant within item 

response options, but may vary between items; thus, the parameter ai refers to the 

discrimination level of all response options of item i. 

A graphical illustration of the GRM for a hypothetical item with three ordered 

response options clarifies the interpretation of the option characteristic functions 

presented above. Figure 3 is a graph of the probabilities of endorsement of the response 

options associated with one such item, conditional on the level of the latent trait being 

measured. Note that for the lowest levels of e, the most likely response option to be 

selected is option 0 (often labeled as not at all or never in symptom-type items). As the 
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Figure 3. Graded response model option characteristic curves (OCCs) for a 
hypothetical item with three response options (ai = 1.3, bi,I = -0.5, bi,2 = 1.5). 

level of e increases, the probability that option 0 will be selected gradually lowers, until 

at e = -0.5, the probability of endorsing option 0 is equal to the probability of endorsing 

option 1 (often labeled sometimes or somewhat true in symptom-type items). This level 

of e is equal to the parameter bil , the threshold between response options 0 and 1. As the 

level of e increases, the probability of endorsement of option 1 initially increases but 

gradually begins to decrease, until at e = 1.5, the probability of endorsing option 1 is 

equal to the probability of endorsing option 2 (often labeled always or often true in 

symptom-type items). This level of e is equal to the parameter bi2, the threshold between 

response options 1 and 2. From this level of e on, the probability of endorsement of 

option 2 increases, asymptotically approaching 1.0 as e increases. 
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Model-fitting and estimation of the item parameters bik and ai can be efficiently 

achieved using marginal maximum likelihood estimation procedures with an expectation 

maximization algorithm (Bock & Aitkin, 1981). These procedures are available in the R 

package Itm (Rizopoulus, 2006), which has been demonstrated to recover stable and 

accurate parameters using the GRM. Once a model is fit to the response patterns of a 

group of respondents to a set of items with ordinal response options, each item can be 

described in terms of the difficulty levels associated with the points of intersection 

between option characteristic functions, as well as in terms ofthe item's ability to 

discriminate between respondents at different levels of 8. In addition, the item parameter 

estimates obtained by fitting the GRM can be used for each of the practical applications 

of IR T methods described later in this chapter. 

This discussion of binary and polytomous IRT models, including the GRM, 

highlights their potential utility in evaluating the quality of measurement provided by a 

given item at specific levels of a latent trait. The process of estimating item parameters 

using a given set of data capturing many individuals' response patterns to a set of items is 

referred to in IRT applications as item calibration, and the resulting parameter estimates 

provide valuable information for item and scale evaluation (Hambleton & Swaminathan, 

1985), as well as for methods of quantifying respondents' levels of the latent variable of 

interest. A number of practical applications ofIRT stem directly from this process. 

Practical Applications of Item Response Theory 

Calibrating items in IRT applications (i.e., obtaining parameter estimates via 

fitting an appropriate IRT model) facilitates a range of practical applications in the 

development, evaluation, refinement, and use of measurement instruments (Embretson & 
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Reise, 2000). The most obvious use ofIRT methods is in allowing detailed descriptions 

of the performance of individual test items; item difficulty and discrimination parameter 

estimates characterize the levels of e at which a given item measures most precisely. 

Such information allows a test (or other measurement instrument) developer to determine 

how well a given set of items measures the full range, or desired sub-ranges, of the latent 

variable of interest; if sections of the e continuum are not adequately measured by 

included items, the test developer can locate or develop items to fill those gaps. Similarly, 

if multiple items measure the same section of the e continuum, redundant items can be 

deleted, promoting parsimony and reducing respondent burden. Sets of items can be 

tailored to measure specific ranges of the latent variable of interest, either broadly or 

narrowly, eliminating ceiling and floor effects if desired (Hambleton & Swaminathan, 

1985). This method can also be used to build so-called "parallel measures," in which 

different sets of items are used to develop multiple versions of a single measurement 

instrument. In this context, sets of items with matching difficulty and discrimination 

parameter estimates are selected and compiled into multiple versions of a test or other 

measurement instrument; such parallel measures are especially useful in the 

administration of repeated measures, in which test-retest effects can complicate 

interpretation of findings. Similarly, multiple existing instruments designed to measure 

the same latent variable (e.g., the myriad of measures of depression) can be "equated," 

allowing for cross-instrument comparisons of scores by placing them on the same e 

metric (Baker, 1992). 

Another important application of IR T methods is in the assessment of differential 

item functioning (DIF), in which a given item or set of items is characterized by differing 
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difficulty and/or discrimination parameters for disparate groups of respondents who share 

the same () levels (Holland & Wainer, 1993). In this scenario, the same set of items can 

be administered to distinct groups of respondents who differ on some key characteristic 

(e.g., race, sex, etc.). Next, an appropriate IRT model is fit to the data from each group 

separately. Parameter estimates can be constrained to be equal for items known to 

function similarly across groups, while parameter estimates for items under investigation 

for DIF are free to vary. The estimates obtained from fitting the same IRT model with the 

subgroups of interest can be tested for differences, and items yielding unequal parameter 

estimates may be determined to function differently based on the key characteristic 

defining the subgroups. Differential item functioning has been assessed in numerous 

measurement instruments targeting a range of constructs (e.g., Teresi, 2001). 

In addition to assessing item and test measurement properties, IR T methods can 

also be applied to measure individual respondents' response-profile quality and 

consistency, based upon the "known" item characteristics obtained in previous item 

calibration efforts. The application ofIRT methods allows the simultaneous consideration 

of responses to multiple items, in light of the item parameter estimates previously 

obtained via item calibration, in determining a respondent's "score," or level of () 

(Birnbaum, 1968). In addition, estimates of the likelihood of a given observed response 

pattern across items can be obtained (e.g., Drasgow, Levine, & Mclaughlin, 1987), to 

determine both the consistency of individuals' responses and the degree to which the IRT 

model employed fits the observed response patterns. 

Finally, computer-adaptive test (CAT) administration is a rapidly growing field 

in the practical application oflRT methods (Wainer, 2000; Ware, 2003). CAT 
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development employs item calibration to develop an "item bank" of possible items to be 

used in the computerized administration of a test or measurement instrument. Algorithms 

are programmed to determine the item-by-item selection of questions to be posed to an 

individual respondent in order to iteratively estimate his or her e level to a predetermined 

level of precision. This application combines the capacity of IR T methods to obtain 

detailed descriptive data about individual items and sets of items with their ability to 

estimate respondents' levels of e, given known characteristics of each item. The use of 

CAT administration has been reported to reduce respondent burden and time needed to 

obtain precise estimates of e by half (Weiss & Kingsbury, 1984), making this a valuable 

tool in the development and efficient administration of tests and other measurement 

instruments. 

All of the benefits and advantages of using IRT methods in the development, 

evaluation, refinement, and use of measurement instruments, however, depend on 

appropriate model fit. Several methods to assessing model fit have been proposed and 

used, and the most prevalent approaches are discussed below. 

Model Fit in Item Response Theory 

In IR T applications, the fit of the model to the data can be assessed in many ways. 

Relative IR T model fit can be compared between nested models using likelihood ratio 

tests or comparisons of Akaike's information criterion (Akaike, 1974); more typically, 

however, item-fit approaches are utilized. In most item-fit approaches to assessing model 

fit, expected and observed frequencies of an item's response options are compared for 

various binned levels of the latent variable (e), based upon the particular IR T model 

employed. Several specific approaches to this method have been proposed, though the 
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literature reveals no consensus regarding which approach to use with particular models in 

various research contexts (i.e., with differing sample sizes, potential proportions of 

misfitting items, etc.). 

In the assessment of item fit to determine model fit, several steps are generally 

taken (Stone & Zhang, 2003). First, item parameter and latent variable estimates are 

obtained via item calibration. Next, the latent variable continuum is binned into a pre-set 

number of subgroups based on () score estimates. Third, the distribution of observed 

responses is constructed, with respondents categorized into the appropriate binned 

subgroups along the latent variable continuum. Fourth, expected response distributions 

are computed for each item response option within each binned subgroup, using 

probabilities generated by the IRT model employed. Finally, the resulting data are 

subjected to a range of evaluative approaches, including (a) visual inspection of graphical 

plots of observed versus expected response frequencies for item response options, and (b) 

calculation of one or more of several chi-square-based model fit indices, such as Yen's 

QI (1981), Bock's X2 (1972), or McKinley & Mills' likelihood ratio G2 (1985). More 

recently, the calculation of likelihood-based item fit indices have been proposed (Orlando 

& Thissen, 2000, 2003), in which expected item response frequencies are formulated 

using summed scores for the latent variable (i.e., sums of the item responses across all 

items for a given respondent), rather than the () estimates typically used. These indices 

include S-X2 and S_G2, both of which have been expanded recently from their 

development with binary IRT models to now address polytomous IRT models, such as 

the GRM (see Bjomer, Smith, Stone, & Sun, 2007, for a SAS macro designed to obtain 

these fit indices for most binary and polytomous IRT models). 
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Problems with each of these approaches have been noted in the literature, due to 

issues including the arbitrary choice of intervals of () used in groupings (Reise, 1990); the 

effects of error in () estimates on the calculation of expected frequencies (Stone, 2003); 

sparcity of data within latent variable groupings along the continuum of () (Agresti, 

2002); and the effects of sample size and associated degrees of freedom on X2 test 

statistics (Agresti, 2002). Further, in applied IRT research, reliance on stand-alone 

software packages (e.g., MUL TILOG and P ARSCALE for polytomous models) that do 

not generate the above model fit indices has posed a problem for some applied 

researchers. 

Chi-square to Degrees of Freedom Ratio Method 

A variation of the chi-square-based model fit indices discussed above was 

proposed by Drasgow and colleagues (1995) and can be implemented easily by applied 

researchers with a freely available Excel program called MODFIT (Stark, 2002). This 

method, often referred to as the x2/djratio approach, has been reported in many diverse 

research applications (e.g., Bolt, Hare, & Neumann, 2007; Chemyshenko, Stark, Chan, 

Drasgow, & Williams, 2001; Cooper & Petrides, 2010; Estrada, Probst, Brown, & Graso, 

2011; Fryback, Palta, Cherepanov, Bolt, & Kim, 2010; Gomez, 2008; Gomez & Fisher, 

2005; Kim, Chiriboga, & Jang, 2009; Lampenius & Zickar, 2005; Maydeu-Olivares, 

2005; Robie, Zickar, & Schmidt, 2001; Schmidt, Kihm, & Robie, 2000; Stark, 

Chemyshenko, Drasgow, Lee, White, & Young, 2011; Stark, Chemyshenko, Lancaster, 

Drasgow, & Fitzgerald, 2002; Zagorsek, Stough, & Jaklic, 2006; Zickar & Drasgow, 

1996). Its use has been recommended in a recent IRT textbook (De Ayala, 2009) as a 

relatively simple and accessible way to rectify the lack of model fit indices provided in 
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the most commonly-used IRT software packages. 

A key step in utilizing the x21djratio approach to assessing model fit is the use of 

expected and observed response frequencies from two sets of data: a calibration sample 

and a validation sample, respectively. The calibration sample is used to fit the IRT model 

of interest and obtain the expected response frequencies used in assessing model fit; the 

validation sample is a disjoint set of respondent response patterns which is used to 

determine the observed, or empirical, response frequencies. Thus, in most research 

applications using the x21djratio approach, samples are randomly split into calibration 

and validation subsamples to assess item fit. 

The x21djratio approach relies on the calculation of the expected frequency of 

respondents selecting each response option for a particular individual item, using the 

calibration sample: 

EiCk) = N J PCVi = kl8 = t)fCt)dt (3) 

where k is the response option of interest for item i, f(t) is the e density, ~ N(O,1), and 

probabilities are obtained from (2). Expected counts for each response option are 

summed across all values of the latent variable continuum, and observed counts are 

obtained via the frequencies of item response option choices in the validation sample. 

The X2 statistic is then obtained in the usual manner: 

(4) 
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for item i with k = (1, ... , m) response options. The l statistic is subsequently divided by 

its associated degrees of freedom to obtain the ·lldjratio. Drasgow and colleagues (1995) 

noted previous findings that l statistics for individual items are often insensitive to 

violations of the unidimensionality assumption in IRT (van den Wollenberg, 1982); 

further, they observed that certain types of misfit cannot be detected in individual items 

by this method, such as when the observed and predicted response functions cross. In 

such cases, a x21djratio computed for a single item may approach zero, despite the 

existence of actual misfit. Thus, Drasgow and colleagues suggested computing the x21dj 

statistic for single items, pairs of items, and triplets of items within a given set of items, 

with the expectation that pairs and triples of items with similar misfits will have large 

lldjvalues, revealing the misfit. Calculation of the expected frequency of respondents 

selecting option k for item i and option k' for item i' is achieved with: 

EU' (k, k') = N J P(Vi = kl8 = t)P(vi, = k'18 = t)f(t)dt (5) 

Cell(s) with expected frequencies < 5 are combined with cell(s) with the next lowest 

frequencies until all cells contain expected counts ~ 5. The observed frequencies are 

obtained from the validation sample via cell counts. The l statistic for a two-way 

contingency table is then calculated and divided by its associated degrees of freedom to 

obtain the x21djratio for that pair of items. A parallel procedure is conducted with triplets 

of items. 

To facilitate comparisons of this index of model fit across applications using 

disparate sample sizes, Drasgow et al. (1995) recommended reporting x21djratios for 
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single items, pairs of items, and triplets of items, adjusted to a standard sample size ofN 

= 3000. They further suggested that mean adjusted x21djratios > 3 indicate poor model 

fit. 

This method of assessing model fit, including the suggested reporting of 

frequencies and means of adjusted lldjratios for single items, pairs of items, and triplets 

of items, has been employed in a wide variety of research settings, primarily by applied 

IRT researchers. However, no published resources are avail~ble that investigate the 

performance of this approach across the conditions observed in such research, including 

variations in sample size, type of item misfit, and proportion of misfitting items in a 

given set. Because the availability ofIRT software has facilitated the application ofIRT 

methods in more research settings than ever before (many of which utilize smaller sample 

sizes than used in previous applications of IR T in the areas of large-scale educational and 

psychological assessment), a systematic investigation is warranted of the performance of 

adjusted and unadjusted x21djratios for single items, pairs of items, and triplets of items. 

This study will conduct such an investigation, focusing specifically on the use of the x21dj 

ratio index of model fit for the GRM, one of the most popular IR T models in applied 

research. 

Summary and Research Questions 

Item response theory analyses are expanding to a variety of research fields and 

settings conducting measurement instrument development, evaluation, refinement, and 

administration. Samejima's (1969) GRM is an IRT model frequently used to analyze 

response data for items with ordered categorical response options, as seen in Likert-type 

items typically utilized in health-related and other social science research. The extension 
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ofIRT methods to a wide variety of research settings has not been accompanied by easily 

implemented approaches to assessing model tit, a vital step in the appropriate application 

of any model-fitting analysis. The x2/djratios method (Drasgow et aI., 1995) is one 

relatively simple approach which has been used in a wide variety of settings, is easily 

implemented using a free program, and has been recommended as a strategy to remediate 

the dearth of goodness-of-fit indices provided by stand-alone IRT software (De Ayala, 

2009). However, the utility of this method, d~veloped in the context of large-scale 

educational research settings, has not been assessed across several conditions salient to 

recent applied IRT research. Three such conditions include applications ofIRT with (a) 

relatively small sample sizes (N :s 1500), (b) items which exhibit misfit for disparate 

reasons, and (c) sets of items incorporating differing proportions of misfitting items. 

Two research questions stem directly from this discussion. The methods for 

addressing each will be described in Chapter III. 

Research Question 1: Are adjusted (to N = 3000) or unadjusted x2/djratios more 

appropriate for small-sample IRT research? 

Research Question 2: As a, means of assessing model fit for the GRM, how are the 

magnitude and utility of X2 
/ djratios affected by (a) sample size, (b) type of item misfit, 

and (c) proportion of misfitting items in a given set? 
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CHAPTER III 

METHOD 

Study Design 

In this Monte Carlo study, two research questions were addressed. Research 

Question 1 addressed the implications of sample size (i.e., small, medium, or large) on 

the magnitude of unadjusted versus adjusted x21dfratios used to assess item fit in 

applications of Samejima's (1969) GRM. Research Question 2 targeted the effects of 

several data characteristics-sample size, type of misfit, and proportion of misfitting 

items---{)n the magnitude ofx214fratios, as well as on their ability to correctly identify 

misfitting items. 

Research Question 1: Sample Size and Adjustment Condition 

For this question, effects of sample size (factor A) and adjustment condition 

(factor B) on the magnitude of mean x21dfratios used to assess item fit were examined, 

using simulated data. A two-factor experiment with repeated measures on factor B was 

designed. Factor A, sample size, included three levels (N = 400, 1500, and 10000), while 

factor B, adjustment condition, comprised two levels (unadjusted versus adjusted to N = 

3000). No item misfit was present in the simulated data. See Appendix A for an 

illustration of the study design for Research Question 1. 

Research Question 2: Sample Size, Type of Misfit, and Proportion of Misfitting Items 

For this question, effects of sample size (factor A), type of misfit (factor B), and 
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proportion ofmisfitting items (factor C) on mean x2ld/ratios used to assess model fit 

were examined, using simulated data. A fully crossed factorial design with three factors 

was used. Three levels of sample size (N = 400, 1500, and 10000), three types of item 

misfit (misfit due to multidimensionality, to DIF, and to generation from a competing 

model), and two levels of proportion ofmisfitting items (10% and 33%) were 

manipulated. See Appendix A for an illustration of the study design for Research 

Question 2. 

Data Simulation 

Data were simulated using the rmvordlogis function in the ltm package 

(Rizopoulos, 2006) for R: A Language and Environment for Statistical Computing (R 

Development Core Team, 2012). See Appendix B for simulation code. The rmvordlogis 

function produces multinomial random variates under several polytomous IRT models, 

including the GRM. Given arguments for desired sample size n, a matrix of "true betas" 

(i.e., item difficulty threshold and discrimination parameters) for each of p "test items," 

and number of response categories ncatg for each item, rmvordlogis produces a matrix of 

item responses for the desired number of simulated respondents. For each simulated 

condition, 1000 replications were generated of n sets of item responses to 30 items with 5 

response options. 

