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ABSTRACT 

WHAT WE SEE CHANGES HOW WE SEE:  
ANALYZING THE PLASTICITY OF THE HORIZONTAL EFFECT 

 
 

April M. Schweinhart 
 

June 18, 2015 
 

The relationship between the processing of orientations by the human visual 

system has been related to the orientation content of the natural environment; horizontal 

orientations, while predominant in natural environments, are perceived less well than 

vertical and oblique orientations are perceived best, though they are least prevalent in the 

natural world.  This ‘horizontal effect’ has further extended the well-studied relationship 

between visual encoding and natural scene statistics as the differential perception of 

orientations in broadband scenes inversely matches their differential representation in the 

natural environment.  However, the original hypothesis that this relationship may have 

evolved across millennia in order to make the visual system an efficient information-

transmitting system has been called into question by research showing the modification 

of orientation perception by exposure to altered environments and studies showing a later 

development of adult-like orientation processing.  Recent work into the effects of 

adaptation on visual encoding of the natural environment have led me to the conclusion 

that the relationship between the statistics of the natural world and visual encoding is, in a 

way, much simpler than previously posited; rather than being adapted over millennia to 

whiten the typical natural scene anisotropy, the visual system adjusts processing 
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dynamically to match the current visual environment.  The project presented here details 

how the statistics of the recently viewed environment affect the way that the visual brain 

processes information.  To assess the effect of recent exposure on broadband orientation 

processing, the orientation content subjects viewed was modified via fast Fourier 

transform (FFT) filtering of their environment in near-real-time.  Results show that 

experience in an altered environment modifies anisotropic processing: observers’ 

orientation perception changes from matching the typical environmental distribution to 

matching that of the recently experienced atypical environment.  The results of these 

experiments can be predicted by assuming that observers’ biases of perception are 

probabilistic and rely on an internal model that matches the recently experienced 

environmental distribution.  This change in perception indicates not only that orientation 

processing is plastic, but that it is related in a predictable way to an observer’s recent 

visual environment.
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INTRODUCTION 

Almost since its inception, vision science has been concerned with the processing 

of lines at different sizes and orientations.  Lines are important for visual processing for 

many reasons, primarily because 2D lines on the retina correspond to 3D edges in the real 

world.  Lines and edges of different sizes and orientations are the elementary building 

blocks of the natural world and, as was discovered later, are not-coincidentally the 

fundamental encoding mechanisms for the cortical processing of images (Hubel & 

Weisel, 1959, 1962).  For the past decade, Essock  and colleagues have been 

investigating the relationship between the processing of orientation by the human visual 

system and how this processing relates to the orientation content of the natural 

environment (Essock, DeFord, Hansen, & Sinai, 2003; Essock, Haun, & Kim, 2009; 

Hansen & Essock, 2004; Hansen & Essock, 2005; Hansen & Essock, 2006; Haun & 

Essock, 2010; Kim, Haun, & Essock, 2010).  For almost 100 years we have known that 

humans see cardinal orientations (horizontal and vertical) better than oblique orientations 

(Appelle, 1972; Campbell & Kulikoski, 1966; Corwin, Moskowitz-Cook, & Green, 1977; 

Emsley, 1925; Essock, 1982; Hamblin & Winser, 1927; Higgins & Stultz, 1948; 

Leibowitz, 1953; Shlaer, 1937).  Many authors have also noted that natural scene 

statistics show a relationship to this differential visual processing of orientations 

(Coppola, Purves, McCoy, & Purves, 1998; Hansen & Essock, 2004; Keil & Cristobal, 

2000; Switkes, Mayer, & Sloan, 1978).  More recent work by Essock and colleagues has 

http://w.journalofvision.org/content/4/12/5.full#ref-15
http://w.journalofvision.org/content/4/12/5.full#ref-50
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determined that orientation processing is more complex than it once appeared; when 

presented in a broadband, naturalistic context, human perception of horizontal 

orientations is actually worst and oblique orientations are perceived best (Essock,et al., 

2003; Essock, Haun, & Kim, 2009; Hansen & Essock, 2004, 2005, 2006; Haun & 

Essock, 2010;  Kim, Haun, & Essock, 2010).  This finding has further extended the 

relationship between visual encoding and natural scene statistics as the differential 

perception of orientations in broadband scenes closely matches their differential 

representation in the natural environment (Essock, Haun, & Kim, 2009; Haun & Essock, 

2010).  However, the original hypothesis that this relationship may have evolved across 

millennia in order to make the visual system an efficient information-transmitting system 

is now being called into question by research showing the modification of orientation 

perception by exposure to altered environments (Bao & Engel, 2012; Zhang, Bao, Kwon, 

He, & Engel, 2009) and studies showing a later development of adult-like orientation 

processing (Ellemberg, Hansen, & Johnson, 2012; Ellemberg, St Jacques, St Louis-

Deschenes, Baillargeon-Blais, & Labonte-Lemoyne, 2012).  Contemporary  work into the 

effects of adaptation on visual encoding of the natural environment has led me to the 

conclusion that the relationship between the statistics of the natural world and visual 

encoding is, in a way, much simpler than previously posited (Bao & Engel, 2012; 

Girshick, Landy, & Simoncelli, 2011; Zhang et  al., 2009).  This project examines how 

the statistics of the very recently viewed visual world affect the way that the visual brain 

processes information.  The work presented comments not only on how the visual system 

effectively encodes its surroundings, but perhaps also extends to a more general theory of 

how the brain as a whole processes information in a probabilistic and predictable manner.   
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Orientation Processing: Oblique Effect 

Human perception of orientation is biased; that is, visual perception differs 

depending on the orientation of the stimulus and the context in which the oriented stimuli 

is presented.  For simple stimuli consisting of one orientation and one spatial frequency 

(i.e., a sine wave grating), human visual performance is worst at oblique and best at 

cardinal orientations (Appelle, 1972; Campbell & Kulikoski, 1966; Essock, 1982).  This 

differential performance at cardinal and oblique orientations is termed the oblique effect 

and has been shown to exist in man and animals on many kinds of tasks including those 

at absolute threshold (contrast sensitivity), other detection tasks (Vernier acuity, 

resolution acuity), and tasks above detection threshold (reaction time, orientation 

discrimination, apparent contrast) (Appelle, 1972; Corwin, Moskowitz-Cook, & Green, 

1977; Essock, 1982).  Not only do subjects need higher contrast at oblique orientations to 

detect the presence of a stimulus (contrast sensitivity), they also take longer to react to 

stimuli at oblique orientations than cardinal orientations (Appelle, 1972; Attneave & 

Olson, 1967) Perceptually, obliquely oriented gratings have lower apparent contrast than 

horizontal or vertical gratings of the same physical contrast both at absolute threshold and 

above threshold (Essock, 1982).   

The more general oblique effect has been broken down into two classes based on 

the presumed mechanisms behind each effect (Essock, 1980).  The class I oblique effect 

is found on tasks of basic visual processing such as contrast threshold and Vernier acuity 

such as those described above (Essock, 1980).  There also exists a class II oblique effect 

which is found on suprathreshold tasks in paradigms involving the encoding/memory of 

orientation subsequent to the level of initial sensory encoding (Essock, 1980).  Class II 
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oblique effects are found on tasks of recognition, identification, discrimination, and 

matching and are not related to a difference in sensitivity, but differential capabilities in 

later processing (Essock, 1980, 1982; Essock, Krebs, & Prather, 1997; Prather, Krebs, 

Sinai, McCarley, & Essock, 1995).  It is somewhat difficult to distinguish whether a 

specific task involves class I or II oblique effects (or both) as even tasks in which stimuli 

are presented simultaneously still rely on a difference in memory for orientations rather 

than just a bias in the initial visual encoding (Essock, 1980; Essock, Krebs, & Prather, 

1997).  Both class I and class II oblique effects are found in children and adults, starting 

with infants as young as 6 weeks of age (Essock & Siqueland, 1981; Leehey, Moskowitz-

Cook, Brill, & Held, 1975; Quinn & Bomba, 1986; Quinn, Siqueland, & Bomba, 1985).   

The oblique effect has been tied to the number of orientation-tuned neurons in 

early areas of visual cortex (V1) (DeValois, Yund, & Hepler, 1982; Kennedy, Martin, 

Orban, & Whitteridge, 1985; Li, Peterson, & Freeman, 2003; Liang, Shen, & Shou, 2007; 

Mansfield, 1974; Mansfield & Ronner,1978;  Shen, Liang, & Shou, 2008; Shen, Tao, 

Zhang, Smith, & Chino, 2014; Wang, Ding, & Yunokuchi, 2003), the amplitude of the 

response from cardinally tuned neurons (Maffei & Campbell, 1970; Sun et al., 2013), 

tuning differences between cardinally and obliquely tuned neurons (Dragoi Turcu, & Sur, 

2001; Li, Peterson, & Freeman, 2003), and the cortical space devoted to processing 

different orientations (Chapman & Bonhoeffer, 1994; Chapman, Stryker, & Bonhoeffer, 

1998; Grabska-Barwinska, Distler, Hoffman, & Jancke, 2009; Huang et al., 2006).  The 

evidence for the differential representation of cardinally tuned cells in primary visual 

areas of animals has come from multiple sources (Chapman & Bonhoeffer, 1994; 

Chapman, Stryker, & Bonhoeffer, 1998; Coppola et al., 1998; DeValois, Yund, & Hepler, 
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1982; Huang et al., 2006; Kennedy et al., 1985;Mansfield 1974; Mansfield & Ronner, 

1978; Shen, Liang, & Shou, 2008), but studies in humans have led to mixed results 

(Freeman, Brouwer, Heeger, & Martin, 2011; Furmanski & Engel, 2000; Kamitani & 

Tong, 2006; Koelewijn, Dumont, Muthukumaraswamy, Rich, & Singh, 2011; Maffei & 

Campbell, 1970; Nasr & Tootell, 2012; Proverbio, Esposito, & Zani, 2002; Serences, 

Saproo, Scolari, Ho, & Muftuler, 2009; Swisher et al., 2010; Sun et al., 2013; Yacoub, 

Harel, & Ugurbil, 2008).  Mansfield (1974) was the first to demonstrate an orientation 

bias in the number of cells tuned to cardinal orientations by recording single units’ 

optimal orientation and receptive field (RF) eccentricity in rhesus monkey primary visual 

cortex.  This anisotropy in the number of cells that respond to different orientations has 

also been found in macques (DeValois, Yund, & Hepler, 1982).  More neurons preferring 

cardinal orientations compared to oblique orientations were found within the central 2 

degrees of the visual field (parafoveal regions outside of this did not show any 

anisotropy) (Mansfield & Ronner, 1978).  Li, Peterson, and Freeman (2003) also found 

more cardinally tuned cells than obliquely tuned cells among the simple cell population 

in cat primary visual cortex.  In more recent studies, Shen and colleagues (2008; 2014) 

found evidence of a greater number of cardinally tuned cells in the foveal region of V2, 

but not V1 of cats (area 17) and macaques.  Generally speaking, most studies have found 

a numerical anisotropy wherein cardinally tuned cells are overrepresented in primary 

visual cortex of cats (Li, Peterson, & Freeman, 2003; Liang, Shen, & Shou, 2007; Shen, 

Liang, & Shou, 2008) although the results from primates are mixed and suggest that the 

anisotropy may exist at higher levels (i.e. V2, see Shen et al., 2014 for review). 
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The anisotropy of quantity is coupled with an anisotropy of tuning; although peak 

firing rate of cardinal and obliquely tuned cells are the same, cardinally tuned cells are 

more sharply tuned than obliquely tuned cells (Dragoi, Turcur, & Sur, 2001; Li, Peterson, 

& Freeman, 2003).  Dragoi, Turcu, and Sur (2001) also found that cardinally tuned cells 

tend to have iso-oriented input, while obliquely tuned cells receive input from areas of 

larger cortical spread.  Since cardinally tuned cells have more specific inputs, their 

orientation tuning should be less affected when adapted to a stimulus that is oriented 

away from their preferred orientation (Dragoi, Turcu, & Sur, 2001).  Adapting 

orientation-tuned cells in cat primary visual cortex to oriented gratings resulted in strong 

changes in the orientation preferences of obliquely tuned neurons, but much smaller 

changes in cardinally tuned neurons.  Thus, the authors concluded that cardinally tuned 

neurons are more stable in their preferred orientations and the percepts that they induce 

(Dragoi, Turcu, & Sur, 2001).  This stability and narrow tuning, along with differential 

population representation, may further allow the visual system to minimize changes in 

perception due to adaptation by providing a “frame of reference” along cardinal axes 

(Dragoi, Turcu, & Sur, 2001).  In other words, cells tuned to cardinal orientations are 

more specific in their tuning and less susceptible to changes which could allow the visual 

system to maintain a ‘true’ vertical and horizontal from which other orientations can be 

referenced.  However, not all studies investigating the tuning responses of primary visual 

cortical neurons have found this stability at the cardinal orientations (Dragoi, Sharma, & 

Sur, 2000; Nagai, Suzuki, & Wang, 2007); more work is needed to fully investigate the 

frame of reference hypothesis. 
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Optical imaging studies have further supported the existence of a cardinal bias in 

neural population tuning of orientation in animals.  Optical imaging on newborn ferrets 

by Chapman and Bonhoeffer (1994; Chapman, Stryker, & Bonhoeffer, 1998) revealed 

that cardinal response areas were significantly larger than oblique response area across 

postnatal days 32 to 42.  Other optical imaging studies found similar evidence of an 

increased amount of processing devoted to cardinal orientations and provided evidence 

that the orientation anisotropy also exists at higher levels (area 21a in cat cortex) in the 

visual system beyond primary visual cortex (Huang et al., 2006).  The existence of higher 

level anisotropies may indicate that feedback from these higher areas plays a key role in 

shaping the anisotropy in lower order cortex (Huang et al., 2006).  However, as single 

cell recordings and optical imaging studies are limited to relying on animal models, the 

exact implications of these findings are unclear and may not be applicable to human 

visual areas (i.e., V1).  Whether occurring in primary visual areas or higher order visual 

areas, it does seem clear that animal models indicate an overrepresentation of cardinal 

contours in early areas of visual cortex (Chapman & Bonhoeffer, 1994; Chapman, 

Stryker, & Bonhoeffer, 1998; Coppola et al., 1998; DeValois, Yund, & Hepler, 1982; 

Grabska-Barwinska, Distler, Hoffman, & Jancke, 2009; Huang et al., 2006; Kennedy et 

al., 1985; Maffei & Campbell, 1970; Mansfield 1974; Mansfield & Ronner, 1978; Li, 

Peterson, & Freeman, 2003; Shen, Liang, & Shou, 2008; Shen et al., 2014; Wang, Ding, 

& Yunokuchi, 2003).   

In humans, the differential representation of orientations in cortex has proved less 

conclusive; while some studies show a cardinal bias (Aspell, Wattam-Bell, Atkinson, & 

Braddick, 2010; Furmanski & Engel, 2000; Furmanski, Schluppeck, & Engel, 2004; 
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Maffei & Campbell, 1970; Proverbio, Esposito, & Zani, 2002; Serences  et al., 2009; 

Swisher et  et al., 2010; Sun et al., 2013) others show no bias (Kamitani & Tong, 2005; 

McDonald, Mannion, & Clifford, 2012; Yacoub et al., 2008) or mixed results (Koelewijn 

et al., 2011).  The amplitude of response to cardinal gratings does appear to be greater 

than that evoked by oblique gratings in human visual cortex.  Using ERP, the amplitude 

evoked by a passively-viewed, drifting grating with cardinal orientations is larger than 

that of oblique orientation (Maffei & Campbell, 1970) and there are larger P1 and P3 

components for cardinal orientations when subjects are performing an orientation 

identification task (Proverbio, Esposito, & Zani, 2002).  Using MEG, a technique which 

has better spatial resolution than ERP and better temporal resolution than fMRI, 

Koelewijin and colleagues (2011) found an early (80ms) reverse oblique component in 

medial part of visual cortex and a relatively later (120ms) classic oblique effect 

component.  The earlier inverse oblique component may reflect the broader tuning widths 

of the obliquely tuned cells and be later overruled by the later component (Koelewijn et 

al., 2011).  MRI evidence in human processing of orientation has been particularly 

mixed.  Using discrete grating patches experimenters found a larger BOLD response for 

cardinal orientations in V1, but not in V2 and V3 (Furmanski & Engel, 2000).  More 

recently, Kamitani and Tong (2006) were able to successfully decode orientation 

perception from the BOLD signal of subjects, but found no preferential tuning across 

orientation.  However, using a higher resolution fMRI to measure the orientation tuning 

in V1, Serences and colleagues (2009) did find a higher proportion of voxels which 

responded maximally to horizontal orientation.  The most recent study to date suggests 

that the mixed fMRI evidence collected in the past led to unclear results purely because 
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of coarse sampling techniques (Sun et al., 2013, Freeman, Heeger, & Merriam, 2013).  

Using both a continuous and periodic stimuli presentation paradigm, Sun and colleagues 

(2013) found more voxels in V1 preferring horizontal and vertical orientations.  Thus, 

there appears to be a cardinally dominant anisotropy of response profiles in human V1, 

although this predominance may not extend to higher visual cortical areas.    

Whether the cause of the oblique effect is a difference in the number of cells, the 

amplitude of the response, the tuning properties of cell populations, or the cortical area 

devoted to cardinal orientation processing, the effects of the differential cortical treatment 

of orientations are present from a very early age, possibly birth.  Human infants showed 

an oblique effect as early as 6 weeks of age  with better visual acuity thresholds for 

cardinal orientations than oblique orientations (Atkinson, Hood, Wattam-Bell, Anker, & 

Tricklebank, 1988; Leehey, et al., 1975). Visual evoked potential (VEP) tests on human 

infants aging 2 to 11 months old indicate the amplitude of vertically oriented stimuli was 

significantly larger than oblique gratings while the latencies were significantly shorter 

(Sokol, Moskowitz, & Hansen, 1987).  Single unit recordings from macaque infants (4-8 

weeks of age) also show a numerical bias in the number of cells tuned to cardinal 

orientations in visual area V2 (Shen et al., 2014).  The numerical and tuning biases 

mentioned above makes the processing of horizontal orientations less susceptible to 

perceptual change and also probably contributes to the oblique effect in that a greater 

number of cells tuned to cardinal orientations should lead to a stronger response to 

cardinal gratings (Dragoi, Sharma, & Sur, 2000; Hansen & Essock, 2006; Leventhal & 

Hirsch, 1977; Orban & Kennedy, 1981).  Though there may not be a simple and 
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straightforward hypothesis of how the oblique effect anisotropy emerges physiologically, 

it is clear that there is preferential processing of cardinal orientations in cortex.   

Orientation Processing: Horizontal Effect 

 All of the above oblique-effect phenomena have been found using simple, 

narrowband stimuli, and most often single, sine-wave gratings; the oblique effect is found 

on tasks whose stimuli are narrowband, both in terms of spatial frequency and orientation 

content.  However, the natural visual world is obviously broadband in nature, consisting 

of multiple spatial frequencies and orientations.  Therefore, Essock, DeFord, Hansen, and 

Sinai (2003) proposed using broadband noise stimuli to study human perception of 

orientation.  Subjects were asked to adjust a test stimulus to “match the perceived 

‘strength’ or ‘salience’ of the oriented structure” that they perceived in a standard 

(comparison) stimulus.  Subjects needed a higher amplitude of physical orientation 

content in horizontal and vertical test stimuli to perceptually match the standard than they 

needed in oblique stimuli (Essock et al., 2003).  That is, with such broadband stimuli, a 

nearly-opposite orientation anisotropy is found from the traditional oblique effect: stimuli 

at cardinal orientations are perceived less well than oblique orientations with horizontal 

being perceived the worst and vertical intermediate (between horizontal and oblique).  

