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ABSTRACT 

FEATURES EXTRACTION USING RANDOl\I MATRIX THEORY 

Viktoria Rojkova 

November 8, 2010 

Representing the complex data in a concise and accurate way is a special stage 

in data mining methodology. Redundant and noisy data affects generalization power of 

any classification algorithm, undermines the results of any clustering algorithm and 

finally encumbers the monitoring of large dynamic systems. This work provides several 

efficient approaches to all aforementioned sides of the analysis. \:Ve established, that 

notable difference can be made, if the results from the theory of ensembles of random 

matrices are employed. 

Particularly important result of our study is a discovered family of methods 

based on projecting the data set on different subsets of the correlation spectrum. 

Generally, we start with traditional correlation matrix of a given data set. \:Ve perform 

singular value decomposition, and establish boundaries between essential and 

unimportant eigen-components of the spectrum. Then, depending on the nature of the 

problem at hand we either use former or later part for the projection purpose. 

Projecting the spectrum of interest is a common technique in linear and 

non-linear spectral methods such as Principal Component Analysis, Independent 

Component Analysis and Kernel Principal Component Analysis. Usually the part of 

the spectrum to project is defined by the amount of variance of overall data or feature 

space in non-linear case. The applicability of these spectral methods is limited by the 

assumption that larger variance has important dynamics, i.e. if the data has a high 

signal-to-noise ratio. If it is true, projection of principal components targets two 
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problems in data mining, reduction in the number of features and selection of more 

important features. 

Our methodology does not make an assumption of high signal-to-noise ratio, 

instead, using the rigorous instruments of Random J\IIatrix Theory (RMT) it identifies 

the presence of noise and establishes its boundaries. The knowledge of the structure of 

the spectrum gives us possibility to make more insightful projections. For instance, in 

the application to router network traffic, the reconstruction error procedure for 

anomaly detection is based on the projection of noisy part of the spectrum. vVhereas, 

in bioinformatics application of clustering the different types of leukemia, implicit 

denoising of the correlation matrix is achieved by decomposing the spectrum to 

random and non-random parts. 

For temporal high dimensional data, spectrum and eigenvectors of its 

correlation matrix is another representation of the data. Thus, eigenvalues, 

components of the eigenvectors, inverse participation ratio of eigenvector components 

and other operators of eigen analysis are spectral features of dynamic system. In our 

work vve proposed to extract spectral features using the RMT. vVe demonstrated that 

with extracted spectral features we can monitor the changing dynamics of network 

traffic. Experimenting with the delayed correlation matrices of network traffic and 

extracting its spectral features, we visualized the delayed processes in the system. 

We demonstrated in our work that broad range of applications in feature 

extraction can benefit from the novel RJ\IT based approach to the spectral 

representation of the data. 
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CHAPTER I 

INTRODUCTION 

It has been known for a long time, that data arrays, no matter how massive or 

problem specific, always carry unique attributes. The features incorporated into a bulk 

of data points play crucial role in approaching the biggest modern engineering 

challenge - efficiency in information storage and processing. They are also primary 

targets of modern learning machines: neural networks, tree classifiers, and Support 

Vector t-.Iachines (SVM)[l]. 

In this thesis we propose a particularly efficient method of feature extraction, 

largely independent of problem nature or size of the data set. Our method is based on 

the random matrix theory (RMT) and goes beyond standard spectral approaches such 

as principal component analysis (PCA) or its non-linear counterparts. The success of 

PCA and related spectral methods is limited by applicability of the assumption that 

larger variance has important dynamics. For example, they work effectively when data 

has a high signal-to-noise ratio. Our methodology is related to PCA in its spectral 

nature and goals to recover principal contribution. But it bypasses the assumption of 

high signal-to-noise ratio or similar to that of. Instead, using the rigorous instruments 

of Random Matrix Theory (RMT) it identifies the presence of noise and establishes its 

spectral boundaries. The knowledge of the structure of the spectrum yields insightful 

possibility for structure identification. Not to take anything form PCA, but the proof 

of our method superiority will be illustrated by comparison in anomaly detection 

section of this thesis. The detailed explanation of PCA maladies is also given in the 

following section. 
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A Various aspects of feature extraction. 

Data mining and machine learning communities recognize that the feature 

extraction (FE) has several aspects, which interplay or follow each other depending on 

different goals [2]. More general view on FE considers wrappers and filters [11]. \Vhere 

wrapper is aiming the enhancement of learning machine or predictor or classifier 

generalization, so it is incorporated or wrapped around a particular classifier. Filters, 

on the other hand are not involved into the learning process, their relevance criteria is 

calculated with relation to the class or label without being a part of classification and 

performance improvement. \Ve will cover in the text some of the commonly used 

wrappers and filters. Both, filters and wrappers can make use of search strategy to 

explore the space of all possible feature combinations that is usually is very large to be 

explored exhaustively. Sometimes feature extraction is a hybrid of filter and wrapper. 

Another view on FE decomposes it into feature construction and feature 

selection [12]. Feature construction essentially constitutes the preprocessing of the 

data, which includes standardization, normalization, signal enhancement, extraction of 

local features, linear and non-linear space embedding methods, non-linear expansion 

and feature discretization. Selection of informative and relevant features is the primary 

but not the only goal of feature selection. It includes as well general data reduction, to 

limit storage requirements, feature set reduction, to facilitate iterative algorithms, 

performance improvement, to gain predictive accuracy and finally, data understanding, 

to gain knowledge about the system that generated the data or simply visualize it. In 

following subsections we will bring the examples of all of the above mentioned 

methods. As far as we can see, the intricate combination of these methods, constitutes 

the feature extraction field. 

B Feature construction or preprocessing 

\Vhether a view on experimental results is taxonomic or ergonomic, the 

extraction of meaningful information requires data mining. Among many others, the 

primary concern in this process is level of supervision. The larger the output of the 

experiment, the lower the supervision level should be. For example, in processing 
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healthy and cancerous X-ray images, the human expertise, while being valuable for 

small size n of pattern vector x = (Xl, X2, ... , xn ), becomes powerless with increasing n. 

Here X characterizes the image in binary, categorical, or continuous way, and in 

general, can have vectors in place of its components Xi. The total number of features 

involved can be astronomically large, but actual pattern, distinguishing cancer and 

control patients can be reasonably small. 

The first step in such a dimensional reduction is defining the features of interest, 

which in the context of this thesis is preprocessing of the original data. We will refer to 

this vector x' as a vector of transformed features. For simplicity we will think of it as a 

raw or column data of size n' S n, even though the following procedures can be 

generalized to higher dimensional data arrays. 

The two simplest preprocessing stages needed for effective data mining are 

standardization and normalization. A typical example of bringing the data to the same 

scale is given by x; = (Xi - IIi) I ai, which uses mean of the respective feature l1i and its 

standard deviation (STD) ai. Normalization, formally written as x' = xl Ilxll, depends 

on the definition of metric II ... 11, but otherwise is just as natural as use of percentage 

or fractions in place of absolute values. The most common choices for the metric 

include the Euclidean length, maximum component, sum of the components, their 

average or standard deviation. Both procedures aim at removing dependence on 

measurement units, nature of data points, and specifics of experimental setup. 

In most experiments, data ends up being polluted by the noise and erroneous 

data. Consequently, preprocessing uses enhancement of signal-to-noise ratio, the 

procedure borrowed from signal processing, and naturally understood in the context of 

image recognition. The signal enhancement can be achieved through smoothing, 

sharpening, and de-noising techniques, background removal, as well as various filtering 

methods, employing Fourier or wavelet transforms. Despite highly developed 

methodology, this stage of data manipulation always faces a problem of handling 

"baby and bath water". 

But the real dimensionality reduction demands more creative and sophisticated 

approaches, such as PCA[13] or ~/Iultidimensional scaling (MDS)[14]. These are termed 

the embedding methods, as they assume the existence of lower dimensional space 
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(.) (b) 

x x 

Figure 1. (a) peA succeeds in finding low-dimensional space; (b) peA finds erroneous 
linear subspaces in attempt to find "happy face" pattern. 

absorbing most of the relevant information (Fig. la). The linear method, such as peA 

is typically easy to implement, but is hard to rely on, whenever the underlying 

sub-space is non-linear. An exemplary illustration are face recognition and handwriting 

analysis. The printed letters are amenable to peA, but their longhand replicas are 

not, due to non-linear functional representation of the latter. Even a "happy face" is 

too complex of an object for the conventional peA (Fig. 1 b). These and many more 

less transparent data mining tasks call for non-linear extensions of peA or 

constructively different methods. 

The non-linear embedding methods have their own share of downsides, including 

semi-empirical transformation kernels, tractability loss and storage volume increase. 

The majority of data sets studied within these approaches require appropriate 

polishing, which often undermines the idea of unsupervised learning. One of such cases 

described in [3] involves linear method [4] working perfectly as long as non-linear 

handle [5] on the data is used. Such pre-processing is equivalent to labeling data. And 

regardless of success level the applied method represents supervised learning. 
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1 Data understanding and feature selection. 

The data mining community had developed a long variety of data interpretation 

techniques. The main challenges as of today are more theoretically plunged algorithms, 

better estimates of the computational burden, and improved performance assessment 

of feature selection. \Ve will be having all these in mind when analyzing our data set. 

At the same time, several established frameworks of feature selection need to be 

outlined for the reasons of deeper understanding of main ideas behind it. 

A great facilitator for data understanding is the learning machine, an algorithm 

that learns from data by searching for the most adequate model. A typical learning 

algorithm learns from a sequence of data, is made either of objects or objects and 

targets, which corresponds to unsupervised and supervised learning respectively. Given 

a task machine learns on experience using performance metric. The learning is going in 

the right direction provided that performance metric is improving. 

As for the model building strategy, it is normally based on statistics and 

optimization. For example, the classification models divide the feature space into 

regions assigned to class label. A simplest illustration is the linear discriminant 

method. One constructs a linear function of the data 1 (x) = wT 
X + b, by specifying 

widths vector wand a threshold -b. After that, the label assignment is determined by 

the sign of the function 1 (x). For 1 (x) > 0 the corresponding object receives 11+11 

label, otherwise it receives 11_11 label: Yi = {-I, I}. To estimate wand b the linear 

regression follows. In other words, we minimize :Li 111 (Xi) - Yi 112 upon centering of 

data vectors and labels [6]. 

A more advanced and versatile technique is widely popular Support Vector 

Machine, a method also, but more explicitly centered on the search for the hyperplane 

1 (x) = wT 
X + b. In essence, the construction of such hyperplane is tantamount to 

maximization problem applied to a distance between IItraining ll data point and 

decision boundary. And the search process can be manipulated into an optimization 

problem which results in the decision function 1 (x) = sgn(:Li=l CYiXT x; + b), where CY 

are Lagrange multipliers of optimization problem. For non-linear version SVM, one 

replaces the inner product x T x' in the decision function with the kernel function 

k (x, x') = 47 (x) ¢ (x'), where the explicit form of mapping ¢ (x) is usually unknown, 
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and what's more, is unnecessary. Such an elegance, comes at the expense of of 

mathematical rigor. The kernel comes in a variety of forms: polynomial, Gaussian, and 

hyperbolic tangent, none of which have any mathematical justification. Such kernels 

are also common in PCA, whenever the nature of the problem ceases to be described 

by a linear product xx'. 

Such methods as SVlVI, as well as other machine learning tools, e.g. neural 

networks and decision trees are largely non-universal. According to Ref. [7] (1.1.4, p. 

57) - "No algorithm is perfect or best suited for all the applications". Indeed, the idea 

behind certain choice of the method is based upon computational complexity, number 

of features, for instance. \Vhat is really crucial, for successful data interpretation is the 

method of assessment and validation. \:Ve thus focus on these two aspects in the 

following section. 

2 Relevance index. Role of statistics in feature selection 

Consider now another tool-set used in feature selection. Relevance index for a 

trial feature subset of data represents systematic measure of the degree of 

correspondence between the subset and the task it intends to accomplish. For example, 

such task can be in classification of data using decision tree, or in building a 

hyperplane in the framework of SVM. Even more instructive way to mathematically 

and visually define relevance index arises in shape search applications [8]. Such indices 

could be the number of non-null pixels on the image, the average of the lengths of all 

possible cords connecting two contour points, or the sum of the distances between the 

center of mass of the model and all visible points of the model [8]. 

Often, a relevance index is the distance to be minimized, or it is information 

gain. These choices are clearly not unique, and, furthermore, many "derivative" 

relevance measures exist. These indices, either real or categorical, do quantify the 

relationships between features and modeling parameters for regression, classification, 

and other approaches. Yet, the statistical treatment is needed in using a relevance 

index, as both variables characterizing candidate feature and model are frequently 

stochastic. Even if data source is deterministic, in most cases the data size is too large 

and relationship between variables are hardly predictable for any other treatment to be 
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used. 

The relevance index is thus a realization of a random function of two variables -

the modeling one and the one being modeled. r..,'Iodeling variables split into relevant 

and irrelevant, naturally coming from different distributions [9, 101. This fact allows to 

determine threshold of accepting or discarding variables by computing relevance index 

and random probes generation. In Fig. 2 we illustrate the feature selection process as 

decision-making guided by probabilities of false-positive and false-negative. In practice, 

the probability distributions for relevant and irrelevant features are not being known. 

But they can be recovered with the help of random probes and standard statistical 

techniques such as computing cumulative distribution function (CDF), Gaussian 

smoothing, etc. Upon selection of risk (of selecting a feature that is less relevant than a 

random one) level, a candidate feature is picked from ranked list, and its relevance 

index is computed, to be used in finding respective CDF. From latter, the probability 

of probe being more significant than selected features is found and algorithm is either 

terminated or carried on, depending on relation to the risk level. This is a typical 

feature selection procedure. One of such procedures, was described in detail in Ref. 

[101. To summarize, the decision of feature selection or rejection is tied to the index 

going over or under the threshold of a false positive. 

Additionally, statistical hypothesis testing apparatus truly comes into play due 

to the scarcity of available training data. For example, univariate tests of variable 

irrelevance assume Gaussian distribution of respective relevance index. The random 

probes replace analytical calculations of test distribution, which in turn allows "null 

model" considerations. The hypothesis Ho, of variable being irrelevant, can be tested 

provided we know distribution of relevance indices; and similarly, the hypothesis Ho of 

expectation of relevant index exceeding the threshold can be verified as long as we 

know the threshold value. 

When candidate feature is adequately described by the vector with components 

representing the values of the training (input) set, the relevance measure is simply an 

angle 'Pi between vectors of feature and and the output. If the output is aligned with 

the input, it is explained through the latter. If, on the contrary, the angle is ninety 

degrees, the output has no correlation with an input. All the intermediate relevance 
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probability distribution function 01 the relevance 
index for relevant variables 

probabWrty distribution 
function of the 
relevance index for 
irrelevant variables 

probabiliy 01 
1alse negative 

Relevance index 

Figure 2. Probability distributions of the relevance index for both relevant and irrelevant 
features, illustrating concepts of false positives and false negatives. In reality both 
distributions are unknown (adapted from Fig 2.1 (p. 67) of [7]) 

index outcomes can be easily ranked. The angle !.pi is directly related to the Pearson 

coefficient: cos !.pi = (YXi)/ Iyllxil, where y is a modeled quantity and Xi is i-th 

candidate feature. The use of random probes makes the selection procedure well 

grounded. Specifically, one can stop the search process after reaching a certain number 

of relevant features. It is also possible to have an estimate for the risk of retaining a 

candidate feature in favor of more relevant probe. 

At the same time, the machine learning oriented modeling implies more than 

just estimating of the parameters in functions or governing equation, viewed as "true". 

Generally, we expect these parameters to be retrievable from the experiment, together 

with corresponding confidence intervals. But in machine learning problems, the model 

itself is in question. Consequently there are several regulatory principles in searching 

for a "true" model using machine learning. 

As a rule, a data set is split into a training, validation and test parts, used for 

parameters estimates, model selection, and performance assessment respectively. For 

moderate sizes of data sets, even more subsets can be used. The strategy is to run 

training on as many data sets as possible, with subsequent validation on the last set; 

and then, to repeat the process the same amount of times as the number of subsets. 
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Such multiple cross validation ensures that the best model is chosen and overfitting is 

circumvented. Here relevance index is employed during the training stage. 

Furthermore, series of very sophisticated variations of this technique are 

available, (see Chapter 2 of Ref. [7]). The main criteria used in validation and 

cross-validation is second order statistics, which keeps track of the consistency of 

performance and makes sure that estimated noise levels are matched. But without an 

appropriate relevance index the procedure would have been impossible. 

And finally, the model selection process, e.g. proper kernel search in non-linear 

SVM and PCA, can integrate cross-validation and feature selection in the following 

algorithmic way. After separating the data into training and validation parts, one ranks 

all the features and creates their nested subsets. Then, model is trained and validation 

errors (risk variance) corresponding to different subsets of features are averaged. Next 

the optimal number of features is determined, in accord with minimum error, and the 

features are ranked again. As the final step, one chooses thus determined number of 

high-ranked features, trains the final model, and runs the test on independent data set. 

C Filters view 

One of the few popular feature selection algorithms is associated with removal of 

the unlikely candidates. This approach uses no predictors or modeling frameworks, but 

instead, calculates the metric from the data. The main advantage here is relatively 

cheap computational effort. 

The filter is a functional tool, which returns relevance index for a given subset of 

features and ranks features according to their relevance[15]. The low-ranked features 

are considered useless, provided no mutual correlation exists. The filters are either 

local or global. The high-ranked features are considered useful and are retained in 

further data analysis, provided no mutual correlation exists. The filters are either local 

or global. Global feature assessment excludes any knowledge of physical context of the 

problem and targets the entire data. t>,/Ieantime, local classification algorithms focus on 

specific data points and their neighborhood. 

An essential part of any filter is establishing of a feature relevance [16]. The 

most straightforward definition behind both global and local filters maps the probe of 
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relevance onto comparison between conditional and unconditional probabilities of 

feature taking a certain value and that of a class. A feature can only be relevant if 

these two are different. Another factor, is, of course, statistical dependence, which 

make selected features redundant. 

To cover both issues at the same time we consider a perfect example of feature 

relevance measurement, the Pearson correlation coefficient. It has an advantage of 

being a function of all the variables involved. It ranges between -1 (perfect linear 

anti-correlation) and 1 (perfect linear correlation); and it passes through zero whenever 

feature X with values x and target classes Y with values Y and class are uncorrelated. 

It reads: 
2:i (Xi - Xi) (Yi - fJ;) 

p = --;=::::::::::::==::::::::::::====== J2:i (Xi - Xi)2 (Yi - fh)2' 

Taking Pearson coefficient as a stochastic variable one can describe it with a 

probability density function 

p (X '" Y) = erf (Ip (X, Y)I Jm/2) , 

(1) 

where erf stands for the error function and m is the number of samples. Note the sharp 

dependence on m which renders small correlation coefficients highly probable. This 

distribution could have provided a simple feature ranking criteria, but in some cases, 

P (X '" Y), for most of the features, is too close to 1 to be sorted in any order. Then, 

more elaborate statistical tests need to be used, such as, for example, 

Kolmogorov-Smirnov [17]. 

Another helpful concept in feature ranking is distance between probability 

distributions, which in its simplest form expresses the difference between joint and 

product distributions: 

K 

DpdJ = L L [P (Yj, Xi) - P (Xi) P (Yj)]· 
i j=l 

A more robust versions of this relevance index are reviewed in [15]. Class and 

feature distributions can also be used in the context of information theory indices. 

Information contents of the respective distributions are, by definition [18], 
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The relevance index is defined similarly: 

H (Y, X) = - L L P (Yj, Xi) log2 P (Yj, Xi) 
j 

(4) 

(5) 

Low information values mean significance of certain features X in certain intervals of 

Y, creating an opportunity for the feature ranking and subsequent selection. Just like 

information gain utilized in decision tree, the information gain is highly effective as 

relevance index. Here it is defined as a difference between class information and 

"conditional" information, according to [18] 

IG (Y, X) = H (Y) - H (Y IX) = H (Y) + L P (Yj) Xi) log2 P (Yj IXi) (6) 
ij 

Both feature and feature-class conditional probability densities are also useful for 

building the decision trees used in filtering. These are trees oriented on a specific 

feature as opposed to general decision trees. If the splits are binary, such trees are 

based upon single feature, and when algorithms are multi-splitting, the single level tree 

is built. Once again indices are computed through distances between distributions or 

through information content (see, for instance, [19]). 

vVith all these different approaches in mind, particularly important questions 

rise when it comes to performance evaluation: How to spot good relevant indices? How 

to compare different indices? and how universal are the good ones? Turns out, the 

nature of the data is the most crucial ingredient for the index choice [20, 21]; 

bioinformatics, text recognition and medical diagnostics all have their own favorites. In 

most cases data set dimensions explain the data-miner's choice [22], but there are 

puzzling exceptions. An easy comparison can be made if monotonic functional 

dependence can be established between two different relevance indices. 