Research Question 1: Sample Size and Adjustment Condition 

For the investigation of the effects of sample size and adjustment condition on the 

lid/ratios used to assess model fit, the rmvordlogis function was used to simulate item 

responses for three levels of sample size: N = 400, 1500, and 10000. These levels 

represent typical small, medium, and large sample sizes reported in applied IRT research. 
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Simulated responses were randomly drawn from a Gaussian distribution of the latent 

construct, e~N(O,l). The "true betas," or defined parameters for the 30 simulated items, 

were taken from Bolt (2002), who generated parameters for a set of unidimensional, DIF-

free items for use in a Monte Carlo investigation ofDIF. These parameters are presented 

in Appendix C. 

For the unadjusted condition, procedures were followed to obtain the lid/ratios 

described by Drasgow and colleagues (1995), using the approach implemented in the 

MODFIT program (Stark, 2002). First, simulated respondents in each sample size 

condition were randomly split into calibration and cross-validation samples of equal size 

(n = 200 in the small sample size condition; 750 in the medium sample size condition; 

and 5000 in the large sample size condition). Item parameter estimates and standard 

errors (calculated using the delta method) for the calibration sample data were obtained 

by fitting the GRM model, using the grm function in the ltm package. Probabilities of 

responses to each item response category were calculated using the iprob internal 

function of ltm (D. Rizopoulos, personal communication, May 8, 2009), and expected 

frequencies were calculated using (3) from Chapter II. Observed frequencies in each cell 

were obtained from the cross-validation sample. In R, "l statistics for differences in 

observed versus expected frequencies were obtained for all 30 single items, for all 

possible pairs of items (i.e., 30 choose 2: 30C2 = 435), and for all possible triplets of items 

(i.e., 30C3 = 4060) I . Each "1..
2 statistic was then divided by its degrees of freedom, resulting 

I In MODFIT, a subset of all possible triplets of items is used, in which sets oflow-, 
medium-, and high-difficulty items are selected. This approach was implemented due to 
computer memory limitations at the time of program development, considering findings 
from Reckase et al. (1979) regarding systematic measurement differences between low-
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in the unadjusted x2Id/ratios. The mean and variance of the distributions of these ratios 

were calculated for all single items, pairs of items, and triplets of items in each simulated 

dataset. 

For the adjusted condition, the actual sample size in each cell was proportionately 

adjusted to result in a total sample size ofN = 3000, and the same calculations described 

above were repeated to generate the adjusted lid/ratios. These were similarly averaged 

over all single items, pairs of items, and triplets of items in each simulated dataset. 

Finally, the proportions of unadjusted and adjusted x2ld/ratios > 3 within all 

single items, pairs of items, and triplets of items were determined for each dataset, to 

allow investigation of the "rule of thumb" often used as a cut point for indication of item 

misfit. 

Research Question 2: Sample Size, Type of Misfit, and Proportion of Misfitting Items 

To allow investigation of the effects of sample size, type of misfit, and proportion 

of misfitting items under analysis, the rmvordlogis function was again used to simulate 

response patterns under the GRM. Simulated responses were randomly drawn from a 

Gaussian distribution of the latent construct, e~N(O,l). Sample size levels again included 

small (N = 400), medium (N = 1500), and large (N = 10000) conditions. Type of misfit 

comprised three categories: misfit due to (a) multidimensionality, (b) differential item 

functioning (DIF), and (c) generation from a different polytomous IRT model. Finally, 

proportion of misfitting items included two levels: 10% misfitting (i.e., 3 out of 30 items 

exhibited some type of misfit), and 33% misfitting (i.e., 10 of out 30 items exhibited 

and high-difficulty items. In this study, it was feasible instead to use all possible triplets, 
an approach recommended by Drasgow (personal communication, January 7, 2009). 
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misfit). For this research question, the "true betas" used in data simulation differed under 

various conditions ofthe additional two factors, as described below. Item calibration (i.e., 

obtaining item parameter estimates and standard errors), as well as all calculations 

regarding x2ldfratios, proceeded as described for Research Question 1. 

Misfit due to multidimensionality. The first type of misfit refers to the inclusion 

of items in a given test which measure something other than the latent construct of 

interest. While many IR T models are thought to be robust to violations of the assumption 

of unidimensionality, the effect of inclusion of such items on X2 I df ratios used to assess 

item fit is unknown. To simulate items measuring a different construct than that measured 

by the items with parameters provided by Bolt (2002), parameters for a subset of items 

used in a different study represented the misfitting items, instead of the original "true 

betas." These parameters were taken from an investigation ofGRM performance 

(Lautenschlager, Meade, & Kim, 2006) with items from the Minnesota Satisfaction 

Questionnaire (Weiss, 1967), a unidimensional scale measuring a construct disjoint from 

that measured by Bolt's (2002) items. These parameters are presented in Appendix D. 

F or conditions in which 10% of items exhibited misfit due to multidimensionality, 

responses to the 27 fitting items were simulated as above, using the unidimensional, DIF

free "true betas" (as presented in Appendix C), while responses to the 3 misfitting items 

were simulated separately using the last three sets of "true betas" in Appendix D. 

Similarly, in conditions in which 33% of items exhibited such misfit, responses to the 20 

fitting items were simulated as above, while responses to the 10 misfitting items were 

simulated separately, using the 10 sets of "true betas" in Appendix D. 

Misfit due to differential item/unctioning. With DIF, group responses to a given 
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item differ conditioned on some attribute other than the latent construct of interest. For 

example, male respondents may be more likely to endorse a lower response option than 

female respondents, even when they possess the same level of the latent construct. To 

simulate items exhibiting DIF, during each replication of the simulation, the sample was 

randomly split into equally sizedjocus and reference groups. "True betas" used for items 

misfitting due to DIF were systematically different for the two groups. These parameters 

were drawn from Bolt's (2002) investigation of items exhibiting DIF in the GRM, and 

are presented in Appendix E. For conditions in which 10% of items exhibited misfit due 

to DIF, the last 3 sets of unidimensional, DIF-free "true betas" (as presented in Appendix 

C) were replaced with either the last 3 sets of focus group "true betas" or the last 3 sets of 

reference group "true betas," as depicted in Appendix E. Similarly, in conditions in which 

33% of items exhibited such misfit, the last 10 sets of "true betas" in Appendix C were 

replaced with either the 10 sets of focus group or reference group "true betas" in 

Appendix E. Following the splitting of the sample and data simulation based on different 

sets of parameters, the simulated response data were then combined into a single matrix 

for calculation of the x2ldjratios. 

Misfit due to generation/rom a competing modeL More than one polytomous 

IRT model exists for items with ordered response options, and selection ofthe 

appropriate model to use can be challenging in some situations. The effect of suboptimal 

model selection on x21djratios used to assess item fit is unknown. To simulate misfit due 

to incorrect model selection, a subset of item parameters were drawn from a competing 

polytomous IRT model. The generalized partial credit model (GPCM; Muraki, 1992) is 

defined by different cumulative category response functions than the GRM, while still 
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estimating the same number of parameters as the GRM for a given item. Similarly to the 

GRM, the GPCM provides the probability of responding to a particular response option 

to a particular item, based upon item characteristics and the respondent's underlying level 

of the latent construct: 

(6) 

where Pik(Z) represents the probability of responding in category k for item i, given the 

level of the latent construct z; Pic are the category threshold parameters for item i; Pi is 

the discrimination parameter for item i; mi is the number of response categories for item 

i; and 

o 

L Pi(Z - Pic) == o. (7) 
c=o 

To simulate responses to items generated from a different model, GPCM parameters from 

Bolt (2002) were used as "true betas" for selected misfitting items. These parameters are 

presented in Appendix F. For conditions in which 10% of items exhibited misfit due to 

multidimensionality, the last 3 sets of unidimensional, DIF-free "true betas" (as presented 

in Appendix C) were replaced with the last 3 sets of "true betas" in Appendix F and 

responses to the 3 misfitting items were simulated separately. Similarly, in conditions in 

which 33% of items exhibited such misfit, the last 10 sets of "true betas" in Appendix C 

were replaced with the 10 sets of "true betas" in Appendix F and responses to the 10 
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misfitting items were simulated separately. Item responses were simulated for the 

misfitting items using the rmvordlogis function's GPCM option, rather than GRM. 

Data Analysis 

Several steps of data analysis were undertaken to answer the two research 

questions. First, descriptive statistics for the simulated data were obtained, characterizing 

the distribution of mean x2ld/ratios across all single items, pairs of items, and triples of 

items. In addition, proportions of lid/ratios > 3, suggesting item misfit, were computed 

across the entire set of data. Next, inferential analyses were conducted to test hypotheses 

associated with each Research Question, using graphical procedures to assist with 

interpretation of results. A Bonferroni-corrected level of significance of .003 was used in 

testing each hypothesis, to maintain a study-wide alpha of .05 (a = .05/17 = .003). All 

analyses were conducted using R: A Language and Environment for Statistical 

Computing (R Development Core Team, 2012). 

Research Question 1: Sample Size and Adjustment Condition 

To answer Research Question 1, the fixed effects of two factors (sample size 

and adjustment condition) were tested by fitting generalized least squares linear models. 

To account for the repeated measures of adjustment condition on each simulated dataset, 

the covariance matrix for the residuals was specified as block diagonal with compound 

symmetric structure within subjects (where each simulated dataset is a subject). Three 

models were fit using maximum likelihood estimation, assessing the mean lid/ratios for 

single items, pairs of items, and triplets of items. A Box-Cox transformation (A = 0) was 

applied before fitting each model, to alleviate heteroskedasticity noted in residual plots 

when the untransformed response variable was used. Thus, the response variable in each 
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case, y'ijk , is the natural logarithm of the mean x21djratio for all single items, pairs of 

items, and triplets of items, respectively, for a particular simulated dataset. The full 

model in this case is: 

(7) 

where i = {l, ... , lOOO} indexes the simulation number, j = {l,2,3} indexes the sample 

size condition, and k = {l,2} indexes the adjustment condition. 

The first hypothesis tested addressed the potential interaction between sample size 

(factor A) and adjustment condition (factor B), where adjustment condition was a 

repeated measure (i.e., adjusted and unadjusted x2Idjratios). Thus, the primary effect of 

interest was the AB interaction effect, (o.f3)jk, where 0./ denotes the factor A main effect and 

13k denotes the factor B main effect. If no interaction effect was detected, the analysis plan 

included testing for two additional hypotheses regarding the main effects of factor A and 

factor B. The following formal hypotheses were posed: 

Hypothesis 1.1: A significant interaction effect on the natural logarithm of mean 

x21djratios associated with single items, pairs of items, and triplets of items is expected 

between sample size and adjustment condition, when no item misfit is present. 

Ho. 1: all (o.f3)jk = a 

H 1.1: not all (o.f3)jk = a 

Hypothesis 1.2: A significant main effect of sample size on the natural logarithm 
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of mean lid/ratios associated with single items, pairs of items, and triplets of items is 

expected, when no item misfit is present. 

HO.2 : all aj= 0 

HI.2: not all aj= 0 

Hypothesis 1.3: A significant main effect of adjustment condition on the natural 

logarithm of mean lid/ratios associated with single items, pairs of items, and triplets of 

items is expected, when no item misfit is present. 

Ho.3 : all fJk = 0 

HI.3: not allfJk= 0 

The hypotheses were tested sequentially, so that if the AB interaction effect (Hypothesis 

1.1) was significant, Hypotheses 1.2 and 1.3 were not tested. 

To further inform interpretation of results, the proportion of X2 I d/ ratios> 3 

observed in each design cell was plotted using box plots. This approach allowed 

visualization of the frequency distributions of unadjusted versus adjusted ratios at each 

level of sample size, when no misfitting items were actually present in the simulated data. 

Research Question 2: Sample Size, Type of Misfit, and Proportion of Misfitting Items 

The outcomes of interest in Research Question 2 included (a) the mean x2ld/ratios 

for single items, pairs of items, and triplets of items; (b) the proportion of X2 I d/ ratios> 3 

for single items, pairs of items, and triplets of items; and (c) the sensitivity and specificity 

of the "rule of thumb" for item misfit (i.e., x2ld/ratios > 3) when applied to single items. 

(Sensitivity and specificity for pairs and triplets of items were not explored, because pairs 

and triplets could contain combinations of fitting and misfitting items simultaneously.) 
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The data used to answer Research Question 2 comprised the unadjusted x21djratios for 

the small and medium sample size conditions (n = 400 and 1500, respectively), and the 

adjusted x21dj ratios for the large sample size condition (n = 10000). The adjustment 

conditions for each sample size were selected based upon the results of Research 

Question 1. In addition, because the data simulation method allowed the truly misfitting 

items to be known in each simulated dataset, the sensitivity (percentage of misfitting 

items correctly identified) and specificity (percentage of fitting, items correctly identified) 

could be calculated. In each simulated dataset, sensitivity of the x21djratios was obtained 

by dividing the number of correctly identified misfitting items by the total number of 

misfitting items in that dataset (i.e., either 3 or 10, depending on the condition). Similarly, 

specificity of the x21djratios was obtained by dividing the number of correctly identified 

fitting items by the total number of fitting items in that dataset (i.e., either 27 or 20, 

depending on the condition). 

First, the fixed effects of three factors (sample size, type of misfit, and amount 

of misfit) were tested in generalized least squares linear models. To account for observed 

heteroskedasticity, weighted least squares were used, in which non-diagonal elements of 

the covariance matrix were zero and variances could differ by each combination of the 

three factors. Three models were fit, assessing the mean x21djratios for single items, pairs 

of items, and triplets of items. A Box-Cox transformation (A = -1) was applied before 

fitting each model. Thus, the response variable in each case, y'ijk , is the inverse of the 

mean X2 I dj ratio for all single items, pairs of items, and triplets of items, respectively, for 

a particular simulated dataset. The full model in this case is: 
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y'ijkl = ai + {3j + Yk + (a{3)ij + (aY)ik + ({3Y)jk + (a{3Y)ijk + Cijkl, 

Cijkl - N(O,(Ji]k)' 

where i = {1, 2,3} indexes the sample size condition, j = {l,2,3} indexes the type of 

misfit, k = {l,2} indexes the amount of misfit, and I = {l, ... , lOOO} indexes the 

simulation number. 

(8) 

The first hypothesis tested addressed the potential three-way interaction between 

sample size (factor A), type of misfit (factor B), and amount of misfit (factor C) on mean 

lid/ratios. Thus, the primary effect of interest was the ABC interaction effect, (ajJY)ijk, 

where ai denotes the factor A main effect, and jJj denotes the factor B main effect, and Yk 

denotes the factor C main effect. If no three-way interaction effect was detected, the 

analysis plan included testing for each two-way interaction effect, and then similarly for 

each main effect. The following formal hypotheses were posed: 

Hypothesis 2.1: A significant interaction effect on the inverse of mean lid/ratios 

associated with single items, pairs of items, and triplets of items is expected between 

sample size, type of misfit, and amount of misfit. 

HO.1: all (ajJY)ijk = 0 

Hl.l: not all (ajJY)ijk = 0 

Hypothesis 2.2: A significant interaction effect on the inverse of mean x:ld/ratios 

associated with single items, pairs of items, and triplets of items is expected between 

sample size and type of misfit. 

HO.2: all (ajJ)!J = 0 

H1.2: not all (ajJ)ij = 0 
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Hypothesis 2.3: A significant interaction effect on the inverse of mean lldjratios 

associated with single items, pairs of items, and triplets of items is expected between 

sample size and amount of misfit. 

HO.3: all (aY)ik = 0 

H1.3: not all (aY)ik = 0 

Hypothesis 2.4: A significant interaction effect on the inverse of mean lid/ratios 

associated with single items, pai~s of items, and triplets of items is expected between type 

of misfit and amount of misfit. 

HO.4: all (jJY)jk = 0 

H1.4: not all (jJY)jk = 0 

Hypothesis 2.5: A significant main effect of sample size on the inverse of mean 

lid/ratios associated with single items, pairs of items, and triplets of items is expected. 

HO.5: all ai= 0 

HI.5 : not all ai = 0 

Hypothesis 2.6: A significant main effect of type of misfit on the inverse of mean 

X2 I 4f ratios associated with single items, pairs of items, and triplets of items is expected. 

HO.6: allpj= 0 

H1.6 : not all Pj = 0 

Hypothesis 2.7: A significant main effect of amount of misfit on inverse of mean 

x2ld/ratios associated with single items, pairs of items, and triplets of items is expected. 

HO.7 : all Yk = 0 

H1.7: not all Yk = 0 
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The hypotheses were tested sequentially, so that if the ABC interaction effect (Hypothesis 

2.1) was significant, the two-way interactions and main effects of factors A, B, and C 

were not tested. 

Next, the proportion ofx21djratios > 3 observed in each design cell was plotted 

using box plots. This approach allowed visualization of the frequency distributions of 

ratios> 3 across conditions of sample size, type of misfit, and amount of misfit. 

In additioq., the sensitivity and specificity of using the x21djratios > 3 "rule of 

thumb" for identifying misfit in single items were investigated by fitting multiple logistic 

regression models. The main and interaction effects of sample size, type of misfit, and 

amount of misfit were tested. The full model in this case is: 

logit[P(Y = 1)] = ai + {3j + Yk + (a{3)ij + (aY)ik + ({3Y)jk + (a{3Y)ijk (9) 

where logit[(P(Y = 1)] is the log odds of the probability that an item is "correctly" 

identified (i.e., as misfitting, for sensitivity, or as fitting, for specificity), i = {l, Z,3} 

indexes the sample size condition, j = {1,Z,3} indexes the type of misfit, and k = {l,Z} 

indexes the amount of misfit. Parallel hypotheses to Hypothesis 2.1-2.7 were posed: 

Hypothesis 3.1: A significant interaction effect on the sensitivity and specificity 

of using lldjratios > 3 to identify single items with misfit is expected between sample 

size, type of misfit, and amount of misfit. 

Ho. 1: all (afJY)ijk = 0 

H1.1: not all (afJY)ijk = 0 
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Hypothesis 3.2: A significant interaction effect on the sensitivity and specificity 

of using x21djratios > 3 to identify single items with misfit is expected between sample 

size and type of misfit. 

