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Abstract 

In this study, the author examined the relationship of probability misconceptions 

to algebra, geometry, and rational number misconceptions and investigated the potential 

of probability instruction as an intervention to address misconceptions in all 4 content 

areas. Through a review of literature, 5 fundamental concepts were identified that, if 

misunderstood, create persistent difficulties across content areas: rational number 

meaning, additive/multiplicative structures, absolute/relative comparison, variable 

meaning, and spatial reasoning misconceptions. Probability instruction naturally provides 

concrete, authentic experiences that engage students with abstract mathematical concepts, 

establish relationships between mathematical topics, and connect inter-related problem 

solving strategies. The intervention consisted of five probability lessons about counting 

principles, randomness, independent and dependent event probability, and probability 

distributions. The unit lasted approximately two weeks. 

This study used mixed methodology to analyze data from a randomly assigned 

sample of students from an untreated control group design with a switching replication. 

Document analysis was used to examine patterns in student responses to items on the 

mathematics knowledge test. Multiple imputation was used to account for missing data. 
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Structural equation modeling was used to examine the causal structure of content area 

misconceptions. Item response theory was used to compute item difficulty, item 

discrimination, and item guessing coefficients. Generalized hierarchical linear modeling 

was used to explore the impact of item, student, and classroom characteristics on 

incorrect responses due to misconceptions. 

These analyses resulted in 7 key findings. (1) Content area is not the most 

effective way to classify mathematics misconceptions; instead, five underlying 

misconceptions affect all four content areas. (2) Mathematics misconception errors often 

appear as procedural errors. (3) A classroom environment that fosters enjoyment of 

mathematics and value of mathematics are associated with reduced misconception errors. 

(4) Higher mathematics self confidence and motivation to learn mathematics is associated 

with reduced misconception errors. (5) Probability misconceptions do not have a causal 

effect on rational numbers, algebra, or geometry misconceptions. (6) Rational number 

misconceptions do not have a causal effect on probability, algebra, or geometry 

misconceptions. (7) Probability instruction may not affect misconceptions directly, but it 

may help students develop skills needed to bypass misconceptions when solving difficult 

problems. 
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CHAPTER 1 

INTRODUCTION 

Purpose Statement and Research Questions 

Probability patterns often run counter to human intuition (Engel, 1970). As a 

result, students tend to develop misconceptions about those patterns and the mathematical 

concepts related to them. Some of these misconceptions fundamentally shape student 

understanding of mathematical patterns beyond probability (e.g., rational numbers, 

variables, linearity). Several researchers have proposed that probability instruction may 

hold the key to reducing these common misconceptions because of the abundance of 

concrete applications found within probability (e.g., Agnoli, 1987; Agnoli & Krantz, 

1989; Bar-Hillel & Falk, 1982; Falk, 1992; Falk & Lann, 2008; Freudenthal, 1970, 1973, 

1983; Shaughnessy, 1992; Shaughnessy & Bergman, 1993; Watson & Shaughnessy, 

2004). Clarifying and implementing instructional tasks that are built upon the 

foundational nature of probability to address critical mathematical concepts in core 

mathematics topics offers a radical shift in how we view probability and mathematics 

instruction. Such a shift may create a bridge between abstract concepts and concrete 

applications (Freudenthal, 1983; Stone et al., 2008). The purpose of this study was to 

investigate the role of probability instruction as an intervention for critical 

misconceptions common to rational numbers, probability, algebra, and geometry by 

examining four research questions through a mixed methodology design: 
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1) Do probability misconceptions have a causal influence on algebra, geometry, 

and rational number misconceptions? 

2) Does probability instruction reduce critical misconceptions in probability, 

rational numbers, algebra, or geometry? 

3) Do student attitudes toward mathematics influence the emergence of errors 

due to misconceptions on mathematical tasks? 

4) Does student metacognition influence the emergence of errors due to 

misconceptions on mathematical tasks? 

Qualitative analysis of student responses formed the initial foundation for this 

study, through the analysis of error responses in order to differentiate between errors due 

to misunderstandings of mathematical concepts versus faulty reasoning processes. The 

results from this analysis were then used to code responses as indicative of 

misconceptions to use in the quantitative analyses. 

Structural equation modeling was used to examine the causal relationship among 

content area misconceptions (i.e., Research Question 1). Hierarchical generalized linear 

modeling was used to examine the efficacy of probability instruction as an intervention 

for reducing misconceptions in rational numbers, algebra, geometry, and probability (i.e., 

Research Question 2). It was also used to analyze the impact of contextual factors on the 

emergence of errors due to misconceptions (i.e., Research Questions 3 and 4). 

Background 

Students enter high school at a time when their physical and cognitive 

development is at a transition point, and mathematics produces particularly strong 

feelings for many of these students. Students often bring preconceived notions about 
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what it means to learn mathematics: They often have a low sense of efficacy, a great deal 

of anxiety, and a deep sense that much of what they learn in mathematics is irrelevant to 

their lives (Schumacker, Young, & Bembry, 1995). By contrast, evidence suggests that a 

strong command of mathematics in high school influences college success and the 

accessibility of many rewarding and lucrative career opportunities (National Sciences 

Foundation, Mathematical Sciences Education Board, 1995). Mathematics teachers in 

command of the nature of learning and teaching mathematics are uniquely situated to 

support student development (Schumacker, Young, & Bembry, 1995).  

Unfortunately, evidence suggests that mathematics teaching practices have 

changed little to meet the needs of students in the last three decades (Hiebert, 2003). 

Consider the following description of traditional teaching practice: 

First, answers were given for the previous day’s assignment. A 

brief explanation, sometimes none at all, was given of the new material, 

and problems were assigned for the next day. The remainder of the class 

was devoted to students working independently on the homework while 

the teacher moved about the room answering questions. The most 

noticeable thing about math classes was the repetition of this routine 

(Welch, 1978, p. 6). 

The most striking feature of this description is its familiarity with current 

mathematics classrooms. Compare Welch’s (1978) description with that of a more recent 

mathematics classroom: 

The typical eighth-grade mathematics lesson in the U. S. is 

organized around two phases: an acquisition phase and an application 
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phase. In the acquisition phase, the teacher demonstrates or leads a 

discussion on how to solve a sample problem. The aim is to clarify the 

steps in the procedure so that students will be able to execute the same 

procedure on their own. In the application phase, students practice using 

the procedure by solving problems similar to the sample problem (Stigler 

& Hiebert, 1997, p. 18). 

These two descriptions were echoed yet again by Manoucheri and Goodman 

(2001). Insufficient support (Tankersley, Landrum, & Cook, 2004) and minimal 

opportunities for professional development (Hiebert, 2003) may explain much of the 

inability of teachers to change their instructional practice: “Unless such opportunities are 

provided, teachers are asked to do the impossible – teach in new ways without having had 

a chance to learn them” (Hiebert, 2003, p. 18). One new way to teach that has 

demonstrated efficacy for helping students learn mathematics concepts is through 

exploratory problem solving (e.g., Mathews, 1997; Wilkins, 1993). Probability concepts 

inherently offer multiple opportunities for students to problem solve and explore 

conceptual relationships in an authentic setting (Shaughnessy & Bergman, 1993). Yet the 

potential of probability to meet student needs has not been realized as a result of at least 

two issues. First, both the intended curriculum (i.e., curriculum standards) and the 

enacted curriculum (i.e., what is actually taught) downplay the importance of probability 

relative to algebra and geometry (Mitchell, 1990; Shaughnessy, 2006; Smith, 2003). 

Second, teachers are less comfortable with probability due to their own lack of training 

and experience (Jendraszek, 2008; Shaughnessy, 1992; Swenson, 1998). 
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Significance of the Study 

The present study responds to multiple calls for increased research about student 

understanding of probability concepts (e.g., Shaughnessy, 1992, 2003, 2006; 

Shaughnessy & Bergman, 1993; Sierpinska & Kilpatrick, 1998) and about mathematical 

misconceptions related to probabilistic thinking (e.g., Van Dooren, De Bock, Depaepe, 

Janssens, & Verschaffel, 2003) The results of this study may have direct implications for 

how educators view mathematical instruction. 

Hypotheses 

Error Responses due to Misconceptions 

The mathematics knowledge instrument used in this study (Appendix M), 

composed of 17 released items from the National Education Assessment Program 

(NAEP), consisted of questions measuring algebra, geometry, rational number, and 

probability content. I hypothesized the types of misconceptions that might influence item 

responses and which distracters might indicate those misconceptions (Table 1). 

Table 1 
Misconception Hypotheses for each NAEP Item 

Item Correct 
Response Underlying Misconception Hypothesis Associated 

Responses 
1 A Absolute & Relative Comparison C, E 
2 A Meaning of Rational Numbers: Confusion of Part-Part vs. Part-Whole  B, C, D, E 
3 B Rational Number Meaning A 
4 A Spatial Reasoning – Interpreting arrow vs. Region C,D 
5 D Rational Number Meaning A, B, C 
6 A Additive vs. Multiplicative Structure D, E 
7 E Additive vs. Multiplicative Structure A, B, C, D 
8 D Reversal Error – Meaning of Variables B 
9 A Spatial Reasoning: Student may choose “yes” because figure has 4 sides. B 

10 B Spatial Reasoning: Meaning of Area – Counting Sides instead of regions. D 
11 E Meaning of Variable – Unit Confusion, Partial Conversions A 
12 C Additive vs. Multiplicative Structure/Coefficient Reversal D 
13 B Rational Number Meaning D, E 
14 A Confusion of Absolute & Relative Comparison B 
15 B Rational Number Meaning: Part-Part vs. Part-Whole D 
16 B Meaning of Variable A 
17 D Absolute & Relative Comparison C, E 
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Qualitative analysis of student explanations for each response was used to test these 

hypotheses and adjust the coding of misconception responses accordingly. 

Probability Instruction as the Intervention 

I conjectured that probability instruction may reduce misconceptions in rational 

numbers, algebra, and geometry. This hypothesis was tested using hierarchical 

generalized linear modeling. 

Structure of Mathematical Misconceptions 

Studies have indicated that rational number misconceptions and/or probability 

instruction hold a primary, predictive position relative to algebra and geometry 

misconceptions (e.g., Fuson et al., 2005; Kilpatrick et al., 2001; Lamon, 2007; Moss, 

2005). A synthesis of that research, however, did not suggest which supersedes the other, 

nor did it demonstrate conclusively that either rational number or probability 

misconceptions are causal predictors of algebra and geometry misconceptions. Because 

probability content is inundated with rational number concepts, isolating their 

misconceptions is problematic without special attention to explanations of reasoning that 

accompany incorrect responses. Probability concepts have an advantage over rational 

number concepts: They naturally include concrete investigations (e.g., rolling a die, 

flipping a coin, examining lottery outcomes, random walks) that may help students 

construct meaning for abstract mathematical ideas (e.g., randomness, variation, counting 

principles). Based on these connections, I hypothesized that probability misconceptions 

act as a gatekeeper for addressing misconceptions in the other three content areas. To test 

this hypothesis, I compared six alternative structures (Figure 1). 
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Figure 1. Six Hypothesized Structures of Mathematical Misconceptions. 
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Figure 1A models a relationship among content area misconceptions in which 

rational number misconceptions hold a primary position while probability 

misconceptions act as a filter on algebra and geometry misconceptions. Figure 1B 

reverses the relationship between rational number and probability misconceptions from 

Figure 1A. Figure 1C models rational number and probability misconceptions as co-

varying while simultaneously exerting a causal influence on the development of algebra 

and geometry misconceptions. Figure 1D models the possibility that rational number 

misconceptions impact algebra, geometry, and probability misconceptions causally. 

Figure 1E reverses the role of probability and rational numbers in Figure 1D. Figure 1F 

models a non-causal relationship among all four content area misconceptions. I 

conjectured that Figure 1B or 1E would be the best fitting model. 

Assumptions 

Educational research is founded on beliefs about the best ways to help students 

learn to their fullest potential. In fact, approaches to teaching and learning cannot be 

separated from the underlying philosophical assumptions (Stein, Connell, & Gardner, 

2008). These assumptions directly and indirectly influence the quality of learning that can 

take place. The three major categories of philosophical assumptions addressed in this 

study are epistemology, axiology, and ontology as described by Creswell, (2005) and 

Patton (2002). 

Epistemology 

Epistemology describes relationships between teachers and students, teachers and 

content, or students and content. Traditional views of these relationships in mathematics 

education consider the teacher to be an authoritative conveyer of knowledge while the 
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students are blank slates to be filled. With very little personal interaction, traditional 

mathematics teaching follows a rote pattern of providing answers to homework; a brief, if 

any, explanation of new materials; and then students work on the assignment quietly at 

their desks while the teacher roams the room to answer questions (Fey, 1979), harkening 

back to the philosophies of Locke (Adamson, 1922) and Rousseau (1979). This 

traditional view considers the student and content to be completely separate, non-

interacting entities. The results of this view of mathematics teaching has produced 

students who can inconsistently carry out mathematical procedures, have a superficial 

understanding of the concepts at the heart of mathematical procedures, and are unable to 

conduct mathematical problem solving in unfamiliar contexts (Hiebert, 2003).  

In contrast, numerous researchers have suggested that students and content must 

interact if learning is to occur, leading to student-centered instructional approaches (e.g., 

Freudenthal, 1973; Hiebert & Carpenter, 1992; Hiebert & Grouws, 2007; Von 

Glasersfeld, 1987). Studies have found that the student-centered approach has more 

benefits to student learning than the traditional approach (e.g., Ford, 1977; Gregg, 1995; 

Hoffman & Caniglia, 2009; McMahon, 1979). Mastery learning (as in Coppen, 1976; 

Haver, 1978; Tenenbaum, 1986) is one example of student-centered learning: Students 

are tested and tutored on each topic until they achieve successful scores before 

proceeding to the next unit of instruction. Cooperative learning (as in Freeman, 1997; 

Slavin & Karweit, 1982) is another example of student-centered learning: students work 

in groups to facilitate peer tutoring and problem solving.  

Problem solving strategies (as in Mathews, 1997; Wilkins, 1993) also provide 

students the opportunity to struggle with non-routine mathematical situations (as 
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recommended by Hiebert & Grouws, 2007). Watson and Shaughnessy (2004) posited that 

the purposeful use of probability problem solving explorations may benefit students by 

providing fascinating, unique situations. The present study will not investigate the 

differences between teacher-centered and student-centered approaches; rather, both 

treatment and control groups will engage in student-centered, exploratory problem 

solving activities, and teacher effects will be minimized by having teachers in the study 

teach both a treatment and control group. 

Axiology 

For the present study, axiology will refer to the role of values in learning. The 

ability for students to learn a subject in a particular classroom from a particular teacher is 

greatly influenced by the alignment between student and teacher values and preferences, 

and learning styles (Gardner, 1987, 1989; Gardner & Hatch, 1989; Goldman & Gardner, 

1989; Hatch & Gardner, 1986; Silver, Strong, & Perini, 1997). Furthermore, the value-

laden nature of education constrains educators to consider the overt and covert messages 

being conveyed to students. Gardner (2009) identified a framework of five mental states 

for considering the impact on students of the transmission of values: the disciplined mind, 

the synthesizing mind, the creating mind, the respectful mind, and the ethical mind. 

These states of mind are not hierarchical; all are important. And although they may 

interact, these mental states do not necessarily have a causal relationship. The disciplined 

mind refers to multi-disciplinary and interdisciplinary modes of understanding, and the 

ability to put that intelligence into action. The synthesizing mind identifies the ability to 

pull from multiple sources and types of sources of information and combine them into a 

new, integrated whole. This mental frame is especially important because of the 
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explosion of information available and the pace at which information is expanding. The 

creating mind looks beyond information and processes and innovates new processes – in 

the U.S., Gardner stated that the primary role of schools in relation to the creative mind is 

one of protection rather than cultivation. The respectful mind learns to value the 

differences in others. Although much of the cultivation of the respectful mind takes place 

at home, Gardner maintained that for many children, schools present the only model for 

respectful thinking. Therefore, he submitted that teachers must take this modeling role 

into account with every behavior. Children develop the ethical mind as they engage with 

questions of the type of person they want to be in the world and their place in relation to 

the rest of the world. These ethical thoughts, Gardner claimed, require abstract thinking 

that does not fully develop until adolescence. Schools play an important role in the 

development of this ethical frame of mind: 

Within schools, students do not literally have an occupation or a 

citizen’s card. But for most young people, schools are the first substantial 

institution in which they are involved. And so it is a permissible extension 

to think of the vocational role of the young person as student and the 

citizenship role of the young person as a member of the school 

community. The habits of mind developed as student worker and student 

citizen may well help determine the ethical (or nonethical) stand of the 

future adult (Gardner, 2009, p. 19). 

In mathematics, student values are often ignored. Students tend to value practical 

applicability and authentic experiences in mathematics, and the widespread absence of 

those qualities has resulted in motivational issues: 
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Research has shown that disengagement or lack of interest is a 

factor in low student achievement (NCTM, 2000). Students may 

disengage from math because of difficulty with the subject, lack of 

support, or simply boredom. Students may disengage while still attending 

class. Many of these students believe that the math that they learn in 

school is not relevant to life after high school (Stone, Alfeld, & Pearson, 

2008, p. 769). 

The value students place on relevance is often overlooked in mathematics 

education in three ways: (1) Mathematics instruction often trades reasoning for rules and 

procedures, having the effect of separating problem solving from meaning making; (2) It 

emphasizes procedural understanding over conceptual understanding; and, as a result of 

the first two, (3) It inhibits meta-cognitive skills from being used in mathematics (Fuson, 

Kalchman, and Bransford, 2005). Fuson et al. (2005) proposed that the reversing of these 

trends will include the development of productive disposition (i.e., considering 

mathematics to be sensible and useful combined with a sense of self efficacy, as in 

Kilpatrick, Swafford, & Findell, 2001). The present study does not test these assertions. 

Instead, it builds on the assumption that practical applicability appeals to student values. 

Ontology 

Ontology describes the nature of reality. Ontological assumptions influence the 

meaningfulness and interpretability of research results (Patton, 2002). The ontological 

assumptions of the present study will be organized by responding to four questions: (1) 

Are mathematical concepts part of a “singular, verifiable reality and truth” or the result of 

multiple socially constructed realities; (2) How do people know mathematics; (3) How 
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should mathematics be studied; and, (4) What mathematics is worth knowing? 

Are mathematical concepts part of a “singular, verifiable reality and truth” or 

the result of multiple socially constructed realities? The present study proceeds from the 

basis that a single, objective reality exists for mathematics, but understanding such a 

reality requires students to filter it through social constructs. As a result, the nature of 

mathematical reality as it is understood from person to person varies. This assumption is 

closely tied in with how people know mathematics.  

How do people know mathematics? Kant (1786/1901) proposed the importance of 

intuition (described as the only way human knowledge can relate to an object) to learning 

mathematics. “All human cognition begins with intuitions, proceeds from thence to 

conceptions, and ends with ideas” (p. 516). He divided intuition into two categories: 

empirical and pure. He defined empirical intuition as the intuition of the senses, and any 

object of empirical intuition as a phenomenon. He defined sensation, then, as the “effect 

of an object upon the faculty of representation” (p. 63). Empirical intution can only exist 

after experience, or as posterior intuition (p. 63). Pure intuition, by contrast, refers to the 

organization of objects prior to sensation. Pure intuition is therefore independent of 

experience: The stripping away of properties such as “substance, force, divisibility, 

impenetrability, hardness, color, etc.” leaves two characteristics that belong to the form of 

the object: extension and shape (p. 64). Developing these concepts further, he defined the 

two objects of pure intuition, which must exist a priori and external to experience, as 

space and time. Mathematical conceptions proceed from intuitions: “Mathematical 

cognition is cognition by means of the construction of conceptions. The construction of a 

conception is the presentation a priori of the intuition which corresponds to the 
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conception” (p. 522). In the present study, intuition will be used to refer to the way 

mathematical objects are understood. Although these intuitions are independent of 

training and, to a certain degree, experience, the present study assumes that natural 

intuition can be modified through experiences that provide cognitive dissonance 

(Festinger, 1957).  

How should mathematics be studied? Hiebert and Grouws (2007) described two 

fundamental characteristics of a mathematics classroom that focuses on conceptual 

knowledge and relational understanding. First, explicit attention to concepts supports the 

development of conceptual understanding. The effect of conceptual focus has been 

demonstrated across research designs, teaching styles, and classroom environments. 

Second, teachers allow students to struggle with important concepts. By use of the term 

struggle,  

We do not mean needless frustration or extreme levels of challenge 

created by nonsensical or overly difficult problems. We do not mean the 

feelings of despair that some students can experience when little of the 

material makes sense. The struggle we have in mind comes from solving 

problems that are within reach and grappling with key mathematical ideas 

that are comprehendible but not yet well formed (p. 387). 

Although skill efficiency and conceptual struggle are not mutually exclusive, each 

mode of teaching relies on a different features within the classroom. However, Hiebert 

and Grouws (2007) noted that studies in their review found high skill levels in a variety 

of class types that focused on conceptual understanding (e.g., teacher-centered versus 

student-centered). Learning skills in a conceptual environment versus a procedural one 
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seems to afford students increased ability to adapt their knowledge to new situations. In 

the present study, the importance of conceptual focus will not be examined. Instead, both 

treatment and control groups will receive conceptually-based instruction. 

What mathematics is worth knowing? A curriculum is generally set in place to 

delineate the important topics to be studied. How the term is understood varies between 

groups. Teachers usually consider curriculum to refer to goals or objectives, textbooks, 

standards documents, printed materials, lesson plans, study sheets, or tests; 

administrators, on the other hand, may be more interested in the material taught by 

teachers or commercial programs (Sinclair & Ghory, 1979). Parents may consider 

curriculum to mean the types of courses offered by a school. Reys and Lappan (2007) 

described all of these notions of expressed curriculum as the intended curriculum (p. 

676). Sinclair and Ghory (1979) identified three other dimensions to the meaning of 

curriculum: expressed, implied, and emergent. 

The expressed curriculum refers to “learning objectives, learning opportunities, 

sequence of content, and evaluation procedures” (p. 5). The expressed curriculum carries 

the teacher’s interpretation of the intended curriculum into the classroom. The infusion of 

ever-increasing content demands and pressure from standardized testing has resulted in 

the “mile wide, inch deep” curriculum (Schmidt, Houang, & Cogan, 2002, p. 3). Reys 

and Lappan (2007) found that content emphases in mathematics vary widely between 

states. They suggested that future revisions of state documents should include 

collaboration between states with a great deal of national direction.  

The implied curriculum is the expression of unspoken messages through 

classroom policies and procedures and school culture. The implied curriculum holds 
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special importance for the present study by its reference to “unintended learning that 

results because of what is included or omitted in the content that is taught” (Sinclair & 

Ghory, 1979, p. 6). In many classrooms, authentic mathematical experiences are omitted 

from the curriculum in order to move students through content more quickly (Hiebert & 

Grouws, 2007). Sometimes, content is deleted or minimized due to teachers’ lack of 

familiarity or comfort level with the content, as is often the case with probability 

(Shaughnessy & Bergman, 1993).  

The emergent curriculum represents a response from the teacher based on 

formative assessment, resulting in adjustments to the expressed curriculum as needed to 

fill in gaps between learners and content (Sinclair & Ghory, 1979). The emergent 

curriculum can be considered a tool that is especially important for teachers to reduce 

mathematical misconceptions. 

Little consensus exists in the United States about critical issues such as how to 

rate the importance of specific topics within a curriculum, the role of accountability 

testing, or the appropriate time to introduce important concepts. The present study did not 

attempt to resolve these issues; instead, it proceeds from the assumption that each school 

and teacher addresses curriculum issues differently. As a result, the random assignment 

was stratified to divide the effects of these differences across both treatment conditions. 

Limitations 

Several teachers replaced the researcher-provided conceptually-based 

instructional materials with procedurally-based materials for the probability intervention 

unit. These teachers cited several reasons for doing so (e.g., not believing that their 

students could handle the provided materials and discomfort with the probability 
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material). While teacher effects were controlled across treatment and control groups, the 

observed magnitude of intervention effects may be reduced from a more homogenous 

conceptually-based intervention. Therefore, the analysis was limited to relative 

comparison of effects. 

The testing instrument for mathematics knowledge may have also limited the 

analysis of the study. The literature review identified an underlying set of foundational 

misconceptions that were unable to be measured discretely from the distractor responses. 

As a result, subsequent hypotheses about the structure of these fundamental 

misconceptions could not be tested with these data. 

Organization of the Remaining Chapters 

The following chapters provide a rationale for the investigation of probability 

misconceptions along with the methodology, results, and conclusions of the study. 

Chapter 2 examines the research foundations for the present study. A synthesis of this 

review allowed for the development of a conceptual framework for how students learn 

and misunderstand mathematical ideas. 

Chapter 3 provides a rationale for the research design and methodology decisions 

made throughout the study. These decisions included how to recruit subjects, how to 

assign classes to treatment groups, determination of sample sizes needed to have 

adequate power, appropriate analytic techniques for each research question, and how to 

handle missing data to maximize power while minimizing threats to validity. This chapter 

also includes a description of the treatment, treatment procedures, and assessment 

instruments. 

Chapter 4 begins with descriptive statistics of the sample and the results of each 
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test. The chapter goes on to report the results of the qualitative analysis of student 

responses to each item in the mathematics knowledge test and how that analysis informed 

the coding of error responses. The chapter then provides the statistics from the analysis of 

the structure of misconceptions. The chapter ends by presenting the results of the 

contextual factor analysis. 

Chapter 5 begins by discussing how the structural analysis underscores the 

inadequacy of organizing misconceptions by content areas. It continues by discussing 

how the qualitative and structural analyses taken together suggest the need for the 

development of a new instrument to specifically measure misconceptions. The chapter 

concludes by discussing the contextual factors that influenced the production of errors 

due to misconceptions for each task and the effectiveness of the probability unit 

intervention. 
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CHAPTER 2 

LITERATURE REVIEW 

As students develop mathematical thinking and reasoning, several key stumbling 

blocks prevent deep conceptual learning (e.g., the transition from whole numbers to 

rational numbers in elementary and middle school as in Moss, 2005). These problems 

often persist throughout high school, adding to the difficulties of transitioning from 

arithmetic to algebra (Kilpatrick, Swafford, & Findell, 2001). Throughout these transition 

periods, students may attempt to incorporate new information into their current 

knowledge base without having sufficient understanding to successfully bridge the ideas 

(MacGregor and Stacey, 1997). Errors resulting from these misunderstandings may 

indicate a common set of misconceptions that affect the learning of every mathematics 

content area. 

Defining Misconceptions 

The term misconception has been used in research to refer to a wide range of 

issues, and its use has evolved through two phases (Confrey, 1987). The first phase, from 

the early 1970’s to the early 1980’s, laid the foundation for examining misconceptions as 

ideas that emerge from students examining problem solving situations intuitively, making 

decisions that appear rational yet lead to errors (Clement, 1982; Confrey, 1987). These 

errors often surprise educators, are difficult to eradicate, and affect a large portion of 

people.  
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In the second phase of misconceptions research, mathematics educators focused 

on errors rather than misunderstandings. Slip, bugs, and repair theory concentrated on 

procedural errors (e.g., VanLehn, 1980; 1983) while systematic errors focused more on 

conceptual errors.  

Systematic errors include the systematic (and inappropriate) 

application of familiar fragments of arguments, algorithms and definitions 

without any attempt to integrate across representational systems. They are 

common across students, and permit accurate predictions of what answers 

students will give to a set of well-defined problems (Confrey & Lipton, 

1985, p. 40). 

A recent study in Kentucky shed light on the comparative strengths of focusing on 

conceptual errors instead of procedural errors (McGatha, Bush, & Rakes, 2009). The 

study compared student achievement resulting from observed teacher assessment 

behavior, including addressing procedural errors and conceptual errors. Teachers who 

focused on deep reasoning (7th grade: a non-testing year in Kentucky) saw the highest 

gains in student achievement. Teachers who focused on procedural errors (8th grade: a 

testing year in Kentucky) obtained the least amount of growth in student achievement. 

Another study examining instructional strategies in algebra found that teaching methods 

focused on helping students develop connections between ideas produced larger and 

more consistent effect sizes than interventions that targeted procedural fluency (Rakes, 

Valentine, & McGatha, 2010). 
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Misconceptions versus Reasoning Errors in Secondary Mathematics 

The symptomatic features of mathematical misconceptions are often discussed in 

literature simultaneously with reasoning errors (e.g., Falk, 1992; Kahneman & Tversky, 

1972, 1973a, 1973b; Küchemann, 1978). For the purposes of this study, the following 

discussion does not present an exhaustive list of reasoning error types. Three types of 

reasoning errors appear to be related or confused with misconceptions. Some reasoning 

errors result from misunderstandings about ideas and connections among ideas, in which 

case they may indicate an underlying misconception (e.g., Clements, 1982). Other 

reasoning errors emerge from misunderstandings about mathematical procedures (e.g., 

Walker & Singer, 2007). In such cases, the present study does not consider such 

reasoning errors to represent misconceptions. A third type of reasoning error may arise 

from a combination of conceptual and procedural misunderstandings (e.g., De Bock, 

Verschaffel, & Janssens, 1998, 2002). In such cases, misconceptions are often difficult to 

parse out from these other types of error patterns. The present analysis attempts to do so 

by discussing error patterns as they appear in the literature in enough detail to separate 

heuristic reasoning errors from conceptual reasoning errors. Understanding the source of 

errors carries important consequences for how teachers address misconceptions: 

There is a tendency for teachers when confronted with a statement 

from a student that is apparently incorrect to inform the student of the 

error and perhaps state the correct point of view…The view that these 

statements are, however, not isolated beliefs that the student holds but are 

reflections of a more general conceptual framework leads one to be 

skeptical about the effectiveness of these types of local interventions; they 
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do not get at the heart of the problem. An analogous situation would 

involve correcting the assertion that a ship would fall off the earth if it 

ventured too far from shore by negating the assertion or citing evidence to 

the contrary rather than focusing on the apparent underlying belief in a flat 

rather than spherical planet (Konold, 1988, p. 18). 

If an error within a task occurs because of a fundamental misconception of a 

mathematical idea or the relationship between ideas, then directing the student’s attention 

to a procedure-based correction within the task may be insufficient. Such an attempt to 

fix the error may appear successful for a specific type of task, but when students face a 

new, unfamiliar situation, the misconception will often reassert itself on student 

reasoning (Hiebert & Grouws, 2007). The same situation can occur when the 

misunderstandings are a combination of meaning and procedures (e.g., Fisher, 1988; 

Phillippe, 1992). Instead, interventions that are effective in the long term will address the 

lack of understanding about the meaning of the important mathematical ideas (Hiebert & 

Grouws, 2007). 

If an error in reasoning occurs despite conceptual understanding, then addressing 

the error by focusing on the procedures may be effective. Focusing on the underlying 

meaning and reviewing how procedures relate to that meaning will, however, reinforce 

understanding of the structure and relationships of the mathematical ideas (Kieran, 1989, 

1992, 2007). So regardless of the source of the error, focusing on the underlying meaning 

and connections of mathematical ideas appears to offer the longest lasting benefits for 

students (Skemp, 1976/2006). 

These connections may be especially important for reinforcing student struggle 
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with the specific hurdles of learning rational numbers, algebra, and geometry; conversely, 

the difficulties in one area often influence student ability to handle the difficulties in 

another area. Rational numbers, for example, may play a fundamental role in students’ 

ability to solve algebraic and geometric problems. Misunderstandings about the 

connections between variable symbols and the meaning of variation may influence 

student capacity to understand probability concepts such as randomness. 

Several key concepts from algebra, geometry, and rational numbers also appear to 

influence multiple facets of probability. The relationship between these misconceptions 

may suggest a connection between probability and these other three content areas. Such a 

connection may indicate that probability instruction may offer a unique inroad into 

addressing misconceptions about each of these areas by developing the meaning of 

fundamental concepts important to each topic. 

Critical Misconceptions Specific to Learning Rational Numbers 

Rational Number Meaning 

Rational number concepts confound student mathematical understanding more 

than whole numbers, in part because of the multiple representations and uses of rational 

numbers and the major conceptual shift that is required of students when learning rational 

numbers (Fuson et al., 2005; Kilpatrick et al., 2001; Lamon, 2007; Moss, 2005).  

When fractions are treated as numbers in the beginning of the 

journey – too early on – learners often assume that the greater the 

denominator the greater the amount – 7
1

8
1 >  because 8 > 7. Even when 

they begin to understand that the denominator is a divisor, and therefore 

the greater the number of pieces, the smaller the amount, the relationship 
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of the numerator to the denominator escapes them (Fosnot & Dolk, 2002, 

p. 56). 

Two of the most common rational number relationships have been described as 

“part/part” and “part/whole” (e.g., Baturo, 1994; Behr, Harel, Post, & Lesh, 1992). 

Part/part relationships occur when a quantity within one unit is compared to a quantity 

within another unit (Lamon, 1999). For example, a male/female ratio represents a 

part/part relationship: neither quantity represents the total number of people in the class. 

Part/whole relationships, on the other hand, represent the relationship between a part and 

a whole. For example, the male percentage of a class represents a part/whole relationship. 

Negotiating between part/whole and part/part relationships and the quantities represented 

by each may be critical to overcoming the rational number hurdle (Fosnot & Dolk, 2002): 

One third of one strip of paper is not equivalent to one third of 

another, shorter strip of paper. It is this relational thinking that makes 

fractions so difficult for children. The parts must be equivalent, but they 

must also be equivalent in relation to the whole (p. 56). 

Behr et al. (1992) agreed with Fosnot and Dolk’s connection between difficulties 

with fractional meaning and equivalence, elaborating on the multiplicative structure of 

rational number relationships: 

Fundamentally, the question of whether two rational numbers are 

equivalent or which is less is a question of invariance or variation of a 

multiplicative relation…Two rational numbers a/b and c/d, can be 

compared in terms of equivalence or nonequivalence by investigating 

whether there is a transformation of a/b to c/d, defined as changes from a 
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to c and from b to d, under which the multiplicative relationship between a 

and b is or is not invariant (p. 316). 

The part/whole relationship is a necessary step in understanding rational numbers, 

but it may not be sufficient to developing meaning. Wu (2005) described the importance 

of rational numbers to mathematical understanding and the insufficiency of the 

part/whole relationship. 

The subject of fractions (which is the term I will use for 

nonnegative rational numbers) is known to be a main source of 

mathphobia. If this is not reason enough for us to teach fractions better, let 

me cite another one: understanding fractions is the most critical step in the 

understanding of rational numbers because fractions are students’ first 

serious excursion into abstraction. Whereas their intuition of whole 

numbers can be grounded on the counting of fingers, learning fractions 

requires first of all a mental substitute for their fingers. They need to be 

clearly told what a fraction is. A fraction has to be a number, and so the 

definition of a fraction as “parts-of-a-whole” simply doesn’t cut it. 

Students have to be shown that fractions are the natural extension of whole 

numbers so that the arithmetic operations +, ─, x, and ÷ on whole numbers 

can smoothly transition to those on fractions (p. 2). 

The fundamental concept of relative versus absolute size interacts with students’ 

ability to interpret the part-whole relationship correctly. Students in elementary grades 

tend to mix these two comparative techniques up; this confusion persists into the high 

school years (Green, 1983b; Watson & Shaughnessy, 2004). Steen (2007) described 
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interpretation as a more fundamental problem for students than the computation of 

rational numbers. For example, students have difficulty approximating rational number 

values, such as the sum of 19/20 and 23/25. Given the choices of 1, 2, 42, or 45, most 

eighth grade students in the U. S. chose either 42 or 45, indicating difficulties in ascribing 

meaning to the relationship between each part of a rational number. He observed that 

computers and calculators can help with many of the computational difficulties, but these 

tools are unable to bridge gaps in meaning. Schield (2006) found that these difficulties 

extend to percentage representations of rational numbers as well. Consider an example 

from the Schield Statistical Literacy Survey (Schield, 2002, p. 2): 

Do you think the following statements accurately describe the data shown 

in [Figure 2]? 

[Question] 9.0 20% of smokers are Catholic 

[Question] 10. Protestants (40%) are twice as likely to be smokers as are 

Catholics (20%). 

 

Figure 2. Part-Whole and Part-Part Comparison using Pie Chart (Schield, 2002, p. 2). 

Question 9 asks students to interpret a relationship between a part (i.e., Catholics) 

and the given whole (i.e., Smokers). Schield (2006) reported that only 19% of the college 

students in his sample analyzed this relationship incorrectly. By contrast, 62% missed 

Question 10. This question digs deeper into student understanding of the part-whole 

Catholics, 20%

Protestants, 40%

Other, 40%
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identities. Since 20% of smokers are Catholic and 40% of smokers are Protestant, 

students (correctly) conclude that the number of Protestant smokers is twice that of 

Catholics for this sample. Question 10 reverses the logic of Question 9. Although 20% of 

smokers are Catholic, the graph does not indicate the converse: 20% of Catholics are not 

necessarily smokers, nor are 40% of Protestants (based on the chart). The difficulties 

students exhibited on Question 10 indicate that they have a limited understanding of the 

nature of part-whole relationships. Schield (2006) also found that tables reporting 

percentages present a similar difficulty for students, as in the following example:  

Do you think the following statements accurately describe the 20% circled [in 

Table 2]? 

Q30. 20% of runners are female smokers. 

Q31. 20% of females are runners who smoke. 

Q32. 20% of female smokers are runners. 

Q33. 20% of smokers are females who run (Schield, 2002, p. 6). 

Table 2 
Two-Way Half Table 
 PERCENTAGE WHO ARE RUNNERS 
 Non-smoker Smoker Total 
Female 50% 20% 40% 
Male 25% 10% 20% 
Total 37% 15% 30% 
Note. From Schield, 2002, p. 6. 

 

In Table 2, each percentage represents a part-whole ratio: the numerator (the part) 

represents the quantity of runners while the denominator (the whole) represents the 

intersection of the row and column quantities. One of the primary clues for reading this 

table is the lack of any 100%’s in any cell of the table: These missing values should be 
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interpreted as meaning that each percentage represents a portion of a different quantity 

from the others. So, runners comprise only 50% of female non-smokers while they make 

up 25% of male non-smokers. The circled 20% thus represents the statement that runners 

include 20% of female smokers. Schield (2006) reported high error rates among college 

students on all four questions above: 55%, 53%, 62%, and 42% respectively. Each 

question examines student understanding of part/whole relationships from a different 

perspective. Question 30 reverses the role of the whole (i.e., female smokers) and the part 

(i.e., runners). Question 31 confuses smokers as part of the whole along with runners 

while Question 33 confuses females as part of the whole. Question 32 correctly identifies 

the role of each quantity.  

In contrast to a two-way half table, 100% row tables and column tables must be 

interpreted differently.  

Table 3 
100% Row Table 
 SEX  
 Male Female Total 
Black 75% 25% 100% 
White 50% 50% 100% 
Other 40% 60% 100% 
Total 50% 50% 100% 
Note. From Schield, 2002, p. 6. 

 

Table 4 
100% Column Table 

College Students 
Major Male Female Total 
Business 60% 20% 40% 
Economics 10% 50% 30% 
Miscellaneous 30% 30% 30% 
Total 100% 100% 100% 
Note. From Schield, 2005, p. 1 
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In Table 3, the 100%’s in the row marginal cells indicate that each cell percentage 

represents a portion of the row quantity. So, females make up 25% of the Black sample 

while they account for 50% of the White sample. In Table 4, the column quantities now 

represent the whole. So, business majors account for 60% of the male sample while they 

account for only 20% of the female sample. Schield (2005, 2006) considered these errors 

to represent fundamental misunderstanding about the meaning of rational numbers and 

the connection between different representations of rational numbers. The table format of 

the questions may also have contributed to student errors, which would not necessarily 

represent underlying mathematical misconceptions. His analysis, however, suggested that 

sufficient evidence indicated mathematical misconceptions unique from difficulties with 

table formats. 

Probability Connections to Rational Number Meaning 

Rational number difficulties instill a sense of frustration and anxiety about 

mathematics (Gresham, Sloan, & Vinson, 1997); on the other hand, probability 

applications of rational numbers may provide the concrete examples students need to be 

able to derive meaning from these number relationships thereby reducing that anxiety. 

Probability applications regularly expose students to part/whole relationships, 

readily providing concrete substitutes for fingers. These applications go beyond simply 

counting outcomes: They also ask students to examine which quantities to count for each 

part of the probability ratio, how to count them, and how to compare those values. 

Green’s (1982) counter problem provides an example of how rational number 

relationships can be examined in a probability context (p. 20): 
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6 (e) Two other bags have black and white counters. 

Bag J: 3 black and 1 white 

Bag K: 6 black and 2 white 

Which bag gives a better chance of picking a black counter? 

(A)  Same Chance (B) Bag J 

(C) Bag K  (D) Don’t Know 

Why? 

Sixty-two percent chose C, citing the larger number of black counters as the 

reason for their choice. This error highlighted an underlying misconception about rational 

number equivalence: Students failed to recognize that the number of black marbles was 

not being compared, but the relationship of the number of black marbles to the whole in 

each bag.  

In addition to interpreting the meaning of a single rational number relationship, 

students are often asked while studying probability to compare whether two sets of 

rational number relationships are equivalent, i.e., the linear proportion. Linear 

proportions are highly useful for solving a wide array of mathematical problems (Van 

Dooren et al., 2003). Linear patterns are also highly intuitive because of their simplicity 

(Rouche, 2003). However, Freudenthal (1983) recognized a potential misconception 

regarding linearity: “Linearity is such a suggestive property of relations that one readily 

yields to the seduction to deal with each numerical relation as though it were linear” (p. 

267). 
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Linear Proportions 

Van Dooren et al. (2003) determined that many misconceptions about numerical 

relationships can be traced from the overgeneralization of linearity or proportionality. 

They described several types of situations in which students tend to apply linear 

proportions although the situation actually contained an additive structure. For example, 

“Sue and Julie were running equally fast around a track. Sue started first. When she had 

run 9 laps, Julie had run 3 laps. When Julie completed 15 laps, how many laps had Sue 

run?” (p. 114). In their study, the subjects were elementary education teachers rather than 

students, yet they reported that 97% of their sample solved the problem using a 

proportion, 9/3 = x/15 (computing x = 45), instead of x + 6, for a correct answer of 21. 

Their study revealed a striking pattern: Subjects tenaciously held to their faulty 

reasoning, some through four interviews focused on correcting the misunderstanding. 

Their study revealed some of the difficulties students have modeling quantities within a 

rational number relationship: Students who opted for a straight linear proportion 

indicated through their interviews that they believed the relationship between Julie and 

Sue is proportional (i.e., multiplicative), rather than additive.  

Lamon (1999) offered an example of similar errors related to interpreting 

mathematical quantities. This example suggested that the errors are not simply overusing 

linearity, as Van Dooren et al. (2003) later suggested. Instead, Lamon noted that students 

do not only overuse proportions; they also use addition when proportions would have 

been appropriate. Lamon suggested that such errors stem from fundamental 

misapplication of meaning — students attempting to connect two mathematical 

relationships without truly understanding the meaning of either. Consider her example of 
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snake growth: 

Jo has two snakes, String Bean and Slim. Right now, String Bean 

is 4 feet long and Slim is 5 feet long. Jo knows that two years from now, 

both snakes will be fully grown...At her full length, String Bean will be 7 

feet long, while Slim’s length when he is fully grown will be 8 feet. Over 

the next two years, will both snakes grow the same amount? (Lamon, 

1999, p. 12). 

Using an additive structure to compare the absolute growth rates, one can 

consider that both snakes will grow the same amount, three feet. On the other hand, 

comparing the relative growth rates requires considering the amount of growth in relation 

to the original size through a multiplicative structure. String Bean’s additional three feet 

will be an additional 3/4 or her original length, while Slim’s additional growth will only 

be an additional 3/5 of his original length. So, the additive comparison reveals the same 

amount of growth, but the multiplicative comparison reveals a different rate of growth. 

Each interpretation is correct within the context of answering a particular question, and 

both result in erroneous solutions if their meanings are confused. Such errors of meaning 

resulting in faulty reasoning get at the heart of mathematical misconceptions. 

Probability Connections to Linear Proportions 

These errors of meaning emerging from confusion about the nature of linear 

proportions also appear in probability. The Birthday Paradox provides a well-known 

example of this connection: 

If in a gathering of 50 people one asks how probable it is that there 

are two people with the same birthday in the room, it is nearly always the 
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case that this probability is grossly underestimated. The mathematician 

who stages this can count on a success such as only magicians can boast 

of, if several pairs, maybe even a triple, can be found with the same 

birthdays (Freudenthal, 1973, p. 587). 

Several interpretations have been offered to explain students’ difficulties with this 

issue. Kahneman and Tversky (1982) suggested that the underlying misconceptions result 

from the misuse of the linear proportion arising from reliance on the representativeness 

heuristic: 

Most students are surprised to learn that in a group of as few as 23 

people, the probability that at least two of them have the same birthday 

(i.e., same day and month) exceeds .5. Clearly, with 23 people the 

expected birthdays per day is less than 15
1 . Thus a day with two birthdays, 

in the presence of 343 “empty” days, is highly non-representative, and the 

event in question, therefore, appears unlikely (p. 37). 

The expected ratio of 15
1  emerges from the expectation of equivalency: 365

23  is 

approximately 15
1 , or 7%. However, counting only 23 possible matches only accounts for 

the potential matches of one person to the other 22. The other 22 could each have 

matches as well. A simple example may clarify the appropriate counting techniques: 

Suppose we randomly choose four people, and their birthdays are labeled A, B, C, & D. 

The possible matches in this scenario are A = B, A = C, A = D, B = C, B = D, and C = D. 

To count these matches, we see that there are three potential matches for A, two for B, 

and only one distinct match left for C, or 3 + 2 + 1 = 6 potential matches. If we were to 

add a fifth person E, the counts for A, B, and C would increase by 1, and D would now 
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have a unique possible match with E. Thus, the general formula for counting the number 

of possible matches for n randomly chosen people is 1 + 2 + 3 + … + (n – 1), an 

arithmetic series with a constant increase of one unit per term. The formula for the sum Sn 

of an arithmetic series is given in Equation 1. 

( )
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1 n
n

ttnS +
=  

(1) 

In this series, the “nth” term is actually the “(n – 1)th” term, and the first term has 

a value of one, so the formula after substitution becomes Equation 2. 
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Another way to arrive at Equation 2 begins by using the formula for combinations 

to compute the number of ways to choose any two people from a group of size n, or nC2. 

Using substitution, we arrive at Equation 3, which simplifies to Equation 2 by canceling 

out the (n – 2)! term. 
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Rather than being linear, the pattern of counting potential matches follows a 

quadratic pattern (Figure 3).  
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Figure 3. Number of Potential Birthday Matches for Groups of 2 – 100 people. 

Returning to the original examples discussed by Freudenthal (1973) and 

Kahneman and Tversky (1982), we can readily compute that 50 people have 50*49/2 = 

1225 possible matches, and 23 people have 23*22/2 = 253 possible matches. These 

numbers cannot be used as either the numerator or denominator of the desired 

probability: 1225 is larger than 365, and probabilities larger than one are impossible. 

Using 253/365 is tempting, however, to do so assumes once again that the change in 

probability is linear, which eventually would lead to probabilities larger than one. To 

examine this problem closer, we turn to the Fundamental counting principle. Since only 

one day out of each year can provide a successful match for any randomly chosen person, 

we can conclude that the probability of no matches is 364 days out of 365 and that each 

potential match is independent of the others. The Fundamental counting principle 

stipulates that the probabilities should be multiplied together. Equation 4 demonstrates 

this calculation for four people (six potential matches) while Equation 5 shows the 

computation for 23 people (253 potential matches). 
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(4) 

Since the probability of success and failure have a sum of one, the probability of 

finding a birthday match in a group of four randomly chosen people can be computed as 

1 – 0.982 = 0.018, or 1.8%. Extending the same logic to a randomly chosen group of 23 

people, we can compute that the probability of a birthday match is  

,5005.0
365
3641
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=⎟
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⎜
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⎛−  

(5) 

or approximately 50.1%. For 50 people, the probability of a birthday match is  

,9653.0
365
3641

1225

=⎟
⎠
⎞

⎜
⎝
⎛−  

(6) 

or approximately 96.5%. 

From these computations, we see that neither the number of potential matches nor 

the probability distribution follows a linear pattern. Instead, the pattern of potential 

matches is quadratic while the probability distribution is geometric (Figure 4).  
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Figure 4. Probability Distribution for a Birthday Match for Groups of 2 – 100 people. 

Van Dooren et al. (2003) elaborated on the linearity misconception that leads 

students to believe that the probability of a birthday match in a group of 23 people is 

23/365: 

In that case, you would indeed need 183 people to get a probability 

for a birthday match exceeding 0.50…We would argue that people 

applying this strategy would also believe that – compared to a group of 23 

– the probability of getting a birthday match in a group of 46 people is 

doubled, in a group of 69 it is tripled, etcetera (p. 118). 

In at least three places throughout the Birthday Problem, intuition typically leads 

to the application of a linear relationship, sometimes through the modeling of the 

part/whole relationships that comprise the probability ratio, at others through reverting to 

linear proportions to analyze the probability space.  

These studies seem to indicate that reasoning errors involving rational numbers 

may be heuristic in nature, but they also may indicate deeply embedded, fundamental 

misunderstandings about the meaning and relationships of the part whole relationship and 
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how to compare these quantities. Probability, on the other hand, appears to include 

contextual situations that present students with the opportunity to engage with both the 

heuristic and meaning difficulties of rational number meaning and the appropriate 

application of the linear proportion (i.e., discernment between additive and multiplicative 

relationships) This intertwining of rational number meaning and relationships among 

rational number quantities with probability contexts can be seen again in the rational 

number concepts of uniformity, equality, and change  

Uniformity, Equality, and Change 

Intuitive beliefs about uniformity are highly associated with rational number 

reasoning. As Fosnot and Dolk (2002) pointed out, wholes must be divided into equal 

parts in order for a rational number relationship to make sense. Proportionality requires 

uniformity as well. When this belief is used as a problem solving technique, it is referred 

to as the uniformity heuristic (Falk, 1992, p. 205). In probability, theoretical probabilities 

are based on the assumption of uniformity, and probability spaces are often assumed to 

be distributed equally across outcomes. Problems involving conditional probability run 

counter to uniformity and equality beliefs. Confusion about the meaning of conditional 

situations and their effect on resultant probabilities (consisting of several rational number 

quantities) leads to misconceptions about the nature of conditional probability and the 

effect of increased information on possible outcomes. In the absence of training, students 

often fall back on the uniformity heuristic, resulting in overgeneralization errors. The 

Three Prisoner Problem, which is mathematically identical to Vos Savant’s (1990) Monty 

Hall Problem, illustrates the issues surrounding the interpretation of conditional 

information based on assumptions of uniformity. The problem as described by Bar-Hillel 
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and Falk (1982) and Falk (1992) is as follows: 

Tom, Dick, and Harry are awaiting execution while imprisoned in 

separate cells in some remote country. The monarch of that country 

arbitrarily decides to pardon one of the three. The decision who is the 

lucky one has been determined by a fair draw. He will be freed; but his 

name is not immediately announced, and the warden is forbidden to 

inform any of the prisoners of his fate. Dick argues that he already knows 

that at least one of Tom and Harry must be executed, thus convincing the 

compassionate warden that by naming one of them he will not be violating 

his instructions. The warden names Harry. Thereupon Dick cheers up, 

reasoning: “Before, my chances of a pardon were 1/3; now only Tom and 

myself are candidates for a pardon, and since we are both equally likely to 

receive it, my chance of being feed has increased to 1/2” (Falk, 1992, p. 

198). 

Students often believe, like Dick, that the probability of his being freed has 

increased from 1/3 to 1/2 because the probabilities must remain equal across the available 

outcomes. However, such a belief requires the assumption that the choice of a name is 

randomly chosen, which does not hold in this situation. Instead, the warden, like Monty 

in the Monty Hall problem, is choosing to disclose one of the outcomes based on 

information to which he is privy (Falk, 1992). Therefore, the probability of any one of the 

prisoners being freed is conditional on the warden’s information and requires considering 

the situation from a conditional probability standpoint.  

Conditional probability focuses primarily on how quantities represented by 
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rational numbers change as a result of new information being added to a context. The 

new information alters the assumptions on which the original quantities are based, 

thereby changing the meaning of the new quantities as well. For such a situation, Bayes’ 

Theorem is especially helpful. Bayes’ Theorem defined probability as “the ratio between 

the value at which an expectation depending on the happening of the event ought to be 

computed, and the value of the thing expected upon its happening” (Bayes, 1763, p. 376). 

These two values became known as the prior distribution (value based on expectation) 

and the posterior distribution (value based on an experiment). Although the probability 

for each of the three prisoners is described as uniform in the problem itself, this 

description referred only to the prior distribution: 

In the case of an event concerning the probability of which we 

absolutely know nothing antecedently to any trials made concerning it, 

seems to appear from the following consideration; viz. that concerning 

such an event I have no reason to think that, in a certain number of trials, it 

should rather happen any one possible number of times than another. For, 

on this account, I may justly reason concerning it as if its probability had 

been at first unfixed, and then determined in such a manner as to give me 

no reason to think that in a certain number of trials, it should happen any 

one possible number of times than another (Bayes, 1763, p. 393). 