In summary, filters are comparatively inexpensive way of feature selection. The 

existing great variety of techniques and quantifiers leads to a copious number of 

relevance indices. The search for efficient comparison framework and universality is an 

ongoing process, but large number of established methodologies in feature selection is 

already available. The statistical approach in filter construction combined with 

methods of information theory possesses an extensive track record, and creates a good 
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foundation for bringing in algorithms and tools from other areas. For that reason, we 

turn to information methodology in the next subsection. 

1 Information-theoretic approach in filters 

Shannon's way of quantifying information had long found its way to most of the 

areas of complex systems theory [23]. In natural sciences it is motivated by importance 

of information's antipode, the entropy. In studies of information networks it is 

self-explanatory. And, finally, in data mining and machine learning, knowledge of 

information content measurement can provide invaluable tool for feature extraction. 

Specifically, both relevance criteria and search algorithm are formally connected 

to mutual information I. A variable gets selected on the account of maximizing 

function I, which spans over original variables, targets (class labels), and parameters. 

Assuming that training data is drawn from the same distribution as data in question, 

the basic idea behind building the reliable predictor is founded entirely on availability 

of risk estimates. That is where information theory becomes truly invaluable. vVe now 

proceed with its quick overview. 

For a random variable X, characterizing experimental data, and discrete target 

variables Y, labeling classes, Shannon's entropy is defined through the average 

logarithm of probability density: 

(7) 

and 

(8) 

respectively. From that, the so called, conditional entropy is readily written as follows: 

(9) 

It quantifies class entropy over all possible values of data. Next we write down 

the mutual information between X and Y as 

I (Y, X) = H (y) - H (y Ix) = L.I p (y, x) log2 p~~f~~~) dx (10) 
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Note, that we abandoned (hard-to-compute) conditional probability distribution 

function P (y Ix) in favor of joined probability distribution function 

p(y,x) = p(y Ix)p(x), and we used p(y) = Ip(y,x)dx. 

lVlutual information reflects dependence between Y and X variables. If joined 

probability distribution factorizes into p (x) p (y), this dependence disappears; data and 

classes become independent. 

Feature construction and selection both have transparent analogies in 

communication. Besides, since we will be discussing rate of information transmission it 

is worth to discuss its several general governing principles. According to Shannon [23], 

the rate R of transmitting X and getting Y on the other end is given by 

R = H (X) - H (y Ix), while channel's capacity is obtained as maximum R over all 

possible distributions of X. Channel input is defined through data set X, which serves 

as encoding to a "real source" Y. Unlike in communication problem, we fix X, but the 

channel output is a function 1>(X, e) of tunable parameters e. The "channel" capacity 

is maximum rate R with respect to e. Hence, to maximize information about 

"encoded" features Y one simply need to maximize mutual information between Yand 

1>. 

It also make sense to take a look at application of information-theoretical 

approach to optimal variable selection. Since feature selection targets redundancy and 

relevancy issues, we note that mutual information links those two. It also serves as a 

criterion in feature construction. Consider training data {Xi, Yi}. \Ve want to find a 

function 1>(.T, e), such that information I (Y, 1» reaches its maximum. Here the 

knowledge of gradient oJ / oe plays crucial role in inverting relation between target 

function 1> and unknown parameters ei . No greedy optimization is required, and the 

problem can be handled with standard gradient descent numerical technique. See, for 

example [38]. 

Particularly useful in the context of feature selection are three methods 

described in recent works [28] and [29]. First two (of Ref. [28]) are fast-convergent and 

have high feature reduction ratio. They even apply for continuous and interdependent 

attributes. The authors perform data normalization, between 0 and 1, making sure 

that they have the identical scale for the continuous attributes). Then, they apply the 
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so-called Variance Gain metric to each attribute and extract relevance. This metric 

realizes a descending variance ordering in attribute ranking process. Next, algorithm 

selects the best attributes using threshold defined by the largest gap between two 

consecutive ranked attributes. And finally, the selected attributes are used for data 

mining induction. 

Method of Ref. [29] builds upon difference image entropy concept and achieves 

remarkable improvement in pattern recognition accuracy. This work put forward a 

proposition that increase in number of frame indices can increase accuracy in pattern 

recognition. Specifically, provided the subject detected in a given image is judged as 

inadequate [29], the next frame image is inserted into the system. The process 

continues until detection of an adequate subject. The subject selection is based on 

differential image entropy (DIE). The selection module proposed in [29] calculates a 

differential image through pixel-level subtraction between pre-processed images and an 

average image. The DIE value is then compared to the threshold entropy value. Upon 

selection of current frame pre-processed image it is processed using traditional 

recognition algorithms (e.g. peA, or linear discriminant analysis). In the event of the 

DIE exceeding the threshold value, the next frame image is loaded in. Further revie,ys 

of most recent practical applications can be found in [30]. 

All in all, information-theoretical approach proves to be very effective [15], as 

long as probability density can be recovered from the experimental data. Its firm 

analogue with transmission rate measure in communication problem, makes the mutual 

information ideal candidate for criterion in feature extraction. In addition, ties to 

transmission problems create a connection to network data we analyze in what follows. 

We will come back to this methodology later on when discussing the RMT and its 

network applications. 

D Wrappers view 

To conclude our overview of feature selection and extraction we go over wrapper 

approach as well. Selecting the features subset based on enhanced learning 

performance is the main difference of wrappers from filters. In the context of this new 

branch of methodologies, the feature selection becomes an extraction of a subset, which 
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provides the utmost in representation of the data. The subset has a priori specified 

dimension n and binary structure: (Ti = 1 if a given feature is included, and (Ti = ° 
otherwise. For any vector (T, data set {x, y} (y being the targets) and family of 

regression functions parametrized by a set 0:, one can write down a loss function Land 

corresponding risk functional according to 

R (0:, (T) = J L (0:, (T 8 x, y) dP (x, y) (11 ) 

where 8 stands for entry-wise matrix product, and dP is a measure on {x, y}. Then, 

the objective is to find a risk minimizing vector of indicator variables (T* (see [311 and 

references therein). 

1 Wrapper framework of embedded methods 

Forward selection embedded methods start with a few features and iteratively 

accumulate more and more of them using specific criteria. Backward elimination 

methods perform the same operation in reverse. In addition, one can construct a 

nested procedure, combining feature addition and removal. The learner function, or 

classification algorithm is being carried along, which is the main distinctive property of 

the embedded methods [321. In other words, the performance of a trained classifier for 

a given (T, uses information on learner and regression functions it acts upon. 

Here is how the forward scheme works on archetypal least square example. One 

starts with a subset of n features, and builds matrix Xs out of them for m training 

points. To compute residuals, the target vector Y = {y, ... ,Ym} is multiplied with the 

projection operator Ps = I - xl (XsxI) -1 Xs. Initially, n = 0, and once i-th 

component, which minimizes IIPi YI1 2 
= yT PiY, and add it to the subset. Then 

residuals are recalculated and new component added to the set. 

A closely related forward method, called Gram-Schmidt Orthogonalization [331 

uses angle between feature and target as relevance index (see earlier comments). 

Algorithm maximizes the cosine of this angle and selects corresponding features. Each 

iteration uses previously chosen feature. Linear least-square predictor is "embedded", 

and, therefore, this technique falls into a category of embedded methods. 

Alternatively one can start with all the features and backward-eliminate 

irrelevant part of them. Backward elimination methods are usually performed with the 
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aid of weight based analysis. Classifier assigns weights to the features., and the idea is 

to judge features by the effect caused by their removal. For example, Recursive Feature 

Elimination [27], uses greedy approach for iterative feature removal. It uses SV~vI 

classifier, upon finding parameters wand b, to determine feature with lowest weight, 

the one causing smallest margin of class separation. The process continues, until only a 

pre-selected number of features is left. The generalization to the non-linear case is 

fairly straightforward. The only nuance is that algorithm tries to remove features 

minimizing the functional vV = Lk,l akalk(xk, Xl), where k is a selected kernel and as 

are Lagrange multipliers. 

An efficient extension of these feature selection algorithms is the Least Absolute 

Shrinkage and Selection Operator technique (LASSO) [24]. It is all about solving for 

W
S 

- minimizing parameters of the problem IILk(W * Xk - Yk)211 subject to sparsity 

requirements, i.e. to keeping as little as possible of non-zero components. Some of the 

LASSO approaches produce the weights output interpretable as probabilities [24]. 

In summary, embedded methods provide a fast access to data understanding 

through the approximate solutions to optimization problem. Their chief characteristics 

include optimization over discrete binary set, greedy search procedures, and linear 

approaches, imposing sparsity of modeling parameters. The embedded methods have 

more capacity compared to filter methods, but a prone to interpretation. They also 

lack probabilistic interpretation, unlike the methods from previous subsections. 

2 Wrapper framework of ensemble methods 

Feature extraction in ensemble methods is closely related to the model selection. 

Since the base learner in ensemble is rather weak the feature subset of individual 

learner is unstable [34]. Thus, model-based feature selection would benefit from 

regularization effect provided by ensemble aggregation [35]. In parallel ensemble the 

features are selected at random at every bootstrap sample of the data. Errors 

introduced by every learner are canceled out [34, 35]. 

The feature selection in serial ensembles is more complex [36]. It consists of 

several stages: choice of single variable relative importance metrics, then iterative 

features subset selection with respect to the loss function minimization and finally, 
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Bayesian voting mechanism is performed on models with different dimensionality, so 

the final set of features is the set of most probable selected model [35]. 

Relative importance of the feature in ensemble method is multivariate-model 

based and thus different from the relevance measured by standard filter methods. 

VI(Xi,T) = L1::.I(Xi,t) , 
tET 

where 1::.1 (Xi, t) = I (t) - PLI (tL) - PRI (tR) is the decrease in impurity due to an 

actual or potential split on variable Xi, and PL, PRare left and right proportions of data 

points at tree node. Tree is a most common weak learner in ensemble setup. For 

stochastic tree ensembles of !-vI trees this importance measure is simply averaged over 

the trees [37] 

Note that ensemble approach is fruitful only in situations when different 

members of the ensemble bring up quantitatively different output. In our main 

approach we try to eliminate the need for such disagreement by systematically 

removing such disagreements. \Ve listed main ideas of ensemble methodology to 

elucidate a valid plane of action in the same data-mining problems we explore. 

E Search strategies for filters and wrappers 

Given a feature evaluation technique we can start search for the optimal subset, 

at which point an effective search algorithm is desired. The order of subsets evaluation 

is referred to as search strategy. The brute force approach to a feature set of n 

different variables requires 2n - 1 subset to go through, which computationally 

unrealistic. Branch and bound algorithm gives only marginal improvement [25]. And 

just like in situation where analysis ceases to yield an exact solution, one can attempt 

to find an approximate solution to optimal feature selection. 

Such a "suboptimal" approaches have a task of efficient search for reasonably 

good features subset, and are, by far, less computationally complex than exhaustive 

search. The best examples are sequential pruning and sequential growing. They start 

either with all the variables or from an empty set and move in opposite direction. The 
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pruning algorithms search for a variable whose removal results in the best evaluation of 

the return values. By contrast, the growing algorithm seeks the most substantial 

improvement with the addition of a new variable to the set. 

These methods as well as their generalizations represent the so called "greedy" 

algorithms - they look for a best subset available in the direct vicinity of search, 

ignoring possibly better choice on distant branches. The alternatives, the beam, 

floating, and oscillatory methods are somewhat more efficient in terms of finding a 

global optimum, but still suffer from various method-specific drawbacks -

computational load, in particular. Being deterministic in nature, all these approaches 

produce repeatable results. Yet, in applications, this property is rarely essential, and, 

as a result, stochastic search methods are preferred. 

Stochastic algorithms use random choice at certain stages, overcoming the local 

minima problem by sampling the search space as efficiently as possible. There is little 

surprise, that two of the most powerful stochastic search techniques take their roots in 

natural phenomena: phase transition between liquid and solid, and evolutionary 

algorithms. 

The search method called Simulated Annealing [261 has energy minimization as 

its underlining idea, and essentially represents a variant of l'vIonte Carlo method. The 

method exploits the idea of a system coming to its lowest equilibrium with lowering its 

temperature, just like water does when cooling is imposed. Different states of 

thermodynamic system correspond to candidate optimization solutions. Temperature 

does not have a direct analogue, but is understood as a control parameter regulating 

the probability of the "next step". One starts with "high" value of this parameter, 

with a random subset of features. Then, this subset is randomly altered, and two 

"states" are compared. The lowest cost (energy) solution is an ultimate target, with 

probability of change is not symmetric. The adverse change is more likely at higher 

value of governing parameter, very much in accord with Boltzmann law in 

thermodynamics. Trapping in local minima is bypassed, due to non-zero probability of 

going back to less favorite optimization solution. 

Another popular stochastic search method implements the so called Genetic 

Algorithm [26], which name implies the survival of the fittest. Unlike simulated 
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annealing, this procedure keeps the entire set of solution vectors (chromosomes) in 

memory. The set of chromosomes experiences random mutations, as new chromosomes 

are formed by flipping some of the vector components. Next, the new population is 

produced by randomly dissecting and gluing together chromosomes from the old 

population. The selection of "parents" is governed probabilistically, in agreement with 

renowned law of nature. 

F Spectral feature extraction 

1 Principal component analysis 

Even though, not a feature selection technique, the most relevant tool in the 

context of present work, is the peA [13]. Since we are proposing method that keeps all 

the most relevant features extracted from spectra of data sets, it is more than 

appropriate to spent some time on classical method that often does not (see earlier 

discussion in Section 1.1). The starting point for this method is normally a covariance 

matrix computed either in temporal or spatial domain. The set of features to be 

extracted through linear transformations is an eigen system - either eigenvectors, or 

eigenvalues or both. They can be easily ranked, based on their influence in the 

experimental data, which is again an incidental similarity to methodological framework 

in earlier exposition. 

For example, in mechanical systems, one usually filters out most eigenvalues 

except for the largest one, which carries most of the dynamics, i.e. contains most of 

mechanical energy. In structural mechanics, it is sometimes important to be able to 

damp resonant frequencies, to prevent a building or a bridge from the damage under 

impulsive load. In biological data, such as gene micro arrays, the "cloud" of genes, 

projected onto the scatter plot, is stretched towards a few directions, identified by 

principal components [391. The knowledge of eigen frequencies of a given structure 

does not suffice, however, the knowledge of principal component does. But, perhaps, 

the best illustration of the peA in action, is its bioinformatics applications [40]. 

Advantages of the peA become particularly obvious when one is confronted with 

massive amount of variables typical in micro-array experiments. Filtering out the 

19 



redundant components leads to dimensional reduction and helps in revealing intrinsic 

patterns in gene expression [39, 40j. 

Once a covariance matrix is known, one can establish the relations between 

different variables based on Pearson coefficient. This task is too ambitious, even 

without data being noisy, due to high-dimensionality of a generic problem. The main 

idea behind the next step in peA, the Singular Value Decomposition (SVD) is 

precisely to move towards lower dimensionality. An n-dimensional covariance matrix 

C, and as a result, the original data are represented in a standard Euclidean basis, e.g. 

{I, 0, O} , {O, 1, O} ,{O, 0,1}, if the space is three-dimensional. Sparseness of the matrix 

signals alignment of the data along certain direction, but instead of 11 guessingll, one 

can pass to a more suitable basis, in which matrix becomes diagonal. Such a basis does 

not necessarily has a simple {I, 0, O} , {O, 1, O}, {O, 0,1} form, but it guarantees the 

simplest possible representation of the data itself - the diagonal eigen-representation. 

In this representation the original matrix C becomes: C = VA V T
, where V and 

A are orthogonal and diagonal matrices respectively; their elements are determined by 

the system of linear equations Cv = Av. Real numbers Ai, i = 1, ... , N are eigenvalues 

(singular values), while columns v of V, are eigenvectors (the vectors of the 

simple-most basis for a given data-structure). 

In our specific case of eigen-analysis of covariance matrix, eigenvalues are equal 

to the variance of the original data, for example time series. Indeed, time averaging 

implied in computing variance plays role of inner product for two orthogonal 

eigenvectors. In other instances, eigenvalues may not have such a concrete 

interpretation. 

Furthermore, eigenvectors related to a particular eigenvalue, represent 

components of a new "preferred" basis with respect to the old, simple-looking one (see 

earlier example for three-dimensional situation). The eigenvectors of the covariance 

matrix C are also termed principal components of original data given by (generally) 

rectangular matrix X. In most applications, only a few components are necessary for 

adequate data description. Given X is zero-centered and normalized to a unit variance, 

the two matrices are related according to C = X T X / N, where N is data space 

dimension. 
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G Nonlinear spectral feature extraction. 

Sometimes, however, linear analysis does very little for the problem of learning. 

Hence, classical peA, has to be generalized or abandoned [41J. As we demonstrate in 

this subsection, the alternative to feature selection, which in this case amount to 

dimensional reduction can still be achieved, although mathematical rigor and 

applicational universality is often inadvertently sacrificed. Below we discuss several 

unsupervised learning algorithms, which all fall into a class of spectral methods. They 

all employ eigen-analysis, but have more difficult task in mind. A non-linear extension 

of dimensionality reduction idea aims at finding a nonlinear manifold, which 

accumulates data in similar fashion the" new basis" (the eigen-basis) does in situations 

where conventional peA is appropriate. 

1 Kernel peA. 

Mapping of the original data into feature space lies in the foundation of kernel 

peA, together with the idea of using distance between vectors of data variables, or 

their mutual angle or dot product - all three concepts being closely related, as was 

shown in earlier subsections. 

In essence, matrix C is a collection of dot products; therefore, the mapping in 

question, does not have to be known explicitly, as long as dot product in feature space 

has known functional form. A new "covariance" matrix e reads: 

(12) 

where <!> is unknown nonlinear mapping. Note, that even though e in non-linear in 

original data, the eigenvalue problem can still be formally defined: 

ev=).v (13) 

or, alternatively, 

(14) 

Vectors V belong to this newly defined dot-product space, associated with 

matrix e , hence can be expanded in terms of vectors <!> (Xi): V = Li ai<!> (Xi), which 
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upon substitution into Eq. (14) produces 

Introducing Kij = <I> (Xi) . <I> (Xj) we arrive at 

MAQ = KQ, 

vvhich is of course another SVD equation. Solving for AS and QS we then define 

projections of data images <I> (x) onto eigenvectors V via 

Vk. <I> (x) = LQi (<I> (Xi)· <I> (x)), 

(16) 

(17) 

and call them principal components. All we need to know for their explicit calculation 

is "kernel" matrix K. 

Hence, one is able to bypass unknown functional dependence <I> and get an 

access to the principal components by using the same trick as in non-linear SVM (see, 

for example [41, 42]). The kernel is selected a priori; typically it is a function of a dot 

product of original vectors of data. Here is a list of popular choices: 

K (x, y) = (x. y)d, 

K (x, y) = exp ( _llx
2
:

2

yll ) , 

K (x, y) = tanh (Ii: (x . y) + 8) , 

(18) 

(19) 

(20) 

where (J, Ii: , and e are real parameters. Note, that linear PCA is recovered for k = X· y. 

As was already pointed out, despite its power in many practical data-mining 

situations [43], PCA has its limitations [441. Particularly, PCA assumes monitored 

data as being static. Linearity assumption is also the key. But the most vulnerable is 

the embedding of statistical importance of mean and variance, or covariance. Once the 

data fails to be Gaussian or even multi-modal Gaussian, PCA brings up erroneous 

results in terms of basis axes. Another damaging assumption is the large variance 

relevance importance. This can only work on a priori knowledge of high signal-to-noise 

ratio. 

Non-linear PCA, such as for example KPCA, has an advantage of capturing 

higher order statistics [45Jand thus more detailed information on data set. Another 
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significant advantage of KPCA is that it works well with linear classifiers, for instance, 

with SVM. Non-linear kernels we listed above are not in the way. Hence the results of 

KPCA are generalizable to other classifiers despite non-linearity. Further pedagogical 

discussion of PCA methodology can be found in [46]. 

2 Scaling methods 

To conclude our discussion of various existing data-mining options, we would 

also like to touch base on family of scaling methods [47]. To a large extent, scaling 

approach to data points relies on the inter-point distance as a measure of dissimilarity. 

In classical scaling such distances are identified with dissimilarities. In 

multidimensional scaling (~IDS), which is the most widely used [47], the relationship is 

a bit more subtle [14]. 

Conceptually, MDS can be elucidated with classical Kruskal's example [49] of 

rail-road construction between certain number of stations. A table of inter-station 

distances, which might be of interest for such a project does not require to include 

actual distances (in fact there is no such a thing as actual distance). Instead, it uses a 

scale - a specific number of kilometers or miles per unit of scale. This table is typically 

extracted from some sort of photo-graphic map. A lot more involved problem is the 

object of MDS procedures. It the inverse problem of creating a map out of given table. 

This problem is further complexified with traditional problem of noise. Not to mention 

that dimension of map is not known either; hence the name - MDS [49]. 

Next, to outline, the procedure behind scaling methods, consider p-dimensional 

data space, containing n points Xi, from which we construct a n x n matrix B: 

Bij = (Xi - x) (Xj - x) , where x = L~=l xdn is a vector ensuring zero centering. 

