University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

2-1979

Analysis of structures subjected to dynamic loading.

Jose Enrique Carrasco 1950-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation

Carrasco, Jose Enrique 1950-, "Analysis of structures subjected to dynamic loading." (1979). Electronic Theses and Dissertations. Paper 213.
https://doi.org/10.18297/etd/213

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

ANALYSIS OF STRUCTURES
 SUBJECTED TO DYNAMIC LOADING

By
Jose Enrique Carrasco
B.S., University of L"ouisville, 1977

> A Thesis
> Submitted to the Faculty of the University of Louisville Speed Scientific School
> as Partial Fulfillment of the Requirements
> for the Professional Degree

MASTER OF ENGINEERING

Department of Civil Engineering

February 1979

ANALYSIS OF STRUCTURES SUBJECTED TO DYNAMIC LOADING

Submitted by:

> Jøse Enrique Carrasco

A Thesis Approved on

by the Following Reading and Examination Committee:

Abstract

The objective of this thesis is to develop computer programs for the dynamic analysis of structures. For a shear building two computer programs were developed: (1) Dynamic Analysis of a Shear Building within the Elastic Range and (2) the Dynamic Analysis of a Shear Building with Elasto-Plastic Behavior.

Parallel to this computer work a study was performed to investigate the error due to static condensation applied to dynamic problems. In the development of computer programs the stiffness method and the consistent mass matrix were used; and viscous damping was assumed.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS v
NOMENCLATURE vii
LIST OF FIGURES ix
I. INTRODUCTION 1
II. FREE VIBRATION OF A SHEAR BUILDING 2
A. Concept of Shear Building 2
B. Free Vibration 2
C. Orthogonality Property of Normal Modes 6
D. Numerical Example 8
E. Subroutine Jacobi 13
iII. FORCED VIbRATION OF SHEAR BUILDING 15
A. Modal Superposition Method 15
B. Numerical Example 17
C. Response of a Shear-Building to Ground Motion 19
D. Subroutine Modal 22
IV. DAMPED MOTION OF SHEAR BUILDING 24
A. Equation of Motion for Damped Systems 25
B. Conditions to Uncouple Equations in Damped Systems. 28
C. Subroutine Damp 32
D. Seismic Response of an Elastic Shear Building 32
E. Computer Program \#1 35
F. Computer Program \#2 43
V. ERROR INVESTIGATION DUE TO STATIC CONDENSATION 49
A. Static Condensation 49
B. Static Condensation Applied to Dynamic Problems 52
C. Numerical Example 54
D. Computer Program for Investigation of Error 59
E. Computer Program \#3 60
VI. ANALYSIS OF NONLINEAR STRUCTURES RESPONSE 68
A. Incremental Equation of Equilibrium 68
B. Step-by-Step Integration 72
C. Incremental Equation of Motion 76
D. The Wilson- θ Method 77
E. Algorithm for Step-by-Step Solution of a Linear System, Using the Wilson- θ Integration Method 81
F. Subroutine Step 84
G. Program \#4 84
H. Illustrative Example 87
I. Program Listing 89
BIBLIOGRAPHY 98
VITA 99

NOMENCLATURE

Roman Alphabet

$P_{i}(t)$	the normal force at function of time acting on ith level
$X_{\text {imax }}$	the maximum response from the spectrum at ith
${ }_{i}$	the displacement at ith
\dot{x}_{i}	the velocity at ith
\ddot{x}_{i}	the acceleration at ith
g	the constant of gravity
C_{i}	the damping at ith
K_{i}	the stiffness in column i in the lower floor level
$F_{\text {i }}(t)$	the forcing function at ith in function of time
m_{i}	mass concentrated at level i
[C]	the damping matrix
[K]	the stiffness matrix
\{F\}	the forcing vector
\{X\}	the displacement vector
\{ X \}	the velocity vector
$\{\ddot{\mathrm{X}}\}$	the acceleration vector
ai	amplitude of motion of ith coordinate
a_{ij}	amplitude of the mode shape at coordinate i mode n (before normalization)
[1]	unit matrix
$z_{i}(t)$	factor which will uncouple a set of coupled equations
[T]	transformation matrix
$\left\{x_{p}\right\}$	the vector corresponding to the p degrees of freedom to be reduced

$\left\{x_{q}\right\}$	the vector corresponding to the remaining q independent degrees of freedom
[\bar{K}]	the reduced stiffness matrix
[\bar{M}]	the reduced mass matrix
[\bar{C}]	the reduced damping matrix
V	potential energy
K.E.	kinetic energy
$F_{\text {I }}(t)$	inertial force at nonlinear systems
$F_{D}(t)$	damping force at nonlinear systems
$F_{S}(t)$	spring force
$F(t)$	excitation force, function of time
Greek Alphabet	
ω	natural frequency
${ }^{\omega} \mathbf{i}$	the i-th natural frequency
$\phi_{\text {in }}$	amplitude of mode shape at coordinate i mode n (after normalization)
[Ф]	square modal matrix
Γ	participation factor
ξ	damping factor
Δ	increment
θ	Wilson constant equal to 1.38 taken as 1.4
τ	the product of Wilson and the time increment
$\widehat{\Delta}$	increment associated with extended time step

I. INTRODUCTION

Almost any type of structure may be subjected to dynamic loading in one form or another during its existence. From the analytical point of view, it is convenient to divide the dynamic loading condition into two basic categories; periodic and nonperiodic. Periodic loadings are repetitive loads which exhibit the same time variation successively for a large number of cycles. A typical case for periodic motion is rotating machinary in a building. On the other hand nonperiodic loadings may be either short-duration, impulsive loadings or long duration, general forms of loads. A typical nonperiodic motion is a nuclear blast or an earthquake excitation.

In recent years considerable emphasis has been given to the problems of blast and earthquakes. The earthquake problem is rather old, but most of the knowledge on this subject was developed in the last two decades. The blast problem is rather new and information is made available mostly through publications of the Army Corps of Engineers, Department of Defense Agency, and other federal agencies. It is very important to mention the fact that in the last decade the rapid expansion in number and size of nuclear power plants in regions close to large populated centers requires very careful structural consideration.

As an effort toward developing better techniques in the field of structural dynamics, the main objective of this thesis is to develop computer programs for structures modeled as a shear building subjected to dynamic loading conditions and the investigation of error, due to static condensation.
II. FREE VIBRATION OF A SHEAR BUILDING
A. Concept of a Shear Building. A shear building may be defined as a structure in which there is no rotation of a horizontal section at the level of the floors. In this respect, the deflected building will have many of the features of a cantilever beam that is deflected by shear forces only; hence, the name shear building. To accomplish such deflection in a building, it must be assumed that (1) the total mass of the structure is concentrated at the levels of the floors; (2) the girders on the floors are infinitely rigid as compared to the columns; and (3) the deformation of the structure is independent of the axial forces present in the columns.
B. Free Vibration. When free vibration is under consideration, the structure is not subjected to any external excitation (force or support motion) and its motion is governed only by the initial conditions. There are occasionally circumstances for which it is necessary to determine the motion of the structure under conditions of free vibration, but this is seldom the case. Nevertheless, the analysis of the structure in free motion provides the most important dynamic properties of the structure which are the natural frequencies and the corresponding normal modes.

Figure 1(a) shows the possible displacements of a two-story shear building and figure $1(b)$ shows the two possible modes of vibration.

FIGURE 1(a) - Possible Displacements of a Two Story-Shear Building

FIGURE 1(b) - First and Second Mode of Vibration

Any displacement x_{1} of member $C-C^{\prime}$ is resisted by the restoring forces of the columns. If K_{1} is the stiffness of the first story then the force on $C-C^{1}$ will be $-K_{1} x_{1}$. If K_{2} is the stiffness of the second story then the forces on C-C' and D-D' are $-\mathrm{K}_{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$ and $\mathrm{K}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$ respectively. The equations of motion are then obtained from the corresponding free body diagram as is shown in Figure 2.

FIGURE 2 - Free Body Diagram of a Two-Story Shear Building

Hence, equating to zero the sum of forces in x direction for bodies $C-C^{\prime}$ and D-D' results in

$$
\begin{gather*}
m_{1} \ddot{x}_{1}+k_{1} x_{1}-k_{2}\left(x_{2}-x_{1}\right)=0 \tag{1}\\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)=0 \tag{2}
\end{gather*}
$$

and rearranging these equations gives

$$
\begin{gather*}
m_{1} \ddot{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=0 \tag{3}\\
m_{2} \ddot{x}_{2}+k_{2} x_{2}-k_{2} x_{1}=0 \tag{4}
\end{gather*}
$$

where $\ddot{x}_{1}, \ddot{x}_{2}$ are the accelerations and x_{1}, x_{2} represent the displacements. Equations (3) and (4) may be written as

$$
\left[\begin{array}{ll}
m_{1} & 0 \tag{5}\\
0 & m_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

or in a condensed form as

$$
\begin{equation*}
[M]\{\ddot{x}\}+[K]\{x\}=\{0\} \tag{6}
\end{equation*}
$$

in which
[M] is the mass matrix,
[K] is the stiffness matrix,
$\{\ddot{\mathrm{X}}\}$ is the acceleration vector, and
$\{x\}$ is the vector displacement.

The system of equation (5) is linear and homogeneous, and its solution can be expressed as

$$
\begin{align*}
& x_{1}=a_{1} e^{i \omega t} \tag{7}\\
& x_{2}=a_{2} e^{i \omega t}
\end{align*}
$$

where a_{1} and a_{2} are constants, and ω is a parameter to be determined. Substituting (7) into (5) results in

$$
\begin{gather*}
\left\{-m_{1} \omega^{2} a_{1}+\left(K_{1}+K_{2}\right) a_{1}-K_{2} a_{2}\right\} e^{i \omega t}=0 \tag{8}\\
\left\{-m_{2} \omega^{2} a_{2}+K_{2} a_{2}-K_{1} a_{1}\right\} e^{i \omega t}=0
\end{gather*}
$$

which upon simplification gives

$$
\begin{gather*}
\left\{\left(K_{1}+K_{2}\right)-\omega^{2} m_{1}\right\} a_{1}-K_{2} a_{2}=0 \tag{9}\\
-K_{2} a_{1}+\left(K_{2}-\omega^{2} m_{2}\right) a_{2}=0
\end{gather*}
$$

or in matrix form

$$
\left[\begin{array}{cc}
\left(k_{1}+k_{2}\right)-\omega^{2} m_{1} & -k_{2} \tag{10}\\
-K_{2} & k_{2}-\omega^{2} m_{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and in condensed notation

$$
\begin{equation*}
\left\{[K]-\omega^{2}[M]\right\}\{a\}=\{0\} \tag{11}
\end{equation*}
$$

Equation (9) is satisfied for the trivial solution, that is, $a_{1}=a_{2}=0$; however this solution would indicate no motion of the structure and therefore will not satisfy the initial conditions of the problem.

In order to find the nontrivial solution for this homogeneous system of equations, the determinant of the coefficient matrix has to be equal to zero, that is

$$
\left|\begin{array}{cc}
\left(k_{1}+k_{2}\right)-m_{1} \omega^{2} & -k_{2} \tag{12}\\
-k_{2} & k_{2}-m_{2} w^{2}
\end{array}\right|=0
$$

The expansion of the determinant results in a quadratic equation in ω^{2}, namely

$$
\begin{equation*}
m_{1} m_{2} \omega^{4}-\left[\left(K_{1}+K_{2}\right) m_{2}+m_{1} K_{2}\right] \omega^{2}+K_{1} K_{2}=0 \tag{13}
\end{equation*}
$$

After the roots of (13) , ω_{1} and ω_{2} (natural frequencies) are determined and substituting back into equation (11) the relative amplitudes of motion (normal modes) can be found.
C. Orthogonality Property of the Normal Modes. This property constitutes the basis of one of the most attractive methods for solving dynamic problems of multi-degree-of-freedom systems. For a system of two-degree-of-freedom equations (11) may be written as

$$
\begin{gather*}
\left(K_{1}+K_{2}\right) a_{1}-K_{2} a_{2}=m_{1} \omega^{2} a_{1} \tag{14}\\
-K_{2} a_{1}+K_{2} a_{2}=m_{2} \omega^{2} a_{2}
\end{gather*}
$$

The normal modes may then be considered as the static deflections resulting from the forces on the right of (14) for any of the two modes. For the following two systems of loading and corresponding displacement System I:

Forces: $\omega_{1}^{2} a_{11} m_{1}, \omega_{1}^{2} a_{21} m_{2}$
Displacements: $a_{12} \quad a_{22}$
System II:

$$
\begin{array}{rcc}
\text { Forces: } & \omega_{2}^{2} a_{12} m_{1}, \omega_{2}^{2} a_{22} m_{2} \\
\text { Displacements: } & a_{11} & a_{21}
\end{array}
$$

The application of Betti's theorem yields:

$$
\begin{equation*}
\omega_{1}^{2} m_{1} a_{11} a_{12}+\omega_{1}^{2} m_{2} a_{21} a_{22}=\omega_{2}^{2} m_{1} a_{12} a_{11}+\omega_{2}^{2} m_{2} a_{22} a_{21} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\omega_{1}^{2}-\omega_{2}^{2}\right)\left(m_{1} a_{11} a_{12}+m_{2} a_{21} a_{22}\right)=0 \tag{16}
\end{equation*}
$$

If the natural frequences are different ($\omega_{1} \neq \omega_{2}$), it follows from (16) that

$$
\begin{equation*}
m_{1} a_{11} a_{12}+m_{2} a_{21} a_{22}=0 \tag{17}
\end{equation*}
$$

Equation (17) is the orthogonality relation between the normal modes of a two-degree-of-freedom system. The modes are conveniently normalized to satisfy the following relation:

$$
\begin{aligned}
& m_{1} \phi_{11}^{2}+m_{2} \phi_{21}^{2}=1 \\
& m_{1} \phi_{12}^{2}+m_{2} \phi_{22}^{2}=1
\end{aligned}
$$

where

$$
\begin{align*}
& \phi_{11}=\frac{a_{11}}{\sqrt{m_{1} a_{11}^{2}+m_{2} a_{21}}} \tag{18}
\end{align*} \phi_{12}=\frac{a_{12}}{\sqrt{m_{1} a_{12}^{2}+m_{2} a_{22}^{2}}}, ~ \phi_{22}=\frac{a_{22}}{\sqrt{m_{1} a_{12}^{2}+m_{2} a_{22}}},
$$

D. Numerical Example. To illustrate the steps of the procedure for the determination of the natural frequencies and normal modes, consider the two-degrees-of-freedom system shown in Figure 3, in which the initial conditions are the following: $x_{01}=0, x_{02}=1.0$ in , $\dot{x}_{01}=0$, $\dot{x}_{02}=0$

FIGURE 3 - Example of a Two Story Shear Building

Substituting numerical values in (3) and (4) gives

$$
\begin{aligned}
& 1 \ddot{x}_{1}+30,000 x_{1}-10,000 x_{2}=0 \\
& 2 \ddot{x}_{2}-10,000 x_{1}+10,000 x_{2}=0
\end{aligned}
$$

or in matrix notation

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{rr}
30,000 & -10,000 \\
-10,000 & 10,000
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

assuminy solution given by (7) results in

$$
\left[\begin{array}{ll}
30,000-\omega^{2} & -10,000 \\
-10,000 & 10,000-2 \omega^{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Then, the characteristic equation is

$$
\left|\begin{array}{ll}
30,000-\omega^{2} & -10,000 \\
-10,000 & 10,000-2 \omega^{2}
\end{array}\right|=0
$$

and in expanded form

$$
\left(\omega^{2}\right)^{2}-35,000 \omega^{2}+\left(100 \times 10^{6}\right)=0
$$

which has the following roots

$$
\begin{aligned}
& \omega_{1}^{2}=31,861.4 \\
& \omega_{2}^{2}=3,138.6
\end{aligned}
$$

Then, the natural frequencies for this structure are

$$
\begin{aligned}
& \omega_{1}=178.49 \mathrm{rad} / \mathrm{sec} \\
& \omega_{2}=56.02 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Consider the first equation of (10) and substituting the first natural frequency, $\omega_{1}=178.49 \mathrm{rad} / \mathrm{sec}$ results in

$$
-1861.4 a_{11}-10,000 a_{21}=0
$$

A second subindex was introduced in a_{1} and a_{2} to indicate that the value a_{1} has been used in this equation. Since in this case there are two unknowns and only one independent equation it is possible to solve for the relative value of a_{21} and a_{11}. This relative value is known as the normal mode or modal shape corresponding to the first frequency. For this example, the first normal mode is

$$
\frac{a_{21}}{a_{11}}=-0.18614
$$

It is customary to describe the normal modes by assigning a unit value to one of the amplitudes; thus, for the first mode setting a_{11} equal to unity

$$
\begin{aligned}
& a_{11}=1.00 \\
& a_{21}=-1.263
\end{aligned}
$$

Similarly, substituting the second natural frequency, $\omega_{2}=56.02 \mathrm{rad} / \mathrm{sec}$ into (10), gives the second normal mode as

$$
\begin{aligned}
& a_{12}=1.00 \\
& a_{22}=2.6861
\end{aligned}
$$

The normal modes are conveniently arranged in the column of the modal matrix as

The general solution to the equations of motion for free vibration in terms of constant of integration A_{1}, A_{2}, A_{3} and A_{4} takes the following form:

$$
\begin{aligned}
& x_{1}(t)=a_{11} A_{1} \sin \omega_{1} t+a_{11} A_{2} \cos \omega_{1} t+a_{21} A_{3} \sin \omega_{2} t+a_{12} A_{4} \cos \omega_{2} t \\
& x_{2}(t)=a_{21} A_{1} \sin \omega_{1} t+a_{21} A_{2} \cos \omega_{1} t+a_{22} A_{3} \sin \omega_{2} t+a_{22} A_{4} \cos \omega_{2} t
\end{aligned}
$$

which upon numerical substitution yields

$$
\begin{aligned}
x_{1}(t)= & A_{1} \sin \omega_{1} t+A_{2} \cos \omega_{1} t+A_{3} \sin \omega_{2} t+A_{4} \cos \omega_{2} t \\
x_{2}(t)= & -0.18614 A_{1} \sin \omega_{1} t-0.18614 A_{2} \cos \omega_{1} t+2.086 A_{3} \sin \omega_{2} t \\
& +2.686 A_{4} \cos \omega_{2} t
\end{aligned}
$$

Evaluation of the constants of integration is performed by using the initial conditions which for this example are

$$
x_{01}=0 \quad x_{02}=1.0 \text { in } \quad \dot{x}_{01}=0 \quad \dot{x}_{02}=0
$$

Performing all the necessary algebra and solving for the constants of integration, gives

$$
\begin{array}{ll}
A_{1}=0 & A_{2}=-0.34817 \\
A_{2}=0 & A_{4}=0.34817
\end{array}
$$

Then, the general solution may be expressed as

$$
\begin{aligned}
& x_{1}=-0.34817 \cos 178.5 t+0.34817 \cos 56.02 t \\
& x_{2}=0.0648 \cos 178.5 t+0.9353 \cos 56.02 t
\end{aligned}
$$

and finally the normalized vectors are calculated by using equation (18) as

$$
\begin{aligned}
& \phi_{11}=\frac{1}{\sqrt{1(1)^{2}+2(-0.18614)^{2}}}=0.9670 \\
& \phi_{12}=\frac{1}{\sqrt{1(1)^{2}+2(2.6861)^{2}}}=0.2545 \\
& \phi_{21}=\frac{-0.18614}{\sqrt{1(1)^{2}+2(-0.8614)^{2}}}=-0.18
\end{aligned}
$$

Similarly for

$$
\phi_{22}=0.6838
$$

In matrix form, the normal modes can be represented as

$$
\Phi=\left[\begin{array}{cc}
0.9670 & 0.2545 \\
-0.180 & 0.6838
\end{array}\right]
$$

On free vibration of a shear building the eigenproblem was solved to determine the natural frequencies and normal modes of vibration. For a system of many degrees of freedom, the algebraic and numerical work required for the solution of an eigenproblem became a tedious task. For the purpose of solving an eigenproblem, the Jacobi Method was selected among several numerical methods.
E. Subroutine Jacobi. This subroutine program developed by Professor Wilson is used throughout this thesis to solve the eigenproblem. The description of the symbols utilized in this program are listed as follows:

Variables	Symbol in Thesis	Description
A (I, I)	[K]	Stiffness matrix
$B(I, I)$	[M]	Mass matrix
X (I, I)	[Ф]	Modal matrix
EIGV(I)	ω_{1}^{2}	Eigenvalues
D(I)		Working Vector
N		Order of matrices A and B
RTOL		Converge Tolerance (Set to 10. ${ }^{-12 \text {) }}$
NSMAX		Maximum number of sweeps (Set to 15)
ISPR		Index for printing during iteration 1=Print; $0=$ Do not Print

And the input data is subjected to the following formats

Formats	Variables
$2 I 10$	N, IFPR
$8 F 10.4$	$A(I, J)$ (read by rows)
$8 F 10.4$	$B(I, J)$ (read by rows).