Uniformity in the prior distribution means that P(T) = P(D) = P(H) = 1/3, where 

the events T, D, and H represent the event of each person being chosen for freedom. 

Assuming that the guard has no reason to lie and no bias, we can compute the likelihood 

that he would name either Harry or Tom to not be freed, given that he knows which 
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prisoner will be freed and cannot name Dick (Table 5). 

Table 5 
Conditional Probability Equations (from Falk, 1992, p. 201) 
Probability Equation Description 
P (h | T) = 1 Probability that Harry is named if Tom is to be freed. 
P (h | D) = ½ Probability that Harry is named if Dick is to be freed.  
P (h | H) = 0 Probability that Harry is named if Harry is to be freed. 
P (t | T) = 0 Probability that Tom is named if Tom is to be freed. 
P (t | D) = ½ Probability that Tom is named if Dick is to be freed. 
P (t | H) = 1 Probability that Tom is named if Harry is to be freed. 

 
Dick arrived at the probabilities in Table 5 under the assumption that he 

cannot be named. His probabilities also consider the likelihood of each prisoner 

being freed to be equal. So, if Harry is to be freed, and the warden cannot name 

the prisoner to be freed, and he cannot name Dick, then only Tom can be named, 

so P (t | H) = 1. Likewise, if Dick is to be freed, then the warden can name either 

Tom or Harry, so P (h | D) = P (t | D) = ½. In Bayesian terms, these probabilities 

represent the prior distribution (in this case, the distribution prior to the warden 

naming a prisoner). These probabilities, however, do not represent the probability 

distribution after the warden names the prisoner — the posterior distribution. 

Bayes’ Theorem provides a formula for computing posterior distribution 

probabilities based on the prior distribution probabilities (Equation 7). 

,
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=  (7)

The denominator of this formula represents the total probability of an 

outcome while the numerator represents the probability of an outcome (Event B) 

under the condition A. Applying this formula to the prisoner problem, we can 

compute the posterior probability that Dick will be freed given that Harry was 

named using Equation 8 (Falk, 1992, p. 201). 
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The denominator of Equation 8 represents the total probability of any 

prisoner being freed if Harry is named by the warden. The numerator represents 

the probability of Dick being freed if the warden names Harry. Substituting the 

prior distribution probabilities from Table 5 produces Equation 9. 
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So, the disclosure of the warden’s information does not change Dick’s 

probability of being freed from the original 1/3. The examination of this outcome 

brought to light a belief related to the uniformity belief, the no news, no change 

belief (Falk, 1992). While Falk described both of these beliefs as heuristics 

because subjects used them to solve problems, they are not beliefs about 

procedures, but of meaning under the context of change. Subjects who believed 

the no-news-no-change perspective believed that Dick already knew that one of 

the other two would not be freed, so revealing the name added no new substantive 

information. Unlike the uniformity heuristic, the no news, no change heuristic 

correctly computes the solution as 1/3. However, Falk provided two illustrations 

to demonstrate the erroneous nature of this belief.  

First, the no-news-no-change pattern does not hold for Tom. Using 

Equation 10 and the values from Table 5, we can compute the probability for Tom 

now that Dick has been told that Harry will not be freed. 

)()|()()|()()|(
)()|()|(

HPHhPTPThPDPDhP
TPThPhTP

•+•+•
•

=  
(10)



 

43 

Using substitution, we compute Tom’s posterior probability (Equation 11). 
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So, although Dick’s chances did not change by the warden’s information, 

Tom’s chances of being freed have doubled ⎯ the warden’s information was not 

completely irrelevant to the probabilities. So, if Dick could choose, switching 

places with Tom would double his chances of being freed. This outcome is 

isomorphic with the Monty Hall problem: Switching doors also doubles a 

contestant’s chances of winning the prize. The Monty Hall problem attracted a 

great deal of attention in the late 1980’s and early 1990’s as mathematicians and 

mathematics educators vehemently opposed Vos Savant’s (1990) claim that the 

choice of switching doors made a difference in the probability of winning. This 

opposition to the switching claim adds further evidence to Van Dooren et al.’s 

(2003) conclusions about the pervasiveness and persistence of mathematical 

misunderstandings about meaning and relationships: Such errors are evidently not 

limited to novice learners. 

Falk’s second argument against the no-news-no-change belief related the 

belief back to uniformity; specifically, she showed that this belief also relied on 

an assumption of uniformity. Falk (1992) related a variation of the prisoner 

problem in which Tom is favored by the monarch, and so he gets two votes for 

freedom while Dick and Harry each receive only one. The prior probabilities 

become P(T) = 1/2, P(H) = P(D) = 1/4, a non-uniform distribution. The 

assumptions about the decision making process for the warden remain unchanged 

(i.e., no bias or reason to lie). Using Bayes’ Theorem again, the posterior 
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probability for Dick getting his freedom changes, as shown in Equation 12. 
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When the assumption of uniformity does not hold true for a situation, assumptions 

about change and the meaning of rational number quantities under conditions of change 

become untenable. The ability to discern the applicability of any particular assumption 

about rational number quantities for a specific problem requires understanding of which 

units to count, how to count them, and how those quantities interact with other 

information from a particular problem (i.e., relational understanding, as in Skemp, 

1976/2006). Freudenthal (1970) summarized the unique role of probability in connecting 

these abstract mathematical concepts to concrete examples: 

Probability applies in everyday situations…There is no part of 

mathematics that is as universally applied except, of course, elementary 

arithmetic…In no mathematical domain is blind faith in techniques more 

often denounced than in probability; in no domain is critical thought more 

often required (p. 167). 

These studies suggest that probability instruction may play a unique role in 

challenging deeply-held assumptions about the meaning and relationships of rational 

number quantities within a contextual situation. 

Critical Misconceptions Specific to Learning Algebra 

Students beginning the study of algebra face learning barriers from several 

sources. First, algebra is often the first course in which students are asked to engage in 

abstract reasoning and problem solving (Vogel, 2008). Researchers have demonstrated 

that the abstract nature of algebra increases its difficulty over arithmetic (Carraher & 
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Schliemann, 2007; Howe, 2005; Kieran, 1989). The impediment of abstractness to the 

construction of meaning directly affects the ability of students to construct multiple 

representations of algebraic objects (Kieran, 1992; Vogel, 2008).  

Second, the learning of algebra requires students to learn a language of 

mathematical symbols that is completely foreign to their previous experiences (Kilpatrick 

et al., 2001). The multiple ways in which this language is described and used during 

instruction often prevents students from connecting algebraic symbols to their intended 

meaning (Blanco & Garrote, 2007; Socas Robayna, 1997). In some cases, students are 

completely unaware that any meaning was intended for the symbols (Küchemann, 1978). 

In other cases, they may know that meaning exists, but limited understanding prevents 

them from ascribing meaning to the symbols, or they may assign erroneous meaning to 

the symbols (Küchemann, 1978). For example, as students study topics such as functions 

and graphs, they begin to understand and interpret one set of algebraic objects in terms of 

another (e.g., a function equation with its graph, a data set by its equation, a data set by 

its graph, as in Leinhardt, Zaslavski, & Stein, 1990). McDermott, Rosenquist, and Van 

Zee (1987) found that students are generally able to plot points and equations; however, 

in spite of this procedural fluency, students still lack the ability to extract meaning from 

graphical representations. They concluded that the difficulty lay in the connection of a 

graph to the construct it represents. Specifically, students are readily capable of 

demonstrating procedural fluency, but memory and procedural understanding is unable to 

guide students through problems involving interpretation (Skemp, 1976/2006). 

Kieran (1992), Howe (2005), and Carraher and Schliemann (2007) recognized 

that learning the structural characteristics of algebra creates a third obstacle faced by 
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students. 

The difficulty that students experience with understanding the 

structure of algebra, even its most elementary aspects such as are found in 

high school textbooks, was exemplified by their early attempts to convert 

expressions into equations in order to have a representation that includes a 

result, the unsystematic and strategic errors they committed while 

simplifying expressions, their resistance to operating on an equation as an 

object as shown by their not using the solving procedure of “doing the 

same thing to both sides,” their not treating the equal sign as a symbol of 

symmetry…their difficulty in seeing the “hidden” structure of equations, 

[and] their non-use of algebra as a tool for proving numerical relations 

(Kieran, 1992, p. 412). 

The abstract, structural, and language barriers interact within algebra. For 

example, consider the expression a + b: How students interpret the meaning of each 

variable depends on how well they can handle the abstract nature of the symbols. Further, 

students must recognize that the expression a + b represents the total number of items 

from a set of a and b items (Kieran, 1992). 

The teaching methods used to convey content often create a fourth barrier to 

learning algebra. Sfard (1991) highlighted a difficulty of expectation as one problem with 

teaching methods: 

More often than not, both students and teachers fail to 

acknowledge the fact which is one of the most important implications of 

our three-phase schema: Insight cannot always be expected as an 
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immediate reward for a person’s direct attempts to fathom a new idea. The 

reification, which brings relational understanding, is difficult to achieve, it 

requires much effort, and it may come when least expected … [it] may 

occur after a period of intensive work followed by days of rest (p. 33). 

Kieran (1992) concluded from Sfard’s (1991) study that a great deal of time must 

be spent connecting algebra to arithmetic before proceeding to the structural ideas of 

algebra. Furthermore, the lack of materials designed to facilitate the transition from 

arithmetic to algebra forces teachers to either create materials themselves or conduct 

time-intensive searches (Kieran, 1992). Instead, teachers often rely on whatever sequence 

is outlined by a textbook. 

Such a choice is highly problematic: Kieran (1992) proposed that textbook 

explanations are often insufficient for helping students understand the abstract, structural 

concepts necessary in algebra. Consider the following explanation of linear functions 

from an algebra textbook (Figure 5): 

 

Figure 5. Textbook description of linear functions (Larson, Boswell, Kanold, & Stiff, 2010, p. 75) 
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Function Relationships 

Notice that the definition of linear functions as described in this example relies on 

recognizing a prescription: If a function can be written in slope intercept form, it is linear. 

While not incorrect, this explanation is insufficient for situations that call for alternate 

forms of linear functions (such as the standard form or point-slope form). Notice also that 

the definition of function notation is mixed with the definition for linear functions. 

Students often fail to recognize that function notation is a general form intended for all 

functions rather than just linear (Chang, 2002). As a result, students may develop a 

misconception that functions are supposed to be linear (Chang, 2002; Kalchman & 

Koedinger, 2005). Socas Robayna (1997) offered another example: Students may 

continue trying to simplify an expression until they reduce it to a single number. Baroudi 

(2006) noted similar difficulties with the meaning of the equal sign, and found that 

additional time spent with numerical equations may not be sufficient for learning the 

structure of algebraic equations. Instead, he suggested the importance of intermediate 

representations to bridge the gap between arithmetic and algebraic structures. 

Skemp (1976/2006) considered the underlying foundations of mathematical 

misconceptions as emerging from an instrumental understanding of mathematics that 

forces students to rely on memorization. Kieran (2007) agreed with Skemp’s viewpoint 

of the limiting nature of instrumental mathematics. Even the manipulation of symbols, 

once considered primarily an algorithmic process, has become recognized as emergent 

from concepts (Kieran, 2007). Skemp gave the analogy of a person trying to navigate 

through a new city. A person with an instrumental understanding of the city may have a 

number of ways to get from point A to point B. The difficulty with this understanding 
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arises when the person deviates from the original course. In such a case, the person gets 

lost. Instrumental understanding of algebra produces similar results. For instance, 

students may learn a set of prescriptions for solving equations of the form ax + b = c; 

when they encounter equations of the form ax + b = cx + d, their prescriptions are unable 

to accommodate the new form.  

Probability and rational number assumptions influence how students understand 

non-linear functions. Student understanding of rational number and probability concepts 

may also influence their understanding of algebraic structures (Falk, 1992).A famous 

examples of this misuse of the rule of three took place as a result of a bad bet: 

De Méré knew that it was advantageous to bet on the occurrence of 

at least one six in a series of four tosses of a die – maybe this was an old 

experience. He argued it must be as advantageous to bet on the occurrence 

of at least one double-six in a 24 toss series with a pair of dice. As Fortune 

disappointed him, he complained to his friend Pascal about preposterous 

mathematics which had deceived him (Freudenthal, 1970, p. 151). 

De Méré made two erroneous assumptions about the probability and rational 

number structures in this situation. First, he assumed the one die probability to be 4/6, 

computed by adding the probability of 1/6 four times (i.e., an additive, linear 

accumulation of probabilities). Second, he inferred that the probability of rolling at least a 

double six with two dice should be proportional, or 24/36. Both situations are binomial 

rather than linear. For the one-die scenario, P(Success) = 1/6 while P(Failure) = 5/6. The 

binomial theorem where n = 4 and k ≥ 1yields Equation 13. 
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So, rather than having a 67% probability, the original probability should have 

been 51.7%. In the two-dice scenario, P(Success) = 1/36 while P(Failure) = 35/36. The 

binomial theorem where n = 36 and k ≥ 1 can be computed similarly to produce the 

probability of rolling at least one double six in 24 rolls to be 0.491 or 49.1%. The 

binomial formula, a non-linear algebraic equation, applies to many situations where 

linear relationships do not hold for the quantities of interest. The De Méré problem 

illustrates how these underlying assumptions about probability and rational number 

structures influence understanding of the functional relationship that is so critical to 

algebraic thinking and reasoning when that relationship is not linear (Freudenthal, 1983; 

Kalchman & Koedinger, 2005; Kaput & Hegedus, 2004; Thorpe, 1989). 

Probability and rational number assumptions influence how students understand 

linear functions. Even algebraic problems that do require a linear function cause students 

tremendous difficulties (Moss, Beatty, Barkin, & Shillolo, 2008). Moss et al. attributed 

these difficulties to student misconceptions about additive versus multiplicative 

structures. For example, the Trapezoid Table Problem presents a series of trapezoidal 

tables joined with seats placed around the table. Students are also provided with a table of 

values as in Figure 6. 

 

Figure 6. Representations provided in the Trapezoid Table problem (Moss et al., 2008, p. 157). 
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For pattern problems such as the Trapezoid Table, Warren (2000) found that 

students struggling with linear patterns tended to revert to a recursive pattern (i.e., 

repeatedly adding three to the previous y value, yn = yn-1 + 3) rather than developing a 

functional relationship between the number of tables and number of chairs (i.e., 

recognizing that the three acts as a slope ratio of change, a multiplicative operand, yn = 3n 

+ 2). Stacey (1989) identified the same tendency with similar problems (e.g., the 

Christmas Tree Problem, Ladders). The problem with such thinking is not that the 

recursive pattern is incorrect, but that it does not describe the relationship between x and 

y as students often believe it should (Warren, 2000).  

Non-linear functions offer a similar challenge for algebra students; specifically, 

students continue to apply this additive feature to numerical relationships, confusing it for 

functionality. If the additive feature is present, as in the Trapezoid Table problem, then 

students recognize the sequence as a function. If, on the other hand, an additive pattern 

cannot be found, the relationship is discarded as non-functional (Chang, 2002; Kalchman 

& Koedinger, 2005). More generally, Clement (2001) noted that students often rely on 

the presence of a formula do determine if a relationship is a function: 

Students may erroneously consider 32 −± x a function, since it is 

an algebraic formula; whereas they might not consider the correspondence 

that Mary owes $6, John owes $3, and Sue owes $2 to be a function, since 

no formula “fits it” (p. 746). 

Variables and Variation 

Variable interpretation. The notion of variability is especially important in 

algebra (Briggs, Demana, & Osborne, 1986; Edwards, 2000; Graham & Thomas, 2000; 



 

52 

Kalchman & Koedinger, 2005). MacGregor and Stacey (1997) found that students have 

difficulty assigning meaning to variables, failing to recognize the systemic consistency in 

the multiple uses of variables. Research efforts in algebra have long focused on how well 

students could discriminate between the uses of variables (Kieran, 2008). Küchemann 

(1978) developed a test for variable understanding which matched Piagetian sub-stages 

with item complexity: The results indicated that students interpret variables six ways 

(Table 6). 

Table 6 
Hierarchical Levels of Variable Interpretation 
Level Piagetian Sub-Scale Description 

1 Concrete Operations Evaluating the variable using trial and error. 
2 Ignoring the variable. 
3 Variable represents an object or label. 
4 Formal Operations Variable represents a specific unknown. 
5  Variable represents a generalized number. 
6 Variable represents a functional relationship. 

 
Gray, Loud, and Sokolowski (2005) examined student responses to questions 

examining student interpretation of variables using Küchemann’s hierarchy as a 

framework. For the question, “Small apples cost 8 cents each and small pears cost 6 cents 

each. If a stands for the number apples bought and p stands for the number of pears 

bought, what does 8a + 6p stand for?” 81% of students in basic algebra, 76% in college 

algebra, and 50% in calculus answered incorrectly (Gray et al., 2005, p. 4). Gray et al. 

identified the most common error as substituting the price of the fruit for the letters and 

giving the resultant solution, 100. Students who gave this solution appeared to interpret a 

and p as specific unknowns (Küchemann’s Level 4). The next common error resulted 

from interpreting the letters as labels for the objects (Küchemann’s Level 3) rather than 

the price of the objects, “8 apples and 6 pears” (p. 5). Their findings agreed with those 
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found by Küchemann (1981) for high school students: “Children have relatively little 

difficulty with items…where the letters can be thought of as objects or names of 

objects…they find it much more difficult when the letters necessarily represent numbers, 

especially numbers of objects” (p. 307).  

Similarly, Torigoe and Gladding (2006) compared student ability to solve sets of 

parallel problems, one involving numerical values and the other providing variables. In 

one problem, students were asked to determine the minimum acceleration necessary for 

police to catch a bank robber fleeing the scene of a crime. In one version, the prompt 

provides specific numerical quantities while the second version provided symbols to 

represent the quantities. 

The percentage of correct responses for the symbolic version (57%) was 

significantly lower than for the numerical version (94%) for a sample of 894 college 

students. Their study suggested that, holding all other task characteristics constant, the 

meaning of variables and the quantities they represent causes significant difficulties for 

students in algebra. Thorpe (1989) suggested that one possible reason for such difficulty 

is in the fragmentation of instruction. He encouraged the elimination of the concept of 

expressions from the algebra curriculum entirely: 

Asking students in an algebra course to manipulate expressions is 

analogous to asking students in a writing course to manipulate phrases 

rather than sentences. Expressions are not important in themselves. They 

are important only when they are implicitly or explicitly part of an 

equation. The expression 2x + 1, by itself, is incomplete. To have 

meaning, it must be imbedded in an equation, such as f(x) = 2x + 1, or 2x + 
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1 = 0. The equation provides meaning for the expression, as well as a 

context for x. (Is x a variable or does x represent a member of a solution 

set?) Just as we teach students of writing to speak in sentences, let us teach 

students of algebra to speak in sentences! (p. 18). 

From Thorpe’s point of view, understanding the nature of a variable is intertwined 

with the meaning of equations in a particular context. However, placing variables in the 

context of an equation may not be sufficient to advance student understanding of 

variables.  

Operating at Küchemann’s (1978) Level 4, many students can readily find the 

solution of 3 for a problem such as 5x – 4 = 11. However, in solving for such an 

unknown, students may not recognize the varying nature of x; that is, that as x takes on 

different values, the value on the right hand side of the equation (i.e., the 11) changes as 

well. Furthermore, the same letter may be used in multiple problems. Suppose instead 

that 5x – 4 = 20. In this problem, we find that the same letter x now represents a value of 

3.2. Students rarely recognize or value such subtleties of change, instead relying on rote 

procedures (Fuson et al., 2005; Kalchman & Koedinger, 2005), nor do they recognize the 

connection to a two variable equation, such as y = 5x – 4 (Kieran, 2008). Students will 

often look for an “answer,” not recognizing that multiple solution sets can exist within a 

single problem or that multiple equations can be related. This lack of meaning may also 

be due to fragmented instruction (Thorpe, 1989; Kieran, 1989, 2007) and an instructional 

focus on procedures rather than concepts and connections between ideas (Hiebert & 

Carpenter, 1992; Hiebert & Grouws, 2007).Probability instruction can be used to focus 

the concept of variable directly on the changing values within a quantity, thereby helping 
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students avoid or alleviate this confusion. 

The reversal error presented by Kaput and Clement’s (1979) Student Professor 

Problem (i.e., Write an equation to represent the phrase, ‘There are six times as many 

students as professors at this university’) may demonstrate underlying misconceptions in 

the meaning of variables and equality. Clement (1982) attempted to eliminate the reversal 

error by warning students of the potential reversal while Rosnick and Clement (1980) 

tutored students specifically about the reversal error, hoping that cognitive awareness 

alone could assist students. Fisher (1988) and Phillippe (1992) substituted used letters 

other than S and P, hoping to advance students beyond the use of letters as labels. Each of 

these efforts resulted in a lack of significant change in the error rate. Clement (1982) 

identified three types of strategies used by students in the student professor problem (see 

Figure 7). 

 

Figure 7. Strategies Used in the Student Professor Problem (Clement, 1982, p. 21). 

In the word order matching strategy, students displayed the label misconception, 

operating at Küchemann’s (1978) Level 1. Similarly, in the static comparison, students 

relied on a mental image of the makeup of a typical university with more students than 
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professors. Clement (1982) found that the static comparison image was so strong that 

even after considering the correct equation, S = 6P, students considered it impossible and 

discarded it in favor of the erroneous equation. 

Probability quantities are also affected by static comparisons. Static comparison 

thinking may contribute to misconceptions in probability as well. Consider the following 

problem: “Of the following two subgroups, which is larger? (a) Unmarried physicians, or 

(b) Unmarried physicians who like to travel abroad” (Agnoli & Krantz, 1989, p. 543).  

Respondents overwhelmingly chose (b), reasoning that unmarried physicians are 

more likely to travel abroad than married ones. This reasoning also represents static 

comparison: Agnoli and Krantz (1989) found that students based their decisions on a 

priori knowledge rather than the meaning of the mathematical statement. Likewise, 

MacGregor and Stacey (1997) suggested that students often make such errors as a result 

of relying on intuition and making analogies to more familiar situations. Errors resulting 

from static comparisons are persistent, resistant to direct interventions, and often result in 

biased mathematical judgments in unfamiliar contexts (Shaughnessy & Bergman, 1993). 

Kahneman and Tversky (1972, 1973a, 1973b, 1982, 1983), Agnoli and Krantz 

(1989), and Shaughnessy and Bergman (1993) divided these biased judgments into two 

categories, representativeness and availability. Representativeness, results from 

transferring properties of large samples to small samples, especially the notion that small 

samples reflect the parent population as well as large samples (or, “neglect of small 

samples” in Shaughnessy & Bergman, 1993, p. 182). The second judgmental heuristic 

error, availability, reflects a person’s tendency to estimate probabilities based on 

available personal experiences. These judgment errors themselves do not appear to be 
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misconceptions, but they do appear to emerge from a fundamental misunderstanding 

about the nature of probabilistic quantities. Whether static comparison errors begin with 

probability or algebra or affect both content domains simultaneously is unclear. These 

errors may, however, link fundamental probability misconceptions to algebra 

misconceptions. 

MacGregor and Stacey (1997) suggested that misleading teaching practices and 

materials may exacerbate the need for students to rely on judgmental heuristics in 

mathematics. Thorpe (1989), Kieran (1989, 1992) and Leitzel (1989) suggested that de-

contextualizing the algebra curriculum may be one such misleading practice that guides 

students away from the systemic structure of algebra. On the other hand, Kieran (2008) 

noted that advances in instructional technology may help reverse some of this de-

contextualization. For example, Ainley, Bills, and Wilson (2004) presented evidence that 

spreadsheet applications can help students build bridges from numerical specificity to 

variable generality: 

In the algebra-like notation of the spreadsheet, the cell reference is 

used ambiguously to name both the physical location of a cell in a column 

and row, and the information the cell may contain. The spreadsheet thus 

offers a strong visual image of the cell as a container in two which 

numbers can be placed…The image offered by the spreadsheet is 

ambiguous in another powerful way: when a formula is entered in a cell, it 

can be ‘filled down’ to operate on a range of cells in a column. The cell 

reference can then be seen as both specific (a particular number I may put 

in this cell) and general (all the values I may enter in this column). This 
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image is likely to support the idea of variable as a range of numbers in 

functional relationships (p. 2). 

Chazan and Yerushalmy (2003) examined the complexity of variable concepts 

and concluded that a functions-based approach focusing on variation/change rather than 

unknowns to be solved allows students to develop more advanced understanding of 

variables. Such an approach directs students to interpret variables at Küchemann’s (1978) 

two highest abstract levels, generalized numbers and functional relationships. The 

concept of variation as studied in probability follows Chazan and Yerushalmy’s advice: 

Variables are quantities within which patterns for expected values are based on 

distributions; Variation is examined as a measure of change that describes differences 

between small samples and the population, variation from the mean within a sample; and 

students explore patterns within random variables and the significance of small amounts 

of variation in large samples (Watson & Kelly, 2005; Watson, Kelly, Callingham, & 

Shaughnessy, 2003; Watson & Shaughnessy, 2004; Zawojewski & Shaughnessey, 2000). 

Probability instruction, therefore, may offer an alternative approach to leading 

students to the meaning of variable by combining the concept of variable with authentic 

contexts and technological tools (e.g., spreadsheets) with the exploration of variation for 

different sample sizes. Often, students underestimate the amount of variation in small 

samples, inappropriately applying the Law of Large Numbers (Shaughnessy, 1992; 

Shaughnessy & Bergman, 1993; Shaughnessy, Canada, & Ciancetta, 2003). Consider the 

task depicted in Figure 8 (used in Watson & Shaughnessy, 2004: NAEP (1996) Released 

Item). 
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Figure 8. The Candy Problem (Watson and Shaughnessy, 2004, p. 107). 

Student responses on this item indicated that some students have no intuitive 

sense of the amount of variation they should expect in repeated sampling with 

replacement while others included a reasonable amount of variation in their predictions 

(Watson & Shaughnessy, 2004).  

Green’s (1982) thumbtack question demonstrated how issues with variation are 

linked with assumptions of uniformity and equality. In this problem, students were asked, 

“A packet of 100 drawing pins is emptied out onto a table. Some drawing pins land 

pointing up and some land pointing down: How many up and how many down would you 

expect out of the 100?” (p. 30). Green (1983a) reported that most students chose a 50-50 

outcome, assuming that the probability of up and down is equal. Trying a variation of the 

same problem, he included additional information about a prior trial in which 32 tacks 

landed up and 68 down. Some students chose a reversed solution, 64 landed up and 36 

down, explaining that the given information did not match their own experiences (i.e., the 

availability heuristic). The item was modified to its final form, making the prior trial 

seem more realistic and including a non-numeric choice that all outcomes are equally 

likely. In the final sample, students overwhelmingly chose the non-numeric option, 
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confirming their belief in uniformity and equality. 

Another question from Green (1982) linked notions of variation with randomness 

and the belief that randomness means uniformity: 

A teacher asked Clare and Susan each to toss a coin a large number 

of times and to record every time whether the coin landed Heads or Tails. 

For each ‘Heads,’ a 1 is recorded and for each ‘Tails,’ a 0 is recorded. 

Here are the two sets of results: 

 

Now one girl did it properly, by tossing the coin. The other girl 

cheated and just made it up. Which girl cheated? How can you tell? (p. 

27). 

Students at all grade levels overwhelmingly believed that the regularity of Clare’s 

pattern and the long run lengths in Susan’s pattern made Susan the most likely culprit for 

having cheated, when, in fact, the reverse was true. Green conjectured that their 

reasoning errors emerged from a deeper misconception about the nature of variation 

within randomness and suggested a link between variation misunderstandings and beliefs 

about uniformity. 

The gambler’s fallacy is another example of a reasoning error that may be linked 

to misconceptions about variation, representativeness, and randomness (Falk & Konold, 

1994; Tversky & Kahneman, 1971). The gambler’s fallacy denotes a belief that, given a 

sequence of independent events repeated a number of times and a particular outcome has 
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occurred more than would normally be expected, a different outcome is more likely on 

subsequent trials. For example, a student tosses a coin six times and gets a single tail the 

first time and then five heads. The gambler’s fallacy represents the belief that the tails 

outcome is more likely on the next flip. 

When subjects are instructed to generate a random sequence of 

hypothetical tosses of a fair coin…they produced sequences where the 

proportion of heads in any short segment stays far closer to .50 than the 

laws of chance would predict…Subjects act as if every segment of the 

random sequence has strayed from the population proportion, a corrective 

bias in the other direction is expected (Tversky & Kahneman, 1971, p. 

106).  

Tying Algebra, Probability, and Rational Numbers Together through Error Patterns 

Static comparisons and judgment bias errors appear to affect the learning of both 

algebra and probability. Some of these errors may be due to misunderstanding 

fundamental concepts in algebra such as variable meaning and functions. Errors in 

reasoning within probability may sometimes be due to misconceptions about rational 

number quantities and their relationships within specific contexts. Misapplication of 

additive and multiplicative structures in algebraic contexts may also be connected to 

misunderstanding the rational number quantities within a specific situation. The 

connections between these reasoning errors also appear in geometry contexts. 
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Critical Misconceptions Specific to Learning Geometry 

Spatial Reasoning 

Student orientation toward geometry is quite different from that of algebra: 

Students are often intrinsically motivated to study the properties that govern the shapes 

encountered in daily life (Engel, 1970; Freudenthal, 1973). In spite of this motivational 

factor, students still struggle with errors and misunderstandings in geometry due to 

limited spatial reasoning (Clement & Battista, 1992).  

Spatial reasoning begins with the differentiation between objects and 

representations. Objects are abstractions, ideas considered through reasoning (Battista, 

2007). Representations, on the other hand, are used to signify objects other than 

themselves. For example, a line drawn on a piece of paper only represents a geometric 

line, defined in Euclidean geometry as having infinite length and no thickness. The Van 

Hiele (1959/1984a) framework is especially helpful for describing student spatial 

reasoning processes and how they distinguish between objects and representations. 

This framework classifies geometric reasoning into five levels. Within Level 0, 

the base level (visual in Clement & Battista, 1992), children reason geometrically solely 

on the basis of recognition. At this stage, shapes are examined as a whole. Only the 

physical appearance of a shape is considered without regard to parts or properties, and no 

distinction is made between objects and representations (Crowley, 1987). For example, 

they may recognize that a rectangle is different than a square only because it appears 

different. Within Level 1 (analysis in Crowley, 1987 and descriptive/analytical in 

Clements & Battista, 1992), students analyze geometric concepts using properties and 

characteristics of shapes and figures (Crowley, 1987). For example, students will 
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recognize that a rectangle has four sides, that opposite sides are equal, and that the four 

angles all measure 90°. They may not, however, recognize the hierarchical ordering of 

properties. For example, they may attribute the properties of a rectangle to a square 

without realizing that a square is actually a special rectangle. At Level 2 

(abstract/relational; Clements & Battista, 1992), students do begin the ordering of 

properties (Van Hiele, 1959/1984a) through informal deduction (Crowley, 1987). 

Students using abstract/relational reasoning categorize shapes and figures according to 

their properties and recognize hierarchical classifications, such as considering a square to 

be a rectangle with congruent sides. At Level 3 (deduction in Crowley, 1987 and formal 

deduction in Clements & Battista, 1992), students are able to develop theorems within an 

axiomatic system. Additionally, they distinguish between the roles of theorems, 

postulates, as definitions; their thinking is also concerned with the meaning of the 

converse of a theorem (Crowley, 1987; Van Hiele, 1959/1984a). Most high school 

instruction goes no further than Level 3 (Crowley, 1987); however, Level 4 (rigor in 

Crowley, 1987 and rigor/mathematical in Clements & Battista, 1992), involves the 

formal reasoning about mathematical systems in the absence of reference models. 

Clements & Battista (1992) also proposed a pre-base level which they called pre-

recognition in which children are unable to distinguish between shapes. 

The Van Hiele framework can be used to help explain common misconceptions 

that develop in geometry through missing or inadequate spatial reasoning. Clements and 

Battista (1992, p. 422) compiled 11 of the most common geometric misconceptions: 

1. An angle must have one horizontal ray. 

2. A right angle is an angle that points to the right. 
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3. To be a side of a figure a segment must be vertical. 

4. A segment is not a diagonal if it is vertical or horizontal 

5. A square is not a square if its base is not horizontal. 

6. The only way a figure can be a triangle is if it is equilateral. 

7. The height of a triangle or parallelogram is a side adjacent to the base. 

8. The angle sum of a quadrilateral is the same as its area. 

9. The Pythagorean Theorem can be used to calculate the area of a 

rectangle. 

10. If a shape has four sides, then it is a square. 

11. The area of a quadrilateral can be obtained by transforming it into a 

rectangle with the same perimeter. 

Students who hold Misconceptions 1 – 5 operate at the base level of recognition. 

For example, a student who believes that a square is not a square unless its base is 

horizontal (Misconception 5) does not associate the properties of a square to the label. 

Instead, such a student relies strictly on the visual orientation of a particular drawing. 

Students who hold Misconceptions 6 – 11 have moved to the analysis level: They are 

aware of properties, but the properties have not been organized into a coherent system. 

For example, a student who believes that the sum of a quadrilateral is the same as its area 

(Misconception 8) acknowledges that a quadrilateral has the property of a constant sum 

for its interior angles but confuses the meaning of an angle with the meaning of area. 

Teaching methods and materials coupled with a lack of authentic experiences may 

exacerbate misconceptions resulting from the limited spatial reasoning found at the lower 

Van Hiele levels (Oberdorf & Taylor-Cox, 1999). They described the example of early 
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geometric activities in which students are taught to distinguish between rectangles and 

squares. They maintained that such differentiation is quite difficult to eradicate in later 

grades. Instead, they advocated for the use of exploratory activities that allow students to 

examine quadrilaterals as a whole and provide the substance for rich discussions about 

similarities and differences between different quadrilaterals. 

Monoghan (2000) found that textbooks tend to reinforce an over-reliance on 

typical representations of geometric objects, a condition that may result in limiting 

progression from the recognition stage to the analysis stage. Swindal (2000) and 

Monaghan (2000) recognized a fundamental gap first identified by Van Hiele 

(1959/1984a) and Shaughnessy and Burger (1985): Students and teachers think about the 

same concepts from different levels. Most students in high school geometry reason at 

Levels 0 or 1 (recognition and analysis) while teachers think, reason, and teach using 

vocabulary from Level 2 (abstract/relational thinking). Furthermore, courses that focus 

primarily on the development of proof using language from Level 3 offer most students, 

who are functioning at Levels 0 and 1, limited opportunity to advance their understanding 

of spatial properties and relationships (Hiebert & Grouws, 2007). 

Misunderstandings about spatial properties and relationships appear dissimilar to 

algebra, probability, and rational number reasoning errors on the surface, but the number 

patterns within spatial relationships involve rational numbers and algebraic patterns. 

Geometric models are also often used to represent probability ratios. 

Proportionality and Geometric Learning 

Just as with rational numbers, probability, and algebra, linear proportions abound 

in geometry (e.g., side lengths and perimeter of similar figures follow the Rule of Three, 
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as in Carter et al., 2010; Dietiker et al., 2007; Serra, 2003). Freudenthal (1983) and 

Stacey (1983) noted that the abundance of linear applications in geometry often leads 

students to the belief that linearity is universally applicable. Students often cling to the 

linear model tenaciously in spite of additional information that discredits the linear model 

for a particular scenario (De Bock et al., 1998, 2002; De Bock, Van Dooren, Verschaffel, 

& Janssens, 2002). De Bock et al. (1998, 2002) studied student problem solving with 

problems involving squares, circles, and irregular figures, half of which required a linear 

proportion while the other half required non-linear reasoning. Their example for square 

figures follows (De Bock et al., 1998, p. 68). 

Enlargement of a square figure 

Proportional item: 

Farmer Gus needs approximately 4 days to dig a ditch around a 

square pasture with a side of 100 m. How many days would he need to dig 

a ditch around a square pasture with a side of 300 m? (Answer: 12 days) 

Non-proportional item: 

Farmer Carl needs approximately 8 hours to manure a square piece 

of land with a side of 200 m. How many hours would he need to manure a 

square piece of land with a side of 600 m? (Answer: 72 hours) 

De Bock et al. (1998) found that 98% of their sample of 12 and13 year old 

students solved the proportional problems correctly, whereas only 5% of the same sample 

solved the non-proportional items correctly. They also found that problems for irregular 

figures were missed more than problems for squares or circles. In their follow up study 

(De Bock et al., 2002), they interviewed students who had missed non-proportional 
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problems. The interviews progressed through five stages, each progressively adding more 

information to direct the students toward a non-linear model. Most students required at 

least three stages before realizing that the linear solution was incorrect; some students 

clung to the linear solution even after all five stages. 

The ability to distinguish how and when to use proportionality relationships 

appears to affect the learning of geometry as well as algebra, probability, and rational 

numbers. Misusing these relationships may be due to misunderstanding geometric ideas 

and the connections between them. The inter-connectedness between these potential 

misunderstandings with rational number, probability, and algebra may indicate that a 

novel teaching strategy targeting the underlying misconceptions may help reduce 

reasoning errors in all four content areas. 

Teaching Probability to Correct Foundational Mathematical Misunderstandings 

Stone, Alfeld, and Pearson (2008) echoed the sentiments of Freudenthal (1970): 

In order to guide students to deep mathematical learning, mathematical content must be 

tied to authentic experiences to which students can relate. Probability offers such a 

connection between mathematics and the real world naturally (Liu & Thompson, 2007), 

and its de-emphasis in U.S. high school mathematics curricula may account for many of 

the difficulties students have connecting abstract mathematical ideas to concrete 

examples (Davis, 1992). In spite of the ability of probability to bridge the gulf between 

the abstract and concrete, several reasons explain its exclusion from mathematics 

curricula. First, teachers are typically less familiar with probability content than other 

areas of mathematics (Jendraszek, 2008; Swenson, 1998). Compounding this problem is 

the fact that probability is often viewed as a second-rate topic (Mitchell, 1990; 
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Shaughnessy, 2006). Furthermore, curriculum issues in the United States have 

historically been problematic: Every state develops its own standards, varying widely in 

organization and complexity (Boland & Nicholson, 1996; Reys & Lappan, 2007). Issues 

of cognitive development of a child and student mobility between schools and states 

compound curriculum issues even further (Engec, 2006; Fajemidagba, 1983). The 

National Council of Teachers of Mathematics (NCTM) began an effort to coordinate the 

development of a recommended mathematics curriculum, publishing the Curriculum and 

Evaluation Standards as a result (NCTM, 1989). Even after concerted efforts to increase 

the teaching of probability, Shaughnessy (1992) found that the NCTM recommendations 

are minimized in the classroom. Figure 10 shows that, even when the recommendations 

are followed, number, algebra, and geometry receive the greatest emphasis while 

probability is given minimal attention. 

 

Figure 9. NCTM (2000) Mathematics Strands for Grades K – 12 (p. 30). 

Although data analysis and probability are inextricably linked, the two areas may 

need separate degrees of emphasis in high school. Shaughnessy (2007) found that student 

ability to compute means, medians, and modes had improved since his 1992 report, but 

student understanding of randomness, chance, and variation had not improved 
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correspondingly. Likewise, Smith (2003) found that many high school teachers handle 

probability differently than statistics; they may relegate probability to the end of the year 

as time permits or simply delete it from the curriculum completely. 

This de-emphasis of probability has devastating consequences for mathematics 

students. First, excluding probability from the mathematics curriculum may increase the 

disparity between mathematics and the real world. Shaughnessy and Bergman (1993) 

stated, “It appears that stochastic problems may closely resemble the type of problem 

solving that our students will have to do in their own private lives or on their jobs” (p. 

193). Furthermore, people are faced with choices involving probability on a daily basis 

that affect the quality of life for themselves and their family and friends, e.g., career 

decisions (Hume, 1970; Papps, 2008), interpreting weather, economic, and political 

forecasts (Resnick, 1987), business and personal purchasing choices (Ashman, 2001; 

McAvoy, 2001; Swaminathan, 2003), and gaming (Barry, 1988; Brandt & Pietras, 2008; 

Clotfelter & Cook, 1991; Lai-Yin & Rob, 2005).  

Second, Engel (1970) and Shermer (2008) found that humans typically do not 

intuit probability correctly without formal training. In fact, researchers have found that 

humans’ lack of intuition regarding probability poses one of the primary difficulties in 

both the learning and teaching of the subject (Engel, 1970; Kahneman et al., 1982; 

Kahneman & Tversky, 1972, 1973a, 1973b, 1983; Shaughnessy & Bergman, 1993). This 

stumbling block creates a significant barrier to understanding abstract mathematical 

concepts. For example, when students examine the conjunction of two sets (A ∩ B), they 

often conclude that the conjunction has a greater magnitude than the parent sets (Agnoli, 

1987; Agnoli & Krantz, 1989; Shaughnessy, 1992). This intuitive response has been 
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traced to the use of judgment heuristics such as representativeness (Agnoli, 1987; 

Shaughnessy, 1992). Heuristics are often useful for framing mathematical reasoning to 

solve problems (Pólya, 1957; Schoenfeld, 1992). However, reliance on heuristic 

judgments may lead to reasoning errors when they reflect beliefs rather than attributes or 

when those heuristics are used as substitutes for understanding the meaning of concepts 

(Kahneman & Tversky, 1983; Shaughnessy, 1992). Consider an example in which 

students are asked to compare two sets, “Men who have had one or more heart attacks” 

and “Men who are over 55 years old” (Agnoli, 1987, p. 3). Basing the comparison on 

representativeness beliefs often leads students to conclude that the conjunction of these 

two sets, “Men who have had one or more heart attacks and are over 55 years old,” is 

actually larger than either of the two parent sets (i.e., they believe that men over 55 are 

more likely to have a heart attack) when, actually, parent sets are always larger than their 

conjunction. 

Third, the misconceptions prevalent in probability may influence the foundations 

of how students think about mathematics generally. For example, Green (1983b) reported 

on a survey of over 3,000 British teens’ (ages 11 – 16) in which he identified a major 

misconception in the area of proportions: Students most commonly chose the incorrect 

answer that corresponded with the largest numerator value rather than the relative size of 

the rational number relationship. Through tasks such as Green’s Marble Problem, an 

exploration of probability problems provides a natural venue for exploring rational 

number concepts. The authentic experiences so necessary for learning probability 

concepts also require scrutiny of the meaning of the rational numbers used for reporting 

probabilities. Additionally, the concrete applications of probability (e.g., flipping coins, 
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rolling a die, simulation and modeling) may be a critical key for students struggling to 

integrate abstract concepts into their prior conceptions of mathematics (Evans & 

Tsatsaroni, 2000; Freudenthal, 1970; Fuson, 1998; Green, 1983b; Watson & 

Shaughnessy, 2004). Connecting abstract concepts such as randomness to probability 

simulations such as The Cliff Hanger applet (Mathematics, Science, and Technology 

Education, 2005) may also improve student orientations toward mathematics (Stone, 

Alfeld, & Pearson, 2008) and student flexibility in unfamiliar problem solving situations 

(Evans & Tsatsaroni, 2000). As a result, students may develop a deeper relational 

understanding of mathematical concepts, allowing them to handle greater mathematical 

complexity and difficulty.  
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A Conceptual Framework to Model Mathematics Learning 

The similarity between reasoning across mathematics content areas suggests a 

pathway of learning that either results in understanding or misconceptions and errors. To 

develop a model that traces these pathways, several factors must be considered. First, the 

introduction of new concepts is typically accompanied with tasks or problems for the 

students to complete. The characteristics of these tasks (e.g., task complexity, difficulty, 

discrimination between ability levels) may influence how students interpret the new 

material. Second, students must filter tasks through their own knowledge framework. 

Third, the pedagogical emphasis on either concepts or procedures direct students to 

develop either relational or instrumental understanding (Skemp, 1976/2006). If students 

learn relationally, then the conceptual understanding they develop may produce stronger, 

more consistent procedural skills, which in turn may reinforce deeper more robust 

conceptual understanding. This understanding may then be integrated into a student’s 

knowledge framework for use with future tasks. 

Alternatively, the development of instrumental understanding leads to the 

development of procedures without meaning, with incomplete or erroneous meaning, or 

even the lack of awareness of meaning (Skemp 1976/2006). Misunderstanding the 

meaning of mathematical objects in some way is the very essence of misconceptions. 

Mathematical misconceptions result in errors that are often difficult for teachers to 

prevent or obstruct. Researchers have repeatedly found that systematic errors due to 

misconceptions rather than faulty reasoning adhere to patterns of over- or under-

generalization of properties or concepts for a particular task (e.g., Chang, 2002; Falk, 

1992; Fuys & Liebov, 1997; Kalchman & Koedinger, 2005; Van Dooren, De Bock, 
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Depaepe, Janssens, and Verschaffel, 2003). For example, in geometry, Fuys and Liebov 

(1997) suggested that students struggling to move from a visualization level of spatial 

reasoning to an analysis level may under-generalize geometric properties by including 

irrelevant characteristics of a shape in their mental framework; or conversely, they may 

over-generalize relationships between figures by discarding any number of a shape’s 

unique properties. If unchecked, these misconceptions may be integrated into students’ 

mathematical understanding, thereby influencing future learning.  

Difficulties Inherent to Addressing Mathematical Misconceptions Directly 

Multiple attempts to develop interventions for reducing misconceptions have met 

with limited success. Some of these efforts have focused on addressing task-specific 

errors (e.g., Rosnick & Clement, 1979). One difficulty with such a strategy is that if the 

error was due to a misconception, the underlying misconception will remain in the 

student’s knowledge framework to adapt and reappear in the same or other task. Other 

endeavors have attempted to address the reasoning that leads to an error using a variety of 

strategies such as worked examples (e.g., Fisher, 1988; Phillippe, 1992; Rosnick & 

Clement, 1980). Directly addressing erroneous reasoning appeared to make no significant 

improvement in student learning (Weinberg, 2007). 

Weinberg (2007) suggested that another reason student errors can be so insidious 

is that students attempt to adapt their knowledge base to the problem scenario, sometimes 

accurately and sometimes not. The adaptive nature of these errors suggests that the 

reasoning processes are built on a deeper foundation of understanding relating to the 

structure and meaning of mathematical ideas (Kieran, 2007, 2008, 2009). 

An even more robust intervention design may be needed to alter students’ 
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mathematical thinking and reasoning. Rather than targeting reasoning processes directly, 

such an intervention might focus instead on transforming the instrumental understanding 

responsible for difficulties in meaning that can lead to misconceptions into relational 

understanding. If a teaching intervention targets the development of meaning and 

connections, then misconceptions that develop may be only a normal, temporary part of 

the learning process (Resnick, 1983). 

Mathematical Task Characteristics 

Teachers typically introduce new concepts by presenting a task or problem as a 

motivation for learning the mathematical concept. Rousseau (1976) identified eight task 

characteristics that potentially influence how students internalize the meaning of the task 

and its connection to the underlying concept: task identity, task autonomy, skill variety, 

task variety, task feedback, task learning, dealing with others, and task significance. Task 

identity refers to the ownership a student assumes for an activity. Task autonomy, closely 

aligned with identity, focuses on the degree of independence students have in decision 

making throughout a task. Skill variety emphasizes the breadth and depth of skills 

required to complete a particular task. Task variety, on the other hand, refers to the 

breadth of subjects and courses provided by a school. Task learning represents the 

breadth and scope of opportunities for obtaining new skills, what Hiebert and Grouws 

(2007) referred to as opportunity to learn. Task feedback speaks to the amount of 

feedback students receive from a task versus the feedback from teachers. Catanzaro 

(1997) maintained that task feedback creates a more stimulating, positive learning 

environment over instructor feedback. Rousseau (1976) defined dealing with others as 

“the opportunity to interact with teachers, teaching assistants and other faculty” (p. 3). 
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Many researchers would also emphasize the importance of interactions with other 

students (e.g., Berg, 1993; Freeman, 1997; Henderson & Landesman, 1995; Nichols & 

Miller, 1994; Parham, 1993; Slavin & Karweit, 1982; Slavin & Lake, 2008; Slavin, Lake, 

& Groff, 2009; Whicker, Bol, & Nunnery, 1997). Task significance represents student 

perceptions of a particular task’s relevance to life beyond academic concerns. Rousseau 

(1976) found that task significance may have the strongest impact of her eight task 

characteristics. 

Student Thought Processes Influencing Mathematical Misconceptions 

Erroneous thinking resulting from misconceptions is often stable and robust, 

interfering with a student’s ability to learn mathematics (Moschkovich, 1998). 

Researchers tend to agree that a possible key to addressing these issues may lie in the 

alignment of student thought processes with mathematical logic (e.g., Behr, 1980; Blanco 

& Garrote, 2007; Collis, 1975; Enfedaque, 1990; Kieran, 1980; Palarea Medina, 1999; 

Socas Robayna, 1997) and the connection of specific misconceptions to the student’s 

larger knowledge framework (e.g., Moschkovich, 1998; Smith, diSessa, & Roschelle, 

1993). This knowledge framework includes (at least) four components that can influence 

whether a student develops relational or instrumental understanding: (1) Discernment; (2) 

Orientation toward mathematics; (3) Individual context; and (4) Environmental Context. 

Discernment. Discernment has been defined as an aspect of knowledge that 

encompasses the active, cognitive components of learning (Ronau & Rakes, 2010; 

Ronau, Rakes, Wagener, & Dougherty, 2009; Ronau, Wagener, & Rakes, 2009). Kant 

(1786/1901) proposed that cognition is engaged through the process of perceptions 

leading to conceptions, which in turn lead to ideas. Davis (1992), comparing Japanese to 
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American tests, considered the influence of such perceptions to be paramount to deep 

mathematical learning:  

Perhaps 75 one-step problems on a test will produce about the 

same ranking of students as will 6 multistep problems that require serious 

thought (and perhaps some originality). But the message that they send to 

students is entirely different. The one-step problems say to students, “You 

do not have to do much hard thinking in mathematics, nor must you be 

very creative; all you have to do is pay attention in class, memorize 

dutifully, practice diligently, and you will get no surprises on the tests.” 

The Japanese tests send a different message ⎯ rather more in the spirit of 

the contest problems that a very few U.S. students encounter ⎯ where it is 

more clear from the outset that, if you have developed nothing more than 

routine skills, you will be hopelessly ineffective. You must strive for 

ingenuity and originality (p. 725). 

Davis (1992) went on to consider the meaning of mathematics from a cognitive 

perspective. He gave three examples of problems whose solution required the addition of 

whole numbers. These problems differed in the degree of decision making required about 

each contextual situation prior to concluding that addition is needed for each.  

Now, here is the main point behind these three examples: Most 

people who have not had an opportunity to think seriously about such 

matters would claim that the mathematics is that part of the problem that 

the calculator did. They might find the decisions…or the choice of 

arithmetical operations…to be thought provoking, but they would 
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probably not consider them an essential part of the mathematics…they 

might not even notice that there was any thinking involved other than the 

computation that the calculator carried out. I would argue that such 

observers are precisely wrong. There is very little mathematics in the 

actual carrying out of the computations…The mathematics lies mainly in 

analyzing the real situation and deciding how to represent it in an 

appropriate abstract symbolic form (Davis, 1992, p. 727). 

Schoenfeld (1992) agreed with Davis’ conceptualization of the nature of 

mathematical learning. He added that mathematical problem solving requires a great deal 

of metacognitive regulation and that such behavior is learned best through “domain-

specific instruction” (p. 357). In an earlier work (Schoenfeld, 1982), he considered three 

types of analysis to be important to mathematical problem solving: analysis of tactical 

knowledge (i.e., domain-specific facts and procedures), analysis of control knowledge 

(i.e., strategic/executive behavior), and analysis of belief systems. The analysis of control 

knowledge speaks directly to metacognition, the regulation of cognitive processes. 

Several other researchers have suggested that cognitive and meta-cognitive skills filter 

student ability to understand mathematical concepts (Andrade & Valtcheva, 2009; 

Dermitzaki, Leondari, & Goudas, 2009; Fuson et al., 2005; Lin, Schwartz, & Hatano, 

2005; Nemirovsky & Ferrara, 2009; Usher, 2009). Swanson (1990) found that the 

development of metacognition may operate independently of aptitude and may impact 

learning more: 

On the surface, it appears that high metacognitive skills can 

compensate for overall ability by providing a certain knowledge about 
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cognition. This knowledge allows low-aptitude/high-metacognitive 

children to perform in ways similar to those of children with high aptitude. 

Thus, one may argue that measures of metacognition and general aptitude 

in the present study are tapping different forms of knowledge, and that 

high performance on the problem-solving tasks is more closely related to 

higher performance on the metacognitive measures than on the aptitude 

measures (Swanson, 1990, p. 312). 

Schraw and Dennison (1994) identified two constructs that measure 

metacognition: knowledge of cognition and regulation of cognition. They found that, 

although the two constructs are correlated, each may affect cognitive performance in a 

unique way. Other studies have shown that students use these cognitively-based 

discernment faculties to connect abstract concepts to concrete representations (e.g., 

Secada, 1992; Spillane, 2000; Von Minden, Walls, & Nardi, 1998). 