Eigen-decomposition B = VAVT, can be further reduced if number of points n exceeds 

dimensionality of space p, because of the n - p zero eigenvalues. \Ve have B = VpAp VpT, 

where now Ap = diag {>'1, ... ,Ap} and Vp is n x p matrix with the eigenvectors, 

corresponding to these eigenvalues, as columns. And, of course, if, for some reason, we 

decide to keep k largest eigenvalues only, we reduce above described representation to 
A A A 1/2 

B = XXT
, in terms of principal components X = VkAk . The number of components 

k can be decided on based, for example, on variance participation ratio: 

23 



L~=l Ad Lf=l Ai. As can be seen from the construction, classical scaling is essentially 

another view on PCA (and vice verse). 

This type of scaling targets a configuration of points X, whose inter-point 

distances dij resemble the dissimilarities 6ij = Ilxi - Xj II of data most closely. We 

specify a functional form j, to which inter-point distances should be a match. This 

idea is very much in the spirit of kernel PCA [42]. 

Then, the analogue of SV~I Lagrangian, the error (stress) function can be 

introduced, according to 

where Wij are pre-selected weights, for instance Wij = 1/6ij . The main idea, just as in 

SVM and many other conditional extremum methods is to determine the points, which 

define the proffered dij configuration. And of course, a deck of S-minimization 

methods exists, with the most popular being gradient descent algorithm [50]. The only 

MDS assumption is presence of monotonic dependence of projected pairwise distances 

on the original ones. 

The main strengths of MDS are computational efficiency, guaranteed asymptotic 

convergence, and global optimality. Yet, the MDS methods are highly dependent on 

the definition of dissimilarity. If we take DNA micro array experiments as an example, 

the type of features determines distance measure. The abundance of mRNA expressed 

via transcript levels composes entries of feature vectors, filled either across genes or 

samples. As in many other cases of correlation-based dissimilarity measures, B is not 

positive definite. To make any progress, it has to be converted into a positive definite 

metric in order for the metric MDS (or any other least-sQuare-like method) to work. 

Any such conversion introduces bogus information into the metric, and, as a result, 

into the feature set. In addition, all conversion methods are susceptible to gross errors 

and lost or damaged data ([3] and references therein). Very recently, several 

non-metric alternatives to MDS have been introduced; see, for example, [3]. 

H Structure of the thesis 

By and large, the strategic approaches to machine learning in feature selection 

are highly non-universal. Most of the successful applications result from meticulous 
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comparison and evaluation of different methodologies. In the next Chapter we discuss 

a family of methods, which are radically different from the discussed so far, in a sense 

of interaction between learning and feature selection. 

In this thesis we propose a viable alternative to the methods discussed. \Ve view 

our method as a construction upon them. In its technicalities, the algorithm we built is 

directed toward least amount of steps. It also leverages on general properties of many 

known complex systems to exhibit very specific singular value statistics. In order to 

appreciate the vigor of proposed lay-out it is necessary to look into all the spectrum of 

alternatives. 

Having described feature extraction methodology in machine learning, we now 

turn to the work we have done on developing a new approach to a specific data mining 

example of network traffic. \Ve start the next Chapter with general description of the 

existing network models. Even though we do not offer any network modeling ourselves, 

this step is meant to provide insights on results of our data analysis. Chapter II is also 

partially devoted to the review of complex systems. By building a link between 

hard-to-describe systems and complexity of network traffic, we introduce main 

methodology we use throughout this thesis. 

In Chapter III we introduce and briefly state main relevant results of the theory 

of random matrices (RlVIT) [51, 52]. Spectral properties of random Wishhart matrices 

have direct connection to the corresponding properties of Pearson's coefficient 

matrices. This can be easily inferred from the very way these matrices are built. 

Hence, signatures of the RMT are anticipated in the eigen statistics of typical 

correlation matrices for time series or gene micro arrays. Financial time series had 

already backed up this hypothesis on many occasions [56, 57, 58]. 

Then, in Chapter IV we construct a feature selection algorithm and run series of 

statistical tests, to demonstrate and explain relevance of the R1VIT to the description of 

transient network dynamics. In order to fully expose presence of the R1VIT -like spectral 

behavior, we run comprehensive statistical tests on original network traffic data. In 

addition to that, we performed multitude of experiments making use of the knowledge 

of spectrum separation into the RlVIT and non-RMT parts. 

\Ve proceed with comparison of our method to the related feature selection and 
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clustering methods in Chapters V and VI. \Ve analyze the robustness, computational 

complexity, accuracy and other performance characteristics of the respective 

approaches as well as their mutual correspondence. Specifically, in Chapter V we take 

on classification problem involving network traffic time series. \:Ve compare two linear 

methods, which we combined with our own reconstruction error technique. The 

primary goal is to demonstrate absence of data pre-processing and superiority towards 

computationally complex non-linear methods. An additional goal, was to prove 

positive role of the RMT methodology in feature selection. In Chapter VI we apply 

similar ideas to the clustering procedures run on biomedical data set. Here we use 

R~\/IT de-noising algorithm to uncover existing patterns, which in turn facilitates 

proper clustering, and thus ensures accurate diagnostics. 

Finally, we consider feature extraction in a time-lagged formulation of a 

network-traffic problem in Chapter VII. \Ve discover an acute sensitivity of chosen 

features towards alteration of randomly selected time series. In the process, the RMT 

boundaries are used. Such a property makes these features eligible for the role of 

disruption of service detectors. To find the best anomaly indicators we carefully 

studied not only temporal dependence of eigen statistics, but also power spectra of all 

the features involved. 

We summarize the obtained results and derived conclusions in Chapter VIII. 

This last Chapter also restates main principals behind methodology presented in this 

work. Several potential applications and possible direction of future research are laid 

out at the very end. 
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CHAPTER II 

NETWORKS AS COMPLEX SYSTEMS 

Understanding of natural, economic or social phenomena presume a definite 

model, \Vhether such construct is theoretical or numerical, the general goal is to have 

as little parameters as possible. Then, the model is viable, and, very often, a set of 

completely distinct phenomena can be approached with the same set of study tools. 

Here we certainly assume model's (at least partial) ability of capturing trends in 

experimental data - e.g. predicting its future or describing past history. 

\Vith networks, however, such a universality is hardly expected. The nature of a 

netvvork plays an integral part in all aspects of modeling. Stock market, viewed as a 

collection of agents responding to the time series, the price evolution, and behaving in 

accord with such evolution, is a network. And so are networks of scientific or artistic 

collaborators, actors, which are systems of sociological nodes and links. The two can 

only be modeled simultaneously in few contexts, such as graph mining, for instance. 

Yet the meanings of traffic or evolution in such networks is so distant, that uniform 

approach to modeling make a little sense. 

A Traffic modeling considerations 

Our particular focus is on traffic in computer network. Even more specifically, 

on network of interconnected routers, therefore, we limit our introductory discussion to 

this subject only. Current general understanding of traffic patterns, instabilities and 

irregularities, comes from models based on fluid dynamics, directed percolation, 

random walk and cellular automata. \:Ve use some insights provided by this 

approaches, but generally we will stay away from micro-, meso, and macroscopic 

models [591 altogether, concentrating on the output time series analysis instead. 

Here is an illustrative example of when and how the network traffic becomes 
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incomprehensibly complex: suppose a human user runs a 'Veb browser from a desktop 

or laptop and clicks on a link with a location of an object such as a HTML (Hypertext 

lVlarkup Language) document or another file accessible using Hyper Text Transfer 

Protocol (HTTP). This starts HTTP request that is passed down to Transmission 

Control Protocol in the protocol stack. Protocols in the operating system of a laptop 

or desktop are organized in a partial order represented as a protocol graph. Similar to 

express-mail services, sending pre-sealed envelopes inside their own envelopes, a 

protocol graph encapsulates the HTTP request by treating it as payload. 

Since Internet is "leaky", i.e. it can loose the packet, TCP memorizes the packet 

information in the event it needs to res end it. TCP's packet is transferred to IP, a 

routing protocol. This protocol attempts to forward the packet as close as possible to 

its final destination. IP encapsulates the packet and hands it to the link layer. A 

popular link layer is Ethernet. It has an access to physical address at the next 

destination's IP address. (Network devices possess unique physical addresses.) Link 

layer attaches envelop with physical addresses and sends it down to the physical layer. 

The physical layer oversees the transmission of information containing the link layer 

packet over its communication medium. The physical layer at the receiving end decodes 

the transmission and does a hand-off to the appropriate link layer protocol above. 

Assuming the receiver understands the IP "language", the link layer protocol 

decapsulates and hands off to the IP layer which determines whether additional 

forwarding is required to reach the final destination. If this is the case, the packet is 

encapsulated and passed down the protocol stack. This process is repeated at every 

IP-enabled device~called router~on the forwarding path until the destination IP 

device is reached. At that point, the IP layer passes its payload up to TCP which, in 

turn, hands off its payload to HTTP, and HTTP to its application. In this example, a 

web server that processes the HTTP request. This prompts HTTP response, which is 

passed down the protocol stack at the destination IP device and returned to the 

original sender, the client. 

Several things can go wrong on an IP packet's journey. During the transmission, 

noise may corrupt packet, especially in wireless segments of the Internet. The 

corrupted packet can later be dropped. After arrival, the packet may face busy router. 
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Alternatively, there might not be any buffer space which again leads to the packet 

being discarded. Furthermore, router can malfunction erasing the packet in transition 

from its memory; IP has no provision for dealing with packet loss. Consequently, TCP 

running at the sender with the assistance of its counterpart, which runs at the receiver 

is the closest point for attempted recovery. 

In this example we ignored the size of the packet and number of users. It turns 

out that size and number of users do matter. Even though traffic engineering attempts 

to flatten the traffic to accommodate predictability, Internet traffic shows the emergent 

chaotic behavior, which makes Complex System metaphor of Internet traffic more than 

suitable. 

There are no established irreproachable network models to date. Hence it is 

almost impossible to build explanatory arguments on them. Our perception of what is 

going on inside network is somewhat close to that of Ref. [601. We perceive network as 

a graph, which nodes contain, process and emit different amounts of information along 

randomly chosen links. Our goal is to find behavior patterns and extract relevant 

features from time series data, rather than simulate phase transition or any other 

network phenomena. Yet, seeing network architecture as numbered nodes on 

two-dimensional lattice, as it is done in Ref. [601 is very convenient. It creates natural 

site basis. The routers we consider in what follows, also form an interpretable system 

of exchanging information nodes, which can be studied both in time and in spectral 

domain. \Ve also adopt probabilistic nature of routing, but do not assume any 

particular strategy. 

Before we do that, it is instructive to look at computer networks from the point 

of view of deterministic behavior. 

Suppose that matrix H describing the routing strategy is written in the site 

basis. Real-number entries of this matrix relate t\VO indices - raw and column, that is 

two sites (routers). It tells us how much information is sent to one or the other node. 

It has little to do \vith connectivity matrix, and represents strength and speed of 

interactions in the system of routers. Only zero entries mean absence 0 communication 

- the same for both matrices. 

The next important point in our development has to do with construction of 
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routing strategy matrix. It is reasonable to declare no knowledge of actual entries of 

such matrix. They can be assumed random, are partially random, for instance, 

distance nodes may be treated as non-interacting, and therefore, matrix H - as sparse. 

It is clearly symmetric: Hij = H ji , due to net.vork reciprocity, but otherwise is quite 

generally defined. 

To each such matrix, i.e. to each given network, we can associate a so called 

"propagators", a notion frequently used in many-particle systems in general and in 

hopping models of network traffic, in particular [591. These are elements of matrix 

g = (EI - H)-l, where I is an identity matrix, and E is a spectral variable. 

Propagators determine probability of a packet of information to end up at site j after 

being emitted at site i. In time domain, such probability is computed through the 

inverse Fourier transform. The probability of hopping from i to j at time t since 

routing from i is given by the following convoluted transformation into a time domain 

P (i;j; t) = J gij (E + 0) g;j (E - 0) exp {-iW} dO, 

which ensures real and positive definite value of P. The proper upper bound of 

probability is easy to achieve, as variables E and Hij are rescalable. 

(21 ) 

Now, we can relate intrinsic network variables, such as rate of information 

transfer at a given node in a given direction to measurable quantity. This observable 

could be an aggregated average of the amount of information passing through a given 

node. In fact, the latter is actual data set available in practice. In our present study 

we run feature extraction on one such data collection. 

Consider instantaneous number of bites 5Ij passing thorough the node j; the 

aggregated average is simply this quantity accumulated over time !It, divided by !It. 

To obtain 5Ij , we calculate the total probability of information going towards all other 

nodes, and subtract it from the probability of information to be acquired from all the 

other nodes: 

5Ij = 2:. P (i,j;t) - 2:. P (j,i;t) (22) 

Combining Eqs. (21) and (22) we establish formal relation between internal properties, 

characterized by Hij and router recordings gi (t), potentially available for most of the 

router networks, router-host combination structures and, in principle, for the Internet. 
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Our goal is, of course, not to get a better grip on such relations but rather 

elucidate several phenomenological facts. For one, randomness in routing strategy and 

capability, expressed by the coefficients Hij , will reappear in stochasticity of time series 

gi (t). And second, the nature of interactions in the network is clearly non-linear. 

Although linear correlation relevance index can be illustrative, its direct interpretation 

is obscure and hardly reliable. 

Indeed, the propagator gij represents a pulse traveling from site i to site j 

through all possible paths on two-dimensional lattice. It means, that certain averaging 

procedure has to be applied to calculation of gij to compensate for our absence of 

knowledge the exact path. Despite some routers may have consistently non-random 

strategy, realized, for example, by sending the same amounts of information to the 

same neighbor, the rest of the sites will necessarily destroy any deterministic trends in 

traffic between i and j, or any other pair of sites for that matter. And finally, since gij 

is an element of the inverse matrix (EI - H), it literally depends on all interaction 

constants Hij . Thus, not only the statistical approach should go beyond linearity, but 

it should also address fundamental issues of understanding a complex system through 

data mining. 

B Spatio-temporal chaos and network communications 

\Vhereas a real dynamical system, is described by differential equations and 

continuous time, sometimes, for periodic or quasiperiodic motions, it makes sense to 

turn a real variable t into an integer and use iterative maps. In fact, variable t is 

always integer in practice due to discretization. But whenever dynamical system 

repeats itself over and over again, storing more than one period of information is waste 

of, literally time (and data-space). These is also true for nearly periodic processes. 

With t being integer, the system evolves through a set of discrete time steps, 

becoming an iterative map of the form Xn+l = J (xn). Such maps capture changing 

traffic patterns in networks, and often used in modeling [59], as networks dynamics 

easily fit the description of dynamical systems, linear maps or flows. Indeed, on short 

time scale the router recordings look like superpositions of on-off processes. 

If mapping function J (x) is not linear, or the differential equation behind 
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dynamical system has non-linear terms, the closed form solution for a given initial 

condition does not exist, unless searched numerically. Such non-integrability displays 

itself through noise-like oscillatory behavior of the time series with a high degree of 

self-similarity. The uncanny appearance of map snapshots is just another testimony to 

the affluence of dynamics imposed by the non-linearity, non-integrability and 

non-determinism. 

In network communications, function f is unknown or two complex to be 

expressed by formula. That is why cellular automata (CA) approach works so well for 

traffic problems [61]. First of all, many degrees of freedom are explicitly represented, 

the miscellaneous rules of behavior for every variable of the system are specified. And 

second, the CA capture visual representation of the system's evolution. Being an 

alternative to differential equations for the modeling of physical systems the CA inherit 

the concepts of space, divided into the cells, and influence of neighborhood. By 

studying the CA generated patterns, one can access the randomness, dynamic response 

and change in time of collective behavior of mutually interacting network sub parts. 

Further illustrative examples of the CA network use, include eco- and meteo- systems, 

financial markets, human neural networks. social and technological networks. There is 

however major alternative to both of the described approaches to complex graph 

structure. It comes from the field of chaology, the science of chaos, which we nmv 

quickly discuss. 

The most recent account of the field of complex systems, complexity and chaos 

has been put forward by a collective effort in special edition of Science [62]. The 

subject is broad and almost philosophical in nature, still a few main premises for 

bringing in the chaology need to be stated. 

Conventionally, a complex system is the one for which the number of 

independent components is large, or one in which multiple evolution pathways exist. A 

complex system is the one with multitude of interactions between constituents. And, 

furthermore, a complex system constantly unfolds and changes in time. 

\Vithin this definition, the complex system in general, and network in particular, 

may contain stochastic and deterministic components, or just one type of them. They 

all manifest themselves through static or dynamic output, e.g. time series collected at 
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various junctions of a netvvork. Even a slightest proportion of chaos, which can be 

linked to non-integrability, causes unpredictable evolution. But the degrees of chaos 

vary. 

The way chaologists define this degree relates to the way system explores its 

phase space - whether it explores this space in its entirety, or simply looses the place it 

once was occupying. From the point of view of machine learning, the proportion of 

chaotic and deterministic dynamics can be estimated with the use of the concepts of 

entropy or information (see Chapter I). 

On the level, it is interested to us, any congestion and localization, any 

disruption of information flow are signatures of non-chaotic behavior. On the other 

hand, equilibration and absence of any special distance or time scale are features of 

spatio-temporal chaos. Coherent and synchronized patterns are viewed as signs of 

deterministic behavior, while unstable and unpredictable exchange between the nodes 

are considered to be reflections of ergodicity. 

In the next Section we introduce our own criteria of distinguishing between 

chaotic and deterministic features. Our intentions are, of course, different from 

drawing a rigorous mathematical boundary, Altogether, the goals are to find 

statistically sound machine learning algorithm, which sets up feature extraction and 

enables anomaly detections in the regime of spatio temporal chaos. The method we 

discuss in the next Section has been successfully applied in the stock market studies, 

but received little to no attention in the context of network traffic. 
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CHAPTER III 

RANDOM MATRIX THEORY 

Large matrices appear frequently in analytical and numerical studies, which 

involve large experimental or synthetic data arrays. The covariance matrix, filled with 

Pearson coefficients could be a perfect example (Section 1.1.4.). The large dimensions 

of matrices, further result in voluminous eigen systems. This is a typical problem in 

machine learning anyway, however the theory of large matrices originated in a different 

field of science. 

In physics, especially in nuclear, condensed matter and microwave experiments, 

the spectral data, i.e. experimentally measured eigenvalues is enormously large. 

Consequently, physicists first attempted to apply conventional methods of statistical 

mechanics, in which one system, e.g. nuclei, is replaced by an ensemble of similar 

systems, governed by the same matrix of interactions, the Hamiltonian. The ensemble 

provides a way of computing statistical averages, which, however, is too formal to be 

realized in any practical situation due to the lack of the knowledge of Hamiltonian. 

In classical RMT [51, 52]' such ignorance is turned into a basic premise. The 

system in question is considered on its own, but the unknown Hamiltonian is 

substituted with ensemble of large random matrices, which possesses the same physical 

symmetry as actual system [51]. The actual "degree" randomness of the matrix 

ensemble is unimportant and the underlying distribution of matrix elements, as well as 

probability measure for computing averages is normally chosen in accord with 

mathematical convenience. 

Nowadays, the RMT represents highly developed area of mathematical physics, 

still build on the above sketched unorthodox statistical hypothesis made by Wigner 

[52] but with much more sophisticated machinery in hand [63]. The theoretically 

predicted and experimentally found [63] connection between universal spectral 

statistics and transport properties of various complex systems helped to create a link 
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to general structures with unknown or intricate interactions, such as computer and 

gene expression networks. Because of that, the RNIT achieved a widespread success 

not only in several branches of physics of complex systems, but also in economical and 

social sciences. Many of the elegantly universal signatures of the RMT can be found in 

experimental and synthetic data sets analyzed for highly practical tasks of, for 

instance, portfolio risk assessment [64, 65], traffic regulation and human brain 

diagnostics. With this facts in mind, we review basic notions of the RMT assuming no 

additional knowledge of the reader, other than already discussed eigenvalues. 

A Basics of the RMT 

1 The foundations of the classical RMT 

Applications of this purely mathematical phenomenology are growing faster and 

faster day by day. Findings by P. Sheba in [53] show that city center curb parking and 

starling flocks congregating on power lines to be two recent R~'IT trophies. Before 

that, came financial time series [64], Mexican public transport [54], human brain waves 

[55] and many others [63]. But we shall start the story where it officially began - in 

nuclear physics. 

Compound nuclei, as well as large atoms and molecules is impossible to 

consistently describe in deterministic way due to large number of their constituents. 

Particles in these systems interact in some complex and often unknown way. As a 

result, even a theory based on classical statistical mechanics runs into a 

uncircumventable problem from very beginning. It is equally not possible to write 

down manageable system of governing equations and to explain the neutron-scattering 

resonance data obtained off of nuclei or atoms. The key difficulty is absence of any 

information apart from physical symmetries about the Hamiltonian matrix (analog of 

matrix H in earlier discussion) for such multi-particle systems. Thus, the RMT 

originated from an attempt to analyze resonance positions, directly linked to the 

eigenvalue spectra of compound atom or nuclei. 