Following the naming convention of the oblique effect, this broadband orientation bias 

has been termed the ‘horizontal effect’ (Essock et al., 2003, Essock et al.,2009; Hansen & 

Essock, 2004; Haun & Essock, 2010).  The horizontal effect, like the oblique effect, is 

found on absolute detection tasks (broadband masking of oriented Gabors) and tasks 

above detection threshold (matching the apparent contrast of two broadband, oriented 

patterns.) (Essock et al., 2003; Essock, Haun, & Kim, 2009; Hansen & Essock, 2006).  
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Furthermore, the horizontal effect is found not only with broadband noise stimuli, but 

naturalistic images as well (Hansen, Essock, Zheng, & DeFord, 2003; Hansen & Essock, 

2004).  When stimuli consist of natural images whose amplitude content has been 

artificially altered to contain differential amounts of either cardinal or oblique 

orientations, the horizontal effect persists (Hansen & Essock, 2004).  Using Glass 

patterns, a stimulus consisting of numerous dots paired into a global structure (and thus 

having a broader orientation spectrum), researchers found an ‘inverse oblique effect’ 

wherein subjects show greater sensitivity to oblique orientations over cardinal 

orientations (Wilson, Loffler, Wilkinson, & Thistlethwaite, 2001).  Other researchers 

have found a similar decreased sensitivity to horizontal orientations using such Glass 

pattern stimuli; subjects show an increased threshold for detecting coherent, implied 

motion when it is horizontally compared to vertically oriented (Nankoo, Madan, Spetch, 

& Wylie, 2012).  Using stimuli which varied from narrowband to broadband in nature, 

Hansen and Essock (2006) measured subjects’ perceptual matches to a comparison 

stimulus.  The results indicated that there is a transition from an oblique to a horizontal 

effect as stimuli include both more spatial frequencies and orientations (Hansen & 

Essock, 2006).   

 There has been significantly less study of the physiological underpinnings of the 

horizontal effect than of the oblique effect.  Specifically, only one study to date has 

directly sought to uncover the neural mechanisms of the horizontal effect (Yang et al., 

2012).  Though this is the case, many authors have found intriguing evidence as to the 

neural mechanisms underlying the horizontal effect even though they were not directly 

seeking it.  Some fMRI evidence has actually contradicted earlier reports of increased 
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activation in response to cardinal gratings: using sinusoidal gratings, authors found the 

greatest activation in all primary visual areas (V1, V2, V3, and V3a) to oblique stimuli 

and the least activation to horizontal gratings (Mannion, McDonald, & Clifford, 2010a).  

This pattern of activity would lead to a flattened/whitened representation of the natural 

world (see below); although the number of horizontal cells is greater, the activated 

response is lower.  Though these stimuli were not broadband in nature, this study 

indicates that what may seem clear-cut underpinnings of the oblique effect are in fact 

much more complicated.  

 Another study which aimed to find evidence of the oblique effect via ERP 

recordings may have used stimuli that actually evoked a horizontal effect; the stimuli 

used were simple lines, but consisted of multiple orientations and sharp edges which, in 

terms of Fourier power, contain multiple spatial frequencies (spatially broadband).  These 

stimuli elicited larger P300 amplitudes for oblique lines than for cardinal stimuli 

(Heinrich, Aersten, & Bach, 2008).  Although the authors attempted to qualify these 

results by claiming that, statistically speaking, obliques are ‘oddball’ stimuli and 

therefore elicit greater P300 amplitude, it could also be that the stimuli they were using 

were actually causing more of a horizontal effect than an oblique effect.  Comparable 

results were obtained using functional near-infrared spectroscopy (fNIRS) to measure 

changes in oxygenated hemoglobin in the occipital cortex in response to oriented 

gratings: there were larger amplitudes in the left occipital lobe in response to oblique than 

horizontal or vertical gratings (Sun et al.,2013).  Similarly, using Glass patterns, 

consisting of structured, random dots (broad orientation spectrum), Mannion and 
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colleagues (2010b) found a greater fMRI BOLD response to vertical orientations than 

obliques in V1 (although horizontal showed no differences from oblique orientations).   

The only study to directly address the question of the physiological cause of the 

horizontal effect was conducted while recording ERPs.  Subjects performed an 

orientation-identification task with broadband noise stimuli with different predominant 

orientations very similar to those used previously by Essock and colleagues (Yang et al., 

2012).  These stimuli evoked a psychophysical horizontal effect while inducing some 

interesting ERPs.  The P2 component, which occurs at 200ms post stimulus, showed 

significant differences between cardinal and oblique gratings such that horizontally and 

vertically oriented stimuli elicited larger P2 amplitudes than obliquely oriented stimuli 

(Yang et al., 2012).  This component is much later than traditional oblique effect 

components indicating to these authors that it was related to the horizontal effect as the 

processing involved in that effect should occur at later stages of processing than the 

oblique effect (Yang et al., 2012).  The P300 component was also orientation specific, 

showing larger and earlier amplitudes for cardinal gratings than for oblique gratings.  In 

contrast to traditional oblique effect findings, this study showed a longer P3 latency for 

cardinally oriented noise images than obliquely oriented ones.  The authors related the 

longer latencies back to the behavioral horizontal effect: slower reaction times and poorer 

identification of cardinal compared to oblique broadband noise stimuli (Yang et al., 

2012).  Although for the two main component differences (P2 and P3 amplitudes) 

cardinal gratings still induced larger ERP amplitudes (like in traditional oblique effects), 

the differences for orientation occurred at later stages than classic oblique effect 

differences (Yang et al., 2012).  These authors concluded that the horizontal effect, then, 
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also occurs at later stages of processing than the traditional oblique effect, perhaps due to 

the need for pooling of the overall population response to multiple orientations and 

spatial frequencies present in horizontal effect-inducing stimuli.  To date, no studies have 

looked at the development of the horizontal effect, although reports on gain control and 

other broadband tuning biases (as discussed below) may indicate that the horizontal effect 

does not affect visual processing until much later in development than the oblique effect.   

 In response to the horizontal effect of human perception, researchers have 

developed an adapted model of gain control processes in early visual cortex (Hansen & 

Essock, 2004).  Gain control is known to occur at early levels of the visual hierarchy to 

accommodate wide ranges of stimulus input (Ohzawa, Sclar, & Freeman, 1985).  A 

single cell in the earliest levels of visual cortex is tuned to encode one variety of all the 

possible local properties of a visual stimulus (i.e., hyper columns in V1 made up of cells 

specifically tuned to different orientations and spatial frequencies).  However, this tuning 

must also be relevant to the biases present in the global stimulus.  That is, the response of 

a tuned (orientation or spatial frequency) filter over one point in space needs to be 

compared to the overall response of all tuned filters to all spatial aspects of the stimuli 

presented in order to consider the relative impact of one specific visual feature.  By 

comparing each filter response to the population, the response of tuned neurons changes 

to match the overall mean of the stimulus (Brenner, Bialek, & de Ruyter van Steveninck, 

2000; Clifford et al., 2007; Foley, 1994; Ohzawa, Sclar, & Freeman, 1985).  While 

simple, narrowband stimuli generate responses from only a few orientation-tuned filters, 

broadband stimuli generate responses from many more filters.  The response to a stimulus 

with many spatial frequency and orientation components should be normalized by the 
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response of similar filters (in terms of orientation and spatial frequency).  Since there are 

more horizontal components in a natural image, if cardinal and oblique orientations were 

weighted equally, the horizontal and near-horizontal filters would be driven more than 

oblique filters.  On the contrary, the gain control model proposed by Essock and 

colleagues (see Hansen & Essock, 2004) explains the difference in perception between 

the oblique effect and the horizontal effect based on anisotropic suppression.  When 

simple gratings are used as stimuli (such as in the oblique effect), the differential 

representation of cardinally tuned neurons in cortex leads to a greater response to these 

than oblique orientations and the suppressive normalization pool contributes less due to a 

lack of other stimulus components.  When broadband stimuli are used, the normalization 

pool has a much more significant impact on the response, suppressing the more prevalent 

orientations (horizontal and vertical) more than the obliques.   

 It has been suggested that the population response making up the normalization 

pool in early levels of the visual cortex has differential suppressive weights associated 

with different orientations such that horizontal (and to a lesser extent vertical) 

orientations are suppressed more than oblique orientations (Essock, Haun, & Kim, 2009; 

Hansen & Essock, 2004; Haun, Hansen, & Essock, 2006; Haun & Essock, 2010; Kim, 

Haun, & Essock, 2010; see also Schwartz & Simoncelli, 2001; Wainwright, 1999).  This 

anisotropic suppression leads to the perceptual effect wherein horizontal orientations are 

seen less well than obliques in broadband patterns (i.e., the horizontal effect).  To 

measure the timing of orientation-tuned suppression, Haun, Essock, and Kim (2009) used 

a narrowband target stimulus (8 cycles/degree-CPD) at four orientations (vertical, 45, 

horizontal, and 135) and a broadband mask at the same orientations.  (The horizontal 
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effect is greatest around 8 CPD; Haun & Essock, 2010.)  Effectively, long stimulus onset 

or offset asynchronies (SOA) correspond to two separate stimuli: a broadband stimulus 

that is separate from the narrowband target while shorter SOAs are closer to actual 

masking as if the mask and target were presented simultaneously.  For very long SOAs, 

an oblique effect was found with thresholds for detecting the 8 CPD grating being lowest 

at the cardinal orientations and higher at obliques.  However, for shorter SOAs, a 

horizontal effect was found such that thresholds were higher for the cardinal orientations 

than the obliques.  This horizontal effect was asymmetric in that backward masking 

produced a larger horizontal effect than forward masking.  Models of masking from 

previous literature were used with an added anisotropic weighting factor in the mask 

response (M) (Foley, 1994).  The model of sensitivity of the gain control mechanism is 

divisive such that the response is divided by a semi-saturation constant, AMK0, and the 

content of the mask, M (equation 1).   

 

The semi-saturation constant AMK0,  is composed of two static components: AM 

which represents the change in the adaptation state of the detecting mechanism due to the 

mask and K0 which represents the ‘absolute’ semi-saturation constant and is inherently 

anisotropic, weighting oblique orientations more heavily than horizontal and vertical.  K0  

weights horizontal and vertical orientations equally and thus induces  the oblique effect 

(larger response to horizontal and vertical) in the absence of a mask component.  Using 

the psychophysical data as ouput showed that the model produced anisotropies both in 

the mask component M and in the semi-saturation constant modifier AM (Essock, Haun, & 

Equation 1. from 
Essock, Haun, & Kim, 
2009. 
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Kim, 2009).  The AM factor is equal to 1 when no mask is present and free to vary when a 

mask is present, something like an adaptation factor (Essock, Haun, & Kim, 2009).  

When there is a broadband mask, AM weights horizontal orientations the same as vertical 

orientations working against (and, with more mask components, overcoming) the oblique 

effect of the K0 component.  The weighting factor (w) in the mask (M) contributes to the 

horizontal effect because it weights horizontal more than obliques and vertical least of all.   

 

When mask and target are close in time, these two factors are taken together and a 

horizontal effect is produced: worst performance at horizontal and best at obliques with 

vertical intermediate (Essock, Haun, & Kim, 2009).  The horizontal effect can only 

appear at small SOAs because the w factor is tied to the dynamic gain control component, 

M, and masking (i.e., M) is so short lived.  This dynamic component is presumably 

influenced by the current environment of the observer adjusting perceptual salience 

rapidly based on ongoing changes in the orientation content of the natural world.  There 

is some variability between observers as to where in between horizontal and oblique 

performance vertical performance falls for a given broadband mask and this variability 

may be caused by relative differences in the two weighting factors for different 

individuals (Essock, Haun, & Kim, 2009). 

Natural Scenes: Orientation Content 

Interestingly, the differential suppression across orientation in cortex matches 

well with content biases in the natural environment: natural scenes have the most oriented 

Equation 2. From 
Essock, Haun, and 
Kim, 2009 
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content at horizontal, second most at vertical, and least at the obliques (Girschik, Landy, 

& Simoncelli, 2011; Hansen & Essock, 2004;  Keil & Cristóbal, 2000).  Some work has 

failed to show a difference in horizontal compared to vertical energy, but all studies have 

found more combined cardinal energy than oblique energy in the natural world (Baddeley 

& Hancock, 1991; Coppola et al., 1998; Hancock, Baddeley, & Smith, 1992; Girschik, 

Landy, & Simoncelli, 2011; Hansen & Essock, 2004; Keil & Cristóbal, 2000; Oliva & 

Torralba, 2001; Switkes, Mayer, & Sloan, 1978 ).  Furthermore, all types of natural 

scenes show this anisotropic pattern including outdoor scenes with manmade content, 

those without manmade content, and indoor scenes (Coppola et al., 1998; Switkes, 

Mayer, & Sloan, 1978).  Moreover, different methodologies (optical Fourier analysis, 

digital FFT, PCA, and higher order autocorrelation analyses) used for assessing the 

amount of oriented structure in the visual world all yield similar results (i.e., more 

amplitude content at cardinal orientations) (Baddeley & Hancock, 1991; Coppola et 

al., 1998; Hancock, Baddeley, & Smith, 1992 Hansen & Essock, 2004; Switkes, Mayer, 

& Sloan, 1978).   

Several of the authors who have studied the orientation distribution in the 

environment have noted that there may be a relationship between the natural, physical 

anisotropy and that of visual performance (Coppola et al., 1998; Hansen & Essock, 2004; 

Keil & Cristobal, 2000; Switkes, Mayer, & Sloan, 1978).  Although many of these 

authors attempted to relate the natural anisotropy to the oblique effect, hypothesizing that 

the predominance of cardinal orientations in the environment is the reason behind their 

superior processing, the discovery of the horizontal effect has led others to the opposite 

conclusion: namely, that, in broadband contexts like natural scenes, visual performance is 

http://w.journalofvision.org/content/4/12/5.full#ref-33
http://w.journalofvision.org/content/4/12/5.full#ref-33
http://w.journalofvision.org/content/4/12/5.full#ref-50
http://w.journalofvision.org/content/4/12/5.full#ref-15
http://w.journalofvision.org/content/4/12/5.full#ref-50
http://w.journalofvision.org/content/4/12/5.full#ref-6
http://w.journalofvision.org/content/4/12/5.full#ref-15
http://w.journalofvision.org/content/4/12/5.full#ref-28
http://w.journalofvision.org/content/4/12/5.full#ref-50
http://w.journalofvision.org/content/4/12/5.full#ref-15
http://w.journalofvision.org/content/4/12/5.full#ref-50
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worse at horizontal orientations (Hansen & Essock, 2004, 2005).  Furthermore, Essock, 

Haun, and Kim (2009) noted that perceptual biases of the horizontal effect closely match 

those found in natural scenes; the percentage of anisotropic content in the environment is 

a fairly accurate match to the percentage of anisotropic suppression induced by the 

cortex.  In other words, the amount of suppression of horizontal content induced by visual 

processing is approximately equal to the percentage that these orientations are dominant 

in natural scenes (Essock, Haun, & Kim, 2009; Hansen & Essock, 2005).  Performance 

on a masking task showed horizontal thresholds 11% higher than vertical, vertical 

thresholds 15% higher than obliques and horizontal 28% higher than obliques.  A large 

database of natural scenes similarly showed that horizontal content is, on average, 7% 

higher than vertical, vertical is 12% higher than obliques, and horizontal is 20% higher 

than obliques (Hansen & Essock, 2004).  By suppressing horizontal orientations more 

than oblique orientations, our perceptual biases serve to emphasize what is least present 

in our natural environment rather than what is most present.  Similar to the way we 

perceive spatial frequency (see below), orientation biases in a scene seem to be 

“whitened” by the visual system.   

Natural Scenes: Efficiency and Bayesian Encoding 

The reciprocal relationship between natural scene regularities and visual 

processing biases suggests that the biases present in the visual cortex serve to ‘undo’ or 

whiten those present in the environment (Atick & Redlich, 1990, 1992; Barlow, 1989; 

Graham, Chandler, & Field, 2006).  Not only does the brain whiten orientation content, 

but it also differentially processes size to ‘undo’ the typical relationship between 

amplitude and spatial frequency present in natural scenes (Field & Brady, 1997; Hansen 
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& Essock, 2005; Simoncelli & Olhausen, 2001; Tolhurst, Tadmor, & Chao 1992; van der 

Schaaf & van Hateren, 1996).  Previous researchers have found that the amplitude of 

content in natural scenes tends to fall off in a regular and predictable pattern with spatial 

frequency: amplitude = 1/frequencyα (α or slope of the log-log plot of amplitude by 

spatial frequency = -1) (e.g. Field 1987; Tolhurst, Tadmor, & Chao 1992).  Ostensibly 

not by chance, human visual processing of naturalistic 1/fα stimuli also tends to be biased 

with higher stimuli discrimination and identification rates occurring with naturalistic 

slopes than in images whose slope falls outside the typical range (Bex, Solomon, & 

Dakin, 2009; Field & Brady, 1997; Hansen & Hess, 2006; Johnson, Richard, Hansen, & 

Ellemberg, 2011; Parraga, Troscianko, & Tolhurst, 2000; Tolhurst, Tadmor, & Chao, 

1992).  Visual processing of spatial frequency in naturalistic images seems to indicate 

that the lower spatial frequencies, which are more prominent in natural scenes, are 

suppressed (Bex et al., 2009; Haun & Pelli, 2013; Webster & Miyahara, 1997).  Not 

unlike orientation processing, the early stages of spatial frequency processing also seem 

to be tuned to the spatial frequency content of natural scenes (Atick & Redlich, 1990, 

1992; Graham, Chandler, & Field, 2006).   

Based on the above, it seems that the visual system is optimized to process natural 

scenes such that it produces whitened outputs in response to biased inputs, effectively 

increasing information transmission (Attneave, 1954; Barlow, 1961, 1989).  The 

statistical regularities in natural images make them very inefficient stimuli as there are 

strong correlations between neighboring regions and thus a preponderance of redundant 

information (Atick & Redlich, 1992).  The visual system acts like an effective 

information transfer system by minimizing information carried from multiple units about 
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the same proportion of the environment (Atick & Redlich, 1990, 1992).  The gain control 

processes which suppress the most prevalent content in the environment in effect improve 

the efficiency of the visual brain by de-emphasizing common content and reciprocally 

emphasizing content that is rarer.  This efficient processing of information decreases the 

information that was redundant in the incoming natural image equalizing or whitening the 

signal (Essock, Haun, & Kim, 2009; Hansen & Essock, 2004, 2006). 

Thus, early visual areas appear to efficiently process biases inherent in our natural 

environment, both in terms of orientation and spatial frequency.  The distribution of 

orientations in the environment is ‘anti-correlated’ with activity in V1 suggesting that 

early visual processing is predictive of the natural viewing environment (Clifford, 

Mannion, & McDonald, 2011).  The regular patterns of orientation and spatial frequency 

distribution present in our natural environment are processed most efficiently by the 

human visual brain as shown by preferential behavioral treatment of naturalistic stimuli 

(Bex, Solomon, & Dakin, 2009; Hansen & Essock, 2004; Hansen & Hess, 2006; Johnson 

et al., 2011).  Moreover, the psychophysical correlations to natural stimuli have reliable, 

if somewhat understudied, physiological underpinnings as well (Clifford, Mannion, & 

McDonald, 2011; Yang et al., 2012).  Both whitening processes can be well modeled by 

assuming that observers have something like a Bayesian prior probability distribution of 

expected orientations (and presumably spatial frequencies) that is based on the natural 

anisotropy (Girschik, Landy, & Simoncelli, 2011).   

Girschik, Landy, and Simoncelli (2011) found that an observer’s internal prior 

probability distribution of orientations in the environment is a good match to the 

environmental distribution.  The study recovered the observers’ priors from 
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measurements of perceptual bias and variability on a task which asked observers to 

compare the global average orientations of two arrays of Gabor patches with variable 

noise levels (amount of different orientations presented in individual Gabors).  If subjects 

had a non-uniform prior it would cause them to bias their estimation of whether the test 

stimulus was, on average, oriented clockwise or counterclockwise of the comparison 

stimulus (if the prior was uniform across orientation, no bias would be observed).  The 

bias can be computed by comparing the mean physical orientation difference between 

two stimuli which are perceived as equal in average orientation (Girschik, Landy, & 

Simoncelli, 2011).  All subjects showed a bias towards cardinal orientations in high noise 

stimuli that subsequently led to a bimodal recovered prior with peaks at the two cardinal 

orientations.  As mentioned above, the environmental distribution of orientations is quite 

similar with primary peaks at horizontal and vertical orientations (Coppola et al., 1998; 

Hansen & Essock,, 2004; Switkes, Mayer, & Sloan, 1978).  In this study, the 

environmental distribution was computed by calculating the probability distribution 

based on a histogram of ‘highly oriented’ regions created by convolving rotation-

invariant filters at a spatial scale matched to human peak sensitivity (2-5 CPD) with a 

large database of photographs of natural scenes which contained no carpentered content 

(Girshick, Landy, & Simoncelli, 2011).  Interestingly, the authors found that a Bayesian 

encoder-decoder model had similar variability and bias whether they used the recovered 

prior (from observer data) or the environmental distribution (purely natural scenes) for 

the model on the same task used with human observers (Girshick, Landy, & Simoncelli, 

2011).  Performance with the model closely resembled human behavior even when the 

prior that was used was simply based on the environmental distribution.  Therefore, the 

http://w.journalofvision.org/content/4/12/5.full#ref-15
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authors  concluded that the human observers used prior knowledge of the orientation 

statistics of the environment in their perceptual task (Girschik, Landy, & Simoncelli, 

2011). 

