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ABSTRACT 

A SYSTEMS-BASED APPROACH FOR DETECTING MOLECULAR INTERACTIONS 

ACROSS TISSUES 

Fahim Mohammad 

June 18, 2012 

Current high-throughput gene expression experiments have a straightforward design of examining 

the gene expression of one group or condition relative to that of another. The data is typically 

analyzed as if they represent strictly intracellular events, and often treats genes as coming from a 

homogeneous population. Although intracellular events are crucial to nearly all biological processes, 

cell-cell interactions are often just as important, especially when gene expression data is generated 

from heterogeneous cell populations, such as from whole tissues. Cell-cell molecular interactions are 

generally lost in the available analytical procedures and as a result, are not examined experimentally, 

at least not accurately or with efficiency. Most importantly, this imposes major limitations when 

studying gene expression changes in multiple samples that interact with one another. 

In order to addresses the limitations of current techniques, we have developed a novel systems-­

based approach that expands the traditional analysis of gene expression in two stages. This includes 

a novel sequence-based meta-analytic tool, A bsIDconvert, that allows for conversion of annotated 

features using an interval tree for storing and querying absolute genomic coordinates for comparison 

of multi-scale macro-molecule identifiers across platforms and/or organisms. 

In addition, a systems-based heuristic algorithm is developed to find intercellular interactions 

between two sets of genes, potentially from different tissues by utilizing location information of each 

gene along with the information available in the secondary databases in the form of interactions, 

pathways and signaling. 
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AbsIDconvert is shown to provide a high accuracy in identifier conversion as compared to other 

available methodologies (typically at an average rate of 84%) while maintaining a higher efficiency 

(O(n * log(n)). Our intercellular interaction approach and underlying visualization shows promise 

in allowing researchers to uncover novel signaling pathways in an intercellular fashion that to this 

point has not been possible. 
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CHAPTER 1 

INTRODUCTION 

1.1 Current trends in high-throughput gene expression analysis 

Typical high-throughput experiments have a straightforward design of examining the gene expression 

of one group/condition relative to that of other group such as control vs treated or healthy vs 

diseased. Advancement and sophistication in the primary and secondary analytical tools have made 

these analysis reliable, accurate and rapid and have enabled the user to extract greater meaning 

from large datasets in the form of statistically over-represented signaling pathways, genes following 

similar expression patterns, and clustering and classification of samples and/or genes. However, 

analytical tools currently employed generally examine the data as if they represent strongly intra­

cellular events, and often treat them as coming from a homogeneous cell population. 

1.2 Motivation 

Although intracellular events are crucial to nearly all biological processes, cell-cell interactions are 

often just as important, especially when gene expression data is generated from a heterogeneous 

cell population, such as from whole tissue. Cell-cell interactions are generally lost in the available 

analytical procedures and as a result, are not examined experimentally, at least not accurately or 

with efficiency. Most importantly, this imposes major limitations when studying gene expression 

changes in multiple samples that interact with one another. Examples of such interactions include 

migratory processes (e.g., immune cell transvascular migration, nervous system development, and 

cancer metastasis), binding processes (e.g., oocyte implantation and leukocyte tethering and rolling) 

induction processes (e.g., stem cell generation and floor-plate or roof-plate modulation of neuronal 
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2. A heuristic algorithm that generates interaction paths between two sets of genes. Consider­

ing these two sets of genes possibly from two tissues as seeds and using protein interaction 

information available in publicly available databases, this algorithm finds all interacting genes 

between two tissues. While finding interactions, it also uses location information of involved 

genes and removes any gene that is irrelevant in order to keep the final set of interactions 

minimal. 

Development of this approach is driven by a specific problem in neurobiology, namely identifi­

cation of the genes regulating the neuronal plasticity process of axonal collateral sprouting (where 

existing intact axons extend new branches and functional connections). It is known that the process 

of collateral sprouting (CS) involves significant interaction between the neuron undergoing plasticity 

and the target tissue which is generally other neurons or a peripheral tissue (i.e. involves inter­

cellular, inter-tissue interactions). Therefore gene expression datasets are generated by Dr. leff 

Petruska's Lab for sensory neurons undergoing CS, their peripheral target tissue (skin), and their 

nervous system target tissue (spinal cord). The genetic control of this process is coordinated across 

multiple interacting tissues. Current molecular informatics tools fall far short of allowing an efficient 

analysis of this interplay and uncovering the many signaling aspects that control this process. Al­

though the tool is developed in the framework of the model of CS, the analysis is readily applicable 

to any experimental design in which a separation can be achieved for two or more interacting tissues, 

cell populations or potentially host-pathogen relationships. 

The overview of chapters 2 through 6 follows: 

Chapter 2 briefly explains the relevant basic molecular biology. It also explains the Central 

Dogma of Molecular Biology and the process of transcription and translation that are necessary for 

every living organism. Recent advances in molecular biology techniques have resulted in a number of 

high-throughput sequencing methods including next-generation sequencing and microarrays. These 

sequencing tools are capable of sequencing the complete genome of living organisms. This thesis work 

uses data generated from these technologies which are briefly explained. Genomes and sequencing 

approaches are discussed in sections 2.2 and 2.3. Genome assembly, alignments, annotations and 
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annotation databases are covered in separate sections. Microarrays are briefly discussed in section 

2.7. 