III. FORCED VIBRATION OF SHEAR BUILDINGS

In the preceding chapter, it was shown that the free motion of a dynamic system may be expressed in terms of the normal modes in free vibration. The objective of this chapter is to show that the normal modes may also be used to transform the system of coupled differential equations into a set of uncoupled differential equations in which each equation contains only one dependent variable. Thus, the modal superposition method reduces the problem of finding the response of a multi-degree-of-freedom system to the determination of the response of a single degree-of-freedom systems.
A. Modal Superposition Method

Considering the equation of motion for a two story building subjected to forced vibration.

$$
\begin{gather*}
m_{1} \ddot{x}_{1}+\left(k_{1}+K_{2}\right) x_{1}-k_{2} x_{2}=F_{1}(t) \tag{19}\\
m_{2} \ddot{x}_{2}-K_{2} x_{1}+k_{2} x_{2}=F_{2}(t)
\end{gather*}
$$

In seeking the transformation from a coupled system into an uncoupled system of equations in which each equation contains only one unknown, it is necessary to express the solution in terms of the normal modes multiplied by some factors determining the contribution of each mode. Hence, the solution of (19) is assumed to be of the form:

$$
\begin{align*}
& x_{1}(t)=a_{11} z_{1}(t)+a_{12} z_{2}(t) \tag{20}\\
& x_{2}(t)=a_{21} z_{1}(t)+a_{22} z_{2}(t)
\end{align*}
$$

Substituting (20) into (19) gives
$m_{1} a_{11} z_{1}+\left(K_{1}+K_{2}\right) a_{11} z_{1}-K_{2} a_{21} z_{1}+m_{1} a_{12} \ddot{z}_{2}+\left(K_{1}+K_{2}\right) a_{12} z_{2}-K_{2} a_{11} z_{2}=$ $F_{1}(t)$
$m_{2} a_{21} \ddot{z}_{1}-k_{2} a_{11} z_{1}+k_{2} a_{21} z_{1}+m_{2} a_{22} \ddot{z}_{2}-k_{2} a_{12} z_{2}+k_{2} a_{22} z_{2}=F_{2}(t)$

To determine the appropriate factors $z_{1}(t)$ and $z_{2}(t)$ which will uncouple (21) it is advantageous to make use of the orthogonality relations to separate the modes. This is accomplished by multiplying the first of the equations (21) by a_{11} and the second by a_{21}. The addition of these equations after all the necessary algebra is performed, equation (21) yields:

$$
\begin{equation*}
\left(m_{1} a_{11}^{2}+m_{2} a_{21}^{2}\right) \ddot{z}_{1}+\omega_{1}^{2}\left(m_{1} a_{11}^{2}+m_{2} a_{21}^{2}\right) z_{1}=a_{11} F_{1}(t)+a_{21} F_{2}(t) \tag{22}
\end{equation*}
$$

Similarly, multiplying the first of (21) by a_{12} and the second by a_{22}, yields

$$
\begin{equation*}
\left(m_{1} a_{12}^{2}+m_{2} a_{22}^{2}\right) \ddot{z}_{2}+\omega_{2}^{2}\left(m_{1} a_{12}^{2}+m_{2} a_{22}^{2}\right) z_{2}=a_{12} F_{1}(t)+a_{22} F_{2}(t) \tag{22}
\end{equation*}
$$

Therefore, equations (22)a and (22)b correspond to a single degree-offreedom system which may be written as

$$
\begin{align*}
& M_{1} \ddot{Z}_{1}+K_{1} Z_{1}=P_{1}(t) \\
& M_{2} \ddot{Z}_{2}+K_{2} Z_{2}=P_{2}(t) \tag{23}
\end{align*}
$$

in which, $M_{1}=m_{1} a_{11}^{2}+m_{2} a_{22}^{2}$ and $M_{2}=m_{1} a_{12}^{2}+m_{2} a_{22}^{2}$ are the modal masses; $K_{1}=\omega_{1}^{2} M_{1}$ and $K_{2}=\omega_{2}^{2} M_{2}$, the modal spring constants and $P_{1}(t)=a_{11} F_{1}(t)+$ $a_{21} F_{2}(t)$ and $P_{2}(t)=a_{12} F_{1}(t)+a_{22} F_{2}(t)$ are the modal forces. When the modal shapes are normalized, equation (23) can be written as

$$
\begin{align*}
& \ddot{z}_{1}+\omega_{1}^{2} Z_{1}=P_{1}(t) \\
& \ddot{z}_{2}+\omega_{2}^{2} Z_{2}=P_{2}(t) \tag{24}
\end{align*}
$$

in which, P_{1} and P_{2} are given by

$$
\begin{align*}
& P_{1}=\phi_{11} F_{1}(t)+\phi_{21} F_{2}(t) \tag{25}\\
& P_{2}=\phi_{12} F_{1}(t)+\phi_{22} F_{2}(t)
\end{align*}
$$

The solution of the uncoupled equation (23) or (24) can be found by the application of Duhamel's integral as will be shown in a numerical example.

B. Numerical Example

Consider the structure of the numerical example of chapter one shown in Figure 3 with the only difference that, this time the first and the second story are subjected to constant loading applied suddenly at $t=0$; as is shown in Figure 4.

FIGURE 4 - Building Subjected to Constant Loading

The values of natural frequencies, and the modes are known by solving the building as free vibration. This was shown in a numerical example in the preceding chapter. These values are:

$$
\begin{array}{lll}
\omega_{1}=178.5 \mathrm{rad} / \mathrm{sec} & \phi_{11}=0.9670 & \phi_{21}=-0.18 \\
\omega_{2}=56.02 \mathrm{rad} / \mathrm{sec} & \phi_{12}=0.2545 & \phi_{22}=0.6838
\end{array}
$$

To determine the appropriate functions $Z_{1}(t)$ and $Z_{2}(t)$, which will enable to uncouple equation (21), it is necessary to use equation (23), by substituting into (25) the numerical values found in the preceding chapter, gives

$$
\begin{gathered}
P_{1}-0.967(1000)+(-0.18)(2,000)=607 \\
P_{2}=0.254(1000)+(0.6838)(2,000)=1,621.6
\end{gathered}
$$

Performing the numerical substitution in equation (23) yields,

$$
\begin{gathered}
\ddot{z}_{1}+(178.5)^{2} z_{1}=607 \\
\ddot{z}_{2}+(56.02)^{2} z_{2}=1,621.6
\end{gathered}
$$

Since it was assumed that $F_{1}(t)$ and $F_{2}(t)$ are constant loading applied suddenly at time equal zero the solution of the above equations is given by

$$
\begin{aligned}
& Z_{1}(t)=\frac{p_{1}}{\omega_{1}}\left(1-\cos \omega_{1} t\right)=\frac{607}{31,862.25}(1-\cos 178.5 t) \\
& Z_{2}(t)=\frac{p_{2}}{\omega_{2}}\left(1-\cos \omega_{2} t\right)=\frac{1,621.6}{3,138.24}(1-\cos 56.02 t)
\end{aligned}
$$

and the maximum displacement by

$$
\begin{aligned}
& z_{1 \max }=(2) \frac{P_{1}(t)}{\omega_{1}^{2}}=(2) \frac{607}{31,862.25}=0.038 \\
& z_{2 \max }=(2) \frac{P_{2}(t)}{\omega_{2}^{2}}=(2) \frac{1,621.6}{3,138.24}=1.032
\end{aligned}
$$

A method which is widely accepted and which gives a good estimation of the maximum response from the spectrum values is the square root of the sum of the squares of the modal contributions. This calculation is given by

$$
\begin{align*}
& X_{1 \text { max }}=\sqrt{\left(\phi_{11} Z_{1 \text { max }}\right)^{2}+\left(\phi_{12} Z_{2 \max }\right)^{2}} \tag{26}\\
& X_{2_{\max }}=\sqrt{\left(\phi_{12^{Z}} I_{\text {max }}\right)^{2}+\left(\phi_{22^{2}} Z_{\text {max }}\right)^{2}}
\end{align*}
$$

which upon substitution gives,

$$
\begin{aligned}
& x_{1 \max }=\sqrt{(0.9670 \times 0.038)^{2}+(0.2545 \times 1.032)^{2}}=0.2652 \\
& x_{2 \max }=\sqrt{(-0.180 \times 0.038)^{2}+(0.6838 \times 1.032)^{2}}=0.7057
\end{aligned}
$$

C. Response of a Shear-Building to Ground Motion

The response of a shear building to the base or foundation motion is conveniently obtained in terms of relative displacements with respect to the base motion.

For a two-story shear building shown in Figure. 5a which has its mathematical model shown in Figure 5b, the equations of motion are obtained by applying Newton's second law to Figure $5 b$ as follows,

FIGURE 5(a) - Shear Building Subjected to Ground Motion

FIGURE 5(b) - Mathematical Model and its Free Body Diagram

$$
\begin{gather*}
m_{1} \ddot{x}_{1}+k_{1}\left(x_{1}-x_{5}\right)-k_{2}\left(x_{2}-x_{1}\right)=0 \tag{27}\\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)=0
\end{gather*}
$$

where $x_{s}=x_{s}(t)$ is the displacement imposed to the base of the structure. Expressing the displacements in terms of relative displacements,

$$
\begin{align*}
& u_{1}=x_{1}-x_{s} \tag{28}\\
& u_{2}=x_{2}-x_{s}
\end{align*}
$$

and derivading (28) twice with respect to time yields,

$$
\begin{align*}
& \ddot{x}_{1}=\ddot{u}_{1}+\ddot{x}_{s} \tag{29}\\
& x_{2}=\ddot{u}_{2}+\ddot{x}_{s}
\end{align*}
$$

By substituting (28) and (29) into (27) gives,

$$
\begin{gather*}
m_{1} \ddot{u}_{1}+\left(k_{1}+k_{2}\right) u_{1}-k_{2} u_{2}=-m_{1} \ddot{x}_{S} \tag{30}\\
m_{2} \ddot{u}_{2}-k_{2} u_{1}+k_{2} u_{2}=-m_{2} \ddot{x}_{5}
\end{gather*}
$$

For a base motion of shear building equations (29) may be written as,

$$
\begin{align*}
& \ddot{z}_{1}+\omega_{1}^{2} z_{1}=\frac{-m_{1} a_{1} 1+m_{2} a_{21}}{m_{1} a_{11}+m_{2} a_{21}} \ddot{x}_{s}(t) \tag{31}\\
& \ddot{z}_{2}+\omega_{2}^{2} z_{2}=\frac{-m_{1} a_{1} 2+m_{2} a_{22}}{m_{1} a_{12}^{2}+m_{2} a_{22}^{2}} \ddot{x}_{s}(t)
\end{align*}
$$

in a compact form gives,

$$
\begin{align*}
& \ddot{z}_{1}+\omega_{1}^{2} z_{1}=\Gamma_{1} \ddot{x}_{s}(t) \tag{32}\\
& z_{2}+\omega_{2}^{2} z_{2}=\Gamma_{2} \ddot{x}_{s}(t)
\end{align*}
$$

where Γ_{1} and Γ_{2} are called the participation factors which are represented by

$$
\begin{equation*}
r_{1}=\frac{-m_{1} a_{11}+m_{2} a_{21}}{m_{1} a_{11}^{2}+m_{2} a_{21}^{2}} \text { and } \Gamma_{2}=\frac{-m_{1} a_{12}+m_{2} a_{22}}{m_{1} a_{12}+m_{2} a_{22}^{2}} \tag{33}
\end{equation*}
$$

The relation between the modal displacement Z_{1}, Z_{2} and the relative displacement u_{1}, u_{2} is given in equation (20) as

$$
\begin{align*}
& u_{1}=a_{11} z_{1}+a_{12} z_{2} \tag{34}\\
& u_{2}=a_{21} Z_{1}+a_{22} z_{2}
\end{align*}
$$

The change of variable to make the second member of equation (32) equal $X_{s}(t)$, take the form of

$$
\begin{align*}
& Z_{1}=r_{1} g_{1} \tag{35}\\
& z_{2}=r_{2} g_{2}
\end{align*}
$$

substituting (35) into (32) gives

$$
\begin{align*}
& \ddot{g}_{1}+\omega_{1}^{2} g_{1}=\ddot{x}_{s}(t) \tag{36}\\
& \ddot{g}_{2}+\omega_{2}^{2} g_{2}=\ddot{x}_{s}(t)
\end{align*}
$$

Finally, solving for $g_{1}(t)$ and $g_{2}(t)$ the uncoupled equation (36) and substituting this solution into (34) and (35) gives

$$
\begin{align*}
& u_{1}(t)=r_{1} a_{11} g_{1}(t)+r_{2}{ }_{12} g_{2}(t) \tag{37}\\
& u_{2}(t)=r_{1} a_{21} g_{1}(t)+r_{2} a_{22} g_{2}(t)
\end{align*}
$$

Whenever the maximum modal response $g_{1 \text { max }}$ and $g_{2 \max }$ are obtained from spectral charts, the maximum values of $u_{1 \max }$ and $u_{2 \max }$ can be obtained by using (26) in the following form:

$$
\begin{align*}
& u_{1 \text { max }}=\sqrt{\left(\Gamma_{1} 1_{11} g_{1 \text { max }}\right)^{2}+\left(\Gamma_{2}{ }_{21} g_{2 \text { max }}\right)^{2}} \\
& u_{2 \max }=\sqrt{\left(\Gamma^{\mathrm{a}} 12^{\mathrm{g}} 1_{\max }\right)^{2}}+\left(\bar{\Gamma}_{\left.2^{\mathrm{a}} 22^{\mathrm{g}}{ }_{2 \max }\right)^{2}}\right. \tag{38}
\end{align*}
$$

D. Subroutine Modal

This modal is utilized to obtain the response of multiple degree of freedom system by using the superposition methoc. The theory and the
manipulation was shown throughout this chapter. The symbols for this subroutine are shown below.

Variables	Symbols in Thesis	Description
ND	N	Number of degrees of freedom
GR	g	Excitation index: For support excitation, g-acceleration of gravity. For forced excitation, $g=0$.
$\operatorname{EIGEN}(\mathrm{I})$	ω_{i}^{2}	Square of natural frequencies (eigenvalues)
X (I, J)	$\|\Phi\|$	Modal matrix (eigen-vectors)
DT		Time step of integration
TMAX		Maximum time of integration
NQ(L)		Number of points defining the excitation at coordinate L
M (I, J)		Mass matrix
T(I)	t_{i}	Time at point i
$\mathrm{P}(\mathrm{I})$	$P\left(t_{i}\right)$	Force or acceleration at time $\mathrm{t}_{\mathbf{j}}$
XIS(I)	ξ_{i}	Damping ratios

The input data are subjected to the following formats.

Format	Variables
(I10,F10.0)	ND, GR
(8F10.4)	$M(I, J)$ (read by rows)
(8F10.4)	$\operatorname{EIGEN}(\mathrm{I}),(\mathrm{I}=1, \mathrm{ND})$
(8F10.4)	$X(\mathrm{I}, \mathrm{J})$ (read by rows)
(2F10.4, 1215)	DT, TMAX, $N Q(L)(L=1 \ldots . . N G)$, where $N G=N D$ when forces are at coordinates or $N G=1$ when acceleration is at support
(8F10.2)	$\mathrm{T}(\mathrm{I}), \mathrm{P}(\mathrm{I})(\mathrm{I}=1, \mathrm{NQ}(\mathrm{L}))$ (one card per forcing function)
(8F10.3)	$2 \mathrm{SI}(\mathrm{I}),(\mathrm{I}=1, \mathrm{ND})$

IV. DAMPED MOTION OF SHEAR BUILDING

In the previous chapter the analysis of a shear building was based upon undamped system of motion; the techniques to determine the response of the shear building were discussed, giving special emphasis on the tranformation from coupled systems to uncoupled systems, by means of a transformation of coordinates which incorporate the property known as orthogonality of the modal shapes.

In the consideration of damping forces in the dynamic analysis of shear building presented in this chapter, the system of equations of motion became more complicated, not only because the system will contain one more forcing factor, but the procedure to uncouple the system will also become difficult. One way to avoid this difficulty is by introducing some restrictions or conditions on the functional expression for the coefficients of damping.

For practical purposes, damping is neglected for the calculation of natural frequencies and modal shapes of the system. Consequently for the solution of the Eigenvalue problem the system is reduced to an undamped and free vibration system.

FIGURE 6(a) - Shear Building Subjected to Damped Motion

FIGURE 6(b) - Mathematical Model of Shear Building

A. Equation of Motion for Damped System

For a viscously damped three-story shear building shown in Figure $6(a)$ the equation of motion can be obtained by applying Newton's second law to the free body diagram of the mathematical model shown in Figure 6(b); these equations are,

$$
\begin{gather*}
m_{1} x_{1}+c_{1} \dot{x}_{1}+k_{1} x_{1}-c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)-k_{2}\left(x_{2}-x_{1}\right)=F_{1}(t) \\
m_{2} \ddot{x}_{2}+c_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)+k_{2}\left(x_{2}-x_{1}\right)-c_{3}\left(\dot{x}_{3}-\dot{x}_{2}\right)-k_{3}\left(x_{3}-x_{2}\right)=F_{2}(t) \tag{39}\\
m_{3} \ddot{x}_{3}+c_{3}\left(\dot{x}_{3}-\dot{x}_{2}\right)+k_{3}\left(x_{3}-x_{2}\right)=F_{3}(t)
\end{gather*}
$$

in matrix form

$$
\begin{equation*}
[M]\{\ddot{x}\}+[c]\{z\}+[K]\{x\}=\{F(t)\} \tag{40}
\end{equation*}
$$

where the only new factor introduced is the damping matrix [c] which is given by

$$
[c]=\left[\begin{array}{ccc}
c_{1}+c_{2} & -c_{2} & 0 \\
-c_{2} & c_{2}+c_{3} & -c_{3} \\
0 & -c_{3} & c_{3}
\end{array}\right]
$$

Since, equation (40) is obviously a coupled system of equations, then it is convenient to uncouple by introducing the following transformation of coordinates:

$$
\begin{equation*}
\{x\}=[\Phi]\{Z\} \tag{41}
\end{equation*}
$$

where $[\Phi]$ is the modal matrix obtained by solving the system as undamped free vibration, substituting (41) into (40) gives,

$$
\begin{equation*}
[n][\Phi]\{\ddot{Z}\} \quad[c][\Phi]\{Z\} \quad[K][\Phi]\{Z\} \quad\{F(t)\} \tag{42}
\end{equation*}
$$

Premultiplying (42) by the transpose of the nth modal vector $\{\Phi\}_{n}^{\top}$ yields

$$
\begin{equation*}
\{\Phi\}_{n}^{T}[M][\Phi]\{\ddot{Z}\}+\{\Phi\}_{n}^{T}[C][\Phi]\{\dot{Z}\}+\{\Phi\}_{n}^{T}[K][\Phi]\{Z\}=\{\Phi\}_{n}^{T}\{F(t)\} \tag{43}
\end{equation*}
$$

It is noticed that the orthogonality property of the modal shapes, is given by

$$
\begin{gather*}
\{\Phi\}_{n}^{T}[M]\{\Phi\}_{m}=0 \\
\{\Phi\}_{n}^{T}[K]\{\Phi\}_{m}=0, m \neq n \tag{44}
\end{gather*}
$$

Causing all components except the nth mode in the first two terms of (43) to vanish. A similar reduction is assumed to apply to the damping
term in (43) that is

$$
\begin{equation*}
\{\Phi\}_{n}^{T}[C]\{\Phi\}_{m}=0 \quad n \neq m \tag{45}
\end{equation*}
$$

then the coefficient of the damping term in (43) will reduce to $\{\Phi\}_{n}^{\top}[C]\{\Phi\}_{n}$; therefore (43) gives

$$
M_{n} \ddot{z}_{n}+c_{n} \dot{z}_{n}+K_{n} z_{n}=F_{n}(t)
$$

or

$$
\begin{equation*}
\ddot{z}_{n}+z_{n} \omega_{n} \dot{z}_{n}+\omega_{n}^{2} z_{n}=\frac{F_{n}(t)}{M_{n}} \tag{46}
\end{equation*}
$$

in which

$$
\begin{gather*}
M_{n}=\{\Phi\}_{n}^{T}[M]\{\Phi\}_{n} \\
K_{n}=\{\Phi\}_{n}^{T}[K]\{\Phi\}_{n}=\omega_{n}^{2} M_{n} \\
C_{n}=\{\Phi\}_{n}^{T}[C]\{\Phi\}_{n}=2 \xi \omega_{n} M_{n} \tag{47}\\
F_{n}(t)=\{\Phi\}_{n}^{T}\{F(t)\}
\end{gather*}
$$

The normalization that was presented previously

$$
\begin{equation*}
\{\Phi\}_{n}^{T}[M]\{\Phi\}_{n}=1 \tag{48}
\end{equation*}
$$

will give $M_{n}=1$, so that (46) will reduce to

$$
\begin{equation*}
\ddot{Z}_{n}+2 \xi \omega_{n} \dot{Z}+\omega_{n}^{2} Z_{n}=F_{n}(t) \tag{49}
\end{equation*}
$$

which is a set of uncoupled differential equations.

B Conditions to Uncoupled Equations in Damped Systems

The derivation of equation (49) was based upon the assumption that damping can also be uncoupled by using the normal coordinate transformation utilized to uncouple the inertial and elastic forces.

It is crucial, at this point to explain the condition under which this uncoupling will occur, that is, the form of the damping matrix [C] to which (45) applies.

Rayleigh showed that in damping matrix of the form

$$
\begin{equation*}
[C]=a_{0}[M]+a_{1}[K] \tag{50}
\end{equation*}
$$

in which a_{0} and a_{1} are proportionality factors, the orthogonality condition will be satisfied, that is, premultiplying both sides of (50) by the transpose of nth mode $\{\Phi\}_{n}^{\top}$ and postmultiplying by the modal matrix [Φ] gives equation (51) as follows:

$$
\begin{equation*}
\{\Phi\}_{n}^{T}[C][\Phi]=a_{0}\{\Phi\}_{n}^{T}[M][\Phi]+a_{1}\{\Phi\}_{n}^{T}[K][\Phi] \tag{51}
\end{equation*}
$$

with the orthogonality condition (44) equation (51) reduces to

$$
\{\Phi\}_{n}^{\top}[C][\Phi]=a_{0}\{\Phi\}_{n}^{\top}[M][\Phi]+a_{1}\{\Phi\}_{n}^{\top}[K][\Phi]
$$

or by (47) equation (51) takes the following form

$$
\begin{align*}
& \{\Phi\}_{n}^{\top}[C][\Phi]=a_{0} M_{n}+a_{1} M_{n} \omega_{n}^{2} \tag{52}\\
& \{\Phi\}_{n}^{\top}[C][\Phi]=\left(a_{0}+a_{1} \omega_{n}^{2}\right) M_{n}
\end{align*}
$$

which shows that, when the damping matrix [C] is of the form (50), the damping is coupled with equation (41). It can also be shown that [M] and [K] satisfy the orthogonality condition. In general, it takes the form

$$
\begin{equation*}
[C]=[M] \sum_{i} \text { ai }\left([M]^{-1}[K]\right)^{i} \tag{53}
\end{equation*}
$$

in which as many terms may be included as desired.
Rayleigh damping equation (50) obviously is contained in equation (53); however, by including additional terms in this equation it is possible to obtain a greater degree of control over the modal damping ratios resulting from damping matrix. With this type of damping matrix it is possible to compute the damping influence coefficients necessary to provide a decouple system having any desired damping ratios in any specified number of modes. For each mode n, the generalized damping is given by equation (54) of the following form

$$
\begin{equation*}
C_{n}=\{\Phi\}_{n}^{T}[C]\{\Phi\}_{n}=2 \Sigma_{n} \omega_{n} M_{n} \tag{54}
\end{equation*}
$$

But if [C] as given by equation (53) is substituted in the expression for C_{n}, the series of generalized damping is

$$
\begin{equation*}
C_{n}=\{\Phi\}_{n}^{T}[M]_{i} \Sigma a_{i}\left([M]^{-1}[K]^{i}{ }_{\{\Phi\}_{n}}\right) \tag{55}
\end{equation*}
$$

Now, by using the equation of motion as free vibration $[K]\{a\}=\omega^{2}[M]\{a\}$ after normalized $K\{\Phi\}_{n}=\omega^{2} M\{\Phi\}_{n}$ and performing the necessary algebra it
is possible to show that the damping coefficient associated with any mode n may be written as

$$
\begin{equation*}
c_{n}=\sum_{i} a_{i} \omega_{n}^{2 i} M_{n}=2 \xi_{n} \omega_{n} M_{n} \tag{56}
\end{equation*}
$$

from which the damping ratio can be given as

$$
\begin{equation*}
\xi_{n}=\frac{1}{2 \omega_{n}} \Sigma a_{i} \omega_{n}^{2 i} \tag{57}
\end{equation*}
$$

Equation (57) may be used to determine the constants $\mathbf{a}_{\mathbf{i}}$ for any desired values of modal damping ratios corresponding to any specified numbers of modes. For instance, to evaluate the first four damping ratios ξ_{1}, ξ_{2}, ξ_{3}, and ξ_{4} in this case (57) gives the following equation

$$
\left[\begin{array}{l}
\xi_{1} \tag{58}\\
\xi_{2} \\
\xi_{3} \\
\xi_{4}
\end{array}\right]=1 / 2\left[\begin{array}{llll}
\omega_{1} & \omega_{1}^{3} & \omega_{1}^{5} & \omega_{1}^{7} \\
\omega_{2} & \omega_{2}^{3} & \omega_{2}^{5} & \omega_{2}^{7} \\
\omega_{3} & \omega_{3}^{3} & \omega_{3}^{5} & \omega_{3}^{7} \\
\omega_{4} & \omega_{4}^{3} & \omega_{4}^{5} & \omega_{4}^{7}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]
$$

In general (58) may be expressed symbolically and in condensed form as follows

$$
\begin{equation*}
\{\xi\}=1 / 2[Q]^{-1}\{\mathrm{a}\} \tag{59}
\end{equation*}
$$

from which it is possible to get the constant \{a\} as

$$
\begin{equation*}
\{a\}=2[Q]^{-1}\{\xi\} \tag{60}
\end{equation*}
$$

Finally, the damping matrix is obtained after the substitution of equation (60) into (53).

It is interesting to observe from equation (57) that in the special case when the damping matrix is proportional to the mass $\{C\}=a_{0}[M]$ when $\mathrm{i}=0$, the damping ratios are inversely proportional to the natural frequencies; thus the higher modes of the structure will be given very little damping.

There is yet a second method for evaluating the damping matrix corresponding to any set of specified modal damping ratio. This method is presented starting with the following relationship

$$
[A]=[\Phi]^{\top}[C][\Phi]=\left[\begin{array}{ccc}
2 \xi_{1} \omega_{1} M_{1} & 0 & 0 \tag{61}\\
0 & 2 \xi_{2} \omega_{2} M_{2} & 0 \\
0 & 0 & 2 \xi_{3} \omega_{3} M_{3} \\
\ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right]
$$

It is evident that the damping matrix [C] may be evaluated by pre- and post-multiplying (61) by the inverse of the modal matrix and its inverse transpose, such that

$$
\begin{equation*}
[C]=[\Phi]^{-\top}[A][\Phi]^{-1} \tag{62}
\end{equation*}
$$

Therefore, for any specified set of modal damping ratios $\{\xi\}$, matrix [A] can be evaluated from (61) and damping matrix [C] from (62). However, in practice, the inversion of modal matrix is a tedious task. But taking advantage of orthogonality properties of the mode shapes, the following expression can be deduced.

$$
\begin{equation*}
[C]=[M]\left(\sum_{n=1}^{N} \frac{2 \xi_{n} \omega_{n}}{M_{n}}\{\Phi\}_{n}\{\Phi\}_{n}^{T}\right)[M] \tag{63}
\end{equation*}
$$

The damping matrix [C] obtained from (63) will satisfy the property of orthogonality and therefore, the damping term in equation (40) will be uncoupled with the same transformation (41) which serves to uncouple the inertial and elastic forces.

C. Subroutine Damp

This subroutine developed by Professor Paz calculates the system damping [C] using (63) from specified modal damping ratios. The main program gives the values of $[\Phi]$ and $[M]$ to the subroutine, but, the damping ratio should be given, with the following input format.

Variable	Symbol in Text	Format	Description
$\mathrm{x}(\mathrm{I})$ $(\mathrm{I}=1, \mathrm{NL})$	ξ	8 F 10.2	Damping ratio for modes 1 to NL

The past experience indicates that values for the modal damping ratios in structures are generally in the range of 2% to 10%, probably no more than 20%. Therefore for all practical purposes in a design of a dynamic structure the engineer takes 10% as a typical figure.

D. Seismic Response of an Elastic Shear Building

The computer program that is presented in this section, calculates the dynamic response of a shear building, within the linearelastic range and subjected to excitation at its foundation. The modal superposition method of analysis is utilized to uncouple the system of differential equations. Subroutine Jacobi, developed by Professor Wilson,
is called to solve the eigenproblem resulting in eigenvalues (ω_{1}^{2}) and the eigenvectors which form the modal matrix [Φ]. Subroutine Modal, which is called next, solves the resulting modal equations using Duhamel's integral described by Professor Paz in Chapter 4 of Structural Dynamics. Finally at each step, the solution of the modal equations are combined in equation (41) to obtain the response in terms of the original coordinates of the shear building.

The variables and input formats used in this program are shown in tabular form below.

Variable	Symbol in Thesis	Description
DT	Δt	Time increment
E	E	Modules of elasticity
GR	g	Acceleration of gravity
TMAX		Maximum time response
NEQ		Number of points of the excitation function
ND		Number of degrees of freedom
IFPR		Index for intermediate printing in Jacobi; $1=$ Print, $0=$ do not print
SI	I	Moment of inertia of story \mathbf{i}
SL	L	Height of story i
SM (I, I)	M_{i}	Mass at floor level i
TC(I)	t_{i}	Time at point i
$\mathrm{P}(\mathrm{I})$	\ddot{Y}_{S}	Support acceleration at time $\mathrm{t}_{\mathbf{i}}$

These variables are subjected to the following input formats.

Vormats	
$(4 \mathrm{~F} 10.2,255)$	DT, E $, \mathrm{GR}, \mathrm{TMAX}, \mathrm{NEQ}, \mathrm{ND}$
$(3 \mathrm{~F} 10.2)$	$\mathrm{SI}, \mathrm{SL}, \mathrm{SM}(\mathrm{I}, \mathrm{I})$ (one card for each story)
$(8 \mathrm{~F} 10.2)$	$\mathrm{TC}(1), \mathrm{P}(1), \mathrm{TC}(2), \mathrm{P}(2) \cdots \mathrm{TC}(\mathrm{NEQ}), \mathrm{P}(\mathrm{NEQ})$

 ASSEMBLE STIFFNESS MATRTX
    ```
    srismit resfonse glastic sheag numloidg
```


DIMENS:CN SK(30,30), EM (30, 30), SC(30,30$), F(30), x(30,20)$,

c
c reaj iyfut ofta aye igitialize
c

100 FORVAT (2=10.2.2=10.0, $210.2,315)$
$\mathrm{Nx}=\mathrm{T} \cdot \mathrm{A}: 1 \mathrm{DT}+2$
$0011=1, \therefore x$
$1 \mathrm{~F}(1)=0.0$
OC $2:=1$: 0
DO $2 J=1,0$
$\operatorname{SM}(:, J)=0.0$
SC(I.J) $=0.0$
$x(:, ~ J)=0.0$
$2 S k(I \cdot J)=0.0$
$\mathrm{ND} 1=\mathrm{PO}+1$
$T U=T H E T A+E T$
$A 1=3.1 \mathrm{TU}$
A2 $=5.17 \mathrm{U}$
$\Delta 3=T U / 2$.
$44=A 2 / T U$
007 I=1••
READ(E,110) SE.SL.SM(:.I)

110 FERMAT(SF10. $2, F 10.0)$
$S(I)=12 \cdot 0 \cdot 5 * S: / S L *+3$
$\operatorname{SC(I,亡)=S:(I,Z)}$
$U D(I)=0.0$
7 UV (I) $=0.0$
$s(V D+1)=0.0$
c) $15:=1.00$
IF(i.EQ.1) G0 TO 1G
SK(i,j-1) $=-s(!)$
sK (I-1, i) $=-5(:)$

c
c
C
CALL DAMP(NO, X.SM.SE, EIGEN:
interpalatroin efterei. nata ojints
READ(E, 12C) (TC(L),F(L),L=1, \therefore CO)

100 FORMAT(AF1C.?)
$004:-1 \cdot \mathrm{nc}$

C WKiTE（f．ili（i）T，F（i）

```
10 CEvTINuE
10 CSVTING
```

16 CONTIMUS

C
c．Calculate initial acceleration
C．CALCULATE INITIAL ACCELERATIOA
C 301 HRETE(E,21n) (x(LIgLJ),LJ=1,NロI)
CALL SSLVE (SE, X)
C HRITE(S,21?) (X(LIQNE1).LI=1, ND)
DO $23 \quad i=1,90$

WRITE(6,251)
c
c
c
STEP Ey STEF LOCP TO C\&LCULATE RESFENGE
$N T=T C(: E O) / C T$
IF（：T．GT．TMAX／DT：B．T＝TMAX／DT
NT1 $=\stackrel{i}{ } T+1$
$F(1)=P(i)$
$厶^{n}: \stackrel{1}{\prime}=0.0$
$!1=1$
Dの $10 \quad I=2, \because T 1$
$A I=i-1$
$T=A I+\Gamma T$

IF（T．LE．TC：：＋＋））G T
ARN＝－TC（ $\mathrm{I} \dot{\mathrm{I}}+1)+T-0 T$
$I I=I I+I$
－$A \because \because=A \because \because+D T$
$F(I)=P(I I)+(P(I I+I)-D(I I) * A N N /(T C(I I+I)-T C(I I))$

16 CONTIMUE

C
NT＝TVAX $A C T$
C0 22 ェ＝1．iv
$X(T, S 1)=-F(1)+S N(I \cdot T)$
Cう $22 \mathrm{J=1}$ •it
$22 \times(i, j)=\subseteq:(\vdots: J)$
DC $301 \mathrm{~L}=1$ an

CALL SELVE（SE，X）
C WRITE（5．213）（X（LIMC1）．LI＝1．ND）
DO $23 \quad i=1, ~: ~: ~$
23 UA（I）$=x(\therefore, ~ 51)$
 WRITE（6．2．51）
c
C
C
DO $\because 0 \mathrm{~L}=1 \cdot 1 \mathrm{~T}$
$4 L=L$
$T=C T * 4!$
DE 20：－1． 0
IF（I－EC－I）© TC 20
$S K(I, J-1)=-S(\Xi)$
SK（（I－1），i）＝－S（I）
$20 S K(I, I)=S(I)+S(I+1)$
DO $251=1, \therefore 0$
C2 $25 \mathrm{~J}=1,10$
$25 \times(I \cdot()=S K(I, J)+A 4+5 \times(5, U)+A 1+S C(I, J)$
C） $35 \pm=1 \cdot \therefore$

［\％ $30 \quad \mathrm{c}=1, \because \mathrm{~m}$

$1+(S \mu(:-J)+E+0+A 3 \times C(i, ~ J)) * U A(J)$
3E CGVT：CUE

C 302 WF！TE（6，215）（x（L！LU），LJ＝1，Nち1）
CALL S CLVE（：D，x）
C URITE（5，21C）（x（LI，PD1），LI＝1，MO）
DC $3 E!=1, \mathrm{VR}$

nUA（I）＝TUA（i）／THET：

```
        OUV=OT*UA(i)+ET*Rじょ(:)/つ.0
```



```
        UV(:)=UV(:)+ OUV
        3E CONTINLIS
        0050:=i."0
        Y(I*:D1)=F(L+1)*(-SM(I,I))
        00 45 J=1.\therefore?
```



```
        45 X(I.J)= SM(T.U)
        50 CrNTIOUE
C
00 3n? LI=I,N:C
303 WRITF(S.21!) (%(LT,LU).LJ=1,:!1)
CALL 5CLVE (SR,X)
C WRITE(E,E1!) (* (LI,ND1),L:=1,!.E)
    00 6C i=1.: L
UA(T)=X(:, \becauseCI)
    GO WRITF(E.25G)T,U\cap(こ),UV(E),UA(!)
    250 F=RNAT(F1R.5.3F15.4)
    90 COVTJ:UUE
        STOP
        EvJ
            SUPRCUTIME SELVE (A.E)
            IMPLICIT REFL * S (:-H,O-Z)
            DIMENSIC?: A(30,30)
            M=1
            EPS=1.5E-10
            NPLUSY=`+
            CET=1-0
            DC 9 K=1,*
            DET=こミT+A(K.K)
            IF(DAES(A(K,K)).GT.EFS) GOTO 5
            WRITE(F,20こ)
            G0 T^SE
        \ KP1=K+1
            CO 6 j=KFI, NOL!ISM.
        6 A(K,U) =A(K, J)/L(K,K)
            A(K,K)=1.
            00 9:=1.:
```



```
            EO E J=KP1,NOLUSM
```



```
            A(I,K)=C.OOC
            G CORTINUE
202 FCFNLT(37WESNALL FIVOT -MATRIX MAY EE SI:ISULAR )
    \nablaG FETUP::
        EvJ
            SURRCUTINE JACORI (A,E,X,EIGV,D.AG&IFPR)
            INPLICIT &=LL* (1-m-0-?)
            DINEASISN , (30,30),=(30,30),X(30,30),EIGV(30),[(30)
                C
                INItIALIzE EIGEM.VALUE GND EICENVECTOR MATPICES
            NSHAX=15
            RTEL = 1.M-12
            ICUT=5
            0010:=1."
            IF(A(I,I).ET.O. . MNO. G(I,I).GT.O.)GO.T:4
            WRITE(ICUT&OCO)
            STOD
```

 00 30 I=1, "
 DO \(20 \quad J=10^{\circ}\)
 \(20 \times(1, \mathrm{~J})=0\).
 \(30 \times(1,1)=1\).
 IF(Ni.EG.1) RETUF:!
 IVITIALIZE SMEFF CこURTEP GND EEGEM ITEOATICN
 \(\therefore\) SWEE \(=0\)
 \(N R=N-1\)
 40 NSWEEP=NSWFEF 1
 IF (IFPF.EG-1) WRITE (ICUT, 2000) PGWEEF
 CHECK If PRESEVT OFF-D:AGGNAL ELENEVT IS LARGE
 EPS \(=(.01 * *\) (SEEF \() * 2\)
 DO \(210 \mathrm{~J}=3.1 \mathrm{R}\)
 \(J J=J+1\)
 CO 210 k=Ju••
 EPTJLA \(=(A(U, G) * A(J, K)) /(A(U, J)+A(K \cdot K))\)

IF((EPTCLA.LT.EOS). ARD. (EPTOLE.LT.EPS))GU TC21O
if zeroine is requifed.calculate the potatich ratrix element ca.ce
$A K K=A(x, K) * E(J, K)-E(K, K) * A(J, K)$
$A J J=A(J, J)+E(J, K)-E(J, J) * A(J, k)$
$A B=A(J, J) * E(K, K)-L(K, K) * E(U, J)$
$A K K=A(x, K) * E(J, K)-E(K, K) * A(J, K)$
$A J J=A(J, J)+E(J, K)-E(J, J) * A(J, k)$
$A B=A(J, J) * E(K, K)-L(K, K) * E(U, J)$
$A K K=A(x, K) * E(J, K)-E(K, K) * A(J, K)$
$A J J=A(J, J)+E(J, K)-E(J, J) * A(J, k)$
$A B=A(J, J) * E(K, K)-L(K, K) * E(U, J)$
CHECK = ($19+2 B+4 .-4 K K+4 J U) / 4$.
IF (こHECK) 50.60 . 60
50 HRITE(IOUT.2020)
STI?
60 SQCH=DSORT(CHECK)
D1 = $\triangle E / \because+$ SECH
C2 $=\mathrm{A}$ - $/ 2-$ - 2 CH
DEN=01
IF(DAZS(DE),GT•DA=S(D1))DEN=コ 人

$70 \quad C A=0$.
$C G=-A(J, K) / A(K, k)$
$C E=-\dot{A}(v, k) / \dot{\mu}(k, k)$
GO TO $=0$
SO CAFAKK/OE.
CG=-AJJ/GE:
50 iF $(N-2) 100,150,100$
$100 J F 1=J+1$
JM1 $=\mathrm{J}-1$
$K P 1=k+1$
$K M 1=K-1$
IF (Jvi-1) ? ? 0.110,110
110 OO $120:=1, u^{2} 1$
$A J=2(1,1)$
$B J=B(1, U)$
A 人 $=$ ($(:, k)$
EK=E(! K$)$
$A(I, J)=L J+\operatorname{Cr} * A K$
UPDATE THE EIGE：VECTCR MATRIX AFTER EACH POTATIO：
$00200:=19:$
XJ＝x（！．U）
$x k=x(I, k)$
$x(I, J)=x J+C 0+x k$

```

```

210 CONTIUUE
UPJATE THE EIGENVLUES AFTER EACH SKEEF
DO $220 \quad \mathrm{I}=1 . \therefore$

```

```

WPITEGEUT－202．3）
STCP
220 EIGV（ミ）＝4（！ロ）／F（I，I）
IF（IFDE．EC．©）G？TS 230
HRITE（：CUT，2030）
WRITE（：CUT，2010）（EIGV（I），I＝1，N）
C
C CHECK E：P CCRVEDGENCE
C
230 cn 240 I＝1日

```

```

DTF＝DAMS（EGVV（：）－ก（！））

```

```

240 COMTIVU5

```
```

$E(I, 7)=c j+-r+a j$
$A(i, k)=A k+C A * \Delta J$

```


```

140 C2 1 CG $I=k ? 1,0$ ：
$A J=\Delta(J . I)$
Eい＝5（J．i）
$A K=2(k,!)$
BK＝亏（K，$)$
$A(J, \dot{i})=2 j+C G * i k$
E（J，()$=E v+C E+F K$
$A(K, I)=2 K+C A+2 J$
$150-5(k, i)=9 k+C \dot{\mu}+5 \cdot j$
1EC IF（Jフ1－KM1）170．170．1cc
170 DO 1：0 I＝Jご1•KM1
$\dot{4} \omega=L(J, i)$
EJ＝？（J，I）
$A K=A(I, K)$
SK＝E（ $-k)$
$A(J, I)=A J+C G \bullet \hat{K}$
E（J．I）$=E U+C G * E K$
$A(I, Y)=A K+C A+A U$.
1と0 已（1，K）＝ヨK＋Ca＊EJ
$1 \ni 0$ AK＝A（K•K）
EK＝E（K•K）
$A(K, K)=i K+2 . * C \div * L(J, k)+C A * C A * A(J, J)$
$B(K, K)=O K+2 *(C * E(J, K)+C A * C A * E(J, J)$
$A(J, U)=\dot{A}\left(U, L^{\prime}\right)+?=* C E+\Delta(U, K)+C E \times C G * A K$
$B(U, U)=F(U, U)+2 \cdot+C G+E(u, K)+C E+C G * E$
$A\left(J, K_{1}\right)=0$ ．
$B(J, K)=0$ ．
C

```
```

C
REGUIKED
C
EPS=FTCL*?
DO 250 J=1, : :
لJ= J + 1
ご $250 k=\cup 山 \because$
EPSA=(A (J,k)*L(J,K))/(A(J, J)* $\dot{(N, K))}$

```


```

 GO TO 2. 0
 250 cosTINした
C
C FILL EUT EETTEN TF:AGGLE OF RESULTANT PATRECES
AVJ SCLLE EJGEYVECTこRS
C
255 D $2605=1 \%$
DO $260 \quad J=1 \cdot N$
$A(J ; I)=A(:, J)$

```

```

 [0 27! \(\quad \cup=1, ~ V\)
 EE=OSGRT(E (J, U))
 DO \(270 k=1\) N
 \(276 x(K, u)=x(K, J) /\) Ē
 C
C
C
C
EPS＝FTCL＊？

```

```

لЈニコ＋1
0ヵ250 K＝UU• \because
EPSA＝（A（J，K）$+(J, K)) /(A(J, J) * \dot{L}(k, K))$

```


``` GOTの2天0
250 çaTINUE
C
C FILL EUT ESTTEN TFYAGGLE OF RESULTANT PATRICES
AVJ SCLLE EJSEYVECTこRS
```

```
255 DO 260 こ＝1•1：
\(00260 \quad J=1 \cdot N\)
\(A(J ; I)=A(:, J)\)
```



```
C0 \(270 \quad u=1, \mathrm{~V}\)
EE＝OSGRT（E（J，J））
DO \(270 k=1\) N
\(276 x(K, u)=x(K, J) /\) Ē
UPDATE MATFIX ANO STAET HEU SWEEPIF ALLGWED
```



```
RETJR＊
200 OO \(20=1, \therefore\)
290 D（I）＝EこGV（：）
IF（NSMEEP．LT USAAX：GG TO 40
GC TO 255
2000 FCPMAT（／G27HESMEEP NUMEER IN xJACSEI＊＝，I4）
2010 FCRNATIIHE．SE2O．12）
2020 FCRMAT（25以 + ＊＊EスROR SOLUTTCN STCP／
1 3OL MATPICES NOT PKGETVE DEFINETE）
```



```
EA：
SUZPQUTEAE DAMF（ML，X，SN，SC，EIGFN）
IMPLIC：T 天
```



```
READ（5，1is）（XIS（L） \(1=1,(L)\)
URITE（5，116）（XIS（L），L＝i，A：L）
DC \(10:=1, \mathrm{~L}\)
EIGE：M（I）＝مSGRT（SIGEN（I））
DC \(10 \quad J=1\) ：L
10 Sこ（！リ）こち． 0
DO \(2 C \quad I=1, \because L\)
```



```
Dr \(2 \mathrm{C} \quad i=1\) • 1
\(0020 \quad \mathrm{~J}=1 \cdot \therefore \mathrm{~L}\)
```




```
Dの \(30 \quad J=1,: L\)
T：，J）＝0．0
D0 30＜\(=1\) •＂L
\(30 T(:, ~ J)=T(!\cdot J)+C H(T, H) * S C(K, J)\)
0ヶ \(40 \quad!=1 \cdot L\)
DC \(40 \quad, \quad 1=1 \cdot \because L\)
SC（1，U）\(=0\) ．？
```

251
202
293
274
255
296
257 250

```
 On40k=1.NL
 40 SC(I,J)=SC(I,J)+T(!,k)*S4(K,J)
 OC 50 I=1, "L
 50 MR:TE(f,12う) (EC(?,U),J=1,VL)
110 F(PNAT(ZF1O.2)
120 FORMAT (65:14.4)
 RETJR":
 ENO
```

                SERTRY
    

TINE	DTSPL．	VELOC	$A C C$
＜0．010	－0．0054	－1．0762	－107．2574
0.010	－6．0．54	－1．0445	－102．447F
0.020	－0．c215	－2．12．5	－103．70？？
0.020	－6．0217	－2．1680	－108．30こ：
10.030	－0．0472	－3．1353	－97．ちゃ15
0.050	－0．04：5	－3．24： 1	－107．8367
0.640	－0．0．3\％	－4．0．756	－90．3333
0.040	－6．0こ66	－4．3155	－106－670？
0.050	－0．12ミ1	－4．53ど	－81．3074
W0．050	－0．1351	－5．3735	－104．4110
0.060	－0．1シ23	－5．6944	－71．140 ${ }^{\text {c }}$
0.050	－0．1940	－6．3567	－100．51c4
＋0．070	－0．2426	－6． 3514	－60．3210
0.070	－0．2¢2	－7．3719	－ 54.8560
0.000	－0．30．0	－6．5753	－49．24E1
0.030	－0．3412	－5．2773	－56．e207
$0.0 \leq 0$	$-0.3=02$	－7．3572	－38．2544
0．0 00	－0．4201	－9．0900	－76．3102
＋0．100	－0．4553	－7．6571	－27．62＝4
0.100	－6．5226	－5．7566	－63．2574
0.110	－0．5332	－7．2－34	－17．504 \％
0.110	－0．E234	－10．3407	－47．2417
0.120	－0．6123	－2．0212	－7．9510
0.120	－0．7237	－10．7317	－30．5290
0.130	－0．53？ 3	－8．0561	1.0654
． 0.130	－C．E374	－10．0425	－11．7523
0.140	－0．7737	－9．0．028	＝．6535
0.140	－0．9471	－10．5513	$7 . \geqslant 227$
0.150	－0．6．531	－7．854	17.5719
0.150	－1．0560	－10．75こ7	27.7078
0.165	－0．9307	－7．6435	26.1565
0．160	－1．1622	－10．4121	$4 \mathrm{E.E} 50 \mathrm{c}$
0.170	－1．cc57	－7．3403	34.4703
0.170	－1．2036	－ヲ．ごこ6年	64.5325
0．1：0	－1．0772	－6．5522	42．766＝
$0.1 \div 0$	－1．750？	－$=.133 \mathrm{~F}$	90．431？
0.193	－1．1445	－6．47－4	$51.666^{2}$
0．196	－1．445	－9．2654	93．764
0.200	－1． 2 Ce 0	－5．7644	60：4352
10.200	－1．こここ1	－7．1229	104.3233

ASSEMRLE STIFFIESS NATRIX
110 FCRMAT (3F10.2.F10.0)
$S(I)=12.0 * E+S I / S L * * S$
$S C(I, I)=S *(I, I)$
$U D(I)=0.0$
7 UV U ) $=0.0$

```
S(NO+1)=0.C
DC 19 i=1,:0
IF(I.FO.1) gr it 1s
SK(I,I-1)=-S(I)
SK(I-1,i)=-S(I)
1=SK(I,I)=S(I)+S(I+1)
```

DETERNINE MATIRAL FREGUENCIES AND VCEE SHAPES
CALL JACOE (SK,SC•X, EIGEVGSGACGIFPR)
RESPONSE USTHG MDDAL SUPERPCS:TEON
CALL MREAL(NE,EIEEAOX,SCORGSN)
STOF
END
SOLVE EIGE:FROELEM USING JACCFT METHOD

SURRCUTIM JACEEI (A,H,X, EIGV.C, NGIFPR)



Hismax $=15$
RTCL $=1 \cdot 0-12$
IOUT= R.
DO $10:=1,4$

IF（A（I，I）－GT．O．．AND．Q（I，I）．GT．O．）GOTC 4
WRETE（：OUT－2020）
Stop
$4 \mathrm{D}($ ：$)=\mathrm{L}(\mathrm{I}, \mathrm{I}) / \mathrm{E}$（： I$)$
$105: G V(I)=$ ？（：$)$
Dの $30 \quad \mathrm{I}=1 .{ }^{\prime}$
or： $20 \mathrm{~J}=1$ •
$20 \times(I, J)=0$ ．
$30 \times(I, I)=1$ ．
if（N．F？．1）RETUR
IVITISLIZE SWEEP CこURTER ANO EEGEV ITERAT：OR．
NSWEEP＝0
$N R=N-1$
40 NGEEF＝NSMEEF +1
IF（IFPReEG．1）JRITE（ICUT－2000）MSVEEF
CHECK IF PRESEPT EFF－DIAGE：AL ELEMENT IS LARGE
EPS $=(.01+*(S W E \Xi P) * 2$
DO $210 \mathrm{~J}=\mathrm{I}$ ，AR
$J \cup=u+1$
DO $210 \mathrm{k}=\mathrm{JU} \cdot \mathrm{A}$ ．
EFTCLA＝（A（U，k）＊A（J．K））／（A（U，J）＊A（K，K））

IF（（EPTOLA．LTEES）．AMO．（EPTCLE．LT．EPS））EG TO 210
if zereing is requ：red，calculate the retaticn natrix element cagce
$A K K=A(K, K) * E(J, K)-E(K, K) * A(U, K)$

GENERALITEO RCTAT：EN TC ZERO THE PRESEMT JFF－EIAGOGAL ELEMEAT
$A J J=A(J, J)+E(J, k)-E(J, J) * A(J, K)$
$A E=A(J, J) * E(K, k)-\Delta(K, k) * Q(J, J)$
CHECK＝（AE＋ $85+4+4 K K+A U J) / 4$.
IF（CLECK）50，60． 50
50 WRITS（ICUT，2Q2C）
STOF
GO SGCH＝ESCRT（CHECK）
D1ニABノ？•＋EnCH
D2 $24 \mathrm{~B} / 2 .-52 \mathrm{Ch}$
DEN＝01


$70 \mathrm{CA}=\mathrm{C}$ 。
$C G=-A(U, k) / د(k, k)$
$C G=-A(U, K) / i(K, K)$
GC TC $=0$
$\therefore 0 \mathrm{CA}=4 \mathrm{~K}$ 人 CE E ．
CG＝－んJJノCE：
$9015(1-2) 100 \cdot 190 \cdot 100$
10C $\mathrm{JF} 1=\mathrm{J}+1$
JM1 $=\mathrm{J}-1$
$K$ K1 $=k+1$
$K M 1=K-1$
IF（UN1－1）130．117，110
110 DC $120 \quad i=1,0 \times 1$
$A J=A(1, U)$

```
 AK=A(I,K)
 FK=0(I,K)
 A(I, J)=AU+CG+AK
 E(I;J)=BJ+CG+2h
 A(IgK)=A
```



```
 130 IF (K?:-N)140,140.160
 140 DO 150 I=K?!1, 隹
 AJ=A(J!!)
 BU=E(U.ミ)
 AK=A(K.I)
 EK=B(K,I)
 A(U,I)=AJ+CG+AK
 E(U,I)=?U+Cr+RK
 A(K,I)=AK+Ci}+|
 150 B(K,I)=SK+CA*EJ
 160 1F(JP1-Kv1)170.170.150
 170 DC 180 I=JP1,KM1
 AJ=A(U,I)
 BJ=!(U.I)
 AK=A(こ,K)
 BK=Z(IMK)
 A(J,I)=AJ+CG*AK
 B(J,I)=EN+CG*GK
 A(I,K)=LK+CA*AJ
 1巳0 S(I,K)=5K+C&*SJ
 130 AK=H(K,K)
 BK=こ(k,k)
 A(K,K)=AK+2.+EA+A(J,K)+CA*CA*F(J.J)
 E(K;K)=EK+?**C&*E(U,K)+CA*C&*E(J,U)
 A(U,J)=A(U,U)+2.+CR*A(J,K)+CR*C.G*AK
 B(J,J)=E(U,J)+で*+CG*F(J,K)+CG*CG*EK
 A(J,K)=0.
 B(J,K)=0.
 C UPDATE THE EIGEAVECTOR MATRIY AFTEF EACH ROTATION
 D0200 I=1.N
 XJ=x(I,J)
 XK=x(I, r)
 x(i;u)=x}J+C[;*xR
 200 x (J,K)=xK+Ca*xJ
 210 COAT!`:UE
C UPCATE THE EIGENVGLUES AFTER EACH SUEEF
DC \(220:=1\),
IF（A（isI）．GT．O．．AN．S（I，I）．GT．O．）GC TC 220
WマITE（：CUT．2020）
STOP
\(220 \mathrm{EIGV}(\mathrm{I})=\dot{\mu}(\mathrm{T}, \mathrm{I}) / \mathrm{E}\)（I，I）
IF（IFPF：Eの－O）GこTG230
URITE（G GUT•203C）
kNITE（ICUT，2G1（i）（E：GV（Z），I二1，N）
C CHECK FER CORVFRCEI：CE
```

    C
    C
c
C
$c$

C 230 D 240 ！＝1 M

TOL＝RT「L＊
DIF＝DAごS（E：GV（T）－؟（t））
IFEMICRTMRLOA Tr aFO

C
C
C
C
CHECK ALL SFF－DIAGMNAL ELEME：TS TO SEE IF ANCTHER SWEEO IS
REQUIRED.
$E F S=R T C L+2$
DO $250 \mathrm{~J}=1$ ．NF．
$\mathrm{JJ}=\mathrm{J}+1$
$00250 \mathrm{k}=\mathrm{JJ}, \mathrm{N}$
EfSA $=(A(J, K)+A(J, k)) /(A(U, J)+E(K, K))$

IF（（ERCA．LT．EFS）．AND．（EDSE．LT．EPS））ES TE 250
G？TJ 2EG
250 COATiAUS
c
$C$
$c$
${ }^{c}$
Fill BUT PCTTON TRTANGLF CF RESULTANT MATRICES
ARD SCALE EIGEQVECTCRS
$255 \begin{array}{r}00260 I=1, N \\ D 0260 \quad J=2, N \\ A(J, I)=(!: U)\end{array}$
$260 \mathrm{E}(\mathrm{J}, \mathrm{I})=$ ？（．，J）
DO $270 \mathrm{~J}=1, \mathrm{~d}$
$B E=\operatorname{SGPT}(E(\cup . v))$
$00270 \quad k=1, N$
$270 x(K, J)=x(k, J) / E Q$
c
$c$
$c$
UPDATE MATRIX AND START NEW SKEEPQIF ALLOKED
WRITE $(6,1090)$
DR $1091 \mathrm{~L}:=1,1$ ．

```
19E1 NRITE(6,2010) (X(L:ロ!U),LJ=1.M)
```

1CSO FCRMAT(/10X, PEEESVECTCRS•/)

RETURU
280 DE $2 C 0 I=J \cdot N$
2〒0 D（I）＝EこGV（：）
IF（MSWEES．LT•NSMAX）GO TO 40
GOTO こち5

2010 F（RNATIMC．SE14．E／）
2020 FORMAT（25HE＊＊ERFER SOLUT：（：STCP／
1 30h MATRICES NOT FCSITVE DEFI：ITE）
2030 FORMAT（3E4COURREAT ETGEVVALUES IN＊JACCEI＊DRE，1）
EVD
C
C RESFCASE USING MODAL SUFEPPCSITICN NETHOD

SUERCUTIVE MADAL（VD，EIEEA，XGF•GR，SM）
IMPLIC：T RFAL＊S（A－r，O－Z）

DINENSIC：EIGE，（40），X（40，40），Y＝S（40），F（40，40），F（40），T（40），Y（40，40）
1 ，UC（40），$=F(40), V Q(40), S N(40,40)$
c
C STEMENT FUUCTICAS



INT4（TAU）＝TAU＋INT1（TAU）－XIWD．IVTI（TAU）／DWSG－ND•IMT2（TAL）／OWSG

C
NG＝ND
IF（GR．VE•O．）VG＝1
$499=4$ ？
REAC（5，113）ПT，TMAY，（NG（L），L＝1．NG）

110 FSRMAT（2F1 -4.12 ： 5 ）
$0076 \quad i=1 . \because N: N$
FF（I）$=$ ？ 0
吅 $76 \mathrm{~J}=1, \because \because$
$75 \cdot F(I, J)=0.0$
0077 iL＝1．DG
NEG＝NO（ID）
IF（YEC．EQ．0）GO TO 77
READ（E．12し）（T（L），P（L），L＝1，NEG）
W⿵门耳
120 FORMAT（4F1：．2）
VT＝T（NEG）／ET
IF（NT．OT．TVAX／CT）：T＝TMAX／CT
NTI＝NT＋1
FF（1）＝P（1）
$A N \cap=0 . ?$
$I I=1$
DO $1=:=2, \because T$ ：
$A I=I-1$
TA＝AI＋DT
IF（TL．GT．T（SEG））GO TO 160
IF（TA．LE．T（II＋1））GO T0
$4 V_{1}=-T(I:+1)+T E-D T$
II $=I \mathrm{I}+1$
C $A N N=A M S+D T$
FF（I）＝P（IV）＋（こ（II＋1）－D（II））＋AN／（T（I＋1）－T（II））
F（ID，I）$=$ FF（I）
19 CCNTIUE
160 COMTIMUS
77 COATAMUS
c
C DETER：I $\because$ TE TEE AND EqUIVALENT FGRCES
NT $=$ TNE $\times 12 T$
D
$A L=L-1$
$T(L)=T(1)+A L+D T$
IF（GR．EO．O．）GE TO 17
CO 1－： $0=1 \cdot \therefore 0$
$15 \mathrm{~F}(1 \mathrm{C} 1:=-\mathrm{FF}(1) * \operatorname{SN}(I \mathrm{C}, \mathrm{D})$
17 rontlive
READ JAMPI：G RLTISS AND SET ：MITIAL VALUES
RELO（F，1CC）（x！S（L），L＝1，n！$)$

100 FORMAT（6F10．З）
WRITE HEACINGS
WRitr（fg7ro）
 16x，＇TINS•GX，DEICPLACEMENTS＂，（）
$\because T 1=1 . T+1$

```
 \(0050 \quad: 0=1, N 0\)
 OC \(10: T=1, \therefore T 1\)
 P(IT):=0.0
 \(0010:=1 \rightarrow 0\)
 10 ว(IT)=F(IT)+F(I,IT) *x(T,ID)
 \(\mathrm{v}=1.0\)
 \(K=E I \in E:(I O)\)
 \(x!=x!S(こ こ)\)
 6 FIMI=2(i)
 TIN1=T(1)
 ATI=C.0
 \(B T_{i}=\mathrm{C} \cdot \mathrm{C}\)
 CAT \(=0.0\)
 DET=0.
 Y(ID.1) \(=0.0\)
 onega=esget (k/n)
 CRIT=之-DSTRT(K*M)
 C=X:*CRIT
 WD=SMETA*CSOTT(1.-(XI**2))
 XIMD=X:-ONEGA
 DWSQ \(=x \leq W C+* 2+L D+* ?\)
 LOOP OVER TINE ANO SELVE FOR MODLL DISFLACEMEATS
N \(1=1\)
```



```
\(F I=P(I+1)\)
\(T I=T(!+1)\)
DFT：＝Fi－F：\(\because 1\)
DTI二T：－T：M1
FT＝DFT：／CT：
GニFIM1－T！： \(1 * F T\)
AI＝IMTi（TI）－TNTI（TEN1）
E！＝：MT2（T：）－！（T2（TYN：）
```




```
A！＝Aこ：
\(A I=A!+F T * V C\)
\(A T I=A T I+A\) ：
Bi＝3I－E
B：\(=3\) ：＋TT＊VS
BTI＝BT！ B ：
```



```
TiM1＝Ti
FIM1－F：
1 contive
53 CONT：ME
OC 5ड ：T＝1•NT
```



```
Uク（：）＝С．
DC \(52 \mathrm{~J}=1 \mathrm{a}\) ： O
52 U0（i）\(=1\)（inc（：）\(+x(i, v i+y(v, I T)\)
53 WhITE（6．30：）T（IT），（UC（L），L＝1，ND）
301 FAR．ATSF10．x．6（14．4）
F？TUR＂
ENO
```

c
$c$
C
249
250
251
252
253
254
255
256
257.
253
257
260
261
262

## V. ERROR INVESTIGATION DUE TO STATIC CONDENSATION

Due to different loading conditions, and changes in geometry; it is sometimes necessary to divide the structure into a large number of elements. When the elements of the entire structure are assembled, the number of unknown displacements, or in dynamical terms, the number of degrees-of-freedom become very large. Therefore, the stiffness, the mass and the damping matrices become very large.

In such cases the solution of the eigenproblem to determine natural frequencies and mode shapes will be difficult and tedious. For this reason it is convenient to reduce the size of matrices in order to make the solution easier and manageable.

## A. Static Condensation

A practical method of accomplishing the reduction of these matrices is to identify those degrees-of-freedom to be reduced as dependent coordinates and to express them in terms of the remaining independent degrees-of-freedom. The relation between the dependent and independent degrees-of-freedom is found by establishing the static relation between them, hence, the name static condensation method. This relation provides the means to reduce the stiffness matrix.

In order to reduce the mass and the damping matrices, it is assumed that the same static relation between dependent and independent degrees-of-freedom remains valid in the dynamic problem. Hence the same transformation based on static condensation for the reduction of the stiffness matrix is also used in reducing the mass and damping matrices.

In general this method of reducing the dynamic problem is not exact and introduces errors in the results. The magnitude of these errors depends on the relative numbers of degrees-of-freedom reduced as well as on the specific selection of these degrees-of-freedom for a given structure. No error is introduced in reducing massless degrees-of-freedom, that is, degrees-of-freedom for which there is no mass allocated. The procedure of static condensation also is used in static problems to eliminate unwanted degrees-of-freedom such as the internal degrees-of-freedom of an element used with the finite element method of analysis. Initially the stiffness matrix is represented by a partition matrix as follows:

$$
\left[\begin{array}{c:c}
\mathrm{Kpp} & \mathrm{Kpq}  \tag{61}\\
\hdashline \mathrm{Kqp} & \mathrm{Kqq}
\end{array}\right]\left[\begin{array}{c}
\{\times p\} \\
\{\times q\}
\end{array}\right]=\left[\begin{array}{c}
\{0\} \\
\{\mathrm{Fqq}\}
\end{array}\right]
$$

which can be reduced or condensed by using the gauss elimination for the first $p$ unknown displacement. At this stage of the elimination process, the stiffness equation for the structure may be arranged in partition matrices as follows:

$$
\left[\begin{array}{cc}
{[I]} & -[\bar{T}]  \tag{62}\\
0 & {[\bar{K}]}
\end{array}\right]\left[\begin{array}{l}
\left\{x_{p}\right\} \\
\left\{x_{q}\right\}
\end{array}\right]=\left[\begin{array}{c}
\{0\} \\
\left\{F_{q}\right\}
\end{array}\right]
$$

where $\left\{x_{p}\right\}$ is the vector corresponding to the $p$ degrees-of-freedom to be reduced and $\left\{x_{p}\right\}$ the vector corresponding to the remaining $q$ independent degrees of freedom. It should be noted that in (62) it was assumed that the external forces were zero at the dependent degree-of-freedom $\left\{x_{\rho}\right\}$. Equation (62) is equivalent to the following relations:

$$
\begin{align*}
& \left\{x_{p}\right\}=[\bar{T}]\left\{x_{q}\right\},  \tag{63}\\
& {[\bar{K}]\left\{x_{q}\right\}=\left[F_{q}\right] .} \tag{64}
\end{align*}
$$

Equation (63) which expresses the static relation between coordinates $\left\{x_{p}\right\}$ and $\left\{x_{q}\right\}$ may also be written as

$$
\left[\begin{array}{l}
\left\{x_{p}\right\}  \tag{65}\\
\left\{x_{q}\right\}
\end{array}\right]=\left[\begin{array}{l}
{[\bar{T}]} \\
{[I]}
\end{array}\right]\left\{x_{q}\right\}
$$

or

$$
\begin{equation*}
\{x\}=[T]\left\{x_{q}\right\} \tag{66}
\end{equation*}
$$

where

$$
\{x\}=\left[\begin{array}{l}
\left\{x_{p}\right\}  \tag{67}\\
\left\{x_{q}\right\}
\end{array}\right], \quad[T]=\left[\begin{array}{c}
{[T]} \\
{[I]}
\end{array}\right]
$$

Equation (64) which establishes the relation between coordinates $\left\{x_{q}\right\}$ and forces $\left\{\mathrm{F}_{\mathrm{q}}\right\}$ is the reduced stiffness equation and $[\bar{K}]$ the reduced stiffness matrix of the system, which may also be expressed as a transformation of the system stiffness matrix [K] as

$$
\begin{equation*}
[\bar{K}]=[T]^{\top}[K][T] \tag{68}
\end{equation*}
$$

## B. Static Condensation Applied to Dynamic Problems

In a previous section a case was considered in which the discretization of the mass has left a number of massless degrees-offreedom. For this case it is only necessary to condense the stiffness matrix and delete from the mass matrix the rows and columns corresponding to the massless degrees-of-freedom. In this case the methods used do not alter the original problem, thus the results are equivalent eigenproblems.

In cases when the discretization process has allocated mass to the system, the procedure commonly used is to apply the transformation shown in equation (68) not only to the stiffness matrix, but also to the mass and to the damping matrix of the system, analytically that is:

$$
\begin{equation*}
[\bar{M}]=[T]^{\top}[M][T] \tag{69}
\end{equation*}
$$

and the reduced damping matrix is

$$
\begin{equation*}
[\overline{\mathrm{C}}]=[\mathrm{T}]^{\mathrm{T}}[\mathrm{C}][\mathrm{T}] \tag{70}
\end{equation*}
$$

where the transformation matrix [T] is defined in (67). The justification of the mass and damping matrices reduction is shown as follows:

$$
\begin{align*}
& V=1 / 2\{x\}^{\top}[K]\{x\}  \tag{71}\\
& K \cdot E_{0}=1 / 2\{\dot{x}\}^{\top}[M]\{\dot{x}\} \tag{72}
\end{align*}
$$

where $V$ is the potential energy and the kinetic energy is represented
by K.E. in equations (71) and (72) respectively.
Analogously, the work $\delta w_{d}$ done by the damping forces $F_{d}=[C]\{\dot{x}\}$ corresponding to displacements $\{\delta x$ \} may be expressed as:

$$
\begin{equation*}
\delta w_{d}=\{\delta x\}^{\top}[C]\{\dot{x}\} \tag{73}
\end{equation*}
$$

By using the transformation (67) in equations (71), (72) and (73) gives the following results

$$
\begin{gather*}
V=1 / 2\left\{x_{q}\right\}^{\top}[T]^{\top}[K][T]\left[x_{q}\right\}  \tag{74}\\
K_{0} E_{0}=1 / 2\left\{\dot{x}_{q}\right\}^{\top}[T]^{\top}[M][T]\left\{\dot{x}_{q}\right\}  \tag{75}\\
\delta w_{d}=\left\{\delta x_{q}\right\}^{\top}[T]^{\top}[C][T]\{\dot{x}\} \tag{76}
\end{gather*}
$$

The respective substitution of $[K],[\bar{M}]$ and $[\bar{C}]$ from (68), (69) and (70) for the product of the three matrices in (74), (75) and (76) yields:

$$
\begin{gather*}
v=1 / 2\left\{x_{q}\right\}^{\top}[K]\left\{x_{q}\right\}  \tag{77}\\
K . E .=1 / 2\left\{\dot{x}_{q}\right\}^{\top}[M]\left\{\dot{x}_{q}\right\}  \tag{78}\\
\delta w_{d}=\left\{\delta x_{\dot{q}}\right\}[\bar{c}]\left\{\dot{x}_{q}\right\} \tag{79}
\end{gather*}
$$

These last three expressions represent the potential, the kinetic energy and the virtual work of the damping forces in terms of independent coordinates $\left\{x_{p}\right\}$ 。

## C. Numerical Example

To illustrate the theory, consider a three degree-of-freedom shear building shown in Figure 7, and find the natural frequencies and


FIGURE 7 - Shear Building of Numerical Example
modal shapes; also condense one degree-of-freedom and compare the resulting values obtained for natural frequencies and mode shapes.

The equation of motion is given as free vibration in the following form:

$$
[M]\{\ddot{x}\}+[K]\{x\}=[0]
$$

Substituting the corresponding numerical values in this equation yields

$$
\left[\begin{array}{ccc}
100 & 0 & 0 \\
0 & 50 & 0 \\
0 & 0 & 25
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+10^{3}\left[\begin{array}{rrr}
40 & -10 & 0 \\
-10 & 20 & -10 \\
0 & -10 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

assuming a solution $x_{i}=a_{i}$ sin $\omega t$, and substituting into the equation of motion yields,

$$
\left[\begin{array}{ccc}
40,000-100 \omega^{2} & -10,000 & 0  \tag{a}\\
-10,000 & 20,000-50 \omega^{2} & 10,000 \\
0 & 10,000 & 10,000-25 \omega^{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

from which the characteristic determinant of the system can easily be deducted, such as

$$
\left|\begin{array}{ccl}
40,000-100 \omega^{2} & -10,000 & 0  \tag{b}\\
-10,000 & 20,000-50 \omega^{2} & 10,000 \\
0 & 10,000 & 10,000-25 \omega^{2}
\end{array}\right|=0
$$

expanding the determinant and solving gives

$$
\begin{aligned}
& \omega_{1}^{2}=84.64 \mathrm{rad} / \mathrm{sec} \\
& \omega_{2}^{2}=400 \\
& \omega_{3}^{2}=536
\end{aligned}
$$

The natural frequencies are calculated by $f=\omega / 2 \pi$, so that

$$
\begin{aligned}
& f_{1}=1.464 \mathrm{CPS} \\
& f_{2}=3.183 \\
& f_{3}=3.685
\end{aligned}
$$

The modal shapes are determined by substituting each value of natural frequencies into equation (a) deleting one of the equations and solving the remaining two equations for two of the unknowns in terms of the
third unknown, setting the unknown equal to one. Performing the operation gives,

$$
\begin{array}{lll}
a_{11}=1.00 & a_{12}=1.00 & a_{13}=1.00 \\
a_{21}=3.18 & a_{22}=0 & a_{23}=-2.88 \\
a_{31}=4.00 & a_{32}=-1.00 & a_{33}=4.00
\end{array}
$$

Since the stiffness for this structure is

$$
\left[\begin{array}{ccc}
40,000 & -10,000 & 0 \\
-10,000 & 20,000 & -10,000 \\
0 & -10,000 & 10,000
\end{array}\right]
$$

By the use of gauss elimination of the first unknown gives

$$
\left[\begin{array}{ccc}
1 & -0.25 & 0 \\
0 & 17,500 & -10,000 \\
0 & -10,000 & 10,000
\end{array}\right]
$$

(c)

Comparing (c) with (62) indicates that

$$
\begin{align*}
& {[\overline{\mathrm{T}}]=\left[\begin{array}{cc}
{[0.25} & 0
\end{array}\right]} \\
& {[\overline{\mathrm{K}}]=\left[\begin{array}{cc}
17,500 & -10,000 \\
-10,000 & 10,000
\end{array}\right]} \tag{d}
\end{align*}
$$

also from (67)

$$
[T]=\left[\begin{array}{ll}
0.25 & 0  \tag{e}\\
1 & 0 \\
0 & 1
\end{array}\right]
$$

The condensed mass matrix is calculated by substituting matrix [ $T$ ] and its transpose from (e) into equation (69).

$$
[\bar{M}]=\left[\begin{array}{lll}
0.25 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
100 & 0 & 0 \\
0 & 50 & 0 \\
0 & 0 & 25
\end{array}\right]\left[\begin{array}{ll}
0.25 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

which results in

$$
[\bar{M}]=\left[\begin{array}{cc}
56.25 & 0 \\
0 & 25
\end{array}\right]
$$

Substituting the reduced stiffness and reducing mass into the equation of motion gives

$$
\left[\begin{array}{cr}
56.25 & 0 \\
0 & 25
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right]+\left[\begin{array}{rr}
17,500 & -10,000 \\
-10,000 & 10,000
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The natural frequencies and mode shapes are then determined by solving the eigenvalue problem.

$$
\left[\begin{array}{cc}
17,500-56.25 \omega^{2} & -10,000  \tag{f}\\
-10,000 & 10,000-25 \omega^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

equating the characteristic determinant to zero yields

$$
\left|\begin{array}{ll}
17,500-56.25 \omega^{2} & -10,000 \\
-10,000 & 10,000-25 \omega^{2}
\end{array}\right|=0
$$

expanding the determinant and solving for the natural frequencies gives

$$
\begin{aligned}
& \omega_{1}=9.2304 \mathrm{rad} / \mathrm{sec} \\
& \omega_{2}=25.018
\end{aligned}
$$

Then

$$
\begin{aligned}
& f_{1}=\frac{9.2304}{2 \pi}=1.47 \\
& f_{2}=\frac{25.018}{2 \pi}=3.98
\end{aligned}
$$

The corresponding mode shapes are obtained by substituting the frequencies into equation (f) gives,

$$
\begin{array}{ll}
a_{21}=1 & a_{22}=1 \\
a_{31}=1.27 & a_{32}=1.77
\end{array}
$$

For this system of only three degrees-of-freedom, the reduction of one coordinate gives results that compare well only for the first mode. Experiencing with different numbers of degrees-of-freedom, it is clear that the condensation process results in an eigenproblem, which provides
only about half of its natural frequencies and modal shapes within acceptable approximate values.

## D. Computer Program For Investigation of Error

This program to investigate the error due to static condensation, eliminates rows or degrees-of-freedom by using a subroutine program called CONDE, This subroutine calculates the reduced stiffness matrix $[\bar{K}]$, the reduced mass matrix $[\bar{M}]$, and the transformation matrix $[T]$; with these reduced values, the program proceeds to solve for the natural frequencies and modal shapes, giving enough values to compare with the results of a non reduced system.

The subroutine CONDE, in order to perform the condensation of degrees-of-freedom uses the following variables.

Variable	Symbol in Thesis	Description
ND	$N$	Total number of degrees-of-   freedom
NCR	$P$	Number of dependent modal   coordinates
NL	ND-NCR	Number of degrees-of-freedom   minus number of dependent coordi-   nates
SM $(I, J)$	$[M]$	Mass matrix
SK $(I, J)$	$[K]$	Stiffness matrix
T(I,J)	$[T]$	Transformation matrix

The elimination of degrees-of-freedom can be done in an organized fashion. For this purpose this thesis introduces the subroutine ORDER. Therefore the programer has the freedom to choose the desired row to eliminate this and proceed to solve for the remaining degrees-of-freedom.

After experimenting with this program, it is obvious that the static condensation approach provides only about half of its eigenvalues and eigenvectors within acceptable approximate values.
E. Computer Program \#3
${ }^{C}$
C
C

C

IMPLICIT REAL* $2(A-H, O-Z)$
DIMENSICN SM(50,50), SK $(50,50), S C(50,50), T(50,50), T T(50), E I G V(50)$

```
100 FCRMAT(2110)
```

NL = NO
LOC=1
NM1 $=$ NO-1
DO $2 I=1$, ND
DO $2 \mathrm{~J}=1, \mathrm{VD}$
$S M(I, J)=0.0$
$\operatorname{SM}(I, I)=1.0$
$S C(I, J)=0.0$
SC(I,I)=1.0
$2 S K(I, J)=0.0$
DO $1 \equiv I=1$, ND
IF (I.EQ.1) GO TO 19
SK(I,I-1)=-12.
SK(I-1,I) $=-12$ 。
17 SK(I, I) $=24$.
SK (ND,ND) $=12$ 。
DO $\exists 0$ IC=1, ND
IF (IC.EQ.1) GO TO 20
$\mathrm{NL}=\mathrm{NO}-1 \mathrm{C}+1$
$N C R=N D-N L$
CALL CCNDE (ND, NCR,LOC,SK,SM,SC,T)
90 CALL JACOBI(SK,SC,T,EIGV,TT,NL,IFPR)
go CONTINUE

## STOP

END
C STATIC CONDENSATION OF STIFFNESS AND MASS MATRICES
SUBROUTINE CONDE (ND,NCR,LOC,SK,SM,SC,T)
IMPLICIT REAL*S(A-H,O-Z)
DIMENSION SK $(50,50), S M(50,50), T(50,50), T T(50), S C(50,50)$
calculate the reducee stiffness matrix ario the transformation matr
$N L=N D-N C R$
DO $9 K=1$, NCR
IF (DABS(SK(K,K)).GT.1.D-10) GO TO 5
WRITE (6,202) K
202 FGRMAT ('
PIVOT TOO SMALL•,IIO)
GO TO 99
$5 K P 1=K+1$
DO $6, J=K P 1$, ND
$6 S K(K, J)=S K(K, J) / S K(K, K)$
$S K(K, K)=1$.
DO 9 I $=1, N D$
IF (I.EG.K.OR. SK(I,K) EEQ.O) GO TO 9
D? 8 J=KP1:NO
\& $S K(I, J)=S K(I, J)-S K(I, K) * S K(K, J)$
$S K(I, K)=0.0$
a continue

```
DO \(301=1\),NCR
 DO 30 J = 1,NL
 JJ = J+NCR
 30 T(I,J) = -SK(I,JJ)
 DO40 I=1,NL
 II = I + NCR
 OO 50 J = 1,NL
 50 T(II,J) = 0.0
 T(II,I) = 1.0
 40 CCNTINUE
 DC 20 1=1,NL
 DO 20 J = 1,NL
 II =I + NCR
 JJ = J+NCR
 20 SK(I,J) = SK(IIq,JJ)
 W'RITE (5,169)
 16G FORMAT(1HI,5X,*THE REDUCED STIFFNESS MATRIX IS*/)
 OE PO I=1,NL
 80 WRITE (F,150) (SK(T,J),J=1,NL)
 WRITE(6,170)
 170 FCRMAT(/GX, THE TRANSFORMATION MATRIX IS*/)
 DO &1 I = 1,ND
 81 WRITE(6,190) (T(I,J),U = 1,NL)
 190 FORMAT (GE14.4)
 IF(LOC.EQ.B) GE TO 99
c CALCULATE THE REDUCED MASS MATRIX
C
 READ(5,100) KEY
 100 FORMAT(I5)
 IF(KEY.EQ.0) GO TO 12
 CALL ORDER(ND,SK,SC)
 CALL ORDER(ND,SM,SC)
 12 CONTINUE
 9 9 ~ R E T U R N
 END
 SUBROUTINE ORDER (N,A,B)
 IMPLICIT REAL + E(A-H,O-Z)
 DIMENSION A(50,50),E (50,50),M(50)
c
C READ INPUT DATA AND INITIALIZE
C
 READ(5,100) (M(L),L=1,N)
 HRITE(S,10C)(M(L),L=1,N)
100 FORMAT(16I5)
 CO 30 II=1,N
 III=N-II+1
 I=M(III)
 DO 30 JJ=1,N
 JJJ=N-JJ+1
 J=4(JJJ)
30 E(II,JJ)=A(I,U)
 DO40 I=1,N
 DO 40 J=1,N
40 4(I,J)=E(I•J)
95 RETURN
 END

SUZRDUTINE JACCBI (A,B,X,EIGV,D,N,IFPR)
IMPLICIT REAL*Z(A-H, O-Z)
DIMENSICN \(A(50,50), P(50,50), \times(50,50), E I G V(50), D(50)\)
C
INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES
NSMAX \(=15\)
RTCL \(=1 . D-12\)
ICUT=6
D? \(10 \mathrm{I}=1, \mathrm{~N}\)
IF (A(I,I).GT.O. AND. B(I,I).GT.O.)GO TO 4
WRITE(IOUT,2020)
STOP
\(4 D(I)=A(I, I) / B(I, I)\)
10 EIGV(I)=D(I)
DO \(30 \quad I=1, N\)
\(0020 \mathrm{~J}=1, N\)
\(20 \times(I, J)=0\).
\(30 \times(I, I)=1\).
IF(N.EQ.1) RETURN
INITIALIZE SWEEP COUNTER AND EEGIN ITERATION
NSHEEP \(=0\)
\(N R=N-1\)
40 NSWEEP=NSWEEP + 1
IF(IFPR.EQ.1)WRITE(IOUT, 2000)NSWEEP
C CHECK IF PRESENT OFF-DIAGCNAL ELEMENT IS LARGE
C
\(A K K=A(K, K) * E(J, K)-E(K, K) * A(J, K)\)
\(A J J=A(U, J) * S(J, K)-E(J, J) * A(J, K)\)
\(A B=A(J, J) * P(K, K)-A(K, K) * B(J, J)\)
\(C H E C K=(A R * A B+4 * * A K K * A J J) / 4\).
IF(こHECK)50,60,60
50 WRITE(IOUT,2020)
STCP
60 SGCH=DSQRT(CHECK)
D1 \(=A B / 2 .+S Q C H\)
\(D 2=A B / 2-S Q C H\)
\(D E N=D 1\)
IF (כA3S(D2).GT.DABS(D1))DEN=D2
IF (DEN) 80.70 .80
\(70 C A=0\).
\(C G=-A(J, K) / A(K, K)\)
\(C G=-A(J, K) / A(K, K)\)
GO TO GO
\(80 \quad C A=A K K / D E N\)
\(C G=-A J J / D E N\)

GENERALIZEO ROTATION TO ZERO THE PRESENT JFF-DIAGONAL ELEMENT

90 JF \((N-2) 100.130 .100\)
\(100 \mathrm{JP} 1=\mathrm{J}+1\)
\(J M 1=J-1\)
\(K P_{1}=K+1\)
\(K M 1=K-1\)
IF (JM1-1)130,110,110
110 DO \(120 \mathrm{I}=1\), JM1
\(A J=A(I, J)\)
\(B J=B(I, J)\)
\(A K=A(I, K)\)
\(B K=B(I, K)\)
\(A(I, J)=A J+C G * A K\)
\(B(I, J)=B J+C G * B K\)
\(A(I, K)=A K+C A * A J\)
\(120 \mathrm{~B}(\mathrm{I}, K)=B K+C A * B J\)
130 IF \((K P 1-N) 140,140,160\)
140 DO \(150 \mathrm{I}=\mathrm{KP} 1, \mathrm{~N}\)
\(A J=A(J, I)\)
\(B J=B(J, I)\)
\(A K=A(K, I)\)
\(B K=B(K, I)\)
\(A(J, I)=A J+C G * A K\)
\(B(J, I)=B J+C G * B K\)
\(A(K, I)=A K+C A * A J\)
\(150 B(K, I)=B K+C A * B J\)
160 IF (JP1-KM1) \(170,170,190\)
170 DO \(180 \mathrm{I}=\mathrm{JP} 1\),KM1
\(A J=A(J, I)\)
\(B J=B(J, I)\)
\(A K=A(I, K)\)
\(B K=B(I, K)\)
\(A(J, I)=A J+C G * A K\)
\(B(J, I)=B J+C G * B K\)
\(A(I, K)=A K+C A * A J\)
\(180 \mathrm{~B}(\mathrm{I}, \mathrm{K})=B K+C A * B J\)
\(130 A K=A(K, K)\)
\(B K=B(K, K)\)
\(A(K, K)=A K+2 . * C A * A(J, K)+C A * C A * A(J, J)\)
\(B(K, K)=B K+2 * \subset A * B(J, K)+C A * C A * B(J, J)\)
\(A(J, J)=A(J, J)+2 . * C G * A(J, K)+C G * C G * A K\)
\(B(J, J)=B(J, J)+2 . * 2 G * 3(J, K)+C G * C G * B K\)
\(A(J, K)=0\).
\(B(J, K)=0\).
C update the eigenvector matrix aftef each rotation
C
\begin{tabular}{ll}
& \(00200 \quad I=1, N\) \\
& \(X J=X(I, J)\) \\
& \(X K=X(I, K)\) \\
& \(X(I, J)=X J+C G * X K\) \\
200 & \(X(I, K)=X K+C A * X J\) \\
210 & \(C O N T I N U E\)
\end{tabular}

C

C
UPDATE THE EIGENVALUES AFTER EACH SHEEP
C
DO 220 I=1, N
IF (ACI.I).GT.O. -AND. B(I,I).GT.0.) GO TO 220
WRITE(IOUT,2020)
STOP
220 EIGV(I) \(=A(I \cdot I) / E(I, I)\)

C
C CHECK FCR CONVERGENCE
IF(IFPR.EQ.0)GO TO 230
WRITE(IOUT,2030)
WRITE(IOUT,2010) (EIGV(I),I=I,N)
\(23000240 \mathrm{I}=1, \mathrm{~N}\)
TOL=RTCL*D(I)
DIF=CABS(EIGV(I)-2(I))
IF(DIF.GT.TOL)GO TO 280
240 CONTINUE
c
C REQUIRED
C
EPS \(=\) RTCL **2
DO \(250 \mathrm{~J}=1, \mathrm{NR}\)
\(\mathrm{JJ}=\mathrm{J}+1\)
DO \(250 \mathrm{~K}=\mathrm{JJ}, \mathrm{N}\)

GO TO 280
250 CONTINUE

AND SCALE EIGENVECTORS

C CHECK ALL OFF-DIAGONAL ELEMENTS TO SEE IF ANCTHER SWEEP IS

EPSA=(A(U,K)*A(J,K))/(A(U,J)*A(K,K))
EPSE=(B(J,K)*B(J,K))/(E(J,J)*B(K,K))
IF ((EPSA.LT.EPS).AND.(EPSE:LT.EPS))GO TO 250

FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES

219
220
255 DO \(260 \mathrm{I}=1 ; \mathrm{N}\)
DO \(260 \mathrm{~J}=1, \mathrm{~N}\)
\(A(J, I)=A(I, J)\)
\(260 \mathrm{~B}(\mathrm{~J}, \mathrm{I})=\mathrm{B}(\mathrm{I}, \mathrm{J})\)
DC \(270 \mathrm{~J}=1, \mathrm{~N}\)
\(B B=D S Q R T(B(J, J))\)
DO \(270 \mathrm{~K}=1, \mathrm{~N}\)
\(270 x(K \cdot J)=x(K, J) / B B\)
C
C UFDATE MATRIX AND START NEW SUEEP, IF LLLOWED
WRITE(6,2010) ((X(LI,LJ),LJ=1,N),LI=1,N)
RETURN
280 DO \(290 \mathrm{I}=1, \mathrm{~N}\)
290 D(I) =EIGV(I)
IF (NSWEEP.LT.NSMAX)GO TO 40
GO TO 255
2000 FGRMAT(/,27HDSKEEP NUMBER IN *JACOEI* = , I4)
2010 FCRMAT(1HC,3E20.121)
2020 FORMAT (25HC*** ERROR SOLUTION STOP /
\(130 H\) MATRICES VOT POSITVE DEFINITE)
2030 FGRMAT(36HOCURRENT EIGENVALUES IN *JACCBI*ARE,/)
END
§̂sentry
3
1
WEEP NUMBER IN *JACOSI* = 1
URRENT EIGENVALUES IN *JACOEI*ARE.
```

SHEE? NUMEER IN *JACDBI* = 2
CURRENT EIGENVALUES IN *JACCBI*ARE,
0.3896375260570 02 0.1865950022390 02 0.2376747170490.01
SHEEO NUYRER IN *JACOBI* = 3
CURRENT EIGENVALUES IN *JACOBI*ARE.
0.3856375524460 02 0.1965949759500 02 0.2376747170340 01
SHEEP NUMEER IN *JACORI* = 4
CURRENT EIGENVALUES IN *JACOBI*ARE,
0.3836375524460 02 0.1865349758500 02 0.2376747170340 01
SWEEP NUMBER IN *JACORI* = 5
CURRENT EIGENVALUES IN *JACOBI*ARE,
0.3596375524460 02 0.196594975850D 02 0.2376747170340 01
0.5910090485060 00 0.7369762271000 00 0.3279552776060 00
-0.7369762291000 00 0.3279852776060 00 0.5910090485060 00
0.3277352776060 00 -0.5910050485060 00 0.7369762291000 00

```

THE REDUCED STIFFNESS MATRIX IS
\(f\)
\(0.54720 \quad 02 \quad-0.23570-36\)
\(-0.23670-36 \quad 0.4504001\)
THE TRANSFCRMATION MATRIX IS
\begin{tabular}{ccccc}
\(0.16570-14\) & & \(0.19820-23\) \\
0.10000 & 01 & 0.00000 & 00 \\
0.00000 & 00 & 0.10000 & 01 \\
3 & 2 & 1 & & \\
3 & 2 & 1 & &
\end{tabular}

SWEEZ NUMEER IN *JACOBI* = 1 CURRENT EIGENVALUES IN *JACOBI*ARE,
\(\begin{array}{llll}0.6471579225440 & 02 & 0.4504103058190 & 01 \\ 0 & 0.0000000000000 & 00\end{array}\)
0.000000000000000
0.100000000000001

THE REDUCED STIFFNESS MATRIX IS
0.4504001

THE TRANSFORMATICN MATRIX IS
0.3063D-25
0.63650-37
0.1000001

\section*{VI. ANALYSIS OF NONLINEAR STRUCTURAL RESPONSE}

In the analysis of linear structures subjected to any arbitrary dynamic loadings, the Duhamel integral provides the most convenient approach for the solution of the systems. However, it must be emphasized that the Principle of Superposition that was employed in the derivation of Duhamel integral, can only be used with linear systems, that is, systems for which the properties remain constant during the response. There are however, physical situations for which this linear model does not represent adequately the dynamic characteristics of the structure, such as the response of a building to an earthquake motion severe enough to cause structural damages. Consequently, it is necessary to develop another method of analysis suitable to use with nonlinear systems.
A. Incremental Equation of Equilibrium

FIGURE 8(a) - Mathematical Model for Nonlinear Structural Response

FIGURE 8(b) - Free Body Diagram

The structure to be considered in this section is a single degree-of-freedom shown in Figure 8(a). The dynamic equilibrium in the system is established by equating to zero the forces acting on the mass of the system indicated in Figure 8(b). This summation at any instant of time \(t\) in equilibrium of forces acting on the mass \(m\) requires
\[
\begin{equation*}
F_{I}(t)+F_{D}(t)+F_{S}(t)=F(t) \tag{80}
\end{equation*}
\]
or
\[
\begin{equation*}
m \ddot{x}\left(t_{i}\right)+c_{i} \dot{x}\left(t_{i}\right)+K_{i} x\left(t_{i}\right)=F\left(t_{i}\right) \tag{80}
\end{equation*}
\]

In equation (80)b the coefficient \(\mathrm{C}_{\boldsymbol{i}}\) and \(\mathrm{K}_{\boldsymbol{i}}\) are calculated for values of velocity and displacement at time \(\mathrm{t}_{\mathrm{i}}\). For an increment \(\Delta t\) later the equation (80)a takes the following form:
\[
\begin{equation*}
F_{I}(t+\Delta t)+F_{D}(t+\Delta t)+F_{S}(t+\Delta t)=F(t+\Delta t) \tag{81}
\end{equation*}
\]
and equation (80)b takes the form of
\[
\begin{equation*}
m \ddot{x}\left(t_{i}+\Delta t\right)+c_{i} \dot{x}\left(t_{i}+\Delta t\right)+k_{i} x\left(t_{i}+\Delta t\right)=F\left(t_{i}+\Delta t\right) \tag{81}
\end{equation*}
\]

Subtracting (81)b from (80)b gives the following convenient form of differential equation in terms of increments, namely
\[
\begin{equation*}
\Delta F_{I}(t)+\Delta F_{D}(t)+\Delta F_{S}(t)=\Delta F(t) \tag{82}
\end{equation*}
\]
or
\[
\begin{equation*}
m \Delta \ddot{x}_{i}+C_{i} \Delta \dot{x}_{i}+K_{i} \Delta x_{i}=\Delta F_{i} \tag{82}
\end{equation*}
\]
where the incremental forces in (82)a may be expressed as follows:
\[
\begin{array}{ll}
\Delta F_{I}(t)=F_{I}(t+\Delta t)-F_{I}(t) & (a) \\
\Delta F_{D}(t)=F_{D}(t+\Delta t)-F_{D}(t) & (b) \\
\Delta F_{S}(t)=F_{S}(t+\Delta t)-F_{S}(t) & (c) \tag{83}\\
\Delta F(t)=F(t+\Delta t)-F(t) & \text { (d) }
\end{array}
\]
and from equation (82)b the incremental displacement, velocity, acceleration and force are
\[
\begin{align*}
\Delta x_{i} & =x\left(t_{i}+\Delta t\right)-x\left(t_{i}\right) \tag{a}\\
\Delta \dot{x}_{i} & =\dot{x}\left(t_{i}+\Delta t\right)-\dot{x}\left(t_{i}\right) \tag{b}\\
\Delta \ddot{x}_{i} & =\ddot{x}\left(t_{i}+\Delta t\right)-\ddot{x}\left(t_{i}\right) \tag{c}\\
\Delta F_{i} & =F\left(t_{i}+\Delta t\right)-\Delta F_{i} \tag{d}
\end{align*}
\]

The general nonlinear characteristics of spring and damping forces are shown in Figure (9)a,b.

FIGURE 9(a) - Nonlinear Characteristic of Spring

FIGURE 9(b) - Nonlinear Characteristic of Damping Force

In practice, the secant slope indicated could be evaluated only by iteration because the velocity and displacement at the end of the time increment depends on the damping and stiffness properties, corresponding to the velocity and displacement existing during the time interval. For this reason the tangent slope defined at the beginning of the time intervals are used instead.
\[
\begin{equation*}
C(t)=\frac{d F_{D}}{d x} \quad, \quad K(t)=\frac{d F_{S}}{d x} \tag{85}
\end{equation*}
\]

Among the methods available for the solution of equation (82)b, the most effective is the step by step integration method. In this method, the response is calculated at successive increments of time, usually taken at equal time intervals. At the beginning of each interval, the condition of dynamic equilibrium is established. Then the response of a time increment \(\Delta t\) is evaluated approximately on the basis that the coefficients \(K(x)\) and \(C(x)\) remain constant during the interval \(\Delta t\). The nonlinear characteristic of these coefficients are found at the beginning of each time increment. The response is then obtained using the displacement and velocity calculated at the end of the time interval as the initial condition for the next time step.

There are several procedures available for performing the step by step integration of (82)b. Two of the most common used are the constant acceleration method. As may be expected the linear acceleration method will be presented here in detail.

\section*{B. Step By Step Integration (Linear Acceleration Method)}

In this method, it is assumed that the acceleration may be expressed by a linear function of time during the time interval \(\Delta t\). When the acceleration is assumed to be linear function of time the interval of time \(t_{\mathbf{j}}\) to \(\mathrm{t}_{\mathbf{i}+1}=\mathrm{t}_{\mathbf{j}}+\Delta \mathrm{t}\), then the acceleration should be expressed as
\[
\begin{equation*}
\ddot{x}(t)=\ddot{x}_{i}+\frac{\Delta \ddot{x}_{j}}{\Delta t}\left(t-t_{i}\right) \tag{86}
\end{equation*}
\]
where \(\Delta \ddot{x}_{i}=\ddot{x}\left(t_{j}+\Delta t\right)-\ddot{x}\left(t_{j}\right)\) as shown before; integrating (86) twice between the limits \(t_{i}\) and \(t\) yields
\[
\begin{equation*}
\dot{x}(t)=\dot{x}_{i}+\ddot{x}\left(t-t_{i}\right)+1 / 2 \frac{\Delta \ddot{x}}{\Delta t}\left(t-t_{i}\right)^{2} \tag{87}
\end{equation*}
\]
and
\[
\begin{equation*}
x(t)=x_{i}+\dot{x}_{i}\left(t-t_{i}\right)+1 / 2 \ddot{x}_{i}\left(t-t_{i}\right)^{2}+1 / 6 \frac{\Delta \ddot{x}_{i}}{\Delta t}\left(t-t_{i}\right)^{3} \tag{88}
\end{equation*}
\]

The evaluation of (87) and (88) at time \(t=t_{i}+\Delta t\) gives
\[
\begin{equation*}
\Delta \dot{x}_{i}=\ddot{x}_{j} \Delta t+1 / 2 \ddot{x}_{i} \Delta t \tag{89}
\end{equation*}
\]
and
\[
\begin{equation*}
\Delta x_{i}=\dot{x}_{i} \Delta t+1 / 2 \ddot{x}_{j} \Delta t^{2}+1 / 6 \Delta \ddot{x}_{i} \Delta t^{2} \tag{90}
\end{equation*}
\]
where \(\Delta x_{i}\) and \(\Delta \dot{x}_{j}\) are defined in (84)。
Now it will be convenient to use the incremental displacement as the basic variable of the analysis. (89) is solyed for the incremental acceleration \(\Delta \ddot{x}_{j}\), and is substituted into equation (90) to obtain:
\[
\begin{equation*}
\Delta \ddot{x}_{i}=\frac{6}{\Delta t^{2}} \Delta x_{i}-\frac{6}{\Delta t} \dot{x}_{i}-3 \ddot{x}_{i} \tag{91}
\end{equation*}
\]
and
\[
\begin{equation*}
\Delta \dot{x}_{i}=\frac{3}{\Delta t} \Delta x_{i}-3 \dot{x}_{i}-\frac{\Delta t}{2} \ddot{x}_{i} \tag{92}
\end{equation*}
\]

Substituting (90) and (91) into equation (82)b leads to the following form of equation of motion:
\[
\begin{equation*}
m_{\left\{\frac{6}{\Delta t}\right.} \Delta x_{i}-\frac{6}{\Delta t} \dot{x}_{i}-3 \ddot{x}_{i\}}+C_{i}\left\{\frac{3}{\Delta t} \Delta x_{i}-3 \dot{x}_{i}-\frac{\Delta t}{2} \ddot{x}_{i\}}+k_{i} \Delta x_{i}=\Delta F_{i}\right. \tag{93}
\end{equation*}
\]

Finally transferring all terms associated with containing the unknown incremental displacement \(\Delta x_{i}\) to the left side gives,
\[
\begin{equation*}
\bar{K}_{\boldsymbol{i}} \Delta x_{i}=\Delta \bar{F}_{\boldsymbol{i}} \tag{94}
\end{equation*}
\]
in which
\[
\begin{equation*}
\bar{K}_{i}=K_{i}+\frac{6 m}{\Delta t^{2}}+\frac{3 C_{i}}{\Delta t} \tag{95}
\end{equation*}
\]
and
\[
\begin{equation*}
\Delta \bar{F}_{i}=\Delta F_{i}+m\left\{\frac{6}{\Delta t} \dot{x}_{i}+3 \ddot{x}_{i}\right\}+c_{i}\left\{3 \dot{x}_{i}+\frac{\Delta t}{2} \ddot{x}_{i}\right\} \tag{96}
\end{equation*}
\]

It should be noted that (94) is equivalent to the static incre-mental-equilibrium equation, and may be solved for the incremental displacement by simply dividing the equivalent incremental load \(\Delta F_{j}\) by the equivalent spring constant \(\bar{K}_{j}\), that is,
\[
\begin{equation*}
x_{i}=\frac{\overline{\Delta F}_{i}}{\bar{K}_{i}} \tag{97}
\end{equation*}
\]

To obtain the displacement at time \(t_{i+1}=t_{\boldsymbol{i}}+\Delta t\), this value of \(\Delta x_{\boldsymbol{i}}\) is substituted into (84)a yielding
\[
\begin{equation*}
x_{i+1}=x_{i}+\Delta x_{i} \tag{9}
\end{equation*}
\]

Then the incremental velocity \(\Delta \dot{x}_{i}\) is obtained from (92) and the velocity \(\mathrm{t}_{\boldsymbol{i}+1}=\mathrm{t}_{\boldsymbol{i}}+\Delta \mathrm{t}\) from (84)b as
\[
\begin{equation*}
\dot{x}_{i+1}=\dot{x}_{i}+\Delta \dot{x}_{i} \tag{99}
\end{equation*}
\]

Finally, the acceleration \(\ddot{x}_{i+1}\) at the end of the time step is obtained directly from the differential equation of motion (80)b where the equation is written for time \(t_{i+1}=t_{i}+\Delta t\). Hence from (80)b it follows that
\[
\begin{equation*}
\ddot{x}_{i+1}=\frac{1}{m}\left\{F\left(t_{i+1}\right)-c_{i+1} \dot{x}_{i+1}-K_{i+1} x_{i+1}\right\} \tag{100}
\end{equation*}
\]

After the displacement, velocity and acceleration have been determined at time \(t_{i+1}=t_{i}+\Delta t\), the outlined procedure is repeated to calculate these quantities at the following time step \(t_{i+2}=t_{i+1}+\Delta t\) and the process is continued to any desired final value of time.

This numerical procedure involves two significant approximations: 1) the acceleration is assumed to vary linearly during the time increment \(\Delta t\); and 2) the damping and stiffness properties of the system are evaluated at the initiation of each time increment and assumed to remain constant during the time interval.

This concludes the background analysis of a single degree-offreedom system using step by step linear acceleration. It was necessary to include this analysis in this chapter to present a modification of the extension of this method known as the Wilson- \(\theta\) method, for the solution of the structures with elasto-plastic behavior.

The modification introduced by Wilson is utilized to assure the numerical stability of the solution process regardless of the magnitude selected for the time step; for this reason, such a method is said to be unconditionally stable。

\section*{C. Incremental Equation of Motion}

The basic assumption of the Wilson- \(\theta\) method is that the acceleration varies linearly over the time interval from \(t\) to \(t+\theta \Delta t\) where \(\theta \geq 1.0\). The value of the factor \(\theta\) is determined to obtain optimum stability of the numerical process and accuracy of the solution. It has been shown by Wilson that, for \(\theta \geq 1.38\), the method becomes unconditionally stable.

The equations expressing the incremental equilibrium conditions for a multidegree-of-freedom system can be derived as the matrix equivalent of the incremental equation of motion of the single degree-offreedom system (82)b. Thus taking the difference between dynamic equilibrium conditions defined at times \(t_{i}\) and \(t_{i+\tau}\), where \(\tau=\theta \Delta t\); then the following incremental equations are obtained.
\[
\begin{equation*}
{\underset{\sim}{M} \hat{\Delta}_{\sim}^{\dot{X}}}_{i}+C(\dot{x}) \hat{\Delta i}_{\underset{\sim}{x}}+\underset{\sim}{K}(x) \hat{\Delta}_{\sim}^{x}=\hat{\Delta}_{\sim}^{F} i \tag{101}
\end{equation*}
\]
in which the symbol over \(\hat{\Delta}\) indicates that the increments are associated with the extended time step \(\tau=\theta \Delta t\). Thus
\[
\begin{array}{ll}
\hat{\Delta}_{\sim}^{x} \\
i \tag{102}
\end{array}=\underset{\sim}{x}\left(t_{i}+\tau\right)-\underset{\sim}{x}\left(t_{i}\right), \quad \text { (a) }
\]
and
\[
\begin{equation*}
\hat{\Delta}_{\sim}^{F}=\underset{\sim}{F}\left(t_{i}+\tau\right)-{\underset{\sim}{F}}^{F}\left(t_{i}\right) \tag{103}
\end{equation*}
\]

In writing (101), it was assumed that the stiffness and damping are obtained for each time step as the initial values of tangent of the corresponding curves, as shown in Figure 8, rather than the slope of the secant line which requires iteration. Hence the stiffness coefficient is defined as
\[
\begin{equation*}
\mathrm{K}_{i j}=\frac{\mathrm{d} \mathrm{~F}_{s i}}{\mathrm{dxj}} \tag{104}
\end{equation*}
\]
and the damping coefficient as
\[
\begin{equation*}
c_{i j}=\frac{d F_{D i}}{d x_{j}} \tag{105}
\end{equation*}
\]
in which \(F_{S i}\) and \(F_{D i}\) are respectively the elastic and damping forces at modal coordinate \(i ; x_{j}\) and \(\dot{x}_{j}\) are respectively the displacement and velocity at modal coordinate \(j\).
D. The Wilson- \(\theta\) Method

At this point it is necessary to consider the detailed performance and efficiency of this unconditionally stable method of time integration, as it has already been mentioned, on the assumption that acceleration may be represented by a linear function during the time step \(\tau=\theta \Delta t\) as is shown in Figure 10 。

FIGURE 10 - Linear Acceleration; Normal and Extended Time Steps

From this figure can be written the linear expression for the acceleration during the extended time step as
\[
\begin{equation*}
\underset{\sim}{\ddot{x}}(t)=\ddot{x}_{i}+\frac{\hat{\Delta}_{i}}{\tau}\left(t-t_{i}\right) . \tag{106}
\end{equation*}
\]
in which \(\hat{\Delta}_{\sim}^{\ddot{X}} \underset{i}{ }\) is given by (102)c. Integrating (106) twice yields
\[
\begin{equation*}
\underset{\sim}{x}(t)={\underset{\sim}{x}}_{i}+\ddot{x}_{i}\left(t-t_{i}\right)+1 / 2 \frac{\hat{\underline{x}}_{\underset{i}{ }}^{\tau}}{\tau}\left(t-t_{i}\right)^{2} \tag{107}
\end{equation*}
\]
and
\[
\begin{equation*}
\underset{\sim}{x}(t)={\underset{\sim}{x}}_{i}+\underset{\sim}{\dot{x}}\left(t-t_{i}\right)+1 / 2{\underset{\sim}{x}}_{i}\left(t-t_{i}\right)^{2}+1 / 6 \frac{\hat{\Delta}_{\sim}^{\ddot{x}_{i}}}{\tau}\left(t-t_{i}\right)^{3} \tag{108}
\end{equation*}
\]

Evaluation of (107) and (108) at the end of the extended interval \(t=t_{i}+\tau\) gives
\[
\begin{equation*}
\hat{\Delta}_{\underset{i}{i}}={\ddot{\underset{x}{x}}}_{i} \tau+1 / 2 \hat{\underline{x}}_{i} \ddot{x}_{i} \tau \tag{109}
\end{equation*}
\]
and
\[
\begin{equation*}
\hat{\Delta}_{\sim}^{x} \hat{j} \tau+1 / 2{\underset{\sim}{\underset{i}{j}}} \tau^{2}+1 / 6 \hat{\Delta}_{\sim}^{x}{ }_{i} \tau^{2} \tag{110}
\end{equation*}
\]
in which \(\hat{\Delta}{\underset{\sim}{x}}_{i}\) and \(\hat{\Delta}{\hat{\underset{\sim}{x}}}_{i}\) are defined by (84)b,c respectively. Then (110) is solved for incremental acceleration \(\hat{\Delta}{\underset{\sim}{i}}_{i}\) and substituted in (109) yields
\[
\begin{equation*}
\hat{\Delta} \ddot{\sim}_{i}=\frac{6}{\tau^{2}} \hat{\imath} x_{i}-\frac{6}{\tau}{\underset{\sim}{x}}_{i}-3 \ddot{x}_{i} \tag{111}
\end{equation*}
\]
and
\[
\begin{equation*}
\hat{\Delta}_{\sim}^{\dot{x}}{ }_{i}=\frac{3}{\tau} \hat{\Delta}_{\sim}{ }_{i}-3{\dot{\underset{x}{i}}}_{i}=\frac{\tau}{2} \ddot{x}_{i} \tag{112}
\end{equation*}
\]

Finally, substituting (111) and (112) into the incremental equation of motion (82)b results in an equation for incremental displacement \(\hat{\Delta}_{\sim}^{x}{ }_{i}\) which may be conveniently written as
\[
\begin{equation*}
\bar{K}_{i} \hat{\Delta}_{\sim}^{x}{ }_{i}=\overline{\hat{\Delta} F_{i}} \tag{113}
\end{equation*}
\]
in which
\[
\begin{equation*}
\underset{\sim}{K_{i}}=\underset{\sim}{K_{i}}+\underset{\tau^{2}}{\underset{\sim}{\sim}} \underset{\sim}{M}+\underset{\sim}{3}{\underset{\sim}{i}}^{C_{i}} \tag{114}
\end{equation*}
\]
and

Equation (113) has the same form as the static incremental equilibrium equation and may be solved for the incremental displacement \(\hat{\Delta}_{\sim}^{x}\) by solving a system of linear equations.

To obtain the incremental acceleration \({\underset{\sim}{\Delta}}_{i}\) for the extended time interval, the value of \(\hat{x}_{\dot{j}}\) obtained from the solution of (113) is substituted into (111). The incremental acceleration \(\hat{\mathbb{\alpha}}_{\sim}^{\sim}\) for the normal time interval \(\Delta t\) is then obtained by a simple linear interpolation. Hence
\[
\begin{equation*}
\stackrel{\ddot{x}}{ }=\frac{\hat{\Delta x}}{\theta} \tag{116}
\end{equation*}
\]

To calculate the incremental velocity \(\Delta_{\sim}^{\dot{x}}\) and incremental displacement \(\Delta_{\sim}^{\chi} i\) and incremental displacement \(\Delta_{\sim}^{x}\) corresponding to the normal interval \(\Delta t\), use is made of (109) and (110) with the extended time interval parameter \(\tau\) substituted for \(\Delta t\), that is
\[
\begin{equation*}
\stackrel{\rightharpoonup}{\sim}_{\sim}^{i}={\underset{\sim}{\underset{\sim}{x}}}_{i} \Delta t+1 / 2 \Delta{\ddot{\underset{\sim}{x}}}_{i} \Delta t \tag{117}
\end{equation*}
\]
and
\[
\begin{equation*}
\Delta{\underset{\sim}{x}}_{i}={\underset{\sim}{x}}_{i} \Delta t+1 / 2{\underset{\sim}{x}}_{i} \Delta t^{2}+1 / 6 \Delta \ddot{x}_{i} \Delta t^{2} \tag{118}
\end{equation*}
\]

Finally, the displacement \({\underset{\sim}{x}}_{i+1}\) and velocity \({\underset{x}{i+1}}\) at the end of the normal time interval are calculated by
\[
\begin{equation*}
{\underset{\sim}{x}+1}={\underset{\sim}{x}}_{i}+\Delta \Delta_{\sim}^{x} \tag{119}
\end{equation*}
\]
and
\[
\begin{equation*}
{\underset{\sim}{\dot{x}}}_{i+1}={\dot{\underset{\sim}{x}}}_{i}+\Delta{\dot{\underset{\sim}{x}}}_{i} \tag{120}
\end{equation*}
\]

As mentioned in the section dealing with single degree-of-freedom, the initial acceleration for the next step should be calculated from the condition of dynamic equilibrium at time \(t+\Delta t\); thus
in which the products \({\underset{\sim}{i}}_{i+1}{\underset{\sim}{x}}_{i+1}\) and \(\underset{\sim}{K_{i}+1} \underset{\sim}{x} \underset{i+1}{ }\) represent respectively the damping force and the stiffness force vectors evaluated at the end of the time step \(t_{i+1}=t_{i+\Delta t}\). Once the displacement, velocity and acceleration vectors at time \(t_{i+1}=t_{i+\Delta t}\), then the outline procedure is repeated to calculate these quantities at the next step \(t_{i+2}=t_{i+1}+\Delta t\) and the process is continued until the desired final time.
E. Algorithm for Step-by-Step Solution of a Linear System, Using the Wilson- \(\theta\) Integration Method

Initiation of Values:
1. Assemble system stiffness matrix \(\underset{\sim}{K}\), mass matrix \(\underset{\sim}{M}\), and damping matrix \(\underset{\sim}{C}\).
2. Set initial values for displacement \({\underset{\sim}{x}}_{0}\), velocity \({\underset{\sim}{x}}_{0}\) and forces \(E_{0}\).
3. Calculate initial acceleration \(\underset{\sim}{\underset{\sim}{\ddot{g}}}\), from
\[
\underset{\sim}{M} \ddot{x}_{0}=F_{\sim}-\underset{\sim}{C}{\underset{\sim}{\dot{x}}}_{0}-\underset{\sim}{K} \underset{\sim}{x_{0}}
\]
4. Select time step \(\Delta t\), the factor 0 (for all practical purposes taken as 1.4) and calculate the constants, \(\tau, a_{1}, a_{2}, a_{3}\) and \(a_{4}\) for the following relation
\[
\tau=\theta \Delta t ; a_{1}=\frac{3}{\tau}, a_{2}=\frac{6}{\tau}, a_{3}=\frac{\tau}{3}, a_{4}=\frac{6}{\tau^{2}}
\]
5. From the effective stiffness matrix \(\underset{\sim}{K}\), namely
\[
\underset{\sim}{K}=\underset{\sim}{K}+a_{4} \underset{\sim}{M}+a_{1} \underset{\sim}{C}
\]

For Time Intervals (one at the time):
1. Calculate by linear interpolation the incremental load \(\hat{\Delta} \mathrm{E}_{\mathfrak{i}}\) for the time interval \(t_{i}\) to \(t_{i}+\tau\), from the relation
\[
\hat{\Delta}_{\underset{\sim}{i}}={\underset{\sim}{i}+1}+\left({\underset{\sim}{i}+2}-{\underset{\sim}{\sim}}_{i+1}\right)(\theta-1)-{\underset{\sim}{i}}
\]
2. Calculate the effective incremental load \(\overline{\hat{\Delta} F_{i}}\) for the time interval \(t_{i}\) to \(t_{i+\tau}\), from the relation
\[
\overline{\hat{\Delta}{\underset{\sim}{F}}_{i}}=\hat{\Delta}{\underset{\sim}{F}}_{i}+\left(a_{2}(M+3 C){\underset{\sim}{\sim}}_{i}+\left(3 M+a_{3} C\right) \ddot{\sim}_{\sim}^{x}\right.
\]
3. Solve for incremental displacement \(\hat{\Delta x}_{i}\) from
\[
\underset{\sim}{K} \hat{\Delta}_{\sim}^{x}=\overline{\hat{\Delta}}{\underset{\sim}{i}}
\]
4. Calculate the incremental acceleration for the extended time interval \(\tau\), from the relation
\[
\hat{\Delta}{\underset{\sim}{x}}_{i}=\frac{6}{\tau^{2}} \hat{\Delta}{\underset{\sim}{x}}_{i}-\frac{6}{\tau}{\underset{\sim}{x}}_{i}-3 \cdot \ddot{x}_{i}
\]
5. Calculate the incremental acceleration for the normal interval from
\[
\Delta \ddot{x}=\frac{\hat{\Delta} \ddot{x}}{\theta}
\]
6. Calculate the incremental velocity \(\Delta_{\sim}^{\hat{X}}\) and the incremental displacemont \(\Delta{\underset{\sim}{x}}_{i}\) from time \(t_{i}\) to \(t_{i}+\Delta t\) from the following relations
\[
\begin{gathered}
\Delta \dot{\sim}_{i}={\underset{\sim}{x}}_{i} \Delta t+1 / 2 \Delta_{\sim}^{\ddot{x}_{i}} \Delta t \\
\Delta{\underset{\sim}{x}}_{i}={\dot{\underset{\sim}{x}}}_{i} \Delta t+1 / 2{\underset{\sim}{x}}_{i} \Delta t^{2}+1 / 6{\underset{\sim}{x}}_{i} \Delta t
\end{gathered}
\]
7. Calculate the displacement and velocity at time \(\mathrm{t}_{\mathrm{i}+1}=\mathrm{t}_{\boldsymbol{i}}+\Delta \mathrm{t}\) using
\[
\begin{aligned}
& \Delta{\underset{\sim}{x}}_{i+1}={\underset{\sim}{x}}_{i}+\Delta{\underset{\sim}{x}}_{i} \\
& \Delta \dot{\sim}_{i+1}={\underset{\sim}{x}}_{i}+\Delta \dot{\sim}_{i}
\end{aligned}
\]
8. Calculate the acceleration \(\ddot{x}_{i+1}\) at time \(t_{i+1}=t_{i}+\Delta t\) directly from the equilibrium equation of motion, namely
\[
M \ddot{\sim}_{i+1}=F_{i+1}-\underset{\sim}{C}{\underset{\sim}{x}}_{i+1}-\underset{\sim}{K} \underset{\sim}{x}+1
\]

\section*{F. Subroutine Step}

This is used for a type of dynamic loading of irregular behavior such as an earthquake. This subroutine will find the response for each modal coordinate at each increment of time up to the maximum specified by programer. The list of operational variables are shown in a tabular form, below.
\begin{tabular}{lcl}
\hline Variable & Symbol in Thesis & \multicolumn{1}{c}{ Description } \\
\hline SK \((\mathrm{I}, \mathrm{J})\) & {\([\mathrm{K}]\)} & System stiffness matrix \\
SM \((\mathrm{I}, \mathrm{J})\) & {\([\mathrm{M}]\)} & System mass matrix \\
SC \((\mathrm{I}, \mathrm{J})\) & {\([\mathrm{C}]\)} & System damping matrix \\
ND & N & Number of degrees-of-freedom \\
THETA & \(\theta\) & Wilson- \(\theta\) factor \\
DT & \(\Delta t\) & Time step of integration \\
TMAX & & \begin{tabular}{l}
Maximum time of integration
\end{tabular} \\
NEQ(L) & \begin{tabular}{l}
Number of data points for \\
excitation at modal coordinates \\
(L-1, ND)
\end{tabular} \\
TC(I),P(I) & \(t_{i}, F_{i}(t)\) & Time-force values \\
\hline
\end{tabular}
G. Program 4-Seismic Response of Shear Buildings

A computer program for the analysis of a multidegree-of-freedom shear building with elastoplastic behavior, linear viscous damping, subjected to an arbitrary acceleration at the foundation, is presented in this section. This program may be conceived as a combination of three computer programs already presented: (1) the elastoplastic single degree-of-freedom system; (2) the seismic response of elastic shear buildings using modal superposition method; and (3) the subroutine

STEP using the Wilson- \(\theta\) integration method for linear systems in this chapter.

The listing of Program 4 is given on page 89. The program calls subroutine JACOBI to solve the eigenproblem of the system in the linear range and then calls subroutine DAMP to determine from specified modal damping ratios, the damping matrix of the system. A listing of the principal variables used in the program are given below. Input data cards and corresponding formats are indicated following the list of variables.
\begin{tabular}{|c|c|c|}
\hline Variables & Symbols in Thesis & Description \\
\hline SK (\(\mathrm{I}, \mathrm{J}\)) & [K] & Stiffness matrix \\
\hline SM (\(I, J\)) & [M] & Mass matrix \\
\hline SC (\(\mathrm{I}, \mathrm{J}\)) & [C] & Damping matrix \\
\hline THETA & \(\theta\) & Wilson-ө factor \\
\hline DT & \(\Delta t\) & Time step \\
\hline E & E & Modules of elasticity \\
\hline GR & g & Acceleration of gravity \\
\hline TMAX & & Maximum time of calculation \\
\hline NEQ & NT & Number of data points for the excitation \\
\hline ND & \(N\) & Number of degrees-of-freedom \\
\hline IFPR & & Printing index of subroutine JACOBI: 1=Print eigenvalues during iteration; \(0=\) Do not print \\
\hline SI & I & Moment of inertia of story columns \\
\hline SL & L & Height of story \\
\hline SM (\(\mathrm{I}, \mathrm{I}\)) & M & Mass at floor level \\
\hline PM & \(M_{p}\) & Plastic moment of story \\
\hline TC(I) , P(I) & \(t_{i}, F_{i}\) & Time-Acceleration values (acceleration in g's) \\
\hline XIS (I) & \(\xi_{i}\) & Modal damping ratios \\
\hline
\end{tabular}

\section*{H. Illustrative Example}

Use Program 4 to determine the response of the two-story shearbuilding of the example subjected to a constant acceleration of 0.28 g applied suddenly at the foundation. The plastic moment for the columns on the first or second story is \(M_{p}=15,000 \mathrm{lb}-\mathrm{in}\).

The listing of the input data followed by the computer results are shown on the following page.
\(\Rightarrow \quad \because\) Input Data and Computer Results

Input Data

\section*{EIGENVAI.UCs}
\[
\begin{aligned}
& \text { SWEEF NIMARER IN AJACHRTA = } 1
\end{aligned}
\]
\[
\begin{aligned}
& \text { SWEEP NHMAFR IN *JACOLIAA= ? }
\end{aligned}
\]

\section*{ETGENVECIORS}

The Damping matrix is

\section*{SEISMIC RESPCNSE ELASTOPLASTIC SHEAR BUILDING}
```

IMPLICIT REAL**(A-H,O-Z)
DIMENSICN SK(30,30),SM(30,30),SC(30,30),F(30), x(30,30),DD(30),
1 DUA(30),UD(30),UV(30),UA(30),TC(30),P(30),SKP(30),FT(30),
1 R(30),YT(30),YC(30),S(30),SP(30),KEY(30),EIGEA:30)

```
\(c\)

READ INPUT DATA AND INITIALIZE
READ(5,100) THETA.DT, E , GR, TMAX,NEQ,ND,IFPR
HRITE(E,100)THETA,DT,E,GR,TMAX,NEQ,ND,IFPR
100 FORMAT(2F10.2.3F10.0.3I5)
\(N X=T M A X / D T+2\)
DO \(1 \quad I=1\), \(N X\)
\(1 \mathrm{~F}(\mathrm{I})=0.0\)
DO \(2 I=1, N D\)
DO \(2 \mathrm{~J}=1\), ND
\(S M(I, J)=0.0\)
\(S C(I, J)=0.0\)
\(X(I, J)=0.0\)
\(2 S K(I, J)=0.0\)
ND \(1=\mathrm{ND}+1\)
\(T U=T H E T A * D T\)
\(A 1=3 . / T U\)
\(A_{2}=6 . / T U\)
\(A 3=T U / 2\).
\(A 4=A 2 / T U\)
DO. \(7 \mathrm{I}=1\), ND
READ (5,110) SI,SL,SM(I,I),PM
WRITE(E,110)SI,SL,SM(I,I),PM
110 FORMAT (3F10.2,F10.0)
\(S(I)=12.0 * E * S I / S L * * 3\)
\(S P(I)=S(I)\)
RT(I) \(=2 * P M / S L\)
\(S C(I, I)=S M(I, I)\)
\(U D(I)=0.0\)
\(\operatorname{UV}(I)=0.0\)
\(Y T(I)=R T(I) / S(I)\)
\(Y C(I)=-R T(I) / S(I)\)
\(\operatorname{KEY}(I)=0\)
\(7 \mathrm{SP}(\mathrm{I})=\mathrm{S}(\mathrm{I})\)
assemble stiffness matrix
C
\(S(N D+1)=0.0\)
DO 19 \(\mathrm{I}=1, \mathrm{ND}\)
IF (I.EQ.1) GO TO 19
SK(I,I-1) \(=-S(I)\)
\(S K(I-1, I)=-S(I)\)
19. \(S K(I, I)=S(I)+S(I+1)\)
determine natupal frequencies and mode shapes
CALL JACOEI(SK,SC,X,EIGEN,TC,ND,IFPR)
C
C DETERMINE DAMPING MATRIX
C
CALL DAMP (NO, X,SM, SC, EIGEN)

C
C
 WRITE(G,12C)(TC(L),P(L),L=1,NFQ)

120 FORMAT(4F10.2)
DO \(4 I=1\), NEQ
\(4 P(I)=P(I) * G R\)
INTERPOLATION PETWEEN DATA POINTS
```

    NT=TC(NEQ)/DT
    NT1=NT +1
    F(1)=P(1)
    ANN=0.0
    II=1
    DO 10 I=2,NT1,
    AI=I-1
    T=AI*DT
    IF(T.GT.TC(NEQ)) GO TO 16
    IF(T-LE.TC(II+1)) GOTO 9
    ANN=-TC(II+I)+T-DT
    II=II +1
    9 ANN=ANN+DT
    F(I)=P(II)+(P(II+1)-P(II))*ANN/(TC(II+1)-TC(II))
    10 CONTINUE
16 CONTINUE

```
 INITIALIZE AND DETERMINE INITIAL ACCELERATION
 \(N T=T M A X / D T\)
 DO \(22 I=1, \because D\)
 \(X(I, N D 1)=-F(1) * S M(I, I)\)
 DO \(22 \mathrm{~J}=1, \mathrm{ND}\)
 \(22 X(I, J)=S M(I, J)\)
 CALL SOLVE (ND, X)
 DO \(23 \quad 5=1\), ND
23 UA(I) \(=X(I, N D)\)
 \(S P(N D+1)=0 \cdot 0\)
 \(R(N D+1)=0.0\)
 LOOP OVER TIME CALCULATING RESPONSE

INITIALIZE AND DETERMINE INITIAL ACCELERATION
\(N T=T M A \times / D T\)
DO \(22 I=1\), MD
\(X(I, N D 1)=-F(1) * S M(I, I)\)
DO \(22 J=1\), ND
\(22 X(I, J)=S M(I, J)\)
CALL SOLVE (ND, X)
DO \(23 \mathrm{I}=1\), ND
23 UA(I) \(=X(I, N(1)\)
\(S P(N D+1)=0.0\)
\(R(N D+1)=0.0\)
LOOP OVER TIME CALCULATING RESPONSE
```

    WRITE (6,170)
    OO 50 L=1,NT
    AL = L
    T=DT*AL
    DO 20 I=1,ND
    IF(I.EQ.1) GO TO 20
    SK(I,I-1) = -SP(I)
    SK((I-1),I)=-SP(I)
    20 SK(I,I)=SP(I)+SP(I+1)
DO 25 I=1,NO
DO 25 J=1.ND
25 X(I,J)=SK(I,J)+\&4*SN(I,J)+A1*SC(I,J)
DC 35 I=1,ND
x(I,NDI)=(F(L+1)+(F(L+2)-F(L+1))*(THETA-1.0)-F(L))*(-SM(I,I))
DO 30 J=1, ND
30 X(I,NOL)=x(I,NO1)+(SM(I,J)*A2+SC(I,J)*3.0)*UV(J)
1 +(SM(I,J)*3.0+AX*SC(I,J))*UA(J)
35 CONTINUF.
CALL SOLVE(ND,X)
DO 38 I=1,N0
DUA(I)=A4*X(I,NכI)-A2*UV(I)-3.0*UA(I)
DUA(I)=DUA(I)/THETA

```

DUV = DT*UA (I) + OT*DUA (I) /2.0
UD(I) \(=\quad U D(I)+D T * U V(I)+D T * D T * U A(I) / 2 \cdot O+D T * D T * D U A(I) / 6.0\)
\(33 \operatorname{UV}(I)=U V(I)+D U V\)
DO(1)=UD(1)
DO \(39 \quad I=2, ~ N O\)
39 DD(I) \(=\mathrm{UD}(\mathrm{I})-\operatorname{UD}(\mathrm{I}-1)\)
DO \(40 \quad I=1\), NO
IF(KEY(I)) 11,12.13
\(12 R(I)=R T(I)-(Y T(I)-D C(I)) * S(I)\)
SP(I)=S(I)
IF (OD(I).GT.YC(I).ANO.DD(I).LT.YT(I)) GO TO 40
IF(DD(I).LT.YC(I)) GO TO 15
\(\operatorname{KEY}(I)=1\)
\(S P(I)=0 . C\)
\(R(I)=R T(I)\)
GO TO 40
13 IF (UV(I).GT.0.) GC TO 40
\(\operatorname{KEY(I)}=0\)
\(S P(I)=S(I)\)
\(Y T(I)=D D(I)\)
\(Y C(I)=D D(I)-2 \cdot 0 * R T(i) / S(I)\)
\(R(I)=R T(I)-(Y T(I)-D D(I)) * S(I)\)
GOTO 40
11 IF (UV(I).LT.0) GO TO 40
KEY(I)=0
\(S P(I)=S(I)\)
\(Y C(I)=D D(I)\)
\(Y T(I)=00(I)+2 . * R T(I) / S(I)\)
\(R(I)=R T(I)-(Y T(I)-D D(I)) * S(I)\)
GO TO 40
\(15 \operatorname{KEY}(I)=-1\)
\(R(I)=-R T(I)\)
SP(I)=0.0
40 CONTINUE
DO \(50 \quad \mathrm{I}=1\), ND
\(X(I, N D 1)=F(L+1) *(-S M(I, I))-R(I)+R(I+1)\)
DO \(45 \mathrm{~J}=1\), ND
\(X(I, N D 1)=X(I, N D 1)-S C(I, U) \star U V(J)\)
\(45 \mathrm{X}(I, \mathrm{~J})=S \mathrm{M}(\mathrm{I}, \mathrm{J})\)
50 CONTINUS
CALL SOLVE (ND,X)
DO \(60 \quad 1=1\), ND
UA(I) \(=X(I, N D 1)\)
60 WRITE(E.250) I,T.UD(I),UV(I).UA(I)
90 CONTINUE

250 FORMAT(I10.F10.3.3F15.4)
STOP
END
SUBROUTINE SOLVE (N,A)
IMPLICIT REAL * \(9(A-H, O-Z)\)
DIMENSION A(30,30)
\(M=1\)
\(E P S=1.0 E-10\)
\(N^{2}\) LUS \(M=N+M\)
DET=1.0
DC \(9 \mathrm{~K}=1\), N
\(D E T=D E T A A(K, K)\)
IF (DABS(A \((K, K)) \cdot G T \cdot E P S) G O T O 5\)

WRITE（5．202）
GOT099
\(5 K P 1=K+1\)
\(006 J=K P 1\) ．NPLUSM
\(6 A(K, J)=A(K, J) / A(K, K)\)
\(A(K, K)=1\) ．
DO 9 I \(=1, N\)
IF（I．EQ．K．OR．A（I．K）．EQ．O．）GOTO． 9
DO \(8 \quad J=K P 1, N 2 L U S M\)
\(8 A(I, J)=L(I, J)-A(I, K) * A(K, J)\)
\(A(I, K)=0.000\)
9 CONTINUE
202 FORMAT（ 37 HOSMALL PIVOT－MATRIX MAY BE SINGULAR）
\(\geqslant 9\) RETURN
END
SUBRCUTINE JACOEI（A，E，X，EIGV，D，N，IFPR）
IMPLICIT REAL＊O \((A-H, O-Z)\)
DIMENSION A \((30,30), B(30,30), X(30,30), E I G V(30), D(30)\)
C
C INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES
C
WRITE（6．1990）
NSMAX \(=15\)
RTCL \(=1 \cdot\)－ 12
IOUT \(=6\)
DO 10 I＝1，N
IF（A（I，I）．GT．O．，AND．B（I，I）．GT．O．）GO TO 4
WRITE（IOUT－202C）
STQP
\(4 D(I)=A(I, I) / E(I, I)\)
10 EIGV（I）\(=0(I)\)
OO \(30 \mathrm{I}=1, N\)
\(0020 \mathrm{~J}=1 \cdot \mathrm{~N}\)
\(20 \times(I ; J)=0\) 。
\(30 \times(I, I)=1\) 。
IF（N．5Q．1）RETURN
C
C
C
INITIALIZE SWEEP COUNTER AND EEGIN ITERATICN
NSWEEP＝0
\(N R=N-1\)
40 NSWEEP＝NSWEEP＋ 1
IF（IFPR•EQ•1）WRITE（IOUT， 2000 ）NSWEEP

C
C
C

CHECK IF PRESENT OFF－DIAGONAL ELEMENT IS LARGE
\(E P S=(.01 * *\) NSWEEP \() * * 2\)
DG \(210 \mathrm{~J}=1\) ，NR
ل \(こ=さ+1\)
DC \(210 \mathrm{~K}=\mathrm{J}, \mathrm{N}\)
EPTOLA \(=(A(J, K) * A(J, K)) /(A(J, J) * A(K, K))\)
EPTCLB \(=(B(J, K) * E(J, K)) /(E(J, J) * B(K, K))\)
IF（（EPTOLA．LT．EPS）．AND．（EPTOLB．LT．EPS））GO TO 210
IF ZEROING IS REQUIRED，CALCULATE THE ROTATION MATRIX ELEMENT CA，CG
C
\(A K K=A(K, K) \times R(J, K)-R(K, K) * A(J, K)\)
\(A J J=A(J, J) * R(J, K)-E(J, J) * A(J, K)\)
\(A E=A(J, J) * F(K, K)-A(K, K) \star F(J, J)\)
\(C H E C K=(A B * A B+4 * * A K K * A J J) / 4\).
 \(D 1=A B / 2 \cdot+S Q C H\).
 D2 =AB/2.-SOCH
 \(D E N=D 1\)
 IF(DABS(D2).GT.DABS(D1))DEN=D2
 IF (DEN) \(80,70,80\)
\(70 \mathrm{CA}=0\).
 \(C G=-A(J, K) / A(K, K)\)
 \(C G=-A(J, K) / A(K, K)\)
 GO TO 90
 \(80 \mathrm{CA}=\mathrm{AKK} / \mathrm{DEN}\)
 \(C G=-A J J / D E N\)

GENERALIZED ROTATICN TO ZERO THE PRESENT OFF-DIAGONAL ELEMENT
\(90 \operatorname{IF}(N-2) 100,190,100\)
\(100 \mathrm{JP} 1=\mathrm{J}+1\)
 JM1 \(=\mathrm{J}-1\)
 \(K\) P1 \(=K+1\)
 \(K M_{1}=K-1\)
 IF (JM1-1)130,110,110
110 DC \(120 \mathrm{I}=1\), JM1
 \(\Delta J=A(I, J)\)
 \(B J=B(I, J)\)
 \(A K=A(I, K)\)
 \(B K=B(I, K)\)
 \(A(I, J)=A J+C G * A K\)
 \(B(I, J)=B J+C G * B K\)
 \(A(I, K)=A K+C A * A J\)
\(120 \mathrm{~B}(\mathrm{I}, \mathrm{K})=\mathrm{BK}+\mathrm{CA*BJ}\)
130 IF (KP1-N) \(140,140,160\)
140 DO 150 I \(=K P 1, N\)
 \(A J=A(J, I)\)
 \(B J=B(U, I)\)
 \(A K=A(K, I)\)
 \(B K=B(K \cdot I)\)
 \(A(J, I)=A J+C G * A K\)
 \(B(J, I)=E J+C G * B K\)
 \(A(K, I)=A K+C A * A J\)
\(150 \mathrm{~B}(K, I)=B K+C A * B J\)
\(160 \mathrm{I}=\left(\mathrm{JP} 1-K \mathrm{~K}_{1}\right) 170,170,190\)
\(17000180 \quad \mathrm{I}=\mathrm{JP} 1, \mathrm{KM} 1\)
 \(A J=A(J, I)\)
 \(B J=B(U, I)\)
 \(A K=A(I, K)\)
 \(B K=B(I, K)\)
 \(A(J, I)=A J+C G * A K\)
 \(B(J, I)=P J+C G * B K\)
 \(A(I, K)=A K+C A * A J\)
\(180 \mathrm{~B}(\mathrm{I}, \mathrm{K})=\mathrm{B} K+C A * 8 \mathrm{~J}\)
\(190 \mathrm{AK}=\mathrm{A}(\mathrm{K}, \mathrm{K})\)
 \(B K=B(K, K)\)
 \(A(K, K)=A K+2 \bullet * C A * A(J, K)+C A * C A * A(J, J)\)
 \(B(K, K)=P K+2 * C A * B(J, K)+C A * C A * B(J, J)\)
 \(A(J, J)=A(J, J)+2 . * C G * A(J, K)+C G * C G * A K\)
 \(B(J, J)=B(J, J)+2 . * C G * B(J, K)+C G * C G * R K\)
 \(A(J, K)=0\).
 \(B(J, K)=0\).

C UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATICN
C
```

C
C

```
 \(0 \cap 200 I=1 \cdot N\)
 \(X J=X(I, J)\)
 \(X K=X(I, K)\)
 \(X(I, J)=X J+C G * X K\)
 \(200 \times(I, K)=X K+C A * X J\)
 210 COVTINUE
C UPDATE THE EIGENVALUES AFTER EACH SWEEP
 \(00220 \mathrm{I}=1, \mathrm{~N}\)
 IF (A(I,I).GT.O. .AND. E(I,I).GT.O.) GO TO 220
 WRITE(IOUT, 2020)
 STOP
 220 EIGV(I)=A(I,I)/E(I,I)
 IF (IFPR.EQ.0)G? TO 230
 WRITE(IOUT,2010) (EIGV(I), I=1,N)
C
C CHECK FOR CONVERGEVCE
C
230 DO \(240 \mathrm{I}=1, \mathrm{~N}\)
TOL=RTCL*D(I)
DIF=DABS(EIGV(I)-D(I))
IF(DIF.GT.TOL)GO TO 280
240 CONTINUE
CHECK ALL OFF-DIAGCNAL ELEMENTS TO SEE IF ANCTHER SWEED I REQUIRED

EPS=RTCL**2
DO \(250 \mathrm{~J}=1\), NR
\(\mathrm{JJ}=\mathrm{J}+1\)
DO \(250 \mathrm{~K}=\mathrm{JJ}, \mathrm{N}\)
\(E P S A=(A(J, K) * \Delta(J, K)) /(A(J, J) * A(K, K))\)
\(E P S B=(B(J, K) * B(J, K)) /(E(J, J) * B(K, K))\)
IF(\((E P S A . L T . E P S)\).AND. (EPSB.LT.EPS))GO TO 250 GO TO 280
250 CONTINUE
C
FILL OUT BCTTOM TRIANGLE OF RESULTANT MATRICES AND SCALE EIGENVECTORS

255 DO 260 i=1, N
\(00260 \mathrm{~J}=1\), N
\(A(J, I)=A(I, J)\)
\(250 \mathrm{~B}(\mathrm{JQI})=\mathrm{E}(\mathrm{I}, \mathrm{J})\)
DO \(270 \mathrm{~J}=1 \mathrm{~N}\)
\(R B=\operatorname{DSQRT}(E(J, J))\)
DO \(270 \mathrm{~K}=1\), N
\(270 x(k, J)=x(K, J) / E B\)
C
C UPDATE MATRIX AND START NEW SWEEP, IF ALLOWED
C
URITE \((6,2010)(E I G V(I L), I L=1, N)\)
WRITE(6,1990)
DO 1091 LI=1, N
1951 WRITE(6,2010) (X(LI,LJ),LJ=1,N)
1990 FGRMAT (//,10X, EIGENVALUES'./)
1990 FORMAT(/10X, EIGENVECTOSS',/)
```

        RETURN
    280 DO 2:0 I=1,N
    290 D(I)=!IGV(!)
        IF(NSWEEP.LT.VSMAX)GO TO 40
        GO TO 255
    20C0 FORMAT(/.27HOSHEEJ NUMEER IN *JACOBI* = . I4)
    2010 FORMAT(140,6E14.5/)
    2020 FORMAT (25HO*** ERROR SOLUTION STOP /
        1 3OH MATRICES NOT POSITVE DEFINITE)
        END
    C
C DETERMINATION OF DAMPING MATRIX FROM MODAL DAMPING RATIJS
SUBROUTINE DAMF (NL,X,SM,SC,EIGEN)
IMPLICIT REAL*E(A-H,C-Z)
DIMENSION X(30,30),T(30,30),SM(30,30),SC(30,30),EIGEN(30),XIS(30)
READ (5,110) (XIS(L),L=1,NL)
DO 10 I=1,NL
EIGEN(i)=DSQRT(EIGEN(I))
DC 10 J=1,NL
10 SC(I,J) =0.0
DO 20II=1,NL
DA = 2.*XIS(II)*EIGEN(II)
DO 20 I=1,NL
DO20 J=1,NL
20 SC(I,J)=SC(I,J)+X(I,II)*X(J,II)*DA
DO 30 I=1.NL
DO 30 J=1,NL
T (I, J)=0.0
DO 30 K = 1,NL
30 T(I,J) = T(I,J)+SM(I,K)*SC(K,J)
DO40 I=1,NL
DO 40 J=1,NL

```

330
331
332 333 334 335
336
337
338
339 340
\(\operatorname{SC}(I, J)=0.0\)
DO \(40 \quad \mathrm{~K}=1\), NL
\(40 \mathrm{SC}(I, J)=S C(I, J)+T(I, K) * S M(K, J)\)
HRITF(6.170)
170 FORMAT(//,5X.'THE DAMPING MATRIX IS•./)
DO \(50 \quad \mathrm{I}=1\), NL
50 WRITE(6,120) (SC(I,J),J=1,NL)
110 FDZMAT(3F10.2)
120 FCRMAT (\(6 D 14.4\))
RETURN
END

\section*{SENTRY}
\begin{tabular}{rrrrrrr}
1.40 & 0.05 & 30000000 & 386. & 1. & 2 & 2
\end{tabular}

\section*{EIGENVALUES}
```

MWEEP NUMEER IN *JACOBI* = 1

```
 0.139900030 .105250 C 4
 ineep number in *jacobi* = 2
 0.139900030 .10325004
 0.139900030 .10525004

\section*{eigenvectors}
\(0.643700-01-0.566520-01\)
0.813230-01 0.924020-01
the damping matrix is
\begin{tabular}{ccccc}
0.0000000 & 0.00000 & 00 & \\
0.0000000 & 0.00000 & 00 & \\
0.00 & 0.28 & 1.00 & 0.28
\end{tabular}

THE RESPONSE IS CORD.

TIME
0.050
0.050
0.100
0.100
0.150
0.150
0.200
0.200
0.250
0.250
0.300
0.300
0.350
0.350
0.400
0.400
0.450
0.450
0.500
0.500
0.550
0.550
0.600
0.600
0.650
0.650
0.700
0.700
0.750
0.750
0.900
0.800
0.850
0.850
0.200
0.900
0.950
0.950

> DISPL.
> -0.1224

VELOC.
ACC.
\begin{tabular}{rr}
-4.6336 & -83.6079 \\
-5.1437 & -102.7505 \\
-7.4704 & -46.8792 \\
-9.1664 & -67.0241 \\
-10.3531 & -73.7455 \\
-11.4072 & -11.6610 \\
-13.7873 & -69.8076 \\
-12.5077 & -19.7756 \\
-16.5991 & -39.8756 \\
-14.8989 & -81.4515 \\
-19.5379 & -30.0255 \\
-17.0849 & -101.7425 \\
-20.7254 & -56.7322 \\
-22.7584 & -46.7187 \\
-23.9396 & -79.4874 \\
-24.3163 & -6.1706 \\
-27.3728 & -62.1527 \\
-25.4228 & -35.4875 \\
-29.8347 & -30.3152 \\
-28.5310 & -101.1538 \\
-31.5143 & -33.5414 \\
-33.0450 & -94.5050 \\
-34.0913 & -68.3586 \\
-36.1220 & -22.7407 \\
-37.6070 & -81.2444 \\
-37.0584 & 3.7311 \\
-40.8782 & -50.8350 \\
-38.4989 & -58.8705 \\
-42.9491 & -23.1836 \\
-42.4125 & -115.8433 \\
-44.7157 & -42.0776 \\
-46.9534 & -76.9121 \\
-47.5955 & -79.8093 \\
-49.2005 & 0.8340 \\
-51.3127 & -77.6543 \\
-49.7219 & -3.5055 \\
-53.4820 & -37.1971 \\
-51.0615 & -86.5729
\end{tabular}

\section*{BIBLIOGRAPHY}

Brebbia, C. A。, Vibrations of Engineering Structures (Kentucky: Computational Mechanics, Ltd。, 19761, p. 105.

Clough, R. W. and Penzien, J., Dynamics of Structures (New York: McGrawHil1, 1975), pp. 118, \(2 \overline{60}\).

James, M. L., Smith, G. M. and Wolford, J. Co, Applied Numerical Methods for Digital Computation with Fotran (Pennsylvania: International Textbook Company, 1967), p. 433.

Paz, M., Structural Dynamics (New York: Van Nostrand Reinhold, 1979), pp. 19-6 and 19-7.

The author, Jose Enrique Carrasco, was born in La Paz, Bolivia on March 20, 1950. He is the son of Mario Carrasco Gumucio, Hydraulic Engineer and the late Victoria Valdivieso Guzman de Carrasco, Kindergarden Principal. He graduated from Israeli High School in La Paz, Bolivia in May, 1968. The same year he enrolled in the University "Tomas Frias" in Potosi, Bolivia. In 1973 he transferred to the University of Louisville, where he received the Bachelor of Science in May 1977. He was a project manager for a construction company in Sellersburg, Indiana and then in 1978 he completed his Master of Engineering with specialty in Civil Engineering (Structural Dynamics).

He is married to the former Gayle Jo Senger from Devils Lake, North Dakota. They have a daughter named Alexandra Victoria born on October 25, 1978.```