There is converging evidence that a Bayesian decoder may in fact be the best way 

of interpreting the population code of neurons in cortex (Fiser, Berkes, Orban, & 

Lengyel, 2010; Mamassian, Landy, & Maloney, 2002; Weiss, Simoncelli, & Adelson, 

2002).  On the one hand, the tuning curves of neurons could simply be adapted by gain 

control and pooled into a population code in a ‘winner takes all fashion.’  This kind of 

coding relies on the peak response of the neuronal pool to decode the incoming stimulus 

(the stimulus is presumed to lie at the peak of the pooled distribution).  However, a more 

accurate method involves taking into account the likelihood of the stimulus given noise 

corrupting the signal and using prior information about the probability of the stimulus in 

our environment to decode population information (Pouget, Dayan, & Zemel, 2003).  By 

including information from the whole likelihood (not just the peak firing rate or peak + 

noise) a Bayesian estimator provides a more accurate prediction of stimulus values than 

the population code alone (Beck et al., 2008; Pouget, Dayan, & Zemel, 2003).  Many 

studies have also indicated that humans perform perceptual tasks based on a combination 

of prior assumptions about the environment and the likelihood of a given stimulus value 

(e.g., Fiser & Aslin, 2001, 2005; Turk-Browne, Scholl, Chun, & Johnson, 2009).  These 

studies suggest that subjects cannot merely be relying on the peak of a distribution to give 

reliable responses but must instead have access to the combined likelihood and prior.   

Despite the vast amount of modeling showing matches between human 

performance and Bayesian observers, there is little corresponding neurophysiological 
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work partially due to the problem representing uncertainty in neural networks (Fiser et 

al., 2011).  All processing involves the fusion of information from multiple sources (i.e., 

the color and shape of an object plus our memory of objects we have seen in the past) and 

the system must be able to quantify the uncertainty of these multiple sources of 

information.  Representing uncertainty in neural networks is important because uncertain 

sources of information should be relied upon or weighted less than more certain sources 

of information (Fiser et al., 2011).  The representation of uncertainty is probabilistic and 

related to our prior experience with the environment.  Most neural models have only been 

able to demonstrate that the known properties of V1 encoders are a good match to model 

predicted units rather than directly testing physiological units.  More recent evidence has 

found a possible neural basis for probabilistic coding by recording from actual units.  

These studies have found that spontaneous neural activity in the population may not be 

noise (as once hypothesized); it is higher in particular areas and correlates with stimulus-

evoked activity, suggesting that spontaneous activity may have a functional role (Berkes, 

Orban, Lengyel & Fiser, 2011; Fiser et al., 2013).  The representation of the prior 

probability distribution in the spontaneous activity of the visual cortex fits with the 

Bayesian encoder-decoder model.   

Under the framework of a Bayesian representational account of neural population 

coding, spontaneous activity could represent the prior.  If a statistical model is 

appropriately describing its input, the prior distribution should closely match the average 

posterior distribution; a well-developed prior will be reliable and thus match the posterior 

(Berkes et al., 2011).  That is, the neural representation of the prior probability 

distribution of an incoming stimulus should be closely correlated with the activity evoked 
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by the actual stimulus itself.  If spontaneous activity represents prior expectations in an 

internal model, then it should correlate with stimulus-evoked activity, and this is exactly 

what has been found in early visual areas of ferrets and cats (Berkes et al., 2011; Kenet, 

Bibitchkov, Tsodyks, Grinvald, & Areli, 2003; Tsodyks, Kenet, Grinvald, & Areli, 1999).  

The correlation between stimulus-evoked activity and spontaneous firing in ferret 

primary visual cortex increases with developmental age, but does not occur when the 

development of the visual system is disrupted by dark rearing (Berkes et al., 2011; Fiser 

et al., 2013).  Furthermore, spontaneous activity is biased towards cardinal orientations: 

spontaneous activity that is correlated with a specific orientation show a strong bias 

towards cardinal orientations (Kenet et al., 2003).  Although highly variable, spontaneous 

activity corresponding to one of the cardinal orientations (either horizontal or vertical) 

appeared on average 20% more often than that corresponding to the oblique orientations 

in area 18 of cat visual cortex (Kenet et al., 2003).  If spontaneous activity represents the 

prior probability distribution in the environment, it should be weighted towards the 

cardinal orientations as they are predominant.   

Although there is significant psychophysical evidence showing that humans are 

optimal learners and many studies have shown a relationship between environmental 

distributions of stimulus features and optimal observer priors, there is an inherent danger 

in matching the prior precisely to the environment.  While using an environmental 

distribution to approximate an observer’s prior may show better performance, it is unwise 

to tune the prior to perfectly match the environment because it risks being over-tuned 

(Feldman, 2013).  Some of the information in the environment is actually noise.  By 

fitting a model of observer performance exactly to the environmental distribution, we risk 
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fitting in the noise as well as the ‘true’ data.  Moreover, there is inherent uncertainty 

about future environments which one might encounter with different distributions of 

stimulus features (Feldman, 2013).  Feldman (2013) argues, then, for a ‘regularized 

prior:’ one that is in between the ideal environmental state (ecological prior) and the 

maximum entropy prior (maximally noisy input).  Simply by increasing the entropy 

(noise) of our modeled priors we can therefore more accurately represent the presumed 

internal state of observers (Feldman, 2013).  Hence, the correlation between spontaneous 

activity and stimulus evoked activity should not be exact, but allow room for 

uncertainty/noise.  Spontaneous activity may also play a role in driving the network close 

to states that are probable to be valid inferences once input arrives by priming specific 

cells making it easier for them to fire (Fiser et al., 2011).  Fiser and colleagues (2011) 

hypothesize that spontaneous activity could also be involved in re-tuning synaptic 

weights during off-line periods (i.e. sleep), refining the internal model of the 

environment.  It is likely that the Bayesian framework is a good model, then, for how 

population codes decode information in an efficient manner: to predict stimulus input 

values based on their likelihood as well as the probability of encountering them given 

known parameters in the environment rather than simply peak firing rates of neurons 

tuned to specific stimulus properties.   

Adaptation: Explanation of Perceptual Effects 

Adaptation processes may provide the efficient coding mechanism used to 

normalize the encoding process, change the likelihood, and maximize information 

transmission.  Sensory adaptation refers to changes in the current perception or neural 

encoding of stimuli based on recent sensory stimulation (Greenlee & Heitger, 1988; 
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Webster, 2011).  Stimulus-specific adaptation involves a decrease in response (perceptual 

or neural) to a repeated stimulus.  A consequence of the decline in response induced by 

prolonged stimulation is that the sensory system will be at a continually low steady-state 

level.  Rather than continually encoding the repeated stimulus at maximum response, the 

response decreases so that the current level of the system is closer to baseline.  In this 

way,  the response to any new stimulus will be enhanced relative to the decrease resulting 

from adaptation – that is, new stimuli are much more perceptually salient (Clifford et al., 

2007; Kohn, 2007; Webster, 2011).  Adaptation studies have added much to our 

understanding of visual encoding because if stimulus-specific adaptation can be 

demonstrated, then it can be inferred that the given attribute is explicitly coded by the 

visual system.   

The process of adaptation also maximizes information transmission.  An optimal 

information transfer system has to strike a compromise between removing redundancy 

from the information it receives to increase efficiency and maintaining enough 

redundancy so that information is not lost by the inherently ‘noisy’ encoding processes 

(Barlow, 1989; but c.f. Barlow 2001).  The Bayesian approach has been shown to provide 

a method by which humans can combine prior knowledge of the environment and ‘noisy’ 

sensory input (Barlow, 2001; Berkes et al., 2011; Clifford et al., 2007).  This framework 

can also account for adaptation effects by assuming a shift in the likelihood function after 

adaptation  increasing the signal to noise ratio (SNR) of stimulus values in the vicinity of 

the adaptor (Clifford et al., 2007).  Adaptation adjusts the gain of the response around the 

adapting value, narrowing the conditional probability density in the vicinity of the 

adaptor and increasing the reliability of the measurement (Stocker & Simoncelli, 2006).  
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This increase in gain around the adaptor explains decreases in discrimination thresholds 

seen in adaptation paradigms because the narrowing of the conditional probability density 

around the adaptor effectively increases sensitivity in that region (i.e. the likelihood is 

increased near the adapted orientation; see Stocker & Simoncelli, 2006).  The shift in 

likelihood function can also explain the repulsive effects of adaptation because by 

increasing the SNR in the vicinity of the adaptor (narrowing the conditional probability 

density), the SNR away from the adaptor is necessarily decreased (broadening the 

conditional probability density).  This asymmetric change in likelihood pushes the mean 

away from the adaptor value causing the repulsive effects commonly seen in adaptation 

paradigms (Stocker & Simoncelli, 2006).  As mentioned above, an optimal information 

transfer system has to strike a compromise between removing redundancy (efficient 

coding) and adding redundancy (increasing the signal to noise ratio).  Adaptation changes 

the intrinsic signal response probability (likelihood) to more accurately match that of the 

adapting stimulus thereby satisfying the latter of these constraints (Wainwright, 1999).   

As described above, adaptation can also be viewed as a gain-control process.  At 

low levels of the visual hierarchy, retinal ganglion cells can only code a 1-2 log unit 

change of light level in their firing rate, yet the eye functions over 10 log units by 

continuously resetting (adapting) retinal sensitivity to match current luminance levels 

(Ohzawa, Scalr, & Freeman, 1985).  At higher levels, neurons adjust their contrast 

response functions (laterally shifting the response and/or decreasing the slope) to match 

the mean level present in the current stimulus via contrast gain control.  That is, 

adaptation is also the process that allows us to perceive and discriminate contrast 

differences across the highly varied visual situations that we encounter in our visual 
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environment (Ohzawa, Scalr, & Freeman, 1985).  Some have theorized that adaptation in 

early levels of visual encoding (such as the retina) serves to maximize information 

transmission by optimizing spike times (Brenner et al., 2000).  However, spiking rates 

cannot explain the effects of adaptation at higher levels of processing in which it is 

assumed that a linear-nonlinear filtering mechanism accounts for adaptation effects; here 

it is the filtering properties that must change in response to stimulus statistics (Clifford  et 

al., 2007).  The non-linear filtering mechanism must adapt its processing to account for 

the recent stimulus input and adjust according to the gain imposed by adaptation.  

However, both levels of change induced by adaptation can be thought of as a change in 

the gain of either the single cell or the filtering process.  Moreover, this similarity can be 

expanded to include the effects of masking as a kind of very short-term adaptation 

response.  Contrast adaptation can be modeled in a very similar manner as masking in 

that adaptation would be a form of gain control that is conducted across time while 

masking gain control would be conducted locally in time (Abbonizo, Langley, & 

Clifford, 2002; Foley, 1994; Greenlee & Heitger, 1988).  Although adaptation effects and 

masking effects may have different mechanisms of implementation, the important 

comparison is that they can both be modeled in the same way.  Adaptation, like masking, 

would simply be another way of normalizing the current response and changing the 

likelihood distribution.   

Although there are many models of adaptation, there are two predominant camps: 

the multiple-channel model and the normalization model (Webster, 2011).  The multiple-

channel model is probably most familiar: narrowly tuned channels respond to a specific 

stimulus and the suppression of one channel leads to adaptation in the response.  
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Prolonged stimulation to a certain adapting stimulus causes the channel most closely 

tuned to that adaptor to be suppressed.  The overall pattern of activity (across all 

channels) is then changed due to the suppressed response from the adapted channel 

(Webster, 2011).  One of the most cited examples of this type of adaptation would be 

orientation aftereffects wherein adapting to a grating of one particular orientation affects 

sensitivity to gratings of that and surrounding orientations (Blakemore & Campbell, 

1969; Gilinsky, 1968; Regan & Beverly, 1985).  The multiple-channel model predicts the 

repulsive effects of adaptation such as when stimulus levels just above or below the 

adapting value are biased away from the adapting value.  In contrast, the normalization 

model proposes a more norm-based coding of stimulus inputs; that is, stimuli are encoded 

relative to (as deviations from) the norm or base level.  These types of adaptation occur 

when prolonged exposure to a stimulus causes a renormalization of perception such that 

the adapting stimulus appears more neutral; for example, when colors fade to grey as one 

continues to stare at them (Webster, 2011).  In this case, either the channels coding the 

input are broad or the stimulus itself is broad in nature: color adaptation normalizes the 

response across three broadly tuned cones.  Similarly, adapting to broadband, natural 

stimuli would cause changes across a wide range of narrowly tuned spatial frequency 

filters (Webster, 2011).  Either of these two cases leads to a re-normalizing of the overall 

response.  These two models are not necessarily mutually exclusive and very rarely do 

we adapt to a narrow-band stimulus in our natural world.  Therefore, it is important to 

remember that different modalities may have different ways of encoding information, but 

may still act under the same type of adaptation process: that is, they are still attempting to 

normalize responses. 
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Adaptation: Key Sensory Changes 

Adaptation experiments have proved to be very important in discovering many of 

the processes underlying encoding of sensory information.  The relevant key findings will 

be summarized here.  Stimulus-specific adaptation has shown us that the processing of 

spatial frequency, for example, is coded by multiple underlying channels.  Adapting to a 

specific spatial frequency causes a decrease in sensitivity only over a small range of 

spatial frequencies rather than changing the contrast sensitivity of the entire system 

indicating that spatial frequency is encoded via multiple, narrowly tuned channels 

(Blakemore & Campbell, 1969).  Similarly, adaptation studies have also demonstrated 

that stimulus orientation is encoded by units tuned to different orientations.  After 

adapting to a vertically oriented grating, subjects report seeing other, near vertical 

gratings as tilted away from vertical and acuity for vertical gratings is decreased 

(Gilinsky, 1968).  It is concluded that the perception of orientation and spatial frequency 

is determined by ‘channels’ tuned to a specific range of orientations or spatial frequencies 

with specific tuning bandwidths around the center value. 

The visual system adapts not only to simple aspects of a stimulus (single 

contrasts, spatial frequencies, orientations, etc.), but also to more complex environmental 

content.  As mentioned above, the natural environment consists of content at multiple 

spatial frequencies and orientations and this content tends to exist in regular and 

predictable statistical patterns.  If adaptation truly is a process which serves to optimize 

information transmission, it should optimize the response across more complex stimulus 

characteristics as well (e.g. first, second, and even third order image statistics).  Human 

subjects have shown traditional adaptation effects (i.e., a shift in discrimination 
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thresholds) for many complex stimuli properties including the appearance of facial 

features, depth and size of rooms, type of outdoor scene and other complex image 

properties (Kelly, Donaldson, Sjolund, & Freiberg, 2013; Leopold, Rhodes, Muller, & 

Jeffery, 2005; Muller, Metha, Krauskopf, & Lennie, 1999; Webster, 2011; Webster, 

Georgeson, & Webster, 2002; Ziemer, Plumert, Cremer, & Kearney, 2007).  For 

example, subjects have also been shown to adapt to the level of blur or sharpness (an 

image property inherently tied to slope of the amplitude spectrum) present in images: 

when adapted to blurred images, a previously in-focus image seems too sharp and vice 

versa (Sawides, de Gracia, Dorronsoro, Webster, & Marcos 2011; Webster, Georgeson, 

& Webster, 2002).  Similarly, Webster and colleagues (1997) examined how the spatial 

structure of natural images might lead to continual states of spatial contrast adaptation.  

They hypothesize that the 1/fα amplitude spectrum slope relationship in natural images 

may ubiquitously adapt people so that they have lowered sensitivity to low spatial 

frequency information -- the preponderance of low spatial frequencies in natural images 

reduced observers’ sensitivity to these spatial frequencies just as would have been 

expected in stimulus-specific adaptation (Haun & Essock, 2010; Webster & Miyahara, 

1997).  This continuous adaptation to the content of natural scenes would then serve to 

determine the ‘natural operating state’ of our visual system.   

Recent Relevant Findings 

Although many have speculated as to the functional benefit of adaptive processes 

(i.e., improving discrimination thresholds for certain stimulus parameters), it remains 

unclear exactly why the relationship between environmental statistics and visual 

encoding exists.  Many have hypothesized that the efficient coding processes involved in 
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the horizontal effect and 1/f  sensitivity may be inherent in our visual brain; since we 

evolved in a world that is biased towards low spatial frequencies and horizontal 

orientations, our visual system should have evolved to process these biases efficiently 

(Bex, Solomon, & Dakin, 2009; Brenner, et al., 2000; Hansen & Essock, 2004; Webster 

& Miyahara, 1997).  Some believed, then, that the bias present in cortex was at least 

somewhat hard-wired, present from infancy and continuing throughout development.  

However, recent converging evidence suggests that the brain may be even more efficient 

than previously thought, using adaptation techniques to acclimate to the statistics of the 

current/recent environment, whatever they may be.  Very recent findings in the 

development of complex visual processing indicate that the efficient processing of visual 

statistics does not develop until around 10 years of age (Ellemberg, Hansen, & Johnson, 

2012; Ellemberg et al., 2012; Pei, Baldassi, & Norcia, 2012).  Additionally, recent reports 

exploring complex adaptation paradigms have discovered that the process of adaptation 

itself is not as clear cut as once thought (Chopin & Mamassian, 2012).  These findings 

combined with evidence from other perceptual learning studies have led to the conclusion 

that the relationship between the statistics of the natural world and visual processing 

could be a result of recent exposure via adaptation processes (Essock, Haun, & Kim, 

2009; Schweinhart & Essock, 2013). 

If the reciprocal relationships between the orientation/spatial frequency content of 

natural scenes and the encoding of this content described above were based on an 

evolutionary time scale, one would think that they would perhaps be present at birth,  be 

‘hard-wired’ (non-changeable), and be present regardless of visual experience.  Given the 

above information regarding the presence of the oblique effect in infancy, it could be 
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hypothesized that the horizontal effect may be innate if it is based on the number or 

response of cells tuned to cardinal orientations.  On the contrary, converging evidence is 

showing that the ‘anti-correlation’ between natural scene statistics and visual processing 

biases shown in adult orientation and spatial frequency processing does not develop until 

~10 years of age.  As mentioned, human discrimination of images is optimal when the 

slope of the amplitude spectrum matches that found in typical natural scenes (Bex, 

Solomon, & Dakin, 2009; Field & Brady, 1997; Hansen & Hess, 2006; Johnson et 

al.,2011; Parraga, Troscianko, & Tolhurst, 2000; Tolhurst, Tadmor, & Chao, 1992).  

Ellemberg, Hansen, and Johnson (2012) recently conducted the first study testing young 

children on a slope discrimination task wherein subjects are asked to distinguish between 

two simultaneously presented stimuli with different slopes (alpha) of the amplitude 

spectrum.  Subjects were presented with images of natural scenes that had been 

manipulated to have amplitude spectra with different slope values (1/fα where α took 

values from -.7 to -1.3 but is normally -1).  Subjects had to indicate whether two 

simultaneously presented images with different slope values were the same or different 

(Ellemberg, Hansen, & Johnson, 2012).  Typically, such alpha discrimination tasks show 

improved discrimination thresholds when alpha is equal to -1, as it is in natural images 

(Hansen & Hess, 2006; Knill, Field, & Kersten 1990; Tadmor & Tolhurst, 1994).  

Interestingly, these researchers found that the improved discrimination thresholds for 

stimuli which have near-natural slopes found in adults were present in 10 year olds, but 

absent in 6 and 8 year old children.   