Chapter 3 explains the algorithms used in the construction of AbsIDconvert. The 2012 database 

issue of Nucleic Acid Research reports a total of 1380 databases covering various areas of molecular 

biology [2]. Most of these databases are independent of each other and annotate genetic enti­

ties differently. This large collection of heterogeneous datasets results in issues with the storage 

and comparison of annotations across entities. This chapter focuses on this concern and proposes 

an interval-tree as an efficient means for the storage, search and maintenance of genetic entities. 

Section 3.1 introduces to the problem and describes how these annotations can be represented as 

intervals. Section 3.2 discusses intervals and the criteria for detecting overlapping intervals in a 

system with multiple intervals. Section 3.3 describes interval-trees, a data structure to store an­

notations (as intervals) and perform associated operations. Section 3.4 describes the design steps 

in finding overlapping annotations. It also briefly describes two alignment algorithms, which will 

be used later in our approach to map sequences onto a reference genome. Results are shown in 

section 3.5. Finally, section 3.6 concludes this chapter. 

Chapter 4 describes AbsIDconvert, a tool for comparing multi-scale macromolecule identifiers 

across platforms/organisms/labs to allow for powerful meta-analyses. Meta-annotations are ex­

tremely dynamic and change on a daily basis. Rather than relying on different meta-analysis 

databases, AbsIDconvert is constructed for mapping between various annotation granularities at 

the locus, transcript, sequence, and probe level. The key to this novel system is to reduce each 

identifiers to the sequence level which is common between all annotations. For organisms with a 

reference genome available, each annotation can be aligned to the respective genome and given ab­

solute coordinates. Depending on the alignment positions on the genome, interval information for 

each identifier is found and maintained in an interval tree. These interval trees can then be queried 

to find all overlapping identifiers for a particular identifier. AbsIDconvert has many potential uses, 

including gene identifier conversion and cross-species comparisons. AbsIDconvert provides an effi­

cient, accurate and reliable mechanism for conversion between two identifier domains of interest. 
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The flexibility of AbsIDconvert will allow for these identifier domains to be custom defined as long 

as a genomic mapping interval can be determined. 

This chapter discusses all aspects of AbsIDconvert. Section 4.1 introduces the problem of identi­

fier (ID) conversion, associated problems and challenges. Section 4.2 describes the available methods 

and tools to perform ID conversion. The next section 4.3 describes the drawbacks associated with 

the available tools. Section 4.4 describes the AbsIDconvert approach for performing ID conver­

sion. System design and implementation is discussed in section 4.5. Section 4.6 reports the results 

and includes run time and output comparison of AbsIDconvert with a number of available tools. 

Section 4.7 details three case studies to show the applicability of AbsIDconvert which is otherwise 

difficult. Section 4.8 concludes this chapter. 

As mentioned previously, cell-cell interactions are as important as intracellular interactions when 

gene expression data is generated from a heterogeneous cell population, such as from whole tissue. 

Chapter 5 discusses a heuristic algorithm for detecting intercellular interactions from two sets of 

genes. The heterogeneous gene sets can be preprocessed using AbsIDconvert to make the data 

compatible for comparison. Section 5.1 introduces the actual problem of detecting intercellular 

interactions. Section 5.2 lists and explains some of the available protein interaction databases. 

Section 5.3 briefly introduces some of the available algorithms to find intercellular interactions. 

Section 5.4 discuss the methodology and design. Section 5.5 analyses the fitness and completeness 

of the algorithm. Section 5.6 reports the results. Section 5.7 concludes this chapter. 

Chapter 6 is dedicated to summary and future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Basic molecular biology 

2.1.1 Organism and cells 

All living organisms are composed of small cells, often too small to be seen by a naked eye. These cells 

are the basic structural and functional unit of all known organisms and often termed as the building 

block of life. A typical cell size ranges from 1 Jim in bacteria to 100 Jim in plant. The estimated 

number of cells in the human body is more than 60 trillion and there are roughly 320 different 

cell types [3]. Organisms may be categorized as unicellular or multicellular based on whether they 

are composed of a single or multiple cells. Another categorization may be based on the presence 

or absence of a nucleus in their cells. Prokaryotes lack a nucleus and their DNA (explained later) 

floats loosely in the liquid center of the cell (Fig. 2.1). Prokaryotic organisms were the only form 

of life millions of years ago, and they gradually evolved into complex organisms. Prokaryotes are 

unicellular organisms while eukaryotes are composed of both unicellular and multicellular organisms 

with a well-defined nucleus to house their DNA. 