Orientation toward mathematics. Schoenfeld’s (1982) third type of analysis 

focused on student beliefs. He posited that student beliefs about the nature of a 

mathematical task can greatly influence the degree of cognitive effort expended for the 

task. Schoenfeld (1985) conducted a survey of 230 students in three high schools. He 

found three aspects to student beliefs about mathematics. (1) Students in his sample 

attributed success in mathematics to work rather than luck. (2) Students in his sample 

disagreed that mathematics solutions were either “right” or “wrong.” They also declared 

the importance of teaching multiple ways to solve mathematics problems. This response 

surprised Schoenfeld because “very little of such teacher behavior was observed in the 

classroom studies…their response suggests either a strong acceptance of the mythology 
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about teaching, or some strong degree of wishful thinking” (p. 14). (3) Students view 

mathematics learning as largely dependent on memorization while simultaneously 

viewing it as a means to develop logical thinking.  

McLeod (1992) agreed with Schoenfeld’s description of beliefs and attitudes as 

components of affect; however, he added a third, distinct component category: emotions. 

Emotional reactions to mathematics learning occur when students experience obstacles to 

solutions. Such obstacles elicit negative feelings such as tension, frustration, fear, 

anxiety, embarrassment, and panic. Once obstacles are overcome, positive emotions 

return. He maintained that one goal of mathematics pedagogy should be to reduce the 

occurrence of these negative emotions. From attitudes, beliefs, and attitudes, seven 

subconstructs of affect emerge: confidence, self concept, self efficacy, anxiety, effort and 

ability attributions, learned helplessness, and motivation. 

Schoenfeld and Mcleod agreed that affect and cognition are linked (Schoenfeld, 

1989; McLeod, 1992). Schoenfeld (1989) found that beliefs and attitudes influence the 

way people develop conceptions about mathematics, directly and indirectly impacting 

their mathematical ability. Barkatsas, Kasimatis, and Gialamas (2009) found that high 

levels of mathematics achievement are associated with positive attitudes toward learning 

mathematics; positive attitudes, in turn, are associated with mathematics confidence and 

affective engagement. Ismail (2009) found that self-confidence appeared to supersede the 

impact of socio-economic disadvantage on student achievement. 

In summary, components of affect such as beliefs, attitudes, and emotions mold 

student orientations toward mathematics. Pedagogical strategies within mathematics 

influence the development of conceptions or misconceptions as a result of their attention 
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to orientation. 

Individual context. The contextual factors that students bring to a mathematical 

learning situation interact in multiple ways to influence how students interpret 

mathematical concepts. These individual context factors refer to characteristics such as 

gender, race, culture, socio-economic status, parent education levels, background 

experiences, and learning styles (Ronau et al., 2009; Ronau & Rakes, 2010; Ronau, 

Wagener, & Rakes, 2009). 

Evidence has suggested that boys and girls construct their understanding of 

mathematics differently (Fennema & Sherman, 1977) and hold different attitudes toward 

mathematics (Sherman & Fennema, 1978). Although moderate changes have occurred 

over time, inequity between genders still exists (Carrell, Page, & West, 2009; Fennema, 

2000; Mendick, 2008; Van Langen, Rekers-Mombarg, & Dekkers, 2008; Wei & Hendrix, 

2009; Zohar & Gershikov, 2008). 

Kozol (1992, 2005) examined educational practices across the country and 

asserted that inequalities also continue to exist across racial lines. Snipes and Waters 

(2005) agreed with Kozol’s assessment, conducting a case study in a single state. 

Lubienski (2001) and Lim (2008) found that race and class interact to produce an effect 

on mathematics achievement. Class measures include factors such as parent education 

levels and socio-economic status (SES). Parent education levels, one measure of SES, 

significantly predicted above average achievement during the Third International Math 

and Science Study (TIMSS; Schreiber, 2000). Lehrer, Strom, and Confrey (2002) found 

that prior mathematical experiences influence student orientation toward mathematics. 

Anderson (1990) asserted that cultural influences overshadow gender and racial effects 
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on equity in student achievement. Nelson, Joseph, & Williams (1993) agreed with 

Anderson, claiming that culture also has a direct bearing on affect. Strutchens (1995) 

proposed the use of a five-dimensional framework for increasing equity in mathematics 

education: content integration, knowledge construction, prejudice reduction, equitable 

pedagogy, and empowering school and social culture. 

Alomar (2007) and Esposito Lamy (2003) linked gender, race, culture, and affect 

with family variables such as parenting style and poverty. Lopez, Gallimore, Garnier, and 

Reese (2007) found that for immigrant populations, family factors influence English 

language literacy, which in turn affects student mathematics achievement.  

Personal characteristics such as learning styles, personality, and temperament also 

influence how students learn mathematics. The Silver-Strong studies (Silver, Brunsting, 

& Walsh, 2008; Silver, Strong, & Perini, 1997; Strong, Perini, Silver, & Thomas, 2004; 

Strong, Silver, & Perini, 2001) together with the work of Keirsey (1998) suggest a link 

between learning styles and personality. Keirsey (1998) described personality in terms of 

the Myers-Briggs notation. In this framework, a person may be Introverted (I) or 

extraverted (E); rely more on intuition (N) or the senses (S) to interpret a situation; rely 

more on feelings (F) or thinking (T) to make decisions; and, prefer routine (J for 

judgment) or sponteneity (P for perceiving), resulting in 16 different personality styles 

that he grouped into four categories with internal reliability ratings between 0.82 and 0.83 

(Alpine Media Corporation, 2003). Silver et al. (1997) used the same constructs to 

determine four categories of learning styles: Mastery, Understanding, Interpersonal, and 

Self-Expressive Learners. The dependence on these two frameworks on the Myers-Briggs 

constructs (Myers, 1962) suggests a possible link between learning styles and personality. 



 

82 

These frameworks directly map onto one another (Table 7).  

Table 7 
Alignment of Keirsey Personality Framework with Silver-Strong Learning Styles 
Silver-Strong 
Learning Style 

Values and Educational  
Preferences 

Associated Keirsey 
Personality Types 

Mastery Value: Clarity and Practicality 
Prefer: procedure, drill and practice, concrete, 
closed questioning. 

Guardian Administrators: 
ISTJ; ESTJ  

Artisan Operators: 
ISTP; ESTP 

Understanding  
 

Value: Logic and Evidence 
Prefer: logic, debate, inquiry, indendent study, 
argumentation, and why questions. 

All Rational Subgroups: 
INTJ; INTP  
ENTJ; ENTP 

Interpersonal Value: The ability to help others 
Prefer: topics that affect lives, 
cooperative/collaborative learning, and teacher 
attention to successes and struggles. 

Guardian Conservators: 
ISFJ; ESFJ  

Artisan Entertainers: 
ISFP; ESFP 

Self Expressive  
 

Value: Originality and aesthetics 
Prefer: use of imagination to explore ideas, 
creative artistic activity, open-ended 
questions, and generating possibilities and 
alternatives. 

All Idealist Subgroups: 
INFJ; INFP 
ENFJ; ENFP 

 
Understanding the role of values and preferences of the various types of learners 

directly impacts the equitable teaching of mathematics (Gardner & Hatch, 1989). Second, 

the traditional mathematics education described by Fey (1979) that still continues today 

(Hiebert, 2003; Hiebert & Grouws, 2007; Stigler & Hiebert, 1997) targets mastery 

learners almost exclusively, while they account for only about 35% of the population 

(Silver et al., 1997). In smaller samples, such as a single high school, the mastery learners 

have been found to account for far lower percentages (24% in Tungate, 2008). That 

mathematics teachers tend to be mastery learners themselves seems likely and would 

account for the disproportionate bent toward traditional practices.  

Personality has been framed most prominently as five major constructs known as 

“The Big Five:” Extraversion, Agreeableness, Conscientiousness, Neuroticism, and 

Openness to Experience (Ahadi & Rothbart, 1994, p. 189) . Personality emerges from 

temperament, but assessment of adult personality may not map directly from 

temperament (Rothbart, Ahadi, & Evans, 2000). For example, cognitive self-concept may 
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supersede temperamental tendencies (i.e., beliefs about how a person would like to be, 

should be, and is in reality are difficult to separate).  

Posner and Rothbart (2007), Rothbart and Jones (1998), Rueda, Rothbart, 

Saccomanno, and Posner (2007) and Rudasill (2009) asserted that Attention, one 

temperament factor, may influence the learning of mathematics both directly and 

indirectly. “Everywhere in cognitive neuroscience, specific brain networks seem to 

underlie performance. However, some of those networks have the improtant property of 

being able to modify the activity in other networks” (Posner & Rothbart, 2007, pp. 15-

16).  

In brief, individual factors such as gender, race, class, personality, learning styles, 

and background experiences interact to influence orientation and cognition in 

mathematics. Moreover, evidence suggests that temperament may be a critical individual 

learning factor. Equitable mathematics teaching requires the consideration of the unique 

effects of these individual context factors.  

Environmental Context. Environmental factors interact with individual factors to 

influence the equitability of learning opportunities in mathematics. Controversy over the 

importance of environmental factors on learning lasted for decades, beginning with the 

publication of Equality of Educational Opportunities, more commonly known as The 

Coleman Report (Coleman et al., 1966). This study examined the achievement impact of 

differences between races on: school factors such as class size, access to chemistry, 

physics, and language laboratories, number of books in libraries, number of textbooks; 

teacher and principal characteristics such as type of college attended, years of teaching 

experience, salary, maternal education level, vocabulary ability, and dispositions; and 
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student characteristics such as parental background, presence of parents at home, size of 

family, parental expectations, parental involvement, and socio-economic status. Equality 

fundamentally altered definitions of equality from simply comparing resource “inputs” to 

analyzing the effects of inputs on educational achievements (Coleman, 1967a). Coleman 

(1967b) considered the complexity of implicit assumptions present within an input-based 

notion of equality: 

It is one thing to take as given that approximately 60% of an 

entering high school freshman class will not attend college; but to assign a 

particular child to a curriculum designed for that 60% closes off for that 

child the opportunity to attend college. Yet to assign all children to a 

curriculum designed for the 40% who will attend college creates 

inequality for those who, at the end of high school, fall among the 60% 

who do not attend college… there is a wide variety of different paths that 

adolescents take on the completion of secondary school (Coleman, 1967b, 

p. 9). 

Instead, Equality examined inequality based on five different criteria: degree of 

racial segregation, allocation of resources, teacher orientations, weighted resource inputs 

based on achievement predictability, and output (e.g., achievement, career choice) 

differences (Coleman, 1968). Equality found that student characteristics accounted for the 

majority of variance in achievement and of the impact of teacher characteristics on 

learning. For example, Coleman et al. (1966) reported that teacher variables accounted 

for 2.06% of the variation in mathematics achievement for Black students but only 0.61% 

for White students (p. 294). They concluded that “variations in school quality are not 
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highly related to variations in achievement of pupils” (p. 297). However, technology 

capabilities of the time limited the researchers’ analytic capabilities (Stringfield & 

Teddlie, 2004). Later studies (e.g., Bryk & Raudenbush, 1988; Raudenbush & Bryk, 

1984) took advantage of technological advancements by conducting multilevel analyses 

on the subsets of the Coleman et al. (1966) data set:  

The results were startling ⎯ 83% of the variance in [learning] 

growth rates was between schools. In contrast, only about 14% of the 

variance in initial status was between schools…this analysis identified 

substantial differences among schools that conventional models would not 

have detected (Raudenbush & Bryk, 2004, pp. 9-10). 

Recent studies have continued to emphasize the importance of environmental 

factors on students learning. Hegedus and Kaput (2004) found that the way classroom 

activities are organized affects the potential depth of student understanding. Cobb, 

Gresalfi, and Hodge (2009) found that cultures within a classroom influence the 

development of personal identities in mathematics. LaRocque (2008) found that student 

perceptions of the classroom environment are associated with reading and mathematics 

achievement. She noted that the interaction of perception with gender was not statistically 

significant but that the interaction of perception with grade level was significant. 

McMahon, Wernsman, and Rose (2009) agreed with LaRocque’s findings that 

perceptions of classroom difficulty are strong predictors of mathematics and science self-

efficacy. Bong (2008) found that classroom goal structures influence student perceptions 

of mathematics learning. She also found that relationships influence perceptions of 

learning. In like manner, Carter (2008) described the impact of having a classroom 
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climate that values the struggle of connecting mathematical concepts to current 

conceptions. She concluded that such a climate enhances student self efficacy and 

confidence. Similarly, Murayama and Elliot (2009) concluded that classroom goal 

structures influence the development of intrinsic motivation.  

Amenkhienan and Kogan (2004) concluded that the student-teacher relationship 

influences the amount of learning that occurs. Stemler, Elliott, Grigorenko, & Sternberg 

(2006) proposed a framework for interpersonal relationships with teachers, noting that the 

work of teaching is largely social in nature. Likewise, Hughes and Kwok (2007) 

identified teacher relationships with both parents and students as mediating factors of 

student motivation and achievement. They also noted an interaction between race and the 

amount of teacher support received. Osterman (2000) summarized research findings on 

the interaction of student belongingness and school and classroom conditions with 

motivation and achievement:  

Research also tells us that conditions in the classroom and school 

influence students’ feelings about themselves; these in turn are reflected in 

student engagement and achievement. Not all students experience 

alienation to the same extent, yet, for the most part, students and 

researchers describe schools as alienating institutions…While the “peer 

culture” may establish norms dress and behavior, it is not necessarily one 

that satisfies students’ need for belongingness (p. 360). 

Stipek (2006) added to Osterman’s findings: 

Learning requires effort, and one of the best predictors of students’ 

effort and engagement in school is the relationships they have with their 
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teachers…To promote high academic standards, teachers need to create 

supportive social contexts and develop positive relationships with students 

(p. 46). 

Accordingly, the impact of the learning environment and student perceptions of 

that environment interact with individual context but also act as a distinct component to 

student learning. 

Putting the Model Together 

Figure 10 offers a pictorial interpretation of how the characteristics of a task and 

of a student’s knowledge framework may operate within a mathematics classroom 

learning environment. Procedural knowledge isolated from conceptual knowledge and the 

connections between ideas results in instrumental understanding (Skemp, 1976/2006). 

Instrumental understanding may result in a cycle of misconceptions and faulty reasoning 

reinforcing each other and weakening a student’s knowledge framework for 

understanding future tasks. When conceptual knowledge and procedural knowledge 

develop together, they reinforce each other and strengthen a student’s knowledge 

framework for future tasks. When students complete a task, teachers have limited 

opportunities to assess the knowledge framework and thought processes that lead to a 

response; instead, assessment usually focuses on whether or not a response was correct. 

Unfortunately, correct responses do not necessarily indicate that a student understands the 

mathematical concepts completely. Figure 10 therefore includes the possibility that 

correct responses can be produced even with erroneous reasoning, and if unchecked, that 

reasoning will reinforce misconceptions and erroneous reasoning, thereby weakening a 

student’s knowledge framework for understanding future tasks.  
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Resnick (1983) suggested that errors often occur when students look for meaning 

in situations where the given information is incomplete. In such cases, students often 

attempt to use their prior knowledge to fill in the gaps and yielding misconceptions. Thus 

Resnick (1983) found that working through these difficulties may be a normal part of the 

learning process and that combating misconceptions and faulty reasoning must become 

an expected part of the struggle that is so critical to deep conceptual learning as Hiebert 

and Grouws (2007) later pointed out. Moschkovich (1998) agreed with Resnick when she 

noted refinement of understanding as a primary goal of teaching: “We need to understand 

the process of conceptual change that enables learners to transform and refine their 

conceptions to more closely fit with the desired understanding” (p. 209). 

Tracing the root causes of errors and recognizing erroneous reasoning requires an 

examination of student explanations about their reasoning processes. Previous 

interventions targeting specific errors or the underlying reasoning have met with limited 

success (e.g., Clement, 1982; Fisher, 1988; Phillippe, 1992; Rosnick & Clement, 1979), 

possibly because these interventions may have targeted the error instead of the latent 

reasoning and misconception that led to the error. Furthermore, students with 

misconceptions and faulty reasoning may produce correct answers; as a result, 

interventions focusing on errors may miss unobservable erroneous reasoning.  
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Figure 10. Pathways of Mathematical Learning. 
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The rationale for using probability instruction as an intervention targets these 

concerns: (1) Focusing on connections between probability concepts and algebra, 

geometry, and rational number concepts may help students develop relational 

understanding; (2) Probability instruction focuses on developing meaning rather than 

eliminating errors; therefore, if students produce correct answers for incorrect reasons, 

the development of meaning may help alter the misunderstandings that led to the 

errorneous reasoning; and, (3) Probability simulations and experiments offer concrete 

explorations for students investigating complex, abstract mathematical phenomena that 

often lead to misunderstanding, misconception, and faulty reasoning. 

Summary and Research Questions 

Research into misconceptions is necessarily problematic due to the latent nature 

of those misconceptions. Researchers must rely on observable errors and discern whether 

those errors are due to faulty reasoning despite having solid relational understanding of 

concepts or if they are due to misunderstanding about the meaning and connections of 

mathematical ideas.  

Students encounter special difficulties when transitioning from whole numbers to 

rational numbers and from arithmetic to algebra. They often struggle to determine when 

linear proportions are or are not appropriate. They also have difficulty distinguishing 

between additive and multiplicative relationships. These difficulties appear in the study 

of rational numbers, algebra, geometry, and probability and often create obstacles to 

constructing meaning and connecting the meaning of ideas within structured 

relationships. While these difficulties are equally poignant in the learning of probability, 

the concepts within probability offer significantly more opportunities for simulations and 
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experiments that help bridge the gap between abstract ideas and concrete examples. 

Probability, however, is often deleted or minimized from the curriculum due to 

time constraints and/or teacher insecurity with the material. The interconnectedness of 

common mathematical misconceptions across probability, algebra, and geometry coupled 

with the limited training students receive in probability and the significant potential of 

probability experiments to bridge abstract mathematical concepts with concrete examples 

suggests the possibility that probability instruction holds the key to alleviating 

fundamental mathematics misconceptions. To explore this potential, the present study 

will examine the following four research questions: 

1) Do probability misconceptions have a causal influence on algebra, geometry, 

and rational number misconceptions? 

2) Does probability instruction reduce critical misconceptions in probability, 

rational numbers, algebra, or geometry? 

3) Do student attitudes toward mathematics influence the emergence of errors 

due to misconceptions on mathematical tasks? 

4) Does student metacognition influence the emergence of errors due to 

misconceptions on mathematical tasks? 
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CHAPTER 3  

METHODOLOGY 

The present study examines the structure of mathematical misconceptions in high 

school and the impact of attitudes toward mathematics and metacognitive knowledge and 

skills on the development of misconceptions. Additionally, the possible role of 

probability instruction as an intervention for mathematical misconceptions will be 

assessed. 

The measurement of mathematical misconceptions is inherently problematic due 

to the latent nature of those misconceptions. For example, Zawojewski and Shaughnessy 

(2000) pointed out the inadequacy of simple multiple choice tests to identify the thought 

patterns that result in a particular answer. Instead, they recommended including a 

qualitative component to each question to provide clues to underlying student thinking. In 

order to include that strategy in the instruments used in this study, an initial assessment of 

student responses was necessary to determine the source of student reasoning errors. For 

example, were reasoning errors occurring on a particular due to a lack of relational 

understanding, despite having relational understanding, or due to a more fundamental 

misunderstanding of foundational mathematical ideas? The results of that analysis, 

presented in Chapter 4, were used to code errors for the subsequent quantitative analyses. 

As such, the design of this study falls within the mixed methodology design as described 

by Tashakkori and Teddlie (1998).  

This chapter contains a description of the probability unit that will serve as the 
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intervention along with the design of the study and its rationale, threats to validity, the 

assessment instruments and their reliability coefficients, and data analysis techniques.  

Research Design 

Subjects 

The present study was conducted with 19 mathematics teachers recruited from 

four schools in three Kentucky school districts with 1,142 students enrolled in their 53 

algebra and geometry classes. All elements of the protocol were approved by the 

University of Louisville’s Internal Review Board for the protection of human subjects in 

research, as required by federal regulations (Protection of Human Subjects, 2009). 

Design Description 

The present study used a randomly assigned untreated control group with a pretest 

and switching replication (Equation 14; Shadish et al., 2002).  

NAEPATMI/MAINAEPATMI/MAINAEPATMI/MAI

NAEPATMI/MAINAEPATMI/MAINAEPATMI/MAI

OOXOO   OOR
OO  OOXOOR

 
(14)

The outcome of interest for the analysis of the intervention is the rate of growth 

during the treatment period; the collection of pretest data removes pre-existing 

differences as a source of group difference. Use of a control group allowed a comparison 

of growth rates in the intervention group and the normal rate of growth without the 

intervention thereby minimizing history and maturation threats to validity. Classes for 

each teacher were randomly assigned to treatment conditions using Microsoft Excel 2007 

and Minitab 15 statistical software to minimize any selection threats to validity. The 

switching replication fulfilled two purposes: (1) The ethical obligations of research 

demand that all students receive the intervention instruction; (2) The post-post test 

provided data on the retention of intervention effects for follow-up studies.  
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Probability Instruction Intervention 

The intervention for this study was a probability unit designed to provide students 

multiple opportunities to explore the meaning of fundamental mathematical concepts 

rather than targeting specific error patterns. Because the relationship between probability 

and algebra differs from that of probability and geometry, the probability concepts 

studied in each class varied.  

In algebra, the intervention consisted of five lessons. The length of instruction 

varied across schools and teachers to accommodate the dynamics of particular classes. 

From a teaching perspective, such adjustments should be encouraged since students learn 

at varying paces. On the other hand, a research design perspective recognizes that such 

adjustments pose a history threat to internal validity. For example, events occurring 

concurrently with the treatment could cause the observed effect rather than the 

intervention itself (Shadish, Cook, & Campbell, 2002). Since the alternative of rigorously 

abiding by a timeline would also have increased the risk of multiple threats to validity, I 

chose to stay in close communication with each teacher about adjustments made to the 

timeline. For most teachers, the intervention lasted approximately ten 90-minute class 

periods. The overall topics for these lessons were: 

1. Statistical structure (Appendix A and B) 

2. Randomness (Appendix C and D) 

3. Counting principles (Appendix E and F) 

4. Event probability (Appendix G, H, and I) 

5. Probability distributions (Appendix J and K) 

In geometry, the intervention consisted of three lessons, normally lasting 

approximately six 90-minute class periods. The overall topics for these lessons were: 
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1. Counting principles (Appendix E and F) 

2. Geometry probability (Appendix G and I) 

3. Probability distributions (Appendix J and L) 

Teachers were also provided lesson plans for classes in the control condition; 

most, however, chose to continue with their normal instructional sequence. Boston & 

Smith (2009) suggested that teacher-made materials may not offer students the same 

degree of cognitive load. Furthermore, teacher-made materials increase the potential 

unreliability of treatment implementation threat to statistical conclusion validity (Shadish 

et al., 2002). To manage this threat, classes were randomly assigned within teachers so 

that teacher effects were distributed across both to treatment conditions. Classroom 

observations and teacher interviews were conducted to measure the degree of 

heterogeneity between groups. 

Instrumentation 

Three instruments were used to measure student mathematics knowledge, student 

attitudes toward mathematics, and student metacognitive knowledge and skills. The 

mathematics knowledge instrument was used to account for pre-existing mathematics 

knowledge and ability. It was also used to analyze error response patterns to determine 

which errors emerged from mathematical misconceptions or from non-conceptual 

reasoning errors. 

Mathematics Knowledge Instrument 

Items for the mathematics knowledge instrument (Appendix N) were gathered 

from National Assessment of Educational Progress (NAEP) released items 

(U.S.Department of Education, 1996, 2005, 2007). Although all 17 items remained as 

given by NAEP, a prompt was included for each question asking students to explain how 
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or why they chose their response.  

NAEP items are rigorously developed, using review boards, pilot testing, classical 

test theory, and Item Response Theory to analyze item performance (U.S.Department of 

Education, 2008a). These items were deemed to have high content validity for the NAEP-

associated content areas. 

These items included rational number, probability, algebra, and geometry content. 

Table 8 provides a description of each NAEP item used in the assessment instrument 

along with the reported reliability coefficients for each item block (U.S. Department of 

Education, 2008b, 2008c, 2008d, 2008e). These items were chosen based on two criteria: 

(1) The item content matched the foundational concepts that research has suggested 

connect rational number, probability, algebra, and geometry misconceptions closely 

enough to be able to detect intervention effects; and, (2) The item content and wording 

did not so closely match the activities and problems in the probability unit that the 

treatment group would receive an unfair advantage over the control group. Table 8 

presents the classical test theory difficulty coefficient (i.e., percent correct), the NAEP 

classification of difficulty and complexity level of each item with respect to the intended 

grade level of the item, and the internal consistency of the associated block of items as 

they appeared on the NAEP instruments. 

.
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Table 8 
Reported NAEP Item Performance  

Item Release 
Year 

Content 
Strand Content Percent 

Correct 
Grade 
Level Difficulty Complexity NAEP 

Block 

Cronbach 
Coefficient 

α
1 2007 Probability Relative versus absolute comparison 45% Grade 4  Medium Low M7 0.80 
2 2005 Probability Determine Conditional Probability 49.5% Grade 12 Medium Low M12 0.73 
3 2007 Probability Repeated Sampling Probability 60% Grade 8 Medium Low M11 0.76 
4 2005 Probability Dependent probability 18% Grade 8 Hard Moderate M12 0.75 
5 2007 Algebra Convert temperature units 35% Grade 8 Hard Low M9 0.80 
6 2005 Algebra Effect of variable change 34% Grade 8 Hard Moderate M3 0.76 
7 1996 Algebra Additive versus Multiplicative Structure 58% Grade 8 Medium - M3 0.53 
8 2007 Algebra Solve algebraic word problem 47% Grade 8 Medium Moderate M11 0.76 
9 2007 Geometry Determine if a shape is a parallelogram 26% Grade 8 Hard Moderate M11 0.76 
10 2005 Geometry Area of shaded figure 77% Grade 8 Easy Low M4 0.77 
11 2005 Geometry Find dimensions from scale drawing 85% Grade 12 Easy Moderate M12 0.75 

12 2005 Rational 
Number Rational Number Quantity Meaning 66% Grade 12 Easy Low M3 0.73 

13 2005 Rational 
Number Given the scale, determine length of side 56% Grade 12 Medium Low M4 0.79 

14 2007 Rational 
Number Arrange fractions in ascending order 49% Grade 8 Medium Low M9 0.80 

15 2007 Rational 
Number Determine fraction of figure shaded 89% Grade 8 Easy Low M11 0.76 

16 2007 Algebra Determine equation to represent table. 54% Grade 8 Medium Moderate M7 0.78 
17 2005 Probability Determine amount from probability 40% Grade 8 Medium Low M4 0.77 
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Since the items were chosen from different blocks, the NAEP-reported 

coefficients do not necessarily represent the internal consistency of the new instrument 

compiled for the present study. Therefore, the pooled internal consistency of the new 

instrument was re-assessed using the pretest data (α = 0.791, 95% CI [0.773, 0.808]) and 

the posttest data (α = 0.772, 95% CI [0.751, 0.773]) and found to have adequate internal 

consistency. The correlation of each item (Table 9) between the pre- and post-tests were 

computed to measure test-retest reliability (i.e., stability). The correlations were moderate 

and significant (p < 0.001) for all items except Item 17, which was only significant at the 

93% confidence level (p = 0.068). Overall, the stability of the items appeared to be 

acceptable (Table 9). 

Table 9 
Stability Correlations Between the Pre- and Post-Test Data for each Item 

Item 1 2 3 4 5 6 7 8 9 10 11 
Correlation 0.491 0.173 0.273 0.310 0.277 0.217 0.422 0.308 0.279 0.354 0.385 

Item 10 11 12 13 14 15 16 17 
Correlation 0.354 0.385 0.268 0.154 0.460 0.300 0.325 0.083 

 
Content validity of content area alignment to national, state, and local standards 

was evaluated by the NAEP Validity Studies Panel. Daro, Stancavage, Ortega, 

DeStefano, & Linn (2007) examined the content coverage, skill coverage, alignment to 

NAEP framework, lack of philosophical bias, lack of ability bias, and representativeness 

of information provided about students. They found that 96% of NAEP 2005 and 2007 

items demonstrated adequate or marginal quality.  

Item Response Theory (IRT) was applied to measure the characteristics of 

difficulty, discrimination (i.e., the ability to distinguish between groups, in this case, 

ability levels), and guessing for each item. IRT, unlike Classical Test Theory (CTT), 

focuses on the correctness or incorrectness of each item individually rather than a raw 

cumulative score (Baker & Kim, 2004). In CTT, difficulty is defined as the percentage of 
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correct responses for an item (as in Table 12, means for pretest items and Table 13, 

means for posttest items). CTT discrimination is typically measured as the point-biserial 

correlation for each item. One problem with CTT is the circular dependence of observed 

scores and samples (Fan, 1998). 

IRT is based on the item characteristic curve, which is computed using a logistic 

function. The curve can be computed as a Rausch model (1 parameter, item difficulty), 

2PL (2 parameters, item difficulty and discrimination), or 3PL (3 parameters, item 

difficulty, discrimination, and guessing). The logistic function for the 3-PL curve is  

( ) ( ) ( )bae
ccP −−+

−+= θ1
11θ  (15)

where: 

a represents the discrimination coefficient 

b represents the difficulty coefficient 

c represents the guessing coefficient 

θ represents the ability level of the respondent 

ParScale 4.1 (Muraki & Bock, 2002) uses an iterative process to compute the item 

characteristic curve. In the first iteration, ability levels (θ) for each subject were 

computed. These values become the starting point for the second iteration, which is used 

to compute the values for a, b, and c. The guessing coefficient, c. was estimated as c = 0 

for all 17 items. Therefore, the model reduced to a 2PL curve, and the values for a and b 

were computed for each item (Table 10). 



 

100 

Table 10 
IRT Coefficients for NAEP Items 

Item Discrimination, a Difficulty, b
1 0.570 -0.618
2 0.630 0.379
3 0.693 -0.205
4 0.962 -0.090
5 0.827 -0.175
6 0.570 0.930
7 1.192 -0.273
8 0.730 0.430
9 0.428 -1.308

10 0.918 -0.446
11 1.224 -0.080
12 0.879 0.149
13 0.876 0.246
14 0.861 0.311
15 0.883 -0.554
16 1.036 0.203
17 0.744 0.525

Note: SE for all 17 items for both a and b was < 0.001 

The item characteristic curves (Figure 11) can be used to compare the behavior of 

each item. For each curve, the horizontal axis represents difficulty, b, and the vertical axis 

represents the ability, θ. 

 
Figure 11. Item Characteristic Curves for NAEP Mathematics Knowledge Instrument 
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None of the curves in Figure 11 leveled off at the top or bottom, indicating no 

ceiling or floor effects. The difficulty of an item is defined as the point on the item 

characteristic curve for which the ability level is average, θ = 0.5. The discrimination of 

the item, a, is defined as the slope of the curve. Being a highly difficult item does not 

necessarily mean that an item is also highly discriminating across ability levels. Consider 

a comparison of Items 6 and 7 (Figure 12). 

 

Figure 12. Comparison of Item Curves for Items 6 and 7 

The difficulty of Item 6 was 0.93 while the difficulty of Item 7 was -0.27, so Item 

6 was the more difficult of the two items. The slope, however, of Item 7 (1.192) was 

steeper than the slope of Item 6 (0.570); this characteristic means that although Item 6 

was more difficult than Item 7, Item 7 discriminated between ability levels more than 

Item 6. 

The discrimination of items on the mathematics knowledge test ranged from 

0.428 (less differences between high and low ability students) to 1.192 (more differences 

between high and low ability students). The difficulty ranged from -1.308 (Easy) to 0.930 

(Hard). Because the discrimination levels did not approach 0 (no differences between 
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high and low ability students), and the difficulty levels did not indicate that any items 

were extremely easy (approaching -3 and +3), the item characteristics were considered 

appropriate for the planned analyses. 

Mathematics Attitudes Inventory 

Student orientation was measured using the Attitude Toward Mathematics 

Inventory (ATMI; Appendix O; Tapia & Marsh, 2004). This instrument was selected 

because its subscales have been extensively analyzed to establish high reliability and 

content validity (Tapia & Marsh, 2004). The subscales for this inventory were developed 

from multiple literature sources to maximize concurrent construct validity. According to 

the Tapia and Marsh report, the ATMI measures four orientation constructs. Factor 1, self 

confidence, consists of 15 items with a reported Cronbach alpha of 0.95. Factors 2 and 3, 

perceptions of the value of mathematics and enjoyment of mathematics, each contain 10 

items with a Cronbach alpha of 0.89. Factor 4, motivation to learn mathematics, contains 

five items with a Cronbach alpha of 0.88.  

The internal consistency for the full instrument and each subscale was measured 

using the present study data to determine their reliabilities (Table 11). 

Table 11 
Internal Consistency Reliability for ATMI 

Scale Observed 
Cronbach Alpha 

95% Confidence 
Interval 

Full Instrument 0.943 [0.938, 0.949] 
Factor 1: Self Confidence 0.909 [0.901, 0.918] 
Factor 2: Value 0.876 [0.864, 0.888] 
Factor 3: Enjoyment 0.798 [0.778, 0.817] 
Factor 4: Motivation 0.824 [0.806, 0.842] 

 
The observed reliability coefficients for the present study data appeared to be 

comparable to those reported by Tapia and Marsh (2004) and had values higher than the 

typical threshold of 0.7 (Urbina, 2004). The reliabilities were, therefore, determined to be 
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acceptable. 

MetaCognition Inventory 

Student metacognition knowledge and skills were measured using the 

Metacognitive Awareness Inventory (MAI; Appendix P; Schraw & Dennison, 1994). 

This instrument was selected because of its unique subscales of metacognition, 

knowledge of cognition and regulation of cognition and because it has been rigorously 

tested through two experiments to establish concurrent construct validity for each block 

of items. Three types of knowledge are measured as components of knowledge of 

cognition: (1) Declarative knowledge, defined as knowledge of learning and of one’s own 

cognitive skills and abilities; (2) Procedural knowledge, knowledge of how to use various 

cognitive strategies; and, (3) Conditional knowledge, knowledge of when to use 

particular cognitive strategies and why those strategies should be used. Under the 

regulation of cognition, five components are measured: (1) Planning, including goal 

setting and allocation of resources; (2) Organizing and managing information; (3) 

Monitoring, reflection on cognitive processes during a learning task; (4) Debugging, 

strategies for correcting performance errors or assumptions; and, (5) Evaluation, 

reflection on cognitive processes after a learning task is completed (G. Schraw, personal 

communication, May 31, 2009). Schraw and Dennison (1994) also reported high internal 

consistency for the whole instrument (α = 0.93) and both metacognition factors (α = 

0.88). The internal consistency for the full instrument and each subscale was measured 

using the present study data to determine their reliabilities (Table 12). 
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Table 12 
Internal Consistency Reliability for MAI 

Scale Observed 
Cronbach Alpha 

95% Confidence 
Interval 

Full Instrument 0.946 [0.941, 0.951] 
Factor 1: Knowledge of Cognition 0.870 [0.857, 0.882] 

Declarative Knowledge 0.744 [0.718, 0.768] 
Procedural Knowledge 0.615 [0.573, 0.654] 
Conditional Knowledge 0.668 [0.633, 0.700] 

Factor 2: Regulation of Cognition 0.924 [0.917, 0.932] 
Planning 0.727 [0.699, 0.752] 
Organizing 0.788 [0.767, 0.808] 
Monitoring 0.735 [0.708, 0.760] 
Debugging 0.694 [0.662, 0.725] 
Evaluation 0.673 [0.639, 0.705] 

 
The observed reliability coefficients for the full instrument and two main factors 

demonstrated high internal consistency. Several of the sub-factors showed marginal 

reliabilities (α < 0.7), so only the two main factors were used in the subsequent analysis 

of contextual factors. 

Missing Data 

Rubin (1987) classified missing data due to non-response as either unit non-

response, meaning that the subject refused to answer any of the items, and item non-

response, meaning that the subject skipped questions.  

Unit and Item Non-Response  

The ATMI and MAI surveys of the present study included both types of non-

response. Forty six students did not respond to any items on either survey; 63 additional 

students did not respond to a majority of items, ending at various points throughout the 

survey (Table 13). The format of the questionnaire may shed light on the most typical 

pattern of unit non-response: The front of the survey form included the ATMI and the 

first three questions of the MAI. Questions 4 – 52 of the MAI (i.e., the back of the 

survey) were the most commonly skipped questions. Based on this pattern, which may 
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well be the result of bias in the non-response patterns, I concluded that most non-

response on the MAI was due to the presentation format of the instrument.  

The NAEP achievement data, both pre- and post-test, consisted of very low 

proportions of missing data. On the pretest, missing data accounted for 5.6% of the 

entries across all items and subjects, and only 11 students (< 1%) did not respond to any 

items (Table 13). On the posttest, missing data accounted for 6.5% of the entries across 

all items and subjects, and only 12 students (1.1%) did not respond to any items.  

Table 13 
Sources of Missing Data 
Instrument N Unit Non-Response  

(No items answered) 
Item Non-Response  

ATMI 964 46 (4.6%) • 0 of 40 items with full data 
• 256 (26.6%) cases missing at least one value 
• 2,457 of 16,388 (6.4%) values missing  

MAI 964 109 (11.3%) • 0 of 52 items with full data 
• 316 (32.8%) cases missing at least one value 
• 6,060 of 16,388 (12.1%) values missing 

Pretest 1142 11 (0.96%) • 0 of 17 items with full data 
• 242 (21.4%) cases missing at least one value  
• 1093 of 19,278 (5.6%) values missing 

Posttest 1021 12 (1.1%) • 0 of 17 items with full data 
• 248 (24.3%) cases missing at least one value  
• 1121 of 17,357 (6.5%) values missing 

 
Imputation of Missing Data  

Multiple imputation is an expansion of multiple regression imputation that uses 

Bayesian inference from observed data using probability models to impute values for the 

missing data. The process of multiple imputation begins by estimating a probability 

model for the observed data (the prior distribution). The process continues by computing 

a conditional probability distribution based on the observed data (Gelman, Carlin, Stern, 

& Rubin, 2004). First, the model regresses each missing data point on every other 

variable. Second, the true value for the missing data point is considered the mean of a 
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distribution. Sampling error will therefore result in a potentially different value each time 

a multiple regression imputation is run. To account for this variance, multiple imputation 

creates any number of complete data sets. Rubin (1987) suggested that three to ten 

imputation sets are needed to account for variance in missing data. Brick, Jones, Kalton, 

and Valliant (2005) and Garson (2009) suggested that five sets are typically used. Each 

data set is used in subsequent analyses, and the results of each analysis are averaged. To 

complete the overall analysis, standard errors for each resulting point estimate are 

computed. Table 14 presents the sample sizes, means, and standard deviations for each 

imputed data set for the pretest and surveys, which were administered at the same time. 

Imputation 0 represents the unimputed data set after listwise deletion.  
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Table 14 
Means and Standard Error for Pretest and Survey Data Set 

Imputation 5 4 3 2 1 0 
Pretest Misconception Responses 

Sample Size (N) 1133 1133 1133 1133 1133 900 
Mean Ratio 0.361 0.361 0.363 0.362 0.362 0.352 
Standard Error 0.006 0.006 0.0063 0.006 0.006 0.007 
T ratio from Imputation 0 1.381 1.381 1.652 1.534 1.534 - 

Pretest Correct Responses 
Sample Size (N) 1133 1133 1133 1133 1133 900 
Mean 0.480 0.481 0.481 0.481 0.480 0.495 
Standard Error 0.007 0.007 0.007 0.007 0.007 0.007 
T ratio from Imputation 0 -2.143* -2.000* -2.000* -2.000* -2.143* - 

ATMI Enjoyment 
Sample Size (N) 921 921 921 921 921 918 
Mean 2.960 2.959 2.950 2.959 2.962 2.959 
Standard Error 0.026 0.026 0.026 0.026 0.026 0.026
T ratio from Imputation 0 0.038 0.000 -0.346 0.000 0.115 - 

ATMI Motivation 
Sample Size (N) 921 921 921 921 921 911 
Mean 2.953 2.952 2.947 2.952 2.956 2.957 
Standard Error 0.030 0.030 0.030 0.030 0.030 0.031
T ratio from Imputation 0 -0.131 -0.164 -0.328 -0.164 -0.033 - 

ATMI Value 
Sample Size (N) 921 921 921 921 921 919 
Mean 3.528 3.527 3.527 3.529 3.530 3.532 
Standard Error 0.025 0.025 0.025 0.025 0.025 0.025
T ratio from Imputation 0 -0.160 -0.200 -0.200 -0.120 -0.080 - 

ATMI Self Confidence 
Sample Size (N) 921 921 921 921 921 916 
Mean 3.217 3.220 3.215 3.218 3.219 3.219 
Standard Error 0.026 0.026 0.026 0.026 0.026 0.026
T ratio from Imputation 0 -0.077 0.038 -0.154 -0.038 0.000 - 

MAI Knowledge of Cognition 
Sample Size (N) 921 921 921 921 921 893 
Mean 3.423 3.427 3.422 3.435 3.424 3.443 
Standard Error 0.021 0.021 0.021 0.021 0.021 0.022
T ratio from Imputation 0 -0.930 -0.744 -0.976 -0.372 -0.883 - 

MAI Regulation of Cognition 
Sample Size (N) 921 921 921 921 921 894 
Mean 3.214 3.223 3.216 3.220 3.213 3.221 
Standard Error 0.019 0.019 0.020 0.019 0.019 0.020
T ratio from Imputation 0 -0.359 0.103 -0.250 -0.051 -0.410 - 

*t > 1.96, p < 0.05 

In addition to the means and standard deviations displayed in Tables 12, Figures 13 – 20 

display the frequency distribution for each data set for each variable. 
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Figure 13. Pretest Percent Correct Data Distributions. 

 

Figure 14. Pretest Percent Misconception Data Distributions. 
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Figure 15. ATMI Enjoyment of Mathematics Data Distributions. 

 

Figure 16. ATMI Mathematics Motivation Data Distributions. 
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Figure 17. ATMI Mathematics Self Confidence Data Distributions. 

 

Figure 18. ATMI Value of Mathematics Data Distributions. 
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Figure 19. MAI Knowledge of Cognition Data Distributions. 

 

Figure 20. MAI Regulation of Cognition Data Distributions. 
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Missing data on the posttest were also imputed using multiple imputation. Table 

15 displays the means and standard errors for these data sets, and Figures 21 and 22 

present the frequency distribution for each posttest variable. 

Table 15 
Means and Standard Error for Posttest Data Set 

Imputation 5 4 3 2 1 0 
Misconceptions Responses 

Sample Size (N) 915 915 915 915 915 690 
Mean Ratio 0.377 0.375 0.376 0.375 0.377 0.368 
Standard Error 0.003 0.003 0.003 0.003 0.003 0.004 
T ratio from Imputation 0 2.546* 1.980* 2.263* 1.980* 2.546* - 

Correct Responses 
Sample Size (N) 915 915 915 915 915 690 
Mean 0.486 0.485 0.484 0.485 0.486 0.498 
Standard Error 0.007 0.007 0.007 0.007 0.007 0.009 
T ratio from Imputation 0 -1.488 -1.612 -1.736 -1.612 -1.488 - 

*t > 1.96, p < 0.05 

 

Figure 21. Posttest Percent Correct Data Distributions. 
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Figure 22. Posttest Percent Misconception Data Distributions. 
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not enough data were available to make inferences about the posterior distributions of 

responses. Attrition occurred in three schools for different reasons, resulting in 113 

students who took the pretest but not the posttest and approximately 100 students who 

took neither test. 

In school A, one teacher refused to participate in the study without informing me, 

the department chair, or the principal. When I observed his classes, the instruction in both 

treatment and control classes matched the expected condition. Prior to instruction, the 

teacher informed me that he “needed to organize” the pretests. On subsequent visits, he 

was absent. As other teachers began to complete the posttest, I sent a message to the 

teacher asking when we could meet to hand off his data. I received the following message 

in response: 

I don’t have any data for you. I never did your study because I 

didn’t have a need to. I had already covered my stats that was required for 

Algebra 1 earlier in the year, and to repeat it would have put me way 

behind schedule for the semester. As for my Geometry classes, I work 

probability into each unit, and to talk about it as a separate unit did not 

seem reasonable for me. I had originally thought I would make up data for 

you, but then I realized two things, one that that isn’t fair to you, and two, 

it was going to be too much work to make it up 

Because these concerns were not voiced until the study was almost completed, addressing 

them in time to avoid the loss of his classes was impossible. 

In school B, two teachers chose to leave the study because of pressure from the 

administration to increase their pace of instruction because of concerns about state 

testing. The three teachers from the first school and the two teachers from this school had 
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already administered the pretest, so their data were retained for the qualitative analysis of 

student responses and the structural model analyses. 

In School C, the superintendent of the district volunteered the entire mathematics 

department to participate in the study. Implementation of the protocol began with the 

administration of the pretest. Three teachers gave the pretest before the others. The day 

after these teachers had completed the pretest, the principal of the school required the 

department chair to withdraw the school from the study. No complaints about the study 

or the protocol from the mathematics teachers were responsible for this decision; rather, 

the difficulties appeared to be the result of internal disagreements at the district level. The 

following message was sent from the school’s mathematics department chair: 

I have some bad news. Our principal called a math dept. meeting 

this morning to inform us that we would not be participating in the 

research study. I am not really sure what happened and I didn’t even know 

we were having the meeting until she came in and had it announced that 

we were meeting. She said after speaking to some people in the dept., she 

doesn’t want us to spend 6 days giving the test and survey’s because it 

would take away from instruction. One teacher had already given the pre-

test and survey and it took 3 days which will bump us up to 9 days for all 

three. It is because we have such short periods. We had a big setback in 

math test scores last year and the complaints were that we did not have 

enough time to cover the content. She and the assistant superintendent 

made the decision to pull us from the study because we are already behind 

in our curriculum again this year. I am very sorry. 

In response to this message, I discussed the situation at length over the phone with the 
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department chair, and as a result, I went to the school to meet with the principal and 

discuss her concerns. Although the principal was expecting me and had agreed to meet, 

when I arrived the principal refused to meet with me. Based on this response and 

subsequent conversations with the department chair and superintendent, I decided to halt 

further efforts to persuade the principal to remain in the study. 

Statistical Power  

In a meta-analysis examining instructional interventions in algebra (Rakes, 

Valentine, & McGatha, 2010), significant effect sizes in algebra across multiple 

intervention strategies averaged around 0.33. Based on that review of literature, this 

effect size was deemed to be a reasonable target when computing statistical power (i.e., 

the ability to detect significant effects). Tables from Cohen (1988) were consulted to find 

the minimum sample sizes needed to obtain a power of 0.80 (as recommended by Cohen, 

1988, p. 390) for finding an effect size of 0.33. The tables in Cohen (1988, p. 384) 

recommended a sample size of 45 for an effect size of 0.30 and 33 for an effect size of 

0.35. Using linear interpolation, the computed sample size needed to meet the power 

requirements was 38.  

Statistical power in a cluster randomized experiment is influenced more by the 

number of clusters than by the number of subjects per cluster (Spybrook, 2008). The 

target sample of 38 was therefore directed toward the number of classes in the study 

rather than the number of students. Computations using Optimal Design Software 

(Raudenbush, 2009) confirmed this estimate (Figure 23). 
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Figure 23. Power Curve for Cluster Randomized Trials 

The curve in Figure 23 estimates the power based on an assumption of having an 

average of 20 students per cluster with an intra-class correlation of 0.05. These 

assumptions seemed reasonable: The average number of students in each class was 17 

(SD = 4.3).  

Data Analysis 

The data analysis for the present study progressed through three stages: (1) 

qualitative analysis of student error responses and explanations, (2) structural analysis of 

content area misconceptions, and (3) hierarchical analysis of student and contextual 

factors on misconceptions. The qualitative analysis of student responses was used to 

adjust the coding of misconceptions for the subsequent quantitative analysis. 

Qualitative Analysis  

The qualitative analysis served two critical functions in the present study. First, 

classroom observations and teacher interviews (structured around topics relating to 

implementation of the intervention lessons) before, during, and after the treatment 
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periods provided data on fidelity of treatment. While observing classrooms, the 

researcher attempted to minimize distractions inherent to having a visitor in a classroom. 

In some classrooms, this goal was best met by slipping in quietly and sitting in the back 

of the class. In other classrooms, teachers preferred to introduce the researcher and 

involve him in the lesson. 

Fidelity to the probability intervention lessons varied widely between teachers. 

Shaughnessy and Bergman (1993) pointed out that many teachers are uncomfortable with 

probability content; varying responses to such discomfort were expected. Some teachers 

preferred to revert to normal, procedural methods of teaching. In this case, the ability of a 

probability unit to counter misconceptions may have been reduced. Other teachers 

followed the lessons provided by the researcher with varying degrees of success. One role 

of the researcher during the treatment period was to provide assistance to the teachers 

throughout the intervention lessons.  

The second major function of the qualitative analysis was to provide an analysis 

of student responses to the open response items on the mathematics knowledge 

assessment. This analysis was used to assess hypotheses of previously identified 

misconception patterns and advance the understanding of the relationship between 

mathematical misconceptions and reasoning errors. This analysis was conducted from the 

constructivist point of view using a narrative analysis (Creswell, 2007; Patton, 2002) of 

symbolic interactions (i.e., the symbols used to provide meaning to students), semiotics 

(i.e., how signs and symbols are used to convey meaning), and hermeneutics (i.e., how 

students interpret signs and symbols).  

These qualitative analyses were fundamental for establishing the context for all 

subsequent quantitative analysis. The first analysis provided evidence of treatment 
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fidelity and intervention effectiveness. The second analysis provided a foundation for the 

interpretation of all quantitative findings.  

Quantitative Analysis  

The quantitative analysis was carried out in two stages. First, using the pretest 

data on the NAEP multiple choice items, possible causal relationships between content 

area misconceptions were examined using structural equation modeling. Second, the 

impact of item, student, and class characteristics on misconception errors was 

investigated using hierarchical modeling. 

Structural analysis of content area misconceptions. Six structural equation models 

were used to compare the competing hypothesized models of misconception relationships 

among content areas (Figure 24). The pretest data were randomly split into two groups 

irrespective of treatment group assignment. The first group of pretest data was used to 

calibrate the six hypothesized models. The second group of pretest data was used to 

validate the resultant models.  
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Figure 24. Hypothesized Structural Equation Models. 

Model identification. Model identification is an extremely important initial 
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parameters from the number of independent data moments available (Byrne, 2009). If a 

model has less data moments than parameters (i.e., df < 0), it is considered under-

identified (Byrne, 2009, p. 34). Because an infinite number of solutions are possible for 

an under-identified model, an analysis cannot proceed with such a relationship. If a 

model has an equal number of data moments and parameters (i.e., df = 0), it is considered 

just-identified (Byrne, 2009, p. 34). A just-identified model computes a unique solution to 

the model, but because there are no degrees of freedom, the model can never be rejected. 

The only acceptable model is one that is over-identified (Byrne, 2009, p. 34), having 

more data moments than parameters (i.e., df > 0). In an over-identified model, a unique 

solution can be computed, and that solution has a possibility of being rejected. In a multi-

level structural equation model (i.e., all models except 12F), each level of the model must 

be over-identified as well as the full model. All six models in Figure 24 are over-

identified along with each level within the model (Table 16). 

Table 16 
Degrees of Freedom for Models in Figure 24 

Model Full Model Level 2 Level 3 
A 116 14 4 
B 116 9 9 
C 114 53 ⎯
D 116 14 ⎯
E 116 20 ⎯
F 113 ⎯ ⎯

 
Each multiple choice item was coded dichotomously as demonstrating a 

misconception or not based on the qualitative document analysis. Therefore, the 

polychoric and asymptotic covariance matrices were computed to adjust for the 

discontinuous nature of the observed variables (Byrne, 1998).  

Goodness of fit indices were computed to provide supporting evidence for 
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determining which model of misconception structure best matches the data. Since each fit 

index “operate[s] somewhat differently given the sample size, estimation procedure, 

model complexity, and/or violation of the underlying assumptions of multivariate 

normality and variable independence” (Byrne, 2001, p. 87), multiple fit indices were 

computed and compared to determine which model carries the least amount of 

misspecification for the data. The chi square statistic (χ2) is the foundational statistic used 

to compare models (Hu & Bentler, 1995). χ2 tests the null hypothesis that the covariance 

matrix reproduced according to the hypothesized model is the same as the population 

covariance matrix (Bandalos, 1993). However, as sample size increases, smaller 

differences will be magnified to the extent that unimportant differences will be 

statistically significant (Bandalos, 1993). This sensitivity to sample size led to the 

development of other goodness of fit statistics. Unfortunately the resulting statistics are 

also often prone to sample size correlation, sensitivity to non-normality, factor loading 

magnitudes, and model complexity. These statistics have been categorized as 

incremental, absolute, and residual-based absolute.  