Similarly, Ellemberg and colleagues (2012) measured orientation discrimination 

thresholds for spatially ‘noisy’ stimuli in children and adults.  Orientation discrimination 
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for such stimuli is also not adult-like until 10 years of age; specifically, the introduction 

of oriented noise increases threshold for all groups, but significantly more so for younger 

children (Ellemberg et al., 2012).  Thus, the particular sensitivity to the spatial frequency 

regularities of natural scenes as well as orientation discrimination abilities seen in adults 

develops slowly over the course of childhood rather than being present at birth.  In a third 

line of evidence, VEPs were recorded from children and adults undergoing a visual 

masking paradigm presented at different levels of contrast (Pei, Baldassi, & Norcia, 

2012).  Unmasked contrast response thresholds were largely similar across children and 

adults, however, masking impacted children’s response functions differently; in children, 

the slope of the response function changed rather than a lateral shift of the function as is 

seen in adults.  The authors concluded that contrast normalization processes are not fully 

formed in ‘school-aged’ children (Pei, Baldassi, & Norcia, 2012).  It is clear, then, that 

the proposed efficient processing of statistical regularities is not, in fact, present at birth 

as it requires time to develop, perhaps because experience with the natural scene statistics 

are required before a representation of a prior probability distribution can be established.  

The bias in visual processing could still be innately determined, however, simply 

requiring a longer time scale to develop than previously thought.  One key to determining 

the difference will be examining whether or not it takes experience with the natural world 

to develop the efficient coding relationships but another, and the one explored here, will 

be determining whether deviant experience can change the visual biases. 

Perceptual Learning  

The above mentioned theories postulate that the visual system uses adaptation to 

calibrate itself to the current environmental statistics in order to effectively process 
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information (Webster, 2011).  This idea is not all that surprising when one takes into 

account the large amount of literature on perceptual learning.  This literature has shown 

that perceptual biases can change based on training or experience, but that this training is 

not necessarily permanent.  For example, recent work into multisensory binding has 

shown that the temporal window of binding can be widened or narrowed via perceptual 

experience with different temporal displacements (Powers, Hillock, & Wallace, 2009).  

Moreover, this perceptual learning is susceptible to reinforcement such that reward 

affects the strength of learning (Marx & Einhauser, 2015).  In fact, even the oblique 

effect can be changed via perceptual learning when observers are trained to discriminate 

oblique orientations (Mayer, 1983; Song et al., 2010; Vogels, & Orban, 1985).  Starting 

with subjects who demonstrated a traditional oblique effect (lower sensitivity to oblique 

orientations) researchers were able to improve detection thresholds through practice at 

detecting oblique orientations.  By the end of 3000 practice detection thresholds, all 

observers had improved their sensitivity to oblique orientations and most showed similar 

sensitivity to cardinal and oblique orientations (Mayer, 1983).  Practice with cardinal 

orientations did not improve thresholds unless the subject already had elevated thresholds 

to cardinal orientations (Mayer, 1983).  Moreover, practice discriminating one oblique 

orientation (45) can improve thresholds for another oblique orientation but not for 

cardinal orientations meridians (Westheimer & Lavian, 2013).  (This transfer of training 

effect could be due to the class II oblique effect as the oblique orientations are often 

confused in memory.)  

The neural mechanisms presumed responsible for the oblique effect also change 

after perceptual training.  Before training, subjects showed an oblique effect pattern of 
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lower detection thresholds for horizontal than oblique orientations coupled with higher 

fMRI responsiveness to the cardinal compared to oblique orientation (Furmanski, 

Schluppeck, & Engel, 2004).  After more than 20 daily training sessions with the oblique 

orientation, subjects showed improved detection of the oblique grating and increased 

responsiveness of V1 to the practiced oblique orientation, but not to the unpracticed 

orientation (Furmanski, Schluppeck, & Engel, 2004).  Similarly, perceptual learning on 

an orientation discrimination task also increases the neural response; observers trained to 

discriminate small changes in orientation showed an enhanced neural representation of 

the trained orientations (Jehee, Ling, Swisher, van Bergen, & Tong, 2012).  It can 

therefore be concluded that, although perceptual learning (like masking) research has 

been separated from adaptation literature in the past, there may be no reason to assume 

that the two are in fact functionally different when one takes a Bayesian approach.  Both 

are simply cases of new experience altering the current perceptual bias, and perceptual 

learning paradigms include a training and feedback component.  Perceptual learning 

general takes a longer amount of time, but in the above cases especially, there is no 

reason to assume that it is operating under a different frame-work than that used for 

adaptation.   

Background of the Current Project 

The primary impetus for the current project comes from relatively recent work 

showing that perceptual biases can be altered simply by experiencing a different bias in 

the natural environment (Bao & Engel, 2012; Kwon et al., 2009; Zhang et al., 2009).  

This work has called into question the idea that our brain is hard-wired to encode the 

typical (average) content we (i.e., our evolutionary forbearers) encountered in our 
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environment.  Firstly, researchers found changes in contrast sensitivity and fMRI BOLD 

responses in early visual areas after prolonged monocular adaptation to a contrast reduced 

environment (Kwon et al., 2009).  Subjects wore contrast-reducing goggles for four hours 

that caused subsequent decreases in thresholds as well as increases in the BOLD signal in 

V1 and V2.  The results transferred to un-adapted eyes indicating that the shift in contrast 

gain was cortical in nature (Kwon et al., 2009).  The authors distinguish between contrast 

gain and response gain models of adaptation indicating that the longer-term adaptation 

paradigms (such as used here) involve changing the range of the response (response gain) 

rather than simply shifting the slope (contrast gain). 

Secondly, in a pair of studies Engel and colleagues developed a method for 

altering the orientation content in the visual environment by mounting a digital video 

camera to a portable head mounted display (HMD).  The camera then connected to a 

laptop that was able to process the image captured by the camera (640x480 pixels at 8 

bits presented at 30 frames per second ) and filter it in near-real time to project it in the 

HMD (field of view of 37.8 x 30.2 degrees)  (Zhang et al., 2009).The filtering process 

involved conducting a fast Fourier transform of the image and convolving this with filters 

at different orientations to decrease/increase the visibility of these orientations in the 

resulting image (decreasing/increasing the relative amplitude of these specific 

orientations).  The filters used in the Fourier domain were centered at the specified 

orientation with a Gaussian profile that removed energy at the specified orientations 

(standard deviation of 30º: FWHH≈70°) across all spatial frequencies (Zhang et al., 

2009).  The filters used completely removed the energy at the specified orientation 

equally across the two studies.  Observers were then able to interact with an environment 
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with altered orientation content via the HMD.  Observers wore the device for four hours 

during which they were deprived of either horizontal or vertical orientation information 

via the filtering process.  During adaptation subjects performed normal activities (e.g., 

walked around, watched movies, and ate).   

After adaptation with the HMD, contrast detection thresholds for sinusoidal 

gratings at the deprived orientation were significantly lowered; adaptation to an 

environment lacking these orientations increased the observers’ sensitivity to them 

(Zhang et al., 2009).  However, this increased sensitivity was lost throughout the testing 

phase of the experiment presumably because it was short-term or because the subjects 

were exposed to the previously deprived orientation.  In the first half of post-adaptation 

testing (the first three staircases at each testing orientation: 20 minutes), subjects showed 

a 15% decrease in detection thresholds for the deprived orientation (as compared to a 

control group), while in the second half of testing (the last three staircases: last 20 

minutes) the difference was not significant.  By the next day of testing, thresholds had 

fully returned to baseline, although subjects were not tested other than 24 hours later 

(Zhang et al., 2009).  Moreover, narrowing the filter parameters both in terms of spatial 

frequency and orientation (2/3-4 CPD and 70-110°) did not significantly change the 

magnitude of the decrease in detection thresholds post-adaptation (Zhang et al., 2009).  

Although this paper did not include the post-adaptation time intervals (only first 20 and 

last 20 minutes) or the number of trials, one can conclude that the duration of adaptation 

effects is rather short as they only occurred in the first half of post-adaptation testing.   

In a second paper, Bao and Engel (2012) used the same method to test how long 

the effects of adaptation lasted using different adapting times (1, 4, or 8 hours).  This 
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paper sought to determine whether the length of adaptation time effects both the duration 

and strength of adaptation, as well as investigate the mechanisms behind short and long 

adaptation effects.  The short-term adaptation effects were tested by ‘de-adapting’ 

observers after the long-term adaptation by showing them images of natural scenes.  The 

task involved the perception of line orientation as measured by the tilt after effect (TAE).  

Subjects were presented with plaid patches made up of two sine-wave gratings which 

resembled a blurred checkerboard pattern.  In a typical adaptation experiment, the 

component sine-waves of the plaid appear tilted away from the adapted orientation 

making the checks of the plaid appear rectangular.  The subject’s task is to tilt the 

component gratings of the plaid until the checks appear square.  For this study, a positive 

effect indicates that the subjects shifted the component sine-waves towards vertical as the 

plaid was diagonally oriented.  Subjects tested in all conditions showed a positive TAE in 

response to adaptation with attenuated vertical content indicating increased gain at 

vertical orientations in the population of cells which respond to vertical orientations (Bao 

& Engel, 2012).  Longer adaptation times produced longer-lasting as well as stronger 

effects of adaptation; adapting subjects for 1 hour showed effects only for the first 1-2 

minutes of post-adaptation testing, while adapting for 4-8 hours showed effects lasting 

beyond the post-testing period (6 min) (Bao & Engel, 2012).   

Bao and Engel (2012) went on to test the short- versus long-term adaptation using 

a traditional learning paradigm.  After adapting subjects over 4 hours, they immediately 

de-adapted them for 15 minutes by showing them images of natural scenes.  Subjects 

initially showed no effects of adaptation: just as an animal may be taught to associate one 

behavior with a certain stimulus and then taught a new behavior which overrides the 
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older conditioning.  However, just as in classical conditioning, subjects showed 

‘spontaneous recovery’ of the adaptation effects after continued testing.  The authors 

suggested that the de-adaptation and subsequent recovery was evidence for two 

adaptation mechanisms: a long-term mechanism more affected by longer experience and 

a short-term mechanism malleable by more recent experience.  These two controlling 

mechanisms increase (attenuated content) or decrease (enhanced content) the gain of cells 

according to the presence of stimuli near their peak tuning preference in the recent 

environment.  The long-term mechanism needs hours of experience to adapt and its 

effects last much longer whereas the short-term mechanism can be adapted in as little as a 

few minutes and decays equally as quickly.  Fitting with these findings, Chopin and 

Mamassian (2012) have recently discovered that there may be more of a hierarchical 

relationship between adapting to recent stimuli and more remote experience.  In their 

study, the authors showed in two experiments that it is the remote past which the visual 

system relies on to estimate the world’s orientation distribution.  The percept that results 

from adaption can be predicted from assuming that it will be that percept which helps the 

most recent experience match that of the more remote past.  In other words, observers’ 

perception is biased not only by the recent environmental exposure, but also by a more 

long-term experience with their environment; the recent past can change perceptual 

biases, but only on a limited basis.   

In the studies discussed above, subjects experienced the environment in real time 

while getting ‘feedback’ from interacting with it (i.e., walking around, picking up objects 

etc).  Is this type of immersive experience necessary? As previous work has indicated that 

adaptation to static, passively viewed stimuli may be enough to induce perceptual 



42 
 

changes, one might conclude that interaction with the environment is not necessary to 

induce effects (Webster, Georgeson, & Webster, 2002; Webster & Miyahara, 1997).  

However, literature from virtual reality has suggested that immersive experience with 

objects improves encoding in comparison to passive observation, suggesting that 

immersive experience may lead to stronger effects (James, Humphrey, & Goodale, 2001; 

James et al., 2002).  When participants are allowed to guide the visual study of an object, 

the objects are recognized faster than when participants have the same passive views of 

the same objects (James et al., 2002).  Such ‘active’ viewing also leads to faster 

performance on a mental rotation task involving the studied object (James, Humphrey, & 

Goodale, 2001).  Moreover, adults learn novel visuo-auditory associations more 

efficiently when allowed to haptically interact with visual stimuli than when they 

passively view such stimuli, perhaps due to increased gain in sensory motor area STS 

following active motor learning (Butler, James, & James, 2011; Fredembach, de 

Bolsferon, & Gentaz, 2009).   

In contrast to adaptation paradigms, all of these active vs. passive learning studies 

used the same stimuli in the viewing/learning phase of the experiment.  Although 

interactivity may simply improve performance due to an increase in visual input in the 

encoding phase, it is true that immersive, interactive experience leads to more efficient 

visual encoding (Keehner, Hegarty, Cohen, Khooshabeh, & Montello, 2008).  Thus far, 

adaptation studies have only indicated whether the experience was immersive (Bao & 

Engel, 2012; Zhang et al., 2009) or passive (Webster & Miyahara, 1997), but not tested 

the magnitude of the adaptation effect in both immersive and passive conditions to allow 

direct comparison.  The type of experience (immersive or passive) with the environment 
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may serve to strengthen adaptation effects acting as a feedback/reinforcement altering 

perception to a new and different environment (Butler, James, & James, 2011; 

Fredembach et al., 2009; James, Humphrey, & Goodale, 2001; James et al., 2002; Marx 

& Einhauser, 2015). 

As discussed above, orientation processing, like many other aspects of the visual 

(and perhaps all sensory) system is biased and has some relationship to the orientation 

content present in natural scenes.  Previously, we thought that this relationship may have 

been hard-wired in cortex due to presenting a biased environment to the visual system 

across millennia.  Alternatively, some have theorized that we are ‘constantly adapted’ to 

environmental statistics and that this should be taken into account when testing subjects 

using unnatural stimuli (Webster & Miyahara, 1997).  No one to date has studied how 

adapting to different environmental conditions affects the horizontal effect of orientation 

processing.  The recent work by Engel and colleagues (2009; 2012) has shown that the 

horizontal effect should be alterable given different experience with an ‘unnatural’ world.  

Through the use of adaptation paradigms this work demonstrates that one can alter the 

horizontal effect simply by changing an observer’s environment.  This study shows that 

the horizontal effect is a result of the observer’s exposure to environmental statistics and 

that experience with different statistics changes the perceptual biases of the effect.  
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GOALS 

 The primary purpose of this study is to determine if experience with altered 

environmental statistics modifies the anisotropic suppression of the horizontal effect.  

Presumably, if the horizontal effect is influenced by the orientation distribution in the 

environment, experience with an altered visual environment will change this perceptual 

bias.  The studies conducted by Engel and colleagues (2009, 2012) showed modified 

narrowband orientation processing after a few hours of exposure with an altered 

environment.  The experiments described below were designed to determine if the 

horizontal effect, assumed to be caused by differential suppressive weights of the filters 

involved in visual orientation perception, can be modified in a similar amount of time.  

Previous adaptation in an immersive environment showed that increasing the time spent 

adapting increases both the magnitude and duration of narrowband, post-adaptation 

perceptual change (Bao & Engel, 2012; Zhang et al., 2009).  Experiment 1 sought to 

determine whether different durations of experience in a similarly altered environment 

alter perception across different orientations in broadband scenarios. 

Previous work has also indicated that changing the center orientation and spatial 

frequency bandwidth of the image processing filter had little effect on the amount of 

perceptual changed induced by adaptation (Zhang et al., 2009).  That is, adaptation to 

horizontal or vertical deprivation or enhancement across multiple spatial frequency 

bandwidths all induced similar types and strengths of perceptual change.  However, to 
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date, no one has examined the relationship between the magnitude of physical change 

that the filter induces and the magnitude of the perceptual change.  Therefore, 

Experiment 2 was designed to test whether varying the amount of physical change in the 

environment affects the strength of the perceptual change after adaptation.  As stated 

above, no direct comparison has been made between static/passive adaptation and 

immersive adaptation.  To investigate this, Experiment 3 included two kinds of passive 

viewing conditions in which observers simply viewed filtered videos of the environment 

to determine the extent to which immersive experience in an altered environment is 

required to enact perceptual change.  The first three experiments served as a systematic 

investigation into how adaptation in an altered environment affects broadband orientation 

perception.  Lastly, and crucially, Experiment 4 examined whether experience in an 

isotropic environment altered or eliminated the perceptual biases of the horizontal effect.  

Since the isotropic condition will be the basis for the model, two other conditions were 

also run as compliments to changing the entire distribution of orientations: a ‘enhanced-

natural’ condition in which the natural cardinal/oblique anisotropy is exaggerated and an 

‘oblique dominant’ condition in which the typical cardinal supremacy is flipped so that 

the distribution peaks at the obliques and exhibits minima at the cardinals. 



46 
 

METHODS: Testing of Performance at Different Orientations 

 In order to determine the effect that adapting to different environmental statistics 

has on orientation perception, observers’ bias across orientations before and after 

adaptation (i.e., the horizontal effect) was measured using a suprathreshold matching 

paradigm.  This type of broadband matching experiment has been shown in the past to 

evoke the horizontal effect; subjects need ‘more’ content (higher amplitude) at horizontal 

test orientations than at the obliques to perceptually match a standard pattern (Hansen & 

Essock 2004, 2006).  Before and after adaptation, subjects completed a matching task in 

which the perceived orientation content of a test pattern was adjusted to match that of a 

standard.  Both test and standard stimuli consisted of a 1/f noise pattern which had been 

convolved in the frequency domain with an oriented filter designed to increment one 

band of orientations above the background noise (see Figure 1).  As previous adaptation 

effects were only measured for 2-6 minutes after adaptation (Bao & Engel, 2012; Zhang 

et al., 2009), the time it took subjects to complete each match was recorded so that 

adaptation effects could be tracked over the course of the testing period. 

Methods: Stimulus Creation and Procedure 

Stimuli consisted of circular patches (512 x 512 pixels in diameter) of broadband 

1/f noise patterns with an incremented orientation component (Figure 2).  To create these 

stimuli, the spatially broadband, isotropic amplitude spectrum of a randomly generated 

noise pattern was convolved with a spatially broad, triangular filter.  The shape of the 
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filter was such that it peaked at the test orientation and linearly declined to 0 on either 

side of a 20º wide orientation bandwidth (see Figure 1).  These filters increment content 

 

 

 

Figure 1. Creation of incremented, spatially broadband, oriented noise stimuli.  

Figure 2. Example stimuli used in the matching task from left to right: vertical, forty 
five degrees, horizontal, and one thirty five degrees. All orientations are presented with 
the same orientation increment (1.6). 
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within the orientation band of interest above the background of isotropic noise.  For the 

standard stimuli, the orientation filter was 1.6 times the amplitude of the background 

noise.  The increment of the test stimulus was randomly set to be between 1.3 and 1.9 

times the background noise at the beginning of each trial and then manipulated by the 

subject to perceptually match the standard; thus, some trials began with the test stimulus 

having a lower increment than the standard and some started with a higher increment.  

Subjects adjusted the increment of the test stimulus to match the perceived increment in 

the standard using both large (±.5) and small (±.2) increments and decrements via key 

press.  The center orientation of the test stimulus was block-randomized so that subjects 

viewed each test orientation every 4 trials.  The magnitude of the test increment and 

phase spectrum of the background noise was determined randomly on each successive 

trial (phase spectrum of the test and standard matched on every trial). 

Subjects viewed a 22.5º oriented standard stimulus with a fixed increment 

magnitude (1.6 times the background) on the right and a variably oriented (0º, 45º, 90º, 

135º) and incremented (1.3-1.9 times the background) test stimulus on the left.  Standard 

stimuli were presented on a Nanao Flexscann F2-21 20” CRT monitor and test stimuli 

were presented on a Samsung Syncmaster 1100 20” CRT monitor.  Monitors were 

calibrated to express linear luminance values and match each other (r2= .998).  Standard 

stimuli were created with an orientation increment at vertical on the monitor but the 

monitor itself had been rotated (and fixed) to a 22.5º position.  This physical rotation was 

performed to better equate pixel characteristics at this orientation with those of the test 

stimuli making the matching task easier (see Hansen & Essock 2004 for discussion).  The 

two stimuli were each 6.25o in diameter and viewed through masks that occluded monitor 
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bezels and other room structure.  The standard and test stimuli were presented at eye level 

centered 16.9o apart and viewed in a dark room.  Subjects were positioned by 

chin/forehead rest at 2.37 M.  Every pre-test consisted of 36 trials (9/test orientation) with 

each test orientation (0º, 45º, 90º, 135º) randomly presented within test blocks.  The post-

test was run for 30 minutes immediately following adaptation (unless otherwise noted) 

and subjects were instructed to complete as many accurate matches as possible in the 30 

minute time frame.  Most subjects completed between 70 and 120 total trials within the 

30 minutes.  As in the pre-test, test orientations were randomly presented within test 

blocks and the time was recorded for each trial.  Keeping the post-test time fixed ensured 

that all subjects were exposed to normal visual stimuli for the same amount of time post-

adaptation, while allowing them to complete as many trials as possible (i.e., without 

limiting data collection).   