The way out of analytical and conceptual dead-end, was found by \Vigner, 

Dyson and their collaborators in their classical formulation of the RMT, see historical 
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overview and recent developments in [661. They decided to disregard all information 

about the system with the exception of the symmetries. The Hamilton matrix is 

replaced by the ensemble of matrices filled with random numbers and specific 

symmetries of the physical problem are taken into account in the way matrix is being 

filled. For instance, if the processes in atom will take their turn in exactly the same 

way as before, after the time starts flowing backwards, the matrix will be real and 

symmetric. Note, that generic Hamiltonians are rather sparse [67], while members of 

the ensemble are filled uniformly with statistically uncorrelated elements distributed 

according to: 

P (H) '" exp { - ; Tr H2} , (23) 

where Tr stands for trace of N x N matrix H (trace of an n-by-n square matrix A is 

defined to be the sum of the elements on the main diagonal), and V is an arbitrary 

even real polynomial in H. Here, P (H) is short for probability distribution function of 

all of the matrix entries. The integration measure, used in calculation of statistical 

averages, is a product of all of the independent differentials dHij . 

This sequence of RMT assumptions and principles seems a little ad hoc, and to 

some degree it is. Yet, the entire machinery has a perceptible illustration, which 

originates in information theory and shows how assumptions affect methodology. 

Consider a toy problem, in which a node in a network sends packets of information in 

the direction of N different neighbors. Each neighbor receives Ni packets with Ii total 

information content in them. Suppose, we would like to know the probability 

distribution of packets according to their information content if the most efficient 

manner is the one minimizing the entropy 5 = - LiPi lnpi, where Pi = N;/N. Such 

strategy is, of course, the same as we seen before in machine learning problems 

(Section I), i.e. the one maximizing information I = -5. If for some reason our goals 

are completely opposite, the ensuing logic still works. 

As Pi stands for probability of finding Ni packets outgoing in ith direction, it 

should sum to one 

(24) 

If in addition we want average information transfer to be at a certain pre-specified level 
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7, the following is also true: 

LliPi = 7. (25) 

The conditional extremum conditions are given by 

[)~i [s + a ( ~ Pi - 1) + ,8 ( ~ liPi - 7)] = 0, (26) 

_vhere a and /3 are Lagrange multipliers. which leads to Boltzmann distribution 

Pi = exp { -a - /3li} . (27) 

Now assume, that we have the same simplistic goal of deciding on distribution function 

for a continuous variable H, (ranging between minus and plus infinity,) guided by 

chosen average It and variance 1/2 + (}2. Retracing the above described steps, we arrive 

at (this time we have three Lagrange multipliers) 

(28) 

which is nothing but Gaussian distribution. In other words, minimum information 

(maximum entropy) requirement, which is one of the basic premises for the R~'IT, 

leads to the Central Limit Theorem; at least in the case of one-dimensional matrix H. 

Generalization for any other dimension is more involved, but the result, maximum 

entropy matrix H can be guessed right away 

(29) 

which after a immaterial shift along the real axis results in Eq. (23). To summarize, 

the choice made by the RMT founders was two-fold: minimum number of parameters 

and distribution corresponding to maximum entropy. Choosing trace Tr as a metric for 

matrix H can be derived rigorously. It can also be easily understood from another 

basic idea of the RMT: There is no preferred basis in the space of matrices H, hence 

their probability distribution must be invariant under rotational transformations. 

Surprisingly, despite declaring complete ignorance towards actual details of 

system dynamics, the RMT is able to capture correctly spectral fluctuations of heavy 

nuclei [68], and of many other complex systems [691. With the emergence of "quantum 

chaology" [69], the numerical and laboratory experiments, and in particular, the 
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Bohigas~Giannoni~Schmit conjecture [70] demonstrated that RMT can be used far 

beyond the statistical studies of nuclear scattering processes. The most impressive 

outcome is the universality of the RMT statistics in a sense, that it can be found in 

systems, which have literally nothing to do with each other, with the exception of their 

complexity, non-integrability or genuine randomness. 

After this fact has been firmly established, random matrix ensembles became 

major theoretical tools for statistical estimates to be superimposed with experimental 

running averages. Since most physical systems are represented by real symmetric 

matrix, we only consider the so called Gaussian Orthogonal Ensemble (GOE) in what 

follows. The word "Gaussian" means that V is quadratic (V (H) = H2/V2) , i.e. all Hij 

are taken from normal distribution with standard deviation equal to v. Any member 

H of such ensemble can be brought into specific diagonal form with the help of 

orthogonal matrices UT = U- 1: 

which explains word "Orthogonal" in GOE. Real numbers A are called eigenvalues, 

while columns of matrix U are called eigenvectors. 

2 Universal eigen statistics: Summary of the RMT results 

The eigen system of any matrix problem is defined according to 

Hll = AU. (30) 

where H is matrix of interest, 1l its eigenvector, and A its eigenvalue. In other words, 

matrix H upon "acting" on some vector u simply changes its length, but not the 

direction. The eigenvalue A is strain coefficient. 

If we "sandwich" matrix H between two eigenvectors Uj and llkcorresponding to 

jth and kth eigenvalues, the following properties: 

llJHllk = 0, j of k, 

can be obtained from Eq. (30) and the ortonormality of eigenvectors (uT 
1l = 1). 
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As we turn to the R~'IT eigen statistics, several distinct features should be 

stressed. Although, matrices H taken from GOE have entries from random 

distribution, it does not lead to the arbitrarily distributed uncorrelated random 

eigenvalues {AI, A2, ... , AN} random numbers. Consequently, the nearest neighbor 

spacings (NNS) of two consecutive eigenvalues: Si = Ai+! - Ai do not follow Poisson law 

P ( s) = exp ( - s) . 

The later is characteristic for memoryless process, as if chimpanzee were throwing 

darts at the stock market quotes, and later on we would project the holes in the 

newspaper onto a straight line. The eigenvalues of random matrices instead, obey 

the distribution called "Wigner surmise" [68, 69], which shows faster (compared to 

Poisson spectra) decay, and vanishes as s goes to zero. It means that eigenvalues 

"knmv" about their location in spectrum, they do not stay neither too close to each 

other nor too far. In other words, eigenvalues of GOE are correlated - the darts are 

landing trying to avoid already taken positions on the projection line. Or, perhaps, 

chimpanzee throws the darts in conscious. although slightly random manner. 

(33) 

(34) 

Another prominent feature of GOE system is rather simple eigenvector 

statistics. The eigenvector components are all Gaussian uncorrelated random numbers 

[68, 691. It once again, signifies absence of any favored basis in the space of random 

matrices [68, 691. \Ve discuss the rest of the known signature RMT correlations later 

on when we run statistical tests on our data. 
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CHAPTER IV 

FEATURE SELECTION WITH THE RMT 

The inclusion of the RMT into feature selection process is a powerful way for 

distinguishing system-specific, non-random properties embedded in complex systems 

from random noise. Recent surge of RMT financial applications, particularly in 

portfolio optimization and stock-stock correlation problems [64], is a primary 

affirmation. 

The bioinformatics application could be the RMT next success. Defining 

co-expression networks without ambiguity based on genome-wide micro array data is 

particularly problematic since not much existing biological knowledge can be exploited 

on the basis of threshold between true correlation and noise. Hence, searching for 

universal predictions of the RMT in biological systems may bypass the correlation 

threshold problem. The minimal set of features can be determined by "cleansing" the 

correlation matrix of micro array profiles by "subtracting" known RMT spectral 

correlations from those pertinent to the system. This sort of procedure was done by 

brute force in Ref. [7l] where the authors attempted to study the gene co-expression 

networks and predicted functions of unknown genes using vVigner surmise and 

Poissonian NNS as relevance indices. Unfortunately, level repulsion can be found in 

many spectra, even those without any ergodic behavior. In other words a single test is 

inconclusive, as well as the procedure grounded on it. Additional tests are discussed at 

length in the next two sections, on the specific example of time series data. Just as in 

financial applications and in Ref. [71], the object of interest is covariance matrix. 

Hence, we begin by investigating the network traffic with the goal of finding 

traces of the RMT spectral correlations. The methodology we built in this work 

provided the unique possibility to accomplish several tasks of traffic analysis. We 

attempt to verify the uncongested state of the network, by establishing the profile of 

random interactions. Then, we worked out the way of revealing the system-specific 
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large-scale correlations, and establishing the profile of stable in time non-random 

interactions. Trough the analysis of eigenvalues and eigenvectors statistics, which goes 

far beyond regular PCA or its kernel variants, we were able to detect and allocate in 

time and space the anomalies of network traffic interactions. 

After establishing the boundaries of noisy and meaningful interactions in spectra 

of a complex data set, we observe changes in time of meaningful interactions using the 

time-lagged correlation matrices of the system. The choice of relevance indices is not 

unique, but the logistics of feature selection is largely the same, guided by the 

RMT /non-RMT distinction. 

A Feature construction using covariance matrix of traffic time series 

The infrastructure, applications and protocols of the system of communicating 

computers and networks evolves constantly. Despite simple outcomes, the traffic data, 

generated on minute-by-minute basis within multi-layered structure by different 

applications and according to different protocols is a reliable suspect for RMT-like 

spectrum. 

The first main approach to traffic analysis focuses on protocols, traffic and 

routing matrices - every aspect of packets propagation. The second one treats 

infrastructure, between the points of a complex, and essentially random graph, as a 

"black box" [72, 73]. ~\ileasuring interactions between logically and architecturally 

equivalent substructures of the system is a natural extension of the latter approach. 

Certain amount of work in this direction has already been done. Studies on 

statistical traffic flow properties revealed the "congested", "fluid" and "transitional" 

regimes of the flow at a large scale [74, 75]. The observed collective behavior suggests 

the existence of the large-scale network-wide correlations between the network sub 

parts. Indeed, the work of Ref. [76], where the RMT is first applied to routing data, 

showed the large-scale cross-correlations between different connections of the Renater 

scientific network. Furthermore, the analysis of correlations across simultaneous 

network-wide traffic, done in [77], and [78] for network distributed attacks and traffic 

anomalies detection respectfully, suggests, that such correlations can be given a 

meaning. 
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Among numerous types of traffic monitoring variables, we choose time series of 

traffic counts and construct covariance matrix G out of them. The procedure is fairly 

standard in quantitative finance literature. First of all, we take N traffic counts time 

series of L time points, and calculate traffic rate increments of every time series ~ 

i = 1, ... ,N , over a time scale 6.t, 

G i (t) == In Ti (t + 6.t) - In ~ (t) . (35) 

This measure is independent from the volume of traffic exchange and is sensitive to the 

slightest changes in the traffic rate [76]. Next we normalize traffic rate change is 

gi (t) == G, (t) - (G i (t)) , 
O"i 

where O"i == V(G;) - (Gi )2 is the standard deviation of Gi . The equal-time 

cross-correlation matrix G can be computed as follows 

Gij == (gi (t) gj (t)) . 

(36) 

(37) 

In other \"lords our initial targets are linear correlations, that is we choose the Pearson 

coefficient Gij , as our first relevance index, along the lines of methodology described in 

Chapter I. 

In matrix notation, the interaction matrix G can be expressed as 

G = !...GGT 

L ' 
(38) 

where G is N x L matrix with elements 

{gim == gi (m D. t); i = 1, ... , N; m = 0, ... , L - 1}, and GT denotes the transpose of 

G. 

B Eigen system of the matrix G and its interpretation 

At any time the readings from the network nodes give an instantaneous traffic 

load pattern. This pattern can be viewed as an expansion in terms of eigenvectors of 

matrix G in the following sense. An eigenvector Uk is a set of different intensities of 

network-wide traffic load satisfying 
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Among possible configurations of network-wide traffic load Uk is an amount of traffic 

load on a particular node. Then, ratio uL/Gk is equal to the number of nodes involved 

in the mutual interaction. For a variance of a traffic load at a given node we get: 

2 _ /("'M ~'G.)2) _ ",M i je .. - Te (39) ak - \ L..i=l G, U 2 - L..i,j=l Uk Uk 'J - Uk Uk· 

At this point we can employ the result of Eq. (31) to realize, that the variance of the 

traffic load at a given node is specified by the corresponding eigenvalue: a~ = A.k. Once 

again, this is true for a network-wide traffic described by the Uk. By contrast, there is 

no correlation between two network-wide traffic loads attributed to two eigenvectors Uk 

and Ul: 

With this in mind \ve proceed with the thorough analysis of the real traffic pattern. 

C How to test the eigen system against the RMT predictions 

Just as was done in [65], we consider a random correlation matrix 

( 40) 

where A is N x L matrix containing N time series of L random elements aim with zero 

mean and unit variance, which are mutually un correlated as a null hypothesis. 

Statistical properties of the random matrices R have been known from earlier 

works [79, 80J. In particular, it was shown analytically [80J that, under the restriction 

of N --7 00, L --7 00 and providing that Q == LjN(> 1) is fixed, the probability density 

function Prm (A.) of eigenvalues A. of the random matrix R is given by 

(41) 

where A.+ and A._ are maximum and minimum eigenvalues of R, respectively and 
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All the pedagogical details are presented in [791. 

The first step in testing the data against the random matrices is to find a 

transformation called "unfolding", which maps the eigenvalues Ai to new variables, 

"unfolded eigenvalues" ~i' whose distribution is uniform [51, 68, 69]. Unfolding ensures 

that the distances between eigenvalues are expressed in units of local mean eigenvalues 

spacing [51], and thus facilitates the comparison with analytical results. 

\Ve define the cumulative distribution function of eigenvalues, which counts the 

number of eigenvalues in the interval Ai ~ A, 

j
.,\ 

F (A) = N -C)(' P (x) dx, ( 42) 

where P (x) denotes the probability density of eigenvalues and N is the total number 

of eigenvalues. The function F (A) can be decomposed into an average and a 

fluctuating part, 

F (A) = Fav (A) + Ff1uc (A) , (43) 

Since Pf1uc == dFf1uc (A) IdA = 0 on average, 

P (A) = dFav (A) 
rm - dA ' (44) 

is automatically average eigenvalues density. The unfolded eigenvalues are then given 

by 

( 45) 

Eigen system for matrix C is not expected to obey properties of GOE. The 

eigen statistics of C is contrasted with the eigen statistics of a matrix taken from the 

so called "chiral" Gaussian Orthogonal Ensemble [65]. Three known universal 

properties of "chiral" GOE matrices are [79, 80]: (i) the distribution of 

nearest-neighbor eigenvalues spacing given by 

( 46) 

(ii) the distribution of next-nearest-neighbor eigenvalues spacing, being identical to the 

distribution of nearest-neighbor spacing of Gaussian symplectic ensemble (GSE) [69], 

( 47) 
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and finally (iii) the specific behavior of "number variance" statistics 2:;2. 

The latter is defined as the variance of the number of unfolded eigenvalues in 

the intervals of length l, around each ~i [69, 51, 68J. 

( 48) 

where n (~, l) is the number of the unfolded eigenvalues in the interval [~- 4, ~ + 4]. 
The number variance is expressed according to 

2:;2 (l) = l - 2l (l- x) Y (x) dx, 

with Y (x) for the GOE case is given by [51J 

and 

ds roo 
Y (x) = S2 (x) + dx ix s (x') dx', 

s (x) = sin (7fT). 
7fX 

( 49) 

(50) 

(51) 

Just as was stressed in Subsection 1.2.3 (see also [65, 81, 63]) the overall time of 

observation is crucial for explaining the empirical cross-correlation coefficients. On one 

hand, the longer we observe the traffic the more information about the correlations we 

obtain and less "noise" we introduce. On the other hand, the correlations are not 

stationary, i.e. they can change with time. 

To differentiate the "random" contribution to empirical correlation coefficients 

from "genuine" contribution, we contrast the eigenvalues statistics of C with the 

eigenvalues statistics of a correlation matrix taken from the so called "chiral" Gaussian 

Orthogonal Ensemble [65J. 

A random cross-correlation matrix, which is a matrix filled with uncorrelated 

Gaussian random numbers, is supposed to represent transient uncorrelated in time 

network activity, that is, a completely noisy environment. In case the cross-correlation 

matrix C-obeys the same eigen statistical properties as the RMT-matrix, the network 

traffic is equilibrated and deemed universal in a sense that every single connection 

interacts with the rest in a completely chaotic manner. It also means a complete 

absence of congestions and anomalies. 
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Meantime, any stable in time deviations from the universal predictions of RMT 

signify system-specific, nonrandom properties of the system, providing the clues about 

the nature of the underlying interactions. That allows us to establish the profile of 

system-specific correlations. 

D Traffic count data 

In this Section we unveil the technical details of the data used to construct 

correlation matrix C. \Ve assembled averaged traffic count data from all router-router 

and router-VLAN subnet connections of the University of Louisville backbone routers 

system. This system consists of nine interconnected multi-gigabyte backbone routers, 

over 200 Ethernet segments and over 300 VLAN subnets. \Ve collected the traffic 

count data for 3 months, for the period from September 21, 2006 to December 20, 2006 

from 7 routers, since two routers are reserved for server farms. The overall data 

amounted to approximately 18 GB. 

The traffic count data is provided by Multi Router Traffic Grapher (~'IRTG) 

tool that reads the SNMP traffic counters. The MRTG log file never grows in size due 

to the data consolidation algorithm. It contains records of average incoming, outgoing, 

max and min transfer rate in bytes per second with time intervals 300 seconds, 30 

minutes, 1 day and 1 month. \Ve extracted 300 seconds interval data for seven days. 

Then, we separated the incoming and outgoing traffic counts time series and 

considered them as independent. For 352 connections we formed L = 2015 records of 

N = 704 time series with 300 seconds interval. 

Next, we watched changes in the traffic rate, excluding from consideration the 

connections, in which channel was open but the traffic was not established or there was 

a constant rate and equal low amount test traffic. Additional reason for excluding the 

"empty" traffic time series was making the time series cross-correlation matrix 

unnecessary sparse. After the exclusions the number of the traffic time series became 

N = 497. 

To calculate the traffic rate change G; (t) we used the logarithm of the ratio of 

two successive counts. As it is stated earlier, log-transformation makes the ratio 

independent from the traffic volume. \Ve added 1 byte to all data points, to avoid 
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manipulations with log (0), in cases where traffic count is equal to zero bytes. This 

measure did not affect the changes in the traffic rate. 

E Results of comparison with the RMT 

Once the cross-correlation matrix C of traffic time series is constructed, we 

compare its eigen statistics with the predictions of the R1/IT, to establish the 

boundaries of the random, noisy interactions and extract the meaningful features of 

the system. \:Ve constructed inter-VLAN traffic cross-correlation matrix C with 

number of time series N = 497 and number of observations per series L = 2015, 

(Q = 4.0625) so that, A+ = 2.23843 and A_ = 0.253876. Our first goal is to compare 

the eigenvalue distribution P (A) of C with Prm (A) [64]. 

\:Ve compute eigenvalues of C using standard MATLAB function. The empirical 

probability distribution P (A) is given by the histogram P (A) displayed in Figure 2.1 

and compare it to the probability distribution Prm (A) taken from Eq. (41) calculated 

for the same value of traffic time series parameters (Q = 4.0625). The solid curve 

demonstrates Prm (A) of Eq.(41). The largest eigenvalue shown in inset has the value 

A497 = 8.99. We zoom in the deviations from the RMT predictions on the inset to 

Figure 2.1. 
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Figure 3. Empirical probability distribution function P (A) for the inter-VLAN traffic 

cross-correlations matrix C (histogram). 

We note the presence of "bulk" (RMT -like) eigenvalues which fall within the 

bounds [A_,A+] for Prm (A), and presence of the eigenvalues which lie outside of the 
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"bulk", representing deviations from the RMT predictions. In particular, largest 

eigenvalue A497 = 8.99 for seven days period is approximately four times larger than 

the RMT upper bound A+. 

The histogram for well-defined bulk agrees with Prm (A) suggesting that the 

cross-correlations of matrix C are mostly random. \Ve observe that inter-VLAN traffic 

time series interact mostly in a random fashion. 

Nevertheless, the agreement of empirical probability distribution P (A) of the 

bulk with Prm (A) is not sufficient to claim that the bulk of eigenvalue spectrum is 

random. Therefore, further RIVIT tests are needed [65]. 

To do that, we obtained the unfolded eigenvalues ~i by following the 

phenomenological procedure referred to as Gaussian broadening [82], (see 

[82, 83, 65, 81]). The empirical cumulative distribution function of eigenvalues F (A) 

agrees well with the Fat' (A) (see Figure 2.2), where ~i obtained with Gaussian 

broadening procedure with the broadening parameter a = 8. The first independent 
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Figure 4. The empirical cumulative distribution of Ai and unfolded eigenvalues ~i 

Fav (A). 

RNIT test is the comparison of the distribution of the nearest-neighbor unfolded 

eigenvalue spacing Pnn (8), where 8 == ~k+l - ~k with PeDE (8) [69, 51, 68]. The 

empirical probability distribution of nearest-neighbor unfolded eigenvalues spacing 

Pnn (8) and PeDE (8) are presented in Figure 2.3. The Gaussian decay of PeDE (8) for 

large 8 suggests that PeDE (8) "probes" scales only of the order of one eigenvalue 

spacing. The agreement between empirical probability distribution Pnn (8) and the 

distribution of nearest-neighbor eigenvalues spacing of the GOE matrices PeDE (8) 
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Figure 5. Nearest-neighbor spacing distribution Pnn (s) of unfolded eigenvalues ~i of 
cross-correlation matrix C. 

suggests, that the positions of two adjacent empirical unfolded eigenvalues at the 

distance s are correlated just as the eigenvalues of the RMT matrices. 