HO.2: all (ap)ij = 0 

HI.2: not all (aP)ij = 0 

Hypothesis 3.3: A significant interaction effect on the sensitivity and specificity 

of using x21djratios > 3 to identify single items with misfit is expected between sample 

size and amount of misfit. 

Ho.3: all (aY)ik = 0 

HI.3: not all (aY)ik = 0 

Hypothesis 3.4: A significant interaction effect on the sensitivity and specificity 

of using x21djratios > 3 to identify single items with misfit is expected between type of 

misfit and amount of misfit. 

HO.4: all (f3Y)jk = 0 

H1.4: not all (f3Y)jk = 0 

Hypothesis 3.5: A significant main effect of sample size on the sensitivity and 

specificity of using x21djratios > 3 to identify single items with misfit is expected. 

HO.5: all ai= 0 

H1.5 : not all ai = 0 

Hypothesis 3.6: A significant main effect of type of misfit on the sensitivity and 

specificity of using x21djratios > 3 to identify single items with misfit is expected. 

HO.6 : all pj = 0 

H1.6: not all Pj = 0 
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Hypothesis 3.7: A significant main effect of amount of misfit on the sensitivity 

and specificity of using 'lldjratios > 3 to identify single items with misfit is expected. 

Ho.7 : all Yk = 0 

H\.7: not all Yk= 0 

As in previous analyses, the hypotheses were tested sequentially, so that if the ABC 

interaction effect (Hypothesis 3.1) was significant, the two-way interactions and main 

effects of factors A, B, and C were not tested. 

Finally, boxplots were used to visualize the distributions of sensitivity and 

specificity of using x21djratios > 3 to identify single items with misfit. 
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CHAPTER IV 

RESULTS 

Research Question 1: Sample Size and Adjustment Condition 

Data Characteristics 

The mean, standard deviation, minimum, and maximum of the 'ildjratios 

averaged across single items, pairs of items, and triplets of items for each level of sample 

size and adjustment condition are presented in Table 1. The simulated data included 1000 

replications in each condition, with mean unadjusted and adjusted ratios calculated on the 

same datasets, for a total N=3000. The highest mean 'ildjratios were observed in the 

adjusted condition. Mean values peaked for adjusted x21djratios for single items in the 

smallest sample size condition [Mean (M) = 37.77, standard deviation (SD) = 12.55]. 

Values decreased for larger sample size conditions and for x21djratios averaged across 

pairs and triplets of items. In the unadjusted condition, the highest mean X2 I dj ratio was 

observed for single items in the largest sample size condition (M = 4.05, SD = 1.16), 

while mean unadjusted ratios were more similar across sample sizes when calculated for 

pairs and triplets of items. 

The distributions of proportions of X2 I dj ratios exceeding the "rule of thumb" cut 

point of 3 for each level of sample size and adjustment condition are presented in Table 

2. These values represent the percentage of single items, pairs of items, and triplets of 

items identified with misfit, although no misfitting items were simulated. In the adjusted 
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Table 1 
Descriptive Statistics: Distribution oj Mean -lldj Ratios by Adjustment and Sample Size Conditions,jor Simulated Data with No 
Misfitting Items 

Single Items Pairs of Items Tri£lets ofltems 
Condition M 

Adjusted 21 df ratios 
(SD) Min Max M (SD) Min Max M (SD) Min Max 

N=400 37.77 (12.55) 19.46 131.00 23.97 (3.97) 17.11 49.62 18.80 (1.61) 15.75 29.32 
N = 1500 10.53 (3.63) 5.34 36.12 6.35 (1.09) 4.56 13.54 4.95 (0.43) 4.20 7.84 
N = 10000 2.43 (0.69) 0.88 6.30 1.31 (0.23) 0.75 2.27 0.89 (0.09) 0.66 1.24 

Unadjusted lid/ratios 
N=400 2.46 (0.84) 1.21 8.51 1.70 (0.35) 1.09 4.12 1.42 (0.24) 0.97 2.85 
N = 1500 2.63 (0.91) 1.33 9.03 1.65 (0.31) 1.15 3.73 1.36 (0.17) 1.05 2.43 
N = 10000 4.05 (1.16) 1.47 10.49 2.17 (0.37) 1.25 3.74 1.43 (0.13) 1.09 1.92 

+::0 
N 

Table 2 
Descriptive Statistics: Distribution oj Proportiona oj-lldj Ratios> 3 by Adjustment and Sample Size Conditions,jor Simulated 
Data with No Misfitting Items 

Single Items Pairs of Items Trielets of Items 
Condition M 

Adjusted 21df ratios 
(SD) Min Max M (SD) Min Max M (SD) Min Max 

N=400 98.79 (2.06) 90.00 100.00 100.00 (0.00) 100.00 100.00 100.00 (0.00) 100.00 100.00 
N = 1500 87.86 (8.24) 60.00 100.00 97.29 (2.45) 86.21 100.00 99.52 (0.48) 97.04 100.00 
N = 10000 29.37 (16.57) 0.00 90.00 0.17 (0.64) 0.00 6.44 0.00 (0.00) 0.00 0.00 

Unadjusted I Idf ratios 
N=400 28.61 (16.10) 3.33 100.00 39.94 (16.67) 8.97 98.39 22.18 (11.76) 3.60 85.12 
N = 1500 32.83 (17.80) 3.33 100.00 3.38 (6.46) 0.00 68.51 0.11 (0.72) 0.00 17.54 
N = 10000 58.71 (17.02) 6.67 100.00 12.41 (13.15) 0.00 85.29 0.00 (0.01 ) 0.00 0.25 

aShown as * 1 00% 



condition, the mean percentage of single, pairs, and triplets of items identified with misfit 

were uniformly high (means ranging from 86% to 100%) across the small and medium 

sample size conditions. In the large sample size condition, a non-negligible proportion of 

single items (M = 29%, SD = 17%) was identified as misfitting, while drastically fewer 

pairs and triplets exceeded the "rule of thumb" cut point. In the unadjusted condition, the 

smallest sample size condition still yielded substantial proportions of single, pairs, and 

triplets of items identified as misfitting (means ranging from 22% to 40%); the medium 

sample size condition had a high proportion of single items (M = 33%, SD = 18%) but 

lower proportions of pairs and triplets identified as misfitting; and the largest sample size 

had a large proportion of single items (M = 59%, SD = 17%), fewer pairs of items (M = 

12%, SD = 13%), and virtually no triplets of items flagged for misfit. 

Hypothesis Testing 

Hypothesis 1.1 addressed the potential interaction between sample size and 

adjustment condition, where adjustment condition was a repeated measure (i.e., mean 

adjusted and unadjusted x2Idjratios). This hypothesis was tested by fitting generalized 

least squares linear models with block diagonal compound symmetrical residual 

covariance structure within subjects. Three separate models were fit for three response 

variables: the natural logarithm of the mean -lldjratios for (a) single items, (b) pairs of 

items, and (c) triplets of items. For each model, residual plots were examined and were 

deemed appropriate. See Table 3 for detailed results. In each model, the interaction 

between sample size and adjustment condition was statistically significant (p < .001). 

Two reduced nested models (one including both main effects only and one including only 

the effect of adjustment condition) for each response variable were also fit and compared 
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Table 3 
Linear Models: Effects of Saltlple Size and Adj~tment Condition on Mean "I..2/df RatiosU 

Effect 
(Intercept) 
Sample (n=1500) 
Sample (n=400) 
Adjustment (Unadjusted) 
Sample 
(n= 1500):Adjustment 
(Unadjusted) 

Singt~tems Pairs of Items Triplets of Items 
Coe[ se t p Coe! se t p Coe! se t p 
0.85 0.01 94.61 <.001 0.26 0.00 48.86 <.001 -0.12 0.00 -35.25 <.001 
1.45 0.01 114.43 <.001 1.58 0.01 210.77 <.001 1.71 0.00 363.31 <.001 
2.74 0.01 215.24 <.001 2.91 0.01 388.62 <.001 3.05 0.00 646.25 <.001 
0.51 0.00 433.57 <.001 0.50 0.00 371.28 <.001 0.47 0.00 231.97 <.001 

-1.90 0.00 -1139.71 <.001 -1.85 0.00 -969.44 <.001 -1.77 0.00 -616.63 <.001 

Sample (n=400):Adjustment -3.24 0.00 -1946.74 <.001 -3.15 0.00 -1650.47 <.001 
(Unadjusted) -3.06 0.00 -1029.42 <.001 

t aResponse variables are the natural logarithms of the mean "I..2/dfratios. 

Table 4 
Comparing Nested Models: Full Model versus Reduced Models 

Single Items Pairs of Items Trielets of Items 
Model df AIC BIC LL AIC BIC LL AIC BIC LL 
Sample:Adjustment 8 -10260 -10206 5138* -12657 -12603 6336* -12828 -12775 6422* 
Sample + Adjustment 6 11195 11235 -5591 * 7810 7850 -3899* 4736 4776 -2362* 
Adjustment 4 15021 15048 -7507 15187 15214 -7590 15380 15406 -7686 
Note. df= degrees of freedom. AIC = Akaike information criterion. BIC = Bayesian information criterion. LL = log likelihood. 
*Model fits significantly better than next simpler model per likelihood ratio test, p < .001. 



to the full model including the interaction term; AIC values and results of likelihood ratio 

tests indicated that in each case, the full model demonstrated significantly better model 

fit. See Table 4 for model fit results. Interaction plots are presented in Figure 4, 5, and 6, 

for mean ratios associated with single items, pairs of items, and triplets of items, 

respectively. Given the true structure of the data (i.e., no misfitting items), it appears 

clear from these results that the adjusted condition results in very inflated x2/djratio 

values for small and medium sample sizes; unadjusted ratios, while still higher than 

warranted, are much more reflective of the true data structure in these sample size 

conditions. For example, the mean adjusted x2/djratio values for single items in the small 

and medium sample size conditions were 37.77 and 10.53, respectively, compared to 

mean unadjusted ratios of2.46 and 2.63, respectively. Conversely, in the large sample 

size condition, the mean adjusted x2/djratios were closer to their expected value of 1 than 

the unadjusted ratios, as desired. For example, for single items, the mean adjusted X2/dj 

ratio value in the large sample size condition was 2.43, while the unadjusted value was 

4.05. Due to the detection of the significant interaction effect hypothesized in Hypothesis 

1.1, Hypotheses 1.2 and 1.3 (regarding main effects) were not tested. 

Graphical Analyses 

The remaining issue addressed by Research Question 1 was investigated using 

graphical techniques. Specifically, box plots were used to allow the visualization of 

differences in the distributions of the proportions of X2/ dj ratios exceeding the cut point of 

3, indicating misfit, for single items, pairs of items, and triplets of items. These results are 

presented in Figures 7, 8, and 9, respectively. As is evident from Figures 7-9, under the 

small and medium sample size condition, very high proportions of adjusted mean X2 / dj 
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ratios for single items, pairs of items, and triplets of items exceed 3, indicating misfit. 

However, the simulated data included no misfitting items. The unadjusted ratios are 

notably lower in the small and medium sample size conditions. Conversely, under the 

large sample size condition, the proportions of unadjusted mean x21dfratios exceeding 3 

are consistently higher than the proportions of adjusted ratios. 
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single items, for simulated data with no misfitting items. 
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pairs of items, for simulated data with no misfitting items. 
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Figure 7. Box plot of percentage of single items' lid/ratios> 3 by sample size and 
adjustment condition, for simulated data with no misfitting items. 
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adjustment condition, for simulated data with no misfitting items. 
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Figure 9. Box plot of percentage of item triplets' r:1d!ratios > 3 by sample size and 
adjustment condition, for simulated data with no misfitting items. 
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Research Question 2: Sample Size, Type 0/ Misfit, and Proportion 0/ Misfitting Items 

Data Characteristics 

Mean -lId/ratios. For each level of sample size, type of misfit, and proportion of 

misfitting items, the means and standard deviations of -l I df ratios averaged across single 

items, pairs of items, and triplets of items are presented in Tables 5, 6, and 7, 

respectively. The distributions are illustrated in Figure 10. Recall that adjusted x21dfratios 

were used for the largest sample size condition, while unadjusted ratios were used for the 

small and medium sample size conditions, based upon the results of Research Question 1. 

The simulated data included 1000 replications in each condition, for total N=18000. 

Patterns observed in the magnitude and variation ofx21dfratios appeared to differ 

among those averaged across single items versus pairs and triplets of items. As reported 

in Table 5, for single items, the magnitude of mean ratios appeared more consistent 

within the 10% misfitting conditions (lowest M = 1.97, SD = 0.53; highest M = 2.69, SD 

= 3.65) than within the 33% misfitting conditions (lowest M = 1.33, SD = 0.28; highest 

M = 4.15, SD = 4.21). Across the 10% and 33% misfitting conditions, the highest mean 

x2fdfratios and largest standard deviations were observed in the conditions in which 

misfit was due to multidimensionality (e.g., for N = 10000 with 33% misfitting items due 

to multidimensionality, M = 3.81, SD = 16.77). Conversely, the lowest mean tldfratios 

across the 10% and 33% misfitting conditions were both observed in the largest sample 

size condition where misfit was due to generation from a competing model (the GPCM; 

for 10% misfitting, M = 1.97, SD = 0.53; for 33% misfitting, M = 1.33, SD = 0.28). 

For pairs and triplets of items, several trends were noted. Across the 10% 

misfitting conditions, mean tldfratios appeared to decrease as sample size increased, 
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Table 5 
Descriptive Statistics: Distribution of Mean "lid! Ratiosafor Single Items by Sample Size, Type of Misfit, 
and Proportion of Misfitting Items 

Multidimensionality 
Condition M (SD) 

10% items misfitting 
N = 400 2.62 
N = 1500 2.46 
N = 10000 2.69 

33% items misfitting 

(1.32) 
(0.73) 
(3.65) 

M 

2.43 
2.62 
2.41 

DIF 
(SD) 

(0.85) 
(0.89) 
(0.71) 

Competing Model (OPCM) 
M (SD) 

2.33 
2.46 
1.97 

(0.66) 
(0.73) 
(0.53) 

N = 400 4.15 (4.21) 2.40 (0.77) 2.16 (0.46) 
N = 1500 2.13 (0.44) 2.57 (0.93) 2.14 (0.44) 
N = 10000 3.81 (16.77) 2.29 (0.67) 1.33 (0.28) 

aFor N = 10000, x2/dfra.tios with N adjusted to 3000 are used;uIladjusted xL/dfratios are used for the two 
smaller sample size conditions. 
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Table 6 
Descriptive Statistics: Distribution of Mean -lldj RatiosUfor Pairs of Items by Sample Size, Type of Misfit, 
and Proportion of Misfitting Items 

Multidimensionality 
Condition M (SD) 

10% items misfitting 
N = 400 1.82 
N = 1500 1.60 
N = 10000 1.50 

33% items misfitting 

(0.75) 
(0.25) 
(1.31) 

M 

1.68 
1.63 
1.31 

DIP 
(SD) 

(0.36) 
(0.29) 
(0.24) 

Competing Model (GPCM) 
M (SD) 

1.65 
1.62 
1.30 

(0.29) 
(0.25) 
(0.17) 

N=400 2.67 (2.22) 1.63 (0.31) 1.77 (0.21) 
N = 1500 1.80 (0.16) 1.59 (0.28) 2.28 (0.19) 
N = 10000 3.08 (5.13) 1.28 (0.22) 4.04 (0.18) 

apor N = 10000, x2/dfratios with N adjusted to 3000 are used; unadjusted x2/dfratios are used for the two 
smaller sample size conditions. 



Table 7 
Descriptive Statistics: Distribution of Mean "lldf Ratiosafor Triplets of Items by Sample Size, Type of Misfit, 
and Proportion of Misfitting Items 

Multidimensionality DIF Competing Model (GPCM) 
Condition M (SD) M (SD) M (SD) 

10% items misfitting 
N=400 1.55 (0.67) 1.42 (0.27) 1.38 (0.21 ) 
N = 1500 1.34 (0.14) 1.35 (0.31 ) 1.34 (0.36) 
N = 10000 1.00 (0.55) 0.88 (0.09) 0.93 (0.07) 

33% items misfitting 
N=400 2.34 (1.94) 1.42 (0.27) 1.49 (0.16) 
N = 1500 1.42 (0.09) 1.32 (0.16) 1.84 (0.10) 
N = 10000 1.91 (1.96) 0.85 (0.08) 2.87 (0.09) 

Note. 1248 cases are missing for ratios calculated for triplets of items. 
aFor N = 10000, x2/dfratios with N adjusted to 3000 are used; unadjusted x2/dfratios are used for the two 

~ smaller sample size conditions. 
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regardless of type of misfit. This pattern was not observed in the 33% misfitting 

conditions, however. For example, in the 10% misfitting conditions for triplets of items, 

the lowest mean x21dfratios were observed for the largest sample size, ranging from M = 

0.88 (SD = 0.09) to M = 1.00 (SD = 0.55). In contrast, in the 33% misfitting condition for 

triplets of items, some of the highest X2 I df ratios were observed for the largest sample size 

(e.g., when misfit was due to multidimensionality, M = 1.91, SD = 1.96; when misfit was 

due to generation from a competing model, M = 2.87, SD = 0.09). Similar to the narrower 

range of mean ratios observed across the 10% misfitting conditions for single items, the 

mean ratios for pairs and triplets of items were more similar in magnitude within the 10% 

misfitting conditions (lowest pairs M = 1.30, SD = 0.17; highest pairs M = 1.82, SD = 

0.75; lowest triplets M = 0.88, SD = 0.09; highest triplets M = 1.55, SD = 0.67) than 

within the 33% misfitting conditions (lowest pairs M = 1.28, SD = 0.22; highest pairs M 

= 4.04, SD = 0.18; lowest triplets M = 0.85, SD = 0.08; highest triplets M = 2.87, SD = 

0.09). 

Proportions o/iid/ratios > 3. The distributions of proportions of X21df ratio s 

exceeding the "rule of thumb" cut point of 3 for each level of sample size, type of misfit, 

and proportion ofmisfitting items are presented in Tables 8, 9, and 10 for single items, 

pairs of items, and triplets of items, respectively. Boxplots illustrate these distributions in 

Figure 11. These values represent the percentages of all single items, pairs of items, and 

triplets of items identified with misfit. In general, the proportion of ratios> 3 across all 

study conditions was largest among single items, smaller among pairs, and still smaller 

among triplets. Proportions of single item X2 I df ratios> 3 across study conditions 

primarily ranged from 18.88% to 36.50%, except for two notably low values: the largest 
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Table 8 
Descriptive Statistics: Distribution of Proportiona of Single Items with "lldf Ratios> 3 by Sample Size, 
Type of Misfit, and Proportion of Misfitting Items 

Multidimensionality DIF Competing Model (GPCM) 
Condition M (SD) M (SD) M (SD) 

10% items misfitting 
N=400 29.64 (18.52) 27.98 (16.52) 26.32 (13.58) 
N = 1500 29.42 (15.15) 32.79 (17.85) 29.29 (14.96) 
N = 10000 22.81 (20.45) 28.84 (16.45) 18.88 (12.91) 

33% items misfitting 
N=400 36.50 (27.47) 27.89 (16.35) 22.74 (10.52) 
N = 1500 22.54 (10.16) 31.91 (18.12) 22.44 (10.57) 
N = 10000 8.42 (14.60) 26.28 (15.94) 6.19 (5.68) 

aShown as * 100% 
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Table 9 
Descriptive Statistics: Distribution of Proportiona of Pairs of Items with "lldf Ratios> 3 by Sample Size, 
Type of Misfit, and Proportion of Misfitting Items 

Multidimensionality DIF Competing Model (GPCM) 
Condition M (SD) M (SD) M (SD) 

10% items misfitting 
N=400 9.65 (16.86) 6.06 (8.34) 5.71 (6.33) 
N = 1500 2.94 (4.63) 2.96 (5.78) 2.98 (4.49) 
N = 10000 5.01 (17.71) 0.24 (1.16) 0.71 (0.20) 

33% items misfitting 
N=400 22.99 (34.l2) 4.72 (6.62) 10.l4 (4.20) 
N = 1500 9.77 (1.71) 2.l6 (5.48) 11.16 (1.52) 
N = 10000 12.32 (l3.16) 0.25 (0.90) 10.34 (0.01 ) 

aShown as * 100% 
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Table 10 
Descriptive Statistics: Distribution of Proportiona of Triplets of Items with "lldf Ratios> 3 by Sample Size, 
Type of Misfit, and Proportion of Misfitting Items 

Multidimensionality DIF Competing Model (GPCM) 
Condition M (SD) M {SD) M (SD) 

10% items misfitting 
N=400 6.44 (15.45) 3.43 (4.64) 2.68 (2.96) 
N = 1500 0.18 (0.05) 0.10 (0.55) 0.50 (0.55) 
N = 10000 3.21 (8.83) 0.00 (0.00) 2.02 (0.00) 

33% items misfitting 
N=400 19.74 (32.18) 4.28 (4.73) 5.54 (2.58) 
N = 1500 1.97 (0.69) 0.05 (0.49) 14.97 (2.21 ) 
N = 10000 18.64 (12.25) 0.00 (0.00) 25.12 (0.00) 

aShown as * 1 00% 
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sample size condition with 33% misfitting items due to multidimensionality (M = 8.42%, 

SD = 14.60%) and to generation from a competing model (M = 6.19%, SD = 5.68%). 

Among ratios for pairs of items, notably high proportions were observed in the conditions 

with 33% misfitting items due to multidimensionality for the smallest (M = 22.99%, SD 

= 34.12%) and largest (M = 12.32%, SD = 13.16%) sample sizes. Ratios for triplets of 

items were similarly high for those conditions (M = 19.74%, SD = 32.18%, and M = 

18.64% and SD = 12.25%, respectively), as well as for the 33% misfitting items due to 

generation from a competing model with the largest sample size (M = 25.12%, SD = 

0.00%). Other than these highlighted values, most proportions for pairs and triplets of 

items fell between 0% and 10% across conditions, though proportions generally appeared 

higher within the 33% misfitting conditions. 

Sensitivity and specificity. Using the cut point of 3 to indicate item misfit, the 

mean sensitivity and specificity of the mean x21dfratios for single items are presented in 

Table 11. Mean sensitivity was quite low « 30%) across conditions, with particularly 

low values « 1 0%) in the largest sample size condition when misfit was due to either 

multidimensionality or generation from a competing model, regardless of the proportion 

of misfitting items. Mean specificity was approximately 70% across all conditions, but 

highest for the largest sample size condition when misfit was due to either 

multidimensionality or generation from a competing model, particularly when 33% of 

items were misfitting (> 90%). 

Hypothesis Testing 

Mean lid/ratios. Hypothesis 2.1 addressed the potential interaction between 

sample size, type of misfit, and amount of misfit on the magnitude of mean x21dfratios 
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Table 11 
Descriptive Statistics: Distribution of Sensitivity and Specificity of"lldf Ratiosfor Single Items by Sample Size, 
Type of Misfit, and Prf!portion of Misfitting Items 

Multidimensionality DIF Competing Model (GPCM) 
Condition Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 
10% items misfitling 

N=400 0.24 (0.26) 0.70 (0.20) 0.27 (0.29) 0.72 (0.16) 0.22 (0.24) 0.73 (0.15) 
N = 1500 0.22 (0.24) 0.70 (0.16) 0.33 (0.31) 0.67 (0.18) 0.20 (0.24) 0.70 (0.16) 
N = 10000 0.10 (0.24) 0.76 (0.21) 0.24 (0.27) 0.71 (0.17) 0.04 (0.12) 0.79 (0.14) 

33% items misfitling 
N=400 0.29 (0.22) 0.60 (0.33) 0.28 (0.20) 0.72 (0.17) 0.21 (0.14) 0.76 (0.13) 
N = 1500 0.20 (0.14) 0.76 (0.14) 0.32 (0.22) 0.68 (0.19) 0.20 (0.15) 0.76 (0.14) 
N = 10000 0.06 (0.15) 0.91 (0.16) 0.25 (0.20) 0.73(0.17) 0.04 (0.07) 0.93 (0.08) 



for single items, pairs of items, and triplets of items. This hypothesis was tested by fitting 

generalized least squares linear models with weighted least squares, with corrected alpha 

set at .003. Separate models were fit for three response variables: the inverse ofthe mean 

"ild/ratios for (a) single items, (b) pairs of items, and (c) triplets of items. For each 

model, residual plots were examined and were deemed appropriate. See Table 12 for 

detailed results. Overall, the three-way interaction of sample size, type of misfit, and 

amount of misfit was statistically significant (p < .001). Two reduced nested models (one 

including two-way interactions only and one including main effects only) for each 

response variable were also fit and compared to the full models; Ale values and results 

of likelihood ratio tests indicated that in each case, the full model demonstrated 

significantly better model fit. See Table 13 for model fit results. Interaction plots are 

presented in Figure 12, for mean lid/ratios associated with single items, pairs of items, 

and triplets of items, respectively. Several observations can be made from Table 12 and 

Figure 12. First, in general, the magnitude of mean x2ld/ratios decreases from single 

items to pairs to triplets. In the small and medium sample size conditions, as the 

proportion ofmisfitting items increases from 10% to 33%, the mean x2fd/ratios increase 

when the misfit is due to multidimensionality (e.g., for pairs of items and N = 400, M = 

1.82 when 10% of items are misfitting, and M = 2.67 when 33% of items are misfitting), 

but do not increase when misfit is due to DIF or generation from a competing model. 

When N = 10000, the effect of amount of misfit appears more pronounced, depending on 

the type of misfit; mean x2fd/ratios appear similar whether there is 10% or 33% misfit 

present under the DIF condition, but they increase fairly dramatically when misfit is due 

to multidimensionality (e.g., from M = 1.50 to M = 3.08 for pairs of items). In the largest 
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Table 12 
Linear Models (Weighted Least Squaresl: Effects of Saml!./e Size, TJ!J!.e of Misfit, and Amount of Misfit on Mean lldf Ratiosa 

Single Items Pairs of Items Trirlets of Items 
Effect Coe! se t p Coe! se t p Coe! Se t p 
(Intercept) 0.45 0.00 119.25 <.001 0.78 0.00 187.35 <.001 1.14 0.00 321.72 <.001 
Sample (n=1500) -0.03 0.00 -5.79 <.001 -0.16 0.00 -30.78 <.001 -0.39 0.00 -90.16 <.001 
Sample (n=400) 0.00 0.00 0.20 .84 -0.17 0.00 -31.79 <.001 -0.42 0.00 -82.47 <.001 
Type (model) 0.09 0.01 16.51 <.001 -0.01 0.00 -1.06 .29 -0.06 0.00 -13.27 <.001 
Type (multidimensional) 0.07 0.01 10.55 <.001 0.00 0.01 0.67 .50 -0.05 0.01 -7.11 <.001 
Amount (33%) 0.02 0.00 4.04 <.001 0.01 0.01 2.29 .02 0.04 0.00 7.55 <.001 
Sample (n=1500):Type -0.08 0.01 -10.08 <.001 0.01 0.01 0.91 .36 0.06 0.00 10.96 <.001 
(model) 
Sample (n=400): Type -0.09 0.01 -11.35 <.001 0.01 0.01 1.43 .15 0.07 0.01 10.55 <.001 
(model) 
Sample (n=1500): Type -0.05 0.01 -6.22 <.001 0.00 0.01 0.36 .71 0.06 0.01 7.26 <.001 

8i (multidimensional) 
Sample (n=400): Type -0.08 0.01 -9.44 <.001 -0.02 0.01 -2.73 .01 0.03 0.01 3.48 <.001 
(multidimensional) 
Sample (n=1500): Amount -0.01 0.01 -1.77 .08 0.00 0.01 0.54 .59 -0.02 0.01 -2.92 <.001 
(33%) 
Sample (n=400): Amount -0.02 0.01 -2.59 .01 0.00 0.01 0.06 .95 -0.03 0.01 -4.45 <.001 
(33%) 
Type (model): Amount 0.22 0.01 26.28 <.001 -0.55 0.01 -82.32 <.001 -0.77 0.01 -143.91 <.001 
(33%) 
Type (multidimensional): 0.22 0.01 23.05 <.001 -0.38 0.01 -45.05 <.001 -0.52 0.01 -63.74 <.001 
Amount (33%) 
Sample (n=1500): Type -0.18 0.01 -16.44 <.001 0.34 0.01 40.59 <.001 0.55 0.01 79.63 <.001 
(model): Amount (33%) 
Sample (n=400): Type -0.20 0.01 -18.15 <.001 0.48 0.01 54.37 <.001 0.71 0.01 76.61 <.001 
(model): Amount (33%) 

(table continues) 



Table 12, continued 
Single Items 

Effect Cae! se t p 
Sample (n=1500): Type -0.18 0.01 -15.22 <.001 
(multidimensional): Amount 
(33%) 
Sample (n=400): Type -0.27 0.01 -20.50 <.001 
(multidimensional): Amount 
(33%) 
GResponse variables are the inverse of the mean lid/ratios. 

Table 13 
g: Comparing Nested Models: Full Model versus Reduced Models 

Single Items 
Model 
Sample: Type: Amount 
Sample:Type + 
Sample:Amount + 
Type:Amount 

df 
36 
32 

AIC 
-24459 
-23890 

BIC 
-24178 
-23640 

LL 
12265* 
11977* 

Cae! 
0.29 

0.30 

AIC 
-37839 
-35417 

Pairs of Items 
se t 

0.01 28.89 

0.01 24.14 

Pairs of Items 
BIC 

-37559 
-35168 

p 
<.001 

<.001 

LL 
18956* 
17741 * 

Triplets of Items 
Cae! Se t P 
0.45 0.01 48.71 <.001 

0.43 0.01 31.42 <.001 

Triplets of Items 
AIC BIC LL 

-37055 -36776 18563* 
-33273 -33026 16668* 

Sample + Type + Amount 24 -21979 -21792 11013 -24066 -23878 12057 -21146 -20960 10597 
Nate. df= degrees of freedom. AIC = Akaike information criterion. BIC = Bayesian information criterion. LL = log likelihood. 
*Model fits significantly better than next simpler model per likelihood ratio tests, p < .001. 
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sample size condition, when misfit is due to generation from a competing model, the 

direction of the effect of proportion of misfitting items is different among single items 

(from M = 1.97 to M = 1.33) versus pairs (from M = 1.30 to M = 4.04) and triplets (from 

M = 0.93 to M = 2.87) of items. Due to the detection ofthe significant interaction effect 

hypothesized in Hypothesis 2.1, Hypotheses 2.2 through 2.7 (regarding two-way 

interactions and main effects) were not tested. 

Sensitivity and specificity of single items' .. lldf ratios. Hypothesis 3.1 addressed 

the potential interaction of sample size, type of misfit, and amount of misfit on the 

sensitivity and specificity of using the 'l / df ratios> 3 cut point for single items. This 

hypothesis was tested by fitting generalized linear models with a logit link, with corrected 

alpha set at .003 for significance. Separate models were fit for the response variables of 

sensitivity and sensitivity. See Table 14 for detailed results. The three-way interaction 

effect of sample size, type of misfit, and amount of misfit was statistically significant (p < 

.001). Results of likelihood ratio tests and AIC values indicated that neither of two 

reduced nested models (one including two-way interactions only and one including main 

effects only) fit better than the full model including the three-way interaction term. See 

Table 15 for model fit results. Figure 13 presents box plots for the sensitivity and 

specificity of using the> 3 cut point for mean X2 
/ df ratios to indicate misfit of single 

items. The primary observation from Table 14 and Figure 13 is that the lowest sensitivity 

levels are seen in the largest sample size condition when type of misfit is either due to 

multidimensionality or to generation from a competing model. When 10% of items are 

misfitting, sensitivity is 10% and 4% for these conditions, respectively; when 33% of 

items are misfitting, sensitivity is 6% and 4% for the same conditions. Concomitant 
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Table 14 
Logistic Regression Models: Effects 0/ Sample Size, Type 0/ Misfit, and Amount 0/ 
Misfit on Sensitivity and Sl!.ecijicity o/lld/> 3 for Single Items 

Sensitivit~ SQecificit~ 
Effect Coef se Z p. Coef se Z p. 
(Intercept) -1.14 0.04 -26.84 <.001 0.89 0.01 65.70 <.001 
Sample (n=1500) 0.44 0.06 7.71 <.001 -0.16 0.02 -8.52 <.001 
Sample (n=400) 0.18 0.06 2.98 <.01 0.06 0.02 3.41 <.001 
Type (model) -2.04 0.10 -19.85 <.001 0.47 0.02 23.60 <.001 
Type -1.10 0.07 -14.62 <.001 0.26 0.02 13.30 <.001 
(multidimensional) 
Amount (33%) 0.05 0.05 0.96 .33 0.12 0.02 5.79 <.001 
Sample (n=1500):Type 1.38 0.12 11.65 <.001 -0.36 0.03 -13.16 <.001 
(model) 
Sample (n=400): Type 1.74 0.12 14.65 <.001 -0.41 0.03 -14.83 <.001 
(model) 
Sample (n=1500): Type 0.53 0.09 5.55 <.001 -0.14 0.03 -5.34 <.001 
(multidimensional) 
Sample (n=400): Type 0.93 0.10 9.76 <.001 -0.37 0.03 -13.47 <.001 
(multidimensional) 
Sample (n=1500): -0.10 0.07 -1.48 .14 -0.08 0.03 -2.74 <.01 
Amount (33%) 
Sample (n=400): -0.04 0.07 -0.62 .53 -0.12 0.03 -4.11 <.001 
Amount (33%) 
Type (model): Amount -0.05 0.12 -0.39 .69 1.07 0.04 28.57 <.001 
(33%) 
Type -0.49 0.09 -5.52 <.001 1.00 0.03 28.72 <.001 
(multidimensional): 
Amount (33%) 
Sample (n=1500): Type 0.09 0.13 0.68 .49 -0.76 0.05 -16.05 <.001 
(model): Amount 
(33%) 
Sample (n=400): Type -0.01 0.13 -0.06 .95 -0.89 0.05 -18.65 <.001 
(model): Amount 
(33%) 
Sample (n=1500): Type 0.50 0.11 4.12 <.001 -0.70 0.05 -15.41 < .. 01 
(multidimensional) : 
Amount (33%) 
Sample (n=400): Type 0.73 0.11 6.54 <.001 -1.44 0.05 -31.99 <.001 
(multidimensional): 
Amount (33%) 

69 



--.J o 

Table 15 
Comparing Nested Models: Full Model versus Reduced Models 

Model 
Sample:Type:Amount 
Sample:Type + 
Sample:Amount + 
Type:Amount 

df 
18 
14 

AIC 
50837 
50880 

Sensitivity 
BIC LL 

50977 -25400* 
50989 -25426* 

AIC 
121666 
122863 

Specificity 
BIC 

121806 
122972 

LL 
-60815* 
-61418* 

Sample + Type + Amount 6 52514 52560 -26251 127648 127695 -63818 
Note. df = degrees of freedom. AIC = Akaike information criterion. BIC = Bayesian information criterion. 
LL = log likelihood. 
*Model fits significantly better than next simpler model per likelihood ratio tests, p < .001. 
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increases in specificity are also observed. Sensitivity is higher in the small and medium 

sample size conditions across all levels of type and proportion ofmisfitting items (see 

Table 11 for descriptive statistics per condition). Due to the detection of the significant 

interaction effect hypothesized in Hypothesis 3.1, Hypotheses 3.2 through 3.7 (regarding 

two-way interaction and main effects) were not tested. 
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CHAPTER V 

DISCUSSION 

Applied IR T researchers face several challenges, including traditional reliance on 

standalone IR T software with limited outp.ut and a lack of simple solutions for assessing 

how well a given item fits the selected IRT model. One solution to the latter difficulty, 

used by many applied IR T researchers investigating a variety of topics, has been to use 

the X21 dj ratios method, developed by Drasgow et al. (1995) and easily implemented 

using the freely available MODFIT program (Stark, 2002). The developers of this 

approach are in the educational psychology field, in which many applications ofIRT 

employ large datasets (N > 1(000). However, users of the lldjratios method have 

investigated item fit with very small samples (N < 300), with no published guidance 

regarding its use outside of large sample research. In addition, item misfit can be caused 

by several issues and can be present in varying proportions within a given set of items, 

and the effects of these factors on detection of item misfit using X21 dj ratios is unknown. 

Thus, this study aimed to systematically investigate the utility oflldjratios for detecting 

item misfit in applications of one frequently used IRT model-the graded response model 

(GRM)-as impacted by sample size, type of misfit, and proportion of misfitting items. 

Summary of Findings 

Research Question 1: Are adjusted (to N = 3000) or unadjusted i /df ratios more 

appropriate for small-sample IRT research? 
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The use of adjusted x2ldjratios, in which the sample size is adjusted to 3000 to 

"standardize" findings and allow comparisons of item fit results across studies, is built 

into the MODFIT calculations and output. Applied IRT researchers routinely report 

adjusted x2ldjratios, regardless of their studies' sample sizes. Results of the current 

investigation suggest that adjusted x21djratios were appropriate for the largest sample size 

condition (N = 10000), but were extremely inflated for the small (N = 400) and medium 

(N = 1500) sample size co~ditions. Using the "rule ofthumb" cut point of x21dj > 3 to 

indicate item misfit, nearly all items in a 30-item set were identified as misfitting based 

on adjusted x21dfratios in the small and medium sample size conditions, when in fact, no 

misfitting items were present. In contrast, use of unadjusted x21djratios in the small and 

medium sample size conditions resulted in far fewer (but still> 0) items being incorrectly 

flagged as misfitting, with lower proportions incorrectly flagged for x21djratios calculated 

(a) for pairs and triplets of items, compared to single items, and (b) for the medium 

sample size, compared to the small sample size. Uniformly lower percentages of items 

were incorrectly flagged as misfitting in the largest sample size condition when the 

adjusted x21djratios were used, as desired. Thus, under Hypothesis 1.1, the null 

hypothesis is rejected; there is a significant interaction effect of sample size and 

adjustment condition on the magnitude ofx2ldjratios. For small-sample (N:S 1500) IRT 

research, the exclusive use of unadjusted lldjratios is recommended. 

Research Question 2: As a means of assessing modelfitfor the GRM, how are the 

magnitude and utility ofildfratios affected by (a) sample size, (b) type of item misfit, 

and (c) proportion of misfitting items in a given set? 

Results of this study suggest that x21djratios are differentially affected at different 
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sample sizes by the type of misfit and proportion ofmisfitting items. For example, the 

mean x2ld/ratios calculated for single items were highest when 33% of items were 

actually misfitting due to multidimensionality, and were lowest when 10% of items were 

misfitting due to generation from a competing IR T model. Effects of these three factors 

also differed depending on whether the lid/ratios were averaged across single items, 

pairs of items, or triplets of items, complicating interpretation of the significant three-way 

interaction ~or the three response variables. Importantly, the distributions of mean lid/ 

ratios were quite skewed in several study conditions (see Figure 10). Thus, high 

proportions ofx2ld/ratios > 3 could be observed in conditions with relatively low mean 

ratios. This was especially true for X2 I d/ ratios calculated for pairs and triplets of items, in 

which ratios in certain conditions tended to be very low for certain pairs and triplets but 

very high for others, resulting in low means, high standard deviations, and high 

proportions of ratios > 3 (e.g., N = 10000 with 33% of items misfitting due to 

multidimensionality or model). This finding was consistent with Drasgow and 

colleagues' (1995) and Stark's (2002) rationale that pairs and triplets of items with 

similar misfit should generate higher lid/ratios than either (a) single items alone, or (b) 

pairs or triplets with dissimilar misfit. 

To assess the utility of the x2ld/ratios for identifying item misfit across the study 

conditions, the specificity and sensitivity of using the x2ldJ> 3 cut point was investigated, 

for single items only. Results suggested that sensitivity was notably low across all 

conditions, ranging from a low of 4% (when N = 10000 and either 10% or 33% of items 

were misfitting due to generation from a competing model) to a high of 33% (when N = 

1500 and 10% of items were misfitting due to DIF). Specificity was fairly high across all 
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study conditions, ranging from a low of 60% (when N = 400 and 33% of items were 

misfitting due to multidimensionality) to a high of93% (when N = 10000 and 33% of 

items were missing due to generation from a competing model). In general, sensitivity 

appeared to decrease as the sample size increased, particularly when misfit was due to 

multidimensionality or generation from a competing model. Under Research Question 2, 

for both Hypothesis 2.1 and 3.1, the null hypotheses were rejected, given the significant 

three-way interaction effects of sample size, type of misfit, and proportion of misfitting 

items on the magnitude, sensitivity, and specificity ofx2ldjratios. 

Limitations 

Several limitations of this study should be highlighted. First, these results are 

specific to the GRM (and the GPCM, in one condition of type of misfit); many other IRT 

models may be employed. Findings may differ for other IRT models. Next, only three 

sample size conditions were tested. In practice, sample sizes in applied IR T research vary 

dramatically. The focus of the current study was only on comparing small (N:S 1500) 

sample sizes to a large (N = 10000) sample size. Thus, results cannot necessarily be 

generalized to sample sizes not tested. Similarly, only three types of item misfit were 

tested: misfit due to multidimensionality, generation from a competing model, and DIF. 

Other types of item misfit may exist. Sensitivity and specificity were only calculated for 

single items' x2ldj> 3; however, since mean x21djratios computed for pairs and triplets of 

items tended to be lower but increase dramatically in certain conditions, this decision 

may have resulted in a "worst case scenario" picture of sensitivity and specificity. 

Further, it is important to note that no direct comparison was made between the x21dj 

ratios calculated in R and those generated using the MODFIT program, so conclusions 
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regarding x21dfratios should not be extended to MODFIT until the equivalence of these 

methods is established. On a related note, the developers of MODFIT (Stark, 2002) 

recommend the review of fit plots for each item, in addition to considering the 

distribution of X2 I df ratios, in determining item fit. Fit plots were not generated in the 

current study, which focused solely on x2ldfratios. Finally, simulation functions in the R 

package ltm were used; replication of results would be beneficial. 

Directions for Future Research 

The current findings should be replicated and extended in several ways. For 

example, including a sample size condition between N = 1500 and N = 10000 would be 

helpful for applied IRT researchers seeking guidance regarding the use of i: I df ratios to 

assess item fit with the GRM. Different cut points and decision rules for the x21dfratios 

could also be investigated (e.g., usingp-values with alpha corrected for multiple 

comparisons instead of the x2/df> 3 rule of thumb) to determine whether other 

approaches may improve sensitivity and specificity of the x21dfratios index of misfit. In 

this study, sensitivity and specificity were calculated only for single items' X2ldf> 3. As 

the x21dfratios appeared to behave differently when computed for pairs of items and 

triplets of items across study conditions, it would be informative to develop a way of 

assessing sensitivity and specificity using the ratios calculated for item pairs and triplets 

instead of single items only. Finally, comparison of X2 I df ratios generated with R to those 

produced by MODFIT would be directly relevant to applied IRT researchers using this 

approach, as would investigation of the effects of sample size, type of misfit, and 

proportion of misfitting items on item fit plots, which may be used as an additional 

indicator of item fit. 
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Summary and Conclusions 

In summary, applied IRT researchers using the x21dfratio index for assessing item 

fit in the GRM should be aware of important considerations. First, X2 I df ratios are affected 

by sample size in several ways. The use of unadjusted x21dfratios is recommended for 

applications of the GRM with small sample sizes (N:S 1500), as adjusted x21dfratios are 

inappropriately inflated in these conditions; adjusted x2ldfratios, however, are 

recommended for large sample sizes (e.g., N = 10000). Sample size also interacts with 

type of item misfit and proportion ofmisfitting items to affect the magnitude, sensitivity, 

and specificity of l I df ratios used to assess item fit. 

Certain types of item misfit (e.g., generation from a competing model and 

multidimensionality) are associated with lower sensitivity of the lldf> 3 cut point for 

single items' ratios when the sample size is large. In addition, sensitivity of the X21df> 3 

cut point for single items is quite low. This finding is consistent with Drasgow and 

colleagues' (1995) and Stark's (2002) rationale for examining ratios calculated for pairs 

and triplets of items, in addition to single items, to reveal misfit not detectable with single 

item x2ldfratios. 

Finally, Drasgow and colleagues and Stark advocate the use of fit plots in addition 

to consideration of the distribution oflldfratios in determining item fit in IRT analyses. 

While easily accessible in MODFIT, fit plots are often not included in articles by applied 

IRT researchers, who frequently only provide tables summarizing the distributions of 

adjusted and unadjusted x2ldfratios. Given the current study's findings regarding effects 

of sample size, type of misfit, and proportion of misfit on X2 I df ratios, the use and 

inclusion of item fit plots may be helpful, at least until further information is available 
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regarding the performance of fit plots in conditions varying by the same three factors. 
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APPENDIX A 

Study Design for Each Research Question 

Research Ques!ion 1: Sample Size and Adjustment Condition 

Number of simulated replications in each cell: 

~ Adjustment Conditiona 

.t;l Adjusted X1.1df Ratios Unadjusted x1.1d( Ratios V) 

~ N=400 1000 1000 --~ N = 1500 1000 1000 
~ N = 10000 1000 1000 

a A repeated factor in analyses. 

Research Question 2: Sample Size, Type of Misfit, and Proportion of Misfitting Items 

Number of simulated replications in each cell: 

Sample Proportion of 
l)pe of Misfit 

Size Misfitting Items Multidimensional DIF 
Competing 

Model 
N=400 

10% 1000 1000 1000 
33% 1000 1000 1000 

N = 1500 
10% 1000 1000 1000 
33% 1000 1000 1000 

N = 10000 
10% 1000 1000 1000 
33% 1000 1000 1000 
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APPENDIXB 

R Code for Data Simulation and Preparation 

###common code for all simulations in RQ 1 and RQ2 

##creating matrices to store the results ## 
outBetas <- matrix(O, M, 150) # store the results 
outsinglets<- matrix(O, M, 30) # store singlet chisq/dfs 
poutsinglets<- matrix(O, M, 30) # store singlet p-values (NOT adj for multiple 
comparisons) 
adjoutsinglets<-matrix(O, M, 30) # store adjusted singlet chisq/dfs 
padjoutsinglets<-matrix(O, M, 30) # store adjusted singlet p-values (NOT adj for multiple 
comparisons) 
outdoublets<- matrix(O, M, 435)# store doublets chisq/dfs 
poutdoublets<- matrix(O, M, 435)# store doublets p-values (NOT adj for multiple 
comparisons) 
adjoutdoublets<-matrix(O, M, 435) # store adjusted doublet chisq/dfs 
padjoutdoublets<-matrix(O, M, 435) # store adjusted doublets p-values (NOT adj for 
multiple comparisons) 
outtriplets<-matrix (0, M, 4060)#store triplets chisq/dfs 
pouttriplets<-matrix (0, M, 4060)#store triplets p-values 
adjouttriplets<-matrix (0, M, 4060)# store adjusted triplets chisq/dfs 
padjouttriplets<-matrix (0, M, 4060) # store adjusted triplets p-values (NOT adj for 
multiple comparisons) 
cpoutsinglets.bon<- matrix(O, M, 30) # store singlet p-values (bonferroni) 
cpadjoutsinglets.bon<-matrix(O, M, 30) # store adjusted singlet p-values (bonferroni) 
cpoutsinglets.bh<- matrix(O, M, 30) # store singlet p-values (benjamini-hochman) 
cpadjoutsinglets.bh<-matrix(O, M, 30) # store adjusted singlet p-values (benjamini
hochman) 
cpoutdoublets.bon<- matrix(O, M, 435)# store doublet p-values (bonferroni) 
cpadjoutdoublets.bon<-matrix(O, M, 435) # store adjusted doublet p-values (bonferroni) 
cpoutdoublets.bh<- matrix(O, M, 435)# store doublet p-values (benjamini-hochman) 
cpadjoutdoublets.bh<-matrix(O, M, 435) # store adjusted doublet p-values (benjamini
hochman) 
cpouttriplets.bon<-matrix (0, M, 4060)# store triplet p-values (bonferroni) 
cpadjouttriplets.bon<-matrix (0, M, 4060) # store adjusted triplet p-values (bonferroni) 
cpouttriplets.bh<-matrix (0, M, 4060)# store triplet p-values (benjamini-hochman) 
cpadjouttriplets.bh<-matrix (0, M, 4060) # store adjusted triplet p-values (benjamini
hochman) 
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##SIMULA nON FOR RQ 1: Sample size & adjustment condition 

library(ltm) 
library(multtest) 

###the simulation function from ltm package 

rmvordlogis <- function (n, betas) { 

} 

# function to simulate random responses 
# l;msed on the Graded Response Model 
# using the additive parameterization 
###deleted line setting p since it will always be 30 
###deleted ncatg line since it will always be 5 
z <- morm(n) 
gammas <- lapply(betas, function (x) { 

nx <- length( x) 
cbind(plogis(matrix(x[-nx], n, nx-I, TRUE)- x[nx] * z), 1) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc]-x[, I:(nc-I)]) 

}) 
out <- matrix(O, n, 30) ##replaced p with 30 
for (j in 1 :30) { ## replaced p with 30 

for (i in l:n) { 

} 
} 
out 

out[i, j] <- sample(5, 1, prob = prs[[j]][i, ]) 
##changed ncatg[j] to 5 since always 5 categories 

##the iprobs function 
'iprobs' <-
function (betas, z) { 

n <- length(z) 
gammas <-lapply(betas, function (x) { 

nx <-length(x) 
cbind(plogis(matrix(x[-nx], n, nx - 1, TRUE) - x[nx] * z), 1) 

}) 
lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc] - x[, 1 :(nc - 1)]) 

}) 
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} 

# take the betas from dataset A transformed 
# as the true betas 
true. betas<- read.csv(,C:/Documents and Settings/crclarO/Desktop/DatasetAt.csv', 
header=T, row.names=l) 
n <- 400 #start with sample size N=400, change this line to 1500 and 10000 for other 
sample sizes 
M <- 1000 # number of simulations 

### SIMULATING DATA, FITTING THE GRM, OBTAINING UNADJUSTED AND 
ADJUSTED OUTCOMES ### 
ind <- i <- 1 
while(i <= M) { 

set.seed(100 + ind) # for reproducible results 
ind <- ind+l 
n<-400 ##again, change to 1500 and 10000 for other sample size conditions 
data <- rmvordlogis(n, true.betas) 
indA<-sample(1 :n, floor(n12), replace=FALSE) 
dataA <- data[indA, ] 
dataB <- data[ -indA, ] 
fit <- try(grm(dataA)) ###ifthere is an error will not just stop, will go on to next i 
if( class( fit )=="try-error") next 
if(length( unlist( fit$coefficients))! = 150) next 
outBetas[i, ] <- unlist(fit$coefficients) ## non standard param 

##setting up for chisquare/df routines## 
X <- fit$X 
nams <- colnames(X) 
n <- nrow(X) 
betas <- fit$coef 
p <- length(betas) 
pr <- iprobs(betas, fit$GH$Z) ##iprobs at top for reference 
GHw <- fit$GH$GHw 
X <- data.matrix(fit$X)[ complete.cases(X), ] 

###UNADJUSTED FOR SINGLE ITEMS ### 
#sindex <- ncol(X) ##don't need this, always 30 
#margins <- vector("list", sindex) 
for G in 1 :30) { 

pI <- pr[[j]] 
ncp 1 <- ncol(p 1) 

#####for obs below - data is the cross-validation sample## 
obs <- table(factor(dataB[,j], levels=l :5)) 
exp <- obs 
exp <- n * colSums(GHw * pI) 
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##summing cells with EXPECTED counts <5 
sind <- which(exp<5) 
if (length(sind»O) { 

obs <- c(obs[-sind], sum(obs[sind])) 
exp <- c(exp[-sind], sum(exp[sind])) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which( exp<5) 
if (length(sind»O) { 
ind2 <- which.min( exp[ -sind]) 

obs <- c(obs[-sind][-ind2], sum(obs[sind], obs[-sind][ind2])) 
exp <- c(exp[-sind][-ind2], sum(exp[sind],exp[-sind][ind2])) 
} 

##calculating df after collapsing cells for each routine above 
df <- length( exp )-1 
resid <- (obs - exp )1\2/exp 

TotalResid <- sum(resid) 
schisqdf<-T otalResidl df 
outsinglets[i, j]<-schisqdf 
pvalue<-I-pchisq(TotalResid, df) 
poutsinglets[i, j]<-pvalue 
cpvalue<-pvalue* 30 
cpoutsinglets.bon[i,j]<-cpvalue 
} 

### ADJUSTED FOR SINGLE ITEMS (N=3000)### 
#sindex <- ncol(X) ##don't need this, always 30 
#margins <- vector("list", sindex) 
adj<-3000/n 
a<-3000 
for Gin 1:30) { 

pI <- pr[[j]] 
ncpl <- ncol(pl) 

#####for obs below - data is the cross-validation sample## 
adjobs <- adj*table(factor(dataB[,j], levels=1 :5)) 
adjexp <- adjobs 
adjexp <- a * colSums(GHw * pI) 

##summing cells with EXPECTED counts <5 
sind <- which(adjexp<5) 
if (length(sind»O) { 

adjobs <- c(adjobs[-sind], sum(adjobs[sind])) 
adjexp <- c(adjexp[-sind], sum(adjexp[sind])) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which(adjexp<5) 
if (length(sind»O) { 
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ind2 <- which.min(adjexp[-sindD 
adjobs <- c(adjobs[ -sind][-ind2], sum(adjobs[ sind], adjobs[ -sind][ind2D) 
adjexp <- c(adjexp[-sind][-ind2], sum(adjexp[sind],adjexp[-sind][ind2D) 

} 
##calculating df after collapsing cells for each routine above 
df <- length( adjexp )-1 
resid <- (adjobs - adjexp)"'2/adjexp 

TotalResid <- sum(resid) 
schisqdf<-T otalResid! df 
adjoutsinglets[i, j]<-schisqdf 
pvalue<-I-pchisq(TotalResid, df) 
padjoutsinglets[i, j]<-pvalue 
cpvalue<-pvalue* 3 0 
cpadjoutsinglets.bon[ij]<-cpvalue 
} 

###UNADJUSTED FOR PAIRS OF ITEMS ### 
index <- t(combn(p, 2)) 
dindex <- nrow(index) 
#margins <- vector("list", dindex) 
for (k in 1 :dindex) { 

itemi <- index[k, 1] 
pI <- pr[[itemI]] 
ncp 1 <- ncol(p 1) 
item2 <- index[k, 2] 
p2 <- pr[[item2]] 
ncp2 <- ncol(p2) 

######for obs below - data is the cross-validation sample## 
obs <- as.matrix(table(factor(dataB[, itemI], levels=I:5), factor(dataB[, 
item2], levels=I :5))) 

pairs <- cbind(rep(l :ncpI, each = ncp2), rep(l :ncp2, ncpI)) 
pp <- pI [, pairs[, 1]] * p2[, pairs[, 2]] 
exp <- obs 
exp[pairs] <- n * colSums(GHw * pp) 

##summing cells with EXPECTED counts <5 
sind <- which( exp<5) 
if (length(sind»O) { 

obs <- c(obs[-sind], sum(obs[sindD) 
exp <- c(exp[-sind], sum(exp[sindD) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which( exp<5) 
if (length(sind»O) { 
ind2 <- which.min( exp[ -sindD 

obs <- c(obs[-sind][-ind2], sum(obs[sind], obs[-sind][ind2D) 
exp <- c(exp[-sind][-ind2], sum(exp[sind],exp[-sind][ind2D) 
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} 
##ca1culating df after collapsing cells for each routine above 
df <- length( exp )-1 
resid <- (obs - exp )"'2/exp 

TotalResid <- sum(resid) 
dchisqdf<-TotalResidi df 
outdoublets[i, k ]<-dchisqdf 
pvalue<-I-pchisq(TotaIResid, df) 
poutdoublets[i, k ] <-pvalue 
cpvalue<-pvalue* 435 
cpoutdoublets. bon[i,k ] <-cpvalue 
} 

###FOR ADJUSTED PAIRS OF ITEMS (N=3000) ### 
adj <-3 OOO/n 
a<-3000 
index <- t(combn(p, 2)) 
dindex <- nrow(index) 
#margins <- vector("list", dindex) 
for (k in 1 :dindex) { 

iteml <- index[k, 1] 
pI <- pr[[iteml]] 
ncp 1 <- ncol(p 1) 
item2 <- index[k, 2] 
p2 <- pr[[item2]] 
ncp2 <- ncol(p2) 

######for obs below - data is the cross-validation sample## 
adjobs <- adj*as.matrix(table(factor(dataB[, iteml], levels=l :5), 
factor(dataB[, item2], levels=1:5))) 

pairs <- cbind(rep(1:ncpl, each = ncp2), rep(l:ncp2, ncpl)) 
pp <- pI [, pairs[, 1]] * p2[, pairs[, 2]] 
adjexp <- adjobs 
adjexp[pairs] <- a * colSums(GHw * pp) 

##summing cells with EXPECTED counts <5 
sind <- which( adjexp<5) 
if (length(sind»O) { 

adjobs <- c(adjobs[-sind], sum(adjobs[sindD) 
adjexp <- c(adjexp[-sind], surn(adjexp[sind])) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which( adjexp<5) 
if (length(sind»O) { 
ind2 <- which.min( adjexp[ -sind]) 
adjobs <- c( adjobs[ -sind][ -ind2], surn(adjobs[ sind], adjobs[ -sind] [ind2])) 
adjexp<- c(adjexp[ -sind] [ -ind2], surn(adjexp[ sind],adjexp[ -sind] [ind2])) 

} 
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##ca1culating df after collapsing cells for each routine above 
df <- length( adjexp )-1 
resid <- (adjobs- adjexp)"2/adjexp 

TotalResid <- sum(resid) 
dchisqdf<-TotalResid/df 
adjoutdoublets[i, k ]<-dchisqdf 
pvalue<-I-pchisq(TotalResid, df) 
padjoutdoublets[i, k ] <-pvalue 
cpvalue<-pvalue* 435 
cpadjoutdoublets. bon[i,k ] <-cpvalue 
} 

###UNADJUSTED TRIPLETS OF ITEMS ### 
index <- t( combn(p, 3)) 
tindex <- nrow(index) 
margins <- vector("list", tindex) 
for (m in 1 :tindex) { 

item 1 <- index [ m, 1] 
pI <- pr[[iteml]] 
ncp 1 <- ncol(p 1 ) 
item2 <- index[m, 2] 
p2 <- pr[[item2]] 
ncp2 <- ncol(p2) 
item3 <- index[m, 3] 
p3 <- pr[[item3]] 
ncp3 <- ncol(p3) 

obs <- as.array(table(factor(dataB[,iteml], levels=I:5), factor(dataB[, 
item2], levels=I:5), factor(dataB[, item3], levels=I:5))) 
trips <- cbind(rep(l:ncpl, each = ncp2), rep(l:ncp2, ncpl)) 
trips <- cbind(trips[rep(1 :nrow(trips), ncp3), ], rep(l :ncp3, each 
nrow(trips))) 

pp <- pI [, trips[, 1]] * p2 [, trips[, 2]] * p3 [, trips[, 3]] 
exp <- obs 
exp[trips] <- n * colSums(GHw * pp) 

##summing cells with EXPECTED counts <5 
sind <- which( exp<5) 
if (length(sind»O) { 

obs <- c(obs[-sind], sum(obs[sind])) 
exp <- c(exp[-sind], sum(exp[sind])) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which( exp<5) 
if (length(sind»O) { 
ind2 <- which.min( exp[ -sind]) 

obs <- c(obs[-sind][-ind2], sum(obs[sind], obs[-sind][ind2])) 
exp <- c(exp[-sind][-ind2], sum(exp[sind],exp[-sind][ind2])) 

94 



} 
##calculating df after collapsing cells for each routine above 
df <- length( exp )-1 
resid <- (obs - exp )"'2/exp 

TotalResid <- sum(resid) 
tchisqdf<-TotalResid/df 

outtriplets[i, m ]<-tchisqdf 
pvalue<-I-pchisq(TotaIResid, df) 
pouttriplets[i, m ] <-pvalue 
cpvalue<-pval ue* 4060 
cpouttriplets. bon[i,m ] <-cpvalue 
} 

### ADJUSTED TRIPLETS OF ITEMS (N=3000) ### 
adj<-3000/n 
a<-3000 
index <- t(combn(p, 3)) 
tindex <- nrow(index) 
margins <- vector(ltlistlt , tindex) 
for (m in 1 :tindex) { 

iteml <- index[m, 1] 
pI <- pr[[iteml]] 
ncp 1 <- ncol(p 1 ) 
item2 <- index[m, 2] 

p2 <- pr[[item2]] 
ncp2 <- ncol(p2) 

item3 <- index[m, 3] 
p3 <- pr[[item3]] 

ncp3 <- ncol(p3) 
adjobs <- adj*as.array(table(factor( dataB[,item1 ], levels=1 :5), 
factor( dataB[, item2], levels= 1 :5), factor( dataB[, item3], levels= 1 :5))) 

trips <- cbind(rep(l:ncpl, each = ncp2), rep(l:ncp2, ncpl)) 
trips <- cbind(trips[rep(l :nrow(trips), ncp3), ], rep(l :ncp3, each = 
nrow(trips))) 
pp <- pI [, trips[, 1]] * p2[, trips[, 2]] * p3 [, trips[, 3]] 
adjexp <- adjobs 

adjexp[trips] <- a * colSums(GHw * pp) 
##summing cells with EXPECTED counts <5 
sind <- which( adjexp<5) 
if (length(sind»O) { 

adjobs <- c(adjobs[-sind], sum(adjobs[sind])) 
adjexp <- c(adjexp[-sind], sum(adjexp[sind])) 
} 

##all cells wi EXP < 5 are added to the cell withe next smallest EXP > 5 
sind <- which(adjexp<5) 
if (length(sind»O) { 
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i <- i+ 1 
} 

ind2 <- which.min(adjexp[-sindD 
adjobs <- c(adjobs[ -sind][ -ind2], sum(adjobs[ sind], adjobs[ -sind][ind2D) 
adjexp <- c( adj exp[ -sind][ -ind2], sum( adjexp[ sind],adjexp[ -sind][ind2D) 

} 
##calculating df after collapsing cells for each routine above 
df <-length(adjexp)-l 
resid <- (adjobs - adjexpY'2/adjexp 

TotalResid <- sum(resid) 
tchisqdf<-TotalResidldf 

adjouttriplets[i, m ] <-tchisqdf 
pvalue<-l-pchisq(TotalResid, df) 
padjouttriplets[i, m ] <-pvalue 
cpvalue<-pvalue* 4060 
cpadjouttriplets. bon[i,m ] <-cpvalue 
} 

## ADDITIONAL METHOD OF CALCULATING B-H CORRECTED P VALUES ### 
### UNADJUSTED SINGLETS ### 
for G in 1 :M) { 

bhvalue<-mt.rawp2adjp(poutsinglets[j,], proc="BH") 
adjp<-bhvalue$adjp[ order(bhval ue$index ),] 
cpoutsinglets. bh[j ,]<-adjp[,2] 
} 

### ADJUSTED SINGLETS ### 
for G in 1 :M) { 

bhvalue<-mt.rawp2adjp(padjoutsinglets[j,], proc="BH") 
adjp<-bhvalue$adjp [ order(bhvalue$index ),] 
cpadjoutsinglets.bh[j,]<-adjp[,2] 
} 

### UNADJUSTED DOUBLETS ### 
for G in 1 :M) { 

bhvalue<-mt.rawp2adjp(poutdoublets[j,], proc="BH") 
adjp<-bhvalue$adjp[ order(bhvalue$index),] 
cpoutdoublets. bh[j ,]<-adjp [,2] 
} 

### ADJUSTED DOUBLETS ### 
for Gin l:M) { 

bhvalue<-mt.rawp2adjp(padjoutdoublets[j,], proc="BH") 
adjp<-bhvalue$adjp[ order(bhvalue$index ),] 
cpadjoutdoublets.bh[j,]<-adjp[,2] 
} 

### UNADJUSTED TRIPLETS ### 
for G in 1 :M) { 

bhvalue<-mt.rawp2adjp(pouttriplets[j,], proc="BH") 
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adjp<-bhvalue$adjp[ order(bhvalue$index),] 
cpouttriplets. bh[j ,]<-adjp[,2] 
} 

### ADJUSTED TRIPLETS ### 
for G in 1 :M) { 

bhvalue<-mt.rawp2adjp(padjouttriplets[j,], proc="BH") 
adjp<-bhvalue$adjp[ order(bhvalue$index),] 
cpadjouttriplets.bh[j,]<-adjp[,2] 
} 

## CALCULATING ALL OUTCOMES FOR USE IN ANALYSES - FOR 
UNADJUSTED AND ADJUSTED CHISQIDF ## 
unadjusted<-matrix(O, M, 34) #storing outcomes, for unadjusted chisq/df ratios 
colnames(unadiusted)<-c("s mean" "s stdv" "d mean" "d stdv" "t mean" "t stdv" "s 

~ """ 
percent", "d percent", "t percent", "s pvals", "d pvals", "t pvals", "s bon cpvals", "d bon 
cpvals", "t bon cpvals", "s bh cpvals", "d bh cpvals", "t bh cpvals", "sens chisqdf', "spec 
chisqdf', "PPV chisqdf', "NPV chisqdf',"sens pval", "spec pval", "PPV pval", "NPV 
pval", "sens bonpval", "spec bonpval", "PPV bonpval", "NPV bonpval", "sens bhpval", 
"spec bhpval", "PPV bhpval", "NPV bhpval") 
adjusted<-matrix(O, M, 34) #storing outcomes for adjusted chisq/dfratios 
colnames(adiusted)<-c("s mean" "s stdv" "d mean" "d stdv" "t mean" "t stdv" "s 

:J """ 
percent", "d percent", "t percent", "s pvals", "d pvals", "t pvals", "s bon cpvals", "d bon 
cpvals", "t bon cpvals", "s bh cpvals", "d bh cpvals", "t bh cpvals", "sens chisqdf', "spec 
chisqdf', "PPV chisqdf', "NPV chisqdf',"sens pval", "spec pval", "PPV pval", "NPV 
pval", "sens bonpval", "spec bonpval", "PPV bonpval", "NPV bonpval", "sens bhpval", 
"spec bhpval", "PPV bhpval", "NPV bhpval") 

## MEANS/STDEVS ## 
## singlets ## 
for (i in 1 :M) { 

mean<-mean( outsinglets[i,]) 
stdev<-sqrt(var( outsinglets[i,])) 
mean2<-mean( adjoutsinglets[i,]) 
stdev2<-sqrt( var( adjoutsinglets[i,])) 
unadjusted[i, 1 ] <-mean 
adjusted[i, 1 ] <-mean2 
unadjusted[i,2]<-stdev 
adjusted[i,2]<-stdev2 
} 

## doublets ## 
for (i in l:M) { 

mean<-mean( outdoublets[i,]) 
stdev<-sqrt( var( outdoublets[i,])) 
mean2<-mean(adjoutdoublets[i,]) 
stdev2<-sqrt(var(adj outdoublets [i,])) 
unadjusted[i,3]<-mean 
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adjusted[i,3 ] <-mean2 
unadjusted[i,4 ]<-stdev 
adjusted[i,4] <-stdev2 
} 

## triplets ## 
for (i in 1 :M) { 

mean<-mean( outtriplets[i,D 
stdev<-sqrt(var( outtriplets[i,D) 
mean2<-mean( adjouttriplets [i,D 
stdev2<-sqrt( var( adjouttriplets[i,D) 
unadjusted[i,5]<-mean 
adjusted[i,5]<-mean2 
unadjusted[i,6] <-stdev 
adjusted[i,6]<-stdev2 
} 

### PERCENTAGE OF CHSQ/DF RATIOS> 3 ### 
## singlets ## 
for (i in 1 :M) { 

#freq <- length(which( outsinglets[i,]> 3)) 
#freq2 <-length(which(adjoutsinglets[i,]>3)) 
#unadjusted[i, 7]<-freq 
#adjusted[i, 7]<-freq2 
percent <-length(which(outsinglets[i,]>3))/.30 
percent2 <-length(which(adjoutsinglets[i,]>3))/.30 
unadjusted[i,7]<-percent 
adjusted[i,7]<-percent2 
} 

## doublets ## 
for (i in 1 :M) { 

#freq <- length( which( outdoublets[i,]> 3)) 
#freq2 <- length( which( adjoutdoublets[i,]> 3)) 
#unadjusted[i,8] <-freq 
#adjusted[i,8]<-freq2 
percent <-length(which(outdoublets[i,]>3))/4.35 
percent2 <-length(which(adjoutdoublets[i,]>3))/4.35 
unadjusted[i,8] <-percent 
adjusted[i,8]<-percent2 
} 

## triplets ## 
for (i in 1 :M) { 

#freq <-length(which(outtriplets[i,]>3)) 
#freq2<- length( which( adjouttriplets[i,]> 3)) 
#unadjusted[i,9]<-freq 
#adj usted[i,9] <-freq2 
percent <-length(which(outtriplets[i,]>3))/40.6 
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percent2 <-length(which(adjouttriplets[i,]>3))/40.6 
unadjusted[ i, 9] <-percent 
adjusted[i,9] <-percent2 
} 

### PERCENTAGE UNCORRECTED P-VALUES < .05 ### 
## singlets ## 
for (i in I:M) { 

#freq <- length(which(poutsinglets[i,]<.05)) 
#freq2 <- length(which(padjoutsinglets[i,]<.05)) 
#unadjusted[i, 1 0]<-freq 
#adjusted[i, 1 0]<-freq2 
percent <- ~ength(which(poutsinglets[i,]<.05))/.30 

percent2 <- length(which(padjoutsinglets[i,]<.05))/.30 
unadjusted[i,10]<-percent 
adjusted[i,10]<-percent2 
} 

## doublets ## 
for (i in I:M) { 

#freq <-length(which(poutdoublets[i,]<.05)) 
#freq2 <- length(which(padjoutdoublets[i,]<.05)) 
#unadjusted[i,II]<-freq 
#adjusted[i, 11 ]<-freq2 
percent <- length(which(poutdoublets[i,]<.05))/4.35 
percent2 <- length(which(padjoutdoublets[i,]<.05))/4.35 
unadjusted[i, 11 ] <-percent 
adjusted[i, 11 ] <-percent2 
} 

## triplets ## 
for (i in 1 :M) { 

#freq <- length(which(pouttriplets[i,]<.05)) 
#freq2<- length(which(padjouttriplets[i,]<.05)) 
#unadjusted[i,12]<-freq 
#adjusted[i, 12]<-freq2 
percent <- length(which(pouttriplets[i,]<.05))/40.6 
percent2 <- length(which(padjouttriplets[i,]<.05))/40.6 
unadjusted[i,12]<-percent 
adjusted[i,12]<-percent2 
} 

### PERCENTAGE BONF CORRECTED P-VALUES < .05 ### 
## singlets ## 
for (i in 1 :M) { 

#freq <- length( which( cpoutsinglets. bon[i,]<.05)) 
#freq2 <- length(which( cpadjoutsinglets.bon[i,] <.05)) 
#unadjusted[i, 13 ]<-freq 
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#adjusted[i, 13 ]<-freq2 
percent <- length(which( cpoutsinglets.bon[i,]<.OS))/.30 
percent2 <- length(which( cpadjoutsinglets.bon[i,]<.OS))/.30 
unadjusted[i, 13 ] <-percent 
adjusted[i,13]<-percent2 
} 

## doublets ## 
for (i in 1 :M) { 

#freq <- length(which( cpoutdoublets.bon[i,]<.OS)) 
#freq2 <- length(which( cpadj outdoublets.bon[i,] <.OS)) 
#unadjusted[i,14]<-freq 
#adjusted[i,14]<-freq2 
percent <- length(which( cpoutdoublets.bon[i,]<.OS))/4.3S 
percent2 <-length(which(cpadjoutdoublets.bon[i,]<.OS))/4.3S 
unadjusted[i, 14 ] <-percent 
adjusted[i, 14 ] <-percent2 
} 

## triplets ## 
for (i in 1 :M) { 

#freq <- length( which( cpouttriplets. bon[i,]<.OS)) 
#freq2<- length( which( cpadjouttriplets. bon[i,]<.OS)) 
#unadjusted[i,lS]<-freq 
#adjusted[i, lS]<-freq2 
percent <- length(which( cpouttriplets.bon[i,]<.OS))/40.6 
percent2 <- length(which( cpadjouttriplets.bon[i,]<.OS))/40.6 
unadjusted[i,lS]<-percent 
adjusted[i,lS]<-percent2 
} 

### PERCENTAGE B-H CORRECTED P-VALUES < .OS ### 
## singlets ## 
for (i in 1 :M) { 

#freq <- length(which( cpoutsinglets. bh[i,]<.OS)) 
#freq2 <-length(which(cpadjoutsinglets.bh[i,]<.OS)) 
#unadjusted[i,16]<-freq 
#adjusted[i, 16]<-freq2 
percent <- length(which( cpoutsinglets.bh[i,]<.OS))/.30 
percent2 <-length(which(cpadjoutsinglets.bh[i,]<.OS))/.30 
unadjusted[i,16]<-percent 
adjusted[i,16]<-percent2 
} 

## doublets ## 
for (i in 1 :M) { 

#freq <- length( which( cpoutdoublets. bh[i,]<.OS)) 
#freq2 <- length(which(cpadjoutdoublets.bh[i,]<.OS)) 
#unadjusted[i, 17]<-freq 
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#adjusted[i,17]<-freq2 
percent <- length(which( cpoutdoublets.bh[i,]<.05))/4.35 
percent2 <-length(which(cpadjoutdoublets.bh[i,]<.05))/4.35 
unadjusted[i,17]<-percent 
adjusted[i,17]<-percent2 
} 

## triplets ## 
for (i in 1 :M) { 

#freq <- length( which( cpouttriplets. bh[i,]<.05)) 
#freq2<- length( which( cpadjouttriplets. bh[i,]<.05)) 
#unadjusted[i, 18]<-freq 
#adjusted[i, 18]<-freq2 
percent <- length(which( cpouttriplets.bh[i,]<.05))/40.6 
percent2 <- length(which( cpadjouttriplets.bh[i,]<.05))/40.6 
unadjusted[i,18]<-percent 
adjusted[i,18]<-percent2 
} 

##NAs for all sens/spec/etc outcomes for Dataset A only 
for (i in I:M) { 

} 

for (j in 19:34) { 
unadjusted[iJ]<-NA 
adjusted[i,j]<-NA 
} 

write.table(unadjusted, file="newUnadjustedA 1 n400.txt", sep="\t", quote=F ALSE, 
row.names=F ALSE) 
write.table( adjusted, file="newAdjustedA 1 n400.txt", sep="\t", quote=F ALSE, 
row.names=F ALSE) 

######################################################### 

####SIMULA nON FOR RQ2: Sample size, type of misfit, amount of misfit 
#code is separated by TYPE### 

####FOR TYPE = MUL TIDIMENSIONAL####### 
# uses different functions than RQ 1 to generate the data, but then chisq routines and all 
other calculations of outcomes are the same as above (but sensitivity/specificity will be 
added at the end of the entire code document 

rmvordlogisE 1 <- function (n, betas) { ###66% items fitting 
# function to simulate random responses 
# based on the Graded Response Model 
# using the additive parameterization 
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} 

###deleted line setting p since it will always be 20 
###deleted ncatg line since it will always be 5 
z <- morm(n) 
gammas <- lapply(betas, function (x) { 

nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx-l, TRUE)- x[nx] * z), 1) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc ]-x[, 1 :(nc-l)]) 

}) 
out <- matrix(O, n, 20) ##replaced p with 20 
for G in 1 :20) { ##same here, replaced p with 20 

for (i in 1 :n) { 

} 

out 

out[i, j] <- sample(5, 1, prob = prs[[j]][i, ]) 
##changed ncatgU] to 5 since always 5 categories 

rmvordiogisE2 <- function (n, betas) { ###33% items misfitting 
# function to simulate random responses 

} 

# based on the Graded Response Model 
# using the additive parameterization 
###deleted line setting p since it will always be 10 
###deleted ncatg line since it will always be 5 
z <- morm(n) 
gammas <- lapply(betas, function (x) { 

nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx-l, TRUE)- x[nx] * z), 1) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc]-x[, 1 :(nc-l)]) 

}) 
out <- matrix(O, n, 10) ##replaced p with 10 
for G in 1: 1 0) { ##same here, replaced p with 10 

for (i in 1 :n) { 

} 

out 

out[i,j] <- sample(5, 1, prob = prs[[j]][i,]) 
##changed ncatgU] to 5 since always 5 categories 

rmvordlogisBl <- function (n, betas) { ###90% of items fitting 
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} 

# function to simulate random responses 
# based on the Graded Response Model 
# using the additive parameterization 
###deleted line setting p since it will always be 27 
###deleted ncatg line since it will always be 5 
z <- morm(n) 
gammas <- lapply(betas, function (x) { 

nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx-I, TRUE)- x[nx] * z), 1) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc ]-x[, 1 :(nc-I)]) 

}) 
out <- matrix(O, n, 27) ##replaced p with 27 
for (j in 1 :27) { ##same here, replaced p with 27 

for (i in I:n) { 

} 
} 
out 

out[i, j] <- sample(5, 1, prob = prs[[j]][i, ]) 
##changed ncatg[j] to 5 since always 5 categories 

rmvordlogisB2 <- function (n, betas) { ####10% items misfitting 
# function to simulate random responses 
# based on the Graded Response Model 
# using the additive parameterization 
###deleted line setting p since it will always be 3 
###deleted ncatg line since it will always be 5 
z <- morm(n) 
gammas <- lapply(betas, function (x) { 

nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx-I, TRUE)- x[nx] * z), 1) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc ]-x[, 1 :(nc-l)]) 

}) 
out <- matrix(O, n, 3) ##replaced p with 3 
for (j in 1 :3) { ##same here, replaced p with 3 

for (i in 1 :n) { 

} 
} 

out[i,j] <- sample(5, 1, prob = prs[[j]][i,]) 
##changed ncatg[j] to 5 since always 5 categories 
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out 
} 

##the iprobs function 
'iprobs' <-
function (betas, z) { 

n <-length(z) 

} 

gammas <-lapply(betas, function (x) { 
nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx - 1, TRUE) - x[nx] * z), 1) 

}) 
lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc] - x[, 1 :(nc - 1)]) 

}) 

# take the betas from dataset A transformed 
# as the true betas 
#true.betasl <- read.csvCC:/Users/crclarO/Desktop/DatasetBtl.csv', header=T, 
row.names= 1 ) 
#true. betas2<- read.csvCC :/U sersl crclarO/Desktop/DatasetBt2 .csv', header=T, 
row.names=1 ) 
true.betasl <- read.csvCC:lUsers/crclarO/Desktop/DatasetEtl.csv', header=T, 
row.names=l) 
true.betas2<- read.csvCC:1U sers/crclarO/Desktop/DatasetEt2.csv', header=T, 
row.names=1 ) 

n <- 400 #start with sample size N=400 
M <- 1000 # number of simulations 

### SIMULATING DATA, FITTING THE GRM, OBTAINING UNADJUSTED AND 
ADJUSTED OUTCOMES ### 
ind <- i <- 1 
while(i <= M) { 

set.seed(100 + ind) # for reproducible results 
ind <- ind+l 
n<-400 ##change to 1500 and 10000 when needed 

datal <- rmvordlogisEl(n, true.betas1) 
data2 <- rmvordlogisE2(n, true.betas2) 
data <- cbind( datal, data2) 

### from here, code is the same as in RQ 1. 
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##########FOR TYPE = DIF############################# 

### uses different functions than RQ 1 to generate the data, but then chisq routines and all 
other calculations of outcomes are the same as above (but sensitivity/specificity will be 
added at the end of the entire code document 

##uses same rrnvordlogis function as in RQ 1, differences don't appear till simulating 
response data 

true. betas.focus<- read.csvCC:/U sers/ crdarO/Desktop/DatasetCtfocus.csv', header=T, 
row.names=1 ) 
true. betas.reference<- read.csvCC:/U sers/ crdarO/Desktop/DatasetCtreference.csv', 
header=T, row.names=l) 

n <- 10000 #change to 1500 and 10000 when needed 
M <- 1000 # number of simulations 

ind <- i <- 1 
while(i <= M) { 

set.seed( 1 00 + ind) # for reproducible results 
ind <- ind+l 
n<-10000 
## first have to simulate half the cases for each focus and reference group 
## then have to combine those simulated datasets into one 
data.focus <- rrnvordlogis(nl2, true.betas.focus) 
data. reference <- rrnvordlogis(nl2, true.betas.reference) 
data<-rbind( data. focus, data.reference) 

### from here, code is the same as in RQ 1. 

##########FOR TYPE = MODEL############################# 

### uses different functions than RQ 1 to generate the data, but then chisq routines and all 
other calculations of outcomes are the same as above (but sensitivity/specificity will be 
added at the end of the entire code document 

###the simulation functions - one for GRM, one for GPCM 

rrnvordlogisgrrn <- function (n, betas) { 
# function to simulate random responses 
# based on the Graded Response Model 
# using the additive parameterization 
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} 

###deleted ncatg line since it will always be 5 
z <- monn(n) 
p<-20 ## 27 or 20 depending on amount ofmisfit############################ 
gammas <- lapply(betas, function (x) { 

nx <- length(x) 
cbind(plogis(matrix(x[-nx], n, nx-l, TRUE)- x[nx] * z), I) 

}) 
prs <- lapply(gammas, function (x) { 

nc <- ncol(x) 
cbind(x[, I], x[, 2:nc]-x[, I:(nc-l)]) 

}) 
out <- matrix(O, n, p) 
for G in I:p) { 

for (i in 1 :n) { 

} 
} 
out 

out[i, j] <- sample(5, 1, prob = prs[[j]][i, ]) 
##changed ncatg[j] to 5 since always 5 categories 

nnvordlogisgpcm <- function (n, betas) { 

} 

# function to simulate random responses 
# based on the GPCM for the misfitting items generated from another model 
# NOT using the additive parameterization 
z <- monn(n) 
p<-IO ##3 or 10 depending on D or G ############################# 
prs <-lapply(crf.GPCM(betas, z, IRT=TRUE), t) 
out <- matrix(O, n, p) 
for G in I:p) { 

for (i in 1 :n) { 

} 
} 
out 

out[i,j] <- sample(5, 1, prob = prs[[j]][i,]) 
##changed ncatg[j] to 5 since always 5 categories 

crf.GPCM<- function (betas, z, IRT.param = TRUE, log = FALSE, eps = 
.Machine$double.epsA( 1 /2)) 
{ 

lapply(linpred.GPCM(betas, z, IRT.param), function(x) { 
num <- exp(apply(x, 2, cumsum)) 
if (!is.matrix(num)) 

num <- t(num) 
den <- 1 + coISums(num) 
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}) 
} 

out <- rbind(l/den, numlrep(den, each = nrow(x))) 
if (any(ind <- out == 1)) 

out[ind] <- 1 - eps 
if (any(ind <- out == 0)) 

out[ind] <- eps 
if (log) 

out <- loge out) 
out 

linpred.GPCM<-function (betas, z, IRT.param = TRUE) 
{ 

} 

lapply(betas, function(x) { 
nx <- length(x) 

}) 

if (IRT.param) 
t(x[nx] * outer(z, x[-nx], "_")) 

else outer(x[-nx], x[nx] * z, "+") 

##the iprobs function 
'iprobs' <-
function (betas, z) { 

n <- length(z) 

} 

gammas <- lapply(betas, function (x) { 
nx <- length(x) 
cbind(plogis(matrix(x[ -nx], n, nx - 1, TRUE) - x[ nx] * z), 1) 

}) 
lapply(garnrnas, function (x) { 

nc <- ncol(x) 
cbind(x[, 1], x[, 2:nc] - x[, 1:(nc - 1)]) 

}) 

grrn1 <-function (data, constrained = FALSE, IRT.param = TRUE, Hessian = FALSE, 
start.val = NULL, na.action = NULL, control = listO) 

{ 
cl <- match.callO 
if «!is.data.frame(data) & !is.matrix(data)) II ncol(data) == 

1) 
stop("'data' must be either a numeric matrix or a data. frame , with at least two 

columns.\n") 
X <- data.matrix(data) 
if (!is.null(na.action)) 

X <- na.action(X) 
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X <- apply(X, 2, function(x) { 
y <- x[!is.na(x)] 
if (any(y == 0)) 

x+l 
else x 

}) 
colnamsX <- colnames(X) 
dimnames(X) <- NULL 
#ncatg <- apply(X, 2, function(x) if (any(is.na(x))) 

#length(unique(x)) - 1 
#else length( unique( x))) 
ncatg<-rep(5,30) 
n <- nrow(X) 
p <- ncol(X) 
pats <- apply(X, 1, paste, collapse = If/,,) 
freqs <- table(pats) 
nfreqs <-length(freqs) 
obs <- as.vector(freqs) 
X <- unlist(strsplit(cbind(names(freqs)), If/lf)) 
X[X == If NAif] <- as.character(NA) 
X <- matrix(as.numeric(X}, nfreqs, p, TRUE) 
con <-list(iter.qN = 150, GHk = 21, method = IfBFGS If , verbose = 

getOption(lfverbose lf), 
digits.abbrv = 6) 

con[names(control)] <- control 
GH <- GHpoints(data - zl, con$GHk) 
Z <- GH$x[, 2] 
GHw<- GH$w 
ind 1 <- if (constrained) 

c(l, cumsum(ncatg[-p] - 1) + 1) 
else c(1, cumsum(ncatg[ -p]) + 1) 
ind2 <- if (constrained) 

cumsum( ncatg - 1) 
else cumsum(ncatg) 
betas <- start.val.grm(start.val, X, obs, constrained, ncatg) 
environment(loglikgrm) <- environment(scoregrm) <- environmentO 
old <- options(wam = (-1)) 
on.exit( options( old)) 
res.qN <- optim(unlist(betas), fn = loglikgrm, gr = scoregrm, 

method = con$method, hessian = Hessian, control = list(maxit = con$iter.qN, 
trace = as.numeric( con$verbose)), constrained = constrained) 

betas <- betas.grm(res.qN$par, constrained, indl, ind2, p) 
names(betas) <- if (!is.null(colnamsX)) 

colnamsX 
else paste(lfltemlf, l:p) 
betas <- lapply(betas, function(x) { 
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} 

}) 

names(x) <- c(paste("beta.", seq(l, length(x) - 1), sep = ""), 

"beta") 
x 

max.sc <- max(abs(scoregnn(res.qN$par, constrained)), na.nn = TRUE) 
fit <- list( coefficients = betas, log.Lik = -res.qN$value, 

convergence = res.qN$conv, hessian = res.qN$hessian, 
counts = res.qN$counts, patterns = list(X = X, obs = obs), 
GH = list(Z = Z, GHw = GHw), max.sc = max.sc, constrained = constrained, 
IRT.param = IRT.param, X = data, control = con, na.action = na.action, 
call = cl) 

class(fit) <- "gnn" 
fit 

##needed source code for using GPCM option 
source("C:lUsers/crclarO/Desktop/ltmlRlanova.gpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlanova.gnn.R") 
source("C:1U sersl crclarO/Desktop/ltmlRlbetas.gpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlbetas.gnn.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlbiserial.cor.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcd.tpm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcd.vec.R") 
source(" C:IU sersl crclarO/Desktop/ltmlRl chisq .irt.R ") 
source("C:lUsers/crclarO/Desktop/ltmlRlcoef.gpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcoef.gnn.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcoef.tpm.R") 
source("C:1U sersl crclarOlDesktop/ltmlRl cprobs.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcrf.GPCM.R") 
source("C:lUsers/crclarOlDesktop/ltmlRlcrf.GPCM2.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlcumprobs.R") 
source("C:lUsers/crclarO/Desktop/ltmlRldescript.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlEM.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlfd.vec.R") 
source(" C:IU sersl crclarOlDesktop/ltmlRlfitted.gpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlfitted.gnn.R") 
source("C:1U sersl crclarO/Desktop/ltmlRlfscores.g.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlfscores.gp.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlfscores.l.R") 
source("C:lUsers/crclarOlDesktop/ltmlRlfscores.r.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlfscores.t.R") 
source("C:1U sersl crclarO/Desktop/ltmlRl gauher .R") 
source("C:lUsers/crclarO/Desktop/ltmlRlGHpoints.R") 
source("C:lUsers/crclarOlDesktop/ltmlRlGoF.gpcm.R") 
source(" C:IU sersl crclarO/Desktop/ltmlRlinfoGPCM.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlinfoprobs.R") 
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source("C:lUsers/crclarO/Desktop/ltmiRlinformation.R") 
source("C:lUsers/crclarO/Desktop/ltmiRlIRT.parm.grm.R") 
source("C:lUsers/crclarOlDesktop/ltmIRIIRT.parm.R") 
source("C:lUsers/crclarOlDesktop/ltmiRlitem.fit.R") 
source("C:lUsers/crclarO/Desktop/ltmlRljacobian.R") 
source("C:lUsers/crclarO/Desktop/ltmlRllinpred.GPCM.R") 
source("C:lUsers/crclarOlDesktop/ltmlRllogLik.gpcm.R") 
source("C:/Users/crclarO/Desktop/ltmlRllogLik.grm.R") 
source(" C:IU sers/ crclarO/Desktop/ltmIRIloglikgpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmIRIloglikgrm.R") 
source("C:1U sers/ crclarO/Desktop/ltmlRlmargins.gpcm.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlmargins.grm.R") 
source("C :/U sers/ crclarOlDesktop/ltqVR!margins.R") 
source("C:lUsers/crclarOlDesktop/ltmlRlmatArrays.R") 
source("C:lUsers/crclarO/Desktop/ltmlRlmatches.R") 
source("C:/Users/crclarO/Desktop/ltmlRlmatMeans.R") 
source(" C:IU sers/ crclarOlDesktop/ltmlRlmatSums.R") 
source("C:lUsers/crclarO/Desktop/ltmiRlobservedFreqs.R") 
source("C:lUsers/crclarO/Desktop/ltmiRlstart.val.grm.R") 
source("C:lUsers/crclarO/Desktop/ltmiRlscoregrm.R") 

###new StartVals function code: 
start.val.grm<-function(start.val, data, weight, constrained, ncatg) { 
n <- nrow(data) 

p <- ncol( data) 
computeStartVals <- function(start.val) { 

ind <- if (!is.null(start.val)) { 
if (!is.list(start.val) && start. val == "random") 

return(list(compute = TRUE, random = TRUE)) 
if (!is.list(start.val) && length(start.val) != p) { 

waming("'start.val' not of proper type; random starting values are used 
instead.\n") 

TRUE 
} 
else if (!all(ncatg == sapply(start.val, length))) { 

waming("number of parameter in 'start.val' differ from the number of levels in 
'data'; random starting values are used instead.\n") 

TRUE 
} 
else FALSE 

} 
else TRUE 
list( compute = ind, random = FALSE) 

} 
comp <- computeStartVals(start.val) 
if ( comp$compute) { 
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} 

} 

res <- vector("list", p) 
z <- if (comp$random) 

morm(n) 
else seq(-3, 3, length = n)[order(rowSums(data, na.rm = TRUE))] 
for (i in l:p) { 

} 

y <- data[, i] 
na.ind <- !is.na(y) 
y. <- y[na.ind] 
z. <- z[ na.ind] 
weight. <- weight [ na.ind] 
lev <- 5 
q <-lev - 1 
q 1 <- lev%/%~ 
yl <- (y. > qI) 
fit <- glm.fit(cbind(l, z.), yl, weight., family = binomialO) 
coefs <- fit$coefficients 
spacing <- qlogis«(1:q)/(q + 1)) 
thets <- -coefs[ 1] + spacing - spacing [ q 1] 
out <- c(thets[I], log(diff(thets)), coefs[-I]) 
names( out) <- NULL 
res[[i]] <- out 

if (constrained) 
res[seq(1, p - 1)] <-lapply(res[seq(1, p - 1)], 

function(x) x[ -length(x)]) 
res 

else { 

} 

lapply(start.val, function(x) { 
nx <- length(x) 
c(x[I], log(diff(x[-nx])), x[nx]) 

}) 

##now reading in true betas 
true. betas 1 <- read.csv('C:/U sers/crc1arOlDesktop/DatasetGtl.csv', header=T, 
row.names= 1 ) 
true. betas2 <- read.csv(,C:/U sers/ crc1arOlDesktop/DatasetGt3 .csv', header=T, 
row.names=l) ### usual IRT parameters 

n <- 400 #change to 1500 and 10000 when needed 
M <- 1000 # number of simulations 

111 



###NOTE: MUST USE GRMI FUNCTION INSTEAD OF GRM FOR CONDITIONS 
WITH TYPE = MODEL 

### SIMULATING DATA, FITTING THE GRM (GRMl), OBTAINING 
UNADJUSTED AND ADJUSTED OUTCOMES ### 
ind <- i <- 1 
while(i <= M) { 

set.seed( 100 + ind) # for reproducible results 
ind <- ind+l 
n<-400 

datal <- nnvordlogisgnn(n, true.betasl) 
. data2 <- nnvordlogisgpcm(n, true.betas2) 
#data2 <- nnvordlogis(n, true.betas2, IRT=F ALSE, model="gpcm") 
data <- cbind(datal, data2) 

##From here, same code as in RQl, except fit GRM with gnnl instead of gnn. 

###########SENSITIVITY AND SPECIFICITY FOR ALL RQ2 CONDITIONS## 

### SENSITIVITY, SPECIFICITY, PPV, and NPV for ALL 8 METHODS for 
SINGLETS ### 
## (1) ChiSq/df> 3; (2) adjChiSq/df> 3; (3) pval < .05; (4) adjpval< .05; (5) bonfpval < 
.05; (6) adj bonfpval < .05; (7) bh pval < .05; (8) adj bh pval < .05 ## 
for (i in 1 :M) { 

true<-rep(c(O,I), c(27,3)) ##for datasets B,C,D 
#true<-rep(c(O,l), c(20,10)) ##for datasets E,F,G 
pred.misfit.l <-ifelse( outsinglets[i,] > 3, 1, 0) 
conf.mat.l <-table(factor(true, levels=O: 1), factor(pred.misfit.l, levels=O: 1)) 
pred.misfit.2<-ifelse(adjoutsinglets[i,] > 3, 1,0) 
conf.mat.2<-table(factor(true, levels=O: 1), factor(pred.misfit.2, levels=O: 1)) 

sens 1.1 <-conf.mat.l [2,2]/( conf.mat.l [2,2] + conf.mat.l [2,1]) 
spec 1.1 <-conf.mat.l [ 1 , 1 ]/( conf.mat.l [1,1] + conf.mat.I [1,2]) 
ppvI.I <-conf.mat.I [2,2]/(conf.mat.l [2,2] + conf.mat.I [1,2]) 
npv 1.1 <-conf.mat.I [1,1 ]/( conf.mat.I [1,1] + conf.mat.I [2,1 ]) 
sens I.2<-conf.mat.2[2,2]/( conf. mat. 2 [2,2] + conf.mat.2[2, 1]) 
specI.2<-conf.mat.2[ 1,1 ]/( conf.mat.2[I, 1] + conf.mat.2[I,2]) 
ppvI.2<-conf.mat.2[2,2]/( conf.mat.2[2,2] + conf. mat. 2 [1 ,2]) 
npv I.2<-conf.mat.2[ 1,1 ]/( conf.mat.2[ 1,1] + conf. mat. 2 [2, 1]) 

unadjusted[i, 19]<-sens 1.1 
adjusted[i, 19]<-sens 1.2 
unadjusted[i,20]<-spec 1.1 
adjusted[i,20]<-spec 1.2 
unadjusted[i,21 ]<-ppvl.1 
adjusted[i,21 ] <-ppv 1.2 
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unadjusted[i,22] <-npv 1.1 
adjusted[i,22]<-npv 1.2 

pred.misfit.l <-ifelse(poutsinglets[i,] < .05, 1, 0) 
conf.mat.l <-table( factor( true, levels=O: 1), factor(pred.misfit.l, levels=O: 1)) 
pred.misfit.2<-ifelse(padjoutsinglets[i,] < .05, 1,0) 
conf.mat.2<-table(factor(true, levels=O: 1), factor(pred.misfit.2, levels=O: 1)) 

sens 1.1 <-conf.mat.l [2,2]/( conf.mat.l [2,2] + conf.mat.l [2,1]) 
specl.l <-conf.mat.l [1,1 ]/( conf.mat.l [1,1] + conf.mat.l [1 ,2]) 
ppvl.l <-conf.mat.l [2,2]/(conf.mat.l [2,2] + conf.mat.l [1,2]) 
npv 1.1 <-conf.mat.l [1,1 ]/( conf.mat.l [1,1] + conf.mat.l [2,1]) 
sens 1.2 <-conf. mat. 2 [2,2 ]/( conf.mat.2 [2,2] + conf.mat.2 [2, 1 ]) 
spec I.2<-conf.mat.2 [1,1 ]I( conf.mat.2 [1,1] + conf.mat.2 [1,2]) 
ppv1.2<-conf.mat.2[2,2]/(conf.mat.2[2,2] + conf.mat.2[I,2]) 
npv 1.2<-conf.mat.2[ 1,1 ]/( conf.mat.2 [1,1] + conf.mat.2 [2, 1]) 

unadjusted[i,23 ]<-sens 1.1 
adjusted[i,23]<-sensI.2 
unadjusted[i,24 ]<-spec 1.1 
adjusted[i,24 ]<-spec 1.2 
unadjusted[i,25]<-ppv 1.1 
adjusted[i,25] <-ppv 1.2 
unadjusted[i,26]<-npvl.l 
adjusted[i,26]<-npvl.2 

pred.misfit.1 <-ifelse( cpoutsinglets.bon[i,] < .05, 1, 0) 
conf.mat.I <-table( factor( true, levels=O: 1), factor(pred.misfit.I, levels=O: 1)) 
pred.misfit.2<-ifelse(cpadjoutsinglets.bon[i,] < .05, 1,0) 
conf.mat.2<-table(factor(true, levels=O: 1), factor(pred.misfit.2, levels=O: 1)) 

sens 1.1 <-conf.mat.l [2,2]/( conf.mat.I [2,2] + conf.mat.I [2,1]) 
spec 1.1 <-conf.mat.I [1,1 ]/ (conf.mat.I [1,1] + conf.mat.I [1,2]) 
ppv 1.1 <-conf.mat.l [2,2]/( conf.mat.I [2,2] + conf.mat.I [1,2]) 
npv 1.1 <-conf.mat.I [1,1 ]/( conf.mat.I [1,1] + conf.mat.l [2,1]) 
sens 1.2<-conf.mat.2[2,2]/( conf.mat.2[2,2] + conf.mat.2[2, 1]) 
spec I.2<-conf.mat.2 [1,1 ]/( conf.mat.2 [1,1] + conf.mat.2 [1,2]) 
ppv1.2<-conf.mat.2[2,2]/(conf.mat.2[2,2] + conf.mat.2[I,2]) 
npv1.2<-conf.mat.2[I,I]/(conf.mat.2[1 ,1] + conf. mat. 2 [2, 1 ]) 

unadjusted[i,27]<-sens 1.1 
adjusted[i,27]<-sensl.2 
unadjusted[i,28]<-spec 1.1 
adjusted[i,28]<-spec 1.2 
unadjusted[i,29] <-ppv 1.1 
adjusted[i,29]<-ppvl.2 
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unadjusted[i,30]<-npvl.l 
adjusted[i,30]<-npv 1.2 

pred.misfit.l <-ifelse(cpoutsinglets.bh[i,] < .05, 1,0) 
conf.mat.l <-table(factor(true, levels=O: 1), factor(pred.misfit.l, levels=O: 1)) 
pred.misfit.2<-ifelse( cpadjoutsinglets.bh[i,] < .05, 1, 0) 
conf.mat.2<-table(factor(true, levels=O: 1), factor(pred.misfit.2, levels=O: 1)) 

sens 1.1 <-conf.mat.l [2,2]/( conf.mat.l [2,2] + conf.mat.l [2,1]) 
specl.l <-conf.mat.l [1,1 ]/( conf.mat.l [1,1] + conf.mat.l [1,2]) 
ppv 1.1 <-conf.mat.l [2,2]/( conf.mat.l [2,2] + conf.mat.l [1,2]) 
npv 1.1 <-conf.mat.l [1,1 ]/( conf.mat.l [1,1] + conf.mat.l [2,1]) 
sens 1.2<-conf.mat.2[2,2]/( conf. mat. 2 [2,2] + conf.mat.2[2, 1]) 
specl.2<-conf.mat.2[1 ,1]/(conf.mat.2[1,1] + conf.mat.2[1 ,2]) 
ppv 1.2<-conf.mat.2 [2,2 ]/( conf.mat.2 [2,2] + conf.mat.2 [1,2]) 
npvl.2<-conf.mat.2[1 ,1]/(conf.mat.2[1 ,1] + conf. mat. 2 [2, 1]) 

unadjusted[i,31 ]<-sens 1.1 
adjusted[i,31 ]<-sens 1.2 
unadjusted[i,32] <-spec 1.1 
adjusted[i,32]<-spec 1.2 
unadjusted[i,33]<-ppvl.l 
adjusted[i,33]<-ppvl.2 
unadjusted[i,34]<-npvl.l 
adjusted[i,34 ] <-npv 1.2 
} 

114 



APPENDIXC 

Parameters ("True Betas") for 30 Unidimensional Items, 
F fD'ffl flIt F f . fi th G d d R M d 1 ree 0 1 eren la em unc lOnmg, rom e ra e esponse o e 

Item a b l b2 b3 b4 

1 2.06 -0.78 -0.17 0.25 1.01 
2 1.27 -1.80 -0.62 0.19 1.63 
3 1.82 -1.32 0.04 0.53 1.10 
4 1.66 -1.12 -0.81 1.00 1.54 
5 1.73 -2.46 -0.50 0.76 1.94 
6 1.78 -1.30 -0.72 0.90 1.46 
7 1.67 -0.57 1.37 1.54 1.69 
8 1.62 -1.77 -0.06 0.91 1.30 
9 2.09 -1.83 0.22 0.83 1.22 
10 1.31 -0.45 -0.08 1.14 1.60 
11 1.56 -1.85 -0.80 -0.17 0.50 
12 1.23 -1.45 -0.16 1.04 2.19 
13 1.91 -1.51 0.24 0.46 0.71 
14 1.55 -1.25 -0.70 -0.17 1.28 
15 1.47 -0.95 -0.08 1.55 1.99 
16 1.95 -1.68 -0.93 0.21 1.20 
17 2.11 -1.96 -0.26 0.41 1.12 
18 1.45 -2.18 -0.81 0.08 0.75 
19 1.78 -1.68 0.10 0.87 1.53 
20 1.74 -0.40 -0.18 0.19 1.57 
21 1.54 -1.97 0.02 0.20 0.68 
22 1.83 -0.60 0.95 1.07 2.34 
23 2.10 -0.94 0.00 1.43 1.49 
24 2.09 -1.51 0.65 0.84 1.96 
25 1.91 -0.14 0.21 1.61 1.88 
26 1.44 -1.86 0.25 1.26 1.40 
27 1.88 -0.59 -0.27 0.27 1.84 
28 1.94 -1.15 -0.01 1.30 2.72 
29 1.81 -2.42 0.26 1.46 1.92 
30 1.29 -1.00 0.11 0.81 2.09 
Note. For Research Question 1, all 30 items were used. See Appendices D, E, and F for 
details regarding substitution of "true betas" (i.e., item parameters) for Research Question 
2. Item parameters were taken from Bolt (2002). 
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APPENDIXD 

Parameters ("True Betas") for 10 Multidimensional Items, 
F fD·ff! . I IF· . fl h G d d R M d I ree 0 1 erentIa tern unctIOnmll, rom t e ra e esponse o e 

Item a bl b2 bJ b4 

21 0.95 -4.26 -2.90 -1.25 2.01 
22 1.48 -2.45 -1.44 -0.60 1.45 
23 1.46 -2.07 -1.27 0.16 2.11 
24 1.49 -1.75 -0.76 0.13 2.02 
25 1.38 -2.19 -1.27 -0.35 1.52 
26 1.35 -2.88 -1.97 -0.51 1.87 
27 0.96 -3.77 -2.23 -1.27 1.34 
28 1.32 -3.24 -2.29 -0.49 1.93 
29 1.08 -3.28 -2.09 0.49 3.09 
30 2.00 -1.57 -0.75 -0.13 1.68 
Note. For Research Question 2, when type of item misfit was due to multidimensIOnahty, 
"true betas" depicted in Appendix C were replaced with the above parameters as follows: 
In conditions with 10% misfitting items due to multidimensionality, items 28-30 from 
this table replaced items 28-30 from Appendix C. In conditions with 33% misfitting items 
due to multidimensionality, items 21-30 from this table replaced items 21-30 from 
Appendix C. Item parameters were taken from Lautenschlager, Meade, & Kim (2006). 
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APPENDIXE 

Parameters ("True Betas") for 10 Unidimensional Items Exhibiting 
D·ffi . I I F fi h G d d R M d I 1 erentla tern unctlOnmg rom t e ra e esponse o e 

Item a bl b2 b3 b4 

F oeus Group Items 
21 1.72 -0.54 0.36 0.80 1.51 
22 1.72 -0.06 0.58 0.93 1.57 
23 1.71 -1.02 0.22 0.97 1.60 
24 1.70 -1.02 0.22 1.29 1.77 
25 1.71 -0.48 0.37 0.63 1.44 
26 1.70 -0.06 0.58 0.70 1.47 
27 1.70 -0.53 0.71 1.21 1.99 
28 1.69 -0.03 1.21 1.72 2.51 
29 1.16 -1.01 0.45 1.14 2.00 
30 2.23 -1.02 0.11 0.51 1.26 
Relerence Group Items 
21 1.71 -1.02 0.21 0.71 1.48 
22 1.71 -1.02 0.21 0.71 1.48 
23 1.71 -1.02 0.21 0.71 1.48 
24 1.71 -1.02 0.21 0.71 1.48 
25 1.71 -1.02 0.21 0.71 1.48 
26 1.71 -1.02 0.21 0.71 1.48 
27 1.71 -1.02 0.21 0.71 1.48 
28 1.71 -1.02 0.21 0.71 1.48 
29 1.71 -1.02 0.21 0.71 1.48 
30 1.71 -1.02 0.21 0.71 1.48 
Note. For Research Question 2, when type of item misfit was due to differential item 
functioning (DIF), "true betas" depicted in Appendix C were replaced with the above 
parameters as follows: In conditions with 10% misfitting items due to DIF, items 28-30 
from this table replaced items 28-30 from Appendix C. In conditions with 33% misfitting 
items due to DIF, items 21-30 from this table replaced items 21-30 from Appendix C. 
Simulated samples for these conditions were randomly split and assigned to focus and 
reference groups, then paired with the appropriate item parameters. Item parameters were 
taken from Bolt (2002). 
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APPENDIXF 

Parameters for 10 Unidimensional Items, Free of Differential Item Functioning, 
Generated from Muraki's (1992) Generalized Partial Credit Model 

Item a bj b2 b3 b4 

0.73 -2.12 2.62 -0.73 -1.02 
1.13 -0.42 2.76 -0.58 2.28 
1.30 -0.53 -0.26 3.51 -0.68 
1.42 -1.52 1.85 -0.11 1.84 
1.03 1.27 -0.88 2.95 0.44 
0.81 -1.85 0.80 3.36 -1.41 
1.00 0.84 -0.61 -0.38 1.78 
1.45 -0.90 -0.04 1.30 2.69 
1.30 -2.54 0.50 2.04 1.15 
0.66 -0.05 0.74 0.20 1.56 

Note. For Research Question 2, when type of item misfit was due to generation from a 
competing model, "true betas" depicted in Appendix C were replaced with the above 
parameters as follows: In conditions with 10% misfitting items due to generation from a 
different model, items 28-30 from this table replaced items 28-30 from Appendix C. In 
conditions with 33% misfitting items due to generation from a different model, items 21-
30 from this table replaced items 21-30 from Appendix C. Item parameters were taken 
from Bolt (2002). 
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