The subject’s task was to change the magnitude of the increment applied to the 

test pattern to match the perceived amplitude of the standard pattern.  The ratio of the test 

orientation’s increment needed for the observer to perceptually match the 22.5o 

standard’s increment and the value of the fixed increment in the standard was obtained 

over repeated trials and averaged.  (Ratios less than 1 indicated that the observer saw that 

test orientation better than the standard, needing less of a physical increment to match the 

salience of the standard stimulus, and ratios greater than 1 indicated that the test 

orientation was seen less well than the standard.) The mean and standard deviation of the 

observers’ match values were taken to reflect the internal perceptual bias and perceptual 

variability, respectively (Girshick, Landy, & Simoncelli, 2011).  All subjects were pre-

screened to ensure normal visual acuity and that they showed a clear horizontal effect 
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pattern in pre-testing, needing a larger test increment to match horizontal test patterns 

over oblique ones.  The pre-screening also served as a training session on the 

psychophysical matching task. 

Methods: General Adaptation Paradigms and Analyses 

After completing the screening and the pre-test (36 trials, 9 trials at each test 

orientation), subjects adapted to an altered environment for a pre-determined amount of 

time (varied in Experiment 1, otherwise 2 hours).  Unless otherwise noted (i.e. 

Experiment 3), during adaptation subjects wore a HMD (Sony Personal 3D Viewer) with 

an attached lightweight, black and white digital camera (NET CMOS iCube USB 3.0 

camera).  The current visual environment that a subject was experiencing was acquired 

through the camera and sent to a laptop (HP ENVY 15t-j100) which filtered the camera 

images frame by frame and fed the filtered images to the HMD to be viewed in near real-

time by the subjects as they interacted with the environment (Figure 3).  All filtering of 

the environment took place in Matlab (MATLAB 8.2, The MathWorks Inc., Natick, MA, 

2013) using the image acquisition, signal processing, and image processing toolboxes.  

Each frame of the video output was fast Fourier transformed (FFT) and the resulting 

amplitude spectrum was altered to attenuate (or enhance) specific orientations (see Figure 

4 for example).  The root mean squared (RMS) contrast of the original image was 

imposed upon each altered image during the inverse Fourier transform thus ensuring 

contrast equality between frames.  The exact filter parameters used varied in each 

experiment and are described below.  The entire filtering process from image acquisition 

to presentation of the filtered image over the HMD took less than 35 msec, and, as was 

reported in previous studies, subjects were tolerant of this delay (Zhang et al., 2009).   
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After adaptation, subjects completed as many matching trials as possible during 

the 30 minute post-test.  The ten subjects (5 female, 8 naive) were students at the 

University of Louisville.  All gave informed consent as per the protocol approved by the 

University’s IRB (see Appendix).  All were pre-screened to ensure normal or corrected-

to-normal vision.  One other subject was dropped from the study due to experiencing 

nausea from wearing the head mounted display.  Six of the ten total subject participated 

in more than one of the experiments listed below.  To avoid order effects, subjects 

participating in more than one condition/experiment were assigned to the conditions 

randomly.   

 

Unless otherwise noted, for every condition the pretest scores are computed from 

the average of each subject’s pretest run (36 trials total) and the posttest scores are 

computed by averaging the first ten minutes of each subject’s posttest period (i.e., the 

Figure 3. Example of a subject undergoing 
adaptation. The camera is situation in front of the 
visor of the HMD at the height of the subjects’ 
eyes. The backpack the subject is wearing 
contains the laptop used for processing the 
images. 
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first third of testing).  To quantify the results, the pre and post-test match values were 

subtracted (pre –post) to determine how adaptation in the altered environment affected 

perception of orientation in broadband stimuli.  Additionally, a measure of the horizontal 

effect (horizontal match value minus the average of the two oblique match values) was 

computed before and after adaptation for each subject.  Subtracting the pre and posttest 

horizontal effect scores allows one to see how the horizontal effect pattern changed as a 

result of experience in an altered environment.  For the majority of experiments, the 

effect size (match value difference score/pooled standard deviation of match values: 

Cohen’s d) was also computed to determine if the test manipulation affected the 

magnitude of the perceptual after effects. 

Methods: Video Analysis 

A digital recording of the environmental imagery that each subject was exposed to 

during adaptation was archived and used to characterize (unfiltered) typical visual 

experience for modeling purposes.  The video was recorded directly from the camera feed 

and therefore consisted of an unaltered version of what the subjects viewed during 

adaptation.  As the video recording lasted the entire adaptation period, they were 

prohibitively large for full analysis, so a sample consisting of one frame every 1000 

frames was taken, FFT performed, and averaged.  Each video recording was sampled and 

analyzed twice: once using the same filtering procedures on the recorded images that 

were used during adaptation and once without any alterations.  The original, unaltered 

videos served as a ‘typical’ environmental distribution; that is, what subjects would have 

been exposed to under normal viewing conditions.  As during adaptation, filtering of the 

video recordings involved the Image Acquisition Toolbox in Matlab.  In short, a FFT was 
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run on each frame of the video, the same manipulations used during adaptation were 

applied to alter specified orientations, images were RMS contrast corrected, the FFT 

process was inversed, and the orientation spectrum of the filtered frame was calculated 

using image rotation algorithms developed previously (Schweinhart & Essock, 2013).  

This method accurately determines the amplitude of oriented content in an image every 3 

degrees by physically rotating the image to the desired orientation and applying filters 

oriented at vertical and horizontal.  The method avoids the inequalities in representing the 

oblique orientations inherent in running a discrete FFT (see Hansen & Essock 2004, for 

discussion and Schweinhart & Essock, 2013, for method).   

Both altered and unaltered orientation spectra were transformed into probability 

distributions to compare the physical difference.  The difference between these 

distributions was determined using Kullback-Leibler (KL) divergence.  KL divergence is 

a measure of the information lost when when probability distribution is used to 

approximate another.  The KL divergence scores from the filtered videos were then 

correlated with the raw difference scores (pre-post) in Experiments 2 and 4 to determine 

if the amount of physical change in the environment is directly related to the amount of 

perceptual change.  The average altered orientation spectrum in each condition also 

served as the prior probability distribution after adaptation in the model discussed below. 
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EXPERIMENT 1: Build-up and decay of adaptation 

Methods 

The first experiment tested the time-course of the build-up and decay of the 

perceptual effects of deprivation of specific orientations.  Pilot testing confirmed the 

results of previous work: enhancement of orientations produced decreases in sensitivity 

while deprivation of specific orientations increased sensitivity at those orientations 

(Schweinhart, 2014; Zhang, et al., 2009).  As the horizontal effect and its relationship to 

natural scene content is of particular interest here, the majority of experiments focus on 

the perceptual effect of horizontal deprivation.  Previous work also indicated that subjects 

show some amount of altered orientation perception after one hour of adaptation in an 

altered environment, but that effects increase in strength and duration as the duration of 

adaptation period is increased (Bao & Engel, 2012).  Therefore, the focus of this 

experiment was to determine whether or not the positive relationship between perceptual 

effects and adaptation duration extends from a narrowband perceptual test to a broadband 

perceptual test.   

To accomplish this, experienced psychophysical observers adapted to the same 

altered environment for variable amounts of time.  Subjects wore the HMD and adapted 

to an environment in which horizontal content had been decreased by a fixed scalar for 5, 

15, 30, 45, 60, 120, 180, and 240 minutes.  The filter used during adaptation consisted of 

the same type of triangular ‘wedge’ filter used in the psychophysical test.  The adaptation 
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filter attenuated horizontal orientations by 85% of their original value across all spatial 

frequencies within a 45º bandwidth of orientations (see Essock et al., 2003; Hansen & 

Essock, 2006; Figure 4).  This type of triangular filter focuses the change specifically at 

the orientation of interest (the peak of the filter).  The minimum of the filter (.15) is at 

horizontal and the attenuation is linearly ramped up from .15 to 1 across a bandwidth of 

22.5º on either side (45º total bandwidth; Figure 4).   

 

 

Figure 4. Steps in the filtering process used to decrement horizontal orientations 
(images spectra have been rotated to fit with space domain conventions). The original 
image (A) is fast Fourier transformed and the resulting amplitude spectra (B/B2) is 
convolved with a filter that decrements horizontal orientations (C) resulting in the 
altered spectra (D/D2) that is inverse transformed and presented to the viewer (E). 
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The specific conditions tested are listed in Table 1.  A total of 3 subjects were 

assigned to run each duration condition in random order (S1, S2, and S5, all female, 2 

naive).  Data obtained during each trial block of the post-test of each of the duration 

conditions was also compared to determine the decay of adaptation effects.  The time it 

took (minutes) for subjects’ match values and horizontal effect score to return to baseline 

levels (within one standard deviation) across the duration conditions was computed and 

quantitatively compared using a floating average window towards the end of the post-test 

trials.  Specifically, the match values at each test orientation as well as the horizontal 

effect score for each trial block were computed and averaged in windows of 3-trial 

blocks.  If a subject’s horizontal match value or effect score did not return to within one 

standard deviation of baseline levels, it was considered to take longer than 30 minutes for 

the subject’s perception of horizontal orientations to return to normal.  In calculating 

average decay rates, these cases were given a value of 30.   

Results 

A one-way ANOVA was run on the horizontal match value difference scores, but 

was underpowered, F(7,14) = 1.64, p = .20.  The average measures of horizontal 

perceptual change are listed in Table 1and Figure 5.   

Table 1.  
Means of horizontal perceptual change across duration conditions. 

Condition Horizontal  
Difference 

H. E. 
Difference  

Effect 
size 

Time to return to 
baseline (H match) 

Time to 
baseline (H.E.) 

5 minutes 0.07 0.06 0.49 0 0.33 
15 minutes 0.10 0.14 1.02 10 5 
30 minutes 0.19 0.27 1.35 10.67 9.67 
45 minutes 0.17 0.26 1.06 13.33 14 
1 hour 0.15 0.28 1.39 21.67 22 
2 hours 0.18 0.33 1.58 23.33 25 
3 hours 0.19 0.26 1.76 27 20.67 
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4 hours 0.21 0.33 1.88 28.33 21 
H match indicates horizontal match value and H.E. indicates horizontal effect score. 
      

 

 

 

 

Figure 5. Summarized results of Experiment 1. A: effect size (d) as a function of 
adaptation duration. B: Horizontal match value difference scores for each subject and the 
average (purple). C: Horizontal effect score for each subject and the average (purple). 
Error bars represent each subject’s standard error. D plots the average post-adaptation 
match values across the four test orientations at each adaptation duration. Error bars here 
represent the average of each subject’s standard error. 

Figure 6. The average time it takes both post-adaptation horizontal effect score and 
horizontal match value to return to within one standard deviation of baseline across 
adaptation conditions with logarithmic fits for each average (black line). 
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Figure 7. Average difference scores (pre-posttest) for each test orientation plotted across post-adaptation trial block 
(averaged in windows of 3 blocks). A-H correspond to the different durations of adaptation (5-240 minutes). Error 
bars represent the average of each subject’s standard error. 
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As can be seen in Figure 5, the shorter conditions (5, 15, 30, and 45 minutes) 

show substantial increases in perceptual change with increased adaptation duration.  The 

average decrease in horizontal and vertical post-adaptation match values is not linear and 

so has been fit with a logarithmic function.  That is, if one takes the logarithm of the 

adaptation time in minutes, there is a linear relationship between adaptation duration and 

the change in post-adaptation match values.  The change starts with dramatic decreases 

from baseline (1) to 30 min of adaptation and then leveling off starting at 45 minutes of 

adaptation, r2 = .76, p < .001 for horizontal, .69, p = .005 for vertical.  Moreover, the 

horizontal effect difference score and the horizontal match value difference score both 

increase after up to 45 minutes of adaptation (Figure 5).  On the other hand, the average 

increase in the oblique post adaptation match values also appears to be logarithmic with 

dramatic increases from baseline to 60 minutes of adaptation and a plateau starting at 2 

hours, r2 = .76, p = .002 for 45º, r2 =.61,  p = .013 for 135º.  The leveling out of the 

magnitude of perceptual change beyond 60 minutes carries over into the duration of 

effects as well; as can been seen in Table 1 and Figure 6, the relationship between 

adaptation duration and both the horizontal effect change and the horizontal match value 

change is also logarithmic, r2 = .95, p > .001 for horizontal effect, r2 = .85, p = .001 for 

match value.  Lastly, effect size shows a linear relationship to adaptation duration: the 

average difference between horizontal match values before and after adaptation, when 

compared to the pooled error for these values increases monotonically with adaptation 

duration.  Clearly, the duration of adaptation has an effect on the extent of perceptual 

change.  Here the effect has been fit using a logarithmic function, although further testing 

would be necessary to completely determine the exact relationship. 
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EXPERIMENT 2: Magnitude of change on adaptation effects 

Methods 

The next experiment examined how strong the physical anisotropy in the adapting 

stimulus needed to be in order to change orientation perception as measured by the 

matching task.  Since the two-hour adaptation condition showed optimal effects, the 

duration of adaptation was fixed (for Experiment 2 and all subsequent experiments) and 

the magnitude of change that the filter imposed on the subjects’ environment differed.  

That is, the multiplicative scalar used to decrease the horizontal content of the image was 

varied.  Whereas in Experiment 1 the scalar was fixed to increase or decrease oriented 

content by 85%, in Experiment 2 scalars that decreased content by 65% and 35% were 

tested for comparison (see Figure 8).  Otherwise, the filter and adaptation parameters 

were exactly the same as those used in Experiment 1.  Here, like in Experiment 1, the 

magnitude of filter change was quantitatively compared to the magnitude of perceptual 

change using difference score of horizontal match value, horizontal effect score, and 

effect size.  The same 4 subjects (S1-S4, 2 female, 3 naive) adapted to environments 

altered with each of the scalars for 2 hours (S1 and S2 new scalar values were compared 

to those obtained in Experiment 1).  Subjects were assigned to experience the different 

scalars in random order.



61 
 

   

Results 

Again, the one way within subjects ANOVA comparing horizontal match value 

differences was not significant, presumably due to being underpowered, F(2,6)  = 3.25, p 

= .11.  However, all three measures of perceptual change indicate that the more 

horizontal content in the environment is decremented, the more sensitive subjects become 

to horizontal orientations.  The difference between pre and post-test (first ten minutes) 

horizontal match values as well as the effect size steadily decreases as the scalar 

increases.  The difference in the horizontal effect score does not monotonically increase 

with decreasing scalar, but it does increase dramatically from 35% to 65%. 

Table 2.  
Means of horizontal perceptual change across magnitude conditions. 

Physical 
change  

Horizontal  
Match Difference 

Horizontal Effect 
Difference  

Effect 
Size 

85% 0.172698 0.160443 2.892735 

65% 0.102778 0.166616 2.401152 

35% -0.12778 0.027759 0.153585 
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Figure 9. Measures of horizontal perceptual change across magnitude of physical 
change. Left shows effect size and right shows horizontal match value and horizontal 
effect size difference scores (pre-post). Error bars represent standard error. 

Figure 10. Each subject's horizontal difference score plotted as a function of KL 
divergence. The mean shows a weak logarithmic relationship. 
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Figure 11. Median difference scores (pre-posttest) for each test orientation plotted across post-adaptation trial block 
(averaged in windows of 3 blocks). A-C correspond to 35%, 65%, and 85% change respectively. Error bars represent the 
average of each subject’s standard error. 
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It appears that the specific orientation being physically changed in the 

environment must be decremented to at least 65% of its original value in order for a 

perceptual change to occur.  Whereas the 35% change induced almost no noticeable 

change in perception, both the 65% and 85% change induced a substantial change in 

perception (see Figure 9).  This makes sense when you compare the physical change 

induced by the difference scalars as plotted in Figure 8.  The 35% scalar does not induce 

much perceptual change because the shape of the natural anisotropy is retained, just to a 

lesser extent.  The dramatic jump in perceptual change as a result of the 65% decrement 

is likely due to the complete lack of a horizontal peak in this environment (Figure 8).  

The even stronger change at 85% can be attributed to the decrement at horizontal in this 

environment.  In other words, whereas the 35% change is still a fairly anisotropic 

environment, both the 65% and 85% scalars completely removed the horizontal peak.  

The increase in perceptual change from 85% to 65% physical change is not nearly as 

dramatic as the increase from 35% to 65%.  These findings indicate that the strength of 

perceptual change is indeed related to the strength of the physical change.  To test this 

finding more explicitly, the horizontal difference scores for each subject were plotted 

against the specific KL divergence scores computed from the video recordings made for 

each magnitude change (Figure 10).  In this way, the relationship between horizontal 

perceptual change and the difference between the experienced environmental distribution 

and the natural one could be determined.  The best fit relationship between these data was 

indeed logarithmic, although the relationship was not significant, r2 = .18, p = .16.  

Smaller increments of physical change would be necessary to determine the exact 
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relationship between physical change and perceptual change, although it does not appear 

to be linear. 

What is clear in these data as well as in the data from Experiment 1 is that there 

appears to be a relationship between the perceptual change of horizontal and vertical 

orientations.  Close inspection of Figures 7 and 11 shows that, in conditions where the 

horizontal match value is changing greatly between pre and posttest, the vertical 

difference score is also high.  Moreover, it appears that, as both adaptation duration and 

the magnitude of physical change increase, the pairing of horizontal and vertical also 

increases.  That is, as one moves from A-H in Figure 7 or A-C in Figure 11, the pairing of 

the cardinal orientations gets stronger.  This is particularly evident in Figure 8 C to D and 

in Figure 11 A to C.  In fact, whereas in the 35% condition (Figure 11C) there appears to 

be no relationship between vertical and horizontal difference scores, the relationship 

increases in 65% (11B) and shows a strong association in 85% (11A).  A similar, if less 

clear trend can be seen as one move from 30 minutes of adaptation (Figure 7C) to 2 hours 

(Figure 7F).  The pairing of perceptual change for the cardinal orientation was 

unexpected and cannot be directly related to the change in the environment.  This 

relationship is further examined in follow-up tests (below).
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EXPERIMENT 3: Immersive versus Passive Viewing  

Methods 

The last horizontal deprivation paradigm involved viewers watching filtered video 

feeds of the environment while sitting still in the lab.  These videos were recorded and 

filtered in real-time, but the camera was not mounted to the front of the observer’s head, 

thus eliminating the feedback that an observer received while wearing the HMD and 

camera together.  In one condition, viewers watched the filtered videos through the HMD 

to control for differences in viewing stimuli with and without the HMD.  Therefore, the 

only difference between this and the other conditions was the concurrent interaction with 

the environment.  Any differences in adaptation experience could thus be attributed to the 

experiential feedback and real-time viewing.  In second type of passive condition, 

subjects viewed the filtered videos on a computer monitor to control for differences in 

wearing the HMD compared to simply viewing the filtered environment.  During both 

types of passive experience, subjects viewed a filtered movie for the entire adaptation 

period (2 hours).  While passively viewing over a monitor, subjects were isolated in a 

dark room in which the only source of visual information was coming from the computer 

screen.  Both types of passive viewing as well as the immersive adaptation condition for 

this paradigm consisted of the optimal magnitude and duration parameters determined 

from Experiments 1 and 2 (horizontal at 85% decrement for two hours).  The same 4 
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subjects participated in this experiment as in Experiment 2 and the two passive conditions 

were compared to their immersive condition from Experiment 1 and 2. 

Results 

As in the above experiments, the one-way ANOVA comparing horizontal 

difference scores across the three types of adaptation experience was underpowered, 

F(2,6) = .87, p = .47.  Still, all three measures of perceptual change decreased when the 

subject is still immersed in the environment, but not getting feedback in real time 

(Passive 1; Table 3).  Moreover, passive experience on a monitor induces little if any 

perceptual change as measured by effect size (Figure 12).  As in Experiments 1 and 2, 

there is an association between the perceptual change at horizontal and vertical which 

increases as the experience becomes more immersive (Figure 13A-C).  Again, this 

relationship is the subject of the follow-up tests discussed below. 