2.1.2 Chromosomes 

A chromosome is a thread like structure with a single piece of coiled DNA. It may contain proteins, 

which serve to package the DNA and control their functions. Prokaryotes have a single circular hoop­

shaped DNA whereas eukaryotes have one or more chromosomes housed in the nucleus. Eukaryotic 

chromosomes are long strands of DNA tightly wound around proteins into a condensed structure 

called chromatin. In humans, there are 22 pairs of autosomal chromosomes and a pair of sex 
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Prokaryotic cell Eukaryoti c cell 

Figure 2.1: P rokaryotic and eukaryotic cell [4]. Used with permission. 

chromosomes. In each pair, one chromosome is inherited from father and the another from mother. 

The sex chromosomes are X and Y determine the sex of a human being. Females have two X 

chromosomes whereas males have an X and a Y chromosome [5] [6]. For organisms to grow, reproduce 

and pass genetic information, these chromosomes must be copied and divided in a regulated manner. 

2.1.3 Molecules of life 

There are four categories of molecules important for a life: small molecules, nucleic acids (DNA and 

RNA) and proteins. DNA, RNA and proteins are collectively termed as biological macromolecules. 

Small molecules are the building blocks for macromolecules and may be involved in functions such 

as signal transmission, biochemical reactions and cellular processes. Examples include water , amino 

acids, nucleotides , sugars and some fatty acids [4]. 

DNA 

Every living organism on earth uses DeoxyriboNucleic Acid (DNA) to store and pass genetic infor­

mation from one generation to the next . DNA is necessary for the development and functioning of 

all living organisms. During the 1920s, P.A . Levene analyzed the components of the DNA molecule 
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and concluded that DNA contains four nitrogenous bases: adenine(A) , guanine(G), cytosine(C) and 

thymine(T); deoxyribose sugar; and a phosphate group [4]. These nitrogenous bases can be classi-

fied into two types: purines and pyrimidines. Purines have two fused rings with two nitrogen atoms 

within each ring whereas purines have a single-ring structure with two nitrogen atoms within the 

ring (Fig. 2.2). 

Purines 

Guanine 

Pyrimidines 

f: 0 0 

"CNH CNH I N~O NAo NAo H H H 
Cytosine Thymine Uracil 

Figure 2.2: Chemical structure of the nucleotides. 

In 1953, James D. Watson and Francis H. C. Crick at Cavendish Lab in Cambridge solved the 

mystery of the structure of DNA by proposing a simple double helix model which earned them the 

Nobel Prize in 1962 [8] [9]. DNA consists of two long polymers of nucleotides (polynucleotides) with 

backbones made of sugars and phosphate groups joined by ester bonds (Fig: 2.3). These two polymers 

which may be of any length and contain any sequence, run in opposite directions of each other and 

are therefore anti-parallel. The opposite strands stick together via two hydrogen bonds between 

A and T, and three hydrogen bonds between C and G, forming a ladder-like structure [9]. These 

hydrogen bonds are individually weak but collectively quite strong that makes double helix DNA 

stable [5]. The two ends of the strands are chemically different and thus, a 5' or 3' directionality 

can be assigned to each polynucleotide based on the carbon atoms of the sugar molecule. The 
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Thymine 
Adenine 

5'end o 
~/ 3'end 

o 

o 0 

H:zN y~ 

~a 
H:zI! '\./-

o 'J', J-O 

""'~ 
OH C. ~ 

3 ' end ytosme j 
Guanine 5' end 

Figure 2.3: Chemical structure of a DNA molecule [7]. Numbers in inset shows how the carbon 

atoms are numbered in a sugar molecule. Used with permission. 

polynumcleotide sequence in Fig. 2.3 is ACTG. The length of a DNA molecule is usually measured 

in base-pairs (bp) or nucleotides (nt). 

DNA replication is the basis for biological inheritance and is a mechanism in which one double-

stranded DNA is replicated into two identical ones. The DNA double helix unwinds and forks during 

this process, and a new complimentary strand is synthesized by specific molecular machinery on each 

branch of the fork (Fig. 2.4) . This happens during cell division and a copy of the original goes to 

the newly formed daughter cells [4] [11]. 

RNA 

RiboNucleic Acid (RNA) is similar to DNA except that Thymine (T) is replaced by Uracil (U). 

In addition, RNA nucleotides have the sugar ribose incorporated whereas DNA nucleotides use 
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deoxyribose. RNA molecules typically consist of a much shorter chain of nucleotides and are less 

stable than DNA. RNA can be single stranded or double stranded, but is generally found in single-

strand form. Most biologically active RNAs, including mRNA, tRNA, rRNA, snRNAs and other 

non-coding RNAs, contain self-complementary sequences that allow parts of the RNA to fold and 

pair with itself to form double helices. 

m R N A 

Messenger RNA (mRNA) encodes genetic information transcribed from a DNA template into a 

series of three-base codons, each of which specifies a particular amino acid with the exception of 

stop codons, which terminate protein synthesis. The mRNA carries this genetic information into 

the cytoplasm where protein synthesis occur. 

m iRN A 

MicroRNA (miRNA) are naturally occurring small (22 nt) non- coding RNA usually found in eukary-

otic cells. MiRNA are post- transcriptional regulators and may bind to mRNA molecules resulting 
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in downregulation of gene expression through translational repression, mRNA cleavage and dead-

enylation. 

Proteins 

Proteins, dubbed as workers in the cellular factory, are responsible for carrying out many functions 

of the cell, including metabolism, transport, communication, structure and division. Proteins are 

sometimes also touted as the "movers and shakers" of the cell- whatever is the job, they get it 

done. They interact with other molecules to carry out their functions. Proteins begin as polymers 

of amino acids, called polypeptides. A protein becomes functional when it is folded. The size of the 

protein molecule can vary from a few to thousands of amino acids in length. For example, insulin is 

a small protein with 51 amino acids whereas titin has ::::; 28,000 amino acids [4]. The shapes of the 

proteins are complex and essential for function and may vary from primary structure to quaternary 

structure such as hemoglobin proteins (Fig. 2.5) [11]. 

2.1.4 Central Dogma of Molecular Biology 

"I just didn't know what dogma meant. And I could just as well have called it the 
'Central Hypothesis', or ~- you know. Which is what I meant to say. Dogma was just a 
catch phrase. [8j" 

-Francis Crick 

The Central Dogma of Molecular Biology explains information transfer from genotype to pheno-

type and states that, once an information (sequences) get into protein, it cannot get out again [13]. It 

classifies a total of nine possible information transfers into three groups each containing three types 

of transfers. General transfers are believed to take place in most cells and include DNA ---+ DNA 

(replication), DNA ---+ RNA (transcription) and RNA ---+ protein (translation) transfers (Fig. 2.6). 

DNA replication is a biological process in which a DNA molecule is copied. DNA transcription in-

volves the transcribing of the genetic information from DNA to mRNA. In translation, the mRNA, 

produced during transcription, is decoded by the ribosome to produce a specific amino acid chain, 

that will later fold into an active protein. Special transfers are the cases which are known to occur 
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Figure 2.5: Levels of protein structure [12]. Used with permission. 

only under specific conditions. Examples include RNA -t RNA (RNA replication), RNA -t DNA 

(Reverse transcription) and DNA -t protein. Reverse transcription is the information transfer from 

RNA to DNA and are known to occur in the case of retroviruses such as HIV. Direct translation 

from DNA to protein has been demonstrated in laboratory setup (in vitro) . The last group is un-

known transfers, which are not known to occur, includes protein -t protein, protein -t DNA and 

protein -t RNA [14] transfers. 

2.1.5 Gene 

A gene is a fragment of genomic DNA that can be transcribed into an mRNA sequence that is 

subsequently translated into a protein. It is a molecular unit of heredity of all living organisms 

and holds information to build and maintain an organism 's cells and pass genetic traits to the next 
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generation. The total number of human genes was initially estimated to be around 100,000. The 

draft genome sequence paper [15] published in Feb, 2001 estimated only about 30,000 to 40,000. 

Although the exact number of human genes is still unknown, researchers estimate it to be fewer 

than 30,000. In eukaryotic genomes, the coding portion of a gene, called exons, are interrupted 

by intervening sequences, called introns. Both exons and introns are transcribed into pre-mRNA. 

Promoters and enhancers determine what port ions of the DNA will be transcribed into the precursor 

mRNA (pre-mRNA). The exons in the pre-rnRNA are spliced together to form a mature mRNA, 

which is later translated into protein (Fig. 2.7) . 

2.1.6 'franscription 

Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This 

process is accomplished in three steps: initiation, elongation and termination. During initiation, 

RNA polymerase binds at a sequence called a promoter. A typical promoter sequence in many 

eukaryotes is TATA box as its sequence consists of TATAAA (Fig. 2.8). A promoter tells the 

RNA polymerase that the gene to transcribe is about 30 base pairs downstream. Transcription 

is performed on the template strand and the resultant RNA is the transcript of the nontemplate 
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Figure 2.7: Eukaryotic protein-coding gene. Used with permission. 

strand. RNA polymerase along with other proteins, called transcription factors, opens up the DNA 

double helix and start reading the template strand in a 3' to 5' direction. In elongation, the RNA 

polymerase traverses the template strand and produces an RNA copy from 5' to 3' direction. This 

RNA molecule is an exact copy of the nontemplate strand except that thymines replace by uracils. 

In termination, the RNA polymerase encounters the terminator sequence and transcription stops at 

this place. At this time, the mRNA gets detached from the template and the double--stranded DNA 

molecule snaps back into its natural helical shape. 

2.1.7 Post- transcription process 

After being produced, the transcribed RNA (precursor mRNA or pre-mRNA) goes through some ad-

ditional modification in eukaryotes including capping, polyadenylation and splicing. During capping, 

a 5' cap is added to the mRNA that helps in ribosomal binding during translation. In polyadenyla-

tion, a long string of adenines are added to the 3' end of the pre-mRN A. This string is also sometimes 

referred as poly- A tail. A poly- A tail increases the half-life of mRNA and also helps in increased 
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Figure 2.8: (a) The transcription unit. (b) Elongation process during transcription. 

translation. Splicing removes introns, the non coding region , from the pre-mRNA and stitches the 

exons together without interruption. Once post- transcriptional processing is complete, the mRNA 

migrates out of the cell nucleus, into the cytoplasm where it is translated into a protein. 

Alternative splicing is a process through which exons in the pre-mRNA are spliced together 

in multiple ways to form a mature mRNA. The resulting mRNA may be t ranslated into different 

protein isoforms; thus, a single gene may code for multiple proteins. Fig. 2.9 represents four common 

types of alternative splicing. In type (a) , different promoters may be used for different splice variants 

which result into mRNA transcripts having different start sites. Type (b) represents selection of 

different poly- A sites that result in different 3' ends. An entire exon may be skipped in this process. 

In the third type (c), introns may be retained in the final transcript. In type (d) , an entire exon or 

a combination of exons may be skipped to form different transcripts. 
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Figure 2.9: Common types of alternative splicing [16] 

2.1.8 G enetic code 

The genetic code is the set of rules by which information encoded in genetic material is translated 

into amino acid sequences. The code defines a mapping between tri-nucleotide sequences, called 

codons, and amino acids. There are 64 different codons that result in 20 amino acids, thus resulting 

in degeneracy, with more than one triplet coding an amino acid. In. most cases, the first and second 

base of the triplets coding for a particular amino acid remain same with the difference in the third 

or wobble base. The start codon called methionine is coded by AUG. The stop codons are UAA, 

UAG, and UGA and do not encode any amino acid. The stretch of codons between AUG and a stop 

codon is called an open reading frame (ORF) [17](Fig: 2.10). 

Given an mRNA sequence, translation to the corresponding amino acid may start either at first , 

second or third base of an oligonucleotide. Considering a double-stranded DNA sequence, there are 
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three translation start sites possible on each strand. Each of these frames may produce a completely 

different amino acid sequence. An example of this conversion on one strand is shown in Fig. 2.11. 

IAIAlululcl IAI IUIUIUI lUi 
Frame 1 ... Asn ..... Ser. - Ser - Leu .. 
Frame 2 ... lie .. ... Arg - Val - Sys .. 
Frame 3 ... Phe ..... Gin - Phe - Val .. 

Figure 2.11 : Thanslation of a single stranded mRNA into an amino acid sequence. 

2.1.9 Translation 

Once transported into the cytoplasm, an mRNA can be translated into a polypeptide using the 

genetic code with the help of ribosomes, tRNA , rRNA and other components . 

• Transfer RNA (tRNA) is an adapter molecule composed of RNA , typically 73 to 93 nucleotides 

in length. These are produced by transcription but are never translated. It has a unique 
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three dimensional structure and carries an amino acid molecule on one end and a three-letter 

anticodon on the other end. Its job is to bring the amino acid molecule to the ribosome and 

help in translation. 

• In the cytoplasm, ribosomal RNA (rRNA) combines with proteins to form ribosomes, which 

act as a site of protein synthesis. 

• A ribosome is a large complex molecule which is responsible for catalyzing the formation of 

proteins. Ribosomes are found in all living organisms. They are made up of two subunits: 

large and small, which have their own rRNA, and are capable of constructing any sort of 

protein. A ribosome has three binding sites; 1) A site, where tRNA inserts its anticodon arm 

to match with codon of the mRNA molecule, 2) P site, where amino acids are attached using 

peptide bonds and 3) E site, where tRNAs are released from the ribosome after their amino 

acids become part of the growing polypeptide chain. 

Translation proceeds in three steps: initiation, elongation and termination. 

• The initiation starts with binding the small subunit of a ribosome to the 5' end of an mRNA. 

This subunit proceeds downstream until it encounters the start codon where it is joined by the 

large subunit. A tRNA with an anticodone sequence identical to the complementary mRNA 

codon binds at the P site of the ribosome [18J. 

• During elongation, the ribosome calls for the tRNA carrying the amino acid specified by the 

codon residing in the A-site. An appropriate tRNA is able to base pair with the next codon 

on the mRNA. The preceding amino acid bonds with the incoming amino acid via a peptide 

bond. Once the bonding is complete, the ribosome shifts to the next codon on mRNA (this 

shifting is called translocation). The initiator tRNA then moves to E site and is later released. 

This process is repeated until all the co dons in the mRNA has been read by tRNA [19J. 

• Once the ribosome reach a stop codon (VAA, VAG and VGA), no more amino acids can 

be added. In place of tRNAs, another protein called release factors, bind to the ribosome. 
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This binding initiates the cleavage of the polypeptide chain and release of the subunits of the 

ribosome. 

The polypeptides are then folded into one or more specific spatial conformations, driven by a 

number of non-covalent interactions which then carry out a variety of biological functions. 

2.1.10 Untranslated regions (UTR) 

During translation, the regions those are not translated include the cap, the 5' UTR, 3' UTR and 

poly- A tail (Fig. 2.12). Five-prime (5') UTRs may contain regulatory elements that can posi­

tively control gene expression. In prokaryotes, the 5' UTR usually contains a ribosome binding site 

(RBS), also known as the Shine Dalgarno sequence (AGGAGGU). The median length of 5' UTR.s 

is approximately 150 nt but may be as long as several thousand bases [18]. 

I Start Stop I 
Cap 5'UTR Coding sequence 3'UTR Poly·A tail 

5' 3' 

Figure 2.12: Mature mRNA structure including the UTR regions. 

The three prime (3') UTR is found on the 3' side of mRNA and after the stop codon. Several 

regulatory sequences may be found on 3' UTR responsible for affecting the stability of proteins and 

their cellular localization including miRNAs binding sites, cytoplasmic polyadenylation elements and 

zipcode binding domains [20]. 

2.2 Genomes 

A genome is the total amount of genetic information contained in the chromosomes of an organism 

and is encoded either in the form of DNA or, for many viruses, as RNA. The genome size for 

organisms vary: ranging from a few kilo bases (viruses) to tens of gigabases (human and fi.sh). A 

genome includes both the coding as well as the non-coding sequences of the DNA/RNA. Out of 

3.2 billion DNA base pairs in the human genome, only about 1.5% code for proteins while the rest 
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consist of non-coding genes, regulatory sequences, UTRs, introns, repetitive elements, and intergenic 

regions ( http://www.ebi.ac . uk/2can/disease/genes12 .html). 

2.3 Genome sequencing 

Genome sequencing is the process of determining the sequence and order of DNA nucleotides in a 

genome. Almost any biological sample, including saliva, hair, bone marrow, seeds and leaves, can 

provide the genetic material necessary for sequencing. Genome sequencing can be used as a valuable 

source for finding genes and proteins, their locations, functions, regulations, chromosomal structures 

and evolution. 

Genome sequencing approaches 

Current genome sequencing is not capable of sequencing a complete genome as a single molecule. 

An alternative method is to fragment a genome into small pieces and then use a sequencing method 

to find the actual genomic sequence for individual pieces and finally combine these sequences to get 

the whole genome. In a clone-based sequencing approach, a genome is broken into relatively large 

chunks, called clones, about 150,000 base pairs (bp) long. Several copies of a clone are then selected 

and fragmented into smaller random pieces (::::: 500 bp) using chemical shearing or sonication [21] 

which are sequenced individually. Each of these fragment sequences are then assembled based on 

sequencing overlaps to reconstruct the sequence of the whole clone. The whole-genome shotgun ap­

proach involves fragmenting the whole genome, sequencing the fragments, and reassembling them 

into the full genome sequence. This approach is much faster but complicates the assembly process. 

While the clone-based method produces a much more accurate and complete genome, shotgun se­

quencing is more prevalent due to the greatly reduced cost and the presence of reference genomes that 

can greatly facilitate the assembly. Both approaches have been used in whole genome sequencing. 

The human genome was sequenced using a combination of these two approaches [22]. 
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First-generation sequencing 

The Maxim-Gilbert (1977) method of DNA sequencing is based on chemical modification of DNA 

and subsequent cleavage at specific bases [23]. This method requires the radioactive labeling of the 5' 

end of DNA and purification of the DNA to be sequenced. Although fairly accurate and popular at 

that time, this method was complex and difficult as it required strand separation before sequencing. 

Additionally, it was also considered unsafe because of the extensive use of toxic chemicals. 

Sanger and Clouson (1975) used a "Plus and Minus" method to sequence ¢X174 bacteriophage, 

the first genome [24]. However, this method was limited by its inability to sequence a double stranded 

DNA molecule. Also, this method required both the "plus" and the "minus" strand to determine 

the actual sequence. Sanger modified this technique in 1977 and introduced "chain terminator 

sequencing" that is based on the use of dideoxynucleotides triphosphate (ddNTP) in addition to 

the normal nucleotides (NTPs) [25]. Dideoxynucleotides are essentially the same as nucleotides 

except that they contain a hydrogen group on the 3 carbon instead of a hydroxyl group (OH) 

(Fig. 2.13). In Sanger sequencing, many copies of a DNA strand that needs to be sequenced are 

replicated using DNA polymerase in the presence of normal nucleotides as well as the appropriate 

proportion of dideoxynucleotide bases. The enzyme starts replicating from 5' to 3' end, adding first a 

C (correspond to the first G at 5' end of the template strand) or ddC (dideoxynucleotide C). If a ddC 

is incorporated then this will prevent further addition of the nucleotides as a phosphodiester bond 

cannot form between the dideoxynucleotide and the next incoming nucleotide, and thus the DNA 

chain is terminated. If a normal base C is incorporated as the first base then more nucleotides can be 

added further. Finally the DNA product is separated using gel electrophoresis. In gel electrophoresis, 

the short fragments travel furthest. In Fig. 2.13, C is the first base in the complementary strand. 

The next base is again a C, then G and so forth. In this way, the entire complementary nucleotide 

sequence can be read. Sanger sequencing greatly simplified the DNA sequencing and was commonly 

used for almost two decades. 

Sanger and Maxam-Gilbert sequencing were performed manually and was labor-intensive. In 

1986, Leroy Hood et al. published an automated method to perform Sanger sequencing that used 
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Figure 2.13: Sanger method of DNA sequencing. 

fluorescently labeled dideoxynucleosides [26] . Tills sequencing was automated by macrunes where 

fl uorescence was detected by laser. 

N ext- generation sequencing 

Up until mid 2000s macillnes based on Sanger sequencing method were used for sequencing. The 

commercialization of genome sequencing started in 2004, when Roche (454) came up with first 

massive parallel pyro-sequencing technique with the ability to sequence virtually any genome at 

a cost effective price. T his method was based on a "sequencing- by- synthesis" method that relies 

on the detection of pyrophosphate released during nucleotide incorporation. Tills method allows 

sequencing of a single strand of DNA by synthesizing the complementary strand along it, one base 

pair at a time, and detecting willch base was actually added at each step. The amount of light 

produced is proportional to the number of nucleotides incorporated. One limitation of this technique 

is the inability to distinguish long homopolymer runs in the sequence [27, 28]. lllumina also uses 

a "sequencing- by- synthesis" method using a proprietary reversible terminator- based method that 

22 



enables detection of single bases as they are incorporated into growing DNA strands. Since all four 

reversible terminator-bound dNTPs are present during each sequencing cycle, natural competition 

minimizes incorporation bias. Helicos Biosciences sequences single molecules of DNA or RNA using a 

"sequencing-by-synthesis" approach. Applied Biosystems (ABI) uses a "ligation-based sequencing" 

protocol. It uses DNA ligase to amplify fragments. Multiple cycles of ligation, detection and cleavage 

are performed with the number of cycles determining the eventual read length [29]. 

N ext-next generation sequencing 

The Year 2010 was another landmark in the DNA sequencing. Pacific Biosciences came up with two 

proprietary technologies: Single Molecule Real Time Sequencing (SMRT sequencing) and fluores-

cently labeled phospholinked nucleotides. Using these two technologies and a Zero Mode Waveguide 

(ZMW) nanostructure arrays, sequencing can be done in real-time [30]. This technology produces 

longer reads but has a relatively high error rate. The Personal Genome Machine(PGM) by Ion 

Torrent works on the concept that each natural incorporation of DNA by a polymerase result in the 

release of hydrogen ion (H+) which changes the pH of the solution. By measuring the pH it can be 

determined whether a nucleotide is incorporated [31, 32]. 

A comparison of sequencing platforms is shown in Table 2.1. 

Table 2.1: Comparison of sequencing platforms 

Read 
bases per run Platform length Run time NGS chemistry 

(bases) 
(Gigabases) 

Roche/454 (GS FLX titanium XLR70) 450 0.45 10 hrs Pyrosequencing 

Applied Biosystems (SOLiD 5500xl) 60 20 - 25 Gb/day 7 days Sequencing by ligation 

Illumina/Solexa (GA IIx) 35-150 11 - 57 2 - 14 days Sequencing by synthesis / 
Reversible terminator 

Helicos (Heliscope) 35 avg. 28 8 days Sequencing by synthesis / 
tSMS 

Pacific Biosciences (PacBio RS) 2200 - 10 hrs SMRT 

IonTorrent (PGM) 200 bp max 10 2 hrs pH difference, semicon-
ductor chip 

23 



NGS application 

NGS technologies have a wide range of applications, and more are being discovered. It has been used 

successfully in applications such as variant discovery, targeted resequencing, de novo assembly of 

bacterial genomes, sequencing personal genomes and possible usage in personalized medicine, cancer 

diagnosis, genes, transcripts and proteins discovery and many other areas. 

2.4 Genome alignment and assembly 

Next-generation sequencing (NGS) and next~next generation sequencing techniques are parallelized 

high~throughput methods that can produce millions of short sequences (reads) in a very short period 

of time. The read lengths varies for different platforms ranging between 40-500 bp for NGS and 

higher for next~NGS. One of the crucial steps of NGS analysis is to map these reads back to their 

sequence of origin. These reads can be aligned to either a reference sequence or can be assembled de 

novo. Reference-based assembly is easier and often performed; however, in some cases it is unable 

to perform mapping accurately. For example, a read may belong to repetitive regions or the read 

is not present in the reference genome at all. This section explain two reference based assembly 

algorithms which is used in this work for aligning genomic sequences to a genome. BLAST is also 

discussed here as it is basis for another BLAT (discussed next). 

• BLAST (Basic Local Alignment Search Tool) is a heuristic algorithm for computing optimal 

"local alignments" between a query sequence (Q) and a database (D) containing one or more 

subject sequences. BLAST has two main components; the first component implements a search 

algorithm for finding local alignments and the second component uses an associated theory 

for estimating the statistical significance of solutions to help distinguish true similarities from 

ones that are due to chance. A BLAST search begins by indexing all words of length k from 

the query and then matching each of these words against database sequences. For nucleotide-­

to-nucleotide searches, each of these matches must be exact whereas for protein-to-protein 

searches the matching must have a similarity score 2 T i.e. threshold. These scores are 
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determined using a substitution matrix such as PAM or BLOSUM. When a word match is 

found, BLAST attempts to extend the alignment in both directions. BLAST continues this 

extension in search of a high-scoring segment pair (HSP). An HSP cannot be extended further 

to the left or right if the score drops significantly below the best score achieved on part of 

the HSP [33J. The alignments found by BLAST during a search are scored, and assigned a 

statistical value, called the "Expect Value". The "Expect Value" is the number of times that 

an alignment as good or better than that found by BLAST would be expected to occur by 

chance, given the size and composition of both the database and query. BLAST's default 

value '10' ensures that no biologically significant alignment is missed; however, high quality 

alignments can be obtained by lowering this value. 

BLAT: The BLAST-Like Alignment Tool 

W. James Kent, in 2002, developed BLAT (BLAST-Like Alignment Tool) tailored to highly 

similar sequences, which was faster (500 times faster mRNAjDNA alignment and 50 times 

faster for protein sequences) than BLAST. BLAT is similar to BLAST in the way that both 

find HSPs. In case of DNA, BLAT works by keeping an index of the entire genome in memory 

as the target database. The index uses less than a gigabyte of RAM for the human genome and 

consists of all non-overlapping ll-mers except for those heavily involved in repeats. DNA BLAT 

is designed to quickly find sequences of ::::: 95% similarity of length 40 bases or more. However, 

it may miss more divergent or short sequence alignments [34J. For proteins, BLAT uses 4-mers 

and finds protein sequences of ::::: 80% similarity to the query of length::::: 20 amino acids. The 

basic difference between BLAST and BLAT is that the former indexes the query sequence 

while latter indexes the database sequence. BLAST triggers an extension when one or two 

hits occur, while BLAT can trigger extensions on any given number of perfect or near perfect 

matches. BLAST returns each area of homology as separate alignments, while BLAT stitches 

them together into larger alignments ( http://genome.ucsc.edu/FAQ/FAQblat.html) . 
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BLAT uses a seed-and-extend approach for alignments. In the seed (search) stage, it uses an 

index to find regions in the genome that are possibly homologous to the query sequence. In 

the extend (alignment) stage, it perform an alignment between such regions and then stitches 

together the aligned regions (often exons) into larger alignments (typically genes). BLAT pro­

vides three different searches in the seed stage [34]: 1. Searching with single perfect matches, 

2. Searching with single near perfect matches, and 3. Searching with multiple perfect matches. 

The following text describes the first of the three searching option provided by BLAT. 

Searching with single perfect K-mer matches: 

K: The K-mer size 

M: Match ratio between homologous areas, rv 98% for cDNA/genomic align­

ments within the same species, rv 89% for protein alignments between human 

and mouse. 

H: The size of a homologous area. Generally 50 - 200 bp. for human exon 

G: Database size, e.g. 3 Gb for human. 

Q: Query size. 

A: Alphabet size, 20 for amino acids, 4 for nueleotides. 

Assuming that each letter is independent of the previous, the probability that a specific K-­

mer in a homologous region of the database matches perfectly the corresponding K-mer in the 

query is: 

Let T = l Jf J denote the number of non-overlapping K -mers in a homologous region of length 

H. 
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Sensitivity: The probability (of a hit) that at least one non-overlapping K -mer in the homol­

ogous region matches perfectly with the corresponding K -mer in the query is: 

Specificity: The number of non-overlapping K -mers that are expected to match by chance, 

assuming all letters are equally likely, is: 

F = (Q - K + 1) * (GIK) * (lIA)K 

These formulas can be used to predict the sensitivity and specificity of single perfect nucleotide 

K -mer matches as a seed-search criterion. It was shown that for EST alignments of nucleotide 

sequences, a value of K = 14 or less gives at least 99% of the sequences that have 5% or less 

sequencing noise. 

The extend stage performs a detailed alignment between the query sequence and the homol­

ogous regions returned by the previous stage. If a K-mer in the query hits multiple K-mers 

in the homologous region, the K-mer is extended by one repeatedly until the map is unique 

or the K-mer exceeds a certain size. These hits are then extended as far as possible allowing 

no mismatches, and the overlapping hits are merged. These extended hits that follow each 

other in the query and target sequences are linked together to get the alignments. In some 

cases, stitching of the alignments may be performed when a gene is scattered across multiple 

homologous regions. 

Bowtie 

Bowtie is an ultrafast and memory efficient short-read aligner for aligning DNA sequences to 

large genomes. The Bowtie indexer can compress and index the whole human genome into 2.~~ 

GB of memory. It can align 25 million, 35-bp reads onto the human genome in an hour with a 

peak memory footprint of 1.3 GB. Bowtie can align reads ranging from 4 bases to 1,024 bases. 

It uses the Burrow-Wheeler (BW) algorithm with Ferragina-Manzini (FM) index to find the 

exact match. To allow mismatches and fa.vor high quality reads, it extends the algorithm by 
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using a quality- aware backtracking algorithm. It also uses 'double indexing' to limit excessive 

backtracking while performing inexact alignments [35, 361. A Burrows- