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ABSTRACT 

A PHASE II TWO STAGE CLINICAL TRIAL DESIGN TO HANDLE LATENT 
HETEROGENEITY FOR A BINARY RESPONSE 

Christopher N. Barnes 

April 15,2010 

Phase II clinical trial are generally single arm trial where a homogeneity 

assumption is placed on the response. In practice, this assumption may be violated 

resulting in a heterogeneous response. This heterogeneous or overdispersed response can 

be decomposed into distinct subgroups based on the etiology of the heterogeneity. A 

general classification model is developed to quantify the heterogeneity. The most 

common Phase II trial design used in practice is the Simon 2-stage design which relies on 

the assumption of response homogeneity. This design is shown to be flawed under the 

assumption of heterogeneity with errors exceeding the target trial errors. To correct for 

the error inflation, a modification is made to the Simon design if heterogeneity is detected 

after the first stage trial conduct. The trial sample size is increased using an empirical 

estimate for the variance inflation factor and the trial is then completed with design 

parameters constructed through the posterior predictive Beta-binomial distribution given 

the first stage results. The new design, denoted the 2-stage Heterogeneity Adaptive 

(2HA) design, is applied to a two subgroup problem under latent heterogeneity. Latent 

heterogeneity represents the most general form of heterogeneity, no information is known 

prior to trial conduct. The results, through simulation, show that the target errors can be 
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maintained with this modification to the Simon design under a wide range of 

heterogeneity. 
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CHAPTER 1 

INTRODUCTION 

The primary assumption for most Phase II single arm binary trials is the 

assumption of response homogeneity. Response homogeneity is defined as the variance 

of the response being bounded by the variance of a binomial distribution given a response 

rate, Jr (Simon 1989). Many single arm Phase II trials do not adhere to this assumption 

in practice. When the variance of the response, denoted x which corresponds to the 

number of patients with a positive response, exceeds the binomial variance, 

v ( x) > nJr ( 1 - Jr) , 

the response is deemed a heterogeneous response (Williams 1982; Yamamoto and 

Yanagimoto 1994; Collet 2003). The common structure of this heterogeneous response 

is a response profile of disjoint subgroups, 1t = ( Jr1, Jr2 , ••• , Jr
g 

) , for i = 1,2, ... , g 

subgroups where Jri is the response probability for the ith subgroup and there exists at 

least two distinct subgroup response rates, Jri *- Jri , for some i *- i'. In contrast, the 

response in a homogeneous population follows a single response rate, where Jr = Jri = Jri , 

for all i *- i'. Subgroup membership is defined by a single or multiple set of markers 

(London and Chang 2005; Thall and Wathen 2008; Behrendt and Gehan 2009). The 

markers can be composed of clinicopathologic features such as age, gender, diagnostic 

1 
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or prognostic markers such as baseline insulin levels or single/multiple genomic markers 

such as the BRCAI gene in Breast cancer. 

A common practice in clinical trials when heterogeneity is assumed and the 

markers are known is to use a simple or weighted mean of the response profile of the 

subgroups to compute a single response rate which adheres to the homogeneity 

assumption (Green 1982; Gadbury and Iyer 2000; Emerson, Kittelson et al. 2007; 

Emerson, Kittelson et al. 2007; Ayanlowo and Redden 2008; Thall and Wathen 2008; 

Tuma 2008; Wathen, Thall et al. 2008). The weights are derived from either the known 

population proportions of each subgroup or estimated from a random sample of patients. 

This leads to one of two averaging constraints on the response profile. Let Jrr for 

T = {O, I} , the null response rate and alternative response rate respectively, be the 

response rate, then the average constraints are defined as 

or 

I WiJrr; = Jrr 
i=1 

for simple average and g subgroups and for a weighted average, where Wi = nj / n is the 

weight for subgroup i, nj is the number of patients in subgroup i for a total of 

g 

I ni = n patients in the sample, respectively. 
i=1 

2 

(2) 

(3) 



Using methods that rely on the homogeneity assumption when heterogeneity is 

true will lead to biased inferences (Russek-Cohen and Simon 1997), incorrect early 

stopping of the trial (Thall, Wathen et al. 2003; Thall and Wathen 2008; Wathen, Thall et 

al. 2008) or a subsequent failure of the Phase III trial resulting in a substantial loss of 

resources (Rosner, Stadler et al. 2002; Stadler 2007; Tuma 2008). This is primarily due 

to the departure of the trial data distribution from the model distribution from which the 

trial parameters are constructed, the binomial distribution. It will be shown that this 

approach, when applied to the most common Phase II trial design, the Simon 2-stage 

trial, will result in unbounded errors, false positive or false negative trial conclusions, 

dependent on a combination of the magnitude of difference between the subgroup 

responses and the difference in subgroup weights. 

A second method when heterogeneity is present is to conduct multiple trials, one 

for each subgroup. This will result in a heavy strain on trial resources especially for early 

development Phase II trials. Due to possible low patient accrual in one or more trials, 

trials may not be completed; losing valuable information on the treatment effect over the 

entire population. Conducting multiple trials ignores a fundamental assumption of the 

motivation for a single trial; all patients share a common disease state. It is assumed that 

the response rate in one subgroup will be partially correlated with the response rate in the 

other subgroups. Secondly, the subgroups must be known in advance of the trial conduct 

to conduct multiple trials which is not always a practical situation. 

In the last few years, multiple methods have been developed to account for 

response heterogeneity by quantifying the structure of the subgroups in the test statistic 
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(London and Chang 2005; Thall and Wathen 2008). Two examples are briet1y 

mentioned. The simplest form, the unconditional stratified test, assumes a stratified 

response based on known subgroups and modifies the Binomial test statistic into the form 

of a stratified log-rank test (London and Chang 2005). The resulting test has a global 

hypothesis, either the compound/treatment provides efficacy evidence to move onto 

further targeted Phase II testing or Phase III testing or it does not. 

Bayesian methods have also been developed which rely on hierarchical models or 

ANCOVA models to model the structure of the subgroups (Thall, Wathen et al. 2003; 

Wathen, Thall et al. 2008). The Bayesian methods employ the desirable characteristic of 

local hypothesis tests, rejection of the efficacy hypothesis on a subgroup level allowing 

some subgroups to succeed while others may fail. Secondly, the Bayesian methods 

minimize the overall sample size as compared to running multiple trials by sharing 

response information across the subgroups when making decisions on individual 

subgroups. Drawbacks are that Bayesian methods will use considerably more 

computational resources and do not rely on fixed sample size estimates. The limiting 

drawback to implementing these designs in actual trial conduct and the remaining 

methods described in the literature is that all the methods rely on the assumption that the 

composition of the subgroups is known prior to trial conduct. The methods provide no 

methodology for when the subgroups are latent prior to trial conduct. 

Recently, there has been a shift in focus to randomized Phase II designs to help 

mitigate heterogeneity in the response (Lee and Feng 2005). Randomized trials can 

provide a mechanism to estimate the source of the heterogeneity and the type of 
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heterogeneity. A major drawback to the randomized designs is the substantial increase in 

trial resources, usually a doubling of trial resources to reject a global hypothesis. The use 

of a randomized design is not always practical at such an early stage of estimating 

treatment efficacy due to patient accmal issues and will not be considered in this paper. 

In practice, the composition of the subgroups is not known or only partially 

hypothesized. Latent subgroups are a more common problem in clinical trials and may 

provide an etiology for the high failure rate of Phase II trials. Phase II trials are not 

conducted unless there is substantial ex vivo evidence of compound/treatment efficacy. 

In practice, many Phase II trials still fail when this evidence is present; presenting the 

issue of whether the trial failure rests on inadequate efficacy of the compound/treatment, 

inadequacy of the trial design, or inaccurate estimates of the hypothesized response. We 

focus on the second issue, inadequacy of the trial design as a possible solution to the high 

failure rate of Phase II trials. 

Before developing a new trial design, the stmcture to heterogeneity must be 

quantified. We have developed a classification model to quantify response heterogeneity, 

through the subgroups, into three classes, historical response heterogeneity (HRH), 

assumed response heterogeneity (ARH) and general response heterogeneity (GRH). 

These classes can help to detect when a trial may fail due to heterogeneity. 

HRH is composed of known subgroups. In simplest terms, the subgroups are 

known either from responses to similar treatments, known biological motivations or can 

be estimated from the response in the control group of a randomized trial design denoted 

as the null response. Under HRH, the null response, e.g. response under no treatment, is 
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heterogeneous and the treatment effect is homogenous resulting in a heterogeneous 

response structured by the heterogeneity of the null hypothesis response. 

In contrast, ARH assumes a homogeneous null response and a heterogeneous 

treatment effect. Under ARH, no known or latent subgroups exist on prior treatment, but 

a Treatment x Marker effect is identified causing the treatment and thus response under 

the treatment, denoted the alternative response, to vary by this Treatment x Marker 

subgroup composition. In both the previous classes, the alternative responses are unique. 

Each disjoint subgroup can be identified from a unique alternative treatment response 

rate. 

A generalization of the first two classes is general response heterogeneity. GRH 

is composed of possibly both heterogeneous historical response and heterogeneous 

treatment effects. GRH does not always result in uniquely identifiable subgroups through 

the alternative response, but results in unique subgroups through the source of the 

heterogeneity. Multiple different combinations of null response and treatment effect can 

result in the same alternative response. 

Under the context of a single stage design, in order to determine the composition 

of subgroups, a pre-clinical analysis would have to be conducted on a set of patients 

which would entail exposing the patients to the compound/treatment to determine 

response. A second set of patients would be used in the resulting trial. This is not an 

optimal use of trial resources. The first set of patients, in effect, can be construed as a 

separate trial in which the data is thrown away; not providing response information for 

use in the actual trial. A more suitable solution would be to conduct the "pre-clinical" 
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analysis during the trial; hence, minimizing time and patient resources. No information 

would be lost, all patients that undergo treatment would used in estimating response. The 

two stage designs of Simon provide a natural break for this analysis, between stages. 

While the two stage process is a suitable solution to this problem and comprises the 

majority of all conducted Phase II trials, the use of the binomial distribution as the model 

distribution is not appropriate. 

We develop a two stage design which begins as the popular Simon 2-stage design 

and is adapted to accommodate heterogeneity if heterogeneity is identified between the 

conduct of the two stages. If no source of heterogeneity is identifiable, the trial continues 

on under the Simon design; otherwise an adaption is made and the trial is evaluated using 

new adaptive trial parameters. 

The paper is organized as follows. Chapter two introduces the basic two stage 

design of Simon, the heterogeneity model and trial error construction. Chapter three 

provides a literature review of the current methods to handle heterogeneity with non­

latent heterogeneity. Chapter four introduces the main components of the new trial 

design, subgroup identification, heterogeneity tests, the trial's model distribution, and 

finally, the trial algorithm. Chapter five investigates the operating characteristics of the 

Simon design and new trial design under heterogeneity with concluding remarks and 

future direction in Chapter six. 
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CHAPTER 2 

SIMON DESIGN, HETEROGENEITY MODEL AND ERRORS 

2.1 Simon Phase II Designs 

The basic two stage binary Phase II trial design was first implemented by Gehan 

(Gehan 1961). Shultz modified the Gehan design to require a minimum of at least one 

response in the first stage with equal size sample sizes in both stages (Schultz, Nichol et 

al. 1973). The Gehan design can allow no response in the first stage. Simon later 

popularized the Shultz design by allowing unequal size sample sizes in the stages and 

constructing a search algorithm to determine the optimal and minimax designs which 

meet a set of sample size optimization criteria (Simon 1989). 

For simplicity, the term treatment denotes a compound, treatment or regimen. Let 

x be the realized data in stage one with (lj, n)) as the critical value and sample size for 

stage one, and y be the realized data in stage two with (r, n) as the critical value and 

sample size for stage one and two combined. The trial parameters, (lj, nl' r, n) , are 

constructed to estimate if the trial response rate under treatment, 1[, is greater than or 

equal to a clinically relevant target response rate, denoted the alternative response, 

1[) = 1[0 + t5 where 1[0 is the null response under no treatment and t5 is the treatment effect, 

or formally, Ho: 1[ < 1[) vs. H) : 1[ ~ 1[), the null and alternative hypothesis respectively. 
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If the sum of responses for the treatment in the first stage is not larger than the 

stage one critical value, x:::; fj , the trial is stopped for futility; otherwise, the trial 

proceeds to stage two enrolling an additional n - n l patients. Once all of the patients 

have been evaluated, the sum of responses over both stages is compared to a second 

critical value. If the sum of responses is not larger than the stage one + stage two 

combined critical value, x + y :::; r , then the treatment is estimated to not have the desired 

effect; otherwise, the novel treatment is estimated to be promising with a response rate of 

The construction of the parameters of the trial, (fj, n], r, n) , is dependent on the 

target errors of the trial known as the type I error or size of the trial, a, and type II error 

or I-power of the trial, f3. As such, the power of the trial is 1 - f3. The critical values 

and sample sizes for each stage are chosen from a set of possible designs constrained to 

satisfy the type I and type II errors per 

rnin( n[ ,r) 

P (reject Hoi Jr = JrT ) = Bin (fj I n" JrT ) + I bin (x I nl' JrT ) Bin (r - x I nl' JrT ) (4) 
r:::::'l+! 

where bin is the binomial probability mass distribution and Bin is the binomial 

cumulative distribution for treatments T = {O, I} , the null and alternative hypothesis or 

null and alternative response rate, respectively. 

In practice to determine the parameters, n], n, fj, r , a sample size for stage I is first 

chosen such that P(reject Ho I TC = TCO,N] =n l ) E (.50, .80), also known as the probability of 
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early termination (PET). Using an iterative algorithm, given (n1' fj) , a total sample size is 

selected to satisfy (4) under the pre-specified target type I and type II errors. This 

process is repeated to find a set number, say 50, solutions that satisfy the error 

constraints. Two of the solutions are then selected as the minimax and optimal designs. 

The optimal design is the design that minimizes the expected sample size, 

EN(Ho) = n1 + (1- PET) ( n -11,), 

under the null hypothesis over all possible designs and the minimax design is the design 

that minimizes EN over all designs with the minimum total sample size, n. 

Under a Simon design with no heterogeneity, no type I error is spent in the first 

stage. This is due to the single bound of the critical value. The bound is for futility only. 

Onl y a percentage of power is spent in the first stage. This is evidenced in the form of (4) 

where the second component on the right hand side is a weighted sum weighted by the 

"power" spent in the first stage. Most Phase II designs follow this approach, only a 

futility bound in the earlier stages, since the primary goal of a Phase II trial is to estimate 

if the treatment is promising for further testing, not to establish is the treatment is 

efficacious. 

2.2 A Model for heterogeneity 

Response heterogeneity in a population can be modeled by deconstructing the 

response rate into subgroups to form a response profile, 1T = (lZ'1' lZ'2'"'' lZ'g) ,composed of 

g subgroups where lZ'i is the response rate for the ith subgroup and there exists lZ'i f:. lZ'i' 
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for some i -:j:. i'; in contrast, iC; = iC;' for all i -:j:. i' in a homogeneous population. The 

resulting subgroup model provides the basic platform to compare methodology for 

heterogeneous responses. 

Let 11'T = ( iCT I' iCr 2'· •• , TCT g ) be the vector of subgroup responses for 

i = 1,2, ... , g subgroups where iCT ; is the response rate in subgroup i for treatment 

T = {O, I}. T = 0 denotes the known standardlhistorical treatment response, e.g. the null 

response, and T = I denotes the hypothesized experimental treatment response, e.g. the 

alternative response. 

In addition, let the baseline historical response rate for the historical response 

profile be denoted by iC~ = arg min (iCo; ) . Furthermore, let TJ; be the prognostic response 
g 

heterogeneity between subgroup i and the baseline historical response, I; be the 

predictive heterogeneity in treatment effect over the baseline treatment effect, 

5* = arg min ( 5..;) where 5..; are the treatment effects for each subgroup, such that, 

where 0 ~ iCT ; ~ 1 ,defines a subgroup mixture model for heterogeneity (Barnes and Rai 

2010). 10 is a membership indicator. 

The historical response heterogeneity, TJ;, is a fixed prognostic effect while the 

treatment heterogeneity, I;, is a predictive random effect. Using equation (6), the 

11 

(6) 



---- --------

classification of response heterogeneity rests on the structure of the historical response 

profile and the treatment effect profile. To quantify the range of response heterogeneity, 

three classes, historical response heterogeneity (HRH), assumed response heterogeneity 

(ARH), and general response heterogeneity (GRH), are constructed. For all i"# iI, 

defines the HRH class and 

defines the ARH class. In both classes, the experimental treatment response rates are 

umque. 

The third class, GRH, relaxes the unique response constraint. A mixture of prognostic 

and predictive heterogeneity can result in non-unique experimental responses. The 

etiology of each subgroup's heterogeneity is the basis for the subgroup construction and 

is assumed to be unique. GRH is defined as follows. There exists some i"# i I for which 

In equation (7), a known covariate exists for which a prior historical response profile 

can be constructed. The prior distribution of historical response rates, given the historical 

covariate, is hypothesized to be consistent in the current trial. Heterogeneity in the 

experimental response profile is attributed to the different known historical response 

rates, !COi "# !COi" The treatment effects are homogeneous across the subgroups, ~ = ~, . 

In contrast to HRH, the heterogeneity in equation (8), is quantified through 
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heterogeneous treatment effects, ~ 1:- ~ , where the estimated historical response rates are 

homogeneous, 1[Oi = 1[Oi'. The heterogeneity is measured by the inequality of the 

treatment effects between subgroups due to a covariate-treatment interaction as opposed 

to the inequality of historical rates as in (7). 

The general form of response heterogeneity, GRH, is a composite of both of the 

previous classes of response heterogeneity. The general form (9) occurs when both the 

historical response rates and treatment effects are hypothesized to be heterogeneous. For 

example, under a three subgroup model, historically gender, (M, F), leads to different 

historical response rates, 1[01 = 1[02 = 1[OM ' and 1[03 = 1[OF where 1[OM 1:- 1[OF. A biomarker 

present in males is hypothesized to lead to a further differentiation of response rates, male 

biomarker present and male biomarker absent, resulting in the following three possible 

response models, 

{

1[1I 1:- 1[12 1:- 1[13 

1[01 = 1[02 1:- 1[03 and 1[11: 1[12 = 1[13 

1[11 -1[12 1:- 1[13 

The prognostic heterogeneity differs between gender, 171 = 172 1:-173 , with a predictive 

heterogeneity only affecting the males, 'I 1:- '2 and '3 = o. The first possible 

experimental response model results in three unique response rates. While the remaining 

two models result in two unique response rates with the effect of the male biomarker, 

present or absent, providing the same experimental response rate as for females. When 

no information is known about the structure of the heterogeneity, it is appropriate to 
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assume a general class stmcture. For this reason, the focus, in evaluating a new trial 

design under latent heterogeneity, will rest on the GRH class of heterogeneity. 

2.3 Heterogeneity model example 

To illustrate the different classes of heterogeneity, the following hypothetical 

example is provided. A trial is conducted to determine the response rate of dmg A to 

treat early to moderate stage colon cancer, stage I-III. The researchers wish to test 

Ho : Ir = Iro =.3 against HI : Ir >.3 with a target treatment effect of 5 =.2 resulting in 

the alternative response of Irl =.5. Table lea-d) provides four possible scenarios under a 

g = 3 subgroup trial for different groups of researchers testing the same dmg. For 

simplicity, the sample sizes of the subgroups are assumed to be equal. 

The first scenario, table 1 a, is an example of HRH. Research group I knows that 

historically Dmg A leads to a response profile based on cancer stage for a similar 

disease, breast cancer. This prognostic difference is assumed to be consistent in the 

current trial due to the similarity of pathways being targeted between the two cancers. 

The historical response profile for the standard treatment is 

Teo = (lrOI ' Ir02 ' Ir03) = (.4, .3,.2) with lio =.3 constmcted from a baseline historical 

response rate of Ir~ =.2 and a historical heterogeneity effect of 11 = (771,772,773 ) = (.2, .1, 0). 

The objective is to test for a common treatment effect, () = ( ~ , 52 ,63 ) = (.2, .2,.2) such 

that T = ( TI , T2 , T3 ) = (0,0, 0), in a historically heterogeneous response resulting in the 

experimental response profile 1t1 = (lrll,lrI2,lr13) =(.6,.5,.4) with li1 =.5. 
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The second scenario is an example of ARH, table lb. Group II contends that 

there is no historical precedent for the usage of drug A on colon cancer, but hypothesize 

a predictive difference based on a combination of two biomarkers resulting in three 

clinically relevant subgroups, both biomarkers present, both absent and one present. The 

response profile for the standard treatment is homogeneous, 1fo = (.3, .3,.3) with 11 = 0, 

and it is the inequality of the treatment effect that is the source of the heterogeneity, 

() = (.3, .2,.1) such that 'T = (.25, .15, .05) , leading to an experimental response profile of 

1f[ = (.6, .5,.4) with 7[[ =.5. 

The third example is an example of GRH, table Ie. Group III suspects that there 

is both a prognostic effect based on cancer staging and a predictive effect based on the 

biomarkers. There is both a heterogeneous historical treatment effect, 11 = (.33, .03, 0) 

such that 1fo = (.51, .21, .18), and heterogeneous treatment effect with 

'T = (0, .20, .03) such that () = (.09, .29, .12). The experimental response profile is then 

1f[ =(.6,.5,.4) with 7[[ =.5. 

The fourth group hypothesizes a more complex interaction between cancer 

stage and biomarker status as a combination of HRH and ARH only affecting a 

subsample of the subgroups, table ld. Historically, the researchers feel evidence only 

provides a two subgroup prognostic difference in the efficacy of the drug, stage I vs. 

Stage II-III with the status of the biomarker only affecting the second group, Stage II-III. 

This results in 1fo = (.35, .275, .275) with 11 = (.075,0, 0). The interaction between 
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biomarker status and the second prognostic subgroup leads to T = (0, .15, 0) for an overall 

experimental response profile of 1t] = (.55, .55,.40) with treatment effect profi Ie 

'-( 70 7T 17-) o - . _ ,. _ ),. _) . 

Table 1 Numerical example of three classes of response heterogeneity. 

a:HRH b:ARH 
* J* ~ * J* Ji 7rs '7; 7rs ; T; 7rEi 7rs 17; 7rs ; Ti 7rEi 

.20 .20 .40 .20 0 .20 .60 .30 0 .30 .05 .25 .30 .60 

.20 .10 .30 .20 0 .20 .50 .30 0 .30 .05 .15 .20 .50 

.20 0 .20 .20 0 .20 .40 .30 0 .30 .05 .05 .10 .40 

c: GRH I d: GRH II 
* J* ~ * 

17i J* Ti ~ 7rs 17i 7rSi Ti 7rEi 7rs 7rSi 7rEi 

.18 .33 .51 .09 0 .09 .60 .25 .075 .35 .20 0 .20 .55 

.18 .03 .21 .09 .20 .29 .50 .25 0 .275 .125 .15 .275 .55 

.18 0 .18 .09 .03 .12 .40 .25 0 .275 .125 0 .125 .40 

2.4 Heterogeneity Imbalance 

A second component to heterogeneity, heterogeneity imbalance, is a measure of 

the mean difference between subgroup population proportions or between accrual 

weights. Let w = ( wI' w2"'" Wg ) be the vector of weights for i = 1,2, ... , g subgroups, 

then a measure of the information provided by w is the absolute difference in magnitude 

between the subgroup weights, denoted the heterogeneity imbalance, 

IWi-Wi·1 g =2 

/= (t1W,-W,yt (11) 

g 23 
Cg.2 
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where C, 7 is the combination of g pairwise elements. 
,~ .-

The simplest case is balanced population proportions where I = O. To distinguish 

between population heterogeneity and accrual heterogeneity, fa will be used to denote 

accrual heterogeneity. Heterogeneity imbalance will be used as a method to classify the 

range of heterogeneity and as a component to increase the sample size in the latter 

sections of the paper. 

2.5 Clinical trial errors 

Trial parameters are constructed such that the trial errors are maximized with 

respect to the target errors. Under a frequentist design, the target errors are the Type I 

and Type II errors. The errors are composed of four joint probabilities which specify the 

complete trial outcome space (Lee and Zelen 2000). The joint probabilities quantify the 

probability of the trial outcome, acceptance or rejection of the alternative hypothesis, and 

the population truth, the population response rate is greater than or equal to the target 

response rate or less than the target response rate, 

P(R-) = p( Reject HI ,lZ' < lZ'1); 

P(R+) = p( Reject Hi' lZ' ~ lZ'1 ); 

subject to, I I P( ij) = 1. 
i=(A.R) j=(+.-) 

P( A-) = P ( Accept Hi' lZ' < lZ'j ) ; 

P(A+) = P (Accept Hi' lZ' ~ lZ'j ), 

The first joint probability, P(R-) , is the probability of rejecting the alternative 

hypothesis and the null hypothesis is true in the population. While the fourth joint 
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probability, P(A+), is the probability of accepting the alternative hypothesis and the null 

hypothesis is not true in the population. The frequentist errors, are constructed, 

Type I = a = p( Accept HI l;r < lrl ) = P(A-) 
- P(A-)+P(R-) 

Tvpe II = fJ = P(Reject H I lr 2 lr ) = P(R+) 
~ I I P(R+)+P(A+) 

2.6 Trial errors under the subgroup assumption 

Under a subgroup assumption the construction of the errors is not as 

straightforward as in section 2.5 due to the averaging constraints which allow for a 

multiplicity of weight*response profiles, 

g 

W1t = ( WI lrl ' W 2 , lr2 ' ... , W g lrg ) ; L Wilri = lr , 
i=1 

that sum to a single fixed response rate (Barnes and Rai 2010). The usual assumption, in 

homogeneous Phase II trials, is that only a single response exists and given this response 

and a set of critical values and sample sizes, the errors can be constructed. Under a 

subgroup model, the assumption of the single response still exists, through the mean 

response rate, but there exist two levels of additional variation which can result in the 

single mean response rate. The first level is the weight profile. The second level is the 

actual response profile. Multiple different combinations of weights and response profiles 

can lead to a single response rate. 

Under a specific single fixed response rate and within each weight profile, there 

are weight multiple response profiles that exist which satisfy the main response 
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g 

constraint, TCT = L WiTCTi ; T = 0, I . Table 2 displays multiple possible weight*response 
i~1 

profiles that satisfy equation (3), a weighted average, given a 40:60 scheme and ito = .30. 

Table 2: Multiple weight*response profiles satisfying response rate constraint 

WI w2 TCOI TC02 it= L WiTCi 

.40 .60 .73 .01 .30 

.40 .60 .55 .13 .30 

.40 .60 .31 .29 .30 

.40 .60 .24 .34 .30 

To illustrate the added complexity the problem when heterogeneity exists under a 

mean of the weight*response profile, we will examine how to construct an error rate 

through simulation. Error rates are means, e.g. expected values. For example, under a 

binary model, given a response rate, sample size and a critical value, (TC,n,r) 

respectively, we can compute the type I error as follows through simulation 

h 

L I ( x > r I TC = TCo ) 
Ct= E[x> rITC=TC

o
] =...!..:i-::.!..-I _____ _ 

b 
(15) 

where b is the number of simulations, x is the sum of responses with critical value rand 

indicator variable I (.) . 

If one chooses to partition the above simulation into, S sub-simulations or partitions 

denoted [s], the errors could still be constructed by taking the mean of the sub-simulation 

errors since each subgroup simulation is exchangeable, 
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(16) 

which is equivalent to 

h 

.\ I J ( x > r I lZ" = lZ"o ) 

j=i 

I -,,=i=,-,---' -----

b 

a = E [ x > r I lZ" = lZ"o] = --'----------'- (17) 
s 

Under latent heterogeneity, the form of the type I error in (17) is not correct since 

the partition is not exchangeable. In (16), the composition of the conditioning is exactly 

the same across all sub simulations, e.g. exchangeability, a homogeneous condition. 

Under a heterogeneity subgroup assumption, and say for explanation, only four 

possible weight*response profiles existed to satisfy the averaging constraint, the 

conditioning is not exchangeable. Each weight*response profile results in a separate set 

of errors, a heterogeneous conditioning. For example, given the first line of table 2, 

(.73,.0 l) , a type I and type II error exist. Separate Type I and Type II errors also exist 

for each of the remaining weight*response profiles. 

Under a subgroup assumption, S is not exchangeable. We assume that the 

weights are fixed. Each partition S = s results in a unique partitioning of the complete 

space for a fixed weight profile. Under this assumption, (16) becomes 

(18) 
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where the complete space S is composed of all possible partitions satisfying the 

weighted average constraint 

(19) 

Taking the expectation, under non-exchangeable subgroups, will result in an overall 

double expectation that is generally bounded by the target errors. This is not appropriate 

under a clinical trial context. 

The trial design must guarantee that the error is bounded by the target error for 

every non-exchangeable subgroup; the double expectation only guaranteed this on 

average. A clinical trial will always be conducted with a specific response profile, 

whether known or not known, and the trial design errors must be guaranteed to be 

bounded by the target error. 

A more appropriate estimate for the errors under heterogeneity where non-

exchangeable subgroups exist 

.\ 

LJ (fJ[iJ > fJ) /J = ....:..i=--'-I ___ _ (20) a = ..-'-i=--:..I ___ _ 

s s 

where a(i) and fJCi) are the type I and type II errors for each partition, e.g. a specific 

weight*response profile satisfying the weighted averaging constraint. The trial errors are 

then the mean number of times a partition error crosses the target error boundary over all 

possible partitions of the complete fixed weight profile space. If a trial is designed to 
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control the errors in (20), then the trial is guaranteed to control the errors at a specific 

level for every weight*response profile as opposed to controlling the errors on average. 
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CHAPTER 3 

LITERATURE REVIEW: EXISTING METHODS FOR HETEROGENEITY 

Five methods have been developed to handle response heterogeneity in single arm 

Phase II clinical trials. The methods cover both frequentist and Bayesian designs. A 

commonality between most methods is the reliance on a known composition structure to 

the subgroups; not including the Beta-binomial methodology. 

3.1 Unconditional and Conditional Stratified Methods 

The methods proposed by London and Chang, unconditional stratified and 

conditional stratified methods, account for subgroups with a binary response, similar to a 

stratified log-rank test for time-to-event data, under a k-stage design (London and Chang 

2005). 

Given a known covariate with g subgroups for stages j = 1,2, ... , m, ... , k , 

let Rm = I ;~l I;=l Rij be the sum of responses across all subgroups up to an intermediate 

stage m where Rij is the sum of responses for the ith subgroup in the jth stage. The total 

sample size across k stages is denoted N = I~~l I;~l Nij. Furthermore, let the sampling 

weights be proportional to the true population profile, then the general form of the test 

statistic for the unconditional stratified method is 
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"m ("g (R -NICo )) 
L.. j=1 L..i=1 I} lj I 

Km = -;============== "m ("X N1[o (1-1[0 )) 
L.. J=1 L..I=I lj I I 

(21) 

Sample size computation and critical value determination are completed using an 

iterative simulation algorithm with set percentages of type I and type II errors spent in 

each stage similar in development to the Simon design; see (London and Chang 2005). A 

set of stopping boundaries, (( 11' UI ), (l2' U2 ), ... , (Uk)) , where (ll' U1 ) are the futility and 

efficacy boundaries for stage 1 respectively, are constructed to maintain the target type I 

and type II errors for the trial. This is in contrast to the Simon design where only a 

futility boundary exists. The final result is a sample size and test statistic(s) based on the 

estimates for the true population proportions of each subgroup, the sampling weights. 

Since the true population proportions of the subgroups are not usually known in 

practice, a second form the test statistic was proposed, the conditional stratified method. 

The sample size and outcome of the trial are conditioned on the sampling weights, as 

opposed to the true proportions, of each subgroup. Conditioning equation (21) on 

( Nil J = (!!:!lJ, ... , (Nim J = (nim J ' it can be seen that both "m "g n1[. and the N N L..,=IL..I=1 I) 01 

1 ~ m nm 

denominator of (21) are constants given (nil"'" nim , 1[Oi ). The sum of responses up to 

the immediate stage m is asymptotically equivalent to Km and the rejection region of the 

null hypothesis can be expressed as Rm > rm where rm is the critical value of the test 

statistic for the mth stage. The general form of the test statistic for the mth stage of the 

conditional method is 
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I I1 ~ (n } P(R = r ) = ' WI r,m (l-Jr .)n",,-r,m 
m m i=l Or 01 

rlm+·····+rr;m=rm: 'im 
(22) 

O:;~II/:s;lllm 

The final test statistic for k stages is the sum of independent random variables, 

In contrast to the unconditional method, many solutions exist to (22) by varying 

each of the subgroup sampling weights through ( ~: J ~ ( :: J under the type I and type 

II error constraints. This allows for a wide range of possible accrual scenarios and results 

in a similar output as the initial output, before making the selection of the minimax and 

optimal solutions, of the Simon designs (Simon 1989). 

3.2 Beta-Binomial Method 

The third method, the beta-binomial distribution has been previously proposed as 

a model that can account for heterogeneity in binary outcome models (Makuch, Stephens 

et al. 1989; Yamamoto and Yanagimoto 1994; Hendriks, Teerenstra et al. 2005; Hunt and 

Rai 2005; Dragalin and Fedorov 2006; Young-Xu and Chan 2008). For simplicity, we 

assume only one stage. To allow for an increase in variation of the response over the 

binomial, a subgroup composition is assumed for the responses where response rates are 

allowed to vary, Jri - beta( a 0 ,bo) . Then Ri] I Jri ' has a binomial distribution. The 

marginal of Rj is a beta-binomial with probability function, 
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(23) 

The mean and variance are 

(24) 

a 
where TC = 0 The parameter p is the correlation between the response rates and 

ao +bo 

quantifies the excess heterogeneity in the response profile above the binomial 

distribution. If P = 0 , then the variance of RI degenerates into the binomial variance. 

After estimation of the parameters (ao' bo) , the sample size and test statistics can be 

calculated based on the type of difference to be detected (Hendriks, Teerenstra et al. 

2005; Chow, Shao et al. 2007). It should be noted that the estimation of the parameters 

does not require subgroup source knowledge, prognostic or predictive, about the 

heterogeneity; only the estimated amount of variation. 

3.3 Bayesian Hierarchical Methods 

To implement Phase II designs from the frequentist perspective, a fixed response 

rate, whether a single rate or response profile, is specified. Alternatively, a Bayesian 

design incorporates a level of uncertainty in the fixed rate by assuming that the response 

is random through the use of prior and hyper-prior distributions. A primary design 

principle this approach is that the parameters of the response are not independent, but 

correlated similar to the beta-binomial distribution (Lee 2009). One such model is the 
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Bayesian hierarchical model (BHM) which assumes a hyper-parameter distribution for 

the priors, If! , to model the heterogeneity and correlation of the parameters. The joint 

distribution of all parameters is constructed by combining the data likelihood, prior and 

hyper-prior distributions, 

f (R. 1t. 'I' ) = 1 (R 1 1tl p( 1t 1'1' 1 p( 'I' 1 = J n~, 1 (R~~"., ~ !'(:\"~ IjIl} h~ (25) 1 likelihooJ 

with trial decision making using the posterior distribution, 

f f (R, 1t, 'I' )dlf! 
P( 1t I R) = --=-=----­f feR, 1t, 'I')dBdlf! 

Due to the intractability and high dimension of the posterior, Monte Carlo Markov Chain 

MCMC methods are used to compute the posterior probabilities for each stage of the trial 

(Gilks, Richardson et al. 1996). 

The fourth heterogeneity method, Bayesian normal-binomial hierarchical model 

used in Thall et. ai., is based on the logit model (Collet 2003; Hunt and Rai 2003) and is 

constructed such that 

(26) 

iid 

Bi =logit(Jri )-N(I1,a2
) with 1fI=(I1,a2

), 11- N(V[,cp[2) and a 2 
- N(v2 ,cp/). (27) 

The subgroups are assumed to be exchangeable implying no a priori prognostic 

difference in response rates. The heterogeneity is assumed to be predictive. 
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One advantage in using the Bayesian approach is the existence of within subgroup 

stopping boundaries allowing for partial subgroup efficacy/futility as opposed to a global 

boundary, e.g. Simon or London and Chang methods. As such, a set of identical within 

subgroup stopping boundaries, due the exchangeability of the subgroups, are constructed 

for each stage of the trial. Once all the patients in subgroup i are evaluated, futility and 

efficacy stopping boundaries are applied for this subgroup, 

and 

P(tru > trOi I data) ~ Lt, 

using the data from all subgroups to determine if a particular subgroup portion of the trial 

should be stopped or continue accrual until the next decision point using an appropriately 

small value for I and a large value for u. The values for the boundaries are usually 

chosen to give good operating characteristics when compared to a frequentist design. 

Each subgroup has an identical stopping boundary similar to running multiple 

simultaneous trials with the conditioning allowing the sharing of information across 

subgroups and minimization of resources by using the data from all subgroups to 

determine individual subgroup outcomes. 
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3.4 Bayesian ANCOV A Method 

The fifth method, Bayesian normal-binomial regression model or BANCOV A 

model, was proposed by Wathen and Thall (2008). To compare the model with the 

earlier heterogeneity notation of (6), the model was reparameterized. The model, 

fa gil ( reT g ((J) ) = ~ + I ;=1 { 77i + r/ (T = I)} I (G = g) , 

is constructed with 771 = 0 for interpretational convenience. It should be noted that the 

ranges of the parameters are not consistent between the heterogeneity model (6) and the 

model (30) which the models mean response rate on the logit scale. Model (30) has no 

assumption on the structure of the variance as in model (27), where 

iid 

~ = 10 gil ( re;) ~ N (f-L, (Y2) is assumed, modeling the mean response as opposed to both 

the mean and variance of the response. 

The prognostic effect of subgroup g compared with the baseline subgroup, e.g. 

subgroup 1, is 'lg and the predictive effect for subgroup g is Tg. To construct the hyper-

parameters for each of the priors, Wathen and Thall developed an algorithm assuming 

small variances for historical priors and large variances for experimental priors by 

equating the moments of a beta distribution to a normal distribution. For the complete 

hyperparameter algorithm and the logic for their assumptions, see (Wathen, Thall et al. 

2008). 

Once the priors have been computed, the posteriors are constructed using MCMC 

methods. Subgroup-specific stopping boundaries are then constructed similar to (28) and 
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(29) where the subgroup specific stopping boundaries (I;, uj ) are subgroup dependent on 

the prognostic effect as opposed to the BHM model where the boundaries are identical. 
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CHAPTER 4 

AN ADAPTIVE PHASE II DESIGN TO ACCOMMODATE HETEROGENEITY 

We present a method to account for latent heterogeneity under the Simon design 

context which adapts the second stage sample size and critical value of a Simon design 

based on the outcome of the first stage under the presence of a heterogeneity statistic. 

The adaptive design denoted the 2-stage heterogeneity adaptive design (2HA) preserves 

the operating characteristics of the Simon trial under no heterogeneity, e.g. no change to 

the design, and preserves the first stage operating characteristics, moderate probability of 

early termination. For simplicity and due to the relatively small sample sizes in Phase II 

trials, detecting only two groups is attempted. 

The basic algorithm is as follows, compute the Simon design parameters given a 

weighted average response rate, which asymptotically e.g. n --7 00 , mirrors the population 

response and conduct the first stage of the trial. After the first stage and the first stage 

criterion was met, x> 'i ' determine if subgroups exists through a classification algorithm. 

If the trial fails to meet the first stage critical value, the trial has failed. The etiology of 

the failure is unknown; either the trial design failed due to latent heterogeneity or the 

probability that the response meets or exceeds the clinically relevant response is minimal. 

Under this scenario, no change to the second stage will result in a successful trial and will 
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not be considered as relevant to the design at this point. The design focuses only on trials 

that have met the first stage criterion. 

Once the subgroups are identified, the subgroups are tested for the presence of 

heterogeneity. If no heterogeneity is detected, enroll the remaining patients per the 

Simon sample size parameters and complete the trial using the Simon critical value. If 

heterogeneity is detected using a liberal test, the overall sample size will be increased, 

with the additional sample size for the first stage included in the new second stage sample 

size, using an empirically derived inflation factor. A new critical value will be 

constructed given the new second stage sample size and that the trial has succeeded into 

the second stage. 

The Beta-Binomial posterior predictive distribution is used as the model 

distribution to determine new parameters under heterogeneity. Enroll the additional 

patients and test the global hypothesis with the new critical value. This new design will 

control the errors bounded at the target errors given knowledge on the average response, 

!"Co and !"C], the number subgroups expected, g = 2. 

4.1 Subgroup identification 

This design relies on the ability of a classifier to find the true subgroups in the 

sample. Multiple methods exist for finding subgroups in supervised and unsupervised 

manners. A supervised classifier is one in which the true identity of the object being 

classified is known. For example, supervised classification can be conducted on age or 

gender. In both instances, the true state is known. Unsupervised classifiers are ones in 
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which the true state is not known and is estimated through patterns in the data. An 

example may be a set of unknown biomarkers. The true state of the unknown biomarkers 

is generally not known. Patients are grouped into subgroups based on the expression 

patterns of these biomarkers. 

The study of supervised classifiers is a broad subject with many classifiers that 

fall under this category. Some examples are recursive algorithms such as random forests, 

machine learning algorithms such as support vector machines or statistical classifiers 

such as linear discriminate analysis or principal component analysis. 

The most popular method for unsupervised learning is clustering algorithms. 

Clustering is the assignment of samples into subsets based on a distance or dissimilarity 

measure which measures the distance between samples based on the data (Datta 2006). 

Multiple types of clustering exist such as agglomerative methods, and k-means. See 

Romesburg for an exhaustive summary of the multiple methods that exist (Romesburg 

2004). 

For the purposes of this paper, the classifier is assumed to have 100% accuracy. 

This is to remove any variation that might be caused by the actual classifier. In the case 

of unsupervised classifiers, there may be a level of error associated with either the 

classification method based on a small sample size as is the case in Phase II trial first 

stages or error associated with the measurement platform such us the case with high 

through-put micro array platforms. 
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The classifiers for these reasons will be assumed to be built using supervised 

variables, say age and gender. In this case, the classifier will always have 100% 

classification accuracy. The utilization of non- perfect classifiers in the algorithm is a 

subject for future work. 

4.2 Testing for heterogeneity 

Multiple methods exist for testing the assumption of heterogeneity or 

overdispersion in binomial data under a grouped data assumption. The preferred method 

is to test for lack of fit of the data to the binomial model with parameter Jr (Collet 2003). 

We focus on global goodness-of-fit methods where the test statistic evaluates the 

unspecific hypothesis, model fits versus model does not fit. 

The two most common test statistics are the Pearson and Deviance test statistics, 

(31 ) 

and 

(32) 

respectively (Kuss 2002). As the number of groups increases, g ---7 00 , the two test 

statistics should be approximately equal, X 2 "'" D. Under the context of this problem, 

two groups and only one sample of each group, there is lack of data, known as sparcity, 

which results in X 2 -:j:. D. The sparcity is due to the fact that only one example of the 
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data exists during a single trial, e.g. n = 1. It has been shown that for n ::; 5 , the Pearson 

test is too conservative and the Deviance test is erratically anticonservative (Kuss 2002). 

This undermines the use of either statistic as a robust method of determining 

heterogeneity. 

A third method is to use a modified Pearson test statistic where the Pearson 

statistic family is generalized by adding an additive constant to X2 first described by 

Farrington, 

(33) 

The standardized test statistic is then compared to a standard normal distribution 

(Farrington 1996). This method has been shown to be more stable than either the 

deviance or standard Pearson statistics under sparcity (Kuss 2002). 

Due to the sparcity of the data, heterogeneity is determined using a liberal p-value 

threshold, p::; .30. The motivation for using a liberal p-value threshold is that it is 

advantageous to err on the heterogeneity side. If heterogeneity truly does exist and the 

test determines no heterogeneity, the Simon trial parameters are not a good fit to the data. 

The reverse, the test determines heterogeneity when heterogeneity does not exist, will 

result in the use of the Beta-Binomial which will still provide an adequate fit to the data. 

In simulation, the Farrington test had a power to detect heterogeneity above 

80%. The type I error is inflated, -30%, which is allowable since the model distribution 
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will still fit and will result in a only modest increase in sample size. This is shown in the 

results section. 

4.3 Variance inflation factor 

To increase the sample size in the second stage to account for the response 

heterogeneity requires estimation of a variance inflation factor (VIP). The standard 

interpretation of the VIP is as an unknown scale parameter which relates the variance of a 

Binomial random variable to the variance of an overdispersed Binomial random variable, 

a Beta-Binomial random variable, section 4.3.1. This interpretation, under a two stage 

trial, will not result in a robust estimate since it relies on estimation of the VIP through a 

Pearson or Pearson type statistic. 

A second interpretation for the VIP is the inflation factor necessary to increase the 

sample size to account for heterogeneity, section 4.3.2. Empirical results are used to 

construct this definition. This method will result in a robust method that leads to a 

sample size that will control the trial errors at the target errors. 

4.3.1 Estimation of theoretical VIF 

Given the following model, 

for i = 1,2, ... ,g , we can compute the variance of the observed responses, Xi' 
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v (Xi) = E[ n/ri (1- Jri ) ] + V (niJr i) 

= ni ( E [ Jri ] - E [ Jri 
2
]) + ni

2rpJri ( 1- Jri ) 

= ni ( Jri -rpJri ( 1- Jri ) - Jri 2 ) + ni
2rpJri ( 1- Jri ) 

= niJri ( 1 - Jri ) [ 1 + ( ni - 1) rp ] 

Under the special case Tli = n for all i , 

V ( Xi) = TlJri (1 - Jri ) [ 1 + ( n - 1) rpJ ' 
'------y-----' 

,,2 

such that (52 is denoted the heterogeneity factor and rp is denoted the VIF. Since, 

it follows that 

E [X 2 ] "" g [ 1 + ( Tl -1) rpJ = g (52, 

~ 6"2 -1 
rp=-

n-] 

Equation (36) provides the standard interpretation of the VIP and estimation through 

equations (37) and (38). Under the special case of a two stage trial, where only a single 

sample is used, the stage one results, the estimation of the VIF through (38) will not be 

robust due to sparcity. 

The use of the Farrington X 2 to replace the standard X 2 was allowed in section 

4.2 for the heterogeneity test statistic since it is advantageous to err on the side of 

heterogeneity. The only error which must be controlled absolutely is the Type II error; 

allowing for the type I error to be exceeded. This is not an acceptable solution in the 
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estimation of the VIF. The VIF is directly correlated with the resulting sample size of the 

trial. In tum, the sample size is directly correlated with the trial errors. Allowing for 

inadequate control of the errors in the estimation of the VIF will result in adequate 

control of the trial errors. 

4.3.2 Estimation of empirical VIF 

A second logical approach to estimate the VIF is through the trial conduct. The 

increase in variation can be attributed to two components not present under a 

homogeneous population, the weight profile and the response profile. Under a 

homogeneous population, the response profile is a single response. The second 

interpretation of the VIF is as the minimum amount necessary to increase the sample size 

to account for heterogeneity. 

Given the first stage results and the presence of heterogeneity, an estimate for the 

heterogeneity imbalance, j can be estimated through (11). The absolute magnitude of 

difference in the response profile can be estimated 

where itli = ~ is the estimate of the response in the ith subgroup with response Xi and 
nli 

2 2 

sample size n1i such that LXi = X and L n1i = n1 . Equation (11) provides information on 
i=l i=l 

the weight profile while equation (39) provides information on the response profile 

beyond the information provided by a fixed homogeneous response rate. For simplicity, 

the number of subgroups is 2. 

38 

(39) 



A natural estimate for the VIP for a single trial is the product of the estimate of 

the heterogeneity imbalance and the response rate imbalance, 

A new sample size to account for heterogeneity can be constructed 

where n is the original Simon total sample size. When the heterogeneity imbalance is 

non-existent, j = O. Small differences in the response profile lead to a small VIP. As 

either the difference in weight profile diverges or the difference in the response profile 

diverges, the sample size will increase. 

4.4 Model Distribution 

Once heterogeneity has been detected through subgroup identification, the trial no 

longer adheres to the assumption of a Binomial distribution. As such, the Binomial trial 

parameters and model are no longer valid. Two factors will determine the new model 

distribution, the structure of the trial and the structure of the data. 

4.4.1 Predictive posterior Beta-Binomial 

The structure of the trial is a two-stage process and this process should be 

inherently modeled in the model distribution for parameter construction. The data is 

structured such that 

Xi ~ P (Xi I"i ) ~ Bin ( ni ' "i ) ; i = 1, 2, ... , g 
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and 

where X is the sum of responses in the first stage of the data. This two-stage process and 

the extra-binomial variation due to (42) and (43) can be explicitly modeled using the 

posterior predictive Beta-Binomial distribution. 

The posterior predictive distribution (PP) quantifies the probability of a future 

observation of the data, y, out of m samples given some data has already been observed, 

x, out of n samples, 

In the case of a two-stage trial, the PP distribution quantifies the distribution of the stage 

two outcome given the stage one outcome. In addition, by treating the parameter JZ" as 

random, as opposed to a fixed as in the binomial distribution, the variance of X is larger 

than a strictly single parameter binomial model for X . 

For completeness, the composition of the Beta-binomial is repeated, removing 

subgroup notation for simplicity, 

p(JZ") - Beta(ao,bo); p(xlJZ") - Bin(n,JZ"); 

P ( JZ" I x) - Beta ( JZ"; ao + x, bo + n - x) , 
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h-I 

where Beta ( x; a, b) = I ( qJ ),,-1 (1- qJ) d qJ. The first distribution in (45) is the prior 

distribution of the response parameter Jr. The second distribution is the data likelihood 

which satisfies the data structure in (42). Combining the data prior with the data 

likelihood results in the posterior distribution p (Jr I x). Heuristically, one can interpret 

the posterior distribution, p (Jr I x) , as an assumption distribution, p (Jr) , updated with 

actual data from the trial, p ( x I Jr) . 

Then, it can be easily seen that the PP distribution is Beta-binomial through the 

conjugateness of the Beta distribution and Binomial distribution, 

p(ylx)= fp(y,Jrlx)dJr 

= fp(YIJr)p(Jrlx)dJr 

"'" Bin(n-ni'Jr)Beta(Jr;ao +x,bo +nl-x) 

= Beta (ao,bo) -lBeta( Jr;ao + y,bo + (11- nl ) - y) 

where Beta ( au' bo) = r ( ao) r (bl)) / r ( ao + bo). The extra-binomial variation or 

heterogeneity is modeled through the data prior (See (24». 

4.4.2 Prior specification 

The standard practice in prior specification is to specify a non-informative prior. 

A non-informative prior will minimize the impact of a subsequently misspecified prior on 

the overall posterior distribution (Lee 2009). Non-informative priors are priors with large 

variance. The standard method to parameterize a non-informative Beta prior is to base 

the prior on a small sample size such as 11 = {I, 1 /2,2} (Thall, Wathen et al. 2003). For 
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example, basing a beta prior with Jt = .30 and n = 1 will result in the parameterization of 

ao = .30 and bo = .70 since 

(47) 

As the sample size that the prior is based upon increases, the variance of the random 

response rate shrinks towards zero as seen in table 4. 

Table 3 Mean and variance for different prior specifications by sample size 

n (ao,bo) 1r V(1r) 
1 (.3,.7) .30 .105 

10 (3,7) .30 .033 

100 (30,70) .30 <.01 

The prior for our model will be based on the null response given a sample size of 

n = 1 which will result in the parameterization given in (47). 

4.2.3 Beta-Binomial predictive posterior error construction 

The structure of the errors in section 2.5 can be used to develop the errors for trial 

design using the Beta-Binomial PP distribution (Barnes and Rai 2010). The joint 

probability of outcome and truth in a k-stage trial is composed of (k+ 1) subspaces, k stage 

outcomes and the population truth. For a two stage design, the joint probabilities are 

specified as follows, 

P ( outcome, truth) = P ( outcome stage 1, outcome stage 2, truth). (48) 
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The joint probabilities are specified using the conditional probabilities and marginal 

probabilities of the (k+ 1) components through Bayes theorem. 

P(A-) = P( Jr < Jrl ,Accept HI) 

= P ( Jr < Jrl' X > 'I ' x + Y > r) 

= P ( Jr < Jr1 I x > 'I, x + Y > r) P ( x + y > r I x > 'I ) P ( x > 'I ) (49) 

III n-fl t 

= I I p(Jr<Jrlly=j,x=i)P(y=jlx=i)P(x=i) 
i=r,+1 j=r+l-i 

The joint probabilities that include an accept outcome are intuitive. This is not the case 

for the joint probabilities which include a reject outcome. 

Under a two stage design, if the first stage criterion is not met, then the trial stops 

without proceeding stage two. To specify the joint probabilities under rejection, it is 

necessary to include the conditional probability of the second stage criterion not being 

met given the first stage criterion is not met; a situation which is impossible in actual trial 

conduct. This specification is not intuitive, but necessary to assure that the total outcome 

space is complete. 

The probability of rejecting the alternative hypothesis and the null hypothesis is 

true is the sum of the product of the conditional probability that the null hypothesis is true 

given the first stage criteria is not met, the conditional probability that the second stage 

criteria is not met given that the first stage criteria is not met, and the marginal 

probability that the first stage criteria is not met and the product of the conditional 

probability that the null hypothesis is true given the trial is successful, the conditional 
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probability that the second stage criteria was met given the first stage criteria was met, 

and the marginal probability that the first stage criteria was met, 

P( R-) = P(ff < ffl ,Reject HI) 

= P ( ff < ffl ' X S Ij , x + Y S r) + P ( ff < ffl ' X > Ij x + y S r) 

= P ( ff < ffl I x S Ij ) P ( x + Y sri x S Ij ) P ( x S Ij ) + 

P ( ff < ffl I x + y > r, x > Ij ) P ( x + y > r I x > Ij ) P ( x > Ij ) 

'i r-i 

= I I P ( ff < ffl I y = j, x = i) P ( y = j I x = i) P ( x = i) + 
i=O j=O 

n1 r-i 

I I P ( ff < ffl I y = j, x = i) P ( y = j I x = i) P ( x = i). 
i=r,+1 j=O 

The remaining two joint probabilities are similarly found replacing ff < ffl with 

ff?: ffl . Once all four joint probabilities are constructed, the errors in section 2.5 (13) can 

be constructed. The chosen set of parameters is the set of parameters satisfying the error 

constraints and resulting in the optimal solution as with Simon's design. 

4.5 Two stage Adaptive Heterogeneity trial algorithm 

Combining the theory in the previous sections, an algorithm for the 2HA design is 

constructed which determines the trial outcome. For simplicity, the number of subgroups 

to be detected is two. The algorithm is as follows: 

1. Compute Simon parameters given a null response rate, ffo' treatment effect, 0, 

and target errors, Ct, fJ resulting in parameters Ij, nl ,r, n 

2. Conduct first stage of trial using Simon parameters resulting in the number of 

successes, observed value x 
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3. Determine if a classifier exists to partition the first stage sample into two groups. 

Test for heterogeneity using the Farrington test, 

If a classifier does not exist, proceed to step 6. 

4. Calculate a new maximum sample size, n *, given the observed heterogeneity 

imbalance and observed absolute difference in response profile, n* = n ( 1 + i Iffll) . 

5. Calculate a new critical value, r* I (X = 'i,n *), using the Beta-Binomial PP 

distribution given that the first stage criterion was met for n * under the target 

errors. 

6. Conduct the second stage under the appropriate sample size. If no heterogeneity 

exists (r, n) ; if heterogeneity exits, (r*, n *) resulting in observed value y 

7. Compare x + y to r under no heterogeneity and to r * under heterogeneity. If 

x + y > r or x + Y > r * , then the trial is estimated to be a success. 

4.6 Estimation of response rate 

It has been shown that under multiple stage designs, e.g. sequential tests, the 

maximum likelihood estimator (MLE) is generally biased (Li and Li 2000; lung and Kim 

2004). Since only extreme cases are observed in a 2-stage Phase II trial, e.g. crossing a 

futility boundary in stage 1 or crossing an efficacy boundary in stage 2, an optional 

sampling effect is introduced biasing the MLE (Whitehead 1986). The optional sampling 

effect causes the variance of the estimate to increase thus increasing the bias. The bias is 
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most pronounced in trials with only a futility boundary in stage 1, as compared to both a 

futility and efficacy boundaries, which is the case with both the Simon and 2HA designs. 

lung and Kim have shown that in a two stage trial the statistic (M, S) , where 

iV/ denotes the stage the trial terminates, M = {I, 2} , and S denotes the total number of 

responses accumulated up to and including stage M , is a complete and sufficient statistic 

for 1l", the response rate of the trial. 

Then, since itj = Xj / nj is an unbiased estimator of Jr I M = 1 and the complete and 

sufficient statistic (M, S) , the uniformly minimum variance unbiased estimator 

(UMVUE) of 1l"can be constructed by the Rao-Blackwell theorem (Blackwell 1947), 

(51) 

which will not ,by definition, suffer from the bias of the MLE in a sequential test. The 

UMVUE for 1l", given a two stage trial is then 

(52) 

where (nj' n - nj ) are the first and second stage sample sizes and 'l is the first stage 

futility boundary (lung and Kim 2004). 

As an example, say that the following responses were observed at the end of the 

second stage of a trial (m, s) = (2,7) with trial parameters ('l, nj , r, n) = (3,13,12,33). The 
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support space, e.g. the summation space, is constructed for the UMVUE, 

(~ + 1) u ( s - n + nl ) = (3 + 1) u (7 - 30) = 4 and s (j (nl -1) = 7 (j (14 -1) = 7 resulting in 

7 [13-1J[ 30 J 
A I( ) ~ i-I 7-i 

JrUIHVUE m = 2, s = 7 = 7 (J( 1 = .322 I ~I 30. 
i=..j 1 S-l 

In contrast, the MLE is it MLE = ~ = .212 which is heavily downward biased. 
33 

Using these results and the composition of the source of the heterogeneity, 

estimable and identifiable subgroups, a general form of the UMVUE can be constructed. 

Given the sum of responses in stage one and stage two follows a Binomial distribution, 

( Xi + ~) I Jri - Bin ( ni , Jri ) for each subgroup, the UMVUE of the response rate Jr is the 

weighted sum of the UMVUEs for each individual subgroup, 

where nl is the sample size for subgroup g in the first stage, n, is the total sample size 
g 8 

for subgroup g and /jg = wg/j is the weighted first stage critical value for the gth 

subgroup. A weak. assumption of independence is assumed and the assumption that the 

observed subgroups weights approximate the true population weights as n ~ 00 • 
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CHAPTERS 

EFFECTS OF HETEROGENEITY ON PHASE II TRIALS: RESULTS 

5.1 Effects of heterogeneity on Simon trial designs 

For simplicity, the number of subgroups in the simulations was chosen to 

be g = 2. Given a combination of weight and response profile, the type I and type II 

errors were computed using Bl = 10,000 Monte Carlo iterations. Due to the multiplicity 

of combinations of response/population profiles with a common mean response and to 

allow 7[Ti where 7[Ti > 7[Ti' for i =f. i' to be uniformly distributed across the g subgroups, 

(B2 I g = 2) = 40,000 Monte Carlo iterations were conducted; for example, 

(B2 I g = 2) = 4 and 7[s = .25 using a simple average can result in 

(
, )_f(.1,.9,.30,.20) (.1,.9,.40,.IO)} 

W1,H'2,7[OI,7[02 -l( ) 
l.I,.9,.20,.30 (.1,.9,.10,.40) 

(55) 

5.1.1 Simulation parameters 

A sample of population proportion profiles were chosen to cover a heterogeneity 

imbalance of j = (0,.98) for the two subgroup simulations and was simulated as follows: 

1. Under HRH or ARH, given the population profile for a imbalance I , the first 

(g -1) historical response rates, 7[Oi' were randomly generated from a uniform 
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distribution, lCOI ' lC02 " .. ,lCOI g-I) ~ U ( 0, ltO + 8*) where (lts' 8*) are specified, for 

example (lts' 8* ) = (.25, .15). The parameters for the uniform distribution are 

problem specific and are to subject to the constraints 0::; lCOi ::; I for all i. The 

gth null response rate was generated to satisfy the averaging method. The 

alternative response rate was constructed in a similar fashion for the HRH and 

ARH classes. Under GRH, the odds ratio of each subgroup was constrained to 

equal the odds ratio for the Simon design such that, 

solving for lCli given lCOi ' Then, 8,. = lCli -lCOi • 

2. If accrual is allowed to diverge from the population profile, an accrual profile is 

constructed for each subgroup to replace the population profile, 

first (g -1) subgroups at (Wi ± da) . 

3. Given a population or accrual profile and a response profile, simulate multinomial 

random variables nll , n21 , ••• , n~ I with fixed sample size nl and cell 

probabilities 1fT = ( lCTi ' lCn ' ... , lCT Ii ) • 

4. For values of ( Nil' N 21"" ,N g 1) = ( n ll , n21"'" ng 1) , simulate binomial random 

variables XTi with sample size nil and response rate lCri · Then xT = I~=l XTi is 
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compared to the critical value fj derived from the Simon trial design using the 

target mean response rates and nominal errors. If xT ~ fj , then the trial is stopped 

for futility. 

5. If xT > fj , repeat steps (3-4) for the second stage, 112 to determine y ; otherwise 

hI = O. Compare xT + h to the critical value r from the Simon trial design. If 

XT + YT > r , then the null response rate is rejected. 

6. Repeat steps (2-5) for B1 = 10 000 simulations and T = (0,1). Then, 

(I:~I I (xo + Yo > r) / B) I 1[ = 1[0 is the type I error of the test and 

(I:~I I (XI + YI :::;; r) / B) I 1[ = 1[1 is the type II error of the test. 

7. Repeat steps (1-6) for B2 combinations of response and population profiles. 

Construct the actual type I and type II errors using equation (20). 

5.1.2 Results 

The first simulation compared the effect of varying levels of heterogeneity 

imbalance using simple averages for a 2 subgroup trial (Barnes and Rai 2010). The data 

was simulated using R.9.2 (Team 2005). The target type I and type II errors are 

(a, 13) = (.10,.20). Table 5 displays the errors with corresponding 95% quantile intervals 

for each class of heterogeneity. Under all three classes of heterogeneity and a 

heterogeneity imbalance of I :::;; .20, the actual mean errors approximate the target errors. 

When the imbalance increases, I > .20 under HRH and GRH, the actual mean errors 
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exceed the target errors with increasing divergence as the imbalance increases. Under 

ARH, the type I mean error approximates the target error with the type II following a 

similar, but less extreme divergence pattern as HRH and GRH. As the imbalance 

increases, the ranges of error estimates increase with the exception of the ARH type I 

estimates which maintain a constant quantile interval irrespective of the imbalance. The 

effect of heterogeneity is most pronounced on the type I error range under HRH and more 

pronounced on the actual type II error range under GRH. Under an unknown response 

profile for 2 subgroups, the mean probability that trial is moderately to extremely 

oversized is 22%, 1& - al ~ .04, and the mean probability that the trial is underpowered is 

42%, 1;1 - pi ~ .04 . 

To further identify the effect of heterogeneity, tables 6 and 7 display the 

probability distributions for the oversizing or underpowering of the trial. Under HRH 

and GRH, as the heterogeneity imbalance increases, the mass of the error estimate 

distributions location shift increasing farther to the left resulting in larger divergences 

from the nominal errors. This results in strong negative effects of heterogeneity on the 

trial operating characteristics. For example, for I = .20 under HRH, the majority of 

oversized trials are in the range of (.10, .12] , a small divergence from the nominal errors. 

When 1=.40 and 1= .80, the majority of oversized trials are in the ranges of (.2,.3] and 

(.4,1] respectively, substantial divergences from the target error and of high concern to 

the trial conduct; a similar pattern in seen with the actual type II errors. The exception is 

the oversized trials under ARH. Irrespective of the heterogeneity imbalance, the majority 

of oversized trials are only slightly oversized in the range of (.10, .12]. This would imply 
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that even though the trials are oversized, the effect of the heterogeneity is minimal on the 

type I error. 

Table 4: Size and power for each class of heterogeneity by heterogeneity imbalance with 

corresponding 95% quantile and Monte Carlo intervals for a 2 subgroup example 

Actual 95% Actual 95% 
Class I Error I QI Error II QI 
HRH .02 .10 (.08, .11) .20 (.18, .22) 

.20 .11 (.04, .20) .21 (.11, .32) 

.40 .13 (.01, .34) .22 (.06, .46) 

.60 .16 (0, .50) .25 (.03, .61) 

.80 .20 (0, .65) .28 (.02, .76) 

.98 .23 (0, .76) .31 (.01, .86) 
ARH .02 .10 (.09, .11) .20 (.18, .22) 

.20 .10 (.09, .11) .20 (.14, .28) 

.40 .10 (.09, .11) .21 (.09, .37) 

.60 .10 (.09, .11) .22 (.06, .47) 

.80 .10 (.09, .11) .23 (.04, .58) 

.98 .10 (.09, .11) .24 (.03, .67) 
GRH .02 .10 (.08, .11) .23 (.19, .30) 

.20 .11 (.04, .20) .24 (.14, .46) 

.40 .13 (.01, .34) .26 (.07, .66) 

.60 .16 (0, .50) .30 (.03, .83) 

.80 .20 (0, .65) .33 (.01, .94) 

.98 .23 (0, .76) .36 (0, .98) 
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Table 5 Distribution of actual type I error for each class of heterogeneity and 

heterogeneity imbalance for a 2 subgroup example. 

Distribution of Actual Type I Error 

Class I (aMe - .12] (.12-.14] (.14-.18] (.18-.2] (.2-.3] (.3-.4] >.4 

HRH .02 .31 .01 0 0 0 0 0 
.20 .09 .10 .17 .08 .04 0 0 
.40 .05 .05 .09 .04 .17 .09 0 
.60 .03 .03 .06 .03 .12 .12 .12 
.80 .02 .03 .04 .02 .09 .07 .22 
.98 .01 .03 .04 .01 .08 .06 .27 

ARH .02 .26 0 0 0 0 0 0 
.20 .26 0 0 0 0 0 0 
.40 .26 0 0 0 0 0 0 
.60 .26 0 0 0 0 0 0 
.80 .26 0 0 0 0 0 0 
.98 .26 0 0 0 0 0 0 

GRH .02 .31 .01 0 0 0 0 0 
.20 .09 .10 .17 .08 .03 0 0 
.40 .05 .05 .09 .04 .17 .09 0 
.60 .03 .03 .06 .03 .12 .10 .12 

.80 .02 .03 .04 .02 .09 .08 .22 

.98 .01 .03 .04 .01 .08 .06 .27 
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Table 6 Distribution of actual type II error for each class of heterogeneity and 

heterogeneity imbalance for a 2 subgroup example 

Distribution of Actual Type II Error 

Class I (fJMC -.22] (.22 - .24] (.24-.28] (.28 - .3] (.3-.4] (.4 - .5] >.5 

HRH .02 .36 .02 0 0 0 0 0 
.20 .08 .09 .16 .07 .08 0 0 
.40 .04 .05 .08 .04 .17 .12 .12 
.60 .03 .03 .06 .03 .11 .10 .25 
.80 .03 .03 .04 .02 .08 .08 .31 
.98 .01 .02 .03 .01 .07 .07 .35 

ARH .02 .37 .01 0 0 0 0 0 
.20 .18 .15 .12 .01 .01 0 0 
.40 .10 .09 .14 .05 .lO .01 .lO 
.60 .06 .07 .12 .05 .13 .05 .06 
.80 .04 .06 .08 .05 .13 .08 .13 
.98 .03 .05 .07 .02 .13 .09 .18 

GRH .02 .29 .21 .19 .06 .03 0 0 
.20 .06 .07 .07 .05 .14 .10 .lO 
.40 .04 .02 .07 .01 .11 .08 .24 
.60 .03 .02 .03 .03 .07 .07 .32 
.80 .02 .03 .01 .02 .08 .05 .35 

.98 .01 .02 .01 .01 .07 .03 .38 

The second scenario is the weighted average, table 7. Under HRH and ARH, the 

actual mean errors maintain the target errors with the quantile confidence intervals only 

slightly larger than the Monte Carlo error bounds. The mass of the actual error 

distributions are in the range of (.10, .12] and (.20, .22] respectively, a divergence between 

target and actual errors implying that some trials do not meet the error targets. Under 

weighted averages, the effect of heterogeneity is minimal, but not absent, on the 

operating characteristics of the Simon trial. 
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Table 7 Errors for each class of heterogeneity by heterogeneity imbalance with 

corresponding 95% quantile for a 2 subgroup example using weighted averaging. 

Actual 95% Actual 95% 
Class I Error I QI Error II QI 
HRH .02 .10 (.09, .11) .20 (.18, .22) 

.20 .10 (.09, .11) .20 (.18, .22) 

.40 .10 (.08, .12) .20 (.18,.22) 

.60 .10 (.08, .12) .20 (.18, .22) 

.80 .10 (.08, .12) .20 (.18, .22) 

.98 .10 (.09, .12) .20 (.18, .22) 
ARH .02 .10 (.09, .11) .20 (.18, .22) 

.20 .10 (.09, .11) .20 (.18, .22) 

.40 .10 (.09, .11) .20 (.18, .22) 

.60 .10 (.09, .11) .20 (.18, .22) 

.80 .10 (.09,.11) .20 (.18,.22) 

.98 .10 (.09. 11) .20 (.18, .22) 
GRH .02 .10 (.09, .12) .20 (.18, .24) 

.20 .10 (.09, .12) .20 (.18, .24) 

.40 .10 (.08, .12) .21 (.18, .24) 

.60 .10 (.08, .12) .22 (.18, .25) 

.80 .10 (.08, .12) .22 (.18, .25) 

.98 .10 (.09, .12) .23 (.18, .24) 

To allow for the uncertainty in either the true proportions or the accrual, two 

levels of error were introduced during patient accrual, da = .05. The accrual 

heterogeneity imbalance was allowed to vary between 0 and 5% of the population 

heterogeneity imbalance. The accrual difference can be attributable to accrual divergence 

or error in proportion estimation. Table 8 shows the results for g = 2 subgroups with an 

accrual divergence parameter of 5 %. The actual mean errors approximated the target 

errors in almost every case with the exception being under GRH actual type II errors. 

The reason for this divergence is unknown at this time. The distributions of the errors are 

more dispersed than the weighted average method due to the variation in accrual which 
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leads to more specific combinations of a weight and response profile being underpowered 

or oversized.. The strength the errors is increased when comparing the error estimate 

distributions between weighted averages and weighted averages with accrual divergence. 

Table 8 Simon Optimal design with s=2 subgroups population using weighted average 

with accrual differences, aa = .05. 

Actual 95% Actual 95% 
aa 1 Error I CI Error II CI 

HRH .10 .02 .10 (.07, .14) .20 (.16, .24) 
.20 .10 (.07, .13) .20 (.16, .24) 
.40 .10 (.08, .14) .20 (.16, .24) 
.60 .10 (.07, .12) .20 (.16, .24) 
.80 .10 (.08, .13) .20 (.16, .24) 

ARH .10 .02 .10 (.09, .11) .20 (.17, .23) 
.20 .10 (.09, .11) .20 (.17,.23) 
.40 .10 (.09, .11) .20 (.17, .23) 
.60 .10 (.09, .11) .20 (.17, .23) 
.80 .10 (.09, .11) .20 (.17,.23) 

GRH .10 .02 .10 (.07, .14) .20 (.16, .26) 
.20 .10 (.07, .13) .21 (.17, .26) 
.40 .10 (.07, .12) .22 (.17,.38) 
.60 .10 (.07, .12) .22 (.17,.29) 
.80 .10 (.08, .13) .23 (.17, .34) 

5.2 Effects of heterogeneity on Adaptive trial design 

5.2.1 Simulation parameters 

The data for the 2HA simulation was simulated in a similar manner as with the 

Simon simulation in section 5.1.1. Only two groups under GRH were simulated with the 

weighted average constraint. Under latent heterogeneity, GRH is the most appropriate 

class of heterogeneity. It is also assumed that if a response rate was hypothesized, that 

the rate was hypothesized from data that follows the population as a whole. For example, 

if a trial response rate of .30 is hypothesized, then the population in general follows a 
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mean response of .30. No subgroups are known prior to trial conduct, though this does 

not occlude the existence of said subgroup, and a Treatment x Marker interaction is not 

known. For each weight scheme of the weighting profiles, 10,000 simulations were 

conducted. The actual errors, the percentage not meeting the target errors, are reported. 

5.2.2 Simulation Algorithm 

The data was simulated using a Linux cluster by parallelizing the simulation using 

R.9.2 (Team 2005). The data and trial conduct is simulated as follows 

1. Given a null response rate and alternative response rate with a specified weighting 

scheme, 1Co' 1CI ' ( WI' w2 ) , and target errors, (a, [3) construct the Simon trial 

parameters and a null and alternative response profile by weighted averages 

satisfying the odds ratio criterion. 

2. Given a weight profile and an alternative response profile, simulate multinomial 

random variables nil' n21 with fixed sample size nl and cell probabilities 

3. For values of (Nil' N 21 ) = (nil' n21 ) , simulate binomial random variables Xi with 

sample size nil and response rate 1Cli • Then X = I~=I Xli is compared to the 

critical value 1) derived from the Simon trial design. If X ~ 1) , then the trial is 

stopped for futility. 
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4. If X> fj then determine if heterogeneity is present using the Farrington X 2 statistic 

and a liberal p-value, p;:::: .30. 

5. Compute the heterogeneity imbalance and absolute magnitude in difference in 

responses. Then constmct a new sample size, n * using (41). 

6. Repeat steps 2-5 for B=50,000 iterations. 

7. Given the unique possible new sample sizes in the 50,000 iterations, constmct 

new critical values, r * , given fj out of n1 responses in the first stage and for 

each of the new sample sizes using the predictive posterior Beta-Binomial 

distribution. 

8. If p;:::: .30 , then n2 = n * -n1 and r = r * ; otherwise, n2 = n - n1 and r = r . 

9. Repeat steps (2-3) for the second stage, n2 to determine y ; otherwise y = O. The 

h 

Z)(x+y:s;r) 
power of the test, 1 - fJ is constmcted such that 1- fJ = -"i==.!.l ____ _ 

b 

10. Repeat steps 2-6 for the null response rate. Given the new sample size, the critical 

values determined using the alternative response are used. 

11. If p;:::: .30 , then n2 = n * -n1 and r = r * ; otherwise, n2 = n - n1 and r = r . 

h 

Z)(x+y>r) 
12. The size of the test or ais constmcted such that a=....:..i=....:..l ____ _ 

b 
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13. Repeat steps 1-12 for 10,000 iterations of different response profiles that satisfy 

the weighted average given the weight profile. The trial errors given a weight 

profile are then constructed using (20) where s = 10,000. 

14. Repeat all steps for each weight profile, 

w = {( .1,.9), (.2,.8), (.3,.7) ,(.4,.6), (.5,.5)} . 

This algorithm results in the estimates of the trial operating characteristics given a 

specific weight profile and any possible response profile satisfying the weighted average 

constraint. 

5.2.3 Results 

Under latent heterogeneity, the appropriate form of heterogeneity is generalized 

response heterogeneity. Under GRH, no information is known a priori on the source of 

the heterogeneity. A two subgroup trial was simulated under GRH. Table 9 shows the 

results given 10,000 simulations of weight*response profiles satisfying the weighted 

average response rate constraint for the following parameters 

1[0 = .30; 1[1 = .45; a = .10; f3 = .20 . 

The errors reported are the percentage of times the individual weight*response 

profile errors crossed the target error boundaries in the inappropriate direction, 

ab > a and Pb > f3 where the weight*response type I error for the bth simulation is ab . 

a 2HA and as denote the type I error for the Adaptive and Simon designs. As with the 
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Simon simulations, the expected value of the size and power are very close to the targets, 

but it is the range that is more clinically important or as a proxy, the percentage above the 

target error bounds. 

Table 9 Simulated error estimates for various weight profiles with target errors of 

(a,p) = (.1,.2) and (Jro,JZJ = (.30,.45). 

WI w2 
I a2HA fJ2HA as Ps 

0.1 0.9 .8 0 0.18 0.22 0.40 
0.2 0.8 .6 0 0.17 0.l5 0.40 
0.3 0.7 .4 0 0.14 0.08 0.30 
0.4 0.6 .2 0 0.05 0.04 0.28 

0.5 0.5 0 0 0 0 0 

The adaptive design maintains the target type I error under all levels of 

heterogeneity, e.g. weight profiles. The error increases as the heterogeneity imbalance 

increases, but is below the target type II error. This is not the case with the Simon 

design. From the simulations in section 5.1, the divergence from the target is marginal, 

within, for example, fJ ± .05, but under the conduct of these type of trials, any divergence 

from the target is the wrong direction is clinically substantial. 

The Simon design does meet the target errors with an equal weight profile. As the 

heterogeneity imbalance increases, the percentage of trials under a specific weight profile 

that exceed the target error bounds increases. In the case of extreme weighting of the 

subgroups, 1=.8,40% of the trials will not have a minimum of 80% power with 22% of 

the trials oversized which can result in a successful Phase II trials but be the cause of a 

failed Phase III trial. 
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A second consideration of Phase II trials is the expected sample size of the trial. 

Given a weight profile, summary statistics can be computed for the expected sample size 

under heterogeneity for the 2HA design which relate the mean, standard deviation and 

confidence intervals for the total sample size and expected sample size EN following (5) 

where the mean or confidence interval is substituted for n, 

EN(Ho) = ~ +(1- PET)(n -~) (56) 

Given (Jro, Jr1 ) = (.30, .45) and (a,,8) = (.10,.20) , the Simon trial design results in 

the following parameters and operating characteristics, 

(~,n, PET, EN) = (20,55,.6070,41.24) under the optimal design. Under the Adaptive 

design, the PET remains the same. Given 10,000 simulations of weight*response 

profiles for each weight profile, the sample size summary statistics are listed in table 11. 

Table 10 Sample sizes under the 2HA design 

I n[sd] Range EN(Ho I I) 95% CI for EN 

.8 70 [7] (55, 105) 50.37 (41.62,59.11) 

.6 63 [ 6] (55, 105) 45.98 (38.78, 53.18) 

.4 59 [4] (55,102) 43.94 (38.82,49.05) 

.2 58 [3] (55,98) 42.83 (39.50,46.18) 
0 57 [3] (55,100) 42.59 (39.49,45.69) 

Under the extreme case of heterogeneity imbalance, 1=.8, the 2HA design 

results in an average increase of 27% of the Simon sample size with a corresponding 49% 

increase in the expected sample size to control the trial errors at the target errors. As the 

heterogeneity imbalance decreases, the expected sample size decreases as does the mean 

sample size. In the case of no heterogeneity imbalance, the 2HA design only increases 
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the sample size by 2 with an increase in the expected sample size of -1. This provides a 

justification for allowing the type I error to be inflated for the heterogeneity test. If 

heterogeneity is detected where none is truly present, the trial will only lead to a minimal 

increase in sample size. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Summary and conclusions 

The primary purpose of a Phase II trial is to estimate if a treatment has a clinically 

meaningful effect on a group of patients for further more targeted testing. Generally, ex 

vivo evidence exists which provides evidence that the treatment does have efficacy on 

either tissue samples or cell lines. The purpose of the Phase II trial is to demonstrate this 

efficacy on a small subset of the affected patient population. If the Phase II trial is 

successful, then either more targeted Phase II trials are conducted or the treatment moves 

on to Phase III testing. Phase III testing provides the definitive answer as to the efficacy 

of a treatment. 

Phase II trials have some unique properties not seen in the earlier or later phases 

of clinical trials. The trials are a single arm with no control arm. Though there is a move 

towards Phase II trials with a randomized design with control and treatment arms, the 

majority of Phase II trials are still single arm. The sample size in these trials is small, 

from only 10 patients up to 120 patients. As such, Phase II trials only estimate a 

response, and the larger Phase Ills are used to define the response. As the name suggests, 

the type of trial is early in the drug development so historical information on the efficacy 

of the treatment or the patient population may be lacking. 
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-----------------------------------

All trials, Phase I-IV, rely on some homogeneity of the population to draw 

inferences. In a Phase III trial or a randomized Phase II trial, the control and treatment 

arms are expected to be similar, e.g. homogeneous in response. This is not always 

possible in a Phase II trial. With only one arm, the homogeneity does not rest between 

two samples, e.g. two trial arms, but rests on the homogeneity of the response in a single 

population. The single population being tested, through the response rate, must be 

homogeneous. Phase Ills do not need this assumption; only that homogeneity exists 

between samples. For example, a Phase III or randomized Phase II can have multiple 

subgroups in the trial, each with a unique response rate. As long as the distribution of the 

subgroups is the same across the two arms, the homogeneity assumption is met. In a 

Phase II trial, no comparison can be made, so subgroups cannot exist. All patients must 

come from the same population with the same response. This assumption can be lacking 

in actual trial practice and poses a substantial hurdle to accurate inferences from said 

trials. 

The most common Phase II trial design is the Simon Phase II designs as 

described in section 2.1. These designs rely on a homogeneity assumption in the 

response in order for the trial data to fit the model distribution of the trial parameters, the 

Binomial distribution. In practice, subgroups may exist causing a divergence in the trial 

data from the Binomial distribution. A large number of Phase II trials fail. It is 

paramount to determine why these trials have such a high failure rate. In examining the 

problem, multiple failure modes can be suggested, 1) the trial fails due to inaccurate 

estimation of the true response rate, 2) the trial fails due to difference in the patient 
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population cells and ex vivo cell lines, 3) the trial fails due to the use of a homogeneous 

trial design when heterogeneity exists. This paper has focused on third failure mode. 

Response heterogeneity can be constructed from a set of subgroups in the 

population with subgroups having either unique response rates or unique etiologies of 

their response rates. This paper provided a model for heterogeneity to quantify the 

effects of heterogeneity on trial designs. The model was applied to the popular Simon 

design and the Simon design was shown to have inflated errors beyond the target errors 

rates across all three classes of heterogeneity. This is a standard practice in clinical trials, 

subgroups are known to exist but for simplicity and to minimize patient resources, a 

single trial is conducted using an averaged response with the Simon designs. Intuitively, 

the inflation of error would be expected when a simple average is used to combine a set 

of subgroup response rates into a homogeneous response rate. Under simple averaging, 

there is no weighting to the average, but in fact, the population may have a specific 

weighting profile. Hence, the simple average response rate may substantially diverge 

from the true weighted population response rate. 

To correct for this, weighted averages were also applied to the Simon designs. 

In theory, the weighted average would correspond to the weighted average of the 

population and correspond to a homogeneous response rate mathematically. This would 

hold true except for one issue. The response is a weighted sum of binomials, but the 

weighted sum of binomials is not binomial. Hence, the use of a binomial model 

distribution may not be appropriate. The simulation results confirm this fact. While the 

expected value of the errors across simulations, given a weight profile, usually did 
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maintain the target errors, the range of actual errors crossed the target error bounds. 

Specific weight*response profiles would exceed the target error bounds. In trial conduct, 

any divergence is substantial since the trial is designed to never exceed the target error 

bounds. 

From a clinical interpretation using the expected value under heterogeneity is not 

valid as a measure of the trials errors. Trial designs must maintain a target error for every 

specific weight*response profile or within an allowable error level. The Simon designs 

do not have this operating characteristic under heterogeneity. Hence, even under 

weighted averages, the Simon design will not maintain the target errors. This provides 

solid evidence that the Simon trial design may be a source of the high failure rates of 

Phase II trials. Under homogeneity, the Simon design is the most efficient design, but the 

design was not constructed to handle heterogeneity. 

In order to develop a new design to handle heterogeneity, multiple current 

methods were evaluated. All of the methods that have been developed in the past few 

years suffer from a limiting factor, the composition of the subgroups must be known in 

advance. It can be argued that if subgroups are known to exist, the most conservative 

path is to conduct separate trials for each subgroup. This is a second common practice, in 

opposition to averaging, conduct multiple trials. This can lead to a substantial increase in 

trial resources which may be a motivating factor for using an averaged response. 

In practice, subgroups are not generally known at such an eady stage of a 

treatment's efficacy exploration. Failed Phase lIs provide solid evidence for future Phase 

II's with the same or similar treatment. As more Phase II's are conducted a better image 
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of the treatments efficacy is refined. This approach uses the accumulation of trials to 

accumulate and refine knowledge on the existence and composition of subgroups, but is 

costly when evaluating patient and financial resources. Ethically, if a more optimal 

solution to the allocation of patient resources exists, then this optimal method should be 

utilized. When no information is available at the beginning of trial conduct, the type of 

heterogeneity is known as latent heterogeneity and corresponds to the generalized 

response heterogeneity class of the heterogeneity model. This would correlate to the first 

conduct of a Phase II trial. We suggest a more optimal method than conducting multiple 

Phase II trials to refine efficacy estimates. 

We have developed a new Phase II design that can handle latent response 

heterogeneity with a modest increase in the sample size. The new design works by 

incorporating the trial structure, a two stage process, and the data structure, subgroups, 

into the model distribution of the trial parameters, the Beta-Binomial posterior predictive 

distribution. The predictive posterior form is chosen to account for the two stage process 

of the trial. The trial starts as a standard Simon design with Simon design parameters. 

After the first stage has concluded, the trial data, a single grouped sample, is tested for 

the existence of subgroups using an unsupervised classification algorithm. Then a 

heterogeneity test is computed. If heterogeneity is detected, the trial's overall sample 

size is increased by an empirically determined variance inflation factor. 

The variation inflation factor is the empirical estimate of the product of the 

magnitude of the response profile and the magnitude of the weight profile from the first 

stage conduct. This method to increase the sample size seems very intuitive. The 
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response heterogeneity can be decomposed into two sources which differ in 

heterogeneous responses as compared to a homogeneous response, weight and response 

profiles versus no weights and a single fixed response rate. Multiple other methods were 

tried, but no method was able to consistently maintain the errors across all possible 

weight profiles. The trial uses the posterior predictive Beta-Binomial distribution to 

construct a new critical value by an exact method to determining the trial errors. 

This new design, the 2-stage heterogeneity adaptive design, is shown to never 

exceed the target trial errors. Even with an extreme heterogeneity imbalance, the target 

trial errors are maintained. Under small or no heterogeneity imbalance or a small 

difference in the response magnitude, there is only a marginal increase in the total or 

expected sample size. This fact gives credence to the earlier use of a very liberal 

heterogeneity test. With only a single grouped sample, no single heterogeneity test is 

reliably going to result in robust inferences or always control the type I error, the 

probability of determining heterogeneity when one exists. The chosen heterogeneity test, 

the Farrington test, does maintain an acceptable level of power, >80% which is of 

primary concern. If one does not detect heterogeneity when it truly exists, then the 

Simon design is not appropriate. The scalable sample size based on the variance inflation 

factor results in only minimal increases in sample size when heterogeneity is detected, 

but truly not existent. 

A limiting factor of this design is the determination of subgroups. A full 

exposition of how to determine subgroups from an unsupervised approach is beyond the 

scope of this paper, but the limitations imposed by this issue are understood. A second 
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limiting factor is the stopping of the trial to determine the existence of subgroups. Many 

designs have been developed which maintain the operating characteristics of the Simon 

design but allow for continuous patient accrual with no between stage stopping. Many 

clinicians may feel that waiting a few weeks between stages is too long, but in the end, 

this extra time may result in a saved trial. As such, the determination of the classifier and 

the time is takes to determine the classifier are limitations to this design. 

In conclusion, the 2-stage heterogeneity adaptive design maintains the target 

errors of a binary 2-stage single arm trial. The trial design preserves the desirable 

operating characteristic of the Simon design, moderate probability of early termination, 

without a substantial increase in trial resources. The increase in trial resources is 

determined by the first stage results. If subgroups are detected and the imbalance in these 

subgroups either in weights or response rates is high, then the increase in the overall 

sample size compared to the Simon trial will be substantial. In no way, it is claimed to be 

the minimum necessary increase in sample size, but through simulation was shown to 

always be adequate. This method works under the full range of possible heterogeneity 

which will at times result in larger than necessary sample sizes. 

6.2 Direction for future work 

This design presents multiple areas of limitation that need to be addressed. The 

primary limitation is the detection of subgroups. More work is needed to indentifying an 

unsupervised classification algorithm that can work under the small sample sizes in the 

first stage of a Phase II clinical trial. An unsupervised algorithm presents a very practical 

case since the source of heterogeneity in many diseases is determined to be genomic. If a 
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classifier is used that does not have perfect classification, then an additional source of 

variation is introduced into the problem. In this case the VIP becomes the product of 

both the weight and response profiles and the classification accuracy. Less accurate 

classifiers will result in an increase in the sample size. Secondly, a better test for 

heterogeneity that preserves the type I error would also be an optimal improvement. 

The detection of only two groups is adequate for trials where the sample size is 

relatively small, but in larger Phase II trials, the detection of more than two groups should 

be possible. Understanding what the limitations are for a higher detection number and 

robust tests are necessary. The use of the Beta-Binomial posterior predictive distribution 

provides a necessary correction factor for heterogeneity in the second stage of the trial. 

Work needs to be conducted to determine if it would be more optimal to not start as a 

Simon Design, but conduct the entire trial using the posterior predictive distribution. 

A final improvement would be to include local hypothesis tests. The most 

desirable attribute of the Bayesian ANOV A and hierarchical methods is the sharing of 

information across subgroups and allowing for subgroup specific stopping or acceptance. 
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