Next, we took on the distribution Pnnn (s') of next-nearest-neighbor spacings 

s' == ~k+2 - ~k between the unfolded eigenvalues. According to [841 this distribution 

should fit to the distribution of nearest-neighbor spacing of the GSE. "Ve demonstrate 

this correspondence in Figure 2.4. The solid line shows POSE (s). Finally, the 
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Figure 6. Next-nearest-neighbor eigenvalue spacing distribution Pnnn (s') . 

long-range two-point eigenvalue correlations were tested. It is known [69, 51, 68], that 

if eigenvalues are uncorrelated we expect the number variance to scale linearly with l, 

(I;2 '"" l). Meanwhile, when the unfolded eigenvalues of C are correlated, I;2 approaches 

constant value, revealing "spectral rigidity" property of an R~IT spectrum [69, 51, 681. 

In Figure 2.5, we contrasted Poisson ian number variance with the one we observed, 

and came to the conclusion that eigenvalues belonging to the "bulk" clearly exhibit 
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universal RMT properties. The broadening parameter a = 8 was used in Gaussian 

broadening procedure to unfold the eigenvalues Ai [82, 83, 65, 81]. The dashed line 

corresponds to the case of uncorrelated eigenvalues. These findings show that the 
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Figure 7. Number variance ~2 (l) calculated from the unfolded eigenvalues ~i of C. 

system of inter-VLAN traffic has a univer·sal part of eigenvalues spectral correlations, 

shared by broad class of systems, including chaotic and disordered systems, nuclei, 

atoms and molecules. It can be further concluded, that the bulk eigenvalue statistics of 

the inter-VLAN traffic cross-correlation matrix C are consistent with those of real 

symmetric random matrix R, given by Eq. (40) [80]. lVleantime, the deviations from 

the RMT contain the information about the system-specific correlations. The next 

Section is entirely devoted to the analysis of the eigenvalues and eigenvectors deviating 

from the RMT, which signifies the meaningful inter-VLAN traffic interactions. 

F The eigenstatistics as visual analytics 

In this section, we demonstrate the use of the RMT based statistics and general 

eigenstatistics as visual analytics in congestion control, network monitoring and traffic 

anomaly detection. First, to establish the visualization techniques we will give the 

formulation of the statistics, their interpretation and visual examples. Then, we 

conduct the experiments on the real traffic time series to demonstrate the usefulness of 

these statistics for visual analysis. 
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1 Inverse participation ratio 

We turn our attention to eigenvectors of inter-VLAN traffic cross-correlation 

matrix C, determined by CUk = AkUk, where Ak is k-th eigenvalue. Particularly 

important characteristics of eigenvectors is its inverse participation ratio (IP) (see, for 

example, Ref. [69]). The predictions are that all components participate in the 

eigenvectors of random interactions , while the number of significant contributors in 

eigenvectors of meaningful interactions is few. The IPR quantifies the reciprocal of the 

number of significant components of the eigenvector. For the eigenvector uk it is 

defined as 
N 4 

Ik == L [un , (52) 
1=1 

where u7, l = 1, ... , 497 are components of the eigenvector uk. 
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Figure 8. Inverse participation ratio as a function of eigenvalue A. 

The IPR is quite indicative in terms of signaling the number of significant u~, 

i.e. "contributors" to the eigenvector of interest. For example, if we have reasons to 

expect absence of correlations between routers input into the experimental data, h (0) 

should have its value around 1/ VN. Indeed, the eigenvector is normalized, thus 

L~1 [u~t = 1. It has N components, and they are all roughly the same in magnitude 

(otherwise correlations must be present). Therefore, u~ -:::: I /VN, and Ik (0) -:::: I /N. 
Note, that since N is typically much greater than 1, any finite value of IPR signals 

localization (decrease in the number of eigenvector contributors) in inter-VLAN traffic. 

In Figure 2.6 we plot the IPR of eigenvectors of cross-correlation matrix C as a 

function of spectral variable A. The control plot is the IPR of eigenvectors of random 

cross-correlation matrix R of Eq. 40. As we can see, the eigenvectors corresponding to 
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Figure 9. Dropped packets per second, (a) congested traffic and (b) uncongested traffic. 

eigenvalues falling between 0.25 to 3.5, (which is within the RMT boundaries), have 

IPR close to O. This means that almost all components of eigenvectors in the bulk 

interact in a random fashion (number of components, 1/0 ~ (0). 

Another observation which we derive from Figure 2.6 is that the number of 

significant participants is considerably smaller at both edges of the eigenvalue 

spectrum. In other words, the IPR of eigenvectors, which signify the traffic collective 

event is high, meaning that there are few eigenvector contributors. Thus, the IPR plot 

can be used as visual tool to monitor the number of nodes involved into the collective 

traffic event. 

The more illustrative example of IP R as a visual analytics for congestion control 

is presented further. 

With the help of OPNET modeler simulation tool, we simulated the network 

layout with the same number of backbone routers and subnets. We have placed the 

nodes with high traffic loads in the simulated layout and insured the loss of utilities 

with the performance statistics provided by OPNET. The congestion of the traffic is 

defined as the loss of utility to a network user due to high traffic loads [85J.The packet 

loss ratio of simulated congested and uncongested traffic are presented in Figure 2.7a 

and 2.7b, respectively. 

The IPR of cross-correlation matrix C versus the position of eigenvalue A in 

spectrum for simulated congested, simulated uncongested, real traffic and control 

(random matrix) are presented in Figure 2.8. The control green line is the IPR of 

eigenvectors of random cross-correlation matrix R of Eq. 40. Blue line is IPR of real 

traffic. Yellow and red lines are IPR of simulated uncongested and congested traffic 

correspondingly. As we can see, eigenvectors of real and simulated uncongested traffic 

(blue and yellow lines) are closer to the control IPR. The IPR of congested traffic (red 
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Figure 10. Inverse participation ratio as a function of eigenvalue A. 

line) shows the higher localization level. The localization signifies the restrictions in 

communication or correlation pattern formation. Even though there are still islands of 

freely communicating network nodes, the number of nodes involved in such 

communication decreases. The system attempts to keep the balance by dropping the 

packets, which is testified by packets loss ratio measurement. 

2 Stability of inter-VLAN traffic interactions in time - overlap matrix 

We assume that the health of inter-VLAN traffic is expressed by stability of its 

interactions in time. Meanwhile, the temporal critical events or anomalies will cause 

the temporal instabilities. The "deviating" eigenvalues and eigenvectors provide us 

with stable in time snapshots of interactions representative of the entire network. 

Therefore, these eigenvectors judged on the basis of their IPR can serve as monitoring 

parameters of the system stability. 

We expect to observe the stability of inter-VLAN traffic interactions in the 

period of titue used to compute traffic ctoss-coit'elatiou mattiX C. The eigellvalues 

distribution at different time periods provides the information about the system 

stabilization, i.e. about the time after which the fluctuations of eigenvalues are not 

significant. Time periods of 1 hour, 3 hours and 6 hours are not sufficient to gain the 

knowledge about the system, which IS demonstrated in Figure 2.9a. After 1hour the 

system-specific eigenvalues are very high and sketchy and differ from eigenvalues after 

3 hours period and after 6 hours period. In Figure 2.9b the system stabilizes after 1 

day period. To observe the time stability of inter-VLAN meaningful interactions we 
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compute the "overlap matrix" of the deviating eigenvectors for the time period t and 

deviating eigenvectors for the time period t + T, where 

t = 60h, T = {Oh , 3h, 12h, 24h, 36h, 48h}. 
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Figure 11. (a) Eigenvalues distributions of traffic streams correlation matrix C for 1 
hour, 3 hours and 6 hours time intervals. (b) Eigenvalues distributions for 24 hours, 48 
hours and 72 hours 

For "overlap matrix", first, we obtain matrix D from p = 57 eigenvectors, which 

correspond to p eigenvalues outside of the RMT upper bound A+. Then we compute 

"overlap matrix" 0 (t , T) from DAD~, where Oij is a scalar product of the eigenvector 

ui of period A (starting at time t = t) with u j of period B at the time t = t + T, 

N 

Oij (t, T) == L Didt) Didt + T) (53) 
k=l 

The values of Oij (t, T) elements at i = j, i.e. of diagonal elements of matrix 0 will be 

1, if the matrix D (t + T) is identical to the matrix D (t). Clearly, the diagonal of the 

"overlap matrix" 0 can serve as an indicator of time stability of p eigenvectors outside 

of the RMT upper bound A+. The gray scale color-map of the "overlap matrices" 

o (t = 60h , T = {Oh , 3h, 12h, 24h , 36h, 48h}) is presented in Figure 2.10. Black color of 
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gray scale represents O ij = 1, white color represents O ij = 0. At lag T = 3 hours the 

Figure 12. The gray scale of matrix 0 (t, T) at t = 60h and T =0, 3, 12,24,36, 48h. 

inter-VLAN interactions show the highest degree of stability. For further lags the 

overall stability decays. As the analysis of deviating eigenvectors content showed, the 

highly interacting traffic time series are time series of service based VLANs, intended 

for routing. In fact, we found three types of connections groupings. One group 

contains connections, which are interlinked on the router. We recognize them as, 

VLAN_X-router incoming traffic connection, VLAN_X-router_firewall connection 

and VLAN _X-router outgoing traffic connection. The connections , which are listed as 

VLAN_ Y-router1, VLAN_ Y-router2 , VLAN_ Y-router3 , etc ... , are reserved for the 

same service on every router and comprise another group. Final group of VLAN-router 

connections constituted of connections, which interact due to the routing. Particular 

network services are evoked at the same time and active for the same period of time, 
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which explains the stability and consequent decay of deviating eigenvectors of traffic 

interactions. 

3 Meshgrid of eigenvector components and spatial-temporal 

representation of traffic load 

At any time the readings from the nebvork nodes give an instantaneous traffic 

load pattern. This pattern can be viewed as an expansion in terms of eigenvectors of 

matrix C in the following sense. An eigenvector Uk is a set of different intensities of 

network-wide traffic load satisfying 

Among possible configurations of network-wide traffic load uk is an amount of traffic 

load on a particular node. Then, ratio ui/Gk is equal to the number of nodes involved 

in the mutual interaction. For a variance of a traffic load at a given node we get: 

At this point we can employ the result of Eq. (31) to realize, that the variance of the 

traffic load at a given node is specified by the corresponding eigenvalue: (J~ = Ak. Once 

again, this is true for a network-wide traffic described by the Uk. By contrast, there is 

no correlation between two network-wide traffic loads attributed to two eigenvectors Uk 

and Ul: 

With this in mind, if we mesh-grid the eigenvector components against time we will 

obtain the dynamics of particular network-wide traffic load in space, due to precise 

location of significant components, and time. The mesh-grid of last eigenvector U
497 

components for time period t + T, where t = 36 hours and T = 6n, n E {O, 1, ... , 7} is 

shown on Figure 2.12. 

Most recent research on network traffic analysis focuses on observing temporal 

dynamics of traffic and effects from user and protocol behavior [86]. In such analysis, 

detailed Internet Protocol (IP) packet traces on individual links reveal the 
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characteristics of network traffic at multiple time scales, e.g., rich scaling dynamics 

arising over small time scales, and self-similarity and long-range dependence at large 

time scales [87]. Recently, graph wavelets have been proposed for spatial [88] traffic 

analysis with knowledge of aggregate traffic measurements over all links [89]. This 

method can provide a highly summarized view of traffic load throughout an entire 

network. Despite these advances, spatial and temporal traffic analysis still presents 

difficult challenges, not only because large-scale distributed networks exhibit 

high-dimensional traffic data, but also because current analytical methods require 

examination of large amounts of data, which can strain memory and computation 

resources in even the most advanced generation of desktop computers. Despite these 

inherent difficulties, investigation of spatial-temporal dynamics in large-scale networks 

is an important problem because modern society grows increasingly reliant on the 

Internet, a network of global reach that supports many services and clients. Lacking 

means to predict, monitor, and adjust spatial-temporal dynamics, Internet Service 

Providers (ISPs) typically overprovision network capacity, which leads to under-utilized 

resources on average with overloaded hot-spots arising from time to time. Further, the 

Internet appears increasingly vulnerable to attacks and failures [90, 91]. These factors 

suggest a crucial requirement to devise and develop promising tools that can monitor 

network traffic in space and time to identify shifting traffic patterns. Such tools can 

aid in operating and engineering large-scale networks, such as the Internet. \Vhile 

useful network management tools might focus on either offline or online monitoring 

and analysis, the task of network-wide on-line monitoring presents more stringent 

requirements for transferring and handling traffic data in a timely fashion. 

4 Network topological representation of the traffic load 

Another visualization example is inspired by popular among network 

practitioners technique - network topological representation as a graph. The 

network-wide traffic load, expressed by the components of the eigenvector of interest, 

in our case eigenvectors outside of the R1VIT boundaries, can be visualized as an 

indirect graph with active and inactive edges. Active edge corresponds to the traffic 

time series, which is a significant participant in a given eigenvector (traffic load). The 
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illustration of this technique is presented in Figures 11-15. 

5 Experiments with traffic data set to detect anomalies of traffic 

interactions 

Among the essential anomalous events of VLAN infrastructure we can list 

violations in VLAN membership assignment, in address resolution protocol, in VLAN 

trunking protocol, router misconfiguration. The violation of membership assignment 

and router misconfiguration will cause the changes in the picture of random and 

non-random interactions of inter-VLAN traffic. To shed more light on the possibilities 

of anomaly detection we conducted the experiments to establish spatial-temporal 

traces of instabilities caused by artificial and temporal increase of the correlation in 

normal non-congested inter-VLAN traffic. \:Ve explored the possibility to distinguish 

different types of increased temporal correlations. Finally, we observed the 

consequences of breaking the interactions between time series, by injecting traffic 

counts obtained from sample of random distribution. 

Experiment 1 

\Ve selected the traffic counts time series representing the components of the 

eigenvector which lies within the RMT bounds and temporarily increased the 

correlation between these series for three hour period. The proposed monitoring 

parameters show the dependence of system stability on the number of temporarily 

correlated time series (see Figure 2.11). Presented in Figure 2.11.a, left to right are 

eigenvalue distribution, IPR of eigenvectors and the overlap matrix of deviating 

eigenvectors. The same parameters with induced temporal correlation between ten and 

twenty time series are shown on Figures 2.11. band 2.11.c correspondingly. One can 

conclude that increased temporal correlation between ten time series does not affect 

system stability. ~\ileanwhile, when the number of temporarily correlated time series 

reaches the number of significant participants of eigenvector of largest U
497 of largest 

eigenvalues C 22), the system becomes visibly unstable. The largest eigenvalue 

changes from 10 to 12, the tail of inverse participation ratio plot is extended and the 

diagonal of "overlap matrix" disappears 

In addition, we visualize in Figure 2.12 the system instability during temporal 
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Figure 13. Eigenvalues distribution, IPR and overlap matrix of deviating eigenvectors. 

increase of correlation between twenty time series with spatial-temporal representation 

of eigenvector u497
. In Figure 2.12a the spatial-temporal pattern of u497 captures 

precise locations of system-specific interactions of uninterrupted traffic for 84 hours of 

observation. The abrupt change of this pattern in Figure 2.12b indicates the starting 

point of induced correlation between twenty traffic time series usually interacting in a 

random fashion . As we can see the stable pattern of eigenvector U
497 moves to 

eigenvector U 496 , the weights and locations of significant components of eigenvector 

U
496 are suppressed and replaced by the weights and locations of significant 

components of eigenvector U
497 when the interruption ends. Thus, we are able to 

observe the end point of the induced correlations in Figure 2.12c, which represents 

weights of components of eigenvector u496 plotted with respect to the same time 

intervals . With this setup we are able to locate the anomaly in time and space. 

Translated to network topological representation, the behavior of eigenvectors 

U
497 and U

496 during our manipulations with inter-VLAN traffic may be monitored with 

the following graphs (see Figure 2.13). 

Experiment 2 

In the previous experiment we injected just one type of increased correlation 
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Figure 14. (a) The weights of components of u497 plotted for time period from 36 to 84 
hours of uninterrupted traffic with 6 hours interval. (b) The weights of componoents of 
u497 plotted with respect to the same time period, with induced three hours correlation. 
(c) The weights of components of u 496 plotted with respect to the same time period, 
with induced three hours correlation. 

among time series. Now we make two and three different types of induced correlations 

produce different spatial-temporal patterns on eigenvector U
497 components (see Figure 

2.14). Time series for temporal increase of correlation are obtained in the same way as 

in Experiment 1. We temporarily increased the correlation between series by inducing 

elements from distributions of sine function and quadratic function , respectively for 

three hours. In Figure 2.14a, one type of three hours correlation is induced among ten 

traffic time series and another type of correlation among other ten time series. Three 

different types of three hours correlations are induced among twenty traffic time series 

in Figure 2.14b. The sorted in decreasing order content of significant components shows 

that time series tend to group according to the type of correlation they are involved in. 

Experiment 3 

Next we turn our attention to disruption of normal picture of inter-VLAN traffic 

interactions. This can be done by injecting the traffic from random distribution to 

non-randomly interacting time series for three hours. We demonstrate it by examining 

the eigenvalue distribution, the IPR and the deviating eigenvectors overlap matrix 

plotted in Figure 2.15. After 60 hours of uninterrupted traffic, we injected elements 

from random distribution to significant participants of U497 for three hours. The largest 

eigenvalue increases, from 10 to 12. Extended IPR tail shows the larger number of 
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Figure 15. Left column - behavior of 11
497 during time period from 48h to 60h with 6h 

time window, induced correlation starts at 54h and lasts for 3h. Right column - behavior 
of 11

496 in same conditions. 

localized eigenvectors and we observe the dramatic break in deviating eigenvectors 

stabili ty. 

Very often, however, one has to come up with more specific information about 

location of anomaly in the network. Such a detection is highly challenging task given 

stochastic environment . One of the traditional approaches in discerning the intrusion 

or malfunction in traffic from the normal flow of a network is PCA. More recently the 

non-linear extension of PCA, called Kernel PCA (KPCA), similar to the SVM, has 

gained increased popularity. The relevance index in both PCA and KPCA, the 

reconstruction error [[131], which helps quantifying the anomalies, is the subject of the 

next Chapter. 
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Figure 16. (a) The weights of components of u497 plotted for time period from 36 to 84 
hours with 6 hours interval, two different types of induced correlations. (b) The weights 
of components of U497 plotted with respect to the same time period, three different types 
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Figure 17. Eigenvalues distribution, IPR and overlap matrix of deviating eigenvectors 
of inter-VLAN traffic cross-correlation matrix C. 
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CHAPTER V 

CLASSIFICATION WITH FEATURES EXTRACTED BY 

THE RMT 

In this chapter we explain the relationship between linear method for features 

reduction - PCA, non-linear method - KPCA and our algorithm based on the RMT. 

\Ve make our explanations more illustrative with classification task of traffic anomaly 

detection. 

Provided that, the underlying assumption about features (dimensions) 

interaction in the data set is linear, the most efficient way of uncovering structure of 

the data set, is to explore spectral properties of its correlation matrix. PCA turns the 

data set with a number of linearly related features into a smaller number of 

uncorrelated features called principal components or eigenvectors of corresponding 

eigenvalues of the spectra[131. The first principal component accounts for as much of 

the variability in the data as possible, and each succeeding component accounts for as 

much of the remaining variability as possible. Thus, effectively number of new features 

of the data set is reduced to the amount of variability researcher would like to preserve 

in the "new" data set. In new dataset there is no direct connection between original 

variables and new variables. In particular, every new variable is a weighted sum of 

original variables. 

The wide popularity of PCA is backed up by frequent success in many 

engineering and data mining problems. It is really hard to cite all studies and works 

where PCA is successfully used. Enough to say that it is a regular component in any 

standard data mining or multivariate statistical package. The number of failures are 

plenty as well. Even though the method operates on linearity assumption, in most 

cases data is non-linearly polished [4, 51 to provide the starting point for PCA usage. 

Polishing includes outliers removal, and other procedures which create bias in data and 

change the natural distribution of data set variables. 
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assumption about linear relationship between data set variables. Similar to Support 

Vector Machine, KPCA is using a kernel function to map the data into a different 

space with higher dimensionality. In this space, KPCA extracts the principal 

components of the data distribution. 

For the case of two classes in the data set, SVM as tool to find classes 

separating hyperplane in a high dimensional space is proven to be very successful 

[41, 42]. However, when one of the classes is almost not-existent, i.e. the class is a rare 

event, the problem is considered to be a one-class classification or novelty janomaly 

detection. The classifier learns only one class; the learning is actually a process of 

reconstructing data set from principal components of mapped high-dimensional kernel. 

Reconstruction error in a new feature space is then used as a novelty or anomaly 

measure. Reconstruction error computed with the help of KPCA as a measure of 

novelty showed a promising result in early diagnosis of cancer [92]. 

It is not very hard to consider detection of unusual traffic loads and time series 

patterns of network traffic in one-class classification framework. There would be some 

desired properties of the mechanism underlying the reconstruction error computation. 

We would like to make no assumptions about the nature of relationships between the 

features of the traffic data set as well as to skip the non-linear polishing of traffic data. 

Also, we want to be able to explain the contribution of original features to anomalies. 

In case of KPCA, even with high reconstruction error which will signify the high 

separability of background and anomalous data, we would not be able to reveal the 

culprit for network practitioners. The latter have to know what node, or router or 

server of the network has to be monitored closely. 

\Ve propose an algorithm where reconstruction error is computed based on 

spectral intelligence obtained with the help of the RMT. 

A Motivation for reconstruction error 

Reconstruction error in new feature space used in KPCA is geometrically 

motivated and aims at giving lower classification errors than the one-class SVM [92]. 

The reconstruction error recovers circular shapes, including numeral eight, struggles 

with images, like Olympic rings, and has limited success with general longhand. Yet, 
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the overall success with recognition of "novelties" is convincing, and these robustness 

with respect to different noise levels makes construction error into an appropriate tool 

for our purposes. 

Algorithmically this recognition process is broken down in three parts. In first, 

data is split into train subset, which contains only one class and test set with novel 

class. Training part is mapped to non-linear kernel. In second, one reconstructs the 

manifold of test data from spectral decomposition of train data. And finally, the 

reconstruction error is computed. 

The most popular example of the latter is based on the concept of orthogonal 

vectors having zero projection onto each other. For two n-dimensional data vectors, for 

which we assume inner product (X . Y) to have usual Cartesian form, (X . Y) X is, up 

to a constant, projection of Y on X, and (Y . X) Y is, up to a constant, projection of 

X on Y. Hence, reconstruction error could be defined, via 

p = X . X - V X . V X, (55) 

where V is a matrix of eigenvector of correlation matrix C = X T X. In kernel methods, 

the same is true for vectors in feature space, and kernel build upon them. 

Below we analyzed a specific problem of feature selection in the case of forceful 

modifications of time series data. \Ve considered intrusions into the traffic, for which 

the above described difficulty is quite real, but there is a possibility of finding the way 

out. The hope was, that upon comparison of features extracted from the time series, 

before and after the insertion of foreign segment, there would be a unique relevance 

index, quantifying the impact associated with each insertion. And indeed we were able 

to find such a relevance index. The idea behind it is similar to the idea behind the so 

called reconstruction error used in non-linear spectral methods. 

B Reconstruction error used in peA and RMT based algorithm 

In our analysis we used similar construct. Except, first, we had done feature 

selection in accordance with two deferent methodologies. Specifically, for PCA, we 

restricted set of features used in subsequent analysis to eigenvectors contributing to 

90% of net variance (trace of correlation matrix). For our algorithm, we look at the 
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spectrum from a different point of view. The eigenvalues are split into three groups, 

according their role in the dynamics of the network: bulk eigenvalues (those within 

RlVIT bounds), left deviating eigenvalues, and right deviating eigenvalues. Either of the 

three could be a good group of features for the purposes of finding the "novelty", i.e. 

intrusion. 

Hence we defined an eigen-kernel HT

tr = X tr V, with Xtr, being our train time 

series data - a chunk of the original data, selected before any intrusion, and V is a set 

of principal components in case of the PCA and bulk eigenvectors in case of our 

algorithm. The group of bulk eigenvalues had been selected because of the regular, 

non-random nature of the intrusions. \Ve expected salient features of random 

background to remain unaltered by the types of network disruptions we analyzed. 

If train data of N time series is L1-long, then, for I selected features, 

eigen-kernel ~Vtr is L1 X I matrix of eigen-signals. Similarly we can construct two more 

eigen-kernels for X test and Xalt, the test and altered traffic time series data. \Ve have 

two L2 x l matrices (L2 = L - L 1) Wtest = X test V and Walt = Xalt if. For each node of 

the network we then define, an impact factors ftr = VVt~Xtr, ftest = Wt~8tXtest' and 

falt = ~VJtXalt' all l x N matrices. 

In order to reduce vectors representing each node in our linearly transformed 

data we define a reconstruction errors through inner products according to 

(56) 

(57) 

for test and altered traffic respectively. The normalization factor is somewhat arbitrary 

and is used for visualization convenience. 

The impact factors can be interpreted as matrix elements of selected feature 

basis in data space, and, therefore, reconstruction errors help to identify those nodes 

that changed their decomposition, and hence, experienced intrusion. Once again, the 

only difference in PCA and RMT algorithms was the way matrix V had been 

constructed. 
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C Insertion experiments 

The main difficulties in diagnosing the attack or disruption of service are related 

to speed of detection and precision in locating the origin of abnormal traffic. Since we 

take statistical approach, solution to both problems can be reduced to analyzing time 

series correlations, computed for a selected interval. The length of the interval, and 

most importantly, corresponding diagnostic accuracy are key factors in judging of a 

particular method. 

\:Ve ignored topological differences, and assumed that any router of our network 

could be the target. The sources of disruption were chosen at random. The primary 

characteristics of the abnormality aside from rate of its change, were number of 

affected routers, affected time interval, and relative power. By varying these 

parameters we tested robustness and sensitivity of both methods, the one based on 

traditional peA and the one involving the RMT. 

The form of the insertions models several known attack strategies. In particular, 

we attempted to recognize abrupt and gradual rates of change of the disruptions. The 

latter had taken place simultaneously, at several locations, whose number, as we 

already mentioned, are part of the parameter space. \:Ve used three forms of insertions, 

and run our analysis on the resulting correlation matrices. For each insertion we fixed 

two parameters, while changing the third one. 

The first type of increasing rate attack had rectangular shape in logarithmic 

difference scale of time series. The height of the rectangle describes the power, and the 

length measures the extent of the attack. This was an example of distributed 

disruption of service (DDOS) [93], which involved sudden change in temporal pattern 

of the traffic. 

Then, we considered attacks with gradually increasing rate of change in traffic 

volume. In our simulation, several time series had their actual values removed and 

replaced with the segment, characterized by the linear increase on logarithmic scale. 

The shape of the disruption is, in general, a trapezoid, fully specified by its mean base 

- the power, and its height - the span. 

And finally, we simulated a less trivial transient behavior of affected network 

nodes. The log-scaled insertion segments had a form of exponential. Despite 
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complicated functional dependence, 9insertion rv exp {cd + ,8}, with C\' and ,8 being 

randomly chosen real numbers, and t - integer increments of /}.t, such a DDOS can 

again be defined in terms of two main parameters. We could still defined both Length 

of the attack and certain average power. 

Our analysis of correlations in network with DDOS is fully tantamount to 

macroscopic monitoring of the traffic and the following real time algorithm. For a 

given time interval L, and number of nodes N, we slice traffic data into "train" and 

"test" subparts. The time-lag needed for averaging in calculation of matrix C, could 

be, for example, L/2. vVe then, compute reconstruction error, using the most 

appropriate method (determined below). Depending on the outcome, the train part of 

the data set can be either extended, kept the same or replaced with the test, provided 

that the latter is free from DDOS. Thus, in the next subsection, we focused on 

demonstrating the superiority of one of our chosen methods over the other. 

As far as general spatial-temporal correlations approach to the attack 

diagnostics, is concerned, it had been developed over the years (see, for example, ). 

The abnormalities we considered here are similar to the ones brought up in reference 

[93]. Apart from practical importance of these examples, this work also discusses 

technical expenses of methods targeting spatial-temporal correlations. 

D Comparison of reconstruction errors computed with PCA and RMT 

The aim of this subsection is to provide a clear support for the linear methods in 

the face of DDOS diagnostics [93]. In particular, we intended to show, that the RMT 

eases feature extraction, when the reconstruction error is used in novelty recognition. 

Both methods we examined provide significant dimensional reduction in 

selection of the features. Except, in case of the peA, we have a rather nonrestrictive 

variance criteria, while an algorithm involving the R~IT only imposes certain 

boundaries on values Land N, but other than that, is free from the externally 

specified conditions. 

Once the orthonormal eigen-basis is found for a given C, computed either for 

real traffic or a modified one, we used the RMT boundaries to select the eigenvectors 

corresponding to the bulk. These are then, used to construct eigen-kernels, impact 
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factors, and corresponding reconstruction errors. The procedure was similar for the 

PCA except, eigenvectors we used were selected based on the ninety percent 

contribution to variance criteria. After that, Eqs. (56) and (57) produced all the 

necessary information on abnormalities in test traffic. 

The classification performance on traffic data was evaluated using ROC curves. 

A ROC curve plots the fraction of test pat terns correctly classified as anomalous (true 

positives) versus the fraction of patterns incorrectly classified as anomalous (false 

positives) to illustrate the performance oyer all possible decision thresholds. To 

compute such a curve, first, the reconstruction error Pi was evaluated for all test 

patterns i. Second, the set {Pi} was sorted according to the p-values. Finally, by 

counting how many novel and ordinary samples are above a decision threshold taken 

between two neighboring p-values, the fractions of false and true positives are readily 

available. Thus, for each Pi, there is a point on the ROC curve. Together, these points 

cover the full range of false positives: from 0 to l. 

In Figures 18.a and 18.b we presented ROC curves for several values of 

parameter p, the fraction of disturbance affected nodes. The insertion is a simple 

rectangle with the height of the same order as mean variance of the log-scaled time 

series. The length of the rectangle is about one tenth of the total length of the time 

series. For small values of p both methods show low level of success. The situation 

improves when the percentage of sites with altered traffic is higher than ten. The 

progress is considerably bigger for the RMT based method. 

As we fix p and alter parameter I, the ratio of the length of the rectangular 

insertion the net length of time series, the ROC curves become even more eloquent. 

Standard PCA fails along the full range of the parameter. By contrast, the RlVIT 

feature selection works perfectly, as it can be seen in Figures 18.c and 18.d. 

Furthermore, the superiority of the RMT selection is transparent, when both p and I 

are unchanged, while power of the attack, governed by h, the ratio of the height of the 

rectangle to mean variance of the affected series. The ROC curves are presented in 

Figures 18.e and 18.f. 

Next we had begun to introduce linearly varying DDOS. Once again we varied p 

first, keeping the rest of the parameters constant. Figures 19.a and 19.b illustrate the 
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Figure 18. ROC curves of reconstruction error at constant rate attack. Left column 
ROCs of PCA, right column ROCs of RMT. ROC dependence from number of involved 
nodes is on row I, from length of attack is on row 2, from intensity of attack is on row 
3. 

fact , that PCA detector is very inconsistent, inaccurate for most of the considered 

values. However, with the help of the RMT, the diagnostics procedure becomes almost 

flawless, once at least one tenth of the network nodes is compromised. 

Increasing the span of the attack l creates even greater separation between two 

feature selection methods. In fact , as we see from comparison of Figures 19.c and 19.d, 

the PCA uniformly fails throughout the range of l. Meantime, its rival, does 

remarkably welL Then, we repeated the procedures for the case of increasing 

parameter h, characterizing the DDOS power. This time, the PCA approach to 

construction of feature based kernel is consistently off (Fig. 19.e). The RMT-governed 

diagnostics, on the other hand, works perfectly, even for relatively small linearly grown, 

in log-scale, disturbances (Fig. 19.f). 

Finally, we turned to the injections with more rapid rates of traffic growth, i.e. 

the disturbances characterized by the exponential time dependence on a log-scale we 

used throughout this work. In Figures 20.a and 20.b we displayed the outcome for 
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Figure 19. ROC curves of reconstruction error at linear rate attack. Left column ROCs 
of PCA, right column ROCs of RMT. ROC dependence from number of involved nodes 
is on row 1, from length of attack is on row 2, from intensity of attack is on row 3. 

different values of participation p. The PCA backed approach exhibited occasional 

success together with simultaneous bogus results. Our second method had also 

struggled a bit with large number of affected routers. Yet, it had been quite 

dependable across the entire range of p. 

As far as the experiments, with the span of the injections l , are concerned, the 

picture is largely the same. Our method struggled with extremely short DDOS, but 

had been foolproof in the rest of the instances, as can be witnessed in Figure 20.d. But 

its PCA counterpart in Figure 20.c, demonstrated consistent fallacy. 

And, at last, we varied the power governing parameter h. The results are close 

to the ideal for both methods. However, the RMT procedure has a slight, but 

unquestionable edge (cf. Figures 20.e and 20.f). 
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Figure 20. ROC curves of reconstruction error at exponential rate attack. Left column 
ROCs of PCA, right column ROCs of RMT. ROC dependence from number of involved 
nodes is on row 1, from length of attack is on row 2, from intensity of attack is on row 
3. 

E Conclusion and recommendations 

We proposed a new algorithm for anomaly or time series pattern detection in 

network traffic. The detection power based on the reconstruction error of test data set. 

Test data set is reconstructed from partial spectral space of train set, where part of the 

spectrum is defined by RMT boundaries. 

The benefits of our approach over PCA are the following: we do not make 

assumptions about the nature of relationships between the features of the traffic data 

set in our case features are nodes of the network. We avoid non-linear polishing of the 

data, in particular we do not perform any transformation of the variables except for 

logarithmic, correspondingly we are not concerned with outlier detection. The 

reconstruction error is susceptible to the value of variance allowed ·in the dataset, thus 

in case of PCA variance becomes a parameter of reconstruction error. RMT, on the 

other hand, gives precise solution for defining the boundaries of the spectrum, which is 

going to be reconstructed. 

72 ~ . 



With high separation power of KPCA reconstruction error comes the high 

computational price. Mapping large dataset to high dimensional kernel, and storing 

the kernel are computationally intensive. Our method is no more expensive than 

simple PCA. Another advantage is that we are able to interpret the detected novelty or 

anomaly by mean of original features, in our case nodes of the network. For network 

specialists, the kernel feature space is not very helpful environment to monitor the 

network. 

Based on the results of our simulations, we would like to pin point several 

observations: larger the proportion of nodes involved into the anomalous activity, 

longer the intrusion, higher the intensity of intrusion, easier its detection. Our 

algorithm allows to detect the constant rate intrusion when 15% of the network is 

involved, linear rate intrusion when as low as 10% of the network is involved and 

exponential rate intrusion when only 5% of the network is affected. At constant and 

linear rate intrusion our algorithm needs from 20% to 25% of time window, at 

exponential rate intrusion it detects the attack as early as 10% of the time of the 

attack. The intensity of the traffic during the attack at constant and linear rate has to 

be two times higher than intensity of normal traffic. At exponential rate of the attack 

algorithm is sensitive even to the half of the intensity of normal traffic. 
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CHAPTER VI 

CLUSTERING WITH FEATURES EXTRACTED BY THE 

RMT 

It turns out, the possibility of improving traditional methods with the insights 

given by the RNIT, goes beyond the framework of time series analysis. In this Chapter 

we took on another data set, of completely different nature, which is equally important 

in applications. \\le demonstrate, that hierarchical clustering algorithm, aided by the 

Ri\'IT, has a strong potential to broaden our scope from the discovery of network 

disruption, to the discovery of cancer. 

Measure of similarity is most important step in any type of clustering, since 

definition of the cluster is subset of similar data points. \Ve propose a new algorithm, 

which uses techniques of the RMT to identify and remove noise from 

similarity! distance matrix. After noise undressing the distances, we use an average 

linkage hierarchical clustering. New algorithm is tested on benchmark dataset of two 

leukemia types introduced by Golub et all in 1999 [941. Obtained clusters are validated 

externally employing apriori knowledge of classes and internally, evaluating 

compactness of individual cluster and disparity between different clusters. Proposed 

algorithm clearly produces two clusters for two types of leukemia, moreover it identifies 

T and B cells subclusters of one type of leukemia. Our algorithm is scalable due to 

RMT assumptions of infinite length of data points. Compared to other clustering 

techniques for high dimensional data, it allows us to avoid the dimensionality redu?tion 

problem. 

A Classification task and similarity measure 

Clustering is an important data exploratory tool. It is defined to recognize 

subsets of data which are similar in a certain way. Besides revealing the natural 
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ground for supervised learning. Thus, it can be exploited in classification task. 

Clustering techniques vary by the type of dataset partitioning and assembling 

the clusters. In hierarchical algorithms successive clusters are assembled from 

previously established clusters in a bottom-up or top-down fashion. Each data point in 

bottom-up algorithm is a separate cluster, which can be merged with other clusters 

into a higher level larger cluster. Divisive or top-down clustering considers the whole 

dataset and divides it into successive clusters. Partitional algorithms typically 

determine all clusters at once, which implies apriori knowledge of number of possible 

clusters in the dataset. Density-based and self-organizing map types of clustering are 

defined to determine dense regions in the dataset and form arbitrary-shaped clusters. 

Regardless of the clustering methodology there is a general criteria of good 

clusters, that is the inter-cluster relationship between data points have to be stronger 

than intra-cluster relationship, i.e. points in one cluster have to be more similar than 

points in tvvo different clusters. Hence, the most essential step in any clustering is to 

establish the clear relationship between data points and to transform this relationship 

into appropriate distance or similarity measure. 

The main challenge in clustering the real life applications such as image 

recognition, robotics, gene micro arrays, document categorization, networks dynamics, 

is dimensionality of the data [99]. There are two general approaches to the problem, 

reduction of data dimensionality or data subspace search [100, 10lJ. Graph 

partitioning, manifold learning, Support Vector Machine are few among various 

methods of subspace searching, which are usually computationally involved. Popular 

approach to dimensionality reduction is spectral decomposition of data matrix and 

PCA [102]. Latter is computationally less demanding, number of selected components 

is based on certain variance threshold accepted by community without rigorous 

statistical confirmation. In PCA, there is no one-to-one correspondence between 

reduced and original variables, since new variable or principal component is a linear 

combination of all old variables. 

In this Chapter, we propose the clustering algorithm which assumes infinite 

dimensionality of the data. In fact higher dimensionality of the data matrix will 

improve the clustering results. Pairwise relationships between data points are usually 
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presented by a correlation matrix. "Ve employ the RNIT techniques to identify and 

remove noise from correlation matrix. Once correlation matrix is noise undressed it is 

transformed into the distance/similarity matrix. Consequently, distances are fed into 

the hierarchical clustering algorithm. The choice of clustering algorithm after RNIT 

steps is dictated by the application. \:Ve apply our algorithm to gene expression data, 

for which the hierarchical clustering is proven to be a successful method. Results of 

this type of clustering are naturally explained, since data points in bio-domain are very 

often hierarchically related. 

B Clustering in different contexts 

One of commonly used measurement of linear relationship strength between two 

variables is Pearson correlation coefficient. For multiple variables, pairwise variables 

relationships are represented by symmetric correlation matrix. Similarly, correlation 

matrix may be constructed from pairwise relationships between data points. In 

different applications different relationships are considered either between variables or 

between data points. Sometimes, both types of relationships are used to distinguish 

substructures or meaningful groups and clusters. Financial applications, for instance, 

are mostly focused on correlations between stock returns, since successful portfolio 

diversification benefits from identification of similar stocks. Biological applications, 

particularly gene expression analysis, make use of two-way clustering, where, 

correlations between different data points are examined after the correlations between 

different genes. Latter may reveal functional genes clustering and sometimes 

substantially reduces the number of variables in data points. Unfortunately, the 

correspondence between genes and new variables becomes non trivial in this case. 

The further analysis of variables or data points relationship is sensitive to the 

presence of random noise in correlation matrix. \:Vith noise undressed correlation 

matrix of financial time series Giada and lVIarsili uncovered the clusters of companies 

belonging to the same economic sectors [103]. Series of studies on filtering eigenvalue 

spectra of correlation matrix of stock returns [65] revealed their clustering structure 

and demonstrated time stability of these clusters. In 2005, Kim and Jeong proposed 

systematic decomposition of correlation matrix into random and non-random parts 
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[861. They showed that unfiltered correlation matrices fail to identify groups of related 

stocks. Removing the noise from correlation matrix of genes, Luo et all [104]' 

constructed gene-co-expression networks and proposed predicting function for unknown 

genes. 

lVlotivated by these results and our own studies on noise extraction from 

correlation matrices of complex traffic networks [109], we develop clustering algorithm 

which uses techniques of noise identification with the help of RlVIT. 

C RMT based hierarchical clustering 

Given the data matrix A of size N x L, where N is the number of data points 

and L is the number of variables, our algorithm starts with computing the correlation 

matrix G of size N x N. Next, singular value decomposition of G is performed, thus 

eigenvalues A and eigenvectors V are obtained. lVlaximum eigenvalue is an overall 

variance of linear combination of N components. In financial data it corresponds to so 

called global market variance, while in gene expression data it represents the variance 

of dominating organism/class or family of related genes. Algorithm removes the 

influence of largest eigenvalue by finding projection Xmax = XVmax and linear fit of 

every data point to this projection. The difference between linear fit and X is a new 

dataset Xresidual for which new correlation matrix Gresidual and corresponding 

eigenvalues A and eigenvectors V are calculated. Algorithm proceeds with RtvIT tests if 

size of data matrix satisfies the following requirements: 1r = Q > 1 , since boundaries 

of eigenvalue spectra where the RMT tests are applicable lie within [A_, A+ 1 [80], where 

1 {1 
A± = 1 + Q ± 2Y-Q. 

Once, tests confirm the presence of random matrix within the corresponding spectral 

boundaries, correlation matrix Gresidual is decomposed to two parts [861: 

Gresidual = Grand + Gnon-rand, 

Gnon-rand = L Aj Vj VjT, 
j 
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where i and j run over Rr../IT and non-R1IT eigenvalues respectively, and eigenvector 

notation is kept as V, even though they are calculated for a residual matrix. Algorithm 

keeps only second term in Eq. (58) and disregards the first. The goal is to remove from 

correlation matrix the influence of random eigenvalues, i.e. the noisy relationship 

between data points. Pearson's correlation coefficients is not a particularly good metric 

in data space [105]. It is not positive definite, and arbitrary shift does not make it into 

one. Furthermore, the triangular inequality as well as zero distance axiom require 

additional reformulation for G ij . The way out was found by Mantegna [105], who 

studied taxonomy of financial data with the aid minimum spanning tree of portfolios. 

He proposed the following alternative to the matrix G: 

D = (1 - G)1/2 . (61 ) 

Here, the elements of distance matrix D possess all the necessary properties required 

by the metric axioms, and thus, can serve as a proximity measure during clustering. 

The crucial step in algorithm is in returning to the idea of distance matrix, 

which now no longer reflects properties of sample to sample correlations. Indeed, 

D = (1 - Gnon_rand)1/2. For example, if for strongly correlated samples (Gij ~ 1), in 

the original matrix, we had vanishingly small distance Dij ~ 0, now, diagonal elements 

of Gnon-rand are not equal to unity. As a result, the diagonal of D can be safely 

ignored. However, the values of other matrix elements Gnon-rand reflect the pattern we 

are trying to recover, in spite of the lack of interpretation as Pearson's coefficients. 

This makes D a perfect input for clustering algorithm. 

In hierarchical clustering part of the algorithm, two clusters are merged such 

that, after merger, the average pairwise distance within the newly formed cluster, is 

minimum. Clusters having minimal distance iteratively merged, such that the new 

cluster, on average, possesses minimum pairwise distances between the points in it. 

External validation of obtained clusters is possible if some portion of data is 

labeled [106]. Jaccard and Rand indices show the level of agreement between a set of 

class labels C and clustering result K. The Jaccard index is determined by the number 

of point pairs assigned to the same cluster in two partitions: 

a 
J (C,K) = b . 

a+ +c 
(62) 
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Here a stands for the number of pairs of points with the same label in C and assigned 

to the same cluster in configuration K, b denotes the number of pairs with the same 

label, but in different clusters, and C is the number of pairs in the same cluster, but 

with different class labels. The Jaccard index produces a result in the range of 0 and 1. 

The value of 1.0 indicates that C and K are identical. Rand index is normalized to 

unity and positive: 

a+d 
R(C,K) = b d' a+ +C+ 

(63) 

A new variable d stands for the number of pairs with a different label in C, assigned to 

a different cluster in K. Note that high value for this index generally indicates high 

degree of agreement between clustering and the annotated natural classes. 

Internal validation checks that clusters are compact and clearly separated. For 

any partition of clusters, let Ci represent the i-th cluster of such partition. The Dunn's 

validation index d is computed according to: 

d . [ . { o (Ci,Cj) }] = mIn mIn , 
l:Si:Sn I:Sj:Sn,if-j maxI:Sk:Sn {( 0' (Ck))) 

(64) 

where 0 (Ci' Cj) - distance between clusters Ci and Cj, 0' (cd - intracluster distance of 

cluster Ck, and n is a number of clusters. The main goal of the measure is to minimize 

the intracluster distances and maximize the intercluster distances. Note, that the 

number of clusters maximizing d, has to be optimal. 

The Silhouette index is another popular measure of validity. As described in 

[106], the Silhouette validation technique calculates the silhouette width for each 

sample, averages silhouette width for each cluster and overall average silhouette width 

for the entire data set. Using this approach each cluster could be represented by the 

silhouette, based on the comparison of cluster's separation and tightness. The average 

silhouette width is then applied to evaluation of clustering validity and decision on 

goodness of the number of selected clusters. In order to construct the silhouettes S (i), 

the following formula is used: 

S(i)= (b(i)-a(i)) 
max (a (i) , b (i)) , 
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Algorithm 1 RMT based Hierarchical Clustering Algorithm 

1. For data matrix A of size N x L, where N is number of data points and L is 
number Of variables, compute correlation matrix C of size N x N 

2. Compute correlation matrix Cresidual removing the influence of largest eigenvalue 
Amax 

3. Compute eigenvalues A and eigenvectors V of Cresidual 

4. Identify boundaries [A_, A+], run RMT tests. 

5. Using results of step 3, run decomposition: Cresidual = Crand + Cnon-rand. 

6. Transform matrix Cnon-rand to distance matrix D, according to D 
(1 - Cnon_rand)1/2. 

7. Build hierarchical tree of distances. 

8. Assign clusters based on cut off value. 

9. Validate clusters internally and if labels are available externally. 

where a (i) is an average dissimilarity of i-th object from all other objects in the same 

cluster, and b (i) is a minimum of average dissimilarity of i-th object from all objects in 

another (closest) cluster. 

As we see from Eq. (65) that -1::::; S (i) ::::; 1 . If it is close to 1, the sample is 

thought to be 'well-clustered' and is assigned to an appropriate cluster. If silhouette 

value is close to zero, it means that the sample has to be assigned to another closest 

cluster as well, and the sample lies equally far away from both clusters. Now, if 

silhouette value is close to -1, the sample is taken for 'misclassified' and is thought to 

lie somewhere in between the clusters. The overall average silhouette width is average 

S (i), computed for all objects of the entire dataset. Note, that the largest overall 

average silhouette indicates the best number of clusters. 

D Clusters in leukemia dataset 

Early diagnostics is crucial for successful treatment. ~Iotivated to identify and 

predict two close types of leukemia Golub et all have introduced the dataset with 72 

bone marrow samples of acute myeloid leukemia (AML) and acute lymphoblastic 
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Figure 21. Polar dendrogram of denoised distance matrix, terminal nodes are labeled 
with respect to their ALL or AML correspondence."L" is ALL, "M" is AML. 
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Figure 22. Polar dendrogram of denoised distance matrix, terminal nodes are labeled 
with respect to their ALL B-/ T-cells or AML correspondence."M" is AML, "L" is B-cell 
ALL and "T" is T-cell ALL. 

leukemia (ALL) [941. Dataset became a clustering benchmark since it is real, 

not-simulated, typical gene expressions array with very large number of genes and 

small number of samples. 

Data matrix A with L = 7129 genes and N = 72 bone marrow samples is 

publicly available at: http) / www.broad.mit.edu/ cgi-bin/ cancer/ datasets.cgi. The 

results of walking the data through the RMT based clustering algorithm visualized in 

Figure 21. At the cut off distance 1.5, hierarchical three splits into two branches, and 

into three branches at the cut off distance 1.46, which is shown in Figure 22. 

Optimal number of clusters identified by RMT based clustering is three, which 
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Figure 23. Validating Clusters indices. Adjust Rand and Jaccard indices are so called 
"external" validators, they use the external available information about class assign­
ment. Dunn and Silhouette indices are "internal", they evaluate individual quality of 
the cluster, such as its compactness and separability from another cluster. 

validated by highest Rand and Jaccard indices in Figure 23. It turns out that ALL 

samples are of tvvo types: from T-cell and B-cell lymphocytes. Several algorithms 

developed for micro array clustering and tested on Golub's data are able to recognize it 

[1071· 

Judged not by available labels but rather by quality of clusters themselves, 

RMT based clustering produces two most compact and easily separable clusters 

corresponding to AML and ALL types. 

The comparison of partitional and hierarchical clustering algorithms on this 

dataset is presented in Figure 24. The data are subjected to a series of standard 

pre-processing steps: lower and upper threshold values (raw expression values of 100 

and 16 000, respectively) are applied, the 100 genes with the largest variation across 

samples are selected, and the remaining expression values are log-transformed. The 

resulting dataset of size 38 x 100 is subjected to a cluster analysis under Euclidean 

distance. Altogether, evidence accumulation over the set of employed validation 

techniques indicates a high quality of the three-cluster solution discovered by k-means, 

SOM, SOTA and average link. The evaluation under the adjusted Rand Index 

(comparing to the known class labels) shows that average link, k-means, SOTA and 

SOM perform robustly on these data. They identify the three main clusters (AML, 

B-lineage ALL and T-lineage ALL), and assign most of the samples correctly. 
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Figure 24. Adjusted Rand Index, Silhouette \Vidth, Dunn Index and stability (averages 
over 21 runs) for k-means, SONI, SOTA, average link and single link agglomerative 
clustering on the Leukemia test set, adapted from [1071. 

Naturally, this is knowledge that would not be available in a real-life cluster analysis, 

and it is therefore interesting to see whether the results under the internal validation 

measures would have led to the same conclusion. The performance curves under the 

Silhouette Width clearly indicate the high quality of the three-cluster solution. The 

stability-based technique is less consistent: for k-means and SOlVI, the performance 

peak at k=3 is well pronounced, but it is much weaker for SOTA and average link. 

Both the Silhouette Width and the stability-based method indicate the lack of 

structure in the single link solutions. The application of the Dunn Index is somewhat 

less successful: it fails to predict the insufficiency of single link, and it mis-estimates 

the number of clusters for average link. 

E Summary of clustering results 

The luxury of having labeled sample in the dataset is not always present. Thus 

proper clustering among other unsupervised techniques is the only source of reliable 

information for further modeling or classification activities. 

Various clustering techniques have been used on the popular benchmark dataset 

of two close types of cancer with extremely large number of variables and statistically 
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low number of samples. All of them correctly identify cancer types and even cancer 

subtypes at the expense of significant variables reduction [107]. Our experiments with 

removing the noise from correlation matrix of bone marrow samples, showed that clear 

and correct clusters may be obtained from refined distance/similarity matrix without 

reducing the number of genes. Our algorithm is scalable, in fact it benefits from higher 

dimensionality of the data. It does not rely on any dimensionality reduction technique 

and its quality. Since the number of genes in obtained cluster is intact, further genes 

clustering may help to identify clusters of genes within particular type of cancer. 

With RMT tests our algorithm identifies presence of random noise in the 

correlation matrix of data points. Keen decomposing procedure undresses the 

correlation matrix from noise. After astute transformation, elements of de-noised 

correlation matrix possess all the necessary properties required by the metric axioms, 

and thus, can serve as a distance measure during clustering. \:Vith such distance 

matrix correct classes of dataset may be obtained even with the simple top-down 

hierarchical clustering. 
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CHAPTER VII 

FEATURE CONSTRUCTION WITH DYNAMIC DATASET 

Having discussed feature extraction for time series analysis with the help of 

equal time correlations, we then turned our attention to time-lagged covariances. The 

primary idea behind that was to bring the time back into time series analysis. For 

equal time covariance, we established the distinction and roles of different groups of 

eigenvalues and eigenvectors. By analogy with financial applications, where lead-lag 

relationships between various stocks are of great interest, we could try to show that 

such relationships exist between different network elements. However, the most 

interesting aspect for us, was once again, finding a possibility for detecting anomalous 

patterns. 

Temporal evolution of network traffic is a non-linear dynamics problem. \Ve can 

expect relationships between variables to be highly unstable. Yet, whatever pattern 

formation we detect, can be put to service for feature extraction. Chaos in our system 

could either be low- or high-dimensional. In simple terms, low-dimensional chaos 

implies some level of short-term predictability, while high-dimensional ceases to yield 

any sort of prediction. 

In a given network, the exact nature of chaotic behavior is unknown up-front. 

Part of our consideration, is getting a better idea about degree of chaos in our network. 

What is even more important for our present discussion, is that when studying 

time-lagged correlation of network traffic we cannot expect to have any proportionality 

between cause and effect, e.g. between external disturbance and system's reaction. 

Spectral analysis, we use in this Chapter, is established tool for finding hidden 

periodicities. Our objective is to find any inherent periodicities in the system's power 

spectra, i.e. frequency content of various correlators, bi-linear in time series. Then, we 

would want to look at the new, if any, periodicities, induced by altered time series. 

Note, that we do not expect discernible few frequencies in completely chaotic power 
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spectra. That is why we also need the Rr-.IT methodology. Spectral analysis on its own 

is insufficient for feature extraction, as empirical identification of chaotic behavior is 

not clear cut. 

A Additional Motivation for Time-Lagged Correlation Matrices 

Long-range dependent (LRD) processes, which show significant correlations 

across large time scales were first discovered in network traffic over a decade ago [95]. 

Since then, LRD was found and studied intensively in various aspects of network 

behavior. Such dependence is a manifestation of self-similarity of the process, an 

important property, simplifying modeling large networks. Its basic meaning is 

scale-invariance of the process in space and time. 

The first rigorous statistical analysis of self-similar characteristics in Local Area 

Network (LAN) traffic was done by Leland et al[96]. They showed that the aggregated 

Ethernet traffic is not smoothing out in accord with Poisson model, and is time scale 

invariant. In this framework the traditional Poisson or memory-less models of network 

traffic became inadequate. Since high variability across different time scales produces 

high level of congestion, the impact of self-similarity on network performance is proven 

to be considerable [97]. 

In our work, we employed the time-lagged correlations of the network traffic 

system for slightly different purposes. Knowing the boundaries of random and group 

eigenvalues, we attempted to trace the appearance of meaningful interactions in time 

series and their evolution in time. Our hypothesis was, that eigenstatistics of 

non-random interactions present in traffic, would scale with time, i.e would signal the 

LRD. In addition, we expected drastic changes in the inverse participation ratio, 

compared to that of equal-time correlations. As we demonstrated already, the IPR 

presents a concisely convenient visualization of traffic load intensity. Yet, we expected 

time-lagged IPR to be even more illustrative ill terms of changing in time intensity of 

traffic load patterns. 
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B Time-lagged correlation matrix of network traffic time series 

The starting point of our discussion is again, averaged traffic count data 

collected from router-router and router-VLAN subnet connections of the University of 

Louisville backbone routers system. To construct a lagged correlation matrix, we had 

taken L = 2015 records of N = 497 time series averaged over 300 seconds, where 

incoming and outgoing traffic generate independent time series. \Ve defined normalized 

traffic rate change 9i (t) according to Eqs. (35 and 36) and build the time-lagged 

correlation matrix D ( T) [981 according to 

1 t=L 

Dij (T) == Sym (9i (t) 9j (t + T)) = - L (9i (t) 9j (t + T) + 9j (t) 9i (t + T)) (66) 
2L t=O 

The sole purpose of symmetrization is the restriction of the eigenvalues and 

eigenvectors to real values. This is undoubtedly a significant simplification of 

subsequent analysis. In principle, the numerical experiments we ran below can be 

repeated for the eigensystem of non-symmetric correlation matrix. Studies of the 

spectral properties of such matrices are already in progress (see, for example, [108]). 

The analysis of this work takes place in a different setting, and the goals are somewhat 

opposite to what we had put before us. Financial time-lagged correlation matrices help 

to reveal "networks" of stocks, and we already have a network. 

C Selecting eigenstatistics of time-lagged matrix as indicators of network 

behavior 

Our original motivation of extracting the most concise indicators of network's 

behavior, remains unchanged. More specifically, we are after efficient indicators to help 

defining "normal" state of the system, and predict structural reaction to the external or 

internal disruption. \Ve followed our general direction - finding reduced set of features 

sufficient to represent network's behavior. The candidates are those eigenvalues, that 

would be most receptive to a particular probe. 

First of all, we defined an eigen problem for each time delay increment T, thus 

making our cross-correlation matrix is time dependent 

(67) 
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Here Ak is k-th eigenvalue, corresponding to kth eigenvector Uk. 

As opposed to same-time eigensystem {Ak (0) , Uk (a)}, our eigensystem does not 

characterize presence or lack of organization in the system at a given time. Instead it 

serves as a measure of back (or forward) in time covariance within network structure. 

Some of the network nodes might be driving others; some of the nodes can be genuine 

resistant toward the most intense traffic through the others. Non of these or similar 

existing scenarios could be inferred from the connectivity matrix only. Just as in our 

earlier approaches, we had searched the possibility of locating those few features, that 

bear the most exhaustive information on the network dynamics. 

The main difference is of course, absence of usual RNIT picture of eigenvalues 

spectrum being split into three parts. By three parts we understand the central - RNIT 

part, which is responsible of universal behavior, and its side - "left" and "right" 

neighbors which exhibit non-universal features [1091. Although, for very small T this 

subdivision is clearly still accurate, we expected, transient behavior of {Ak (T) , Uk (T)} 

to reveal new, otherwise undetectable correlations within the network. Hence, we 

found it convenient to keep track of quantitative and qualitative changes in 

eigensystem using left, random, and right terminological distinction. 

In addition, we decided to look at the evolution of corresponding IPRs. Given 

the eigenvector Uk (T) the IPR is computed according to 

(68) 

with uL, I = 1, ... ,497 being components of the kth eigenvector [651. For non-zero 

values of T, IPRs acquire more general meaning in a sense that routers which interact 

heavily at time t may loose their "bond" at time t + T, while those not knowing about 

one another at time t may acquire significant level of interaction at time t + T. Other 

more complex possibilities can be perceived via h (T) as well. For example, if normal 

state of the traffic becomes altered by DDOS. 

D Eigenstatistics of time-lagged correlation matrix as visual analytics 

The usefulness of eigenstatistics of time-lagged correlation matrices became 

apparent when turned to visual analysis of network monitoring and congestion control. 
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We visualize the time dependence of different parts of eigenvalues spectra. We also did 

the same for the respective IPRs. Once we discovered the oscillatory patterns for parts 

of the eigenvalue spectra we immediately switched to analyzing frequency content of 

transient behavior. vVe employed the simplest tool of frequency domain analysis - the 

Fast Fourier Transform (FFT). Knowing the content of frequencies is the same as 

possessing the characteristic time scales of a given traffic load formation, which is of 

great use for modeling the "normal" traffic load, monitoring the congestion level, and 

traffic anomaly detection. 

1 Stroboscopic sequence for eigensystem 

Upon building the cross-correlation matrix D (T) with the help of Eq. (66) we 

performed eigen-decomposition (Eq. (67)) numerically, using standard MATLAB 

routine. \Ye then looked at the resulting eigenvalues evaluated at all times T. A 

noticeable spike for very small values of delay time is expected, notwithstanding the 

position in spectrum. However, our increments in T (= 300 sec) may not be small 

enough to observe it. For the remainder of observation the result has to uncover the 

way system constituents communicate with themselves and their neighbors on a long 

run. 

In Figures 25 (a)-(c) we illustrated how left, random, and right groups of the 

spectrum evolve with time delay value T. As it turned out, "randomness" and 

"regularity" found their new interpretations in the context of system reminiscing itself. 

v'lith an exception of a few located at the right and left edges of the spectrum, most 

eigenvalues are very close to each other numerically. To make the evolution picture 

more transparent, we plotted their T-dependence using different offset values (these 

values are the same within each part). Only ten eigenvalues are offseted in each case 

and plotted versus time. The lowest eigenvalue was excluded from consideration here 

and throughout the paper due to its secular - grossly linear - behavior in T. 

At a glance, non-edge eigenvalues Figure 25 (b) safe for an expected spike at 

small T does not seem to represent any process. Such a lack of forward-in-time 

correlation is not completely surprising, as the eigenvalues from middle part of the 

spectrum have their origin in RMT part of the spectrum. We termed them RMT -like 
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from that point on. 

It follows, that these random interactions between traffic time series are time 

delay invariant. In other words, random spectrum of eigenvalues is an appropriate 

indicator of traffic's self-similarity [116]. ~\/Ieantime, the eigenvalues at the edges 

(Figures 25 (a) and (c)) represent a quasiperiodic process, distinguishing themselves 

from their Rj\/IT -like peers. These eigenvalues having their ancestors located in regular 

part of the spectrum for T = 0 clearly display long time dependence [116]. Therefore, it 

makes sense to look further into the properties of edge eigenvalues, especially into the 

properties of those with relatively high absolute values. The actual values can be used 

as a measure of delayed time correlations, as they are related to traffic variances [79]. 

Having observed these sharply distinct trends in eigenvalues delayed correlation matrix 

D (T), we took a closer look at a 'derivative' spectral characteristics, the IPR. 

A remarkable property of IPRs for equal time cross-correlation matrix (Figure 

26 (a)) was its consistently low, order liN, value for the major part of the spectrum. 

This segment in Fig. 26 (a) is known to obey the R1'IT [1091. To the left and to the 

right from this segment there is a strong evidence of regular, non-random eigen 

statistical behavior. \Vhen the first 20 instances are considered as in Figures 26 (b) 

and (c), with IPRs offseted by an arbitrary amount for transparency, and plotted 

versus the eigenvalue position, we see drastic difference. The peak, located close to the 

center of the spectrum, signifies presence of previously unrevealed correlations, and the 

lead-lag relationships amongst time series. 