Table 3 
Condition Horizontal  Match 

Difference 
Horizontal Effect 
Difference Score 

Effect Size 

Immersive (from Experiment 1) 0.17 0.24 2.89 

Passive 1 (through HMD) 0.14 0.22 1.26 
Passive 2 (on a monitor) 0.08 0.19 1.11 
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Figure 13. Median difference scores (pre-posttest) for each test orientation plotted across post-adaptation trial block 
(averaged in windows of 3 blocks). A-C correspond to the monitor, passive HMD, and immersive viewing conditions 
respectively. Error bars represent the average of each subject’s standard error. 
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EXPERIMENT 4: Examining the Effects of an Isotropic Environment  

Methods 

As stated above, the primary goal of this project was to determine if recent 

experience fully or partially accounts for the horizontal effect typically observed in 

broadband orientation perception. Can the horizontal effect that is usually observed in 

subjects be attributed to horizontally biased environmental experience? As a step towards 

answering this question, the goal of this experiment was to determine whether extended 

experience in an isotropic environment could completely eliminate the horizontal effect 

bias.  The image that the subjects viewed through the HMD was altered to ‘undo’ the 

typical orientation bias present in natural images.  That is, unlike previous research (and 

unlike Experiments 1-3) the amplitude spectra of the images was not filtered, but rather 

replaced with an isotropic spectrum with the same 1/f  property of typical natural scenes.  

The isotropic amplitude spectrum was created in Matlab by exponentially ramping down 

the amplitude values from the center outwards radially (see Figure 14C).  Thus, as in 

other adaptation paradigms, each frame of the video output was fast Fourier transformed 

(FFT) and the resulting amplitude spectrum was replaced with a naturalistic (1/f), but 

isotropic spectrum (see Figure 14).  The isotropic spectrum was then convolved with the 

original phase spectrum of each frame and inverse transformed to be presented on the 



70 
 

HMD.  Substituting the isotropic spectrum for the original amplitude maintained the 

basic structure of the image (as structural relations are determined largely by the phase 

spectra: Morgan, Ross, & Hayes, 1991; Oppenheim & Lim, 1981; Piotrowski & 

Campbell, 1982; Shapley et al., 1990) but ensured an equal amount of structure 

(amplitude) at all orientations at each spatial frequency.  Nine subjects (including S1-S5, 

4 female, 8 naïve, M = 23.6 years) participated in the main experiment.  Subjects adapted 

to the isotropic environment for 2 hours and then completed the post-test (30 min) to 

determine if the horizontal effect had been decreased or abolished in comparison to their 

pre-test.   

 Figure 14. Example of the filtering processing for Experiment 4. The image captured by 
the camera (A) is transformed (FFT) and its amplitude spectrum (B) replaced with an 
isotropic spectra (c). The process is then inverted and the resulting isotropic image (D) is 
sent to the HMD for display. 
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A subset of subjects (n=3: S2, S5, and S6, 2 female, 2 naive) participated in two 

alternate adaptation conditions that also changed the global distribution: ‘oblique 

dominant’ and ‘enhanced natural.’ In the oblique-dominant condition, the typical natural 

anisotropy (H>V>>O) was altered so that the distribution peaked at the obliques and 

exhibited minima at the cardinals.  The filter used during this adaptation consisted of a 

triangular in orientation filter (like Experiments 1-3) that attenuated cardinal and 

enhanced oblique amplitudes (equally at all spatial frequencies) within 45º-wide bands of 

orientations (see Figure 15).  For the oblique-dominant condition the 45 o-wide triangles 

had a peak (maximum) amplitude of a factor of 1.95 at 45o and 135o and a peak 

(minimum) amplitude of a factor of 0.15 at 0o and 90o.  For the enhanced natural 

condition the filter had peaks of 1.95 at 0 o and 90 o and minima of 0.35 at 45o and 135o.  

An example of each filtering process can be seen in Figure 15.  Just as before, after 

adaptation, subjects completed as many matching trials as possible during a 30 minute 

post-test. 

 

.   

ENHANCED                        OBLIQUE 

Figure 15. Filters used for the inverted and enhanced conditions shown in both two 
dimensions (left) and one dimension (right). 
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Results 

The addition of new, less experienced subjects increased the overall variability in 

the data.  To compensate for this change, only the first five minutes of post-testing 

(instead of ten) are included in all analyses for the isotropic condition in Experiment 4.  

Additionally, less experienced observers were asked to repeat the experiment in order to 

obtain less variable data.  All subjects who were able to repeat the experiment were run 

as many times as possible and the average of the last two runs was taken (S1, S6, S7, and 

S9).  As in Experiments 1-3, observer’s average match values before adaptation were 

compared to the match values obtained after adaptation.  As seen in Figure 16, the 

horizontal effect present in the baseline condition became quite flat after experience in 

the isotropic environment.  A 2 (baseline vs beginning of post-test) x 4 (test orientation) 

two-way repeated measures ANOVA was run on subjects’ match values to determine if 

adaptation in an isotropic environment affected match values differently by orientation.  

The within-subjects analysis showed a significant interaction between orientation and 

testing phase, F(3,48) = 11.05, p < .001.  The salience at horizontal increased and 

decreased at vertical (although only horizontal change was significant, p = .05 while 

vertical p = .11).  Moreover, sensitivity to both of the obliques decreased (but only the 

45° change was significant, p = .002, p = .15 see Figure 16).   
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  During the post-test period, each subject’s match values changed, although to 

differing extents.  To quantify this change, the same horizontal effect score measure was 

calculated pre and post (five min) adaptation.  The horizontal effect score for each subject 

as well as the average is plotted in Figure 17.  As can be seen, all subjects showed a 

decrease in this measure of perceptual anisotropy after adaptation.  That is, subjects 

showed a more isotropic pattern of orientation perception after adapting to an isotropic 

environment for 2 hours (p = 0.006).   
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Results from the enhanced and inverted conditions are plotted in Figure 18.  For 

comparison, the data for these three subjects after adaptation in the isotropic condition 

has been plotted as well.  The horizontal effect difference score was again calculated as a 

measure of quantitative change.  Observers’ orientation perception changed after 

experience in both of these altered environments.  In the oblique condition, subjects 

** 
Figure 17. Pre and post-test horizontal effect scores on average (solid) and for each 
subject (dashed). * indicates significance.  
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became more sensitive to the cardinal orientations and less sensitive to the obliques.  In 

the enhanced natural condition, subjects became even less sensitive at the cardinal 

orientations and slightly more sensitive at the obliques effectively increasing the 

horizontal effect.  Moreover, the horizontal effect changes across the three types of 

altered environments: it is highest in the super-natural condition and lowest in the 

isotropic condition. 

As in Experiment 2, subject’s difference scores (pre-post) were compared with the 

KL divergence scores obtained from the unfiltered and filtered videos to determine the 

relationship between the physical and perceptual differences.  Since the isotropic filter 

changes the amplitude content of every orientation in the image, the difference scores for 

each tested orientation were used for comparison.  As can be seen in Figure 19, the 

cardinal orientations showed a weak positive relationship to KL divergence while the 

obliques showed effectively no relationship.  None of the correlations were significant.  

To compare the decay of perceptual effects across adaptation to global distribution 

changes, average match values (across all subjects) were computed in five minute 

intervals across the post-testing period (Figure 20).  Interestingly, the first five minute 

interval seems to show the predictable pattern for each condition: isotropic (B) shows all 

orientations moving towards equality, Enhanced Natural (A) shows the opposite, and 

Oblique Dominant (C) shows an increase in sensitivity for the cardinals and a decrease 

for the obliques.  However, these predictable patterns only last the first five minutes and 

effects decay to baseline fastest in the Enhanced Natural condition and slowest in the 

Oblique Dominant condition. 
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Figure 18. Results of the enhanced natural (C and D) and oblique dominant (B and E) adaptation conditions. A shows the 
horizontal effect score calculated for the first 10 minutes of post-testing for each subject and the average across all three 
adaptation conditions in comparison to baseline. The difference between the baseline and the post-test horizontal effect 
score for each subject is plotted in B and C. D-F show the average match values across test orientation for each adaptation 
condition. 
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Figure 19. The relationship between KL divergence and the difference scores (pre-post) 
for each test orientation (A = vertical, B = 45, C = horizontal, D = 135) after isotropic 
adaptation is plotted for each subject. Cardinal relationships appear to be linear. 
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Figure 20. Average change for all subjects tested across post-test period for all three global adaptation conditions: Enhanced 
Natural (A, N=3), Isotropic (B, N = 9), and Oblique Dominant (C, N = 3). post-testing period is measured in5 minutes 
intervals with baseline scores plotted for reference on the far left of the abscissa. Error bars represent standard error.  
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CONTROL TESTS 

 Methods 

The filtering process does significantly alter the way an image looks to such an 

extent that observers report noticeable changes and it takes some time before they are 

able to adjust to the filtered world (Bao & Engel, 2012; Zhang et al., 2009).  For example, 

Figure 15 shows an image before and after filtering the spectrum to be isotropic.  The 

image on the far right looks ‘weird’ and one could imagine that it would be difficult to 

interact in such an environment.  Moreover, one could argue that testing a subject after 

adapting to such an environment may lead to overall changes in orientation processing 

simply due to the difference in how the image looks (rather than the physical oriented 

structure present).  Since the post-test period was fixed in terms of time, it also cannot be 

determined whether it is time outside of the altered HMD environment or visual 

experience in the unfiltered, post-adaptation environment that decays the effects of 

adaptation.  Lastly, Experiments 1- 3 all focus on changing only orientations near 

horizontal while Experiment 4 focuses on the global distribution of orientations.  

However unlikely, the perceptual changes exhibited in Experiments 1-3 in response to 

changing particular orientations could be specific to changing horizontal content.  In 

order to ensure that any differences found were indeed due to altered experience with 
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specific orientations, what causes them return to baseline after post-test, and that the 

changes are generalizable across orientations, control experiments were executed in 

concert with those listed above.  For the first control, 3 subjects (S1, S2, and S4, 2 

female, 2 naive) wore the HMD and viewed the unfiltered world through the camera so 

that the delay and HMD viewing were the same, but no content in the environment had 

been altered.  In another control, S2 wore the HMD for a medium duration (2 hours) from 

Experiment 1, but viewed images which had been filtered in real-time to alter their spatial 

frequency, not orientation content.  In this way, it was ensured that any adaptation-

induced changes in orientation processing were due to altered orientation experience 

rather than simply altered perception in general.  To account for the decay of adaptation, 

3 subjects (S1, S2, and S3, 2 female, 2 naive) adapted to a vertical decrement condition 

(the same as Experiment 1, but with the filter centered at vertical rather than horizontal) 

then sat in darkness for 30 minutes between adaptation and post-test.  This delay in 

darkness served to control for the time delay between adaptation and the return to 

baseline seen at the end of the post-testing period, but observers had no visual input 

during the delay.  To compare altering horizontal content to altering other orientations, 

the same 3 subjects also adapted to a vertical decrement without a delay and, with the 

addition of a fourth subject, an enhancement of oblique orientations for two hours.  This 

condition was run with the same type of multiplicative, triangular filter, this time 

centered at 45º and 135º to increase these orientations by 85%).   

All of the KL divergence measures described in Experiments 2-4 above assume 

the pre-filtered video recording of the environment observers were exposed to during 



81 
 

adaptation is a good measurement of the un-adapted environmental distribution, but it 

could be argued that observers may be exposed to different environmental orientation 

distributions before the pre-test (i.e., before they come in to run the experiment) that are 

not reflected in the orientation spectra of the pre-filtered recorded videos.  To account for 

these differences the post-test from the unfiltered control was compared to the baseline 

run within subjects.  If the environment experienced in the lab was significantly different 

than that experienced before the pre-test, the baseline should differ from this control post-

test.   

Results 

Wearing the HMD for two hours with no filter, simply viewing the world in black 

and white caused no change in orientation perception: the horizontal effect persisted 

(Figure 21).  Correlations between match values at the four test orientations were run to 

assess the match between orientation perception with and without a delay as well as 

before and after wearing the HMD with no filter.  Wearing the HMD for 2 hours with no 

filter did not alter subjects’ orientation perception in the post-test, R2 = .96, p = .0003.  

Although only one subject ran the spatial frequency filter condition, as can be seen from 

Figure 22, this did not affect this subject’s orientation perception at all; S2 showed no 

difference between pre and post-test match values after adapting to an environment with 

altered spatial frequency content. 

Adding a 30-minute delay between the end of adaptation and the beginning of 

post-testing also did not significantly change the post-vertical deprivation orientation 
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perception of these observers, R2 = .96, p = .02 (Figure 23).  All three subjects in the 

delay-in-darkness condition showed similar changes in orientation perception after the 

delay as they did without a delay. 
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Figure 21. Subjects (n=4) pre (black) and post (red) test match values after adapting to 
an environment with no filter (i.e. no induced change). Error bars represent standard 
error. 

 

Figure 22. S2's pre (black) and post (red) test match values after adaptation to an 
environment wherein spatial frequency, but not orientation content had been altered. 
Error bars represent standard error. 
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Conversely, S2 re-ran the same adaptation condition (vertical deprivation) and waited 30 

minutes after adaptation to take the post-test.  This time, however, S2 did not wait in 

darkness, but went about the day as usual (delay-in-light).  As can be seen in Figure 24, 

this delay between adaptation and testing that included visual input caused S2 to return to 

baseline levels at the time of the post-test. 

  

 

Figure 23 also shows that subjects indeed changed their orientation perception after 

adaptation to vertical deprivation just as they did after horizontal deprivation (solid lines).  

As in the horizontal deprivation condition, sensitivity to both vertical and horizontal 

improved in the vertical decrement condition.  Figure 26 shows that similar changes were 

exhibited by subjects adapting to oblique enhancement: subjects sensitivity to the 

cardinal orientations improved and sensitivity to the obliques worsened.  To 

quantitatively compare across the three orientation conditions, effect sizes (Cohen’s d)  
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Figure 23. Subjects (n=3) pre (black) and post (red) test match values after adaptation 
to a vertical decrement with a 30 minute delay in darkness (dotted) or not (solid). 
Error bars represent standard error 
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were computed by taking the average difference between the pre and post test orientation 

match value of interest (horizontal, vertical, or the average of the two obliques) and 

dividing this by the pooled error rate (Table 4).  That is, the effect size for the vertical 

deprivation condition represents the average change in vertical match value whereas the 

oblique condition represents the average (across 45º and 135º) change in oblique match 

value.  As Table 4 shows, the effect size for the vertical deprivation condition was 

substantially lower than for the horizontal deprivation or oblique enhancement 

conditions.  This could be related to the lower KL divergence score in the vertical vs. 

horizontal deprivation condtion, although, if that were the case, one would expect that the 

oblique enhancement effect size would also be lower corresponding to it’s lower level of 

KL divergence.  The individual trial block data (Figure 26) from the vertical deprivation 

condition shows that not only do vertical and horizontal match values appear to be paired 

(as in Experiments 1-3), but also that vertical perception does notchange immediately 
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Figure 24. S2’s pre and post-test matches after adaptation to vertical decrement with 
a 30 minute delay in light in between pre (black) and post (red) test. Error bars 
represent standard error. 
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following adaptation to vertical deprivation (although substantial perceptual change is 

still evident).  Additional testing is necessary to determine exactly how vertical differs 

from other orientations and will be discussed further in the Follow Ups and General 

Discussion sections. 

Table 4. 
Effect size across different orientation adaptation conditions 

Condition Effect size KL Divergence 
Vertical Deprivation 1.119 0.0459 

Horizontal Deprivation  2.87 0.0518 

Oblique Enhancement 2.48 0.0082 
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Figure 25. Subjects’ pre (blue) and post (red) test match values after adaptation to an 
environment with oblique enhancement. Error bars represent standard error. 
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GENERAL DISCUSSION AND SUMMARY 

It is clear from the above experiments that changing the environmental statistics 

one is exposed to changes orientation perception in substantial and measurable ways.  

The duration of adaptation has an effect on the extent of perceptual change; the 

relationship appears to be best described as logarithmic, although it should be noted that 

the durations tested could favor this interpretation as the steps between duration 

conditions were not of equal length.  There were substantial increases in all measures of 

perceptual change (horizontal effect, match value difference, effect size) as adaptation 

duration increased from 5 to 60 minutes.  Unexpectedly, there was not much of an 

increase in the strength or duration of perceptual change beyond 2 hours of adaptation 

duration.  Previous literature found that increasing adaptation from 2 to 4 and 4 to 8 hours 

significantly increased both the duration and magnitude of perceptual change (Bao & 

Engel, 2012).  The results above showed that adapting for 3 hours actually decreased the 

strength of perceptual change in comparison to adapting for 2 hours across all three 

measures (Table 1).  This result was so surprising that 2 subjects (S2 and S3) actually re-

ran the three hour adaptation condition, but again showed a smaller and shorter 

perceptual effect in the second run (Table 1 values include second run only, although 

results were similar).  Previous experiments never actually adapted subjects for 3 hours 
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(only 1, 2, 4, and 8) and the data in Table 1 do show an increase from 2 to 4 hours in the 

horizontal match difference score and both measures of the time to return to baseline 

(Bao & Engel, 2012; Zhang et al., 2009).  Therefore, these results are not in complete 

disagreement with what has been found previously.  It could be that there are different 

timing mechanisms at work for adaptation durations shorter than 2 hours and longer than 

4 hours.  Further work breaking down the adaptation duration into shorter time periods 

would be required to investigate this hypothesis.  Moreover, previous studies either did 

not mention the duration of post-adaptation testing (Zhang, et al., 2009) or only tested for 

a few minutes (Bao & Engel, 2012; Haak, Fast, Bao, Leng, & Engel, 2014).  All of the 

post-adaptation effect measures in Experiment 1 were calculated using the first ten 

minutes of post-testing in order to average across at least four trials at any given test 

orientation.  If it were possible to shorten the post-test period, more dramatic effects of 

adaptation duration may have been found.  Another task would need to be implemented 

in order to obtain an accurate measure of orientation perception across different test 

orientations in such a short amount of time. 

This study is the first of its kind to examine the relationship between the 

magnitude of physical change induced in the environment and the amount of perceptual 

change that it causes.  Experiment 2 showed that a small physical change (35% 

decrement) was not enough to change observers’ post-adaptation orientation perception.  

On the other hand, larger increments of physical change (65% and 85%) changed 

perception dramatically.  As mentioned above, this is likely due to the overall change in 

the distribution of orientations as one moves from a fairly anisotropic, horizontally biased 
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environment (original and 35% decrement) to a more isotropic, vertically biased 

environment (65% and 85% decrement, see Figure 9).  While there was some indication 

of a logarithmic relationship between the physical and perceptual difference, this 

relationship was not significant.  Given the similar lack of a significant relationship 

between these measures in Experiment 4, it seems more likely that Experiment 2 has 

determined the minimum physical change necessary to induce effects.  While further 

experiments would be required to confirm this hypothesis, it appears that substantial 

changes in the orientation distribution will induced similar amounts of perceptual change 

while smaller changes will not be enough to alter the way the visual system biases 

perceptual information. 

To enact the strong perceptual change that was seen in Experiment 1 after 1-2 

hours, it seems that immersive experience is necessary.  This finding is in concordance 

with virtual reality literature suggesting that immersive experience in the virtual 

environment leads to improved encoding and consequentially stronger perceptual effects 

(James, Humphrey, & Goodale, 2001; James et al., 2002; Butler, James, & James, 2011; 

Fredembach et al., 2009).  Even the passive condition which did induce perceptual 

change (Passive 1) involved subjects viewing the altered environment over the HMD.  

Though the effects of adaptation were weaker after experience in this condition, there 

was still a change in orientation perception indicating that while real time feedback 

strengthens results, it is not necessary for perceptual change.   
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Experience in an isotropic environment lessened or completely eliminated the 

horizontal effect anisotropy for all subjects.  Most subjects show a more isotropic pattern 

after experience in an isotropic environment, and all subjects show less of a horizontal 

effect of orientation perception for the first five minutes of post-testing (Figures 16 and 

17).  The addition of the enhanced natural and oblique dominant adaptation conditions 

showed that the type of perceptual change induced by adaptation could be predicted by 

the distribution experienced during adaptation.  When subjects experienced an 

environment in which the natural anisotropy had been inverted, their perceptual 

anisotropy was eliminated.  When subjects experienced an environment in which the 

natural anisotropy was emphasized, the perceptual anisotropy was increased.  

Interestingly, the isotropic condition did not eliminate the anisotropy completely, but was 

the condition in which the horizontal effect measure was the lowest for the three subjects 

who ran all three conditions.  Moreover, the oblique dominant condition did not invert the 

perceptual anisotropy, but eliminated it completely (Figure 18).  Further theoretical 

discussion of this intriguing result is reserved for the Conclusions section. 

From the control tests it was determined that simply viewing the environment in 

black and white or with a filter affecting the amplitude spectrum was not the cause of the 

altered orientation perception in Experiments 1-4.  If the environment the subjects were 

exposed to in the lab were significantly different from that they were exposed to just 

before beginning the experiment, one would expect the baseline score to deviate from the 

unfiltered-HMD wearing control, but it did not.  It can thus be concluded that the pre-

filtered environment was a good estimate of the ‘typical’ environment observers were 
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exposed to before pre-test.  The delay condition was of particular interest because it 

allows one to hypothesize about what causes the return to ‘normal’ orientation perception 

after adaptation.  The delay-in-darkness control determined that the return to the normal 

anisotropy seen by the end of the post-testing period for most observers was not due to 

time alone.  This condition, in addition to the delay-in-light control (run only on S2), 

showed that it must be the experience with typical visual input that caused observers to 

return to their usual orientation perception after adaptation.   

While the control tests were planned before implementation of any of the 

experiments listed above, the data obtained yeiled unexpected results which raise further 

questions.  Namely, how to characterize the relationship between vertical and horizontal 

orientations seen in Experiments 1-3 and the difference between horizontal and vertical 

susceptibility to adaptation demonstrated  in the control experiments (Figures 7, 11, 13, 

and 26, Table 4).  For these reasons, two follow-up tests were executed: one attempted to 

replicate some of the horizontal change across duration (Experiment 1) for vertical 

deprivation and the second sought to determine if the oblique orientations would exhibit a 

paired link like the cardinals.  Due to the nature of these follow-ups as well as timing 

constraints, only two subjects were run in each condition.  The exact parameters are 

detailed below.
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FOLLOW UP TESTS 

 Methods 

 Experiments 1-3 exhibited an unexpected relationship between the cardinal 

orientations: even though the peak of the decrement filter was concentrated at horizontal, 

sensitivity to vertical improved as well (see Figures 7, 11, 13 and 26).  To examine this 

link in more detail, two sets of follow-up tests were run.  The first set examined whether 

decrementing vertical orientations for different adaptation durations would produce a 

similar link between the cardinal orientations as was found in Experiment 1.  Subjects 1 

and 2 (both female, 1 naïve) adapted to 30 minutes, 1 hour, and 2 hours of vertical 

decrement with the same filtering parameters as the horizontal decrement condition from 

Experiment 1, but with the filter peak centered at vertical.  The second set examined 

whether oblique orientations would be linked like cardinal orientations.  As the control 

condition examined the amount of perceptual change as a result of enhancing both 

oblique orientations, this condition focused on decrementing only one of the oblique 

orientations, namely 45º.  Again, the same filtering process was used in this condition as 

Experiment 1 with the filter centered at 45º as opposed to horizontal.  Subject 2 adapted 

to the 45° decrement for 2 hours. 
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Results 

The results of the first set of follow-up adaptation conditions are plotted in Figure 

28 along with each subject’s horizontal decrement results (from Experiment 1) for direct 

comparison.  There does appear to be some link between the cardinal orientations in both 

the horizontal decrement (Figure 26 right column) and the vertical decrement (left 

column) adaptation conditions.  More subjects would be needed to completely elucidate 

the link between cardinal orientations. 

 
Figure 26. Post-adaptation difference scores for S1 and S2 adaptation to vertical (right 
column: A-C) and horizontal (left column: D-F) decrements across three adaptation durations: 
30 minutes (A and D), 1 hour (B and E), 2 hours (C and F). 
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 The second set of follow-ups are plotted in Figure 27: the post-adaptation match 

value difference scores for both obliques appear to be linked just as the cardinal 

orientations were linked in the horizontal decrement condition.  That is, even though the 

adaptation paradigm decremented only the 45° oblique, sensitivity to the 135° oblique 

also improved. 

 

 

Figure 27. Post-adaptation difference scores for S2 adaptation to 45º (A) and horizontal (B) 
decrements after 2 hours. B has been re-plotted from Experiment 1 for this subject.  
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MODELING 

As stated above, the perceptual results of each type of adaptation manipulation 

can be predicted by the changes imposed on the amplitude spectrum.  Explicitly, the 

distribution of orientations experienced during adaptation is an inverse of the perceptual 

salience of different orientations.  The use of a Bayesian encoder-decoder model allows 

for the modeling of the perceptual results while taking into account the environmental 

experience of each observer.  As discussed in the introduction, perception is biased by 

both the likelihood of stimuli in the environment as well as their prior probability, and 

previous research has shown that human observers’ priors are a good match to the 

environmental distribution (Stocker & Simoncelli, 2006a; Girshick, Landy, & Simoncelli, 

2011).  That is to say, observers’ priors are biased in terms of orientation which leads to 

perceptual biases across orientation, in this case, the horizontal effect.  That is, the match 

between the environmental distribution and observers’ priors leads to the anisotropic 

suppression of cardinal orientations which is presumed to cause the horizontal effect 

(Essock, Haun, & Kim, 2009).  If one assumes, then, that observers are using something 

like the natural distribution of orientations as their prior during the pre-test, one can 

model the change in both the likelihood and the prior distribution across adaptation 

conditions.  These observers show a horizontal effect pattern of results on the pre-test 

matching experiment indicating that they used the natural environmental prior as would 
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be expected.  Assuming that their prior probability distribution changes based on the 

statistics of the adapted environment, the post-test should show different results that can 

be predicted using the experimentally obtained data.   

Results 

We assume that observers use the correct likelihood function which can be 

obtained from interpreting the measurement noise distribution as a function of the 

stimulus for a particular measurement (Girshick, Landy, & Simoncelli, 2011).  The 

measurement noise distribution describes the probability of a sensory measurement given 

a particular stimulus value (Girshick, Landy, & Simoncelli, 2011).  The variance of the 

perceived/estimated value, as measured experimentally, is used to estimate the width of 

the measurement distribution across orientation (Stocker & Simoncelli, 2006a).  That is, 

to estimate this measurement noise across all orientations, the standard error obtained in 

the matching experiment before and after adaptation at each test orientation was 

interpolated using cubic spline in Matlab (Stocker & Simoncelli, 2006a; Girshick, Landy, 

& Simoncelli, 2011).   

 

Figure 28. Variability across 
orientation pre (black) and post 
(red) adaptation to an isotropic 
environment.  
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For the particular biases show in Figure 28, subjects were adapted to an isotropic 

environment (Experiment 4).  As can be seen, the variability in perceived strength of 

orientation changed after adaptation such that subjects were more variable across all 

orientations, but especially at the obliques.  Although not depicted in every figure, the 

same model was also applied to data from the enhanced natural and oblique dominant 

conditions.  The interpolated variability data were then used to compute the width of the 

measurement distributions across orientation using a Von Mises function that peaks every 

180 degrees, P(m|θ) ≈ eKcos(2(θ-m)) where K is determined by the interpolated data, m ranges 

across orientation from 0-180°, and θ determines the peak of the Von Mises and is 

centered at the measured orientation.  The Von Mises distributions are calculated for each 

stimulus value across the stimulus space (0-180°).  The resulting 2D matrix consists of 

columns of measurement distributions (probability of a measurement given a particular 

value) and rows of likelihood distributions (probability of a stimulus value given a 

particular measurement) (Figure 29 top row; Girshick, Landy, & Simoncelli, 2011).  

Taking horizontal slices, the likelihood as a function of orientation then looks like the 

bottom row of Figure 29 (pre-adaptation left, post-adaptation right).  The likelihood 

functions are slightly asymmetric because the measurement distribution width varies 

across orientation.  Moreover, as one can see, for the isotropic adaptation condition, the 

likelihood distributions went from being extremely anisotropic, to more isotopic overall.  

This corresponds to the more isotropic pattern of orientation perception seen after 

adaptation in Experiment 4.  Similar relationships were seen in the data from the 

enhanced natural and oblique dominant conditions (not depicted). 
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To obtain an estimate of the pre-test prior in all conditions, we used the 

orientation spectra of over 300 natural images obtained by taking photographs in and 

around Kentucky and Indiana.  The post-test prior was calculated by computing the 

orientation spectra of the filtered images sampled from the video recordings made during 

adaptation for each condition.  The spectra were calculated using the methodology 

detailed in our previous report (Schweinhart & Essock 2013).  Briefly, each image is 

rotated every three degrees and a discrete fast Fourier transform is performed.  The 

Figure 29. Likelihood and measurement distributions pre (left) and post (right) adaptation to 
an isotropic environment.  
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amplitude spectra is then convolved with a filter centered at horizontal and vertical with a 

three degree orientation bandwidth to extract the amplitude of those specific orientations.  

As this process is repeated every three degrees, the entire spectra can be calculated across 

orientation.  However, as mentioned above, the prior should not be an exact match to the 

natural world, but rather a ‘regularized’ match in order to compensate for noisy 

environments (Feldman, 2013).  Therefore, the fit of both priors was estimated using 

spline interpolation at 5 points so as not to ‘over-tune,’ Log(p(θ)) = ai(θ-θi)
3
+bi(θ-

θi)
2
+ci(θ-θi)+di, θi =  [0°,45°,90°,135°,180°].   

 

 

Each of the experiments discussed above measures observer’s orientation 

perception by having subjects match naturalistic, oriented, noise stimuli at different 

orientations to a standard in terms of perceived salience.  The observer’s match values 

Figure 30. Sample of every three degrees (dots) from natural scenes (black) and the 
filtered images used in the isotropic adaptation condition (red). Lines represent the 
interpolated fits used for the model. 



99 
 

(test scalar/reference scalar) serve as a representation of his/her particular bias at the 

tested orientation: the difference in physical strength of two oriented patterns which are 

perceived to be equal (Girshick, Landy, & Simoncelli, 2011).  Bias is approximately 

equal to the product of the squared likelihood width (variance) and the slope of the log of 

the prior (Stocker & Simoncelli, 2006a; Girshick, Landy, & Simoncelli, 2011).  Using the 

full width (in degrees) of the modeled likelihood distributions at half height (FWHH) and 

the slope of the log of the prior (before and after adaptation) at the same five points the 

bias was thus estimated, FWHH * log(𝑝(𝜃 𝑖)) − log(𝑝(𝜃𝑖+1))

𝜃𝑖  – 𝜃𝑖+1
 .  The predicted bias values for 

these control points are then used to interpolate (cubic spline) across the range of 

orientations and compared to the bias obtained experimentally both before and after 

adaptation in an enhanced natural, isotropic, and oblique dominant environment (Figure 

31 A, B, and C respectively).  Figure 31 shows that the interpolated model data (solid 

lines with standard error area shaded) provide a good fit to the experimentally obtained 

bias (solid points with standard error bars) across each adaptation condition.  Whereas 

experience in the isotropic environment eliminated the horizontal effect while experience 

in an environment filtered to have an increased cardinal bias led to a slightly greater 

perceptual anisotropy.  Lastly, experience in an environment with a reversed anisotropy 

(oblique dominant) produced a diminished horizontal bias, although it did not completely 

reverse the perceptual bias.  All changes are well predicted by a model that assumes 

participants update their prior based on recent experience. 
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Via trial and error, it was determined that altering the temperature of the prior 

distribution (by raising it to an exponential power) provided better fits to the 

experimental data.  That is, the basic shape of the distribution remains the same, but it is 

stretched or flattened to better fit the data.  The exponent for each prior that best fit the 

data was determined using least squared error.  The experimentally obtained match 

values (shifted by -.9) at each tested orientation were then compared to the interpolated 

values at these same orientations for each subject to evaluate the fit of the model in the 

isotropic condition.  In other words, the repeated measure ANOVA from Experiment 4 

was re-run with the added factor of model x data.  The main effect of this model factor 

was not significant indicating that the model points were not significantly different than 

the experimentally obtained data, F(1,8) = .65, p = .44.   

The alterations to the environment experienced during adaptation in Experiment 4 

represent globally altered environmental distributions whereas previous accounts only 

tested changes in specific orientations (Bao & Engel, 2012; Girshick, Landy, & 

Simoncelli, 2011; Zhang et al., 2009) Therefore, while previous reports have argued for 

changes only in the likelihood distribution, this manipulation of the global distribution of 

orientations enables testing the malleability of the prior as well (Stocker & Simoncelli, 

2006b).  In response to experience in such globally altered environments, local changes 

in likelihood functions only in the vicinity of adaptor values may be inadequate to 

efficiently encode experience.  To evaluate whether subjects were indeed changing their 

likelihood and prior probability distributions, the model of post-adaptation perceptual 

biases was applied using both the natural orientation distribution and the isotropic  
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Figure 31. Experimentally obtained bias (points) and model fits (lines) for each of 
the globally altered distributions: enhanced natural (A), isotropic (B), and oblique 
dominant (C). For each plot, the black line and points are the pre-adaptation data 
and the grey line and points are the post-adaptation data. Error bars on the points 
and shaded regions around the modeled lines represent standard error. 



102 
 

orientation distribution as a representation of the prior for the post-test biases.  As seen in 

Figure 32, the model using the isotropic prior (lighter grey) provides a better (by eye) fit 

to the data than one that uses the post-adaptation likelihood, but the natural distribution of 

orientations as the prior (darker grey).  The difference between the post-adaptation data 

and each model was compared using a 2 (model: natural, isotropic) x 4 (orientation: 0, 

45, 90, 135) repeated measures ANOVA.  A significant interaction indicated that the 

models differed in their fit to human perceptual biases after isotropic experience as a 

function of orientation, F(4,32) = 24.44, p < .001 (see Figure 32).  Thus, perceptual 

biases are best explained by a prior that reflects the environmental statistics of recent 

experience.   
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CONCLUSIONS 

These data indicate that broadband orientation perception (and subsequently the 

horizontal effect) is in fact susceptible to the effects of adaptation.  Effects were observed 

with as little as 30 minutes of experience with altered environmental orientation content, 

but these effects are stronger and longer lasting with longer experience, at least up to two 

hours (Experiment 1).  Moreover, the amount of perceptual change is somewhat 

dependent on the extent of physical change, although the exact relationship remains to be 

determined (Experiment 2).  Adaptation in an immersive altered reality also appears to 

induce stronger effects than more passive adaptation, indicating that real-time visual 

feedback strengthens perceptual change (Experiment 3).  Lastly, global changes in the 

orientation distribution experienced by observers have predictable effects on the pattern 

of orientation biases exhibited post-adaptation implying a relationship between the 

statistics of our visual environment and our perception of structural content.  That is, 

changing the amplitude of the structural content that we see has a dramatic effect on how 

we perceive subsequently presented structure in a naturalistic background.   

As mentioned in the introduction, this experiment is not the first time that such 

long-term, environmental changes have been recorded; long-term adaptation (4 hours) to 

decreased environmental contrast increases subject contrast sensitivity (Kwon et al., 

2009).  This increase in sensitivity was presumed to occur at the cortical level as effects 
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were transferrable between the eyes (Kwon et al., 2009).  Kwon and colleagues (2009) 

contend that whereas typical shorter-term adaptation results can be explained via a 

shifting in the response function towards the adapting value (what they call contrast 

gain), longer-term adaptation to reduced contrast involves a steepening of the contrast 

response function near the mean level (response gain).  That is, whereas short-term 

adaptation maintains the shape of the response function while changing the mean, long-

term adaptation changes the shape but retains the mean.  Although these results are 

discussed in the terms of contrast response, they can be applied to the current results as 

well.  Like decreasing the overall contrast signal for a long period of time, the current 

studies investigated the effects of decreasing horizontal orientations for an extended 

period.  It seems necessary, then, that the current results would be best explained by 

changes to a longer-term adaptation mechanism, one that changes the shape of the 

orientation distribution. 

Perhaps even more relevant to the current results, long-term adaptation has also 

been studied using similar orientation decrements across different adaptation durations, 

but with a narrowband orientation perception task (TAE: see Introduction, Bao & Engel, 

2012; Bao, Fast, Mesik, & Engel, 2013; Haak et al., 2014; Zhang et al., 2009).  These 

studies have provided evidence for two distinct processes explaining perceptual effects 

after short and long-term adaptation.  The strongest evidence for the two mechanism 

theory has come from studies wherein de-adapting and re-adapting to previously adapted 

stimuli show spontaneous recovery of adaptation effects (Bao et al., 2013).  That is, once 

subjects were no longer exhibiting perceptual effects of long-term adaptation, such 
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effects could be reinstated much more quickly than before (after only a few minutes of 

experience; see Introduction and Bao et al., 2013).  Presumably, the results reported here 

are also effects of adapting a long-term, cortical mechanism and should thus show 

spontaneous recovery as well as intraocular transfer if tested in the future.   

Similar studies have also determined that long-term adaptation effects follow a 

‘duration scaling’ law wherein the effects of adaptation get stronger and longer lasting as 

the adaptation duration lengthens (Bao & Engel, 2012; Bao et al., 2013).  As revealed in 

Experiment 1, the relationship between duration of adaptation and magnitude of 

perceptual effects found here is not linear; while effects increased monotonically from 5-

60 minutes of adaptation, the perceptual change began to plateau after 2 hours.  The 

difference in perceptual effect seen between these time frames could be due to what 

Engel and colleagues (2014) call the “cost of adaptation” (Haak et al., 2014).  In previous 

studies, altered environmental experience over 4 days of continuous adaptation caused a 

peak effect of perceptual change early on in experimentation (i.e., the first or second day) 

that decreased after more experience (Haak et al., 2014).  The authors explain the 

maximum effect on the first day as the action of a ‘fast’ adaptation process while later 

continued (although weaker) effects were attributed to a slower process.  The fast process 

showed an initial decline because the metabolic and coding costs of remaining adapted 

outweighed the perceptual benefits (Haak et al., 2014).  While the subjects in these 

experiments were not adapted for nearly so long a time, it could be that the results of the 

experiments listed above are due to differences in long/short-term and fast/slow 

mechanisms of adaptation.  Assuming these results are due to adapting a long-term 
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mechanism, it could be that they follow an initial duration scaling due to the ‘fast’ acting 

mechanism for the first two hours.  The plateau of effects seen in the three and four hour 

adaptation conditions could be due to the decay of fast mechanism before the slower 

mechanism can take effect.   

Though these time scales do not align perfectly with the days tested previously, 

there are many differences between the two tasks that could explain these variations 

(Haak et al., 2014).  The task used here (broadband, suprathreshold matching) is very 

different than those that have been used in the past to measure the effects of adaptation 

(e.g., narrowband contrast discrimination of orientations).  The initial peak, presumably 

due to the fast acting mechanism, also differs slightly; whereas these subjects show a 

decline in perceptual change after 3 hours, subjects tested on contrast discrimination 

exhibited a decline on the first day as a sign of the faster mechanism (although the exact 

timing of the first testing day is not discussed; Haak et al., 2014).  These two mechanisms 

can also be explained in the terms of a Bayesian framework; longer experience in an 

environment produces greater confidence in the pattern of observed structure and would 

thus lead to stronger and longer lasting effects which would stabilize over time (Haak et 

al., 2014).  Interestingly, recent work has indicated that adaptation to a previously 

experienced statistical ensemble is not faster than adaptation to a new ensemble (Mesik, 

Patke, & Engel, 2015).  That is, the advantage that adaptation provides is not retained in 

any meaningful sense once the adapted state is abolished.  Indeed, the prolonged time it 

takes subjects to return to baseline levels in these experiments indicates that the typical 

perceptual whitening imposed by being continually adapted to natural scene statistics is 
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not retained.  However, these results are at odds with the findings that re-adapting 

subjects to previously experienced environments can reinstate adaptation effects more 

quickly (Bao et al., 2013).  It will be interesting in the future to more explicitly examine 

the relationship between fast and slow adaptation and determine how long after de-

adaptation re-adaptation can be implemented to recover sensory advantaged gained 

during adaptation.   

Until this experiment, all previous studies of immersive adaptation had focused 

only on either incrementing or decrementing specific orientations (Bao & Engel, 2012; 

Bao et al., 2013; Haak et al., 2014; Zhang et al., 2009).  Experiment 4 is of particular 

interest as the physical change implemented did not concentrate on only one band of 

orientations, but rather effected the global distribution of all oriented structure in the 

image.  Therefore, this experiment was key in determining how the environmental 

structure affects perceptual biases.  The results indicate that observers have an accurate 

representation of the regularities present in their environment that informs their 

perception of features in context.  While the ‘typical’ distribution leads to the anisotropic 

bias of the horizontal effect, altering the entire orientation distribution of the environment 

causes predictable changes in orientation perception.  Immediately after adaptation, 

subjects appear to inversely match their perceptual biases exactly as expected given the 

experienced altered environment (Figure 20).  However, these initial effects decay 

quickly, especially for the Enhanced Natural environment.  Additionally, the average 

effect of an Oblique Dominant environment was not to invert the typical horizontal 

effect, but rather completely eliminate any bias across orientation (Figure 18) perhaps 
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due to variability in the data or the limit of adaptation (see below).  The effects of the 

Isotropic and Oblique Dominant condition seem to last longer, perhaps indicating that a 

larger deviation from the expected distribution of orientations produces greater perceptual 

change.  Further testing would be necessary to determine how precisely perceptual 

change matches the experienced environment and the duration of the effects of global 

environmental change.   

One potential confound to the current results would be the difference between 

changing the energy of the global image (as implemented here) and changing the energy 

of local structural components of the image (Hansen & Hess, 2007).  While the filters 

applied in Experiments 1-3 and the global changes of Experiment 4 change the average 

orientation content across the entire image, the phase spectra (containing structural 

relations; Morgan, Ross, & Hayes, 1991; Oppenheim & Lim, 1981; Piotrowski & 

Campbell, 1982; Shapley et al., 1990) of all images remained intact.  It is possible, then, 

that conflicts between the global and local image statistics could exist.  That is, while the 

amplitude spectrum of a given image in Experiment 4, for example, would be isotropic, 

the alignment of particular structures in the phase spectrum could lead to local areas of 

the image that were not isotropic.  However, in cases when the global and local statistics 

were in conflict, one would not expect to see the obtained results of adaptation to the 

global image statistics.  Specifically, if subjects were influenced by residual local image 

statistics differences, then adaptation to global changes should be more variable and not 

predictable given the orientation distribution to which subjects were exposed.  Moreover, 

the local and global statistics of a particular image tend to be correlated as the local 
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alignment of orientations is often what determines the global anisotropy.  As supporting 

evidence, a control analysis was run on 417 natural scenes collected for use in other 

studies (e.g. Schweinhart & Essock, 2013).  The global statistics were determined in the 

same manner as the videos from the above experiments.  The local statistics were 

calculated using a three part algorithm developed by Hansen and colleagues which uses a 

bank of filters (centered at 5 spatial frequencies and 12 orientations) to isolate 

predominate contours in the image (see Hansen & Hess, 2007).  After the analysis, only 

30 of the images were found to have local and global image statics in conflict naturally.  

Furthermore, after filtering these 30 to have isotropic global orientation spectra (as in 

Experiment 4), only 4 retained a local anisotropy that was greater than one standard 

deviation above the mean for the entire image set.  Therefore, it would seem that any 

effect of local image statistics would be negligible.   

The lack of a complete inversion of anisotropy in the Oblique Dominant condition 

could be indicative of a limit to the plasticity of orientation perception.  That is, it may be 

that subjects can change their perceptual biases based on environmental input, but 

perhaps only to a certain extent.  Indeed, the data suggest such a possibility; while the 

immediate (~5 minutes) effects of inverting the naturally occurring anisotropy suggested 

perceptual inversion (Figure 21), the average post-adaptation effects were not discernable 

from the effects of isotropy (Figure 19).  Furthermore, the changes in variability (as 

plotted in Figure 28) used to model the likelihood distributions were also anisotropic 

suggesting that while observers’ estimation of oblique orientations were changed 

dramatically, the cardinal orientations were more stable.  As discussed in the 
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introduction, there is a predominance of cardinally tuned cells in early visual cortex -- 

whose responses are more narrowly tuned and indeed more stable than the obliques – but 

this predominance can be overcome by differential suppression of orientation tuned 

responses in broadband contexts (Dragoi, Turcur, & Sur, 2001; Essock, Haun, & Kim, 

2009; Hansen & Essock, 2004; Haun, Hansen, & Essock, 2006; Haun & Essock, 2010; 

Kim, Haun, & Essock, 2010; see also Schwartz & Simoncelli, 2001; Wainwright, 1999).  

The perceptual anisotropy of the horizontal effect can be attributed to increased 

suppression of horizontally and vertically tuned cells (Essock, Haun, & Kim, 2009; Haun 

& Essock, 2010).  When oriented structure is presented in a broadband context (as when 

targets are presented in the presence of masks), a masking component suppresses 

horizontal targets most and suppresses oblique targets least (Essock, Haun, & Kim, 2009; 

Haun & Essock, 2010; Hansen et al., under review).  The effects of altering the global 

distribution of orientations could be explained by altering this component; whereas it 

typically weights horizontal the most (Essock, Haun, & Kim, 2009; Haun & Essock, 

2010), adaptation in an altered environment could change the pattern of suppression 

across orientation.  The combination of this adaptive component and the known cortical 

anisotropies could be a way to explain the limits of perceptual change.  While the 

adaptive constant could change its suppressive weights, the differential tuning 

preferences of the cell population cannot change.  Further research will be necessary to 

identify the limitations in the malleability of visual orientation perception.   

Another unexpected result of the current study was the relationship between the 

cardinal and oblique orientations as affected by adaptation; change in the environmental 
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distribution of one orientation caused perception of the orthogonal orientation to change 

as well.  As demonstrated by the follow-up experiments, decrementing horizontal only, 

vertical only, or only one oblique caused sensitivity to increase at the deprived orientation 

as well as the orthogonal orientation (Figures 28 and 29).  Such orthogonal facilitation 

effects have been found using contrast matching experiments, but in those tasks 

orthogonal orientations were presented in the surround and effects were very small (Xing 

& Heeger, 2001; Yu, Klein, & Levi, 2001).  Many studies have demonstrated such an 

effect of cross orientation facilitation and have attributed this to a release from inhibition 

(e.g., Chen & Tyler, 2002).  Orientation-tuned cells in visual cortex inhibit other cells 

tuned to similar orientations.  However, during visual deprivation, when the visual 

system is deprived of a specific orientation, the inhibition between neighboring cells is 

lessened.  That is, normally the typical inhibition between the orthogonal orientations is 

decreased during adaptation (when one orientation is decremented) and thus sensitivity to 

both orientations increases after adaptation.  However, the effects seen here cannot be 

attributed to release from inhibition alone as it would not explain the decrease in 

sensitivity to orientations 45° away from the adaptor.  Release from inhibition would 

predict greater increases in sensitivity to orientations nearer the adaptor (as this is where 

inhibition is greatest), whereas these data show decreases in sensitivity to orientations 

other than the adaptor and the orthogonal (e.g., Figure 7).  Other studies have suggested 

that orthogonal orientations increase contour detection and therefore may have long-

range faciliatory interactions (Ledgeway, Hess & Giesler, 2003).  However, while these 

connections may be necessary for contour integration, their existence is speculative and 
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would not necessarily bear on the current findings.  Therefore, the cortical locus for the 

relationship between the orthogonal orientations revealed here is entirely unknown and 

must be left for future investigations. 

One way to begin determining where in the brain the adaptive changes to 

environmental statistics may be occurring is to determine how long it takes effects to 

emerge.  Adaptive changes that occur at early levels of the visual hierarchy (i.e., V1) 

should occur relatively quickly whereas changes which take longer to appear may be due 

to feedback mechanisms higher up in cortex.  It would be of note, then, to model the 

changes that occur as an effect of increasing the duration of adaptation in Experiment 1.  

As discussed, the perceptual magnitude changes are not linear with increasing duration of 

adaptation, perhaps due to differences in fast and slow adaptation mechanisms.  Applying 

the model developed for global changes in the orientation spectra to these conditions, in 

which only local changes were made, could determine the amount of adaptation 

experience necessary to cause a shift in the prior distribution.  Whether the prior can 

change rapidly or takes much longer to completely match the newly experienced 

environment could then indicate whether the change in happening at low or high levels 

cortically.   

One problem with modeling the data from Experiment 1 is that the changes made 

to the orientation distribution, while local, necessarily cause reciprocal changes in the 

global distribution; decrementing horizontal necessarily increases the relative proportion 

of vertical.  These reciprocal changes would predict perceptual changes that are not found 
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in the experimental data -- decrementing horizontal actually increased sensitivity to 

vertical rather than decreasing it.  The intriguing relationship between the orthogonal 

orientations could also be built into the model to replicate the experimental findings.  If it 

is assumed that the orthogonal orientations must be related, it could be further assumed 

that there are two separate mechanisms at work in determining the probability of specific 

orientations in the environment: one for the cardinals and one for the obliques.  Such a 

relationship could possibly explain the imperfect match between the effects of isotropic 

experience and oblique dominant experience if the prior is made up of two parts.  Forcing 

a relationship between orthogonal orientations into the model may also help elucidate 

how and where (cortically) the orthogonal facilitation is happening.  All of these ideas are 

speculative and would need to be tested.   

Based on the perceptual changes demonstrated above, it can be concluded that the 

visual system is continually updating the likelihood distributions across oriented structure 

to more accurately reflect the statistics of the current visual environment.  As indicated 

by the model, it appears that the visual system is employing a Bayesian approach to 

representing orientation information in the environment, updating the likelihood 

distribution in response to changes in the predictability of environmental statistics.  The 

representation of the likelihood distribution in Bayesian perceptual models necessarily 

relates to the variability in the sensory measurement as it is the information available to 

the model.  The likelihood must change, then, in response to adaptation as the neural 

encoding of the information (sensory noise) is known to increase the gain (SNR) of 

signals near the adapting values (Brenner et al., 2000; Clifford et al., 2007; Dragoi, 
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Sharma, & Sur, 2000; Ohzawa, Scalr, & Freeman, 1985).  As previously argued, the prior 

is less likely to change as it is presumed to represent past experience with the probability 

of encountering certain stimuli in the external world (Stocker & Simoncelli, 2006b).  

However, assuming that the more efficient way of representing the global environmental 

statistics is to whiten the signal, the prior may also change to counteract the effects of 

increasing the signal to noise ratio near the adapting values.  These types of changes 

would not be necessarily required unless the environment was changing on a global level 

(as in Experiment 4).   

As previously pointed out, the advantage of using a Bayesian model of perception 

is that the likelihood and prior can be modeled from data obtained under circumstances 

which differ from those in this experiment (Girshick, Landy, & Simoncelli, 2011).  As 

shown here, in circumstances where the global distribution of orientations changes, one 

would expect observers’ priors to change as well which, as discussed below, may 

correlate to change in spontaneous activity.  Although some have posited that the prior 

may take significant time to develop as it is based on the environment (Girshick, Landy, 

& Simoncelli, 2011), others have shown that priors can indeed change during the course 

of adaptation (Kording & Wolpert, 2004; Tassinari, Hudson, & Landy, 2006; Wei, 

Ortega, & Stocker, 2015).  In a related line, Chopin and Mamassian (2012) have recently 

discovered that there may be more of a hierarchical relationship between adapting to 

recent stimuli and more remote experience.  In their study, the authors showed that the 

percept that results from adaption can be predicted from assuming that it will be that 

percept which helps the most recent experience match that of the more remote past 
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(Chopin & Mamassian, 2012).  In other words, observers’ perception is biased not only 

by more long-term experience with their environment but also by the recent 

environmental exposure. 

In fact, more recently a Bayesian model of visual adaptation has been expanded to 

encompass changes in both the likelihood and prior.  Specifically, the history of input to 

the visual system should be used to predict future input under a Bayesian framework 

(Wei & Stocker, 2012; Wei, Ortega, & Stocker, 2015).  In order to predict the future well, 

the priors must be adjusted when the input to the system changes (Chopin & Mamassian, 

2012).  While moment-to-moment adjustments in visual input can enact changes in the 

likelihood distribution that are sufficient to explain perceptual changes, longer-term 

changes should also affect the prior.  As changes in likelihoods tend to bias perception 

away from the adapting value, such a model predicts decreases in threshold at orthogonal 

orientations as well (Wei & stocker, 2012; Wei, Ortega, & Stocker, 2015).  As an 

observer gains more experience with the altered environment, the existing prior should 

become a better match to the new environment than the old as new input is integrated into 

existing experience (Chopin & Mamassian, 2012).  Modeling the change in Experiment 1 

across adaptation duration should also capture how an observer’s prior might change 

gradually from one that is biased to match the natural environment to one that is a closer 

match to the experienced altered environment.   

As discussed in the Introduction, spontaneous neural activity could represent the 

prior under a Bayesian representation of neural population coding (Fiser et al., 2010).  

Spontaneous activity has been shown to correlate with stimulus evoked activity and this 
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correlation increases with developmental age, but is eliminated when visual input is 

disrupted (Berkes et al., 2011; Fiser et al., 2013; Kenet et al., 2003; Tsodyks et al., 1999).  

It would be interesting to determine if spontaneous activity changes after experience in an 

altered environment.  If this is the case, then the change in prior activated by adapting to 

changes in environmental statistics should also produce a change in spontaneous activity.  

Presumably, experience in environments such as those tested here would change the 

population code during adaptation and spontaneous activity after adaptation would more 

closely match the adapted distribution than the typical distribution.  Assuming 

spontaneous activity has changed, it would then take longer to return to a natural prior the 

more the activity deviated.  That is, larger changes in the environmental distribution 

should produce longer lasting effects of adaptation as it will take longer for the change in 

activity to return to baseline given post-adaptation experience in an anisotropic 

environment.  As Figure 20 shows, the larger physical distribution deviation did indeed 

have longer lasting effects.   

One interesting future investigation would be to determine how the perceptual 

biases -- presumably related to the environmental input one experiences -- develop.  To 

date, no one has examined the existence of a horizontal effect in children or infants.  

Although this would be difficult to test, it would be necessary to determine when the 

perceptual biases that are related to environmental experience arise.  There is some 

suggestion that the efficient processing of some visual statistics may not develop until 

late childhood indicating a starting point for future investigations (Ellemberg, Hansen, & 

Johnson, 2012; Ellemberg et al., 2012; Pei, Baldassi, & Norcia, 2012).  If, indeed, the 
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perceptual adaptability uncovered in these experiments does not develop until later as 

well, it would also be of interest to determine the course of the development itself.  

Moreover, there is a captivating question as to how long this adaptability remains.  Is 

there a critical period for environmental adjustment of the prior as there is for visual 

development? It would also be interesting to test the effects of adapting to altered 

environments in older populations.  If there is indeed a limit to the malleability, as 

possibly indicated in Experiment 4, is this limit more plastic in children or adolescents? 

Clearly, the development track of this adaptability is fascinating and should be the subject 

of future study. 

Theoretically, perceptual learning could implement the same kind of adaptive 

adjustment of the prior seen in these adaptation experiments.  However, there are two 

main differences between traditional perceptual learning studies and the results reported 

here: perceptual learning is stimulus specific (Sowden, Davies, & Roling, 2000; Mayer, 

1983), but not relative (Mayer, 1983; Song et al., 2010; Vogels, & Orban, 1985; 

Westheimer & Lavian, 2013), and suggests memory for learning (Hofman, Van Riswick, 

& Van Opstal 1998).  Much of the perceptual learning literature has shown that while 

training can improve performance, the improvements are very specific to the trained 

stimuli (Sowden, Davies, & Roling, 2000; Mayer, 1983).  Moreover, while training 

improves performance for trained stimuli, it does not cause a relative decrement in 

performance at untrained stimuli (Mayer, 1983; Song et al., 2010; Vogels, & Orban, 

1985; Westheimer & Lavian, 2013).  Both of these findings are in opposition with those 

reported above; experience in an altered environment effected perception of novel noise 
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stimuli and was stimulus-relative such that improvements at specific orientations 

necessarily imposed decrements at other orientations.  Furthermore, whereas adaptation 

to altered environmental statistics caused a shift in observers’ priors that was maintained 

in some cases for the entire post-testing period, adaptation studies in other modalities 

have shown immediate return to baseline levels (Hofman, Van Riswick, & Van Opstal 

1998).  For example, after participants had been trained to localize sounds with a 

modified outer ear (pinnae), they were still able to localize sounds immediately after the 

removal of the artificial pinnae (Hofman, Van Riswick, & Van Opstal 1998).  This 

finding seems to indicate that perceptual learning involves memory for the learned 

stimuli while the results reported above do not indicate a role of memory; after 

adaptation, subjects required visual input in the typical environment to return to baseline 

perceptual biases (Figure 24).  For these reasons it seems likely that, although perceptual 

learning may be enacted under a Bayesian framework, it likely employs different 

mechanisms of action.   

Some have supposed that the relationships between natural scene statistics and 

visual processing evolved across millennia in order to make the visual system an efficient 

information-transmitting system (Bex, Solomon, & Dakin, 2009; Brenner, et al., 2000; 

Essock et al., 2003; Essock, Haun, & Kim, 2009; Hansen & Essock, 2004; 2006; Haun & 

Essock, 2010; Webster & Miyahara, 1997).  However, given that the natural world is 

continually experienced, perception should be optimized to encode incoming statistical 

information, adjusting dynamically to the input (Gutnisky & Dragoi, 2008; Wainwright, 

1999).  This work shows that perceptual encoding can indeed adjust to the regularities in 
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incoming signals such that the perceptual result is optimized to the most current input.  

Though there may be a limit to the system’s plasticity (i.e. the oblique condition), the 

experiments detailed above have shown that the biases of visual perception that relate to 

typical scene statistics can be altered.  This work indicates that observers have an 

accurate representation of the regularities present in their recent environment that informs 

their perception of features in context.  While the ‘typically’ experienced distribution 

leads to the anisotropic bias of the horizontal effect, altering the experienced orientation 

distribution causes predictable changes in orientation perception: a globally isotropic 

orientation spectrum causes subjects to become more isotropic in orientation perception 

as well as lessen their pre-adaptation orientation biases.  These results show that 

perceptual encoding can indeed adjust to the regularities in incoming signals such that the 

perceptual result is optimized to the most current input.  Moreover, these changes appear 

to go beyond short-term changes in likelihoods.  These results implicate changes in prior 

distributions in perceptual adaptation to atypical orientation distributions.  This suggests 

that rather than being adapted to distributional information that has been in our 

environments for millennia, perceptual biases reflect an internal model in which 

likelihood and priors adapt dynamically to recent experience.   

The prevailing notion in the recent literature has been that visual processing is 

matched to natural scenes statistics because of evolutionary adaptations, but this work 

suggests otherwise.  As discussed in detail in the Introduction, the processing of different 

orientations by our visual system is biased and has an inverse relationship to the 

orientation content present in natural scenes.  The original work by Essock and 
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colleagues (2003, 2004, 2005, 2006, 2009, 2010) hypothesized that this relationship may 

have developed across the millennia due to the constant bombardment of the sensory 

system with a biased orientation distribution in the environment.  Until this study, no one 

had examined whether or not changes in the statistics of one’s visual environment would 

change the horizontal effect of orientation processing.  Logically, if the environmental 

statistics of one’s current visual environment are in fact determining perception, and this 

perception is malleable, then horizontal effect should be alterable given different 

experience with a world in which the orientation distribution is ‘unnatural.’  These 

adaptation paradigms have shown just that; one can alter the horizontal effect simply by 

changing an observer’s environment.  This project had indicated that the brain is a very 

plastic, efficient, and probabilistic encoder.  Moreover, it shows that the horizontal effect 

is an effect of adaptation to environmental statistics, most likely due to Bayesian 

frameworks in the visual system, which can change how the brain is encoding 

information ‘on the fly.’ While all of these experiments tested visual orientation 

perception, there is no reason to assume that the adaptive responses seen here in response 

to changing orientation statistics could not also occur with other types of visual input as 

well as in other modalities.  
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