Incremental indices compare the target model test statistic to the independence 

model test statistic. Type 1 indices do so with no underlying distribution assumed, with 

the caveat that the same distribution is used for both the hypothesized and independence 

model. Type 2 indices rely on the central χ2 distribution, a distribution with a mean of 0 

and standard deviation of 1. Type 3 indices rely on the non-central χ2 distribution. The 

present study will report the Comparative Fit Index (CFI), a Type 3 incremental index 

recommended by Byrne (2009), Hu and Bentler (1995), and Goffin (1993). Byrne (2009) 

recommended considering a CFI greater than 0.95 to reflect a well-fitting model.  

Absolute fit indices approach the analysis of model fit from a different 
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perspective than the incremental indices: rather than examining the hypothesized model 

against the independence model, these indices examine how the hypothesized model 

compares to the null model (i.e., not having a model). Marsh et al. (1988) found that the 

Goodness of Fit index (GFI; Jöreskog & Sörbom, 1984) provided the most accurate 

results from the absolute index category. For example, although the GFI is correlated 

with sample size, it does not inflate Type I error for sample sizes greater than 100 

(Shevlin & Miles, 1998). Furthermore, its measurements are robust against latent 

dependence for sample sizes greater than 250 (Shevlin & Miles, 1998). The GFI is not, 

however, robust against non-normality at sample sizes below 500, and the present study 

will rely on dichotomous data, which are not normal. Since each half of the pretest 

sample will be greater than 500, this weakness in the GFI is not considered a major threat 

to validity. A GFI value greater than 0.90 represents a well-fitting model. 

Additionally, Browne and Cudeck’s (1989, 1993) Expected Cross Validation 

Index (ECVI) is an adjusted absolute fit index that measures a model’s ability to hold in 

the population beyond a single sample by adjusting Akaike’s Information Criterion (AIC; 

Akaike, 1973, 1983). Byrne (2009) recommended comparing ECVI values across 

models: The model with the smallest ECVI “exhibits the greatest potential for 

replication” (p. 82). 

Residual-based absolute fit indices also compare the hypothesized model to the 

null model, but these statistics examine the residuals (i.e., unexplained variance) rather 

than the explained variance. The two primary residual fit indices are the Root Mean 

Square Error of Approximation (RMSEA; Steiger, 1998; Steiger & Lind, 1980; Steiger, 

Shapiro, & Browne, 1985) and the Root Mean Residual (RMR; Jöreskog & Sörbom, 

1984). RMSEA has been found to be uncorrelated with sample size but moderately 
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influenced by the magnitude of factor loadings and model complexity (Bandalos, 2009; 

Hu & Bentler, 1995). Byrne (2009) considered an RMSEA value less than 0.05 to 

represent a good-fitting model. RMR has been found to be highly sensitive to non-

normality, but is less correlated with factor loading magnitudes and model complexity. 

RMR is unstandardized with a lower bound of zero and no upper bound. Interpretation is, 

therefore, problematic: RMR values must be compared to sample variance/covariance 

magnitudes. Jöreskog and Sörbom (1996) presented a modified version of RMR based on 

standardized values (i.e., correlations instead of covariances). The resultant statistic, the 

standardized RMR (SRMR) is bounded between zero and one. Kline (2005) found that 

SRMR values less than 0.10 represented good-fitting models. 

A subcategory of indices, the parsimony-adjusted indices, does not measure 

goodness of fit; instead, these statistics penalize fit statistics for increasing model 

complexity. Including these parsimony-adjusted indices allows the researcher to 

simultaneously examine two interdependent pieces of information about a model: the 

goodness (or badness) of fit and “how parsimonious the model was in its use of the data 

in achieving that goodness of fit” (Mulaik et al., 1989, p. 439). In the present study, the 

parsimony version of the GFI and CFI (PGFI and PCFI) were provided to assess model 

complexity from the perspective of both incremental and absolute fit indices. Mulaik et 

al. (1989) and Byrne (2009) suggested that values of 0.5 or greater for both indices are 

not uncommon in acceptable models.  

This mosaic of fit indices provides multiple perspectives of how well each model 

fits. The particular set of indices described above spans the various types of fit indices 

and a wide array of strengths and weaknesses. By incorporating all of them into the 

proposed analysis, confidence in the best fitting model will have a stronger foundation. 
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Analysis of contextual factors. In addition to the analysis of misconception 

structures, the present study also examined the impact of the probability intervention, 

attitudes toward mathematics, and metacognition on mathematical misconceptions using 

hierarchical generalized linear models (HGLM). The Bernoulli HGLM model best fits the 

dichotomous nature of the outcome data (Raudenbush & Bryk, 2002). In a Bernoulli 

model, the outcome variable is transformed to a logit, η, of the odds ratio, φ, for the 

outcome variable as seen in Equation 16. The computed logit becomes the linear outcome 

variable as seen in Equation 17. In this analysis, NAEP items (Level 1) are nested within 

students (Level 2, Equation 18), and students are nested within classes (Level 3, Equation 

19). Variable abbreviations are defined in Table 17. 
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Hypothesized Class Level 3 Initial Model 

For q = 0 to 3, p = 0 to 7 
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Table 17 
Declaration of Variables in Equations 15 – 19 
Variable Description 
Conf ATMI Self Confidence subscale. 
Enjoy ATMI Enjoyment of Mathematics subscale. 
Difficulty Item Response Theory Parameter b. 
Discrimination Item Response Theory Parameter a. 
Guessing/Chance Item Response Theory Parameter c. 
KCog MAI Knowledge of Cognition subscale. 
Mean_Conf Classroom average of AMTI Self Confidence subscale. 
Mean_Enjoy Classroom average of ATMI Enjoyment of Mathematics subscale. 
Mean_KCog Classroom average of MAI Knowledge of Cognition subscale. 
Mean_Mot Classroom average of ATMI Motivation subscale. 
Mean_NAEP_Pre Classroom average NAEP mathematics knowledge pretest score. 
Mean_RCog Classroom average of MAI Regulation of Cognition subscale. 
Mean_Value Classroom average of ATMI Valuing Mathematics subscale. 
Mot ATMI Motivation subscale. 
NAEP_Pre NAEP mathematics knowledge pretest score  
RCog MAI Regulation of Cognition subscale. 
Treatment Indicator Variable for Treatment Group Assignment. 
Value ATMI Valuing Mathematics subscale. 
 

Scale variables were centered to facilitate interpretation of the intercepts and 

slopes. In the student Level 2 equation (Equation 18), centering occurred at the group 

level (noted by the subscripts jk and •k), causing the intercepts and slopes to be 

interpretable as student deviation from the classroom average (i.e., intercept represents 
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the average student in the same class on all predictor variables; slope for any variable 

represents the impact of being an above or below average student in the class). In the 

classroom Level 3 equation (Equation 19), scale variables were grand mean centered, 

meaning that the overall mean is subtracted from each classroom mean (noted by the 

subscripts k and •). Grand mean centering changes the interpretation of the classroom 

Level 3 intercepts and slopes just as group centering did on the student Level 2 intercepts 

and slopes. At the classroom level, intercepts now represented the value for the average 

classroom on all predictor variables, and slopes represented the impact of being in an 

above or below average classroom. The regression coefficient for each classroom 

variable therefore represented the effect of a variable on the impact of each 

corresponding student variable. The variables eijk in Equation 17, rqjk in Equation 18, and 

uqpk in Equation 19 represented the random error measurement at the respective levels. 

These variables can be considered the random effect not captured by the model at each 

level, the unique effect of an individual item, student, or classroom on the effect, or 

variance not explained by the model at each level. The generic forms presented here 

include these random effects as potentially applicable to each equation. In reality, these 

random coefficients may or may not be desirable for a particular model. If present, the 

slope for any particular item, student, or school may vary uniquely within the respective 

group. If absent, the slope for all items, students, or schools on a particular equation are 

held constant. Therefore, an equation that excludes the random effect is used to answer 

questions about an effect controlling for a particular variable (i.e., excluding the effect of 

a particular variable); an equation that includes the random effect is used to answer 

questions about the effects of those variables (Raudenbush & Bryk, 2002). Equations that 

exclude random effects are especially useful for questions that involve an analysis of 
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covariance (Keppel & Wickens, 2004). For example, a pre-posttest design usually 

involves questions about student growth during a treatment period. The effect of the 

pretest on the posttest is not interesting in and of itself; rather, removing that effect from 

the observed gain is critical to understanding the effect of the treatment. An equation 

designed to answer this type of question would therefore exclude the random coefficient. 

Summary of Methodology 

Five fundamental mathematics misconceptions were discovered through an 

examination of previous studies (e.g., Clement, 1982; Clements & Battista, 1992; Falk, 

1992; Kahneman & Tversky, 1973a, 1973b, 1982, 1983; Küchemann, 1978; Shaughnessy 

& Bergman, 1993; Warren, 2000). Seventeen NAEP mathematics items were compiled 

into an instrument to test for these misconceptions within algebra, geometry, rational 

numbers, and probability. The difficulty, discrimination, and guessing coefficients for 

each NAEP item were measured using Item Response Theory. A unit of probability 

instruction was developed as a treatment for misconceptions based on the rationale that 

the abstract connections within probability’s abundant concrete explorations and 

simulations would help students understanding the meaning of abstract concepts and the 

connections between ideas. A randomized pretest-posttest design with a switching 

replication was used to test this hypothesis. In addition to NAEP content area scores 

(percent correct and percent of misconception errors), two surveys were administered to 

measure the impact of contextual factors related to mathematics misconceptions. The 

Attitudes Toward Mathematics Inventory (ATMI) measured four factors of mathematics 

orientation (enjoyment, value, self confidence, and motivation; Tapia & Marsh, 2004); 

the Metacognitive Awareness Inventory (MAI) measured two factors of metacognition 

(knowledge of cognition and regulation of cognition; Schraw & Dennison, 1994).  
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Treatment fidelity was assessed from classroom observations and teacher 

interviews. Student explanations on the NAEP instrument were examined qualitatively to 

code content area misconception responses. The structural relationship of content area 

misconceptions was examined using structural equation modeling. The impact of item, 

student, and class characteristics on the emergence of misconception errors for a 

particular task was examined using three level hierarchical generalized linear modeling 

and two level hierarchical linear modeling. Chapter 4 presents the results of these 

analyses. 
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CHAPTER 4 

RESULTS 

This chapter describes the results of three analyses. First, student responses were 

examined to differentiate between reasoning or procedural errors and errors indicating an 

underlying misconception. Second, hypothesized relationships among content area 

misconceptions were examined using structural equation modeling. Third, the impact of 

item, student, and class characteristics was measured using three-level hierarchical 

generalized linear modeling and two level hierarchical linear modeling. Observations and 

teacher interviews were conducted to establish fidelity of treatment implementation for 

the third analysis. 

Identifying Misconception Patterns 

A sub-sample was chosen for a qualitative analysis of patterns of misconception 

responses on the NAEP-based mathematics knowledge test. On all items, students were 

asked to provide an explanation for their response choice. Approximately 74% of the 

sample left these explanations blank. To improve representativeness of the overall 

sample, the qualitative sub-sample was chosen using purposive stratification across 

classes; specifically, tests were chosen to be part of the sub-sample if they filled in the 

explanation section of the test for most items. Such a sampling technique produced a 

selection bias — students who completed their explanations were more likely to choose 

the correct answer, resulting in a reduced sample for each distractor to each item. To help 

manage this bias, the sampling procedure continued until all distractors for each item 
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were represented (N = 72). Division of items by content area (i.e., algebra, geometry, 

probability, and rational number) transferred directly from the NAEP classification of 

each item.  

The following descriptions focus primarily on student explanations of errors; 

however, the analysis began with a recognition that correct responses do not necessarily 

indicate conceptual understanding. For all items in which the correct response 

explanations are not discussed explicitly, the explanations by students indicated that they 

did, in fact, understand the concept not understood by students who chose incorrect 

responses. The thick description provided in this analysis was used to establish 

trustworthiness for the coding of misconception responses. 

Misconceptions on Algebra Content Knowledge Items 

Algebra items (i.e., Items 5, 6, 7, 8, and 16; Appendix N) included distractors that 

reflected misconceptions about additive/multiplicative structures, the meaning and 

interpretation of variables, and the meaning of rational numbers.  

Item 5 response patterns. Item 5 described the formula to convert temperature 

from Fahrenheit to Celsius in words and then asked students to convert 393°F to Celsius. 

I hypothesized that choices A, B, and C would represent misconceptions about the 

meaning of rational numbers. Student responses confirmed this hypothesis. For example, 

one student chose A, “Because 393 – 32 = 361; 5/9 = .55, so you divide 361 by 5/9, 

answer is 656.3, to the nearest degree is 650.” This explanation represents the 

explanations of others who chose A, indicating that students who chose A did so because 

they divided by the rational number rather than multiplying, not realizing that the 

resultant rational number, 5/9 of 361, should be smaller than 361.  

I hypothesized that Choice B for Item 5 would result from the ignoring of the 
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denominator, and again, student explanations confirmed this hypothesis. The most 

explicit case of this type chose B, “Because 393 x 5 = 1805.” This student also failed to 

note that he/she had subtracted the 32 from the 393 properly; 361 x 5 is 1805 while 393 x 

5 is actually 1965. I decided that this particular error was simply one of reporting rather 

than a misconception, so it was excluded for the purposes of this analysis. Another 

student who chose B stated, “361 • 5/9 = 200 5/9 = 200 x 9 = 1800 + 5 = 1805.” This 

student failed to realize that the rational number was accounted for by the 200 and 

continued to try to incorporate the fraction, ultimately doing so by misusing both 

numbers. From this question, I considered how the student had correctly computed the 

200 if he/she did not understand how to use the 5/9 later. My best guess was that the 

student used a calculator for the first computation, but thought that 200 x 9 would be an 

easy calculation, so he/she did the last steps by hand and did not check them on the 

calculator. Although this conclusion is wholly speculative, if true, it may suggest that the 

use of calculators to explore the meaning of rational numbers may open an avenue for 

addressing student conceptions and perceptions of rational numbers. 

I also hypothesized that Choice C would represent a misconception about rational 

numbers, specifically, that students would choose C by ignoring the rational number 

altogether. Student responses also verified this hypothesis. Students who chose C 

justified their response with statements such as, “Divide 393 and 32.”  

Originally, I hypothesized that E would not represent a similar misconception as 

those for A, B, and C on Item 5. Student responses, however, contradicted this 

hypothesis. Students who chose E also ignored the denominator and misused the 

numerator as did students who chose B. For example, students justified choice E with 

statements such as, “Divide the numbers,” specifically 361 by 5. Therefore, Choice E was 
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added to the misconception choices for Item 5. 

These interpretations of rational numbers appeared to typify student responses to 

rational numbers. I generalized these patterns of rational number interpretation into five 

types: 

1. Rational number is understood to be a single quantity, but confusion 

about the meaning of that quantity results in the application of the 

wrong operation or the correct operation(s) to the wrong quantities 

(e.g., Divide instead of multiply, multiply by the wrong number). This 

error connects to rational number meaning misconceptions identified 

by Fosnot and Dolk (2002). 

2. Reverse the role of the numerator and/or denominator. This error is 

similar to those described by Baturo (1994), Behr et al. (1992), and 

Lamon (1999). 

3. Ignore either the numerator or denominator (as in Green, 1983b; 

Watson & Shaugnessy, 2004). 

4. Ignore the numerator/denominator AND reverse the role of the 

remaining part of the rational number (e.g., Divide by the numerator) 

5. Ignore the rational number altogether. This error appeared to connect 

to variable number misconception described by Küchemann (1978) in 

which students ignored the presence of variables. 

While this categorization of rational number meaning errors may not account for 

every rational number meaning error for every problem, it may serve as a foundation for 

exploring rational number meaning errors in other problems/contexts. Additionally, this 

list appears to be hierarchical; that is, a Type 2 rational number misinterpretation may 
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represent a greater degree of confusion about the meaning of rational numbers than Type 

1, as would Types 3, 4, and 5 over a Type 2.  

Item 6 response patterns. Item 6 offered students a linear function (y = 4x) and 

asked about the change in y based on an increase of two units to x. Prior to the present 

analysis, only Choices D and E were hypothesized as misconception responses — I 

expected students with additive/multiplicative structure misconceptions to choose D by 

squaring the independent variable coefficient and E by doubling that same coefficient (as 

described by Warren, 2000). Explanations from students who chose these two responses 

supported this expectation. For example, students who chose E typically showed their 

calculation as “4 x 2 = 8.” Alternatively, students who chose A, the correct answer, also 

performed this same calculation but knew to add it to the overall y value rather than 

making it a new coefficient. Therefore, D and E remained misconception responses in the 

coding procedures. Additionally, explanations for choices B and C also indicated 

misconceptions in student reasoning about additive and multiplicative structures. For 

example, students who chose B stated, “4 + 2 = 6” or “It also increases by 2,” similar to 

patterns found by Warren (2000) and Moss et al. (2008). Likewise, students who chose C 

offered one of three justifications, all of which represented a misconception about how to 

handle an additive structure in an algebraic equation. The first type of explanation 

demonstrated a reliance on the balance-beam principle of algebraic equations, stating 

something such as, “You basically add 2 more to the other side,” “Because both sides 

need to be the same, or “Because if one increases, so does the other.” The second type of 

explanation showed that some students chose C because they thought that the change of 

two should be added to the coefficient, stating rationales such as, “Because 4 + 2 = 6 that 

is 2 more than the original amount” or “Because 4x + 2 = 6x.” The third type of response 
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to support Choice C indicated that students knew that the change in y should be additive, 

but they failed to understand the role of the coefficient in that change. These students 

justified their choice of C by asserting, “It would be y = 4x + 2.” As a result of this 

analysis, the coding of misconception responses was expanded to include choices B and 

C. These errors appeared to occur because students were relying on procedures isolated 

from meaning and connections between ideas. The framework in Figure 10 may shed 

light on how these errors emerged. For example, students who relied on the balance beam 

principle for solving algebra equations did not seem to understand why such an approach 

works and what it means to a particular context. These students appeared to demonstrate 

procedural knowledge with instrumental understanding (Skemp, 1976/2006). As a result, 

these students developed algebraic misconceptions about how, when, and why the 

algebra balance beam works. These misconceptions about the balance beam led to faulty 

reasoning that may have reinforced the balance beam misconceptions. 

Item 7 response patterns. Item 7 asked students to choose an expression to 

represent the situation, “A plumber charges $48 for each hour and an additional $9 for 

travel.” The correct response, choice E, uses the $48 per-hour charge as the coefficient to 

the number of hours and adds the $9 travel fee as a one-time charge. Every distractor 

response was hypothesized to represent a misconception about additive/multiplicative 

structures. Student explanations verified this prediction. For example, students who chose 

A interpreted each charge as an “additional” charge. Likewise, students who chose B 

thought the calculation resulting from such an expression should be “added on to the 

original.” They also believed that both charges should be multiplied by the number of 

hours. Students who chose C knew that a charge should be added and another multiplied, 

but they reversed the quantities. Finally, students who chose D understood that the 
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expression should represent “48 times the hours plus 9,” but they did not understand how 

to translate those words into an expression. I concluded that choice D could possibly 

represent variable misconceptions as well as additive/multiplicative structure 

misconceptions, but since the analyses of the present study will not differentiate between 

types of misconceptions, D was left as a misconception response.  

Item 8 response patterns. Item 8 presented students with the following scenario: 

“Carmen sold 3 times as many hot dogs as Shawn. The two of them sold 152 hot dogs 

altogether. How many hot dogs did Carmen sell?” Originally, I hypothesized that choice 

B would represent the reversal error, reflecting the wrong person’s amount, similar to the 

reversal error identified by Clement (1982). The present analysis revealed that such was 

not the case in this sample. In fact, students who chose B provided correct equations such 

as “I did 3s + s = 152 and add the s to the 3s to get 4s and divided 152 and 4 by 4 and got 

s = 38.” Not one student who chose B in the sub-sample indicated that they thought the 

38 represented Carmen’s amount. As a result, I concluded that choosing B did not 

represent a variable meaning misconception so much as a careless error; specifically, not 

catching that the question asked for Carmen’s amount instead of Shawn’s. Almost twice 

as many students in the sub-sample chose C instead of B, and these students did indicate 

one of Küchemann’s (1978) variable interpretation errors — they unanimously ignored 

the variables altogether and simply divided 152 by 3. Students who chose E also ignored 

the variables entirely, showing a similar calculation to that of C. For example, students 

who chose C justified their answers with statements such as, “Because 152 ÷ 3 gives you 

50.8, round and you get 51.” Likewise, students who chose E wrote statements such as, 

“Because 50 + 50 + 50 = 150 – 2.” In both cases, students failed to recognize the role of 

the variable in partitioning the total amount. Other students who chose C and E 
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demonstrated Küchemann’s Level 1 interpretation, evaluating the variable using trial and 

error. Therefore, I concluded that choices C and E should represent the variable 

misconception rather than the original choice B.  

Item 16 response patterns. Item 16 presented students with a table of values and 

asked them to determine the function that best modeled the data. I hypothesized that 

choice A would represent a misconception about the nature of the functional relationship; 

student responses verified this expectation. Students who chose A made statements that 

indicated an understanding of a relationship, but they looked at the relationship 

backwards, i.e., they thought of n as the dependent variable rather than the independent 

variable, similar to the reversal error in Clement (1982). Although such an inversion 

might also be due to a rational number meaning misconception (i.e., doubling rather than 

halving, as in Item 5, error 2, Baturo, 1994; Behr et al., 1992; Lamon, 1999), the purpose 

of the present analysis is not to distinguish between misconception types but rather to 

reflect the presence of misconceptions in a content area. Therefore, choice A remained a 

misconception response in the analysis. This overlap indicates the possibility of an 

underlying multicollinearity across content area misconceptions resulting from the 

influence of the underlying misconceptions. 

Student explanations for choosing C or D on Item 16 also indicated the presence 

of variable misconceptions. Students who chose C explained that they had only used the 

first column of values to determine the equation, concluding that, “You subtract by the n 

and that equals p.” For choice D, students explained that they thought the number of days 

was one of the variable quantities of importance, “Because the days matter too.” These 

students then used the first column of values to conclude that subtraction held the key to 

solving this problem. As a result of this analysis, choices C and D were included as 
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misconception responses for Item 16. 

Misconceptions on Geometry Content Knowledge Items 

The geometry items on the NAEP instrument (i.e., Items 9, 10, and 11; Appendix 

N) examined student misconceptions about spatial reasoning and the meaning of rational 

numbers.  

Item 9 response patterns. Item 9 presented students with a rectangle and asked 

them whether the figure should be classified as a parallelogram. Students who chose the 

correct response, A, did so because, “It has parallel sides” or “It has equal sides.” This 

explanation indicated that these students were operating at least at Van Hiele Level 1, in 

which students recognize that figures have characteristics and properties. Students who 

chose B, on the other hand, indicated operating at Van Hiele Level 0, in which students 

rely on visual recognition of shapes. For example, students made statements such as, 

“Parallelograms are crooked ” and “The figure she drew has right angles.” Other 

students indicated that they thought that being a rectangle and square excludes a shape 

from being a parallelogram through statements such as, “It is a square” and “No. It is a 

rectangle.” These types of errors indicate a fundamental spatial reasoning misconception 

resulting from low Van Hiele levels of understanding (Clements & Battista, 1992; 

Crowley, 1987). Based on this evidence, I retained choice B as a misconception response. 

Item 10 response patterns. Item 10 presented students with a shaded figure within 

a grid of centimeter squares. I hypothesized that Choice D would represent a spatial 

reasoning misconception, in which students would rely on the lengths to compute the area 

rather than on the meaning of area, similar to Clements and Battista’s (1992) 9th and 11th 

most common spatial reasoning misconceptions. Explanations by students who chose D 

verified this hypothesis with statements such as, “Because you multiply the length and 
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width of squares.” Additionally, to arrive at Choice D, students also needed to be 

confused about the length of the diagonals; in this case, they evidently chose to add them 

as a little more than 1, then rounded the length to an even 7 cm. They also failed to 

recognize that the width on one end was 2 cm while on the other end it was 3 cm. 

Therefore, this choice was retained as a misconception choice. 

Additionally, an analysis of Choice C explanations revealed the presence of 

additive/multiplicative structure and spatial reasoning misconceptions, or Van Dooren et 

al.’s (2003) illusion of linearity applied to geometric shapes. Students who chose C 

explained that they simply “counted them all up,” approximating the diagonal lengths as 

1.5 cm and computing a perimeter rather than an area. Therefore, I added Choice C as a 

misconception choice for Item 10. 

Students who chose A for their response to Item 10 also revealed an error in 

spatial reasoning. These students recognized that they needed to count shaded areas, but 

they counted only the wholly shaded squares and ignored the half shaded squares, as 

indicated by statements such as, “There are 9 squares that are fully shaded” and “The 

image is mainly 3 by 3 so 9 sq centimeters, a = 3 • 3 = 9.” These explanations led me to 

believe that Choice A resulted from faulty reasoning, but not necessarily a misconception 

— they knew to add areas, and they appeared to recognize that area is the space inside a 

closed figure. Therefore, Choice A was not added to the misconception choices for Item 

10. 

Item 11 response patterns. For Item 11, students were asked to convert the 

dimensions of an object from one unit of measure to another. I hypothesized that the 

difficulty in Item 11 for students lay in the recognition that the dimensions represented 

two quantities rather than one, so the misconception of interest was the way students 
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ignored these variable quantities. Some students ignored one of the variables; others 

thought that the variables were simply labels and therefore traded labels in a one-to-one 

relationship. Prior to this investigation, I hypothesized only that choice A would represent 

a misconception response, indicating the use of the variable as a label. Explanations by 

students who chose A confirmed this hypothesis, indicating that the values “don’t 

change.” 

Additionally, students who chose B and C also indicated that only one variable 

needed to be accounted for in the computation. Students justified their choices with 

explanations such as, “I did 5 x 3 = 15, then left 3 the same.” Therefore, choices B and C 

were added to the list of misconception responses for Item 11. 

From this investigation, misconception responses for geometry items were 

expanded to include additional choices. Because misconceptions such as 

additive/multiplicative structure were also evident in algebra items, items from both 

content domains may co-vary in the SEM analysis. 

Misconceptions on Probability Content Knowledge Items 

Probability items (i.e., Items 1, 2, 3, 4, and 17; Appendix N) on the NAEP 

instrument examined student errors in probability rooted in absolute/relative comparison, 

additive/multiplicative structure, spatial reasoning, and rational number meaning 

misconceptions.  

Item 1 response patterns. For Item 1, students were asked to determine which 

picture represented the greatest probability. I hypothesized that misconception responses 

would follow the patterns identified by Shaughnessy & Bergman (1993) and Watson & 

Shaughnessy (2004): Students with probability misconceptions would focus on the 

number of black marbles rather than the ratio of black to white marbles, or, confusing 
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absolute and relative comparisons. Students demonstrated this misconception precisely as 

expected. For example, students who chose answer C stated that its dish “contains more 

blacks” or “has the most black marbles.” Likewise, students who chose E also indicated 

that the number of black marbles was the only number of importance. Students who 

chose “B” made two absolute comparisons, looking for a combination of the “most white 

and black.” 

Item 2 response patterns. Item 2 presented students with a two-way table (gender 

by color of puppies) and asked students to compute the conditional probability of a puppy 

being male given that it is brown. I hypothesized that Choices B, C, D, and E would 

indicate a misconception about the meaning of rational numbers, as described by Bar-

Hillel and Falk (1982) and Falk (1992). Student explanations for these responses verified 

this hypothesis. 

Students who chose B on Item 2 ignored the condition of being brown altogether 

and instead gave the probability of being male, providing explanations such as “Because 

it’s seven puppies and two of them are male” or “2 total males and 7 total puppies; 

chance a male will be picked 2/7.” These students appeared to be unsure of how to 

incorporate the brown condition into the probability quantity.  

Students who chose C and E on Item 2 gave explanations that indicated confusion 

between part-part relationships (i.e., odds) and part-whole relationships (i.e., probability). 

These students justified their choices with statements such as, “There’s 1 male and 3 girls 

so the probability is 1/3” or “Because there’s 2 female and 3 male.” One student who 

chose C, however, did so because, “There are 3 black puppies and 1 is a male.” This 

student, rather than being confused about the meaning of rational numbers, simply 

computed the wrong conditional probability (black instead of brown), and he/she did so 
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correctly. This way of choosing C appeared to be an abberation rather than the pattern, so 

although C could be reached through a reasoning process not emerging from a 

misconception, the explanations of students in this sample indicated that the choice was 

overwhelmingly due to the misconception. No such abberations appeared in explanations 

for Choice E. Therefore, both C and E were retained as a misconception response.  

Students who chose D for Item 2 provided explanations that indicated two 

reasoning processes, both of which represented thinking based on misconceptions about 

rational numbers. The first explanation, used by the majority of students who chose D, 

relied on a comparison of brown dogs to dogs; these students made statements such as, 

“There are 2 male puppies and only 1 is brown” or “Because all together there is 1 male 

black and 1 brown, add them up which = 2 (so, 1/2).” These responses indicated 

confusion about which quantities should have been represented by the part whole 

relationship. The second type of explanation relied instead on the uniformity heuristic as 

described by Falk (1992). These students chose D, “Because there are only 2 types of 

genders that you can pick.” Whether from confusion about part-whole relationship 

quantities or the uniformity heuristic, the evidence from student explanations indicated 

that choice D did represent a misconception. 

Item 3 response patterns. Item 3 also asked students about a conditional 

probability. In this scenario, Bill had a bag of 30 candies, 10 each of red, blue, and green. 

Using a random draw, Bill ate two pieces of blue candy. Students are then asked if the 

probability of getting a blue candy on the next draw is still 10/30 or 1/3. I hypothesized 

that students who chose A (yes) would ignore the conditional aspect of the probability 

altogether and that students who chose B (no) would recognize that the quantity making 

up the part-whole relationship had changed. Student explanations to both choices verified 
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this hypothesis. Students who chose A sometimes relied on the uniformity heursistic, 

making statements such as, “Because there are 3 colors, and 1 could be picked blue.” 

Others who chose A simply ignored the conditional, justifying their response with 

statements such as, “You have 10 of each color candy to add up to 10/30” or “Because 

there are ten and all together are 30.”  

In contrast to explanations of choice A, students who chose B did not appear to do 

so by guessing or elimination. Indeed, these students recognized that the consumption of 

the two pieces of blue candy changed the quantities represented by the probability: “He 

ate 2/10, so it’s now 8 blues instead of 10,” “Because he has already eaten 2, which 

lessens his chances,” “He already ate 2 of them, so its 28 left,” “Because his chances go 

down,” or “Because he took out 2 candies; it’s now 8/28.” Based on these explanations, I 

concluded that students in this sample who chose correctly did indeed demonstrate a 

stronger conceptual understanding of the meaning of the rational number quantities 

present in the probability, so Choice A was retained as a misconception indicator for Item 

3. 

Item 4 response patterns. Item 4 presented students with a spinner divided in two 

halves, with one of the halves divided in half again. The arrow on the spinner pointed to 

one of the quarter regions. Students were then asked how many times they should expect 

the arrow to land in that region after 300 spins. I hypothesized that a spatial reasoning 

misconception would result in students deciding that the probability of the region was 1/3 

instead of 1/4. Based on this hypothesis, I expected Choice C to result from students 

taking 1/3 of 300. I also expected students to choose D by taking 1/3 of 360, the number 

of degrees of the circle. Explanations for choosing C verified that part of my hypothesis. 

These students made statements such as, “Because there’s 3 spaces and 300 ÷ 3 is 100” 
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or “I divided 300 ÷ 3 & got 100.” Therefore, I retained Choice C as a misconception 

choice. Students who chose D, on the other hand, did not verify my hypothesis. Instead, 

these students indicated that they had recognized the probability of the region as being 

1/4 but made a computation error. Noone who chose D gave explanations that indicated a 

misconception, so it was eliminated as a misconception choice. Explanations for 

choosing B did, however, indicate a misconception, possibly one of spatial reasoning or 

rational number meaning. These students recognized that the region was 1/4 of the circle, 

so they fell back on the number of degrees in a circle. These students made statements 

such as, “The circle is in an angle of 90º,” “Circle = 360, divide it by 4, you get 90,” or 

“Because the circle is split up into 3 parts; a circle’s measure is 360, if cut in half, each 

part will be 180, if one half of the split circle is cut in half again, that side is now 2 sets of 

90º.” This error could be due to misunderstanding about the meaning of the quantities in 

a probability ratio, or it could be due to misunderstanding the quantity being predicted, 

focusing on a single circle instead of the same circle 300 times. Regardless of which 

misconception led to this choice, it seemed clear that choosing B for Item 4 represented at 

least one type of misconception, so it was added as a misconception choice for this Item. 

As with Item 16, the convergence of fundamental misconceptions on multiple content 

areas increased the likelihood of a high degree of collinearity between content area 

misconceptions. 

Item 17 response patterns. Item 17 asked students to visualize a cube whose faces 

are labeled R or S. The probability of landing on R was given as 1/3. Students were then 

asked to determine how many faces of the cube should be labeled R. I hypothesized that 

Choices C and E would represent misconceptions about absolute/relative comparisons or 

the meaning of rational numbers. Students who chose these responses and explained their 



 

146 

answers corroborated this expectation with statements such as “because 1/3  1,” “one 

because there is a one out of three chance,” or “the number on the bottom is how many.” 

Some students who chose C ignored the stated probability altogether, similar to students 

who ignored rational number quantities in Item 5 (as students did with variables in 

Küchemann, 1978). These students relied instead on the uniformity heuristic (Falk, 

1992), stating that “each face R and S gets three sides” and “half of 6 is 3.” From these 

explanations, I concluded that C and E should be retained as representative of 

misconception-based reasoning. 

Misconceptions on Rational Number Content Knowledge Items  

Rational number items (i.e., Items 12, 13, 14, and 15; Appendix N) on the NAEP 

instrument examined student errors on rational numbers based on absolute/relative 

comparison, additive/multiplicative structure, and rational number meaning 

misconceptions.  

Item 12 response patterns. Item 12 presented students with a situation in which 

the postage cost for a letter is based on a different rate for the first ounce. I hypothesized 

that Choice D would indicate an additive/multiplicative structure misconception (as in 

Moss et al., 2008; Warren, 2000). Explanations by students who chose D confirmed this 

hypothesis, making statements such as, “I multiplied .33¢ times 2.7” and “Because 33 + 

33 = 66; 0.7  1  66 + 22 = 88.” Student explanations of other choices revealed 

additional misconception responses for Item 12. Students who chose E followed the same 

reasoning as students who chose D, but they remembered to round the 2.7 to 3. So, these 

students wrote explanations such as “33 x 3 ounces = 99 cents.” Students who chose B 

used two types of reasoning to arrive at their answer. First, students added “33 + 22 + 

11,” “33 + 22 + 0.7,” or “You have 2 whole ounces, 33¢ + 22¢ = 55¢, next you have to 
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figure out the .7. Take 22 • 70%, which is 18. So you add 12 to 55, total would be 66¢.” 

This final statement, apart from the readily apparent calculation errors, shows the same 

basic reasoning as the first two. This particular justification included several erasures 

over numbers, a characteristic that appeared to indicate that the student had changed 

numbers to arrive at the closest answer available. So, not only does the response 

demonstrate the same additive/multiplicative structure misconception, it may also 

indicate the persistence of the misconception even in the face of numbers not adding up 

correctly. The second type of justification for choice B relied on a multiplicative-only 

strategy, for example, “I multiplied 33 times 2.” Students who chose A used similar 

reasoning to that used by students who chose B. These students also dropped the 0.7 or, 

in one case, the second ounce. Most of these justifications were some variation of, “33 + 

22 = 55.” The student who ignored the second ounce stated, “First ounce is 33 cents, next 

0.7 of ounce is 22, rounded.” As a result of this analysis, I included choices A, B, and E 

as misconception responses in addition to the original hypothesized choice D. The 

presence of additive/multiplicative structure misconceptions in rational numbers as well 

as algebra emphasizes the likelihood of collinearity between content area misconceptions. 

Item 13 response patterns. Item 13 presented students with a diagram and a scale 

of 3/4 in = 10 ft. They were then asked to convert 48 feet to the scale drawing length. I 

hypothesized that Choices D and E would represent reasoning indicative of rational 

number meaning misconceptions. Students chose D because, “3/4 x 10 = 7.5 in” or “3 ÷ 4 

= 0.75, 7.5 in.” These students demonstrated the first rational number misinterpretation 

identified by the analysis of Item 5 responses – performing the correct rational number 

operation to the wrong quantity (as in Fosnot & Dolk, 2002). Therefore, Choice D was 

retained as a misconception response.  
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Students who chose E, however, did not justify their choices with responses that 

implied that they had ignored the numerator as I had hypothesized. Instead, they made 

statements such as, “Because you add 3/4 to 48 ft” or “Add them all up and divide by 

10.” These responses clearly indicated an error in thinking, but I chose to discard E as a 

misconception choice because I could not find a clear connection between 

misconceptions identified by previous research and the reasoning process that led to this 

choice. 

Students who chose C for Item 13 indicated a misconception that I did not 

anticipate in my hypotheses. These students indicated that they had ignored the rational 

number altogether, the fifth rational number mis-interpretation identified by the analysis 

of Item 5. Some students justified their choice with statements such as, “48 ÷ 10 = 4.8 or 

5.” Therefore, choice C was included as a misconception response for Item 13. 

Item 14 response patterns. In Item 14, students were asked to arrange a set of 

three fractions in ascending order, distinguishing between absolute and relative 

comparisons. Students who responsed with choice E recognized the relative relationship 

between fractions, but they misunderstood the nature of that relationship. For example, 

students understood that fractional numbers compare differently than other rational 

number forms, but they failed to recognize that the denominator quantity is the one that 

has this inverse relationship (as in Baturo, 1994; Behr et al., 1992; Lamon, 1999). 

Students who chose E simply stated that “smaller fractions are larger.” Although this 

faulty reasoning clearly demonstrates a misunderstanding, these students did not 

demonstrate the absolute/relative comparison misconception, so E was not included as a 

misconception response. In constrast, students who chose B cited a comparison of the 

numerators only, ignoring the impact of the denominator on the overall quantity (i.e., 
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absolute versus relative comparison misconception). Therefore, B was the only response 

recognized as a misconception response for Item 14. 

Item 15 response patterns. Item 15 presented students with a rectangle divided 

into two columns of 10 cells for a total of 20 cells, six of which were shaded. Students 

were then asked to determine which rational number best represented the probability of 

the shaded region. I hypothesized that students who chose D would do so because they 

used a part-part relationship rather than a part-whole relationship. Explanations by 

students who chose D verified this hypothesis, making statements such as, “3 are black 

and 7 are white.” Therefore, Choice D was retained as a misconception choice for Item 

15.  

Implications of Item Response Patterns 

This analysis of student responses to the NAEP mathematics knowledge test 

fundamentally altered the way misconception responses were coded. For several items, 

student responses validated the hypothesized misconception choices and rationales for 

each choice. For several other items, student responses suggested that the hypothesized 

misconception responses were either not due to misconceptions at all, not due to the 

hypothesized misconception, or not due to the hypothesized misconception for the correct 

reasons. As a result, the coding of these items was changed to match student response 

patterns to maximize content validity prior to the structural analysis of content area 

misconceptions and the analysis of contextual factors on the emergence of 

misconceptions on a particular item. Table 18 summarizes the changes from hypothesized 

to observed misconception responses. 
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Table 18 
Summary of Observed Misconception Responses 

Item Hypothesized Misconception 
Responses 

Observed Misconception 
Responses 

1 C, E C, E 
2 B, C, D, E B, C, D, E 
3 A A 
4* C,D B, C 
5* A, B, C A, B, C, E 
6* D, E B, C, D, E 
7 A, B, C, D A, B, C, D 
8* B C, E 
9 B  B  
10* D C, D 
11* A A, B, C 
12* D A, B, D, E 
13* D, E C, D, E 
14 B B 
15 D D 
16* A A, C, D 
17 C, E C, E 
*Indicates an item where coding was changed because of response analysis. 

Structure of Content Area Misconceptions 

To examine the structure of misconceptions between content areas in secondary 

mathematics, six potential theoretical models were hypothesized (Figure 24). These 

models were compared by their goodness of fit indices. Additionally, the six data sets 

were randomly split into two data files each, one for calibration of the structural models 

and the other for validation of the resultant models (as recommended by Byrne, 1998) to 

maximize convergent validity.  

Calibration of Hypothesized Structural Models 

Patterns in the modification indices (MIs) across imputations were examined to 

ensure that the maximum amount of error within the model had been explained. I focused 

on the maximum modification index from each data set; however, I also looked for high 

MIs that matched the maximum MI from other data sets for the same model. Instead of 
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finding high matches, I found that the maximum modification index in one data set was 

invariably small in the others (i.e., less than 4, p > 0.05). Therefore, I focused instead on 

the theoretical relevance of each maximum modification index. I considered an MI to be 

theoretically sound based on the content knowledge examined and the underlying 

misconception addressed.  

Analysis of Model A 

Model A specified misconceptions in rational number content area as an 

independent variable that predicts misconceptions in probability content area, which in 

turn predicted misconceptions in algebra and geometry (Figure 24A). Therefore, in this 

model, probability acted as a filter for rational number. The goodness of fit indices 

suggested that this model fit the data very well (Table 19). 

Table 19 
Model A Goodness of Fit Indices from Calibration Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 606.76 0.99 0.87 0.024 [0.009, 0.035] 0.075 0.66 0.728 1.42 
1 (N = 577) 716.34 0.98 0.87 0.031 [0.022, 0.040] 0.076 0.66 0.714 1.37 
2 (N = 553) 680.20 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.68 0.726 1.15 
3 (N = 558) 778.03 0.98 0.87 0.032 [0.023, 0.041] 0.076 0.66 0.721 1.44 
4 (N = 566) 646.52 0.99 0.88 0.025 [0.014, 0.034] 0.074 0.67 0.716 1.25 
5 (N = 575) 716.60 0.99 0.88 0.025 [0.013, 0.034] 0.072 0.67 0.723 1.25 
Wtd. Avg. 707.53 0.99 0.88 0.026 [0.017, 0.035] 0.073 0.68 0.748 1.29 

SEAvg 24.494 0.003 0.004 0.003  0.002 0.004 0.004 0.057 
Note: df = 116 

Calibration. Model A MIs most commonly called for covariances between Item 6 

and 12 and Items 5 and 15 error terms (Table 20). Items 6 and 12 both measured 

additive/multiplicative structure misconceptions, so a relationship between these two 

variables seemed plausible even though they measured different content knowledge. 

Likewise, Items 5 and 15 both measured rational number meaning misconceptions. 
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Table 20 
Model A Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 33.17 TH (4, 6); Covariance between Item 5 and 15 errors 
1 339.07 TH (1, 8); Covariance between Item 7 and 12 errors 
2 43.79 TH (1, 7); Covariance between Item 6 and 12 errors 
3 894.40 TH (1, 7); Covariance between Item 6 and 12 errors 
4 68.22 TD (3, 2); Covariance between Item 13 and 14 errors 
5 361.69 TH (4, 6); Covariance between Item 5 and 15 errors 

 
Since the unimputed data file called for the error covariance of Items 5 and 15, 

this parameter was added to the model and the goodness of fit statistics were computed 

(Table 21). 

Table 21  
Model A2 Goodness of Fit Indices, Covary Item 5 and 15 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 578.83 0.99 0.88 0.021 [0.000, 0.033] 0.075 0.66 0.743 1.36 
1 (N = 577) 750.91 0.97 0.87 0.032 [0.023, 0.040] 0.075 0.66 0.736 1.37 
2 (N = 553) 679.00 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.745 1.15 
3 (N = 558) 769.37 0.98 0.87 0.031 [0.022, 0.040] 0.075 0.65 0.732 1.40 
4 (N = 566) 627.74 0.99 0.89 0.022 [0.009, 0.032] 0.073 0.67 0.745 1.19 
5 (N = 575) 680.75 0.99 0.89 0.021 [0.0073, 0.031] 0.070 0.67 0.745 1.19 
Wtd. Avg. 701.59 0.98 0.88 0.025 [0.015, 0.035] 0.072 0.664 0.741 1.26 

SEAvg 28.967 0.004 0.005 0.003  0.002 0.004 0.003 0.058 
Note: df = 115 

The difference of χ2 test revealed a statistically significant reduction of model 

misfit for both the unimputed data file (listwise deletion) and the imputed data files (Δχ2
 

Unimputed [1] = 27.93, p < 0.0001; Δχ2
Imputed Avg[1] = 5.935, p = 0.015). I therefore, retained 

Model A2 and examined its modification indices (Table 22). 

Table 22 
Model A2 Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 311.76 BE (2, 3); Regression path from Geometry to Algebra 
1 178.20 TH (1, 8); Covariance between Item 7 and 12 errors 
2 60.24 TD (4, 1); Covariance between Item 12 and 15 errors 
3 64.18 TE (4, 1); Covariance between Item 1 and 4 errors 
4 66.25 TD (3, 2); Covariance between Item 13 and 14 errors 
5 39.05 TE (12, 11); Covariance between Item 9 and 10 errors 

 
The addition of the regression path from geometry to algebra created an unstable 

model that would not converge across the data sets. The covariance between Items 7 and 
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12 indicated by Imputation 1 made theoretical sense to me since both items measured 

additive/multiplicative structure misconceptions. So, the parameter was added to the 

model, and the goodness of fit statistics were computed (Table 23). 

Table 23 
Model A3 Goodness of Fit Indices, Covary Item 7 and 12 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 578.82 0.99 0.88 0.022 [0.000, 0.033] 0.075 0.65 0.657 1.36 
1 (N = 577) 743.84 0.98 0.87 0.032 [0.023, 0.040] 0.075 0.65 0.657 1.36 
2 (N = 553) 675.08 0.99 0.90 0.019 [0.000, 0.030] 0.066 0.67 0.663 1.13 
3 (N = 558) 769.14 0.98 0.87 0.031 [0.022, 0.040] 0.075 0.65 0.635 1.40 
4 (N = 566) 627.27 0.99 0.89 0.023 [0.0097, 0.033] 0.073 0.66 0.660 1.19 
5 (N = 575) 677.92 0.99 0.89 0.022 [0.0077, 0.032] 0.070 0.66 0.667 1.19 
Wtd. Avg. 698.67 0.99 0.88 0.025 [0.016, 0.035] 0.072 0.66 0.656 1.25 

SEAvg 28.604 0.003 0.007 0.003  0.002 0.004 0.006 0.059 
Note: df = 114 

The difference of χ2 test did not reveal a statistically significant reduction of 

model misfit for either the unimputed data file (listwise deletion) or the imputed data files 

(Δχ2
Unimputed [1] = 0.01, p > 0.5; Δχ2

Imputed Avg[1] = 2.923, p = 0.087). I therefore, discarded 

this model and returned to Model A2. 

The other MIs from Model A2 failed to reveal any theoretically sound alterations 

to the model. For example, Items 12 and 15, Items 1 and 4, measured different content 

areas and different underlying misconceptions. And although Items 13 and 14 both 

examined rational number content, they measured different underlying misconceptions. 

Therefore, I concluded that Model A2 was the best calibration of Model A possible with 

these data (Figure 25). 
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Figure 25. Final Structural Model A2 

Validation of Model A2. To examine the convergent validity of Model A2, the 

goodness of fit statistics were computed based on the validation sample (Table 24).  

Table 24 
Model A2 Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 621.32 0.98 0.86 0.025 [0.0098, 0.036] 0.081 0.65 0.741 1.50 
1 (N = 556) 617.42 0.99 0.89 0.020 [0.000, 0.031] 0.070 0.67 0.745 1.14 
2 (N = 580) 717.36 0.98 0.88 0.028 [0.018, 0.037] 0.076 0.66 0.735 1.27 
3 (N = 575) 764.96 0.98 0.88 0.030 [0.020, 0.038] 0.078 0.66 0.735 1.30 
4 (N = 567) 651.59 0.99 0.90 0.022 [0.0073, 0.032] 0.069 0.67 0.737 1.13 
5 (N = 558) 701.17 0.98 0.88 0.028 [0.017, 0.037] 0.0742 0.66 0.735 1.26 
Wtd. Avg. 689.92 0.98 0.89 0.026 [0.018, 0.033] 0.073 0.66 0.737 1.22 

SEAvg 28.762 0.003 0.004 0.002  0.002 0.003 0.002 0.040 
Note: df = 115 

The goodness of fit statistics were then compared to those based on the calibration 

sample using a t-test to compare the difference in the point estimates. Even though the 

population distribution of these fit indices are not always normally distributed, because of 

the central limit theorem, the sampling distribution around the point estimate will always 

be normally distributed, so a two-way, two-sample t-test is appropriate for comparisons 

of the imputed data sets (Table 25).  

Table 25 
Model A2 Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value 0.40 0.00 -0.88 -0.39 -0.50 0.00 1.57 0.82 
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No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

A2 fit the validation and calibration samples equally well. I, therefore, concluded that the 

model had good convergent validity across samples. 

Analysis of Model B  

Calibration. Model B reversed the relationship specified in Model A for 

probability and rational number. In this model, misconceptions in rational number 

content filtered the influence of probability on the development of misconceptions in 

algebra and geometry. The goodness of fit indices suggested that this model fit the data 

well (Table 26).  

Table 26 
Model B Goodness of Fit Indices from Calibration Samples 
Imputation χ2

a CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 607.05 0.99 0.87 0.023 [0.008, 0.034] 0.075 0.66 0.75 1.41 
1 (N = 577) 756.98 0.97 0.87 0.032 [0.023, 0.040] 0.075 0.66 0.74 1.39 
2 (N = 553) 682.40 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.68 0.76 1.14 
3 (N = 558) 744.63 0.98 0.87 0.031 [0.021, 0.040] 0.074 0.66 0.74 1.41 
4 (N = 566) 649.92 0.98 0.88 0.026 [0.015, 0.035] 0.074 0.67 0.75 1.27 
5 (N = 575) 710.91 0.99 0.88 0.024 [0.013, 0.034] 0.071 0.67 0.75 1.25 
Wtd. Avg. 709.18 0.98 0.88 0.026 [0.017, 0.036] 0.072 0.67 0.748 1.29 

SEAvg 22.042 0.004 0.004 0.003  0.002 0.004 0.004 0.055 
Note: df = 116 

The unimputed data set called for the addition to Model B of the regression path 

from geometry to algebra (Table 27). This potential structural alteration seemed to offer 

the most substantive change to the hypothesized model. Therefore, this parameter was 

added to the model. 

Table 27 
Model B Maximum Modification Indices from Calibration Samples 

Imputation Maximum Modification Index Associated Parameter to Add 
0 165.58 BE (2, 3); Regression path from Geometry to Algebra 
1 62.53 TD (4, 1); Covariance between Item 1 and 4 errors 
2 44.08 TE (12, 7); Covariance between Item 7 and 11 errors 
3 267.85 LY(5, 1); Crossloading, Rational Number to Item 5 
4 46.16 TE(9, 4); Covariance between Item 15 and 16 errors 
5 71.34 TE(5, 4); Covariance between Item 5 and 15 errors 
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Although the addition of this parameter to Model A resulted in an unstable model, 

it did not have such an effect on Model B.Even though the parameter represented the 

same regression path, its meaning within the model was quite different from that of 

Model A. In Model A, it represented dependence of algebra misconceptions on geometry 

misconceptions above and beyond its dependence on probability misconceptions with 

rational number misconceptions acting as the independent, exogenous variable. In Model 

B, this regression pathway represented the dependence of algebra misconceptions on 

geometry misconceptions above and beyond its dependence on rational number 

misconceptions while probability misconceptions acted as the independent, exogenous 

variable. Table 28 displays the resultant model fit indices. 

Table 28 
Model B2a Goodness of Fit Indices, Regress Algebra Misconceptions on Geometry Misconceptions 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 606.20 0.99 0.87 0.024 [0.0088, 0.035] 0.075 0.65 0.740 1.42 
1 (N = 577) 756.28 0.97 0.87 0.032 [0.023, 0.041] 0.075 0.65 0.725 1.39 
2 (N = 553) 676.54 0.99 0.90 0.017 [0.000, 0.028] 0.067 0.67 0.737 1.13 
3 (N = 558) 738.19 0.98 0.87 0.031 [0.022, 0.040] 0.073 0.65 0.732 1.42 
4 (N = 566) 644.92 0.98 0.88 0.026 [0.015, 0.035] 0.073 0.66 0.735 1.27 
5 (N = 575) 703.87 0.99 0.88 0.024 [0.013, 0.034] 0.071 0.66 0.743 1.25 
Wtd. Avg. 704.19 0.98 0.88 0.026 [0.016, 0.036] 0.072 0.66 0.734 1.29 

SEAvg 22.565 0.004 0.006 0.003  0.002 0.004 0.003 0.058 
Note: df = 115 

The difference of χ2 test revealed a schism between the imputed data set averages 

and the unimputed data file. In the unimputed data file, the difference was not statistically 

significant (Δχ2
Unimputed [1] = 0.85, p = 0.357). Using the weighted average of the five 

imputed data sets, the reduction of model misfit was significant (Δχ2
Imputed Avg[1] = 4.988, 

p = 0.026). To decide whether to retain the model, I considered that the MI that began 

this calibration came from the unimputed data set. So, I expected that any schism should 

have favored the unimputed data set rather than the imputed data sets. This reversal of 

effects suggested to me that the parameter did not affect the model the way the MI 
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suggested it would and that the parameter may add instability to the model even though 

all the data sets converged. I therefore decided to reject this model change and returned to 

the original hypothesized Model B. 