Close examination of Figures 26 (b) and (c) shows, that initially, the high IPR 

had changing support in the spectrum. Peak value told us, that about four time series 

drive the entire correlation pattern. Later on, the peak "settles down" and establishes 

itself around median eigenvalue position (Figure 26 (b)). The meaning of this and 

other two peaks differs from that of the IPR peaks in Figure 26 (a). The increase in 

IPR computed from the time delayed matrix D (T) indicated correlations between 

system's behavior at a given time and system's stroboscopic image after T elapsed, 

rather than correlations within the spectrum. In addition, it provides reasonable way 

of tracking down the sources of lead-lag behavior. Thus, the observed features make 

IPRs into good candidates as indicators of network's congestion state. Note also, a 
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Figure 25. ( a) left , (b) random, and (c) right parts of the eigenvalue spectrum as obtained 
from actual data. Same graphs are presented in (d), (e), (f) respectively, after noise-like 
injections are made. 

significant change in height of the central peak. 

2 Frequency domain analysis 

Thus, we prepared to the next step in getting more quantitative on the subject 

of long memory processes in network traffic. We proceeded to analyze transient 

behavior of eigenvalues and IPRs of matrix D (T) in further detail. Since quasiperiodic 

behavior is present in the majority of quantities of interest we focused on their precise 

frequency content. The standard way of analysis is to transform Ai (T) into frequency 

domain using fast Fourier transform. In a sense, we constructe1 a spectrum of the 

spectrum. The same operation was performed on respective IPRs. 

We took fast Fourier transforms for all the functions at hand, and then, took the 

square of their absolute value. The result can be called power spectrum. There should 

be no confusion, as graphs of power always accompany the corresponding time-domain 

quantity. 

In Fig. 27 we display representative eigenvalue dynamics. Once again, RMT-like 

Ai (Fig. 27 (b)) did not exhibit anything remarkable, compared to its regular 

counterparts. The eigenvalues, taken from left and right parts of the spectrum, 

resembled each other, reflecting a symmetry of the spectra, induced by the 
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noise-like injections. 

symmetrizing procedure (Eq. (66)). From that point on, we considered them in 

parallel. 

Aside from a substantial low and high frequency contribution, which was 

expected from Figs. 27 (a) and (c), we discovered two strong contributions from 

frequencies, corresponding to oscillations with time periods 15 and 30 minutes 

respectively (cf. Figs. 27 (d) and (f)). This is in evident contrast to the situation with 

power of a random eigenvalue. Such an eigenvalue has equal (and negligibly small) 

contribution from the entire range of frequencies. The existence of these two 

characteristic frequencies suggests a natural way assessing the current state of the 

inter-domain network traffic. This fact makes it possible to use these as the LRD 

quantifiers 1116J in the future. 

E Experiments with altering actual network traffic 

To demonstrate the use of our visual indicators in network behavior anomaly 

detection, we conducted two types of experiments. We altered the original traffic data 

by introducing the noise-like and periodic injections to the traffic. The former 

consisted of inserting the traffic counts originated by random number generator into 
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Figure 27. Eigenvalues number (a) 2, (b) 257, and (c) 497, plotted with respect to time 
and their respective Fourier spectra ((d) through (f)). 

the traffic time series. The latter was achieved by replacements of actual network 

traffic with known functions of time delay T. 

1 Noise-like injections 

\Ve investigated consequences of modifying the time-lagged correlations between 

time series. \:Ve have already known the time series contributing the most to the 

correlation pattern [109]. All of them can be linked to eigenvalues, which fall into the 

right segment of eigenvalue spectrum. In these series we replaced the original traffic 

with counts obtained by random number generator for a certain period of time. Then, 

we constructed matrix D (T) for all hundred increments and repeated manipulations 

described above. The results are shown in Figure 25 (d) through (f). 

The eigenvalues, belonging to the middle of the spectrum, remained completely 

unaffected, i.e. they are still time delay invariant. Clearly, our manipulations with the 

traffic had not disturbed self-similar nature of delayed correlations. However, edge 

eigenvalues lost the time scales, present in their original transient behavior (see Figure 

25 (d) through (f)). In other words, the LRD got destroyed. 

The effect on IPR (Figures 26 (d) and (f).) was less noticeable but was still 

there, while for the random segment it was absent. The result of random counts 
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injections can be summarized as a presence of randomly positioned small peaks, 

superimposed on the original IPR picture. Indeed, in Figures 26 (a) and (c) small 

peaks are very infrequent and unstable in time, unlike peaks in Figures 26 (d) and (f). 

The above outcome calls for a more close look into eigenvalues and IPRs of a 

system, experiencing noisy injections into its time series. \Ve presented three 

eigenvalues as functions of time delay, together with their respected power spectra. As 

can be inferred from Figure 29 (a) and (c), the time dependence looses its LRD 

structure. It is backed up by the fact that a lot more frequencies contributed to power 

spectra upon random injection. Middle part of the spectra also undergoes certain 

transformation, but is still scale-free Figure 29 (b), as actual values of power are small 

relative to the power corresponding to edge eigenvalues. The quantitative changes are 

also in place for both edge eigenvalues. The effect can be judged based on comparison 

of the tallest peaks in Figures 29 (d) and (f) to their counterparts in Figures 27 (d) 

and (f). 

Similar conclusions could be derived for the IPR, as we had taken a look at 

Figure 30 (d) and (f) and compared the outcome of our experiment with the graphs in 

Figure 28 (d) and (f). 
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2 Periodic in time injections 

A continuation of the above experiment was the injection of an artificial traffic 

counts which possessed regularity into actual experimental data. This time, however, 

we performed the replacements for the time series, which could be traced back to the 

eigenvalues falling into the random segment. Time series for this replacement were 

chosen at random. Other possibilities could have also been considered, but since 

random segment was much less sensitive to the previous experiment, the above choice 

appeared natural. 

\Ve chose four injections to be co sinusoidal, having periods of 2.5; 15; 20 and 

30 min and repeated the same manipulations as in the first experiment, we just 

discussed. The results turned fairly sound. Even though the random part of the 

eigenvalue spectrum was again unaltered, the "reaction" of left and right parts was 

observable - both qualitatively and quantitatively. For a cosinusoidal sample, with 

period much smaller, than both characteristic periods (15 and 30 min), the resulting 

power spectra in Figures 31 (d) and (f) are not significantly changed. The two 

characteristic periods were still present, and yet certain narrow frequency range got 

suppressed - note the anti-peak between the two main peaks. 

\Ve also noticed slight asymmetry in the way smallest and largest eigenvalues 

had reacted to the injection. \Ve should add, that observed picture is essentially the 

same for the injections with periods of 5 and 10 minutes. This was no accident - both 

time scales although not matching, were commensurate with the characteristic periods. 

After that, we turned to the result displayed in Figure 32, where the cosinusoidal 

replacement with period 15 min of actual traffic counts lead to the dramatic change in 

appearance of power spectrum. \Ve observed enhancement of the peak corresponding 

to period of 15 min, which can qualify as a resonance phenomenon (Figures 32 (d) and 

(f)). The very same plots showed the suppression of peaks, corresponding to the other 

characteristic period of 30 min. Similar resonant effect was achieved. when the period 

of injection had been changed to 20 min (see Figure 33). This time, both peaks were 

gone, while the new characteristic period appeared in Figure 33 (f). The period had 

approximately matched the period of injection. And finally, for the experiment, in 

which period of the injection was chosen to be 30 min, i.e. matching to another 
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characteristic period, we obtained yet another result supporting previous conclusions. 

In this case, however, the resonance phenomenon was slightly more difficult to 

establish. From the results displayed in Figure 34 we saw, that relative contribution to 

power spectrum is now changed for two main peaks. Before the experiment was 

performed, the higher harmonic (smaller period) dominated, overshooting its 

counterpart by a few orders of magnitude. After running the experiment, this had still 

been the case for the spectrum of largest eigenvalue, but the difference became 

marginal (see Figure 34 (d)). 

At the same time, for the left most eigenvalue, we had determined, that lower 

harmonic (period, matching the period of injection) contributed the most to the pmver 

spectrum (Figure 34 (d)). Two power spectra for the edge eigenvalues were no longer 

symmetric, and contributions from certain ranges of frequencies were again strongly 

suppressed. As for the random eigenvalue considered in Figures 34 (b) and (e), no 

impact had been recorded, just as in all other cases. 

The found resonance effect adds more strength to the proposed indicators of 

network behavior. If the anomalous traffic event occurs at the time interval, which is 

characteristic for some system-specific traffic load, it causes the most dramatic change 

in visual representation of our indicators. Furthermore, when the period of injection 

coincides with one of the characteristic time scales of the network (i.e. oscillation 

periods of edge eigenvalues) the corresponding spectral peak gets enhanced. The 

Fourier transform peak, corresponding to the other scale gets suppressed and 

sometimes even annihilated. Finally, injection with the period much less than both 

scales has little effect on Fourier spectra, while period of the same order in magnitude 

rearranges the original spectra completely. 

F Discussion of results in the context of traffic long range dependence and 

other applications 

Network traffic analysis had undergone the evolution from considering the 

network traffic time series as an outcome of Poisson and memory-less processes to 

recognizing the long range dependencies and self-similarity of the traffic. We found, 

that statistics of eigenvalue spectrum and IPRs of eigenvectors of time-lagged 
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correlation matrices provide essential dimensional reduction in the investigation of 

long-ranged dependence (LRD) of the network traffic. 

\Ve also demonstrated that the time delay invariant behavior of non-edge 

eigenvalues of D (7) reflects the self-similar nature of delayed correlations. Meanwhile, 

the time-scaling of edge eigenvalues or their lagged-time dependence is an expression of 

self-similarity in delay correlations. In addition, we established that the IPRs of 

eigenvectors computed from D (7) can be used in feature extraction and building a 

realistic model of network congestion. 

It is noteworthy, that IPRs for D (7) , where 7 > 0, reveals the new localization 

trend, which has different origin from those of 7=0. The significantly increased and 

time delay invariant IPRs around the median eigenvalue indicate presence of lead-lag 

relationship between time series. 

The experiments altering the original traffic time series led to several important 

effects. First of all, we demonstrated that tempering with time series has no effect on 

self-similar transient behavior of eigenvalues and IPRs, located in the middle segment 

of the spectrum. Yet, both stochastic and periodic injections affected non-random 

segments yielding dramatic changes in their temporal behavior. In particular, we 

recorded the destructive effect of random noise on otherwise simplistic double-peaked 

power spectra. 

The above described time-lagged correlations analysis has a broad area of 

applications, where delayed correlations between system substructures are essential. 

For instance, it can be applied to electro-physiological time series of brain response 

[129], earthquake relocations [130], financial portfolios [108, 98], and atmospheric data 

[98]. To support this assertion we point out that edge eigenvalues of D (7) behave 

almost identically to these of atmospheric data, while the delay eigenvalues of the 

stock market data act just like the eigenvalues, we termed random [98]. 
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CHAPTER VIII 

CONCLUSION 

A RMT based algorithms and methodology behind them 

Our focus in this work was unsupervised learning, that is, approach requiring no 

further information aside from the one already present in data. \Ve were particularly 

interested in spectral methods of feature selection and extraction. After reviewing 

main classical approaches we turned out attention to the least successful of all, linear 

methods of data mining, involving classification and clustering. 

As a rule, such methods start with singular value decomposition, rather than 

with cost function. The PCA, which is the most common and trivial representative 

method of this family, then attempts to find linear manifolds, which would most 

accurately represent original correlations in data set. Despite its popularity in 

engineering and life sciences, PCA's successes are just about as often as failures. 

As we discussed earlier, such failures sometimes are preventable, via data 

preprocessing. The latter, however, requires a lot of the a priori knowledge, and 

essentially non-linear polishing. This may violate unsupervised nature of the method 

on the one hand, and introduce spurious information into the data, on the other. 

Meantime, the majority of non-linear methods we reviewed and studied in 

application to the data sets of this work, are computationally complex. Sometimes­

too complex to be considered feasible. These methods, for example KPCA do require 

considerable polishing and 'inside information'. 

Hence, after several fruitless attempts to apply conventional methods to the 

network time-series data, as well renown bioinformatics micro array data, we turned to 

the methodology of the RMT. The theory of large random matrices is 

phenomenological tool, which is currently being developed into analytical apparatus 

with applications far beyond its origin in nuclear and atomic physics. Such 
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applications include among many others financial engineering, theory of optimal 

portfolios, computer and mobile networks, and bioinformatics [711. 

The starting point for the methods developed in this work is, unsurprisingly, 

correlation matrix build through time averaging for time series, or feature averaging for 

micro array experiments data. Subsequent eigen-decomposition fits into a usual 

spectral methods template. However, our next step was a novel feature selection 

procedure based on the RIVIT. 

The key principle behind it, can be expressed as follows. The noise and system 

specific information are tightly intertwined in the original data set, and is even more 

so, in the correlation matrix. The latter, being frequently used to decide on 

connections between pair of financial assets or similarity of samples of genes 

expressions, has to be meticulously scrutinized. The main issue is of course to find an 

effective way to unwind noise and useful information. 

The RMT is a theory, which predicts spectral behavior of completely random 

matrices with pre-determined symmetries. Thus, we came up with an idea of using it 

in role, which can be roughly described, as a spectral filter. Knowing spectral statistics 

of completely random matrix we attempted to superimposed its eigenstatistics with 

ours, and come back to the feature space with significantly reduced number of relevant 

features. 

The random VVishart matrix, i.e. matrix build out of two equal rectangular 

matrices through matrix multiplication, was well studied in the sixties by nuclear 

physicists [1421. Our correlation matrix, being build from non-random rectangular 

data arrays, did showed much of the features pertinent to random Wishart matrix. It 

also showed plenty of deviations. 

It is impossible to define boundaries of randomness on the original correlation 

matrix. Indeed, any kind of the cut-off value, used by the direct correlation filters and 

applied to correlation coefficients, has to be justified. Randomness boundaries in 

spectrum are, on the other hand, known in most cases. By that we simply mean RMT 

boundaries of \Vishart matrix. All the eigenvalues, and corresponding eigenvectors, 

which fall outside those boundaries are expected to bear meaningful information. And, 

of course, such eigenvectors are primary candidates for selection into reduced set of 
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features we look for. They can be later used in classification and clustering. 

The other idea, we implemented, is to use spectral decomposition, in which 

correlation matrix is represented through the sum over dyadic products of its 

eigenvectors, weighted by eigenvalues. This decomposition allows to break original 

correlation matrix into three parts: bulk, based on the RMT-like, deviating one and 

the one based on the largest eigenvalue. Our hypothesis, proven to be true, was 

founded on the fact that among those three, only correlation matrix built upon 

deviating eigenvalues, matters in searching for a pattern. Even though such matrix 

loses the meaning of correlators, the matrix we term 'group' [58]in the text explores 

the subspace of eigen space that is rid of the overall system behavior as well a s of the 

genuine noise. \V use this denoising procedure in data clustering. 

All in all, the philosophy of noise removal through spectral statistics, is highly 

workable and universal. Because of the uniform approach to correlations in finance, 

network and biomedical sciences, the techniques we presented are suitable over a much 

wider range of data mining applications. 

B Summary of the results 

The data sets we used in this work are network traffic series and gene 

expressions micro arrays. In both cases we rejected the possibilities of non-linear data 

polishing as well as non-linear data-processing. Instead, we split the spectrum into the 

R~\/IT and deviating parts, and constructed the basis for denoising. 

\Ve took on the network time series first, and discovered, that traffic alterations 

can be successfully diagnosed with our projection algorithm. We run statistical tests 

on the correlation matrix, and proved that RMT behavior is statistically present in 

eigenstatistics. \Ve made sure that denoising procedure is meaningful. The use of 

mid-spectrum, bulk eigenvalues had indeed proven useful, because randomness was 

unaffected by regular temporal dependencies of alterations. 

Selecting RMT-like features and building a projection kernel out of them was a 

key ingredient in our procedure. The resulting reconstruction error algorithm brought 

out consistently accurate results. Its ROC curves demonstrated, that our algorithm 

was superior compared to standard the PCA. The algorithm is also fast and robust. It 
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certainly requires no pre-processing or non-linear polishing of the original data. Most 

importantly, it is easy to implement in real time, on real traffic time series, with real 

DDOS taking place. 

Upon using bulk of eigenvalues in our algorithm construction, we turned to 

regular part of the spectrum. Our target was benchmark bioinformatics data set of 

[94]. \Ve used spectral decomposition to denoise the correlations and to build the 

distance matrix [105] for clustering. Without R]VIT based algorithm we employed, the 

hierarchical clustering algorithm fails. But, after we go through the denoising steps, 

described in Chapter V, the resulting accuracy becomes phenomenal. Furthermore, in 

our studies ALL and Ar-.IL cancer types, we were able to discover sub-classification, 

which is normally notoriously difficult to unmask. 

To complete our study we reconsidered network data from a different point of 

view. \Ve attempted to find lead-lag relationships concealed by delay correlations 

matrix. Just as in our earlier experiments with traffic alterations, we injected random 

and non-random segments into the time series. \Ve then compared temporal 

dependencies for eigenvalues and IPRs taken from different parts of the spectrum. 

Our studies revealed that time series alteration has no effect on time behavior of 

eigenvalues and corresponding IPRs, taken from the bulk of the spectrum. In the 

meantime, artificial DDOS had strong effect on eigenvalues and corresponding IPRs 

from the left and right spectrum subparts. Specifically, large and small eigenvalues of 

the delay matrix, have their double periodicity destroyed by the injections. We 

observed suppression peaks in Fourier spectra of edge eigenvalues by noise-like 

insertions into time series. Mid-eigenvalues, however, remained unaffected, proving the 

point, that RMT part of the spectrum is largely responsible for self-similarity found in 

traffic. 

\Vith IPRs, the result are even more diverse and profound. The IPRs were 

found to change their support in the spectrum. For our specific data we were also able 

to determine, that about four time series drive traffic's correlation pattern. The peaks 

in IPR react at the traffic alterations via changes its position height. The observed 

effects prove IPRs to be good candidates as indicators of network's congestion state. 

The most important outcome of our experiments with delay correlation 
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eigensystem, was resonance effect. 'Whenever the period of injection coincided with one 

of the characteristic time scales of the network - oscillation periods of edge eigenvalues 

- the corresponding spectral peak was increased. The Fourier transform peak, 

corresponding to the other scale (typically there were only two) was suppressed and 

sometimes annihilated. And of course, any injection with the period non-commensurate 

with either of network's characteristic time scales produced no effect on Fourier 

spectra. Yet, an injection having a period matching the above mentioned time scales, 

strongly influenced the shape of power spectra of eigenvalues and IPRs. 

Our findings have potentially broad area of applications. That includes time 

series data sets, describing, for example, electro-physiological brain response, seismic 

activity, financial portfolio, gene expression, and climate change. Indeed, 

reconstruction error scheme, hierarchical clustering algorithm and delayed 

eigenstatistics monitoring, are entirely independent from nature of the data, as long as 

it is packed into arrays with number of features exceeding number of samples, and with 

both numbers being sufficiently large. 

C Future work 

It is clear that restrictions on data dimensions we mentioned above, cannot 

possibly have any physical grounds. In the end, array elements are unchanged under 

the transposition. Furthermore, construction of either zero delay or delay correlation 

matrix, can be done by averaging in either of two directions. In fact the majority of 

current works on clustering and classification is currently dealing with two-way 

approaches. Our future work is thus oriented towards removal of the above restrictions. 

According to [561 the RMT spectral boundaries can be determined at least 

numerically. Once this is done, and we would want revisit the experiments we have run 

in this work. We would like to explore either the possibility of the other form of 

averaging, or investigate two-way correlators. And ,ve would want to do it for both 

types of data sets: time series and micro arrays. 

It is unnecessary to believe that reconstruction error procedure ,ve developed is 

unique. Potential study we have n mind is concerned with finding possible alternatives 

and improvements. Our focus should also be on diagnostic abilities of this family of 
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methods. \:Ve plan on bringing in more diverse data, including sets with missing values. 

The goal is to test the limits and enhance power of developed methodology. 

The robustness of our clustering algorithm relies on distance metric introduced 

by Ref. [105] into financial applications. Despite it is numerous successes including the 

one in present work, the metric is somewhat arbitrary, and appears to be non-unique. 

One of our future goals includes search for a better distance metric among functions of 

Pearson's coefficients and other correlation measures. 

Even more challenging problem than missing values or outliers in data sets is a 

problem of data for which metric cannot be defined, or for which uniform shifts create 

more damage than remedy. Joining RMT methodology with non-metric approaches, 

such as, for example, those of [3] could offer a tremendous opportunities in pattern 

recognition. 

In present work we only investigated feature selection for dynamic data set with 

the help of symmetrized delay matrix. An entirely different route is a study of pure 

delay correlations. Such an approach requires study in a larger feature space - the 

eigenvalues and eigenvectors are complex in this case. Similar study was done for 

financial data [108]. Yet, none of the algorithms we developed here were ever used in 

this context. \:Ve plan on using our procedures together with some of the approaches of 

[108], such as, for example, building a correlation matrices based on specific 

eigenvalues, to determine individual impact of a given time series or a gene. 

Due to a success of our group based denoised correlation matrix, we would also 

want to try to entertain the idea of correlation matrices based on individual 

eigenvalues. It would be interesting to see individual impact of features on hierarchical 

clustering results. And last but not least is a possibility of having theoretical 

predictions for eigenstatistics of delayed correlation matrix. Study of [56] is the first 

step in this direction. 
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