Other maximum MIs from the original Model B called for the addition of a 

crossloading from Rational Number misconceptions to Item 5 and error covariances 

between Items 1 and 4, 7 and 11, 5 and 15, and 15 and 16. I found no theoretical 

foundation for co-varying Items 1 and 4, Items 7 and 11, or Items 15 and 16. Items 5 and 

15, on the other hand, both measured rational number meaning misconceptions; so, their 

covariance seemed plausible as well as the cross-loading between rational number 

misconceptions and Item 5. Since the cross-loading indicated the largest drop in model 

misfit, I chose to try it first. Table 29 displays the resultant fit indices. 

Table 29 
Model B2b Goodness of Fit Indices, Regress Item 5 on Rational Number Misconceptions 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 579.13 0.99 0.88 0.021 [0.000, 0.032] 0.075 0.66 0.743 1.36 
1 (N = 577) 755.81 0.97 0.87 0.032 [0.023, 0.041] 0.075 0.66 0.736 1.38 
2 (N = 553) 680.76 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.67 0.745 1.14 
3 (N = 558) 737.37 0.98 0.87 0.030 [0.020, 0.039] 0.074 0.66 0.743 1.38 
4 (N = 566) 630.43 0.99 0.89 0.023 [0.010, 0.033] 0.073 0.67 0.745 1.21 
5 (N = 575) 675.78 0.99 0.89 0.021 [0.0066, 0.031] 0.070 0.67 0.745 1.19 
Wtd. Avg. 696.15 0.98 0.88 0.025 [0.015, 0.035] 0.072 0.67 0.743 1.26 

SEAvg 25.285 0.004 0.005 0.003  0.002 0.003 0.002 0.056 
Note: df = 115 

The difference of χ2 test revealed a statistically significant reduction of model 

misfit for both the unimputed data file (listwise deletion) and the imputed data files (Δχ2
 

Unimputed [1] = 27.92, p < 0.0001; Δχ2
Imputed Avg[1] = 13.029, p = 0.0003). I therefore, 

retained Model B2b and examined its modification indices (Table 30). 
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Table 30 
Model B2b Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 37.03 TD (3, 1); Covariance between Item 1 and 3 errors 
1 62.45 TD (4, 1); Covariance between Item 1 and 4 errors 
2 44.22 TE (12, 7); Covariance between Item 7 and 11 errors 
3 125.79 TE (12, 6); Covariance between Item 6 and 11 errors 
4 56.68 TE (12, 10); Covariance between Item 11 and 9 errors 
5 40.62 TE (11, 10); Covariance between Item 9 and 10 errors 

 
Items 1 and 4, Items 6 and 11, and Items 7 and 11 measured different content 

areas and different underlying misconceptions, so these three pairs of error covariances 

were excluded from consideration. Items 1 and 3 measured probability content 

knowledge but did not measure the same underlying misconception — Item 1 examined 

absolute/relative comparison misconceptions while Item 3 examined meaning of rational 

number misconceptions. Likewise, Items 9 and 11 both measured geometry knowledge, 

but Item 9 measured spatial reasoning misconceptions while Item 11 measured meaning 

of variable misconceptions. Therefore, these error covariances were considered 

theoretically marginal for inclusion in the model. Items 9 and 10, however, both 

measured geometry content knowledge and spatial reasoning misconceptions, so their 

error covariance was explored for possible inclusion in the model (Table 31). 

Table 31 
Model B3 Goodness of Fit Indices, Covary Item 9 and 10 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 575.78 0.99 0.88 0.021 [0.000, 0.033] 0.074 0.65 0.731 1.35 
1 (N = 577) 724.69 0.98 0.88 0.030 [0.020, 0.039] 0.074 0.65 0.724 1.32 
2 (N = 553) 676.54 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.745 1.14 
3 (N = 558) 712.22 0.98 0.88 0.029 [0.019, 0.038] 0.072 0.65 0.724 1.35 
4 (N = 566) 622.22 0.99 0.89 0.023 [0.0095, 0.033] 0.072 0.66 0.734 1.19 
5 (N = 575) 650.53 0.99 0.89 0.020 [0.000, 0.030] 0.068 0.67 0.745 1.16 
Wtd. Avg. 677.24 0.99 0.89 0.024 [0.008, 0.016] 0.070 0.66 0.734 1.23 

SEAvg 21.237 0.003 0.003 0.003  0.002 0.005 0.005 0.048 
Note: df = 114 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 18.907, p < 0.0001). The reduction in 

model misfit, however, was significant only within a 93% confidence interval 
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(Δχ2
Unimputed [1] = 3.35, p = 0.067). Since the modification reduced a significant amount 

of misfit across the imputed data sets and nearly significant in the unimputed data sets, I 

concluded that the modification should be retained. Therefore, the modification indices 

for Model B3 were examined for further calibration (Table 32). 

Table 32 
Model B3 Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 38.01 TD (3, 1); Covariance between Item 1 and 3 errors 
1 62.40 TD (4, 1); Covariance between Item 1 and 4 errors 
2 44.31 TE (12, 7); Covariance between Item 7 and 11 errors 
3 78.97 TE (11, 7); Covariance between Item 7 and 10 errors 
4 38.25 TE (3, 2); Covariance between Item 13 and 14 errors 
5 39.06 TH (5, 8); Covariance between Item 8 and 17 errors 

 
Items 1 and 3, Items 1 and 4, and Items 13 and 14 measured similar content 

knowledge but different underlying misconceptions, so these error covariances were 

considered theoretically marginal for inclusion in the model. Items 7 and 10, Items 7 and 

11, and Items 8 and 17 measured different content knowledge and different underlying 

misconceptions, so these error covariances were considered theoretically poor for 

inclusion in the model. Therefore, I concluded that Model B3 (Figure 26) represented the 

best calibration of the hypothesized model with these data. 

 

Figure 26. Final Structural Model B3. 

Validation of Model B3. To examine the convergent validity of Model B3, the 

goodness of fit statistics were computed based on the validation sample (Table 33). 
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Table 33 
Model B3 Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 628.51 0.98 0.86 0.026 [0.011, 0.037] 0.081 0.64 0.729 1.51 
1 (N = 556) 592.18 0.99 0.90 0.018 [0.000, 0.029] 0.068 0.67 0.737 1.12 
2 (N = 580) 704.41 0.98 0.88 0.028 [0.017, 0.037] 0.074 0.66 0.735 1.25 
3 (N = 575) 755.89 0.98 0.88 0.029 [0.019, 0.038] 0.077 0.66 0.735 1.28 
4 (N = 567) 612.77 0.99 0.90 0.019 [0.000, 0.030] 0.067 0.67 0.737 1.09 
5 (N = 558) 665.66 0.98 0.89 0.026 [0.015, 0.035] 0.072 0.66 0.727 1.22 
Wtd. Avg. 665.46 0.98 0.89 0.024 [0.015, 0.032] 0.072 0.66 0.734 1.19 

SEAvg 33.392 0.003 0.005 0.003  0.002 0.003 0.002 0.041 
Note: df = 114 

The goodness of fit statistics were then compared to those based on the calibration 

sample using a t-test to compare the difference in the point estimates (Table 34).  

Table 34 
Model B3 Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed t value 0.42 0.67 -0.97 0.00 -1.00 -0.97 0.00 0.92 
 

No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

B3 fit the validation and calibration samples equally well. I, therefore, concluded that the 

model had good convergent validity across samples. 

Analysis of Model C 

Model C specified misconceptions in rational number and probability content 

areas as covarying independent variables, each directly influencing the development of 

misconceptions in algebra and geometry content areas. 

Finding a structurally stable Model C. Imputations 1, 2, and 4 for Model C would 

not converge with the hypothesized model. Using intermediate reported values as new 

starting points, the models were run several times, trying to reach convergence. Instead of 

converging, the models continued to diverge (Table 35).  
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Table 35 
Model C Goodness of Fit Indices from Calibration Samples 
Imputation χ2

a CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 603.47 0.99 0.87 0.024 [0.009, 0.035] 0.075 0.65 0.74 1.42 
1 (N = 577) Hypothesized Model Would not Converge 
2 (N = 553) Hypothesized Model Would not Converge 
3 (N = 558) 722.31 0.98 0.87 0.030 [0.020, 0.039] 0.073 0.65 0.73 1.37 
4 (N = 566) Hypothesized Model Would not Converge 
5 (N = 575) 710.29 0.99 0.88 0.025 [0.013, 0.034] 0.071 0.66 0.74 1.26 
Wtd. Avg. 716.21 0.99 0.88 0.027 [0.021, 0.033] 0.072 0.66 0.74 1.31 

SEAvg 8.500 0.007 0.007 0.004  0.001 0.007 0.007 0.078 
Note: df = 114 

An examination of the intermediate values revealed that the parameter estimates 

for the regression weights from probability to geometry, from rational number to algebra, 

and from probability to algebra differed greatly from all other estimates. Therefore, 

modifications were made to the model, starting with removing the regression pathway 

from probability to geometry. With this change, all imputations except Imputation 4 

converged (Table 36). 

Table 36 
Model C2a Calibration Samples Goodness of Fit Indices 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 603.71 0.99 0.87 0.024 [0.0084, 0.035] 0.075 0.66 0.751 1.41 
1 (N = 577) 754.77 0.97 0.87 0.033 [0.024, 0.041] 0.075 0.65 0.725 1.40 
2 (N = 553) 679.23 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.67 0.745 1.15 
3 (N = 558) 723.33 0.98 0.87 0.029 [0.019, 0.038] 0.073 0.66 0.743 1.36 
4 (N = 566) Model C2a did not Converge 
5 (N = 575) 710.32 0.99 0.88 0.025 [0.013, 0.034] 0.071 0.66 0.743 1.26 
Wtd. Avg. 717.26 0.98 0.88 0.026 [0.021, 0.031] 0.071 0.66 0.739 1.29 

SEAvg 9.220 0.008 0.008 0.003  0.002 0.000 0.006 0.074 
Note: df = 115 

Since Imputation 4 did not converge, the original hypothesized Model C was 

adjusted again by removing the regression pathway from rational number to algebra 

(Table 37).  
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Table 37 
Model C2b Calibration Samples Goodness of Fit Indices 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 606.39 0.99 0.87 0.024 [0.0098, 0.035] 0.075 0.65 0.74 1.42 
1 (N = 577) Model C2b did not Converge 
2 (N = 553) 678.18 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.75 1.15 
3 (N = 558) 762.34 0.98 0.87 0.031 [0.022, 0.040] 0.075 0.65 0.73 1.41 
4 (N = 566) 645.32 0.98 0.88 0.025 [0.014, 0.035] 0.074 0.66 0.74 1.25 
5 (N = 575) Model C2b did not Converge 
Wtd. Avg. 695.09 0.98 0.88 0.025 [0.018, 0.032] 0.072 0.66 0.737 1.27 

SEAvg 30.178 0.003 0.005 0.003  0.002 0.005 0.003 0.066 
Note: df = 115 

Since Imputations 1 and 5 did not converge, the original hypothesized Model C 

(Model C3a) was adjusted again by removing both regression pathways, rational number 

to algebra and probability to geometry (Table 38). 

Table 38 
Model C3a Fit Indices, Remove Rational Number to Algebra and Probability to Geometry Regression Paths 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 607.07 0.99 0.87 0.024 [0.0086, 0.035] 0.075 0.66 0.751 1.42 
1 (N = 577) 759.38 0.97 0.87 0.032 [0.023, 0.041] 0.075 0.66 0.736 1.40 
2 (N = 553) 679.80 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.68 0.756 1.15 
3 (N = 558) 762.49 0.98 0.87 0.031 [0.021, 0.040] 0.075 0.66 0.743 1.40 
4 (N = 566) 648.89 0.98 0.88 0.025 [0.014, 0.035] 0.074 0.67 0.746 1.26 
5 (N = 575) 727.47 0.99 0.88 0.025 [0.014, 0.035] 0.072 0.67 0.754 1.27 
Wtd. Avg. 715.85 0.98 0.88 0.026 [0.017, 0.036] 0.072 0.67 0.747 1.30 

SEAvg 24.986 0.004 0.004 0.003  0.002 0.004 0.004 0.053 
Note: df = 116 

The difference of χ2 test did not reveal statistically significant reduction of model 

misfit for either the unimputed data file (listwise deletion) or the imputed data files (Δχ2
 

Unimputed [2] = 1.61, p = 0.477; Δχ2
Imputed Avg[2] = 0.89, p > 0.5). Alternatively, the other set 

of regression pathways was removed, rational number to geometry and probability to 

algebra (Model C3b; Table 39). 
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Table 39 
Model C3b Fit Indices, Remove Rational Number to Geometry and Probability to Algebra Regression Paths 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 608.68 0.99 0.87 0.024 [0.0085, 0.035] 0.075 0.66 0.75 1.42 
1 (N = 577) 754.60 0.97 0.87 0.032 [0.023, 0.040] 0.076 0.66 0.74 1.39 
2 (N = 553) 679.95 0.99 0.89 0.017 [0.000, 0.029] 0.066 0.68 0.76 1.14 
3 (N = 558) 771.63 0.98 0.87 0.032 [0.022, 0.040] 0.075 0.66 0.74 1.43 
4 (N = 566) 652.76 0.98 0.88 0.026 [0.015, 0.035] 0.074 0.67 0.75 1.28 
5 (N = 575) 723.82 0.99 0.88 0.025 [0.014, 0.034] 0.072 0.67 0.75 1.27 
Wtd. Avg. 716.74 0.98 0.88 0.026 [0.016, 0.037] 0.073 0.67 0.747 1.30 

SEAvg 24.929 0.004 0.004 0.003  0.002 0.004 0.004 0.057 
Note: df = 116 

The difference of χ2 test did not reveal statistically significant reduction of model 

misfit for either the unimputed data file (listwise deletion) or the imputed data files (Δχ2
 

Unimputed [2] = 3.6, p = 0.165; Δχ2
Imputed Avg[2] = 5.21, p = 0.074). However, both models 

added stability across imputations, so they were deemed superior to the original 

hypothesized model. Furthermore, neither model provided a statistically better fit, so both 

were retained for the synthesizing of the structural model calibration results.  

Calibration of Model C3. Model C specified Rational Number and Probability 

Misconceptions as covarying independent variables. Model C3A specified the regression 

of Algebra on Probability Misconceptions and of Geometry on Rational Number 

Misconceptions. Model C3B specified the regression of Geometry on Probability 

Misconceptions and of Algebra on Rational Number Misconceptions. Since both models 

emerged from the original hypothesized model and neither model contained a 

significantly lower amount of model misfit, both models were calibrated using their 

respective modification indices (Table 40).  
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Table 40 
Model C3 Maximum Modification Indices from Calibration Samples 

Model, 
Imputation Maximum Modification Index Associated Parameter to Add 

Model C3-A, 0 89.94 LY(3, 2); Crossloading, Geometry to Item 7 
1 53.42 TD (4, 1); Covariance between Item 1 and 4 errors 
2 45.28 TE(8, 3); Covariance between Item 7 and 11 errors 
3 106.69 TE(8, 2); Covariance between Item 6 and 11 errors 
4 52.39 TE(8, 6); Covariance between Item 9 and 11 errors 
5 64.77 TH(9, 1); Covariance between Item 5 and 15 errors 

Model C3-B, 0 31.54 TH(1, 7); Covariance between Item 5 and 15 errors 
1 58.32 TD(4, 1); Covariance between Item 1 and 4 errors 
2 343.10 TH(6, 8); Covariance between Item 11 and 12 errors 
3 61.68 TD(4, 1); Covariance between Item 1 and 4 errors 
4 45.46 TH(9, 5); Covariance between Item 15 and 16 errors 
5 91.97 TH(9, 1); Covariance between Item 5 and 15 errors 

 
Calibration of Model C3A. No theoretical foundation supported the crossloading 

from Geometry to Item 7, the covariance between Item 1 and 4 errors, Item 7 and 11 

errors, or Item 6 and 11 errors. The covariance between Item 9 and 11 errors was 

considered theoretically marginal since those items measured the same type of content 

knowledge but different underlying misconceptions. Likewise, Items 5 and 15 measured 

the same underlying misconception (rational number meaning) but different content 

knowledge. I chose to try the covariance between Item 5 and 15 errors because the 

alignment of underlying misconceptions seemed more consistent with the present study 

purpose. Table 41 displays the goodness of fit statistics for the resultant model. 

Table 41 
Model C3Aii Goodness of Fit Indices, Covary Item 5 and 15 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 579.28 0.99 0.88 0.021 [0.000, 0.033] 0.075 0.66 0.743 1.36 
1 (N = 577) 757.67 0.97 0.87 0.032 [0.024, 0.041] 0.075 0.65 0.725 1.39 
2 (N = 553) 678.58 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.745 1.15 
3 (N = 558) 755.37 0.98 0.87 0.030 [0.020, 0.039] 0.075 0.66 0.743 1.37 
4 (N = 566) 629.57 0.99 0.89 0.023 [0.0095, 0.032] 0.073 0.67 0.745 1.20 
5 (N = 575) 687.99 0.99 0.89 0.022 [0.0087, 0.032] 0.070 0.67 0.745 1.20 
Wtd. Avg. 701.97 0.98 0.88 0.025 [0.016, 0.034] 0.072 0.66 0.741 1.26 

SEAvg 27.316 0.004 0.005 0.003  0.002 0.004 0.004 0.055 
Note: df = 115 

The difference of χ2 test revealed a statistically significant reduction of model 

misfit for both the unimputed data file (listwise deletion) and the imputed data files (Δχ2
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Unimputed [1] = 27.79, p < 0.0001; Δχ2
Imputed Avg[1] = 13.881, p = 0.0002). I therefore, 

retained Model C3Aii and examined its modification indices (Table 42). 

Table 42 
Model C3Aii Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 76.22 LY (3, 2); Crossloading between Geometry and Item 7 
1 53.02 TD (4, 1); Covariance between Item 1 and 4 errors 
2 45.29 TE (8, 3); Covariance between Item 7 and 11 errors 
3 105.95 TE (8, 2); Covariance between Item 6 and 11 errors 
4 375.57 TH (6, 3); Covariance between Item 7 and 12 errors 
5 40.75 TE (7, 6); Covariance between Item 9 and 10 errors 

 
The potential modifications of crossloading Geometry to Item 7, covarying Items 

1 and 4, Items 7 and 11, and Items 6 and 11 were considered theoretically weak because 

there was no shared content area or underlying modifications. Items 7 and 12 measured 

the same underlying misconception in different content areas, so I considered the addition 

of their covariance to be theoretically marginal. Items 9 and 10, on the other hand, 

measured the same content area and underlying misconception, so I chose to add their 

covariance to the model (Table 43). 

Table 43 
Model C3Aiii Goodness of Fit Indices, Covary Item 9 and 10 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 575.55 0.99 0.88 0.021 [0.000, 0.033] 0.074 0.65 0.731 1.36 
1 (N = 577) 726.56 0.98 0.88 0.030 [0.021, 0.039] 0.074 0.65 0.724 1.32 
2 (N = 553) 673.93 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.745 1.15 
3 (N = 558) 729.14 0.98 0.88 0.029 [0.019, 0.038] 0.073 0.65 0.724 1.34 
4 (N = 566) 621.79 0.99 0.89 0.022 [0.009, 0.032] 0.072 0.66 0.734 1.19 
5 (N = 575) 662.61 0.99 0.89 0.021 [0.005, 0.031] 0.069 0.66 0.734 1.17 
Wtd. Avg. 682.82 0.99 0.89 0.024 [0.016, 0.032] 0.071 0.66 0.732 1.23 

SEAvg 22.736 0.003 0.003 0.002  0.002 0.004 0.004 0.045 
Note: df = 114 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 19.143, p < 0.0001). The reduction in 

model misfit, however, was significant only within a 94% confidence interval for the 

unimputed data set (Δχ2
Unimputed [1] = 3.73, p = 0.053). Since the modification reduced a 

significant amount of misfit across the imputed data sets and nearly significant in the 
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unimputed data sets, I concluded that the modification should be retained. Therefore, the 

modification indices for Model C3Aiii were examined for further calibration (Table 44). 

Table 44 
Model C3Aiii Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 32.26 TD (8, 6); Covariance between Item 12 and 14 errors 
1 53.13 TD (4, 1); Covariance between Item 1 and 4 errors 
2 45.28 TE (8, 3); Covariance between Item 7 and 11 errors 
3 65.74 TE (7, 3); Covariance between Item 7 and 10 errors 
4 39.93 TD (8, 7); Covariance between Item 13 and 14 errors 
5 39.26 TH (5, 4); Covariance between Item 8 and 17 errors 

 
Of the potential modifications for Model C3Aiii, none were theoretically relevant 

except the covariance of Item 12 and 14 errors and of Item 13 and 14 errors. Both of 

these item pairs measured the same content area but different underlying misconceptions. 

Therefore, I considered these modifications to be theoretically marginal. Furthermore, the 

magnitudes of MIs appeared small relative to previous models, so I concluded that Model 

C3Aiii represented the best calibration of Model C3A for these data (Figure 27). 

 

Figure 27. Final Structural Model C3Aiii. 
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Validation of Model C3Aiii. To examine the convergent validity of Model C3Aiii, 

the goodness of fit statistics were computed based on the validation sample (Table 45).  

Table 45 
Model C3Aiii Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 626.37 0.98 0.86 0.026 [0.012, 0.037] 0.081 0.64 0.729 1.52 
1 (N = 556) 615.57 0.99 0.89 0.020 [0.000, 0.030] 0.070 0.67 0.745 1.14 
2 (N = 580) 727.21 0.98 0.88 0.029 [0.019, 0.037] 0.076 0.66 0.735 1.27 
3 (N = 575) 753.28 0.98 0.88 0.029 [0.019, 0.038] 0.077 0.66 0.735 1.28 
4 (N = 567) 639.74 0.99 0.90 0.021 [0.0064, 0.031] 0.068 0.67 0.737 1.12 
5 (N = 558) 687.05 0.98 0.88 0.027 [0.017, 0.037] 0.073 0.66 0.735 1.25 
Wtd. Avg. 683.92 0.98 0.89 0.025 [0.018, 0.032] 0.073 0.664 0.737 1.21 

SEAvg 28.851 0.003 0.004 0.002  0.002 0.003 0.002 0.038 
Note: df = 114 

The goodness of fit statistics were then compared to those based on the calibration 

sample using a t-test to compare the difference in the point estimates (Table 46).  

Table 46 
Model C3Aiii Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value -0.04 0.67 0.00 -0.50 -1.00 -1.70 -1.58 0.55 
 

No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

C3Aiii fit the validation and calibration samples equally well. I, therefore, concluded that 

the model had good convergent validity across samples. 

Calibration of Model C3B. The potential modifications of covarying Item 11 and 

12 errors, Item 1 and 4 errors, and Items 15 and 16 errors were considered theoretically 

weak because they did not measure the same content knowledge or underlying 

misconception. Because Items 5 and 15 measured the same underlying misconception, 

the covariance of their errors was added to the model (Table 47). 
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Table 47 
Model C3Bii Goodness of Fit Indices, Covary Item 5 and 15 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 580.28 0.99 0.88 0.021 [0.000, 0.033] 0.075 0.66 0.743 1.36 
1 (N = 577) 752.43 0.97 0.87 0.032 [0.023, 0.041] 0.075 0.66 0.736 1.31 
2 (N = 553) 678.98 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.67 0.745 1.14 
3 (N = 558) 764.96 0.98 0.87 0.031 [0.021, 0.040] 0.075 0.65 0.732 1.40 
4 (N = 566) 630.49 0.99 0.89 0.023 [0.0099, 0.033] 0.073 0.67 0.745 1.20 
5 (N = 575) 687.72 0.99 0.89 0.022 [0.0083, 0.032] 0.070 0.67 0.745 1.20 
Wtd. Avg. 703.00 0.98 0.88 0.025 [0.015, 0.035] 0.072 0.66 0.741 1.25 

SEAvg 27.783 0.004 0.005 0.003  0.002 0.004 0.003 0.052 
Note: df = 115 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 28.4, p < 0.0001; Δχ2

Imputed Avg[1] = 13.741, p = 0.0002). Therefore, 

Model C3Bii was retained, and the modification indices were examined (Table 48). 

Table 48 
Model C3Bii Maximum Modification Indices 
Imputation Maximum Modification Index Associated Parameter to Add 

0 32.22 TH (1, 7); Covariance between Item 1 and 10 errors 
1 58.08 TD (4, 1); Covariance between Item 1 and 4 errors 
2 127.66 TH (6, 8); Covariance between Item 11 and 12 errors 
3 61.75 TD (4, 1); Covariance between Item 1 and 4 errors 
4 37.65 TD (8, 7); Covariance between Item 13 and 14 errors 
5 52.48 TH (8, 1); Covariance between Item 5 and 14 errors 

 
Items 1 and 10, Items 1 and 4, Items 5 and 14, and Items 11 and 12 measured 

different content knowledge and underlying misconceptions, so they were discarded as 

potential modifications. Items 13 and 14, on the other hand, both measured rational 

number content while examining different underlying misconceptions. In this case, the 

underlying misconceptions were rational number meaning and absolute/relative 

comparisons, and both examined rational number content. The relationship between these 

two misconceptions, therefore, warranted the addition of this covariance parameter to the 

model (Table 49). 
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Table 49 
Model C3Biii Goodness of Fit Indices, Covary Item 13 and 14 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 579.49 0.99 0.88 0.022 [0.000, 0.033] 0.075 0.65 0.73 1.36 
1 (N = 577) 751.81 0.97 0.87 0.032 [0.024, 0.041] 0.075 0.65 0.72 1.38 
2 (N = 553) 678.80 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.75 1.14 
3 (N = 558) 764.66 0.98 0.87 0.031 [0.022, 0.040] 0.075 0.65 0.73 1.40 
4 (N = 566) 592.02 0.99 0.89 0.019 [0.000, 0.030] 0.071 0.67 0.75 1.14 
5 (N = 575) 686.72 0.99 0.89 0.022 [0.0093, 0.032] 0.070 0.66 0.73 1.21 
Wtd. Avg. 694.87 0.98 0.88 0.025 [0.014, 0.035] 0.071 0.66 0.736 1.25 

SEAvg 34.474 0.004 0.005 0.003  0.002 0.005 0.007 0.064 
Note: df = 114 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 8.121, p = 0.004). The reduction in 

model misfit, however, was non-significant for the unimputed data (Δχ2
Unimputed [1] = 

0.79, p = 0.374). Furthermore, the ECVI values increased, suggesting that whatever 

model misfit was eliminated by the new parameter was the result of overfitting the model 

to a sample. Therefore, I removed this parameter and retained Model C3Bii as the best 

calibration of this model for these data (Figure 28). 

 

Figure 28. Final Structural Model C3Bii. 
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Validation of Model C3Bii. To examine the convergent validity of Model C3Aiii, 

the goodness of fit statistics were computed based on the validation sample (Table 50).  

Table 50 
Model C3Bii Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 627.99 0.98 0.86 0.025 [0.0093, 0.036] 0.081 0.65 0.741 1.50 
1 (N = 556) 611.02 0.99 0.89 0.019 [0.000, 0.030] 0.070 0.67 0.745 1.13 
2 (N = 580) 754.73 0.98 0.88 0.029 [0.020, 0.038] 0.077 0.66 0.735 1.30 
3 (N = 575) 764.78 0.98 0.88 0.029 [0.020, 0.038] 0.078 0.66 0.735 1.30 
4 (N = 567) 641.47 0.99 0.90 0.020 [0.0037, 0.031] 0.068 0.67 0.737 1.11 
5 (N = 558) 698.49 0.98 0.88 0.027 [0.017, 0.037] 0.074 0.66 0.735 1.26 
Wtd. Avg. 693.31 0.98 0.89 0.025 [0.017, 0.033] 0.073 0.66 0.737 1.22 

SEAvg 33.881 0.003 0.004 0.002  0.002 0.003 0.002 0.047 
Note: df = 115 

The goodness of fit statistics were then compared to those from the calibration 

sample using a t-test to compare the difference in the point estimates (Table 51).  

Table 51 
Model C3Bii Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value 0.31 0.00 -0.88 0.00 -0.50 0.00 1.57 0.63 
 

No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

C3Bii fit the validation and calibration samples equally well. I, therefore, concluded that 

the model had good convergent validity across samples. 

Analysis of Model D 

Calibration. The original hypothesized Model D specified Rational Number 

Misconceptions as the sole independent variable with Probability, Algebra, and Geometry 

Misconceptions acting as dependent variables. The goodness of fit indices indicated an 

excellent fit (Table 52).  
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Table 52 
Model D Goodness of Fit Indices from Calibration Samples 
Imputation χ2

a CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 607.05 0.99 0.87 0.023 [0.008, 0.034] 0.075 0.66 0.751 1.41 
1 (N = 577) 756.98 0.97 0.87 0.032 [0.023, 0.040] 0.075 0.66 0.736 1.39 
2 (N = 553) 682.40 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.68 0.756 1.14 
3 (N = 558) 744.63 0.98 0.87 0.031 [0.021, 0.040] 0.074 0.66 0.743 1.41 
4 (N = 566) 649.92 0.98 0.88 0.026 [0.015, 0.035] 0.074 0.67 0.746 1.27 
5 (N = 575) 710.91 0.99 0.88 0.024 [0.013, 0.034] 0.071 0.67 0.754 1.25 
Wtd. Avg. 709.18 0.98 0.88 0.026 [0.017, 0.036] 0.072 0.67 0.747 1.29 

SEAvg 22.042 0.004 0.004 0.003  0.002 0.004 0.004 0.055 
Note: df = 116 

The maximum MIs for Model D called for the addition of several error covariance 

terms (Table 53). 

Table 53 
Model D Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 37.24 TE(3,1); Covariance between Item 1 and 3 errors 
1 62.53 TE(4,1); Covariance between Item 1 and 4 errors 
2 44.08 TE(13,8); Covariance between Item 7 and 11 errors 
3 113.58 TE(13,7); Covariance between Item 6 and 11 errors 
4 46.16 TH(4, 10); Covariance between Item 15 and 16 errors 
5 71.34 TH(4, 6); Covariance between Item 5 and 15 errors 

 
The covariances of the error terms for Items 7 and 11, Items 6 and 11, and Items 

15 and 16 were considered theoretically weak because they shared neither common 

content knowledge nor underlying misconception. The covariances of the error terms for 

Items 1 and 3 and Items 1 and 4 were considered theoretically marginal because they 

measured the same content knowledge but not the same underlying misconception. The 

covariance of the error terms for Items 5 and 15 was also considered theoretically 

marginal because the items measured the same underlying misconception but not the 

same content knowledge. To decide whether to add a parameter, and if so, which one, I 

also considered that Item 3 measured Rational Number Meaning misconceptions while 

Item 1 measured Absolute/Relative Comparison misconceptions, two misconceptions that 

are closely related. Finally, I considered that the covariance of Items 5 and 15 had been 

used in previous models to reduce a statistically significant amount of model misfit, that 
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the MI for Items 5 and 15 was the second highest across the data sets, and that the MI for 

Items 1 and 3 was the lowest across the data sets. Therefore, I chose to add the 

covariance between Item 5 and 15 error terms to Model D (Table 54). 

Table 54 
Model D2 Goodness of Fit Indices, Covary Item 5and 15 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 579.13 0.99 0.88 0.021 [0.000, 0.032] 0.075 0.66 0.743 1.36 
1 (N = 577) 755.81 0.97 0.87 0.032 [0.023, 0.041] 0.075 0.66 0.736 1.38 
2 (N = 553) 680.76 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.67 0.745 1.14 
3 (N = 558) 737.37 0.98 0.87 0.030 [0.020, 0.039] 0.074 0.66 0.743 1.38 
4 (N = 566) 630.43 0.99 0.89 0.023 [0.010, 0.033] 0.073 0.67 0.745 1.21 
5 (N = 575) 675.78 0.99 0.89 0.021 [0.0066, 0.031] 0.070 0.67 0.745 1.19 
Wtd. Avg. 696.15 0.98 0.88 0.025 [0.015, 0.035] 0.072 0.67 0.743 1.26 

SEAvg 25.285 0.004 0.005 0.003  0.002 0.003 0.002 0.056 
Note: df = 115 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 27.92, p < 0.0001; Δχ2

Imputed Avg[1] = 13.031, p = 0.0003). Therefore, 

Model D2 was retained, and the modification indices were examined (Table 55). 

Table 55 
Model D2 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 37.03 TE(3,1); Covariance between Item 1 and 3 errors 
1 62.45 TE(4,1); Covariance between Item 1 and 4 errors 
2 44.22 TE(13,8); Covariance between Item 7 and 11 errors 
3 125.79 TE(13,7); Covariance between Item 6 and 11 errors 
4 56.68 TE(13, 11); Covariance between Item 9 and 11 errors 
5 40.62 TE(12, 11); Covariance between Item 9 and 10 errors 

 
The covariance of Item 9 and 10 error terms offered the theoretically strongest 

adjustment to Model D2. Table 56 displays the goodness of fit statistics for the new 

model resulting from this parameter (Model D3). 
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Table 56 
Model D3 Goodness of Fit Indices, Covary Item 9 and 10 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 575.78 0.99 0.88 0.021 [0.000, 0.033] 0.074 0.65 0.731 1.35 
1 (N = 577) 724.69 0.98 0.88 0.030 [0.020, 0.039] 0.074 0.65 0.724 1.32 
2 (N = 553) 676.54 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.67 0.745 1.14 
3 (N = 558) 712.22 0.98 0.88 0.029 [0.019, 0.038] 0.072 0.65 0.724 1.35 
4 (N = 566) 622.22 0.99 0.89 0.023 [0.0095, 0.033] 0.072 0.66 0.734 1.19 
5 (N = 575) 650.53 0.99 0.89 0.020 [0.000, 0.030] 0.068 0.67 0.745 1.16 
Wtd. Avg. 677.24 0.99 0.89 0.024 [0.016, 0.033] 0.070 0.66 0.734 1.23 

SEAvg 21.237 0.003 0.003 0.003  0.002 0.005 0.005 0.048 
Note: df = 114 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 18.907, p < 0.0001). The reduction in 

model misfit, however, was significant only within a 93% confidence interval for the 

unimputed data set (Δχ2
Unimputed [1] = 3.35, p = 0.067). To decide whether to retain the 

model, I considered three characteristics of the analysis: (1) The large amount of model 

misfit removed across the imputed data sets, (2) The proximity of the significance level 

of the unimputed data set to a 95% confidence interval, and (3) The theoretical strength 

of the additional parameter. I concluded, therefore, that the modification should be 

retained and the modification indices for Model D3 were examined for further calibration 

(Table 57). 

Table 57 
Model D3 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 2268.68 LY (1,3); Crossloading, Geometry to Item 1 
1 62.40 TE(4,1); Covariance between Item 1 and 4 errors 
2 44.31 TE(13,8); Covariance between Item 7 and 11 errors 
3 78.97 TE(12,8); Covariance between Item 7 and 10 errors 
4 38.25 TD(3, 2); Covariance between Item 13 and 14 errors 
5 39.06 TE(9, 5); Covariance between Item 8 and 17 errors 

 
I found no theoretical support for adding the crossloading from geometry to Item 

1; furthermore, the size of the MI exceeded the total amount of misfit in the model, so 

this MI was disregarded. The addition of the covariances between Items 1 and 4, Items 7 

and 11, Items 7 and 10, and Items 8 and 17 were also disregarded as theoretically weak 
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because each pair of items measured different content knowledge and underlying 

misconception. Items 13 and 14, however, measured the same content knowledge, so 

their error covariance was considered theoretically plausible, and the parameter was 

added to the model. Table 58 displays the goodness of fit statistics for the resultant model 

(Model D4). 

Table 58 
Model D4 Goodness of Fit Indices, Covary Item 13 and 14 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 574.99 0.99 0.88 0.022 [0.000, 0.033] 0.074 0.65 0.731 1.36 
1 (N = 577) 724.59 0.98 0.88 0.030 [0.021, 0.039] 0.074 0.65 0.724 1.32 
2 (N = 553) 676.08 0.99 0.89 0.019 [0.000, 0.030] 0.066 0.66 0.734 1.14 
3 (N = 558) 711.55 0.98 0.88 0.029 [0.019, 0.038] 0.072 0.65 0.724 1.35 
4 (N = 566) 583.40 0.99 0.90 0.019 [0.000, 0.030] 0.070 0.66 0.726 1.13 
5 (N = 575) 649.62 0.99 0.89 0.020 [0.0036, 0.031] 0.068 0.66 0.734 1.16 
Wtd. Avg. 669.05 0.99 0.89 0.023 [0.014, 0.033] 0.070 0.66 0.728 1.22 

SEAvg 28.122 0.003 0.004 0.003  0.002 0.003 0.003 0.053 
Note: df = 113 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 8.194, p = 0.004). The reduction in 

model misfit, however, was non-significant for the unimputed data (Δχ2
Unimputed [1] = 

0.79, p = 0.374). Therefore, D4 was discarded; and as a result of no other theoretically 

reasonable MIs, Model D3 was retained as the best calibration of Model D for these data 

(Figure 29). 
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Figure 29. Final Structural Model D3. 

Validation of Model D3. To examine the convergent validity of Model D3, the 

goodness of fit statistics were computed based on the validation sample (Table 59).  

Table 59 
Model D3 Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 628.51 0.98 0.86 0.026 [0.011, 0.037] 0.081 0.64 0.729 1.51 
1 (N = 556) 592.18 0.99 0.90 0.018 [0.000, 0.029] 0.068 0.67 0.737 1.12 
2 (N = 580) 704.41 0.98 0.88 0.028 [0.017, 0.037] 0.074 0.66 0.735 1.25 
3 (N = 575) 755.89 0.98 0.88 0.029 [0.019, 0.038] 0.077 0.66 0.735 1.28 
4 (N = 567) 612.77 0.99 0.90 0.019 [0.000, 0.030] 0.067 0.67 0.737 1.09 
5 (N = 558) 665.66 0.98 0.89 0.0267 [0.015, 0.035] 0.072 0.66 0.727 1.22 
Wtd. Avg. 665.46 0.98 0.89 0.024 [0.015, 0.033] 0.072 0.66 0.734 1.19 

SEAvg 33.392 0.003 0.005 0.003  0.002 0.003 0.002 0.041 
Note: df = 114 

The goodness of fit statistics were then compared to those from the calibration 

sample using a t-test to compare the difference in the point estimates (Table 60).  

Table 60 
Model D3 Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value 0.42 0.68 -1.00 -0.03 -0.77 -1.00 -0.05 0.91 
 

No statistic from the imputed data sets was significantly different for the 
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calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

D3 fit the validation and calibration samples equally well. I, therefore, concluded that the 

model had good convergent validity across samples. 

Analysis of Model E 

Calibration. Model E reversed the relationship between probability and rational 

numbers from Model D, specifying misconceptions in probability as the independent 

variable with misconceptions in rational number, algebra, and geometry acting as 

dependent variables. The goodness of fit indices suggested that the Model E fit the 

calibration data very well (Table 61). 

Table61 
Model E Goodness of Fit Indices from Calibration Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 606.76 0.99 0.87 0.024 [0.009, 0.035] 0.075 0.66 0.751 1.42 
1 (N = 577) 751.43 0.98 0.87 0.031 [0.022, 0.040] 0.076 0.66 0.743 1.37 
2 (N = 553) 680.20 0.99 0.89 0.018 [0.000, 0.029] 0.066 0.68 0.734 1.15 
3 (N = 558) 778.03 0.98 0.87 0.032 [0.023, 0.041] 0.076 0.66 0.743 1.44 
4 (N = 566) 646.52 0.99 0.88 0.025 [0.014, 0.034] 0.074 0.67 0.765 1.25 
5 (N = 575) 716.60 0.99 0.88 0.025 [0.013, 0.034] 0.072 0.67 0.743 1.25 
Wtd. Avg. 714.68 0.99 0.88 0.026 [0.017, 0.035] 0.073 0.67 0.746 1.29 

SEAvg 26.460 0.003 0.004 0.003  0.002 0.004 0.006 0.057 
Note: df = 116 

The maximum modification indices for Model E called for the addition of 

covariance parameters between the error terms for Items 5 and 15, Items 7 and 12, Items 

6 and 12, and Items 13 and 14 (Table 62). 

Table 62 
Model E Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 33.17 TE(5, 4); Covariance between Item 5 and 15 errors 
1 339.07 TE(7, 1); Covariance between Item 7 and 12 errors 
2 42.79 TE(6, 1); Covariance between Item 6 and 12 errors 
3 894.64 TE(6, 1); Covariance between Item 6 and 12 errors 
4 68.22 TE(3, 2); Covariance between Item 13 and 14 errors 
5 361.69 TE(5, 4); Covariance between Item 5 and 15 errors 
 
The item pairs Items 6 and 12, Items 7 and 12, and Items 5 and 15 measured the 

same underlying misconception, so they were considered theoretically plausible. Item 13 
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and 14 measured the same content knowledge, so it was also considered theoretically 

plausible. Because the highest MI called for the addition of the error covariance between 

Items 6 and 12 and because that MI was called for by two data sets, I chose to disregard 

the fact that the highest MI was also larger than the total unaccounted variance in the 

model and added this parameter first (Table 63). 

Table 63 
Model E2 Goodness of Fit Indices from Calibration Samples, Covary Item 6 and 12 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 598.94 0.99 0.87 0.024 [0.0097, 0.035] 0.074 0.65 0.740 1.42 
1 (N = 577) 729.62 0.98 0.87 0.031 [0.022, 0.040] 0.074 0.66 0.743 1.36 
2 (N = 553) 633.47 0.99 0.90 0.017 [0.000, 0.028] 0.065 0.67 0.737 1.13 
3 (N = 558) 761.00 0.98 0.87 0.032 [0.023, 0.041] 0.076 0.65 0.732 1.43 
4 (N = 566) 632.07 0.99 0.89 0.024 [0.013, 0.034] 0.073 0.67 0.745 1.24 
5 (N = 575) 704.59 0.99 0.88 0.024 [0.013, 0.034] 0.071 0.66 0.743 1.25 
Wtd. Avg. 692.41 0.99 0.88 0.026  0.072 0.66 0.740 1.28 

SEAvg 28.888 0.003 0.007 0.003  0.002 0.004 0.003 0.058 
Note: df = 115 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 7.82, p = 0.005; Δχ2

Imputed Avg[1] = 22.274, p < 0.0001). Therefore, 

Model E2 was retained, and the modification indices were examined (Table 64). 

Table 64 
Model E2 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 36.16 TE(7, 6); Covariance between Item 6 and 7 errors 
1 68.61 LY(5, 1); Crossloading, Rational Number to Item 5 
2 42.79 TE(6, 1); Covariance between Item 6 and 12 errors 
3 420.34 TE(7, 5); Covariance between Item 5 and 7 errors 
4 67.67 TE(3, 2); Covariance between Item 13 and 14 errors 
5 289.01 TE(5, 4); Covariance between Item 5 and 15 errors 
 
The error covariance of Items 6 and 12 was rejected as theoretically implausible 

because the two items shared neither content area or underlying misconception. Items 13 

and 14, Items 5 and 15, and Items 5 and 7 were considered theoretically plausible 

because each pair shared content area while measuring different underlying 

misconceptions. The error covariance between Items 6 and 7 offered the theoretically 
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strongest MI; both items measured the same content area and underlying misconception. 

So, although the MI for this parameter was the smallest across the data sets, I chose to 

add it to the model next (Table 65).  

Table 65 
Model E3 Goodness of Fit Indices from Calibration Samples, Covary Item 6 and 7 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 592.29 0.99 0.87 0.024 [0.0084, 0.035] 0.074 0.65 0.740 1.41 
1 (N = 577) 705.52 0.98 0.88 0.030 [0.021, 0.039] 0.074 0.65 0.724 1.34 
2 (N = 553) 627.37 0.99 0.90 0.016 [0.000, 0.028] 0.065 0.67 0.737 1.12 
3 (N = 558) 752.80 0.98 0.87 0.032 [0.023, 0.041] 0.075 0.65 0.732 1.42 
4 (N = 566) 629.14 0.99 0.89 0.025 [0.013, 0.034] 0.073 0.66 0.734 1.23 
5 (N = 575) 700.17 0.99 0.88 0.024 [0.013, 0.034] 0.071 0.66 0.743 1.24 
Wtd. Avg. 683.20 0.99 0.88 0.025  0.072 0.66 0.734 1.27 

SEAvg 27.007 0.003 0.006 0.003  0.002 0.004 0.003 0.057 
Note: df = 114 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 6.65, p = 0.010; Δχ2

Imputed Avg[1] = 9.21, p < 0.002). Therefore, Model 

E3 was retained, and the modification indices were examined (Table 66). 

Table 66 
Model E3 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 45.07 TE(12, 10); Covariance between Item 9 and 11 errors 
1 81.17 LY(7, 1); Crossloading, Rational Number to Item 7 
2 90.93 TE(12, 1); Covariance between Item 11 and 12 errors 
3 1423.41 TE(5, 1); Covariance between Item 5 and 12 errors 
4 131.15 TE(4, 1); Covariance between Item 12 and 15 errors 
5 186.00 TE(5, 4); Covariance between Item 5 and 15 errors 
 
The crossloading from rational number to Item 7 along with the error covariances 

of Items 5 and 12 and Items 11 and 12 were considered theoretically weak (i.e., no 

matching content knowledge or underlying misconception). The error covariances of 

Items 9 and 11 and Items 12 and 15 were considered theoretically plausible because each 

pair measured the same content knowledge or underlying misconception. The error 

covariance of Items 5 and 15 was considered the strongest plausible modification because 

each item measured rational number meaning misconceptions. Table 67 displays the 
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goodness of fit indices for the model resulting from the addition of this parameter. 

Table 67 
Model E4 Goodness of Fit Indices from Calibration Samples, Covary Item 5 and 15 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 561.19 0.99 0.88 0.021 [0.000, 0.032] 0.073 0.65 0.731 1.34 
1 (N = 577) 703.79 0.98 0.88 0.031 [0.021, 0.039] 0.074 0.65 0.724 1.33 
2 (N = 553) 626.72 0.99 0.90 0.017 [0.000, 0.029] 0.064 0.66 0.726 1.12 
3 (N = 558) 744.57 0.98 0.87 0.031 [0.021, 0.040] 0.075 0.64 0.721 1.39 
4 (N = 566) 609.20 0.99 0.89 0.022 [0.0074, 0.032] 0.072 0.66 0.734 1.17 
5 (N = 575) 661.25 0.99 0.89 0.021 [0.0055, 0.031] 0.069 0.66 0.734 1.17 
Wtd. Avg. 669.20 0.99 0.89 0.024 [0.014, 0.035] 0.071 0.66 0.728 1.24 

SEAvg 27.777 0.003 0.006 0.003  0.002 0.004 0.003 0.058 
Note: df = 113 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 31.1, p < 0.0001; Δχ2

Imputed Avg[1] = 14.003, p = 0.0002). Therefore, 

Model E4 was retained, and the modification indices were examined (Table 68). 

Table 68 
Model E4 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 32.06 TH(1, 11); Covariance between Item 1 and 10 errors 
1 439.59 LY(7, 1); Crossloading, Rational Number to Item 7 
2 83.13 TE(12, 1); Covariance between Item 11 and 12 errors 
3 310.83 TH(2, 6); Covariance between Item 2 and 6 errors 
4 76.70 TE(6, 5); Covariance between Item 5 and 6 errors 
5 37.32 TH(5, 8); Covariance between Item 8 and 17 errors 

 
None of the potential modifications to the model were theoretically plausible 

except for the error covariance between Items 5 and 6, which both measured algebra 

content knowledge. Therefore, the goodness of fit statistics for the resultant model were 

examined (Table 69). 
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Table 69 
Model E5 Goodness of Fit Indices from Calibration Samples, Covary Item 5 and 6 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 545.31 0.99 0.88 0.020 [0.000, 0.032] 0.073 0.65 0.731 1.32 
1 (N = 577) 695.07 0.98 0.88 0.031 [0.021, 0.039] 0.076 0.64 0.713 1.32 
2 (N = 553) 602.29 0.99 0.90 0.016 [0.000, 0.028] 0.065 0.66 0.726 1.10 
3 (N = 558) 736.66 0.98 0.87 0.031 [0.021, 0.040] 0.074 0.64 0.721 1.37 
4 (N = 566) 587.68 0.99 0.89 0.021 [0.0041, 0.031] 0.071 0.65 0.723 1.15 
5 (N = 575) 655.41 0.99 0.89 0.021 [0.0054, 0.031] 0.069 0.65 0.723 1.16 
Wtd. Avg. 655.59 0.99 0.89 0.024 [0.013, 0.035] 0.071 0.65 0.721 1.22 

SEAvg 31.209 0.003 0.006 0.003  0.002 0.004 0.002 0.059 
Note: df = 112 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 15.88, p < 0.0001; Δχ2

Imputed Avg[1] = 13.606, p = 0.0002). Therefore, 

Model E5 was retained, and the modification indices were examined (Table 70). 

Table 70 
Model E5 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 32.97 TH(1, 11); Covariance between Item 1 and 10 errors 
1 56.44 TD(4, 1); Covariance between Item 1 and 4 errors 
2 95.82 TE(11, 1); Covariance between Item 10 and 12 errors 
3 83.26 TE(5, 1); Covariance between Item 5 and 12 errors 
4 63.65 TE(3, 2); Covariance between Item 13 and 14 errors 
5 37.17 TE(11, 10); Covariance between Item 9 and 10 errors 
 
The error covariances between Items 1 and 10, Items 1 and 4, Items 10 and 12, 

and Items 5 and 12 were considered theoretically weak because the item pairs did not 

measure the same content knowledge or underlying misconception. The error covariance 

between Items 13 and 14 seemed theoretically plausible because both items measured 

rational number content knowledge, and both underlying misconceptions were related 

(i.e., absolute/relative comparison and rational number meaning misconceptions). The 

error covariance between Items 9 and 10 seemed the strongest theoretically because both 

items measured the same content area (geometry) and the same underlying misconception 

(spatial reasoning). The goodness of fit indices for the resultant model were therefore 

computed (Table 71). 
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Table 71 
Model E6 Goodness of Fit Indices from Calibration Samples, Covary Item 9 and 10 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 542.33 0.99 0.88 0.020 [0.000, 0.032] 0.072 0.64 0.720 1.31 
1 (N = 577) 663.77 0.98 0.88 0.028 [0.018, 0.037] 0.074 0.64 0.713 1.26 
2 (N = 553) 597.31 0.99 0.90 0.016 [0.000, 0.028] 0.065 0.65 0.715 1.10 
3 (N = 558) 713.58 0.98 0.88 0.030 [0.020, 0.039] 0.073 0.64 0.713 1.35 
4 (N = 566) 579.89 0.99 0.90 0.020 [0.0024, 0.031] 0.070 0.65 0.715 1.13 
5 (N = 575) 630.88 0.99 0.90 0.020 [0.000, 0.030] 0.068 0.65 0.715 1.13 
Wtd. Avg. 637.14 0.99 0.89 0.023 [0.013, 0.033] 0.070 0.65 0.714 1.19 

SEAvg 26.757 0.003 0.005 0.003  0.002 0.003 0.001 0.053 
Note: df = 111 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 18.455, p < 0.0001). The reduction in 

model misfit for the unimputed data, however, was only significant at the 91% 

confidence level (Δχ2
Unimputed [1] = 2.98, p = 0.084). I considered four criteria to 

determine that the model should be retained: (1) The unimputed data model was nearly 

significant and clearly no worse than the previous model, (2) The modification removed a 

large amount of misfit compared to the 95% CI critical value of four in the imputed 

model, (3) The expected cross validation values were smaller, so the addition of the 

parameter did not likely overfit to the sample, and (4) Three GFI values reached the 

recommended 0.90 cutoff despite non-normality. I therefore retained Model E6 and 

examined its modification indices (Table 72). 

Table 72 
Model E6 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 45.00 TE(11, 1); Covariance between Item 10 and 12 errors 
1 56.41 TD(4, 1); Covariance between Item 1 and 4 errors 
2 284.54 TE(11, 1); Covariance between Item 10 and 12 errors 
3 67.47 TD(4, 1); Covariance between Item 1 and 4 errors 
4 62.24 TE(8, 6); Covariance between Item 6 and 8 errors 
5 37.29 TH(5, 8); Covariance between Item 8 and 17 errors 
 
The error covariances between Items 10 and 12, Items 1 and 4, and Items 8 and 

17, were considered theoretically weak because the item pairs did not measure the same 

content knowledge or underlying misconception. The error covariance between Items 6 



 

182 

and 8 seemed theoretically plausible because both items measured algebra content 

knowledge, so the parameter was added to the model, and the goodness of fit indices for 

the resultant model were computed (Table 73). 

Table 73 
Model E7 Goodness of Fit Indices from Calibration Samples, Covary Item 6 and 8 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 527.60 0.99 0.88 0.020 [0.000, 0.032] 0.070 0.63 0.709 1.31 
1 (N = 577) 648.02 0.98 0.89 0.028 [0.017, 0.037] 0.072 0.64 0.705 1.25 
2 (N = 553) 595.06 0.99 0.90 0.016 [0.000, 0.028] 0.064 0.65 0.715 1.09 
3 (N = 558) 697.44 0.98 0.88 0.031 [0.021, 0.040] 0.073 0.63 0.702 1.36 
4 (N = 566) 540.98 0.99 0.90 0.019 [0.000, 0.030] 0.069 0.65 0.715 1.11 
5 (N = 575) 618.79 0.99 0.90 0.020 [0.0027, 0.031] 0.067 0.64 0.704 1.14 
Wtd. Avg. 620.06 0.99 0.89 0.023 [0.012, 0.033] 0.069 0.64 0.708 1.19 

SEAvg 29.208 0.003 0.004 0.003  0.002 0.004 0.003 0.057 
Note: df = 110 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit for both the unimputed data set (listwise deletion) and the imputed data sets 

(Δχ2
Unimputed [1] = 14.73, p = 0.0001; Δχ2

Imputed Avg[1] = 17.077, p < 0.0001). Therefore, 

Model E7 was retained, and the modification indices were examined (Table 74). 

Table 74 
Model E7 Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 58.10 TE(9, 6); Covariance between Item 6 and 16 errors 
1 106.31 TE(6, 4); Covariance between Item 6 and 15 errors 
2 167.49 TE(11, 1); Covariance between Item 10 and 12 errors 
3 74.35 TE(5, 1); Covariance between Item 5 and 12 errors 
4 64.56 TE(3, 2); Covariance between Item 13 and 14 errors 
5 47.35 TH(5, 8); Covariance between Item 8 and 17 errors 
 
The potential addition of the error covariances for Items 6 and 15, Items 10 and 

12, Items 5 and 12, and Items 8 and 17 were discarded because each pair measured 

different content knowledge and underlying misconceptions. Items 13 and 14 and Items 6 

and 16, on the other hand, measured the same content knowledge. I differentiated 

between the two error covariances by considering four characteristics: (1) The covariance 

of Items 13 and 14 had significantly reduced model misfit in previous models, (2) The 

underlying misconceptions for Items 13 and 14 were related (absolute/relative 
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comparison and rational number meaning), (3) The MI for the error covariance of Items 

13 and 14 was higher than for Items 6 and 16, and (4) The MI for the error covariance of 

Items 6 and 16 came from the unimputed data set. Since three of the four characteristics 

favored the addition of the error covariance for Items 13 and 14, this parameter was 

added to the model, and the goodness of fit indices were computed (Table 75). 

Table 75 
Model E8 Goodness of Fit Indices from Calibration Samples, Covary Item 13 and 14 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 526.90 0.99 0.88 0.020 [0.000, 0.032] 0.070 0.63 0.709 1.31 
1 (N = 577) 645.67 0.98 0.89 0.028 [0.018, 0.037] 0.072 0.63 0.694 1.25 
2 (N = 553) 594.35 0.99 0.90 0.017 [0.000, 0.029] 0.064 0.64 0.704 1.10 
3 (N = 558) 696.54 0.98 0.88 0.031 [0.021, 0.040] 0.073 0.62 0.690 1.36 
4 (N = 566) 506.12 1.00 0.90 0.015 [0.000, 0.027] 0.067 0.64 0.711 1.05 
5 (N = 575) 618.69 0.99 0.90 0.021 [0.0048, 0.031] 0.067 0.64 0.704 1.15 
Wtd. Avg. 612.27 0.99 0.89 0.022 [0.011, 0.034] 0.069 0.63 0.701 1.18 

SEAvg 35.220 0.004 0.004 0.003  0.002 0.004 0.004 0.062 
Note: df = 109 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 7.791, p = 0.005). The reduction in 

model misfit, however, was non-significant for the unimputed data (Δχ2
Unimputed [1] = 

0.70, p = 0.403). To reconcile this difference of significance, I considered that, although 

the imputed data showed a statistically significant change, only one of the data sets 

(Imputation 4) accounted for the change across all five data sets. Consequently, I 

discarded Model E8 and computed the goodness of fit indices for a re-adjusted Model E7 

with its other theoretically reasonable MI, the error covariance of Items 6 and 16 (Table 

76). 
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Table 76 
Model E8ii Goodness of Fit Indices from Calibration Samples, Covary Item 6 and 16 Errors 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 523.83 0.99 0.88 0.020 [0.000, 0.032] 0.070 0.63 0.709 1.31 
1 (N = 577) 647.05 0.98 0.89 0.028 [0.018, 0.037] 0.072 0.63 0.694 1.25 
2 (N = 553) 590.05 0.99 0.90 0.016 [0.000, 0.028] 0.064 0.64 0.704 1.09 
3 (N = 558) 693.63 0.98 0.88 0.031 [0.021, 0.040] 0.073 0.62 0.690 1.36 
4 (N = 566) 537.89 0.99 0.90 0.019 [0.000, 0.030] 0.069 0.64 0.704 1.10 
5 (N = 575) 609.35 0.99 0.90 0.020 [0.0028, 0.031] 0.066 0.64 0.704 1.14 
Wtd. Avg. 615.59 0.99 0.89 0.023  0.069 0.63 0.699 1.19 

SEAvg 29.377 0.003 0.004 0.003  0.002 0.004 0.003 0.058 
Note: df = 109 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 4.466, p = 0.035). The reduction in 

model misfit for the unimputed data, however, was only significant at the 93% 

confidence level (Δχ2
Unimputed [1] = 3.77, p = 0.035). Because these reductions were 

generally small across the data sets, and the additional parameter was theoretically 

marginal from the outset, I decided that Model E7 was the best calibration of Model E for 

these data (Figure 30). 

 

Figure 30. Final Structural Model E7. 

Validation of Model E7. To examine the convergent validity of Model E7, the 

goodness of fit statistics were computed based on the validation sample (Table 77).  
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Table 77 
Model E7 Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 558.33 0.99 0.88 0.021 [0.000, 0.033] 0.078 0.63 0.709 1.40 
1 (N = 556) 595.43 0.99 0.89 0.021 [0.0059, 0.032] 0.069 0.64 0.712 1.15 
2 (N = 580) 670.25 0.98 0.89 0.028 [0.017, 0.037] 0.073 0.64 0.705 1.23 
3 (N = 575) 727.03 0.98 0.89 0.029 [0.019, 0.038] 0.075 0.64 0.705 1.25 
4 (N = 567) 635.27 0.99 0.90 0.023 [0.010, 0.033] 0.068 0.64 0.704 1.14 
5 (N = 558) 652.34 0.98 0.89 0.027 [0.016, 0.036] 0.072 0.64 0.705 1.22 
Wtd. Avg. 655.55 0.98 0.89 0.026 [0.020, 0.031] 0.071 0.64 0.706 1.20 

SEAvg 24.189 0.003 0.002 0.002  0.001 0.000 0.002 0.025 
Note: df = 110 

The goodness of fit statistics were then compared to those from the calibration 

sample using a t-test to compare the difference in the point estimates (Table 78).  

Table 78 
Model E7 Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value -1.32 0.68 0.62 -1.05 -1.36 0.71 0.73 -0.17 
 

No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

D3 fit the validation and calibration samples equally well. I, therefore, concluded that the 

model had good convergent validity across samples. 

Analysis of Model F 

Calibration. Model F specified all four content area misconception factors as 

covarying independent variables (Figure 24F). The goodness of fit statistics indicated an 

excellent fit for the hypothesized model (Table 79). 

Table 79 
Model F Goodness of Fit Indices from Calibration Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 602.38 0.99 0.87 0.025 [0.010, 0.036] 0.075 0.64 0.762 1.42 
1 (N = 577) 734.17 0.97 0.87 0.033 [0.024, 0.041] 0.075 0.64 0.747 1.38 
2 (N = 553) 667.59 0.99 0.90 0.018 [0.000, 0.029] 0.066 0.66 0.726 1.13 
3 (N = 558) 722.26 0.98 0.87 0.030 [0.020, 0.039] 0.073 0.65 0.732 1.37 
4 (N = 566) 632.29 0.98 0.88 0.025 [0.014, 0.035] 0.073 0.65 0.724 1.25 
5 (N = 575) 694.49 0.99 0.89 0.024 [0.013, 0.034] 0.071 0.65 0.723 1.23 
Wtd. Avg. 690.36 0.98 0.88 0.026 [0.017, 0.036] 0.072 0.65 0.730 1.27 

SEAvg 20.683 0.004 0.007 0.003  0.002 0.004 0.005 0.052 
Note: df = 113 
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The maximum MIs from each data set were examined for potential parameters to 

reduce model misfit (Table 77). The largest MI pointed to a crossloading between 

rational number content and Item 7, an algebra item that measured additive/multiplicative 

structure misconceptions. Such a parameter seemed theoretically weak, and the 

magnitude of the MI (i.e., larger than the total χ2 of each model) suggested that the source 

of the MI might be model instability rather than a substantive improvement in the model. 

Table 80 
Model F Maximum Modification Indices from Calibration Samples 
Imputation Maximum Modification Index Associated Parameter to Add 

0 142.40 TD(13, 1); Covariance between Item 5 and 12 errors 
1 283.01 TD(11, 4); Covariance between Item 10 and 15 errors 
2 51.97 TD(13, 12); Covariance between Item 5 and 11 errors 
3 8339.60 LX(15, 1); Crossloading, Rational Number to Item 7 
4 69.78 TD(3, 2); Covariance between Item 13 and 14 errors 
5 145.14 TD(13, 12); Covariance between Item 5 and 11 errors 

 
The error covariances for Items 5 and 12, Items 5 and 11, and Items 10 and 15 

were considered theoretically weak additions to the model because each pair of items 

measured different content knowledge and different underlying misconceptions. The 

error covariance for Item 13 and 14 was considered theoretically plausible because the 

items measured the same content knowledge and related underlying misconceptions. So, I 

added the parameter to the model and computed the goodness of fit statistics (Table 81). 

Table 81 
Model F2 Goodness of Fit Indices from Calibration Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 478) 601.99 0.99 0.87 0.025 [0.011, 0.036] 0.075 0.64 0.728 1.42 
1 (N = 577) 731.23 0.97 0.87 0.033 [0.024, 0.041] 0.075 0.64 0.714 1.38 
2 (N = 553) 666.89 0.99 0.90 0.018 [0.000, 0.030] 0.066 0.66 0.726 1.14 
3 (N = 558) 721.38 0.98 0.87 0.031 [0.021, 0.040] 0.073 0.64 0.721 1.37 
4 (N = 566) 598.51 0.98 0.89 0.023 [0.010, 0.033] 0.071 0.65 0.716 1.20 
5 (N = 575) 694.45 0.99 0.89 0.025 [0.013, 0.034] 0.071 0.65 0.723 1.24 
Wtd. Avg. 682.68 0.98 0.88 0.026 [0.016, 0.036] 0.071 0.65 0.720 1.27 

SEAvg 26.607 0.004 0.007 0.003  0.002 0.004 0.002 0.053 
Note: df = 112 

The difference of χ2 test revealed a statistically significant decrease in model 

misfit in the imputed data sets (Δχ2
Imputed Avg[1] = 8.000, p = 0.005). The reduction in 
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model misfit for the unimputed data, however, was not statistically significant 

(Δχ2
Unimputed [1] = 0.39, p > 0.5). Most of the significant reduction in the imputed data sets 

occurred in the fourth data set while the rest of the data sets, including the unimputed 

data set, reflected no change in model misfit. Furthermore, the expected cross-validation 

statistic increased, which indicated that the new parameter may represent an overfitting of 

the model to a data set. Based on these considerations, I discarded Model F2 and returned 

to the original hypothesized model. Because none of the other MIs from the original 

model were theoretically plausible, I concluded that the original hypothesized model was 

the best calibration of Model F to these data (Figure 31). 

 

Figure 31. Final Structural Model F. 

Validation of Model F. To examine the convergent validity of Model F, the 

goodness of fit statistics were computed based on the validation sample (Table 82).  

Table 82 
Model F Goodness of Fit Indices from Validation Samples 
Imputation χ2

 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 
0 (N = 449) 633.59 0.98 0.86 0.029 [0.017, 0.040] 0.083 0.63 0.718 1.58 
1 (N = 556) 626.94 0.99 0.89 0.023 [0.0090, 0.033] 0.071 0.66 0.734 1.18 
2 (N = 580) 718.86 0.97 0.87 0.034 [0.025, 0.042] 0.078 0.64 0.714 1.39 
3 (N = 575) 781.93 0.97 0.87 0.032 [0.023, 0.041] 0.078 0.65 0.725 1.36 
4 (N = 567) 628.65 0.99 0.90 0.022 [0.0075, 0.032] 0.068 0.66 0.726 1.13 
5 (N = 558) 685.22 0.98 0.88 0.028 [0.017, 0.037] 0.074 0.65 0.724 1.26 
Wtd. Avg. 687.67 0.98 0.88 0.028 [0.019, 0.036] 0.074 0.65 0.725 1.26 

SEAvg 32.630 0.005 0.007 0.003  0.002 0.004 0.004 0.056 
Note: df = 113 

The goodness of fit statistics were then compared to those from the calibration 

sample using a t-test to compare the difference in the point estimates (Table 83).  
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Table 83 
Model F Comparison of Calibration and Validation Sample Fit Indices 

Imputation χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

Imputed Data Set t value 0.10 0.44 0.00 -0.67 -1.00 -0.50 1.10 0.19 
 

No statistic from the imputed data sets was significantly different for the 

calibration and validation samples (i.e., all t values less than 1.96), indicating that Model 

F fit the validation and calibration samples equally well. I, therefore, concluded that the 

model had good convergent validity across samples. 

Summary of Structural Model Analysis 

I originally hypothesized that either Models B or E would fit the data better than 

the others. The analysis of student response patterns indicated the possibility of a high 

degree of collinearity between the models: This collinearity resulted in every model 

fitting very well according to a wide range of fit indices and low parsimony as evidenced 

by parsimony indices higher than 0.5 (as recommended by Mulaik et al., 1989; Byrne, 

2009). Table 84 summarizes the fit indices for the final calibration of each model. 

Table 84 
Summary of Fit Indices for Final Calibration of Each Model 

Model Statistic χ2
 CFI GFI RMSEA SRMR PGFI PCFI ECVI 

A2 Wtd. Avg. 701.59 0.98 0.88 0.025 0.072 0.664 0.741 1.26 
 SEAvg 28.967 0.004 0.005 0.003 0.002 0.004 0.003 0.058 

B3 Wtd. Avg. 677.24 0.99 0.89 0.024 0.070 0.66 0.734 1.23 
 SEAvg 21.237 0.003 0.003 0.003 0.002 0.005 0.005 0.048 

C3Aiii Wtd. Avg. 682.82 0.99 0.89 0.024 0.071 0.66 0.732 1.23 
 SEAvg 22.736 0.003 0.003 0.002 0.002 0.004 0.004 0.045 

C3Bii Wtd. Avg. 703.00 0.98 0.88 0.025 0.072 0.66 0.741 1.25 
 SEAvg 27.783 0.004 0.005 0.003 0.002 0.004 0.003 0.052 

D3 Wtd. Avg. 677.24 0.99 0.89 0.024 0.070 0.66 0.734 1.23 
 SEAvg 21.237 0.003 0.003 0.003 0.002 0.005 0.005 0.048 

E7 Wtd. Avg. 620.06 0.99 0.89 0.023 0.069 0.64 0.708 1.19 
 SEAvg 29.208 0.003 0.004 0.003 0.002 0.004 0.003 0.057 

F Wtd. Avg. 687.67 0.98 0.88 0.028 0.074 0.65 0.725 1.26 
 SEAvg 32.630 0.005 0.007 0.003 0.002 0.004 0.004 0.056 

 
These indices, while all excellent fit indices, are statistically indistinguishable 

across models. This result may be the result of a high degree of collinearity between 
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content area misconceptions. The implications of this collinearity are discussed in 

Chapter 5. 

Impact of Contextual Factors on Item Misconception Responses 

Implementation of Intervention 

Observations of classes and teacher interviews were used to assess fidelity of 

intervention implementation. Teachers from each school began at different times, usually 

upon completion of prior units. The pretest, ATMI, and MAI were administered by each 

teacher to their classes prior to the beginning of the treatment period. The treatment 

lasted between 5 and 10 class periods, depending on the teacher. The sample classes were 

observed in both the treatment and control conditions across all course types included in 

the study (Table 85).  

Table 85 
Observation Statistics for Fidelity of Implementation Checks 

Class 
Grouping 

Number 
of Classes

Number of 
Observations

Duration of Observations (Minutes) 
Min Median Mean (SE) Max 

Total 53 42 20 20 27.14 (2.86) 90 
Treatment 22 28 20 20 26.43 (3.68) 90 
Control 28 14 20 20 28.57 (4.55) 60 
Algebra 1 15 23 20 20 24.78 (3.44) 90 
Geometry 17 8 20 20 30.00 (6.55) 60 
Adv. Geometry 12 4 20 20 30.00 (10.00) 60 
Algebra 2 4 4 20 20 37.50 (17.50) 90 
Adv. Algebra 2 5 3 20 20 20.00 (0.00) 20 

 
To maximize observation representativeness of treatment fidelity (i.e., concurrent 

criterion validity), days, times, and schedules of classroom visits were unannounced. 

These observations indicated that the intervention was not given to the control groups, 

nor were the treatment lessons interrupted with control group lessons. 
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Two Level Model 

Two hierarchical analyses was conducted using HLM 6.08 (Raudenbush, Bryk, & 

Congdon, 2009) to examine the impact of item, student, and class characteristics on the 

emergence of errors due to mathematical misconceptions. The first analysis divided the 

model variance into two levels, student and class. The outcome variable for this model 

was the percent of misconception errors on the posttest. The second analysis divided th 

model variance into three levels, item, student, and class. The outcome variable for this 

model was a posttest misconception error indicator variable. 

Descriptive statistics. Because of missing data in surveys, pretests, and posttests 

not accounted for by multiple imputation, samples sizes were different than those 

reported for other analyses. The observed sample sizes (Table 86) resulted in a statistical 

power of approximately 0.80 to detect a population effect size δ = 0.40 and 

approximately 0.75 for a population effect size δ = 0.30 for approximately 20 students 

per class. In this sample, class sizes averaged approximately 18 students. 

Table 86 
Descriptive Statistics for Two-Level HLM Model 
Variable N Mean SD 

Student Level One 
PostPercent 567 0.35 0.18 
PrePercent 567 0.38 0.17 
Enjoyment 567 2.89 0.79 
Motivation 567 2.87 0.93 
Self Confidence 567 3.18 0.84 
Value 567 3.49 0.76 
Knowledge of Cognition 567 3.43 0.60 
Regulation of Cognition 567 3.23 0.56 

Class Level 2 
Class Mean Enjoyment 32 2.90 0.30 
Class Mean Motivation 32 2.88 0.34 
Class Mean Self Confidence 32 3.17 0.32 
Class Mean Value 32 3.49 0.24 
Class Mean Knowledge of Cognition 32 3.43 0.16 
Class Mean Regulation of Cognition 32 3.23 0.16 
Class Mean PrePercent 32 0.38 0.10 
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Unconditional null model. The unconditional ANOVA model (Equations 20 and 

21) was examined first to determine the appropriateness of using a multilevel model to 

represent the data. The ANOVA HLM model, also referred to as the null model, was used 

to compute the intraclass correlation (ICC) and the overall mean for the dependent 

variable, percentage of misconceptions on the posttest (PostMis). 

Level 1 
PostMis = β0 + rij 

 
 

(20) 
 

Level 2 
β0 = γ00 + u0j 

 

(21) 
 

The variance for both levels (Table 87) was statistically significant at the 0.001 

alpha level. The intraclass correlation was 0.229, meaning that 22.9% of the variance in 

the model is attributable to classroom effects. 

Table 87 
Unconditional Two Level Model Fixed and Random Effects 
Fixed Effects Coefficient SE T-Ratio  
Mean Posttest Misconceptions, γ00 0.356 0.017 20.94  
     

Random Effects 
Variance 

Component df χ2 p Value 
Between Classes, u0j 0.0073 31 193.397 < 0.001 
Within Classes, R 0.0245    

 
Using this null model as a baseline, the student model was developed to explain 

the impact of as many student characteristics as possible that may have been confounded 

by class effects (Ma, Ma, & Bradley, 2008). 

Student Model. Using backward regression to develop the student model 

(Equations 22 and 23), all student level variables were entered into the null model.  
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(22) 
 

Level 2 
 

β0 = γ00 + u0j 
β1 = γ10 + u1j 

β2 = γ20 + u2j 

β3 = γ30 + u3j 

β4 = γ40 + u4j 

β5 = γ50 + u5j 

β6 = γ60 + u6j 

β7 = γ70 + u7j 
 

(23) 
 

Only pretest percentage of misconceptions and mathematics self confidence had a 

statistically significant effect on posttest percentage of misconceptions (Table 88). 

Table 88 
Student Characteristics Model Fixed and Random Effects 
Fixed Effects Coefficient SE T-Ratio p Value 
Mean Posttest Misconceptions, γ00 0.356 0.017 21.34 < 0.001* 
Enjoyment Slope, γ10 0.019 0.014 1.35 0.188 
Motivation Slope, γ20 -0.006 0.010 -0.58 0.565 
Self Confidence Slope, γ30 -0.023 0.008 -2.71 0.011* 
Value Slope, γ40 -0.001 0.011 -0.110 0.914 
Knowledge of Cognition Slope, γ50 -0.022 0.017 -1.302 0.203 
Regulation of Cognition Slope, γ60 0.015 0.019 0.778 0.443 
PrePercent Slope, γ70 0.484 0.051 9.462 < 0.001* 
     

Random Effects 
Variance 

Component df χ2 p Value 
Mean Posttest Misconceptions, u0 0.0077 31 277.98 < 0.001* 
Enjoyment Slope, u1 0.0009 31 25.47 > 0.500 
Motivation Slope, u2 0.0002 31 25.52 > 0.500 
Self Confidence Slope, u3 0.0002 31 21.19 > 0.500 
Value Slope, u4 0.0007 31 32.80 0.379 
Knowledge of Cognition Slope, u5 0.0008 31 31.72 0.430 
Regulation of Cognition Slope, u6 0.0022 31 35.94 0.248 
PrePercent Slope, u7 0.0256 31 37.41 0.198 
Level 1, R 0.0171    
*Significant p values 
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The intercept of the student model represented a slightly different quantity than 

the null model: In the null model, γ00 represented the overall average percentage of 

misconceptions on the posttest; in the student model, γ00 represented the overall average 

percentage of misconceptions on the posttest after controlling for all level 1 predictors. 

So, γ00 represented the mean misconception percentage for a student who had an average 

score on pretest misconceptions; enjoyment, value, motivation, and self confidence; 

knowledge and regulation of cognition; and, unique student effects. The value of γ00 

between the two models did not appear very different because only two of the fixed 

effects were statistically non-zero. Because of the non-significant fixed effects of most 

level 1 variables, only pretest misconception percentage and mathematics self confidence 

were retained for the contextual model. 

The significance of the random effects in Table 88 provided two additional 

important pieces of information for the development of the contextual model. First, the 

only fixed effect with significant between-class variance to explain was the mean 

percentage of posttest misconceptions after controlling for all other level 1 variables. So, 

neither of the retained fixed effects were permitted to vary freely in Model 2. Second, the 

inclusion of the level 1 variables reduced the level 1 variance from 0.024 to 0.017, a 29% 

reduction. The remaining level 1 variance could not be explained by the other level 1 

variables, so Model 2 (contextual model) left the level 1 variance untouched. 

Contextual Model. The contextual model (Equations 24 and 25) began with the 

removal of all non-significant level 1 variables and non-significant level 2 random effects 

from the student model. Because no significant level 2 variance remained to be explained 

in the impact of the level 1 variables  
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Level 1 
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β1 = γ10 

β2 = γ20 

(25) 
 

 

Table 89 
Initial Contextual Model Fixed and Random Effects 
Fixed Effects Coefficient SE T-Ratio p Value 
For Intercept, β0     

Mean Posttest Misconceptions, γ00 0.360 0.007 52.66 < 0.001* 
Mean Enjoyment, γ01 -0.163 0.074 -2.19 0.038* 
Mean Motivation, γ02 -0.039 0.048 -0.82 0.423 
Mean Self Confidence, γ03 0.069 0.050 1.38 0.181 
Mean Value, γ04 0.108 0.051 2.13 0.044* 
Mean Knowledge of Cognition, γ05 -0.0004 0.088 -0.01 > 0.500 
Mean Regulation of Cognition, γ06 0.091 0.084 1.07 0.295 
Mean PrePercent, γ07 0.841 0.085 9.91 < 0.001* 
Treatment, γ08 -0.020 0.015 -1.307 0.202 

For Self Confidence Slope, β1     
Mean Self Confidence Slope, γ10 -0.020 0.008 -2.57 0.011* 

For PrePercent Slope, β2     
Mean PrePercent Slope, γ20 0.492 0.043 11.37 < 0.001* 

Random Effect 
Variance 

Component df χ2 p Value 
Mean Posttest Misconceptions, u0 0.0003 24 41.30 < 0.001* 
Level 1, R 0.0187    
*Significant p value 

The initial contextual model (Table 89) revealed significant effects for the class 

mean mathematics enjoyment and value. The negative coefficient for enjoyment 

indicated that higher classroom levels of enjoyment of mathematics resulted in lower 

percentages of misconceptions on the posttest. Although the coefficient for value was 

positive, its magnitude was small enough that I hypothesized that it might be due to the 
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non-significant variable inclusion in the model. This hypothesis was therefore tested in 

the final model. The unexplained between class variance was reduced 96% from 0.0077 

to 0.0003, which resulted in a significant reduction in χ2 (Δχ2[7] = 236.68, p < 0.0001). 

The signficant variables were retained for the final model. 

Final Model. The final model (Equations 26 and 27) included only significant 

variables for both student level 1 and class level 2. 

Student Level 1 
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Table 90 
Final Contextual Model Fixed and Random Effects 
Fixed Effects Coefficient SE T-Ratio p Value 
For Intercept, β0     

Class Mean Posttest Misconceptions, γ00 0.359 0.007 48.639 < 0.001 
Class Mean Enjoyment, γ01 -0.129 0.041 -3.148 0.004 
Class Mean Value, γ02 0.132 0.053 2.492 0.019 
Class Mean Pretest Misconceptions, γ03 0.833 0.079 10.609 < 0.001 

For Self Confidence Slope, β1     
Grand Mean Self Confidence Slope, γ10 -0.020 0.008 -2.57 0.011 

For PrePercent Slope, β2     
Grand Mean PrePercent Slope, γ20 0.492 0.043 11.36 < 0.001 

Random Effect 
Variance 

Component df χ2 p Value 
Mean Posttest Misconceptions, u0 0.007 29 221.60 < 0.001 
Level 1, R 0.019    

 
The removal of non-significant variables from the contextual model (Table 90) 

added a significant amount of variance to the model, (Δχ2[+5] = +180.30, p < 0.0001). 

This result indicated that, although individual variables were non-significant, their 

cumulative effect may have been significant. One reason for this result may have been 
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the reduced statistical power to detect smaller effect sizes. The reduction in χ2 from the 

student model, however, was still statistically significant (Δχ2[2] = 56.38, p < 0.0001). 

The sign for class mean value remained positive, and the unexplained model variance 

increased significantly. I hypothesized that these effects may have been due to the 

removal of important cumulative effects of variables that were not significant by 

themselves. 

To test this possibility, the two way interactions among the class mean value and 

class mean knowledge and regulation of cognition were computed by multiplying each 

the class mean value scores by the class mean knowledge and regulation of cognition 

scores (Pedhazur, 1997). To begin this investigation, the class mean value main effects 

were removed from the model to avoid multicollinearity. The interaction effects were 

then added to the class level 3 equation to produce a new model (Equations 28 and 29).  

Student Level 1 
 

( ) ( ) ijjijjjijjij rConfSlfConfSlfPostPerc +−+−+= •• NAEP_PreNAEP_Preβ__ββ 210

(28)
 

Class Level 2 
 

( ) ( )
( ) jj

jjj

uKCogValMnKCogValMn          

PreMeanPreMeanEnjoyMeanEnjoyMean

003

0201000

*_*_γ

__γ__γγβ

+−+

−+−+=

•

••  

β1 = γ10 

β2 = γ20 

(29)
 

 



 

197 

Table 91 
Post Hoc Model of Interaction Effects of Class Value of Mathematics and Knowledge of Cognition 
Fixed Effects Coefficient SE T-Ratio p Value 
For Intercept, β0     

Class Mean Posttest Misconceptions, γ00 0.359 0.007 50.075 < 0.001 
Class Mean Enjoyment, γ01 -0.141 0.040 -3.546 0.002 
Class Mean Pretest Misconceptions, γ02 0.848 0.077 10.952 < 0.001 
Class Mean Value*Knowledge of Cognition 

Interaction, γ03 
0.031 0.011 2.920 0.007 

For Self Confidence Slope, β1     
Grand Mean Self Confidence Slope, γ10 -0.020 0.008 -2.57 0.011 

For PrePercent Slope, β2     
Grand Mean PrePercent Slope, γ20 0.492 0.043 11.36 < 0.001 

Random Effect 
Variance 

Component df χ2 p Value 
Mean Posttest Misconceptions, u0 0.0005 28 46.39073 0.016 
Level 1, R 0.019    

 

To interpret the interaction effect of mathematics value and knowledge of 

cognition on posttest misconceptions using coefficient values from Table 91 and means 

and standard deviations from Table 86, several predicted case values were examined, in 

which  

γ00 = Mean posttest misconception percentage, controlling for all other variables 

in the model 

γ01 = Impact of class ATMI enjoyment on posttest misconception percentage 

γ02 = Impact of class pretest misconception percentage on student posttest 

misconception percentage 

γ03 = Impact of interaction between class ATMI value and class MAI knowledge 

of cognition on student posttest misconception percentage 

γ10 = Impact of self confidence on posttest misconception percentage 

γ20 = Impact of pretest misconception percentage on posttest misconception 

percentage 
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1. A student who has an average mathematics self confidence (3.18) and a 

pretest misconception percentage that is average for the class, in a 

classroom with average knowledge of cognition (3.43), average classroom 

pretest misconception (0.38), and is 1 standard deviation (0.24 units) 

above the grand mean for value (3.49) is predicted by the post hoc model 

to have a posttest misconception score equal to the mean, 0.359.  

Table 92 
Predicted Value 1 for Two Level HLM Model 

Coefficient Value 
Number of Units 

from Mean 
Value 
Added 

γ00, Intercept 0.359 1 0.359 
γ01, Impact of Class ATMI Enjoyment -0.141 0 0 
γ02, Impact of Class Pretest Misconception 0.848 0 0 
γ03, Impact of Class Value*Kcog 0.031 0.24*0 = 0 0 
γ10, Average Impact of Student Self Confidence -0.02 0 0 
γ20, Average Impact of Student Pretest Misconception  0.492 0 0 
PostPercent     0.359 
Note: Value Added = (Coefficient Value) • (Number of Units from Mean) 

 
Although the class value level in this example was 0.24 units above the 

grand mean, its interaction with knowledge of cognition negates its effect 

on the predicted posttest misconception error percentage. The second 

example shows an alternate effect of the interaction effect, when class 

knowledge of cognition is higher than the mean but value is equal to the 

mean. 

2. A student who has an average mathematics self confidence (3.18) and a 

pretest misconception percentage that is average for the class, in a 

classroom with average mathematics value (3.49) and average classroom 

pretest misconception (0.38) and who is 1 standard deviation (0.16 units) 
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above the grand mean for knowledge of cognition (3.43) is predicted by 

the post hoc model to have a posttest misconception score of 0.359. 

Table 93 
Predicted Value 2 for Two Level HLM Model 

Coefficient Value 
Number of units 

from average 
Value 
Added 

γ00, Intercept 0.359 1 0.359 
γ01, Impact of Class ATMI Enjoyment -0.141 0 0 
γ02, Impact of Class Pretest Misconception 0.848 0 0 
γ03, Impact of Class Value*Kcog 0.031 0*0.16 = 0 0 
γ10, Average Impact of Student Self Confidence -0.02 0 0 
γ20, Average Impact of Student Pretest Misconception  0.492 0 0 
PostPercent     0.359 

Note: Value Added = (Coefficient Value) • (Number of Units from Mean) 
 

Just as in the first predicted value (Table 92), the interaction of class value 

and knowledge of cognition eliminates the effect of knowledge of 

cognition on the posttest misconception error percentage. The third 

predicted value shows the effect of class value and knowledge of 

cognition when neither variable is equal to its grand mean. 

3. A student who has an average mathematics self confidence (3.18) and a 

pretest misconception percentage that is average for the class, in a 

classroom with average classroom pretest misconceptions (0.38) and is 1 

standard deviation (0.16 units) above the grand mean for knowledge of 

cognition (3.43) and 1 standard deviation (0.24 units) above the mean of 

value is predicted by the post hoc model to have a posttest misconception 

score of 0.360. 
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Table 94 
Predicted Value 3 for Two Level HLM Model 

Coefficient Value 
Number of units 

from average 
Value 
Added 

γ00, Intercept 0.359 1 0.359 
γ01, Impact of Class ATMI Enjoyment -0.141 0 0 
γ02, Impact of Class Pretest Misconception 0.848 0 0 
γ03, Impact of Class Value*Kcog 0.031 0.24*0.16 = 0.0384 0.0012 
γ10, Average Impact of Student Self Confidence -0.02 0 0 
γ20, Average Impact of Student Pretest Misconception  0.492 0 0 
PostPercent     0.3602 

Note: Value Added = (Coefficient Value) • (Number of Units from Mean) 
 

Although both class value and knowledge of cognition are above their 

grand means, their combined effect only increased the predicted 

percentage of misconception errors by 1%. The fourth predicted value 

shows the effect of student mathematics self confidence in a class with 

low mathematics value but high knowledge of cognition. 

4. A student who has a mathematics self confidence 1 standard deviation 

(0.84 units) above the mean (3.18) and a pretest misconception percentage 

that is average for the class, in a classroom with average pretest 

misconceptions (0.38) and 1 standard deviation (0.24) below the mean of 

value (3.49) and 1 standard deviation (0.16) above the mean of knowledge 

of cognition is predicted by the post hoc model to have a posttest 

misconception score equal to 0.341. 
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Table 95 
Predicted Value 4 for Two Level HLM Model 

Coefficient Value 
Number of units 

from average 
Value 
Added 

γ00, Intercept 0.359 1 0.359 
γ01, Impact of Class ATMI Enjoyment -0.141 0 0 
γ02, Impact of Class Pretest Misconception 0.848 0 0 
γ03, Impact of Class Value*Kcog 0.031 -0.24*0.16 = -0.0384 -0.0012 
γ10, Average Impact of Student Self Confidence -0.020 0.84 -0.0168 
γ20, Average Impact of Student Pretest Misconception  0.492 0 0 
PostPercent     0.341 

Note: Value Added = (Coefficient Value) • (Number of Units from Mean) 
 

The effect of student self confidence was greater than the effect of the 

value-knowledge of cognition interaction even though the coefficient had 

a smaller magnitude because of the relative sizes of the standard deviation; 

the student self confidence standard deviation was almost four times larger 

than value and five times larger than for knowledge of cognition. The final 

predicted value example for this model shows the effect of reversing the 

relative class position for value and knowledge of cognition with respect 

to their grand means. 

5. A student who has a mathematics self confidence 1 standard deviation 

(0.84 units) above the mean (3.18) and a pretest misconception percentage 

that is average for the class, in a classroom with average pretest 

misconceptions (0.38) and 1 standard deviation (0.24 units) above the 

mean of value (3.49) and 1 standard deviation (0.16) below the mean of 

knowledge of cognition is predicted by the post hoc model to have a 

posttest misconception score equal to 0.341. 
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Table 96 
Predicted Value 5 for Two Level HLM Model 

Coefficient Value 
Number of units 

from average 
Value 
Added 

γ00, Intercept 0.359 1 0.359 
γ01, Impact of Class ATMI Enjoyment -0.141 0 0 
γ02, Impact of Class Pretest Misconception 0.848 0 0 
γ03, Impact of Class Value*Kcog 0.031 0.24*-0.16 = -0.0384 -0.0012 
γ10, Average Impact of Student Self Confidence -0.020 0.84 -0.0168 
γ20, Average Impact of Student Pretest Misconception  0.492 0 0 
PostPercent     0.341 

Note: Value Added = (Coefficient Value) • (Number of Units from Mean) 
 
In the fourth example, class value was one standard deviation below while 

knowledge of cognition was one standard deviation above their means. In 

this example, their position from their grand means is reversed. This 

change resulted in no change to the percentage of misconception errors 

predicted by the model. 

Three Level Bernoulli Model 

The student level of the HLM model was then divided into two levels, item 

characteristics and student characteristics. By doing so, the outcome variable become a 

dichotomous variable representing a misconception error for each item for each student in 

each class. The new model was then examined using a generalized HLM model (HGLM) 

to measure the probability of misconception errors. The initial null model was examined 

to determine the amount of variance at each level: item level 1, student level 2, and class 

level 3.The contextual model was then used to evaluate the impact of each variable on the 

outcome. 

Descriptive Statistics. The observed sample sizes (Table 97) resulted in a 

statistical power of approximately 0.80 to detect a population effect size δ = 0.40 and 
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approximately 0.75 for a population effect size δ = 0.30 for approximately 20 students 

per class. In this sample, class sizes averaged approximately 18 students. 

Table 97 
Descriptive Statistics for Three-Level HLM 
Variable N Mean SD Min Max 

Item Level One 
Misconception 9673 0.35 0.48 0.00 1.00 
Discrimination 9673 0.80 0.20 0.44 1.22 
Difficulty 9673 0.01 0.51 -1.21 0.96 
Moderate 9673 0.35 0.48 0.00 1.00 

Student Level 2 
Enjoyment 515 2.91 0.79 1.00 5.00 
Motivation 515 2.90 0.93 1.00 5.00 
Self Confidence 515 3.19 0.83 1.00 5.00 
Value 515 3.51 0.75 1.00 5.00 
Knowledge of Cognition 515 3.43 0.58 1.18 4.94 
Regulation of Cognition 515 3.23 0.56 1.11 4.74 
NAEP_Pretest Percent Misconception 515 0.38 0.17 0.00 0.76 

Class Level 3 
Mean Enjoyment 32 2.90 0.30 2.35 3.52 
Mean Motivation 32 3.43 0.16 3.01 3.65 
Mean Self Confidence 32 3.23 0.16 2.92 3.50 
Mean Value 32 0.38 0.10 0.14 0.53 
Mean Knowledge of Cognition 32 2.90 0.30 2.35 3.52 
Mean Regulation of Cognition 32 2.88 0.34 2.15 3.63 
Mean Pretest Percent Misconception 32 3.17 0.32 2.41 3.96 
Treatment 32 0.50 0.51 0.00 1.00 

 
Unconditional Null Model. The unconditional model (Equations 30, 31, and 32) 

revealed a significant amount of variance at both the student Level 2 and class Level 3 

(Table 98). Additionally, the level 1 variance was also statistically significant (SE = 

0.014, t = 67.71) 
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Student Level 2 
 

π0jk = β0k + r0jk 
 

(31) 
 

Class Level 3 
 

β0 = γ00 + u0k 
 

(32) 
 

 
Table 98 
Unconditional Three Level Model Fixed and Random Coefficients 
Fixed Effects Logit Link: 

Unit-Specific Model 
Logit Link: 

Population Average Model 
Mean Item Misconception, γ000 -0.643** -0.590** 
     
Random Effects Variance Component df χ2 p Value 
Between Classes, u00 0.184** 31 188.001 < 0.001 
Between Students, R0 0.299** 483 1117.002 < 0.001 
Between Items, E 0.945**    

*Indicates |coeff/se| > 2.00; ** Indicates |coeff/se| > 3.00; 
 
The outcome variable for Level 1 is in logit units, or the natural logarithm of the 

odds ratio, as shown in Equation 30. The coefficients, therefore, are also computed in 

logit units. Using the logit unit, the relationship between the outcome variable and 

independent variable coefficients have a linear relationship. Once the coefficient logit is 

converted to a probability, its relationship to the outcome variable and other logit 

coefficients is no longer linear. Therefore, to compute a predicted probability of 

misconception error for an item, the predicted logit value must be computed first. 

Conversion to a probability is the final step in predicting outcomes in the Bernoulli HLM 

model. The process of converting from a logit to a probability requires two steps. First, 

the logit is converted to an odds ratio using Equation 33. 
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Odds = eLogit (33) 
 

Second, the inverse of the odds ratio is used to compute the probability using Equation 

34. 

Probability = ⎟
⎠
⎞

⎜
⎝
⎛
+ −Logite1

1
 

(34) 
 

The γ000 logit (unit specific model) of -0.643 (Table 93) corresponds to an odds 

ratio of 0.526, or a probability of 0.35 for the appearance of a misconception on an item, 

which corresponds to the mean for Item Misconception (see Table 97). The logit of the 

population average model (-0.590) indicates that the expected appearance of 

misconceptions in the population is slightly different from the observed sample 

misconception probability, an odds ratio of 0.554 and a probability of 0.357. This 

difference represents the expected effect of τ00, in this case pulling the mean value of the 

unit specific model upward toward a probability of 0.50 (Raudenbush & Bryk, 2002). 

The total variance in the model equals the sum of the variance from all three 

levels (Table 98), 0.184 + 0.299 + 0.945 = 1.428. The proportion of variance at the item 

Level 1 is 0.184/1.428 = 0.129 = 12.9%.. The proportion of variance at the student Level 

2 is 0.299/1.428 = 0.209 = 20.9%. The proportion of variance at the class Level 3 is 

0.945/1.428 = 0.662 = 66.2%. In summary, the variance at each level was statistically 

significant, and the class level 3 accounted for the majority of the variance in the 

probability of misconception errors. To begin accounting for variance, the item level 1 

model was calibrated. 

Item level 1 model. The discrimination and difficulty IRT coefficients for each 

NAEP item (see Table 10)were used as explanatory variables in the level 1 model. 

Additionally, the reported level of complexity assigned by NAEP reviewers (see Table 8) 
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was added as a dichotomous predictor of misconception errors on a particular item (Low 

Complexity = 0; Moderate Complextiy = 1). Two models were examined before arriving 

at the final item model (Equations 35, 36, and 37; Table 99). 

Item Level 1 
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(35) 

Student Level 2 
 

π0jk = β00k + r0jk 
π1jk = β10k + r1jk 
π2jk = β20k + r2jk 
π3jk = β30k + r2jk 

 

(36) 

Class Level 3 
 

β00k = γ000 + u00k 
β10k = γ100 + u10k 

β20k = γ200 + u20k 

β30k = γ300 + u30k 
 

(37) 
 

The variance components for class level discrimination (U10), class level 

complexity (U30), and student level complexity (R3) were statistically non-significant, so 

they were fixed in the final item model. The addition of the discrimination, difficulty, and 

complexity variables reduced the item level variance from 0.945 to 0.881, a 6.8% 

reduction.  
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Table 99 
Item Model of Mathematics Misconception Errors 
 Unit Specific Model  Population Average Model 

Fixed Effects 
Unconditional 

Modelb 
Final 

Model  
Unconditional 

Modelb 
Final 

Model 
Intercept, γ000 -0.643** -0.233***  -0.590 -0.130*** 
Discrimination, γ100 ―** -1.206***  ―* -0.957*** 
Difficulty, γ200 ―** -0.682***  ―* -0.565*** 
Complexity, γ300 ―** -0.080***  ―* -0.094*** 
 
Variance Components Unconditional Modelb Final Model 
Intercept U00, τ(β)11 0.184*** 0.195*** 
Class Discrimination U10, τ(β)22 ―** ―** 
Class Difficulty, U20, τ(β)33 ―** 0.056*** 
Class Complexity, U30, τ(β)44 ―** ―** 
Std Intercept, R0, τ(π)11 0.299*** 1.044*** 
Std Discrimination, R1, τ(π)22 ―** 2.480*** 
Std Difficulty, R2, τ(π)33 ―** 0.385*** 
Std Complexity, R3, τ(π)44 ―** ―** 
Item, E, σ2 0.945a** 0.881a** 
*p < 0.05, **p < 0.01, ***p < 0.001, a|coeff /SE| > 3.00 
 bdfStudent = 483, dfClass = 31 

Using equations 33 and 34, the logits for the final item model were converted into 

predicted probabilities of misconception errors for different item characteristics. The 

intercept logit value predicts that the probability of a misconception error for a non-

discriminating item (i.e., item characteristic curve = horizontal line) of average difficulty 

(i.e., Difficulty = 0) and low complexity is 0.558 in the sample and 0.532 in the 

population (Table 100). If the difficulty of a non-discriminating item increases difficulty 

by one standard deviation (0.62), then the probability of a misconception error increases 

to 0.658 for the sample and 0.618 for the population (Table 100). 

If an item has average discrimination (0.825, mean of discrimination values from 

Table 10), then the predicted probability of a misconception error reduces to 0.318 in the 

sample and 0.341 in the population. If the discrimination of an item has a value one 

standard deviation above the average discrimination (0.8 + 0.2 = 1), then the predicted 

probability of a misconception error reduces to 0.230 in the sample and 0.277 in the 

population (Table 100). If a non-discriminating item with an average difficulty level 
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increases from low to moderate complexity, the probability of a misconception error 

inceases to 0.578 for the sample and 0.556 for the population (Table 100). 

Table 100 
Selected Predicted Values for Final Item Model 
  Unit Specific Model   Population Average Model 

Fixed Effects Logit Odds Probability   Logit Odds Probability 
INTERCEPT, γ000 -0.234 1.263 0.558 -0.130 1.139 0.532 
Discrimination, γ100 -1.206 0.299 0.230 -0.957 0.384 0.277 
Difficulty, γ200 -0.682 1.978 0.664 -0.565 1.759 0.638 
Complexity, γ300 -0.080 1.083 0.520 -0.094 1.099 0.523 
 

Combined Effects               
Int + Mean Discrimination -0.731 0.481 0.325 -0.636 0.530 0.346 
Int + Complexity -0.314 1.368 0.578   -0.224 1.251 0.556 
Int + 2SD Above Mean Discrimination -1.696 0.183 0.155 -1.018 0.361 0.265 
Int + 1SD Above Mean Difficulty -0.588 1.801 0.643 -0.424 1.528 0.604 
Int + 1SD Below Mean Difficulty -0.107 0.898 0.473 -0.153 0.859 0.462 

 
The probabilities and odds ratios for each logit value in Table 100 were computed 

using Equations 33 and 34. Combined effects were computed through a process of three 

steps. First, standard deviations of discrimination and difficulty were taken from Table 

97. Second, the relevant number of standard deviations values were multiplied by the 

logit coefficient and added to the intercept logit. Third, the resulting logit sum was 

converted to an odds ratio and probability using Equations 33 and 34. 

These predicted probability values reflect a statistically significant impact of item 

characteristics on the probability of a misconception error. The remaining variance of the 

item level was still statistically significant after the addition of all available variables, 

indicating that a future examination of other item characteristics may be beneficial to 

understanding item characteristic influences on misconception errors. The final item 

model was used as the starting point for calibration of the student model. 
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Student level 2 model. Student characteristics were added to level 2 (student level) 

of the final item model to examine the impact of student characteristics on the probability 

of a misconception error and on the impact of item characteristics on the probability of a 

misconception error. Only statistically significant effects were retained in the final model 

(Table 101) with the exception of the self confidence impact on the difficulty slope. Self 

confidence was retained because removing it from the model resulted in the loss of a 

significant coefficient for motivation, which was statistically significant in all 

intermediate models. 

Table 101 
Final Student Model Fixed and Random Coefficients 
Fixed Effects Logit Link: 

Unit-Specific Model 
Logit Link: 

Population Average Model 
Intercept, γ000 -0.237*** -0.165*** 
Discrimination Slope, γ100 -1.221*** -1.027*** 

Pretest Slope, γ110 -3.389*** -2.961*** 
Difficulty Slope, γ200 -0.689*** -0.583*** 

Motivation Slope, γ210 -0.199*** -0.182*** 
Self Confidence Slope, γ220 -0.163*** -0.151*** 
Pretest Slope, γ230 -0.799*** -0.525*** 

Complexity Slope, γ300 -0.080*** -0.095*** 
   

Random Effects 
Variance 

Component df χ2 p Value 
Class Intercept, u00 0.214*** 31 221.117 < 0.001 
Class Difficulty Slope 0.058*** 31 053.032 < 0.008 
Std Intercept, R0 1.075*** 483 622.784 < 0.001 
Std Discrimination Slope, R1 2.265*** 513 686.892 < 0.001 
Std Difficulty Slope, R2 0.348*** 480 649.958 < 0.001 
Item Intercept, E 0.887***    

*p < 0.05, **p < 0.01, ***p < 0.001, a|coeff /SE| > 3.00 

As with the Item Model, predicted values are presented to clarify the meaning of 

coefficients computed as logits (Table 102). The process for computing these predicted 

probabilities was the same as for the Item Model (i.e., use Equations 33 and 34 to convert 

logits to probability). The fixed effect intercept, γ000, represents a predicted probability of 

a misconception error on an item with no discrimination, average difficulty, and low 

complexity of 0.559 for the sample and 0.541 in the population. The fixed effect for 
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discrimination, γ100, means that the impact of a change of one logit unit in discrimination 

(for an item with average difficulty and low complexity) corresponds to a probability of 

misconception error of 0.228 for the sample and 0.264. 

Table 102 
Selected Predicted Values for Final Student Model 
  Unit Specific Model   Population Average Model 

Fixed Effects Logit Odds Probability   Logit Odds Probability 
Intercept, γ000 0.237 1.267 0.559  0.165 1.179 0.541 
Discrimination Slope, γ100 -1.221 0.295 0.228  -1.027 0.358 0.264 

Pretest Slope, γ110 3.389 29.636 0.967  2.961 19.317 0.951 
Difficulty Slope, γ200 0.689 1.992 0.666  0.583 1.791 0.642 

Motivation Slope, γ210 -0.199 0.820 0.450  -0.182 0.834 0.455 
Self Confidence Slope, γ220 0.163 1.177 0.541  0.151 1.163 0.538 
Pretest Slope, γ230 -0.799 0.450 0.310  -0.525 0.592 0.372 

Complexity Slope, γ300 0.08 1.083 0.520  0.095 1.100 0.524 

Combined Effects η̂  Odds Probability   η̂  Odds Probability 
Int + Mean Discrimination + 
Mean Difficulty + Low 
Complexity + Mean Pretest 

-0.894 0.409 0.290  -0.862 0.422 0.297 

Int + Mean Discrimination + 
Mean Difficulty + Low 
Complexity + 1SD Above Mean 
Pretest 

-0.279 0.757 0.431  -0.254 0.776 0.437 

Int + Mean Discrimination + 
1SD Below Mean Difficulty + 
1SD Above Mean Motivation + 
1SD Above Mean Pretest 

-0.174 0.840 0.457  -0.152 0.859 0.462 

Int + Mean Discrimination + 
1SD Above Mean Difficulty + 
1SD Below Mean Motivation + 
1SD Above Mean Pretest 

0.677 1.968 0.663   0.613 1.846 0.649 

 
The combined effects in Table 102 were computed by adding the relevant student logits 

to the item logits, then combining the item logits to produce the predicted logit for 

misconception errors ( η̂ ). These combined logits were then converted to probabilities 

using Equations 33 and 34. If a student with more pretest misconceptions (1 SD = 0.17) 

than the mean (0.38) completed an item with average discrimination (0.8), average 

difficulty (0), and low complexity, the probability of a misconception error increases to 
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0.431 in the sample and 0.437 in the population. If a student with more misconceptions (1 

SD = 0.17) and more motivation (1 SD = 0.93) than the mean (0.38, 2.9 respectively) 

completed an easy item (1 SD below difficulty mean = -0.5), the probability of a 

misconception error was 0.457 in the sample and 0.462 in the population. If a student 

with more misconceptions (1SD = 0.17) and less motivation (1 SD = 0.93) than the mean 

(0.38, 2.9 respectively) completed a difficult item (1 SD above difficulty mean = 0.502) 

with mean discrimination (0.8), the probability of a misconception error increases to 

0.663 in the sample and 0.649 in the population. 

Two student level slopes demonstrated statistically significant variance at Level 3 

(class), the intercept U000 and motivation slope U200. The final student model was used 

as the initial model for calibrating class level variables. 

Class level 3 model. Class characteristics were added as predictors to the two 

level 3 equations with statistically significant, the intercept (mean probability of 

misconception error) and the difficulty slope (impact of item difficulty on the probability 

of misconception error).  

The addition of these class parameters produced the final model (Table 103), 

which reduced the class variance from 0.214 to 0.002, a 98.7% reduction. This reduction 

reflected a statistically significant reduction in level 3 model misfit (Δχ2 = 188.482, Δdf = 

8, p < 0.001). 
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Table 103 
Final Class Model Fixed and Random Coefficients 
Fixed Effects Logit Link: 

Unit-Specific Model 
Logit Link: 

Population Average Model 
Intercept, γ000 -0.268*** -0.200b*** 

Class Enjoyment, γ001 -0.885*** -0.867*** 
Class Motivation, γ002 -0.109*** -0.079*** 
Class Self Confidence, γ003 -0.234*** -0.246*** 
Class Value, γ004 -0.649*** 0.597*** 
Class Knowledge of Cognition, γ005 -0.118*** -0.164*** 
Class Regulation of Cognition, γ006 -0.349*** -0.307*** 
Class Pretest, γ007 -4.676*** -4.423*** 
Treatment, γ008 -0.051*** -0.055*** 

Discrimination Slope, γ100 -1.215*** -1.067*** 
Pretest Slope, γ110 -3.379*** -3.100*** 

Difficulty Slope, γ200 -0.814*** -0.730*** 
Class Enjoyment, γ201 -1.384*** -1.319*** 
Class Motivation, γ202 -0.338*** -0.290*** 
Class Self Confidence, γ203 -0.961*** -0.894*** 
Class Value, γ204 -0.118*** -0.158*** 
Class Knowledge of Cognition, γ205 -0.138*** -0.090*** 
Class Regulation of Cognition, γ206 -0.350*** -0.363*** 
Class Pretest, γ207 -0.536*** -0.257*** 
Treatment, γ208 -0.231b*** -0.208b*** 

Motivation Slope, γ210 -0.199*** -0.187*** 
Self Confidence Slope, γ220 -0.162*** -0.154*** 
Pretest Slope, γ230 -0.792*** -0.583*** 

Complexity Slope, γ300 -0.080*** -0.097*** 
   

Random Effects 
Variance 

Component df χ2 p Value 
Class Intercept, u00 -0.002b*** 23 032.635 < 0.088 
Class Difficulty Slope, u20 0.008*** 23 035.125 < 0.050 
Std Intercept, R0 1.044*** 483 621.070 < 0.001 
Std Discrimination Slope, R1 1.494*** 513 683.774 < 0.001 
Std Difficulty Slope, R2 0.597*** 480 650.180 < 0.001 
Item Intercept, E 0.943a**    

*p < 0.05, **p < 0.01, ***p < 0.001, a|coeff /SE| > 3.00, bp ≤ 0.10 

 

The treatment condition was not a statistically significant predictor of the 

intercept (mean probability of misconception error), but it was a statistically significant 

predictor of the difficulty slope at the 90% confidence level for both the sample and 

population models. The coefficients from Table 103 were used to compute the predicted 

probability for a misconception error under various item, student, and class conditions 

(Table 104). 
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Table 104 
Selected Predicted Values for Final Class Model 
  Unit Specific Model   Population Average Model 

Fixed Effects Logit Odds Probability   Logit Odds Probability 
Intercept, γ000 0.268 1.307 0.567  0.200 1.221 0.550 

Class Enjoyment, γ001 -0.885 0.413 0.292  -0.867 0.420 0.296 
Class Motivation, γ002 -0.109 0.897 0.473  -0.079 0.924 0.480 
Class Self Confidence, γ003 0.234 1.264 0.558  0.246 1.279 0.561 
Class Value, γ004 0.649 1.914 0.657  0.597 1.817 0.645 
Class Knowledge of 
Cognition, γ005 

0.118 1.125 0.529  0.164 1.178 0.541 

Class Regulation of 
Cognition, γ006 

0.349 1.418 0.586  0.307 1.359 0.576 

Class Pretest, γ007 4.676 107.340 0.991  4.423 83.346 0.988 
Treatment, γ008 -0.051 0.950 0.487  -0.055 0.946 0.486 

Discrimination Slope, γ100 -1.215 0.297 0.229  -1.067 0.344 0.256 
Pretest Slope, γ110 3.379 29.341 0.967  3.100 22.198 0.957 

Difficulty Slope, γ200 0.814 2.257 0.693  0.730 2.075 0.675 
Class Enjoyment, γ201 -1.384 0.251 0.200  -1.319 0.267 0.211 
Class Motivation, γ202 0.338 1.402 0.584  0.290 1.336 0.572 
Class Self Confidence, 
γ203 

0.961 2.614 0.723  0.894 2.445 0.710 

Class Value, γ204 0.118 1.125 0.529  0.158 1.171 0.539 
Class Knowledge of 
Cognition, γ205 

0.138 1.148 0.534  0.090 1.094 0.522 

Class Regulation of 
Cognition, γ206 

0.35 1.419 0.587  0.363 1.438 0.590 

Class Pretest, γ207 -0.536 0.585 0.369  -0.257 0.773 0.436 
Treatment, γ208 -0.231 0.794 0.443  -0.208 0.812 0.448 

Motivation Slope, γ210 -0.199 0.820 0.450  -0.187 0.829 0.453 
Self Confidence Slope, γ220 0.162 1.176 0.540  0.154 1.166 0.538 
Pretest Slope, γ230 -0.792 0.453 0.312  -0.583 0.558 0.358 

Complexity Slope, γ300 0.08 1.083 0.520  0.097 1.102 0.524 
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Table 104 (Continued) 
Predicted Values for Final Class Model 

Unit Specific Model Population Average Model 

Combined Effects η̂  Odds Probability   η̂  Odds Probability 
Int + Mean Discrimination + 

Mean Difficulty + Low 
Complexity + Mean Class 
Enjoyment, Self Confidence, 
Motivation + Class Mean 
Pretest + Std Mean Pretest + 
Std Mean Motivation + 
Control 

-0.281 0.755 0.430  -0.274 0.760 0.432 

Int + Mean Discrimination + 
Mean Difficulty + Low 
Complexity + Mean Self 
Confidence, Motivation + 
Class Mean Pretest + Std 
Mean Pretest + Std Mean 
Motivation + 1SD Above 
Mean Class Enjoyment + 
Control 

-0.762 0.467 0.318  -0.740 0.477 0.323 

Int + Mean Discrimination + 
Mean Difficulty + Low 
Complexity + 1SD Above 
Class Mean Self Confidence, 
Enjoyment, Motivation + 
Class Mean Pretest + Std 
Mean Pretest + Std Mean 
Motivation + Control 

-0.201 0.818 0.450  -0.200 0.819 0.450 

Int + Mean Discrimination + 
Mean Difficulty + Low 
Complexity + Class Mean 
Self Confidence, Enjoyment, 
Motivation, Pretest + Std 
Mean Pretest, Motivation + 
Treatment 

-0.401 0.670 0.401   -0.382 0.682 0.406 

 
The computation of probabilities from the fixed effects in Table 104 proceeded as 

in the item and student models, using Equations 33 and 34. The combined effects, 

however,required a consideration of the effects of class variables on student variables 

before combining student effects with item effects to produce the predicted value. 

The first combined effect predicted the probability of a misconception error on an 

item of mean discrimination, mean difficulty, and low complexity for a student with 

mean pretest misconceptions and motivation in a control class with mean self confidence, 

enjoyment and motivation. Because all student and class level variables were centered 
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(group and grand centered respectively), the student and class mean values produced a 

zero effect on the predicted probability. The intercept logit for this combined effect was 

0.268. The discrimination impact was -1.215 (the coefficient logit) • 0.8 (the average 

discrimination) = -0.972, the value added to the intercept logit. The difficulty impact was 

0.814, the coefficient logit • 0.52, 1 SD above average difficulty = 0.4233, the value 

added to the intercept logit. Complexity was coded as a dichotomous variable in which 

low complexity was coded as 0. Therefore, the predicted logit, η̂ , for this situation was 

0.268 + -0.972 + 0.4233 = -0.281. The associated probability of misconception error 

(using Equations 33 and 34) was 0.430 in the sample. The same computational process 

was used for the population average model and subsequent combined effect examples. 

The second and third combined effects from Table 104 represent the probability 

of a misconception error on a hard item (1 SD above mean Difficulty = 0.52) of mean 

discrimination (0.8) and low complexity (see Table 97 for difficulty and discrimination 

values). For combined effect 2, a student who had an average pretest misconception score 

in a control class with average pretest misconception, class enjoyment, motivation, value, 

and self confidence scores was predicted by the model to have a probability of a 

misconception error of 0.430 in the sample and 0.432 in the population. For the same 

student (Combined Effect 3), if the class enjoyment level increased by one standard 

deviation (0.3 units), the probability of a misconception error reduced to 0.318 in the 

sample and 0.323 in the population (Table 104).  

The fourth combined effect examines the relationship of self confidence with 

misconception error probabilities. A student with pretest misconception score equal to the 

mean, on a hard item of average discrimination and low complexity, in a control class 
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with average enjoyment, motivation, value, and pretest mean misconceptions but one 

standard deviation above the mean for self confidence had a misconception error 

probability of 0.450 for both the sample and population (Table 104).  

The treatment condition had an indirect effect on the probability of a 

misconception error by impacting the item difficulty slope. A student with a mean pretest 

misconception score and motivation in a treatment class with average enjoyment, self 

confidence, value, and pretest misconception was predicted to have a probability of 

misconception error of 0.401 in the sample and 0.406 in the population on an item of 

average discrimination and difficulty and low complexity (Table 104). 

Summary of Results 

Three analyses were conducted to examine the nature of mathematical 

misconceptions. Document analysis of student responses was used to distinguish between 

errors due to factors other than misconceptions and errors representing misconceptions. 

The coding from this analysis was used for the subsequent quantitative analyses. 

The quantitative analyses included two separate investigations. First, the 

relationship of misconceptions in each content area was examined using structural 

equation modeling. Six models were compared, all of which returned high goodness of fit 

indices and parsimony indices greater than 0.5. All models were calibrated using 

modification indices to reduce the chi-squared value. The final model for all six 

hypotheses validated well across a randomly chosen sample. 

Second, the impact of item, student, and class characteristics on misconception 

errors was investigated through a three level hierarchical generalized linear model. In this 

model, the item and student variance was statistically non-significant, but the between 

class variance was significant. Only class knowledge of cognition was a significant 
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predictor of misconception errors on a particular task. Based on these analyses, the item 

and student levels were combined into a single student level, in which the new outcome 

variable was the percentage of misconception errors for each student on the posttest. In 

this new model, student and class variance was statistically significant. Student 

mathematics self confidence and student percentage of misconceptions on the pretest 

were significant predictors of posttest misconception percentages. These two student 

variables explained 29% of student variance. Class enjoyment of mathematics, value of 

mathematics, and pretest misconception percentage were statistically significant class 

predictors of student posttest misconception percentage. The treatment condition of the 

class was not a statistically significant predictor. The removal of non-significant class 

predictor variables resulted in a significant amount of unexplained variance being 

returned to the model, so interaction effects were added to the model. The interaction of 

class value of mathematics and class knowledge of cognition was a statistically 

significant predictor of student posttest misconceptions. 

These analyses offer information about the nature of misconceptions in 

mathematics that may lead to better assessment of misconceptions and interventions to 

address misconceptions. The following chapter discusses the implications of these results. 

  



 

218 

 

 

 

CHAPTER 5 

DISCUSSION 

This chapter presents a discussion of the results provided Chapter 4. Three 

analyses were conducted to investigate the nature of misconceptions in mathematics: (1) 

analysis of student response patterns on the mathematics knowledge test (NAEP items); 

(2) comparison of hypothesized structural models representing the relationships among 

content area misconceptions; and, (3) examination of the impact of item, student, and 

class characteristics on misconception errors. Item characteristics were measured using 

Item Response Theory on the NAEP mathematics knowledge test. Student characteristics 

included attitudes toward mathematics (ATMI Enjoyment, Motivation, Self Confidence, 

and Value scales), metacognitive awareness (MAI Knowledge of Cognition and 

Regulation of Cognition scales), and pre- and post-test misconception and percent correct 

scores. Class characteristics consisted of aggregated scores for each student characteristic 

along with indicator variables for treatment condition and type of mathematics class. 

Through these three analyses, seven key findings emerged. 

1. Content area is not the most effective way to classify mathematics 

misconceptions; instead, five underlying misconceptions affect all four content 

areas. 

2. Mathematics misconception errors often appear as procedural errors. 

3. A classroom environment that fosters enjoyment of mathematics and value of 

mathematics are associated with reduced misconception errors. 
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4. Higher mathematics self confidence and motivation to learn mathematics is 

associated with reduced misconception errors. 

5. Probability misconceptions do not have a causal effect on rational numbers, 

algebra, or geometry misconceptions. 

6. Rational number misconceptions do not have a causal effect on probability, 

algebra, or geometry misconceptions. 

7. Probability instruction may not affect misconceptions directly, but it may help 

students develop skills needed to bypass misconceptions when solving difficult 

problems. 

Analysis 1: Misconception Error Analysis 

Two key findings. The first analysis of the present study presented patterns of 

student responses on the mathematics knowledge test composed of NAEP items. This 

document analysis validated hypotheses about how misconceptions would result in error 

choices for eight of the 17 items. Misconception error choices for the other nine items 

were adjusted to align with observed student responses (as shown in Table 18) before 

proceeding with the quantitative analyses. The observed patterns of misconception errors 

revealed an important aspect of mathematics misconceptions, Key Finding 1: On a wide 

array of mathematical problems, a very small number of fundamental misconceptions 

(five) appeared to account for a large proportion of the observed errors (70.49%). All five 

of these core misconceptions (i.e., Absolute/Relative Comparison, 

Additive/Multiplicative Structure, Spatial Reasoning, Variable Meaning, and Rational 

Number Meaning Misconceptions) appeared in multiple mathematics content areas.  

Another conclusion emerged from the analysis of student response patterns, Key 

Finding 2: Misconception error explanations relied on procedural knowledge isolated 



 

220 

from conceptual knowledge (as described in Figure 10). Previous studies (e.g., Agnoli & 

Krantz, 1989; Kahneman & Tversky, 1972; Falk, 1992) have also indicated that reliance 

on judgmental heuristics may be an important factor in the development of mathematics 

misconceptions. 

Our task as mathematics educators is to distinguish between those 

circumstances in which judgmental heuristics can adversely affect 

stochastic thinking and those in which the heurisitcs are useful and 

desirable. And we are obliged to point out the differences to our students. 

It is not that there is “something wrong” with the way our students think. 

It is just that they (and we) tend to carry useful heuristics beyond their 

relevant domain (Shaughnessy & Bergman, 1993, p. 184). 

The analysis of the present study indicates that connecting procedural knowledge 

to conceptual knowledge may help teachers and students make these distinctions. Hiebert 

and Grouws (2007) described two observable features for a classroom that focuses on 

developing conceptual understanding: (1) Teaching focuses explicitly to connections 

between facts, procedures, and ideas, and (2) Students are allowed to struggle with 

important mathematical concepts. Development of these two features in a classroom may 

help teachers identify the reasoning behind errors that emerge from misconceptions. 

Detecting mathematics misconceptions. NAEP released items were compiled “as 

is,” without any changes for the mathematics knowledge test (Appendix M). By doing so, 

the NAEP-established item content and concurrent criterion validity could be transferred 

to the present study (Daro et al., 2007). The compiled instrument also exhibited 

acceptable internal consistency and test-retest reliability. Despite these qualities, the 

instrument failed to adequately differentiate between misconceptions.  
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The ambiguity in student explanations for several items indicated that the validity 

of the items did not necessarily extend to measuring misconceptions. For example, the 

question of whether content area or type of underlying misconception category is a better 

way to organize mathematical misconceptions cannot be answered by the present study 

— some item responses indicated multiple types of misconceptions (e.g., Item 7, Choice 

D; Item 17, Choice C). Such a question might be answerable using a multi-trait, multi-

method structural equation model, but a model of this type, based on the present 

instrument would most likely require several cross-loadings that would make the model 

structurally unstable (i.e., no amount of iterations can yield a solution), such as was seen 

in Models A, B, and C of the structural analysis. Therefore, I recommend that such a 

study begin by altering the present instrument to focus directly on observed 

misconception responses. For example, in Item 17, the uniformity heuristic sometimes 

represented an absolute/relative comparison misconception, an additive/multiplicative 

structure misconception, a rational number meaning misconception, or a combination of 

these misconception types. To distinguish misconceptions more readily, it may be 

necessary to include explanations with possible answers. For example, instead of simply 

offering the choice “three,” a revised item might offer “one because the numerator is one 

(absolute/relative comparison misconception), “three because the denominator is three” 

(rational number meaning misconception), and “three because R and S have equal faces” 

(additive/multiplicative structure misconception via the uniformity heuristic). Without 

such differentiation, misconception content validity for closed-response items will be 

difficult to establish. A study to develop and validate such a misconception instrument 

may be a necessary first step to replicating and advancing the present investigation. 
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Analysis 2: Content Area Misconceptions 

Two key findings. The second analysis of the present study compared six 

hypothesized relationships between misconceptions in probability, rational numbers, 

algebra, and geometry as shown in Figure 1. Multiple studies found during the literature 

review (e.g., Agnoli & Krantz, 1989; Falk, 1992; Freudenthal, 1970, 1973, 1983; Schield, 

2006; Shaughnessy & Bergman, 1993; Warren, 2000; Watson & Shaughnessy, 2004) 

suggested that misconceptions in probability and rational numbers may hold a causal 

predictive position relative to those of algebra and geometry. They did not, however, 

suggest which might be the primary causal factor or if both acted together as causal 

indicators. The results of the present study suggested Key Findings 5 and 6: Probability 

misconceptions do not have a causal effect on rational numbers, algebra, or geometry 

misonceptions; Rational number misconceptions do not have a causal effect on 

probability, algebra, or geometry misconceptions. These results also reinforced Key 

Finding 1: Content area is not the most effective way to classify mathematics 

misconceptions.Interpretation of this analysis focused on issues of model stability and 

comparisons of the final models using the goodness of fit indices. 

Model stability. Model C (Figure 24) exhibited instability throughout the 

structural model analysis. Instability refers to the iterative process of SEM being unable 

to determine a best fitting solution. In the case of Model C, Lisrel 8.72 identified the 

fitted covariance matrix as “not positive definite,” meaning that the determinant of the 

solution matrix was either less than or equal to zero. This error indicates an unstable 

model for two reasons. (1) If the determinant of the fitted matrix equals zero, then the 

matrix is not invertible: The minimization function requires that the fitted matrix be 

inverted to find a solution. (2) A negative determinant allows the matrix to be inverted 
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mathematically, but the determinant is negative in a symmetric matrix only when 

elements on the diagonal are negative (Wothke, 1993). These diagonal elements represent 

variance (Byrne, 1998), so negative values present serious problems for interpretation 

and fitting the estimated matrix to the observed matrix. Wothke (1993) described two 

reasons for non-positive definite matrices, collinearity and overparameterization. In both 

cases, removal of unnecessary or redundant parameters can allow the analysis to proceed. 

In the case of Model C, both rational number and probability misconceptions could not 

predict both algebra and geometry misconceptions simulateously without creating a non-

positive definite fitted covariance matrix. The structural portion of Model C was 

therefore adjusted to discover the source of the error, which turned out to be the 

crossloadings from both independent variables (rational number and probability) to both 

dependent variables (algebra and geometry). Removal of either the crossloadings or 

direct effects eliminated the non-positive definite matrix problem. I proceeded to ask 

whether non-positive definite matrices would have occurred across imputations in 

Models A and B if the models had specified additional structural parameters. The dotted 

line regression weights in Figure 32 represent each additional parameter added to the 

models. 

 

Figure 32. Post Hoc Hypothesized Structural Parameters for Models A and B (Figure 24) 
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By adding the dotted line regression pathways in Figure 33 one at a time and 

together, both models resulted in non-positive definite matrices that prevented the 

analysis from computing an admissible solution. The consistent pattern of non-

convergence across three different models led to the conclusion that the addition of too 

many structural parameters created unstable models when both rational number and 

probability misconceptions act as predictors of both algebra and geometry 

misconceptions. One interpretation of this model behavior may be that rational number 

misconceptions and probability misconception may impact algebra and geometry 

misconceptions through the other or directly, but they do not appear to act as both direct 

causes and moderators simultaneously.  

Goodness of fit statistics. Each competing model in the calibration sample 

demonstrated excellent goodness of fit statistics with the exception of the GFI, and the 

GFI statistic was consistently moderate across all models. The dichotomous nature of the 

data meant that non-normality necessarily existed in the measurements, which has been 

reported to influence the value of GFI (Hu & Bentler, 1995). None of the models 

demonstrated superiority over the others (see Table 84).  

Conclusions. Based on these analyses, none of the models represented the 

relationship between misconceptions across content areas better than the others. Key 

Finding 5 and 6 emerged from these results: Probability misconceptions do not have a 

causal effect on rational numbers, algebra, or geometry misconceptions; and, Rational 

number misconceptions do not have a causal effect on probability, algebra, or geometry 

misconceptions. 

Multicollinearity between content area misconceptions may account for the lack 

of causal relationships. If multicollinearity were present, it could have caused the 
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different causal models to be statistically indistinguishable. To test for multicollinearity 

between content area misconceptions, pooled Pearson correlations between factor scores 

were computed across the five imputed data sets (Table 105). 

Table 105 
Pooled Intercorrelations Between Content Area Misconception Scores 
Subscale 1 2 3 4 
1. Algebra ― .31** .36** .35** 
2. Geometry ― .27** .23** 
3. Rational Number ― .32** 
4. Probability ― 
Note: N = 1133; ** p < 0.001 

 
All correlation coefficients in Table 105 were statistically significant, ranging 

from 0.23 to 0.37. These values mean that 5% to 13% of the variance between any two 

variables can be accounted for by multicollinearity. Taken together, these correlations 

confirmed that mutlicollinearity was a significant factor in the model analysis.  

By considering the qualitative analysis of student response patterns along with the 

present structural model analysis, the source of the multicollinearity can be traced. In the 

qualitative analysis, students sometimes responded to a misconception item because of 

different misconceptions (e.g., Item 4, Response B and Item 1, Response E). In other 

items, students chose one distractor because of one type of misconception, but chose 

another response because of a different misconception (e.g., Item 17). Because of this 

lack of discrimination within some misconception responses, examining a theoretical 

model of the underlying misconceptions (i.e., the meaning of rational numbers, 

additive/multiplicative structures, spatial reasoning, absolute/relative comparison, and the 

meaning of variables) was not possible with any degree of reliability. The results of the 

present study may strengthen the notion that there exists a core set of misconceptions that 

span content areas; indeed, the lack of difference among content area based models 
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indicates that these underlying misconception structures that influence reasoning in all 

four content areas may be more important than the content area to understanding how 

mathematical misconceptions develop and how they can be better addressed.  

To test this hypothesis, a second order factor was added to Model F (Figure 31). I 

hypothesized two potential outcomes for this new model. If the model demonstrated 

significant improvement over the other models, then this first outcome would mean that 

content area factors may model misconceptions well, but a higher order, fundamental 

mathematics misconceptions would account for the linearity between them. If, on the 

other hand, the new model did not demonstrate significant differences with the other 

models, then content area factors may not be the best way to model mathematical 

misconceptions. 

 

Figure 33. Possible Second Order Factor Model to Explain Content Area Misconception Multicollinearity. 
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The addition of this second order factor required checking that the new level was 

over-identified. With 10 data moments, 3 regression weights, 1 variance, and 4 residuals, 

the second order construct was overidentified with 10 – (3+1+4) = 2 degrees of freedom. 

Overall, the model had 115 degrees of freedom.  

The resulting goodness of fit statistics indicated that this model behaved no 

differently than Models A-F (Table 106). 

Table 106 
Goodness of Fit Indices for Second Order Post Hoc Hypothesized Model 

χ2
 CFI GFI RMSEA RMSEA 90% CI SRMR PGFI PCFI ECVI 

604.17 0.99 0.87 0.024 [0.009, 0.035] 0.075 0.66 0.751 1.41 
 

This structural comparison supported the hypothesis that the multicollinearity between 

content area misconceptions cannot be explained by the addition of a single factor. 

Previous studies (e.g., Agnoli, 1987; Agnoli & Krantz, 1989; Battista, 2007; Clements & 

Battista, 1992; De Bock et al., 2002; Falk, 1992; Kahneman & Tversky, 1973a, 1973b, 

1982; Küchemann, 1978; Lamon, 1999; Shaughnessy & Bergman, 1993; Van Dooren et 

al., 2003; Warren, 2000; Watson & Shaughnessy, 2004) have indicated at least five 

potential cross-content misconceptions that may explain the multicollinearity found in the 

present study, reinforcing Key Finding 1. Figure 34 portrays a possible structure for these 

underlying misconceptions and how they affect misconceptions in each content area. 
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Figure 34. Hypothetical Structure for Underlying Mathematical Misconceptions. 

The solid-line regression weights in Figure 34 represent relationships observed in 

the qualitative analysis of student responses. The dotted-line regression weights represent 

potential relationships between underlying and content area misconceptions that were not 

observed in the qualitative analysis. Whether their absence was due to the lack of a 

relationship or simply an artifact of the assessment instrument is not entirely clear — the 

dotted lines are not necessarily weaker relationships. For example, the meaning of 

rational number misconceptions very likely impacts geometry misconceptions relating to 

similarity concepts, but no items in the assessment instrument measured similarity 

concepts.  

Additionally, the relationship between the underlying misconceptions is not clear 

at this time. There may well be a causal structure between these factors; some may also 

be completely uncorrelated with others. Future studies may wish to measure these 

relationships. 
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Implications for curriculum development. The NCTM (2000) Principles and 

Standards for School Mathematics offered a conceptual framework to organize the 

emphasis of each content strand from Pre-K to Grade 12 (Figure 9). The structural 

analysis of the present study suggests that such an organizational structure may be unable 

to conceptualize fundamental concepts to learning mathematics that often result in 

misconceptions when ignored. A modified scheme adds an extra dimension to the NCTM 

framework (Figure 35). 

 

Figure 35. NCTM (2000) Modified Content Emphases Including Fundamental Mathematics Concepts 

Figure 35 depicts these fundamental mathematics concepts as progressive stages 

of learning throughout a child’s education. As a child progresses through grade school, 

the learning of these concepts can follow two paths. (1) If left unchecked, these concepts 

develop into misunderstandings about ideas, and misconceptions may develop. These 

misconceptions may compound as new learning barriers are encountered. When learning 

is focused primarily on developing procedural knowledge, the resultant rules, heuristics, 
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and formulas developed in isolation from conceptual knowledge lead to instrumental 

understanding and misunderstanding about the meaning of important mathematical ideas 

(as shown in Figure 10). (2) If misconceptions are addressed through an intervention that 

reinforces the meaning of mathematics ideas and the connections between ideas, then the 

learning barriers in Figure 35 may bolster rather than hinder the development of student 

understanding (Resnick, 1983).  

Textbooks may also improve their effect on student mathematics learning by 

integrating the barriers of Figure 35 throughout lesson sequences. Consider the example 

of a linear function definition presented by an algebra textbook. In Chapter 1, this 

problem was described as focusing primarily on a prescription for recognizing linear 

functions. The textbook description also connected the meaning of lines with the shape of 

the graph (i.e., spatial reasoning). The textbook did not, however, address the meaning of 

the variables x, y, or f(x). It also failed to address the meaning of the quantities m and b. 

Furthermore, no comparison was made of the similarities and differences in m and b from 

x and y. A discussion of the meaning of m can be used to address the differences between 

additive and multiplicative structures as described by Warren (2000). 

The potential changes to mathematics curricula supported by the present study 

may add a layer of complexity to the way mathematics content is organized. This 

complexity may have a direct impact on the ability of educators to provide materials to 

help address the barriers students encounter when learning mathematics. 

Analysis 3: Factors Influencing Misconception Errors 

Three key findings. The final analysis of the present study examined the impact of 

item, student, and class characteristics on misconception errors. The results of this 

analysis led to Key Findings 3, 4, and 7: A classroom environment that fosters enjoyment 
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of mathematics or value of mathematics helps reduce student misconception errors; 

Higher mathematics self confidence reduces misconception errors; and, Probability 

instruction may not affect misconceptions directly, but it may help students develop skills 

needed to bypass misconceptions when solving difficult problems. 

The two level model revealed significant predictors of misconceptions for both 

student and class characteristics. Student mathematics self confidence (ATMI self 

confidence scale) and pretest misconception error percentages (NAEP instrument) 

accounted for 29% of the student variance in posttest misconception error percentages 

(NAEP instrument). Class enjoyment of mathematics (ATMI enjoyment scale) and the 

class value of mathematics (ATMI value scale) also had a statistically significant effect 

on posttest misconception errors. The between-class variance in the unconditional model 

(see Table 89) was 0.0073 (p < 0.001). The contextual model that included the 

statistically significant class variables (see Table 92) reduced the between class variance 

to 0.0005 (p = 0.016). This reduction represented a 93.15% reduction. The three level 

model also accounted for 98% of the class level variance. Such large reductions in 

variance indicates that a large percentage of class effects on misconceptions may lie in 

the factors measured by the ATMI scales. If true, then educators can begin focusing on 

improvement of these factors within a class to reduce misconceptions. 

Implications for teaching mathematics. Traditional mathematics instruction has 

relied primarily on teacher-centered epistemologies (Stigler & Hiebert, 1999). This 

investigation began with the assumption that student-centered instructional approaches 

have a more positive effect on student mathematics learning than traditional, teacher-

centered strategies. The present study supported this assumption and extended it to 

addressing misconceptions. Higher mathematics self confidence, value, and enjoyment 
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were associated with a decline in misconceptions; the development of a positive learning 

environment may therefore be a critical component to helping students traverse the 

learning barriers in Figure 35.  

Maher and Tetrault (2001) described four epistemological components critical to 

developing such a positive learning environment: mastery, voice, authority, and 

positionality. First, mastery involves struggle and engagement with a body of knowledge. 

Instead of merely absorbing information, students grapple with difficulties of 

understanding. Rather than the final product as end goal, mastery refers to the continual 

process of working and re-working information into knowledge. Second, the fashioning 

of one’s voice in mathematics means to bring one's personal experiences, questions, and 

perspectives to the mathematics being studied. Third, the concept of authority refers to 

the source of mathematical knowledge in a classroom. Maher and Tetrault (2001) and 

Shrewsbury (1993) described a climate of shared mathematical authority: Students and 

teachers share the knowledge and understanding of important mathematical ideas in such 

an environment. Authority refers to the relationship between students and teachers 

collectively with mathematical knowledge. Fourth, positionality refers to the 

relationships between an individual and mathematical knowledge along with the 

interactions of these within- and between-student relationships.  

As teachers seek to help students turn the barriers of Figure 35 into opportunities 

to reinforce fundamental mathematics concepts, the development of a student-centered 

environment may be a foundational component for any strategy. Previous studies (e.g., 

Slavin & Karweit, 1982; Slavin & Lake, 2008; Slavin et al., 2009) have found that 

student-centered teaching approaches provide benefits to student achievement. If these 

environments are to offer the most benefit to avoiding and addressing misconceptions, 



 

233 

then students must be given opportunities to struggle with important mathematical ideas 

and their connections (Hiebert & Grouws, 2007; Kieran, 1989, 1992, 2007). 

An ontological perspective from the present study also offers insight for helping 

students overcome the learning barriers in Figure 35. The examination of student 

misconception error explanations revealed a consistent pattern: Misconception errors 

occurred when students relied on procedures isolated from meaning and mathematical 

structure. This pattern suggests that mathematics is best understood as an organized 

structure of meanings and connections rather than procedures. 

Teachers should strive to organize the mathematics so that 

fundamental ideas form an integrated whole. Big ideas encountered in a 

variety of contexts should be established carefully, with important 

elements such as terminology, definitions, notation, concepts, and skills 

emerging in the process (NCTM, 2000, p. 14)  

In combination with the epistemological implications described above, the present 

study found that student-centered, concept-focused mathematics classrooms may be the 

most effective learning environment for turning fundamental mathematics barriers into 

opportunities to learn. 

Final Thoughts: Pedagogy and Mathematics Misconceptions 

Traditional mathematics pedagogy may be even more detrimental to student 

learning than described by Welch (1978), Stigler and Hiebert (1997), and Manoucheri 

and Goodman (2001). In addition to losing the opportunity to struggle with important 

mathematics, traditional pedagogy also removes students from a position in which they 

can value or enjoy mathematics, individually or collectively (Shrewsbury, 1993). 

Traditional pedagogy positions students to receive and react to goals set out by the 
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teacher rather than allowing them part of the leadership process that helps them develop 

metacognitive knowledge and skills (Maher & Tetrault, 2001; Shrewsbury, 1993). 

Conceptual instruction, on the other hand, guides students to developing their own 

understanding of the meaning of important mathematical ideas and the connections 

between these ideas through authentic intellectual struggle (Rousseau, 1976; Stone, 

Alfeld, & Pearson, 2008). The findings of the present study suggest that conceptually 

focused instruction may position students to grapple with complex, abstract mathematical 

in a way that helps develop relational understanding of relevant mathematical structures, 

thereby reducing misconceptions or turning misconceptions into learning experiences. 

When targeting misconceptions, attending to the underlying structure of 

misconceptions that appear in all four content areas may be more effective than targeting 

the observable errors resulting from those misconceptions. Future investigations of 

mathematics misconceptions may best begin by developing a more refined instruments 

for identifying and categorizing misconceptions and potential causal structures 

The present study explored the use of probability instruction as an intervention to target 

fundamental mathematics misconceptions. The treatment condition had a statistically 

significant impact on the effect of item difficulty on misconception error probabilities, 

and several other important statistically significant factors were also identified. None of 

the hypothesized structures of content area misconceptions could be identified as a better 

fit to the data. This outcome led to the discovery of a high degree of multicollinearity 

between content area misconceptions, which supported the notion of an underlying 

mathematics misconception structure.  Preliminary analysis of a second-level underlying 

structure showed promise for this approach to understanding mathematical 

misconeptions. This finding offers a radically different perspective on the nature of 



 

235 

mathematics and mathematics learning. Furthermore, only five foundational concepts 

appeared to be fundamental to learning mathematics. Attending to these five foundational 

concepts may allow mathematics teaching in any single area to fundamentally impact the 

learning of other mathematics areas. Ignoring this small set of foundational concepts may 

allow the development of a formidable obstruction at a level that can inhibit and perhaps 

derail the mathematics future of students. Such an astounding notion may indicate that 

finding ways to identify and address these foundational concepts and their connections to 

a particular mathematics area should be one of the primary, critical tasks for mathematics 

educators. 
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APPENDIX A 

Algebra Lesson 1: Statistical Structure 

 
Situation: 

This lesson is the first of a probability unit designed for high school algebra classes. 
In this lesson, students will examine the structure of descriptive statistics and the 
normal distribution at an introductory level.  
 
This lesson is designed for a 90 minute block period class. 

 
Objectives 

1. Students will describe the structure of data analysis. 
2. Students will interpret mean, median, mode, variance, and standard deviation. 
3. Students will construct normal distribution data displays. 
4. Students will interpret the normal distribution data display. 

 
Connections 

In this lesson, probability is introduced as an extension of data analysis and the need 
to make inferences about a population. The opener begins this sequence by having 
students explore the notion of equality as it relates to rational numbers, a foundational 
concept to probability. In the 2nd lesson of this unit, the topics discussed in the present 
lesson will be reviewed further. 

 
Materials 

1) Measuring tapes to measure height in inches 
2) LCD Projector 
3) Microsoft PowerPoint (And Clicker, if available) 
4) PowerPoint Presentation  
5) Student Lesson Worksheet 
 

 
KY Core Content 4.1 Standards 

MA-HS-1.1.1: Students will compare real numbers using order relations (less than, 
greater than, equal to) and represent problems using real numbers. 

MA-HS-4.1.1: Students will analyze and make inferences from a set of data with no 
more than two variables, and will analyze problems for the use and 
misuse of data representations. 

MA-HS-4.1.2: Students will construct data displays for data with no more than two 
variables. 

MA-HS-4.2.1: Students will describe and compare data distributions and make 
inferences from the data based on the shapes of graphs, measures of 
center (mean, median, mode) and measures of spread (range, standard 
deviation).  

MA-HS-4.2.2: Students will know the characteristics of the Gaussian normal 
distribution (bell-shaped curve). 
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Procedures  
1) Opener – Think, Pair, Share (@ 10 minutes overall) 

a. Draw a picture to explain why 1/5 is equal to 0.2 
i. Give 3-5 minutes to draw pictures. (Teacher takes roll and posts) 

ii. Pair up and discuss answers (@ 1-2 minutes) 
iii. Share out in pairs (2 minutes) 

b. Discuss sample answers on PowerPoint slide. (@ 2 minute) 
i. Two possible pictures are given.  

2) Guided Notes (75 minutes) – Pass out Student Lesson Worksheet. 
a. Structure of Statistics: “The Statistical Pyramid” (Which is actually a 

ziggurat) 
i. The purpose of statistics is to say something about a population 

(Inference). 
1. Can’t measure a population directly because of 

constraining factors (e.g., time, money, ability to identify 
all subjects of population) 

2. Instead, we have to estimate population “parameters” from 
samples. 

ii. Sample statistics are the foundation of all data analysis.  
1. Not particularly interesting by themselves (e.g., I can easily 

measure the attitudes of students in a classroom about a 
topic, but what I really want to measure is the attitude held 
by all teenagers in the U. S.) 

2. Descriptive Statistics: We either describe sample behavior 
by the center or its spread. The center statistics are mean, 
median, and mode. The spread statistics are variance, 
standard deviation, and range. 

3. The frequency with which we observe particular values in a 
sample is sometimes called either the “sample” distribution 
or “data” distribution. (We’ll typically use “data” 
distribution to distinguish it from the “sampling” 
distribution) 

iii. Population parameters are also described by center and spread 
1. Center is typically the mean (although sometimes the 

median is used) 
2. Spread is variance and standard deviation. 
3. The frequency with which we observe particular values in a 

population is the “population distribution” 
iv. In between the population and data distributions is the pyramid 

staircase, the sampling distribution. 
1. What is a sampling distribution? We take a sample of N 

subjects, and compute a mean. The mean becomes a data 
point in the sampling distribution. We repeat this process a 
certain number of times, each time placing the sample 
mean into the sampling distribution set. When we have an 
“infinite” number of samples (of equal size), we have the 
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sampling distribution. (The frequency with which mean 
values are observed in repeated sampling) 

2. The sampling distribution also has a center and a spread. 
The center is the mean (which is actually a mean of means) 
and standard deviation. The standard deviation of a 
sampling distribution is usually referred to as “standard 
error.” 

b. Symbols commonly used in data analysis: 
i. These symbols are organized by which distribution they belong to: 

1. In the sample,  
(a) x = observation data 
(b) x = sample mean 
(c) s2 = sample variance 
(d) s = sample standard deviation 

2. In the sampling distribution, 
(a) xμ = sampling distribution mean (Mean of Means) 

(b) xσ or SE = standard error  
3. In the population distribution, 

(a) μ = population mean  
(b) σ2 = population variance 
(c) σ = population standard deviation 

4. Some general symbols used commonly: 
(a) Δ = Change (Looks like a triangle, but it’s actually 

a Greek Capital Delta) 
(b) Σ = Sum (Greek Capital Sigma) 
(c) df = Degrees of Freedom 

c. Describing data by the center 
i. Why would we want to do this? The center value can sometimes be 

a good representation of the values in the data set. Much easier to 
use one number instead of a thousand. 

ii. Graphing the data on a dotplot (a number line with each repeated 
point stacked) 

iii. Using the sample data set, go through computing the mean, 
median, and mode. Place a mark on the dotplot to show the mean, 
median, and mode. 

iv. Which center best represents this data set? In this case, the mean 
does a better job of representing the set (the 50 is high, but not 
high enough to be an outlier, and the median doesn’t account for 
its high value). 

v. How to decide which center to use: 
1. Mean: Most commonly used center. Used when data are 

distributed “normally” (bell shaped curve). 
2. Median: Used when data set contains outliers. 
3. Mode: Used when all the data cluster around a single value. 

d. Degrees of Freedom (df) 



 

285 

i. Defined as the number of independent observations in a population 
represented by a sample. 

ii. What do we mean by independent observations? 
1. Consider a sample of 4 people who are measured on some 

“score.” The sample mean x = 20, which means the sum of 
the scores was 80. 

2. We automatically estimate the population mean μ to also be 
20. 

3. So, when we go to the next sample of 4 people from the 
population, the first three people’s scores can be whatever 
they want (i.e., “free”) 

4. However, the fourth observation must make up the 
difference to get the sum to be 80 so that the population 
mean is still 20. We therefore say that it is “fixed” to track 
the population mean. 

5. So, we say that every time we estimate a population 
parameter, we lose a degree of freedom. So, df = n – 1 
(usually). 

iii. Degrees of freedom are important. Most statistical calculations 
assume that one observation doesn’t influence another (i.e., 
“independent”) 

iv. So, when we talk about samples, we think about sample size. But, 
when we talk about populations, we think about degrees of 
freedom.  

e. Divide students into groups of 6 (or allow them to group themselves). 
i. Measure heights in inches. 

ii. Have students compute the mean and subtract the mean from each 
X. 

iii. Have students add the second column. (If they don’t get 0, then 
there are either rounding errors or computation errors) 

iv. If we are interested in finding an average distance from the mean, 
why is this sum a problem? Because it means that regardless of the 
distances in the set, the average will always appear to be 0. 

v. Why is the sum always 0? Difficult to tell from the table, so let’s 
look at a sample set of data and a number line. Notice that the 
negative distances (observations below the mean) cancel out the 
positive distances (observations above the mean). Check your data 
set and see if it’s true for yours as well! 

vi. Computing the average distance from the mean can be thought of 
like calculating the distance between any other two points 

1. Use Pythagorean Theorem 
2. Notice that a + b ≠ c (and can’t for any triangle) 
3. But a2 + b2 does equal c2. When we talk about a2, b2, or c2, 

we are talking about area of squares.  
4. Benefit of using squares: (1) Can be used to compute 

distance (point out that the Pythagorean Theorem re-
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worked is the distance formula); (2) Eliminates the 0 sum 
problem. 

5. How does it eliminate 0 sum problem? The square of any 
number is positive (positive • positive = positive; negative 
• negative = positive). 

vii. Have students return to their height activity. 
1. Plot points on number line 
2. Draw in mean distances 
3. Draw the squares. 
4. Fill in the third column by squaring each mean distance. 
5. Find the sum of the third column and divide by 5 (Divide 

by 5 and not 6 because we want average distance in 
population, not sample, so use df instead of n). 

6. Go through sample data and allow students to follow their 
work with the sample. 

viii. What does that get us? 
1. Average square area for the mean distances is the 

“variance” 

2. It’s formula is: 
( )

1
σ

2
2

−
−

== ∑
n

XX
Variance  

3. It should be interpreted as the average amount of “noise” 
around the mean. It is the amount of data not represented 
by the mean. 

4. The side length of the variance square is the “standard 
deviation.” 

5. It’s formula is: 

( )
1

σσ
2

2

−
−

=== ∑
n

XX
Deviation Standard  

ix. Don’t worry about memorizing formulas! Graphing calculator 
computes these values easily. 

1. Stat  Edit  Edit takes students to the lists to type in 
their data (have them use their data set while you go 
through steps) 

2. 2nd  Quit returns them to the main calculator screen. 
3. Stat  Calc  1 Variable Stats provides: 

(a) Mean 
(b) Sum of X 
(c) Sum of X2 
(d) Population Standard Deviation 
(e) Sample Standard Deviation 
(f) Sample Size 
(g) Minimum X 
(h) Q1 (25th percentile) 
(i) Median (50th percentile) 
(j) Q3 (75th percentile) 
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(k) Maximum X 
x. Normal Distribution 

1. The normal distribution is a frequency distribution that 
corresponds to the probability of seeing a range of values in 
the population. Simplest, most common way of getting to 
population inference from a sample. 

2. Probability patterns are non-linear. (Rule of 3/Linear 
Proportions will not work to find unknowns). 

3. Look at Normal Distribution equation. No need to 
memorize the formula. Just notice that this distribution is 
based on mean, variance, and standard deviation. 

xi. 68-95-99 rule 
1. 68% of population falls between -σ and +σ. 95% of 

population falls between -2σ and +2σ. 99% of population 
falls between -3σ and 3σ WHEN DATA ARE NORMAL. 

2. These percentages are approximations. 
3. Finding critical values: add/subtract σ to/from mean. 
4. Making inferences with normal data. 

xii. Plotting normal curves 
1. Graphing calculator command: Y = Normalpdf(X, mean, 

st. dev.) 
2. Set Window. 

(a) XMin: A little lower than -3σ. 
(b) XMax: A little higher than 3σ. 
(c) XScl: Your choice. I tend to prefer σ. 
(d) YMin: 0 
(e) YMax: Your choice. I would think not higher than 

0.3 
(f) YScl: Your choice. 0.1 is usually pretty good 
(g) XRes: Keep at 1. 

3. Effect of standard deviation on curve height/width. 
(a) Higher SD = Shorter, wider graph 
(b) Lower SD = Taller, narrower graph 

4. Effect of mean on curve. Shifts position. 
 

3) Closure (5 minutes) 
a. Give a couple of minutes for individual work. 
b. Report out with whole class. 
c. Sample Solution: 

A news report posts that a political candidate has a 41% approval rating while 
her opponent has a 38% approval rating (SD = 3%). How does the normal 
distribution indicate that neither opponent is actually winning? 
The majority of the normal distributions for each candidate overlap: 
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Assessment 
1) Opener: Students connect rational number representations to notion of equality 

(1.1.1) 
2) Guided Notes and In-Class Simulation (Teacher observes and questions while 

students work individually; Questioning during whole class discussion) (4.1.1, 
4.1.2, 4.2.1, 4.2.2) 

3) Students will do more practice in Lesson 2 with normal distribution (4.1.1, 4.1.2, 
4.2.1, 4.2.2) 
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APPENDIX B 

Algebra Lesson 1 Student Worksheet 

1.  The structure of statistics 

 
2. Some symbols and their meaning: 

 
Symbol  Meaning 

Δ   
Σ   
df   

μ   
σ2   
σ   

xμ    

xσ    

x   
x  
s2   
s   
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3. Describing data by the center 
Sample Data Set: 50, 10,1, 7, 1, 25, 20 

a) Make a dotplot of the data. 

 
b) Compute the Mean. Mark it on the dotplot above. 

 
c) Compute the Median. Mark it on the dotplot above. 
 
d) Compute the Mode. Mark it on the dotplot above. 

 
e) Which center best represents this sample data set? Why? 
 

4. What does the term “Degrees of Freedom” mean?  
 

a. How is it usually computed?  
 

b. Why is it important? 
 

5. A) Collect the height of six people in the class (in inches). 
 

X (Height)  X ‐     
1)      
2)      
3)      
4)      
5)      
6)      
 =   Σ(X ‐  ) =    

 
B) What happened when you tried to calculate the average distance to the mean?  
 
C) Why do you think this happened? 

 
6.  How is distance between 2 points calculated? 

 

P1 

P2 
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7.  What is the benefit of using square areas for distance? 
 
8. Plot your student height data and mean on the number line provided on the next 

page.  
 
9. Compute the squares of the mean distances in the third column of the table in 

Problem 3; then draw the squares on the number line. 
 

10. Find the sum of the squares from column 3 in problem 3.  
 

a. Divide the sum by 5. Why 5 and not 6? 
 

b. What side length will produce a square of that size? 
 

 
 

11. The area of the average squared distance is referred to as… 
 
Formula: 
 
Meaning: 
 
 

12. The side length of the average square is the… 
Another name for this length is… 
 

Formula: 
 
 
Meaning: 
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13.  Graphing Calculator Operations 
 

Description  Buttons  Purpose 

 
STAT   ENTER 
 
 

 
 
 

 

 
2nd   QUIT 
 
 

   

 
 
STAT   Calc   1‐Var Stats 
 

 
 
 
 

 

:x   
∑x: 
∑x2: 
Sx: 
σx: 
n: 
minX: 
Q1: 
Med: 
Q3: 
maxX: 

 
 
14.  What is the normal distribution? (Read 

http://davidmlane.com/hyperstat/normal_distribution.html ) 
 

15. Identify the mean, variance, and standard deviation in the mathematical formula:  

( )
( )

π2σ
σ,μ~

2

2

σ2
μ−−

=

X

eNHeight  

 
16. What is the 68 – 95 – 99 rule? 

 

 
17. How do you compute the values for the X axis? 

           
           

X

D
en

si
ty

STAT

STAT

ENTER 

MODE2nd

QUIT 

ENTER 
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18. Complete the following for your example data. 

 
a. Approximately 68% of the population will fall between _____ and _____ 

inches. 
b. Approximately 95% of the population will fall between _____ and _____ 

inches.  
c. Approximately 99% of the population will fall between _____ and _____ 

inches. 
d. Approximately 84% of the population will be shorter than _____ inches. 
e. Approximately 0.5% of the population will be taller than _____ inches. 
f. Approximately 16% of the population will be shorter than _____ inches. 
g. Approximately 99.5% of the population will be taller than _____ inches. 

19. Plotting Normal Distributions 
a. What is the command sequence for graphing a normal distribution on a 

graphing calculator? 
 
b. How do you determine the Window to set for a Normal Distribution? 

i. XMin: 
ii. XMax: 

iii. XScl: 
iv. YMin: 
v. YMax: 

vi. YScl: 
vii. XRes: 

 
c. Plot two normal distributions on the same graph. Graph A: ~N(25, 2); 

Graph B: ~N(25, 5).  
 
d. What is the effect of the mean on the graph of a normal distribution? 
 
e. What is the effect of a larger standard deviation on the normal 

distribution? 
 

f. What is the effect of a smaller standard deviation on the normal 
distribution? 
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APPENDIX C  
 

Algebra Lesson 2: Randomness Lesson Plan 
 
Situation: 

This lesson is the second of a probability unit designed for high school algebra 
classes. In this lesson, students will examine randomness and sampling techniques 
used in experimentation. In subsequent lessons, students will examine counting 
principles and probability patterns of random variables. 
 
This lesson is designed for a 90 minute block period class. 

 
Objectives 

1) Students will distinguish between patterns and randomness. 
2) Students will predict ending positions of a random walk. 
3) Students will distinguish between types of sampling patterns. 

 
Connections 

In the first lesson, students learned how to create normal distribution curves from 
means and standard deviations. In this lesson, students will explore patterns within 
random data and discover that the random data will follow a normal pattern. In the 
next lessons, students will build concepts of counting and probability on the 
foundation of randomness and normality. 

 
Materials 

6) Coins for flipping at Station 1: Determining Random Patterns and Station 2: Ant 
Walk 

7) Computer with Internet for Station 3 
a. Go to Cliff Hanger applet or type in http://mste.illinois.edu/activity/cliff/.  
b. Note: The Cliff Hanger applet has sound; while sound is optional, it will make 

the station far livelier. ☺ 
8) LCD Projector 
9) Microsoft PowerPoint (And Clicker, if available) 
10) PowerPoint Presentation  
11) Student Lesson Worksheet 
 

 
KY Core Content 4.1 Standards 

MA-HS-4.1.1: Students will analyze and make inferences from a set of data with no 
more than two variables, and will analyze problems for the use and 
misuse of data representations. 

  
MA-HS-4.1.2: Students will construct data displays for data with no more than two 

variables. 
 
MA-HS-4.2.1: Students will describe and compare data distributions and make 

inferences from the data based on the shapes of graphs, measures of 
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center (mean, median, mode) and measures of spread (range, standard 
deviation). 

 
MA-HS-4.2.2: Students will know the characteristics of the Gaussian normal 

distribution (bell-shaped curve). 
 
MA-HS-4.3.1: Students will recognize potential for bias resulting from the misuse of 

sampling methods (e.g., non-random sampling, polling only a specific 
group of people, using limited or extremely small sample sizes) and 
explain why these samples can lead to inaccurate inferences. 

 
MA-HS-4.3.2: Students will design simple experiments or investigations to collect 

data to answer questions of interest. 
 
 

Procedures (88 minutes overall) 
4) Opener – Think, Pair, Share (@ 8 minutes overall) 

a. Give 2-3 minutes to complete the work. (Teacher takes roll and posts) 
b. Pair up and discuss answers. (@ 2 minutes) 
c. Share out in pairs. (@ 2 minutes) 
d. Discuss sample answers on PowerPoint slide. (@ 2 minute) 

i. Review computation of critical values for normal distribution. 
ii. Review Probability Percentages and meaning of Percentile: 98th 

percentile does not mean that Ben got 98% of the questions 
correct; it means that he scored better than 98% of the other 
students who took the test. 

5) Pass out Student Lesson Worksheet. Have students read about Randomness and 
Sampling in their textbook and answer as many questions on Page 1 as they can 
on their own. (5 minutes)  

6) Whole Class discussion of Page 1 Questions. (15 minutes) 
a. What is randomness?  

i. Every outcome has an equal chance of being selected. 
b. Why is it important? 

i. Random patterns appear in the world in many places: atomic and 
molecular movement, lottery, decision under uncertainty 

c. Simple Random Sampling  
i. Every individual in a population has an equal and independent 

chance of being selected for the study. The sample is obtained 
through selection by chance, a table of random numbers, or 
computer-generated random numbers. 

d. Systematic Random Sampling  
i. Based on the number needed in the sample, every nth person in the 

target population is selected for the sample.  
ii. Used most often for product quality testing (e.g., every nth 

product) 
iii. If the order to be sampled is random, then no bias increase.  

e. Stratified Random Sampling  
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i. This (method) is used when the proportion of subgroups (strata) 
are known in the population; selection is random but from each of 
these strata. 

ii. Used in political polling, voting (e.g., political districts form the 
strata) 

iii. Especially useful when one or a few groups constitute a large 
portion of the population — in this type of case, the stratified 
sample can reduce bias, rather than increase it.  

f. Convenience Sampling  
i. Sampling is done on the basis of availability and ease of data 

collection rather than in terms of suitability based on research 
objectives/questions.  

ii. Researchers (especially medical and social researchers) rely on 
willing participants (volunteers). This situation adds bias to the 
data — volunteers may share common traits that become over-
represented in the sample. 

iii. Randomly assigning volunteers to treatment/control group reduces 
this added bias.  

 
7) Station Work (15 minutes at each station; 45 minutes total) 

a. Station 1: Distinguishing Randomness within sequences 
b. Station 2: Random Walk of Ants 
c. Station 3: Random Walk with Tourist at the Grand Canyon (“Cliff 

Hanger”) 
8) Return to normal seats. (@ 10 minutes) 

a. Compile frequency of outcomes for ant walk. 
b. Build a histogram of class data. 
c. If we did 100 trials, would the histogram change? Why or why not? 
d. If each trial consisted of 20 steps, would the histogram change? Explain. 

Note: PowerPoint Slide has histogram from two Monte Carlo samples. 
 

9) Closure (5 minutes) 
What was the most surprising thing you learned today? Why did it surprise you? 

a. Write your own answer 
b. Discuss with a partner 
c. Share out with class 

 
Assessment 

4) Opener: Review of Normal Distribution (4.1.1, 4.2.1, 4.2.2) 
5) Student Work Stations/Lesson Worksheet (4.1.2, 4.3.1, 4.3.2) 
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APPENDIX D 

Algebra Lesson 2 Station Prompts 

Station 1: Determining Random Patterns 
 
1) A teacher asked Clare and Susan each to toss a coin a large number of times 

and to record every time whether the coin landed Heads or Tails. For each 
‘Heads,’ a 1 is recorded and for each ‘Tails,’ a 0 is recorded. Here are the two 
sets of results: 

 
a) Now one girl did it properly, by tossing the coin. The other girl cheated and just 

made it up. Which girl cheated? How can you tell? 
 

b) Now try it yourself with a partner. One person flips the coin while the other 
records the outcome. Switch off every 10 flips. Flip the coin 100 times. Record 
the results below. 

 
Flips 1 2 3 4 5 6 7 8 9 10 

Flips 1-10           
Flips 11-20           
Flips 21-30           
Flips 31-40           
Flips 41-50           
Flips 51-60           
Flips 61-70           
Flips 71-80           
Flips 81-90           
Flips 91-100           

 
c) Does your simulation make you change your decision in Part A? Why or why 

not? 
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Station 2: Ants and Random Movement 
 
Problem Statement: 

If a wandering ant starts at a lamp post and takes steps of equal length along the 
street, how far will it be from the lamp post after a certain number, say N, steps? 
Though this question is seemingly trivial, it poses one of the most basic problems 
in statistical science. 
 

It is easiest to visualize random motion (random walk) along one line, that is, in one 
dimension.  
 

• Call x the position of the ant on a one-dimensional line.  
• Locate the origin, that is x = 0, at the lamp post.  
• Then let each ``step'' of the ant — right or left along the line — be of equal length.  

 
 
 
 
 
 
 

1) How far from the origin do you expect the wandering ant to end up after 10 steps?  
 

2) After 10 steps is the ant more likely to be to the right or to the left of its starting 
point? 

 
3) If another ant takes 10 steps from the starting point, then another ant, then another 

ant, what do you expect their average final position to be after 10 steps? 
 

Simulation 
 

• Choose the direction of the step the ant will take by flipping a coin:  
(+1) If it is a head, the ant steps right and x increases by one.  
(–1) If it is a tail, the ant steps left and x decreases by one.  

 
4) What is the likelihood of getting a head or tail? What is the implication for the ant’s 

steps? 
 

5) Flip a penny ten times and move your ``ant'' accordingly. Record the data in the 
table below. (Starting Position = 0, the lamp post) 

 
Flip 1 2 3 4 5 6 7 8 9 10 
Result           
Ending Position           

 
6) Did the ending result surprise you? Why or why not? 
 

x = 0 +1 +2 +3 +4 +5 +6 +7 +8-2 -1-4 -3-6 -5 -7 
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7) Do the repeated trials for the ant walk represent random trials? Why or why not? 
 
Whole Class work on Station 2 Ants 

a. Compile the class data and construct a histogram. 
 

Final Position of x Frequency 
‐7   
‐6   
‐5   
‐4   
‐3   
‐2   
‐1   
0   
1   
2   
3   
4   
5   
6   
7   
8   

 
Now that you've had a chance to experiment, answer the following: 
 

1) What would you say about the value of the average position of many random 
walkers?  

 
 
 
 
2) If we conducted the same experiment with 100 trials of 10 steps, would the 

histogram be different? Why or why not?  
 
 
 
 

3) If each trial had the ant walk 20 steps instead of 10, would the histogram be 
different from 100 trials of 10 steps? Explain. 
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Station 3: Cliff Hanger 
 
Go to the Cliff Hanger applet at http://mste.illinois.edu/activity/cliff/. 
 
Problem Statement: 
 
A long day hiking through the Grand Canyon has discombobulated this tourist. 
Unsure of which way he is randomly stumbling, 1/3 of his steps are towards the edge 
of the cliff, while 2/3 of his steps are towards safety. From where he stands, one step 
forward will send him tumbling down. What is the probability that he can escape 
unharmed? 
 
1) Build a factor tree for the possible ending points for the tourist’s next 4 steps. (E = 

Toward Edge; S = Toward Safety). For each outcome, compute the ending 
position for that position. If the tourist falls off the cliff, then that branch of the 
factor tree ends — you will not fill in every oval. 
 

2) Compute the probability of moving toward safety or toward the edge for each step 
as shown in the diagram. 
 

 
3) Based on your factor tree, what is the likelihood that the tourist will be safe? 

 
 
 

4) Play five rounds of the cliff hanger game. Record the results below. 
 
Game Outcome (Win or Lose) 
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
 

 
5) Do the repeated trials for the cliff hanger represent random trials? Why or why 

not?  
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Appendix E 
  

Step 1: 
P(Safety) =  

If traveler takes Step 2: 
P(Safety) =  

Record the probability of moving toward safety or toward the edge with each step.  
Note: These are conditional probabilities — each step is contingent on not having already fallen! 

If traveler takes Step 3: 
P(Safety) = ________ 

If traveler takes Step 4: 
P(Safety) = _______ 
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APPENDIX E 
 

Algebra Lesson 3/Geometry Lesson 1: Counting Principles 
 

Situation: 
This lesson is the third of a probability unit designed for high school algebra classes. 
In this lesson, students will examine number properties important to probability. In 
the opener, students compare rational number quantities. In the main lesson, students 
learn to count possible outcomes using the Fundamental Counting Principle and 
factorial structures. Prior to this lesson, students have examined statistical structures, 
normal distribution, and notions of randomness. This unit will continue with 
exploration of probability and probability distributions. 
 
This lesson is designed for a 90 minute block period class. 

 
Objectives 

4) Students will count outcomes using the Fundamental Counting Principle. 
5) Students will count outcomes using factor trees. 
6) Students will count outcomes using permutations. 
7) Students will count outcomes using combinations. 

 
Connections 

Students have completed their first algebra unit. The opener for this lesson connects 
algebra, geometry, and rational numbers (meaning of rational numbers linked to 
central angle measurement and numerical notations). The main lesson lays a 
foundation for the rest of the probability unit. 

 
Materials 

12) LCD Projector 
13) Microsoft PowerPoint (And Clicker, if available) 
14) PowerPoint Presentation  
15) Student Lesson Worksheet 
16) Student Practice Worksheet 
17) Student Practice Worksheet Key 
  

 
KY Core Content 4.1 Standards 

MA-HS-1.1.1: Students will compare real numbers using order relations (less than, 
greater than, equal to) and represent problems using real numbers. 

 
MA-HS-4.4.2: Students will recognize and identify the differences between 

combinations and permutations and use them to count discrete 
quantities. 

 
Procedures (88 minutes overall) 

10) Opener – Think, Pair, Share (@ 8 minutes overall) 
a. Give @ 2 minutes to complete the work. (Teacher takes roll and posts) 
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b. Pair up and discuss answers (@ 2 minutes) 
c. Share out in pairs (@ 2 minutes) 
d. Discuss sample answers on PowerPoint slide. (@ 2 minute) 

i. Illustration connects angle degrees to rational number comparison 
ii. Before showing the number line, discuss why 99 is the smallest 

common denominator and what common denominators mean. 
11) Pass out Student Lesson Worksheet. Have students read about Counting 

Principles in their textbook and answer as many as they can on their own. (5 – 10 
minutes)  

12) Move students into groups to discuss their answers. (5 minutes)  
13) Students return to their normal seats for whole class discussion. (30 minutes)  

a. Events 
i. Independent Events 

ii. Dependent Events 
b. Counting Independent Outcomes: Three tosses of a coin 

i. Factor Trees:  
1. Why are some of the outcomes in red? Because these 

flips would not be necessary to determine a winner in a 
“Best 2 out of 3” game.  

2. How many outcomes to 3 tosses of a coin? How do you 
know? 8, They can be counted on the last row of the factor 
tree. 

ii. Table Arrangement:  
1. How do these outcomes match the factor tree? Each 

column on the table matches a level of the factor tree.  
2. Which do you think is easier to read? Why? Answers 

will vary. 
3.  What does it mean to be systematic? Why is it 

important? Counting/Arranging in a pre-determined 
order; important to ensure all outcomes are counted. 

iii. Fundamental Counting Principle 
1. Definition 
2. Discuss Notation from slide (| | = magnitude; ∩ = 

intersection). Why multiply? Each outcome for the second 
event applies to every outcome for the first event. 
When would you not multiply? When a situation calls for 
the union of two sets instead of the intersection: Each 
outcome for B does not apply to every outcome for A. 

3. Why do you suppose the Fundamental Counting 
Principle extends to more than 2 events? Each 
subsequent outcome applies to every outcome for each 
previous event. 

4. How do we count 3 flips of a coin? 2 outcomes for the 
first flip, 2 outcomes for the second flip, and 2 outcomes for 
the third flip = 2•2•2 = 8 outcomes 

5. Disadvantage? Doesn’t list the outcomes as well as count 
them; however, more useful for large number of outcomes 
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(e.g., roll 3 dice: 6•6•6 = 216 outcome, impractical to list 
them all) 

c. Counting Dependent Events 
i. A classroom of 30 students arrives on the first day.  

ii. Since I don’t know any of the students I assign seats randomly. 
iii. Count the number of outcomes for each of the first five students: 

30•29•28•27•26… 
iv. At this point, ask the students to describe the pattern. n! or 30! 

d. Permutations 
i. To introduce permutations, consider the following situation with 

the students: “The office calls and needs me to choose 3 people to 
help with a project.” How many ways to choose? 30•29•28 

ii. Developing a formula:  
1. All possibilities = 30! 
2. To count only the first 3, we have to remove 27! 
3. To remove these numbers mathematically, divide n! by (n-

r)! 
iii. Permutations are used when each new arrangement should be 

counted as a different outcome, or we say, “Order Matters.” 
iv. Look at example of choosing a President, Vice President, and 

Secretary. Why does order matter in this situation? 
v. Show how to compute permutation on graphing calculator. 

e. Combinations 
i. New situation: team of 3 instead of 3 different positions.  

ii. Why doesn’t order matter in this situation? Because every 
arrangement of 3 people is now the same team: ABC, ACB, BAC, 
BCA, CAB, CBA 

iii. Show that 6 outcomes = 3! 
iv. Levels of restrictiveness (Most outcomes to the least): 

Factorials  Permutations  Combinations 
v. Develop combination formula from permutation formula: To 

eliminate r! arrangements, have to divide. Why? Multiplicative 
Structure. 

vi. Discuss calculator functions and answer to example: number of 
teams of 3 out of 9 people. 

vii. Discuss notation: nCr = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

 

viii. Have students calculate ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
4

 

ix. Why do ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
n

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
n

always = 1? 

x. Show Pascal’s triangle. The rth term of the nth row = nCr. 
Emphasize that both must be counted from 0. 
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xi. Example 1: Twelve skiers compete in the final round of the 
Olympic freestyle skiing competition. How many different top 
three winners are possible? (Gold, Silver, Bronze). 

1. What are the events? A skier finishing. 
2. Are these events independent or dependent? Dependent 
3. Should the number of possible outcomes be counted 

with permutations or combinations? How do you know? 
Permutations because ABC is different than BCA. 

4. Solve: 12P3 = 1320 
xii. Example 1: Twelve skiers compete in the final round of the 

Olympic freestyle skiing competition. How many different top 
three winners are possible? (Gold, Silver, Bronze). 

1. What are the events? A skier finishing. 
2. Are these events independent or dependent? Dependent 
3. Should the number of possible outcomes be counted 

with permutations or combinations? How do you know? 
Permutations because ABC is different than BCA. 

4. Solve: 12P3 = 1320 
 
 
Example 2: A restaurant serves omelets that can be ordered with 
any of the ingredients shown. (a) Suppose you want exactly 2 
vegetarian ingredients and 1 meat ingredient in your omelet. How 
many different types of omelets can you order? (b) Suppose you 
can afford at most 3 ingredients in your omelet. How many 
different types of omelets can you order? 

1. What are the events? Ingredients chosen. 
2. Are these events independent or dependent? Dependent 
3. Should the number of possible outcomes be counted with 

permutations or combinations? How do you know? Combinations 
because Tomato and Cheese is the same as Cheese and Tomato. 

4. Solve (a): Vegetarian: 6C2 = 15; Meat: 4C1 = 4; Vegetarian AND Meat = 
15 • 4 = 60 

5. Solve (b): 10C3 = 120 
 

14) Pass out Student Practice Worksheet. Students work individually or with partners 
as desired. (15 minutes)  

15) Discuss Counting Worksheet: Divide class into 3 groups. Each group discusses 
one question and presents their solution to the class. (5 minutes for group time; 15 
minutes for reporting out)  

16) Closure: 3-2-1 
a. What are 3 things that you found interesting today? 
b. What are 2 things that you learned? 
c. What is 1 thing you still have a question about? 

 

Omelets $7.95 
(Each ingredient below adds an 

additional $0.50) 
Vegetarian Meat 

Green 
Pepper 

Ham 

Red Pepper Bacon 
Onion Sausage 

Mushroom Steak 
Tomato  
Cheese  
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Assessment 
1) Opener: Students compare rational number values (1.1.1) 
2) Guided Notes and Example Problems (Teacher observes and questions while 

students work individually; Questioning during whole class discussion) (4.4.2) 
3)  Counting Worksheet (4.4.2): Students work individually and collaboratively to 

analyze whether a situation involves independent or dependent events, 
Fundamental Counting Principle or Factorials, and permutations or combinations. 
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APPENDIX F 
 

Algebra Lesson 3/Geometry Lesson 1 Task Rotation Prompts 
 

1. You are going to set up a stereo system by purchasing separate components. In your 
price range you find 5 different receivers, 8 different compact disc players, and 12 
different speaker systems.  

 
 

a) What are the three events? 
 

b) Are these events independent or dependent? How did you decide? 
 

c) If you want one of each of these components, how many different stereo systems 
are possible? 

 
 

d) Draw a picture to illustrate why multiplication is appropriate for counting the 
number of outcomes. 

 
 
 
 
 
 
 
 
 
2. A deck of cards with no wilds is used for a hand of 5 card draw in a game with 6 

players. Use the illustration below to demonstrate how to count the number of 
possible games that could be dealt. 
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3. In 1920, an Egyptologist discovered a StarGate, a means of travelling to planets all 

over the galaxy instantaneously. In 1994, Dr. Daniel Jackson discovered that the gate 
required seven symbols: Six points in space to identify the target planet and the point 
of origin. 

 

   
 

The dialing device (DHD) has 39 symbols. Each time a planet is “dialed,” seven 
symbols must be entered.  

a) Does this situation suggest a permutation or combination? How can you 
tell? 

 
 

b) How many planets could possibly be reached from a single DHD? 
 
 
 
 
 
 

c) The point of origin is always the 7th symbol. How does this information 
change your answer to (b)? 
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APPENDIX G 
 

Algebra Lesson 4/Geometry Lesson 2: Event Probability 
 

Situation: 
This lesson is the fourth of a probability unit designed for high school algebra classes. 
In this lesson, students will rotate between stations to explore probability concepts. 
This lesson is designed for a 90 minute block period class. 

 
Objectives 

1) Students will differentiate between theoretical and experimental probability. 
2) Students will evaluate problems using probability principles. 
3) Students will explain how the law of large numbers applies to simulation. 
4) Students will run a Monte Carlo simulation and interpret the outcome. 
5) Students will use area and length ratios to compare probabilities. 

 
Connections 

In the previous lesson, students learned to count outcomes and differentiate between 
independent and dependent counting. This lesson extends the counting structures for 
each type of situation to probability. 

 
Materials 

18) Dice (For Stations 2 and 4) 
19) LCD Projector 
20) 2 Computers for Student Use (1 with Internet) 
21) Microsoft PowerPoint (And Clicker, if available) 
22) PowerPoint Presentation  
23) Student Lesson Worksheet 
 

KY Core Content 4.1 Standards 
MA-HS-4.1.2: Students will construct data displays for data with no more than two 

variables.  
MA-HS-4.4.1: Students will determine theoretical and experimental (from given 

data) probabilities, make predictions and draw inferences from 
probabilities, compare theoretical and experimental probabilities, and 
determine probabilities involving replacement and non-replacement. 

 
MA-HS-4.4.3: Students will represent probabilities in multiple ways, such as 

fractions, decimals, percentages and geometric area models. 
 
MA-HS-4.4.4: Students will explain how the law of large numbers can be applied in 

simple examples. 
 

Procedures  

0) Before class, Set up Stations: 
a. Station 1: Computer with Applet: Spinners. 
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b. Station 2: Dice for Happy Meal Simulation 
c. Station 3: Computer with Microsoft Excel; Print out directions for 

creating a Monte Carlo Simulation 
d. Station 4: Dice for Craps Simulation 

 
1) Opener (4 minutes overall) 

a. Give @ 2 minutes to complete the work. (Teacher takes roll and posts) 
b. Discuss sample answers on PowerPoint slide. (2 minutes) 

2) Pass out Student Lesson Worksheet. Have students read about Probability in their 
textbook and answer as many as they can on their own. (5 minutes)  

3) Move students into groups to discuss their answers. (5 minutes)  
4) Students return to their normal seats for whole class discussion. (10 minutes) 

 Fundamental Concepts of Probability  
◦ “Probability” means the likelihood of an event occurring. 
◦ Expressed as a part-whole ratio 

 Success and Failure  
◦ Success 

 The outcome of interest. 
 Changes for each new situation.  

◦ Failure: Everything other than success 
◦ S = Number of Successful Outcomes 
◦ F = Number of Failure Outcomes 

 Theoretical Probability  
◦ Probability based on assumption that all outcomes are equally likely 
◦ Examples:  
◦ Tossing a Coin: P(H) = 0.5 = 50% = 1/2 
◦ Rolling a Single Die: P(3) = 0.167 = 16.7% = 1/6 
◦ Rolling 2 Dice: P(3) = 0.056 = 5.6% = 2/36 = 1/18 
◦ “3” from (1 and 2) or (2 and 1); 36 total outcomes  

 Experimental Probability  
 Probability Based on Observations, Data, or Simulation. 
 Examples from a random sample of 10 observations: 

◦ Coin Toss: 
◦ P(H) = 
◦ 1 Die: 

 P(3) = 
◦ 2 Dice: 

 P(3) = 
 Odds  
◦ Odds of Success: Ratio of Success : Failure 
◦ Odds of Failure: Ratio of Failure : Success 

 Example  
◦ A baseball player has 126 hits in 410 at-bats this season.  

 What is the probability that he gets a hit in his next at-bat?  
 Is this a theoretical or experimental probability?  
 What are his odds of success?  
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5) Station work (15 minutes each; 60 minutes total) 

 
6) Closure: (5 minutes) 

a. You are the teacher in a class that just completed today’s lesson.  
b. Write down three details you think are important for students to know 

from this lesson. 
c. Share out in class.  

 
Assessment 

1) Opener: Review of Fundamental Counting Principle  
2) Student Worksheet (4.1.2, 4.4.1, 4.4.3, 4.4.4): Students work individually and 

collaboratively to explore fundamental probability concepts, probability ratios, 
and Monte Carlo simulations. Exploratory problems include multiple 
representations of probability (i.e., fractions, percentages, decimals). 
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APPENDIX H 

Algebra Lesson 4 Station Prompts 

Station 1: Spinners. 
 

1) Refer to Applet: “Spinners.” 
a) What is the probability of the spinner landing on Purple? Green? Red? 

Orange? Yellow? 
 

b) Are these probabilities theoretical or experimental? How do you know? 
 

 
c) Click on the “Record Results” button. Record your data in the table below.  

i. Spin the dial 10 times. 
ii. Spin the dial 10 more times. 

iii. In the box that says “Spins,” type in “10.” Spin 8 more times. 
iv. In the box that says “Spins,” type in “50.” Spin 8 more times. 

 
d) Click on the “Change Spinner” button. Change the values of each color as 

follows: 
Purple: 2 
Green: 3 
Red: 1 
Orange: 1 
Yellow: 4 

Click “Apply.”  
Draw a picture of the new spinner 
 

i. How are the new numbers related to probability? 
 
 
 
 

ii. Repeat the experiment above with your new spinner. 

 
e) How do your two experiments demonstrate the Law of Large Numbers? 
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Station 2: Happy Meal Simulation 
 

2) A blogger posted the following comment about the McDonald’s Happy Meal 
prize: 
 My daughter loves the current McDonald's happy meal prize. It's a Kids Bop CD, and it rocks! 
There are 6 different ones, and they are definitely doing the job, as we are pursuing to collect all 
6! I feel like it's really worth it. Some of the prizes end up in the trash (when the kids aren't 
looking), but these will be around for a while. I am a fan of anything that makes the car trips 
easier:). 

  
Suppose that the prizes are randomly placed in bags. Run a simulation to 
determine how many Happy Meals are likely to need to be bought to get all 6 
Kids Bop CD’s. Let each roll of a die represent the purchase of a different Kids 
Bop CD. 
 
 
 
 

a) Roll the dice until you roll all 6 numbers. Use tick marks to record the 
outcome for each roll in the table below.  

Outcome CD 1 CD 2 CD 3 CD 4 CD 5 CD 6 
No. of Rolls       
Probability Ratio       
Percentage       

 
b) How many rolls did it take you to buy all 6 CD’s? 

 
 
 
c) What does the law of large numbers indicate about the relationship of your 

experimental probability to the theoretical probability?
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Station 3: Monte Carlo Simulation 
 

3) What is a Monte Carlo simulation? 
 
 

4) In Meiosis, chromosomes from father and mother join to create a new gene. A 
scientist is studying 3 genes, each with a dominant and recessive trait. Using a 
factor tree, she determined that 8 traits were possible: A cereal company is putting 
8 different prizes in their boxes. Run a Monte Carlo simulation to determine how 
many boxes you’ll have to buy to get all 8 prizes. 

a) Double Click the Microsoft Excel Template on the desktop, 
“G2_Station_3_Monte_Carlo_Simulation.xltx” 

b) Use the factor tree on the “Introduction” page to determine the gene labels 
for the 8 traits: 

Trait 1: _______ 
Trait 2: _______ 
Trait 3: _______ 
Trait 4: _______ 
Trait 5: _______ 
Trait 6: _______ 
Trait 7: _______ 
Trait 8: _______ 

c) What is the theoretical probability for each trait? 
d) Go to the “Monte Carlo” page. Type in “=RandBetween(1,8)” into cell A2 

and hit Enter. 
e) Click and hold the button at the bottom right corner of cell A2 as shown to 

the left; drag the pointer down to A10.  
i. What do you suppose each cell represents?  

ii. Has the scientist encountered all 8 traits yet? How can you tell? 
 
 

iii. Does the experimental probability represent the theoretical 
probability? How do you know? 

 
 

f) Click and hold the button at the bottom right corner of cell A10. Drag to 
cell A25.  

i. Has the scientist encountered all 8 traits yet?  
 

ii. Does the experimental probability represent the theoretical 
probability? How do you know? 

A

B

b

C

c

C

c

a

B

b

C

c

C

c
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g) Click and hold the button at the bottom right corner of cell A25. Drag to 

cell A150. Does the experimental probability represent the theoretical 
probability now? How can you tell? 
 
 

h) Click and hold the button at the bottom right corner of cell A150. Drag to 
cell A350. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
 

i) Click and hold the button at the bottom right corner of cell A350. Drag to 
cell A500. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
 

j) Click and hold the button at the bottom right corner of cell A500. Drag to 
cell A1000. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
 

k) Based on this simulation, what sample size is needed to ensure that the 
sample data will represent the population distribution? How did you 
decide? 

 
 

l) Explain the relationship of the Histograms A, B, C, and D to the 
simulation data? To each other? 

 
 

m) What are 2 advantages of a Monte Carlo simulation over other simulations 
(e.g., dice, spinners, coins)? 2 disadvantages? 
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APPENDIX I 
 

Geometry Lesson 2 Station Prompts 
 
Station 1: Geometric Probability. 
 

1) Refer to Applet: “Probability as a ratio of line segments.” 
 

 
a) If segment AB represents the entire set outcome, what is the probability of 

AC, P(AC)? 
 
 

b) What is the relationship of P(BC) to P(AC)? How does this relationship 
relate to the Segment Addition Property? 

 
 
 

c) What is the probability that P(BC) ≥ 0.80? How did you decide? 
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2) Refer to Applet: “Probability as a Ratio of Concentric Rings.” 

 
a) What is the relationship of the radii of the three rings? 

 
b) Which measurement represents the area of the outer ring? Why? 

 
c) Which measurement represents the area of the middle ring? Why? 

 
d) Which measurement represents the area of the bulls eye? How is this 

region different from the other two? 
 

e) What is the probability of a randomly thrown dart landing in the outer 
ring? How do you know? 

 
f) What is the probability of a randomly thrown dart landing in the middle 

ring? How do you know? 
 

g) What is the probability of a randomly thrown dart landing in the bulls eye? 
How do you know? 

 
h) Why don’t the probability measurements change as the circle moves? 

 
i) Why aren’t the probabilities of each region equal? 
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Station 2: Happy Meal Simulation 
 

3) A blogger posted the following comment about the McDonald’s Happy Meal 
prize: 
 My daughter loves the current McDonald's happy meal prize. It's a Kids Bop CD, and it rocks! 
There are 6 different ones, and they are definitely doing the job, as we are pursuing to collect all 
6! I feel like it's really worth it. Some of the prizes end up in the trash (when the kids aren't 
looking), but these will be around for a while. I am a fan of anything that makes the car trips 
easier:). 

  
Suppose that the prizes are randomly placed in bags. Run a simulation to 
determine how many Happy Meals are likely to need to be bought to get all 6 
Kids Bop CD’s. Let each roll of a die represent the purchase of a different Kids 
Bop CD. 
 
 
 
 

d) Roll the dice until you roll all 6 numbers. Use tick marks to record the 
outcome for each roll in the table below.  

Outcome CD 1 CD 2 CD 3 CD 4 CD 5 CD 6 
No. of Rolls       
Probability Ratio       
Percentage       

 
e) How many rolls did it take you to buy all 6 CD’s? 

 
 

f) What does the law of large numbers indicate about the relationship of your 
experimental probability to the theoretical probability? 
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Station 3: Monte Carlo Simulation 
 

4) What is a Monte Carlo simulation? 
 
 

5) In Meiosis, chromosomes from father and mother join to create a new gene. A 
scientist is studying 3 genes, each with a dominant and recessive trait. Using a 
factor tree, she determined that 8 traits were possible: A cereal company is putting 
8 different prizes in their boxes. Run a Monte Carlo simulation to determine how 
many boxes you’ll have to buy to get all 8 prizes. 

a) Double Click the Microsoft Excel Template on the desktop, 
“G2_Station_3_Monte_Carlo_Simulation.xltx” 

b) Use the factor tree on the “Introduction” page to determine the gene labels 
for the 8 traits: 

Trait 1: _______ 
Trait 2: _______ 
Trait 3: _______ 
Trait 4: _______ 
Trait 5: _______ 
Trait 6: _______ 
Trait 7: _______ 
Trait 8: _______ 

c) What is the theoretical probability for each trait? 
d) Go to the “Monte Carlo” page. Type in “=RandBetween(1,8)” into cell A2 

and hit Enter. 
e) Click and hold the button at the bottom right corner of cell A2 as shown to 

the left; drag the pointer down to A10.  
i. What do you suppose each cell represents?  

ii. Has the scientist encountered all 8 traits yet? How can you tell? 
 
 

iii. Does the experimental probability represent the theoretical 
probability? How do you know? 

 
 

f) Click and hold the button at the bottom right corner of cell A10. Drag to 
cell A25.  

i. Has the scientist encountered all 8 traits yet?  
 

ii. Does the experimental probability represent the theoretical 
probability? How do you know? 

A

B

b

C

c

C

c

a

B

b

C

c

C

c
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g) Click and hold the button at the bottom right corner of cell A25. Drag to 

cell A150. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
h) Click and hold the button at the bottom right corner of cell A150. Drag to 

cell A350. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
i) Click and hold the button at the bottom right corner of cell A350. Drag to 

cell A500. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
j) Click and hold the button at the bottom right corner of cell A500. Drag to 

cell A1000. Does the experimental probability represent the theoretical 
probability now? How can you tell? 

 
k) Based on this simulation, what sample size is needed to ensure that the 

sample data will represent the population distribution? How did you 
decide? 

 
l) Explain the relationship of the Histograms A, B, C, and D to the 

simulation data? To each other? 
 

m) What are 2 advantages of a Monte Carlo simulation over other simulations 
(e.g., dice, spinners, coins)? 2 disadvantages? 
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Station 4: Craps 
 
In the game of craps, two common bets are pass line bets and don’t pass line bets. 
 
Pass Line Bet - You win if the first roll is a natural (7, 11) and lose if it is craps (2, 3, 
12). If a point is rolled (4, 5, 6, 8, 9, 10) it must be repeated before a 7 is thrown in order 
to win. If 7 is rolled before the point you lose. 
 
Don't Pass Line Bet - This is the reversed Pass Line bet. If the first roll of a dice is a 
natural (7, 11) you lose and if it is a 2 or a 3 you win. A dice roll of 12 means you have a 
tie or push with the casino. If the roll is a point (4, 5, 6, 8, 9, 10) a 7 must come out 
before that point is repeated to make you a winner. If the point is rolled again before the 
7 you lose. 
 

1) Develop the probability distribution for rolling two die.  
a) List all possible dice sums in the table below. 

 
Die 1 Die 2 Outcome Die 1 Die 2 Outcome Die 1 Die 2 Outcome

1 

1  

3 

1  

5 

1  
2  2  2  
3  3  3  
4  4  4  
5  5  5  
6  6  6  

2 

1  

4 

1  

6 

1  
2  2  2  
3  3  3  
4  4  4  
5  5  5  
6  6  6  

 
b) What is the total number of outcomes for rolling two die? 
c) Record the probability of each outcome for rolling two dice.  

  
d) Create a histogram below of the data in the table. 

 
 
 
 
 
 
 
 

Sum 2 3 4 5 6 7 8 9 10 11 12 
Probability            
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2) What does this distribution tell you about the most likely outcomes for rolling two 
dice? 

 
 

3) Would you prefer to bet on a Pass Bet or No Pass Bet? How did you decide? 
 
 

4) Play 10 rounds of craps, using the type of bet you chose. Record the results 
below. 

Roll Outcome Win or Lose?
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   

 
5) The Law of large numbers states that as sample size increases, its ability to 

represent the population also increases. How do you think the law of large number 
relate to your simulation of craps? 
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APPENDIX J 
 

Algebra Lesson 5/Geometry Lesson 3: Probability Distributions 
 

Situation: 
This lesson is the final lesson of a probability unit designed for high school algebra 
and geometry classes.  
This lesson is designed for a 90 minute block period class. 

 
Objectives 

1) Students will compare two different experiments with equal probability using the 
Law of Large Numbers. 

2) Students will make inferences about populations using binomial and geometric 
distribution patterns. 

 
Connections 

In the previous lesson, students examined probability as part-whole relationships and 
single and multiple events. They also explored the impact of the law of large numbers 
on the relationship between theoretical and experimental probability. In this lesson, 
students will examine probability distributions as an extension of event probabilities. 

 
Materials 

1) Microsoft PowerPoint (And Clicker, if available) 
2) PowerPoint Presentation  
3) Student Lesson Worksheet 
4) Task Rotation Worksheet 
 

KY Core Content 4.1 Standards 
MA-HS-4.1.1: Students will analyze and make inferences from a set of data with no 

more than two variables, and will analyze problems for the use and 
misuse of data representations.  

MA-HS-4.1.2: Students will construct data displays for data with no more than two 
variables.  

MA-HS-4.2.1: Students will describe and compare data distributions and make 
inferences from the data based on the shapes of graphs, measures of 
center (mean, median, mode) and measures of spread (range, standard 
deviation). 

MA-HS-4.4.4: Students will explain how the law of large numbers can be applied in 
simple examples. 

MA-HS-5.1.3: Students will demonstrate how equations and graphs are models of the 
relationship between two real-world quantities (e.g., the relationship 
between degrees Celsius and degrees Fahrenheit) 

Procedures  
1) Opener (6 minutes): The theoretical probability for an event is ½. Which of the 

two ratios is more likely in a set of repeated trials? 4/8 or 400/800. 
a. Give students @ 2 minutes to complete. (Teacher takes roll and posts)  
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b. In pairs, have students share their thoughts about the ratio likelihoods. (2 
minutes) 

c. Report out and discuss with whole class (The slide “Law of Large 
Numbers” is a discussion of opener solution; 2 minutes) 

2) Introduce Probability Distributions (28 minutes total) 
a. Fundamental Ideas (3 minutes) 

i. Definition 
ii. Two types: Discrete or Continuous 

iii. Based on Random Data and Patterns that emerge from repeated 
trials. 

b. Uniform Distribution (5 minutes) 
i. Uses 

ii. Examples 
iii. Shape of the distribution 
iv. Interpretation 

c. Binomial Distribution (10 minutes) 
i. Uses 

ii. Examples 
iii. Shape of the distribution 
iv. Interpretation 
v. Example Problem 

d. Geometric Distribution (10 minutes) 
i. Uses 

ii. Examples 
iii. Shape of the distribution 
iv. Interpretation 
v. Example problem 

 
3) Problem Set (50 minutes). Pass out Student Problem Set Worksheet. 

a. Do each question one at a time.  
b. Allow students to work approximately 10 minutes individually. 
c. Have students get with a partner and discuss (10 minutes). Use different 

partners for each question. 
d. Report out and discuss with whole class. (5 minutes). 
e. Repeat for 2nd question. 

4) Closure (5 minutes) 
a. Give a couple of minutes for individual work. 
b. Report out with whole class. 

Assessment 
1) Opener assesses how well students can apply Law of Large Numbers to various 

situations (4.1.1, 4.4.4) 
2) Problem Set Question 1 (Blood Type) assesses how well students can apply 

binomial distribution inference to a particular situation. (4.1.2, 4.2.1) 
3) Task Rotation Question 2 (Daughter) assesses how well students can apply the 

geometric distribution to a particular situation. Additionally, students are asked to 
interpret the probability histogram. (4.1.2, 4.2.1, 5.1.3) 
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APPENDIX K 
 

Algebra Lesson 5 Student Worksheet 
 

1.  Blood type is inherited. Suppose a father carries the genotype AO (phenotype = Type 
A) while the mother carries the genotype BO (phenotype = type B). They have 4 
children. 
 

a) Fill in the Punnett Square:  

 
b) Type O blood is considered the “Universal Donor.” What is the probability 

that X = 2 of the children will have Type O blood? 
i. Why is this situation binomial? 

 
ii. What does X represent? 

 
iii. n = ? 

 
iv. p = ? 

 
v. Use the graphing calculator to calculate the full probability distribution 

of X. Then calculate the probability distribution of X on Minitab.  
 

Number of Type O Children:  X = ?  X = ?  X = ?  X = ?  X = ? 
Sum of 

Probabilities 
Probability             
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c) Draw the probability histogram: 

 
 

d) What is the probability that 2 children from this family will have Type O 
Blood? 
 

2. A couple decided to start a family, and both wanted a daughter. Their first child was a 
boy, so they decided to continue having children until they got a daughter. After 
having four boys, the couple’s fifth child was a daughter. 
 

a) In what way is this situation geometric? 
 

b) After the fourth child’s gender was known, the mother proclaimed, “What are 
the chances?!” What was the probability that it would take 5 children before a 
girl was born? 

 
c) Draw a probability histogram for the geometric distribution out to 5 children. 

 
 

d) Does this graph mean that it is less likely that the 2nd child is a girl than the 
1st? Why or why not? If not, what does it mean? 

 
e) Develop an equation to represent the geometric probability of achieving the 

first success on the fifth try. 
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APPENDIX L 

Geometry Lesson 3 Student Worksheet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

  

The useful life of a radial tire is normally 
distributed with a mean of 80,000 miles and a 
standard deviation of 5000 miles.  The 
company makes 10,000 tires a month. 

a. About how many tires from a 
month’s production will last between 
75,000 and 85,000 miles? 

b. About how many tires from a 
month’s production will last more 
than 90,000 miles? 

c. What is the probability that if you 
buy a radial tire at random, it will 
last between 70,000 and 85,000 miles? 

d. As a consumer, what are two things 
you can do to maximize the life of 
your tires? 

In 1998, Ben took both the SAT and the ACT.  
On the mathematics section of the SAT, he 
earned a score of 624.  On the mathematics 
section of the ACTG, he earned a score of 31.   
 
For the SAT, the mean was 512 and the 
standard deviation was 112.  For the ACT, the 
mean was 21 and the standard deviation was 5. 
 
• Explain how you can know that Ben 

performed better on the ACT than he did 
on the SAT. 

Sketch three normal curves on the same scale 
with the following properties (you can use the 
graphing calculator): 

a. Mean is 50 and standard deviation is 2. 
b. Mean is 50 and standard deviation is 

10. 
c. Mean is 50 and standard deviation is 

20. 
 
If you owned a business and the data represents 
your profits each month over the past year, 
which curve would you prefer?  Why? 

Mario and Luigi are calculating the 
probability of getting a 4 and then a 2 if they 
roll a die twice.  With a partner, decide which 
solution is correct and why. 

Mario: 
P(4, then 2) Independent Events, so the 
probability is: 

36
1
6
1

6
1

=

•  

= 2.78% chance of rolling a 4, then a 2. 

Luigi: 
P(4, then 2) Dependent Events, so the 
probability is: 

30
1
5
1

6
1

=

•  

= 3.33% chance of rolling a 4, then a 2. 
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APPENDIX M 

NAEP Mathematics Knowledge Instrument 

I. Multiple Choice Answers Explanations 
1) A    B    C    D    E  

2) A    B    C    D    E  

3) A    B  

4) A    B    C    D    E  

5) A    B    C    D    E  

6) A    B    C    D    E  

7) A    B    C    D    E  

8) A    B    C    D    E  

9) A    B  

10) A    B    C    D  

11) A    B    C    D    E  
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12) A    B    C    D    E  

13) A    B    C    D    E  

14) A    B    C    D    E  

15) A    B    C    D    E  

16) A    B    C    D    E  

17) A    B    C    D    E  
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I. Multiple Choice. For Questions 1-15, please mark the response that you think 
best answers the question. Please explain how you decided your answer. 

 
1) A person is going to pick one marble without looking. For which dish is there the 

greatest probability of picking a black marble? 
 

A B C D E 

  
 

Please explain your answer. 
 
 
 
2) The table below shows the gender and color of 7 puppies. If a puppy selected at 

random from the group is brown, what is the probability it is a male? 
 

 Male Female 
Black 1 2 
Brown 1 3 

 

A) 
4
1  B) 

7
2  C) 

3
1  D) 

2
1  E) 

3
2  

 
Please explain your answer. 

 
 
 
3) A package of candies contained only 10 red candies, 10 blue candies, and 10 green 

candies. Bill shook up the package, opened it, and started taking out one candy at a 
time and eating it. The first 2 candies he took out and ate were blue. Bill thinks the 

probability of getting a blue candy on his third try is 
30
10

or 
3
1

. 

 
a) Is Bill correct or incorrect? A) Yes, he is correct. B) No, he is not 

correct. 
b) Please explain how you 

decided. 
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4) If Rose spins a spinner like the one below 300 times, about how many times should 
she expect it to land on the space with a circle? 

 

 
  

A) 75 B) 90 C) 100 D) 120 E) 150 
  

Please explain how you decided. 
 
 
 
5) The temperature in degrees Celsius can be found by subtracting 32 from the 

temperature in degrees Fahrenheit and multiplying the result by 
9
5

 . If the temperature 

of a furnace is 393 degrees Fahrenheit, what is it in degrees Celsius, to the nearest 
degree? 

 
 A) 650      B) 1805     C) 40 D) 201 E) 72 

  
Please explain how you decided. 

 
 
 

6) In the equation y = 4x, if the value of x is increased by 2, what is the effect on the 
value of y? 

  
  

A) It is 8 more than the original amount. B) It is 6 more than the original amount. 

C) It is 2 more than the original amount. D) It is 16 times the original amount. 

E) It is 8 times the original amount.  

 
Please explain how you decided. 
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7) A plumber charges customers $48 for each hour worked plus an additional $9 for 
travel. If h represents the number of hours worked, which of the following 
expressions could be used to calculate the plumber's total charge in dollars? 

  
A)  h + 48 + 9 B) 48 • 9 • h 
C) 9h + 48 D) h + (48 • 9)  
E) 48h + 9  

 
Please explain how you decided. 

 
 
 
8) At the school carnival, Carmen sold 3 times as many hot dogs as Shawn. The two of 

them sold 152 hot dogs altogether. How many hot dogs did Carmen sell? 
 

A) 21 B) 38 C) 51 D)114 E) 148 
 

Please explain how you decided. 
 
 
 
9) Sara was asked to draw a parallelogram. She drew the figure below. 

 
Is Sara's figure a parallelogram?  
 
A) Yes B) No 
 
Please explain how you decided. 
 
 
 

10) What is the area of the shaded figure? 
 

 
A) 9 square centimeters 
B) 11 square centimeters 
C) 13 square centimeters 
D) 14 square centimeters 
 
Please explain how you decided. 
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11) A scale drawing of a rectangular room is 5 inches by 3 inches. If 1 inch on this scale 
drawing represents 3 feet, what are the dimensions of the room? 
 
A) 5 feet by 3 feet B) 5 feet by 9 feet 

C) 15 feet by 3 feet D) 15 feet by 5 feet 

E) 15 feet by 9 feet  

   
Please explain how you decided. 
 
 
 

12) The cost to mail a first-class letter is 33 cents for the first ounce. Each additional 
ounce costs 22 cents. (Fractions of an ounce are rounded up to the next whole 
ounce.) 

   
How much would it cost to mail a letter that weighs 2.7 ounces? 

   
A) 55 cents B) 66 cents C) 77 cents D) 88 cents E) 99 cents 

 
Please explain how you decided. 

 
 
 

13) If you were to redraw the diagram using a scale of 
4
3

inch = 10 feet, what would be 

the length of the side that is 48 feet? 

 
  

A) 3.0 in B) 3.6 in C) 5.6 in D) 7.5 in E) 12.0 in 
 

Please explain how you decided. 
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14) In which of the following are the three fractions arranged from least to greatest? 
   

A)
9
5,

2
1,

7
2

  B) 
9
5,

7
2,

2
1

  C) 
7
2,

9
5,

2
1

 D) 
7
2,

2
1,

9
5

 E) 
2
1,

7
2,

9
5

 

  
  

Please explain how you decided. 
 
 
 
15) What fraction of the figure below is shaded?  

 
  

A) 
4
1

 B) 
10
3

 C)  
3
1

 D)  
7
3

 E)
 10

7
   

 
Please explain how you decided. 

 
 
 
16) Angela makes and sells special-occasion greeting cards. The table below shows the 

relationship between the number of cards sold and her profit. Based on the data in 
the table, which of the following equations shows how the number of cards sold and 
profit (in dollars) are related? 

  
  Mon. Tues. Wed. Thurs. Fri. Sat. 

Number Sold, n 4 0 5 2 3 6 

Profit, p $2.00 $0.00 $2.50 $1.00 $1.50 $3.00 
 

A)  p = 2n 
 

B)  p = 0.5n 
 

C)  p = n – 2  
 

D)  p = 6 – n  
 

E)  p = n + 1 
 

Please explain how you decided. 
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17) Each of the 6 faces of a certain cube is labeled either R or S. When the cube is 

tossed, the probability of the cube landing with an R face up is 
3
1 .How many faces 

are labeled R? 
 

A) Five B)  Four C)  Three D)  Two E)  One 
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APPENDIX N 

Attitudes Toward Mathematics Inventory (Tapia & Marsh, 2004) 

This inventory consists of statements about your attitude toward mathematics.  There are 
no correct or incorrect responses.  Read each item carefully.  Please think about how you 
feel about each item.  Circle the letter that most closely corresponds to how the 
statements best describes your feelings.  Use the following response scale to respond to 
each item. Your responses are confidential. 

Use these codes: 
A-Strongly Disagree 
B-Disagree 
C-Neutral 
D-Agree 
E-Strongly Agree 

1) Mathematics is a very worthwhile and necessary subject.   A      B      C      D      E 
2) I want to develop my mathematical skills. A      B      C      D      E 
3) I get a great deal of satisfaction out of solving a mathematics problem. A      B      C      D      E 
4) Mathematics helps develop the mind and teaches a person to think. A      B      C      D      E 
5) Mathematics is important in everyday life. A      B      C      D      E 
6) Mathematics is one of the most important subjects for people to study. A      B      C      D      E 
7) High school math courses would be very helpful no matter what I decide to study. A      B      C      D      E 
8) I can think of many ways that I use math outside of school. A      B      C      D      E 
9) Mathematics is one of my most dreaded subjects. A      B      C      D      E 
10) My mind goes blank and I am unable to think clearly when working with 

mathematics. 
A      B      C      D      E 

11) Studying mathematics makes me feel nervous. A      B      C      D      E 
12) Mathematics makes me feel uncomfortable. A      B      C      D      E 
13) I am always under a terrible strain in a math class. A      B      C      D      E 
14) When I hear the word mathematics, I have a feeling of dislike. A      B      C      D      E 
15) It makes me nervous to even think about having to do a mathematics problem. A      B      C      D      E 
16) Mathematics does not scare me at all. A      B      C      D      E 
17) I have a lot of self-confidence when it comes to mathematics A      B      C      D      E 
18) I am able to solve mathematics problems without too much difficulty A      B      C      D      E 
19)  I expect to do fairly well in any math class I take. A      B      C      D      E 
20) I am always confused in my mathematics class. A      B      C      D      E 
21) I feel a sense of insecurity when attempting mathematics. A      B      C      D      E 
22) I learn mathematics easily. A      B      C      D      E 
23) I am confident that I could learn advanced mathematics. A      B      C      D      E 
24) I have usually enjoyed studying mathematics in school. A      B      C      D      E 
25) Mathematics is dull and boring. A      B      C      D      E 
26) I like to solve new problems in mathematics A      B      C      D      E 
27)  I would prefer to do an assignment in math than to write an essay. A      B      C      D      E 
28) I would like to avoid using mathematics in college. A      B      C      D      E 
29) I really like mathematics. A      B      C      D      E 
30) I am happier in a math class than in any other class. A      B      C      D      E 
31) Mathematics is a very interesting subject. A      B      C      D      E 
32) I am willing to take more than the required amount of mathematics. A      B      C      D      E 
33) I plan to take as much mathematics as I can during my education. A      B      C      D      E 
34) The challenge of math appeals to me. A      B      C      D      E 
35) I think studying advanced mathematics is useful. A      B      C      D      E 
36) I believe studying math helps me with problem solving in other areas. A      B      C      D      E 
37) I am comfortable expressing my own ideas on how to look for solutions to a difficult 

problem in math. 
A      B      C      D      E 

38) I am comfortable answering questions in math class. A      B      C      D      E 
39) A strong math background could help me in my professional life. A      B      C      D      E 
40) I believe I am good at solving math problems. A      B      C      D      E 
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APPENDIX O 

Metacognitive Awareness Inventory (Schraw & Dennison, 1994) 

We would like you to respond to the following questions by indicating how true or false 
each statement is about you. There are no correct or incorrect responses.  Read each item 
carefully.  Please think about how you feel about each item.  Circle the letter that most 
closely corresponds to how the statements best describes your feelings.  Use the following 
response scale to respond to each item. Your responses are confidential. 
 

Use these codes: 
A-Always False 
B-Sometimes False 
C-Neutral 
D-Sometimes True 
E-Always True 

1) I ask myself periodically if I am meeting my goals. A      B      C      D      E 
2) I consider several alternatives to a problem before I answer. A      B      C      D      E 
3) I try to use strategies that have worked in the past. A      B      C      D      E 
4) I pace myself while learning in order to have enough time. A      B      C      D      E 
5) I understand my intellectual strengths and weaknesses. A      B      C      D      E 
6) I think about what I really need to learn before I begin a task. A      B      C      D      E 
7) I know how well I did once I finish a test. A      B      C      D      E 
8) I set specific goals before I begin a task.  
9) I slow down when I encounter important information. A      B      C      D      E 
10) I know what kind of information is most important to learn. A      B      C      D      E 
11) I ask myself if I have considered all options when solving a problem. A      B      C      D      E 
12) I am good at organizing information. A      B      C      D      E 
13) I consciously focus my attention on important information. A      B      C      D      E 
14) I have a specific purpose for each strategy I use. A      B      C      D      E 
15) I learn best when I know something about the topic. A      B      C      D      E 
16) I know what the teacher expects me to learn. A      B      C      D      E 
17) I am good at remembering information. A      B      C      D      E 
18) I use different learning strategies depending on the situation. A      B      C      D      E 
19) I ask myself if there was an easier way to do things after I finish a task. A      B      C      D      E 
20) I have control over how well I learn. A      B      C      D      E 
21) I periodically review to help me understand important    relationships. A      B      C      D      E 
22) I ask myself questions about the material before I begin. A      B      C      D      E 
23) I think of several ways to solve a problem and choose the best one. A      B      C      D      E 
24) I summarize what I've learned after I finish. A      B      C      D      E 
25) I ask others for help when I don't understand something. A      B      C      D      E 
26) I can motivate myself to learn when I need to. A      B      C      D      E 
27) I am aware of what strategies I use when I study. A      B      C      D      E 
28) I find myself analyzing the usefulness of strategies while I study. A      B      C      D      E 
29) I use my intellectual strengths to compensate for my weaknesses. A      B      C      D      E 
30) I focus on the meaning and significance of new information. A      B      C      D      E 
31) I create my own examples to make information more   meaningful. A      B      C      D      E 
32) I am a good judge of how well I understand something. A      B      C      D      E 
33) I find myself using helpful learning strategies automatically. A      B      C      D      E 
34) I find myself pausing regularly to check my comprehension. A      B      C      D      E 
35) I know when each strategy I use will be most effective. A      B      C      D      E 
36) I ask myself how well I accomplished my goals once I'm finished. A      B      C      D      E 
37) I draw pictures or diagrams to help me understand while learning. A      B      C      D      E 
38) I ask myself if I have considered all options after I solve a problem. A      B      C      D      E 
39) I try to translate new information into my own words. A      B      C      D      E 
40) I change strategies when I fail to understand. A      B      C      D      E 
41) I use the organizational structure of the text to help me learn. A      B      C      D      E 
42) I read instructions carefully before I begin a task. A      B      C      D      E 
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We would like you to respond to the following questions by indicating how true or false 
each statement is about you. There are no correct or incorrect responses.  Read each item 
carefully.  Please think about how you feel about each item.  Circle the letter that most 
closely corresponds to how the statements best describes your feelings.  Use the following 
response scale to respond to each item. Your responses are confidential. 
 

Use these codes: 
A-Always False 
B-Sometimes False 
C-Neutral 
D-Sometimes True 
E-Always True 

43) I ask myself if what I'm reading is related to what I already know. A      B      C      D      E 
44) I re-evaluate my assumptions when I get confused. A      B      C      D      E 
45) I organize my time to best accomplish my goals. A      B      C      D      E 
46) I learn more when I am interested in the topic. A      B      C      D      E 
47) I try to break studying down into smaller steps. A      B      C      D      E 
48) I focus on overall meaning rather than specifics. A      B      C      D      E 
49) I ask myself questions about how well I am doing while I am learning something new. A      B      C      D      E 
50) I ask myself if I learned as much as I could have once I finish a task. A      B      C      D      E 
51) I stop and go back over new information that is not clear. A      B      C      D      E 
52) I stop and reread when I get confused. A      B      C      D      E 
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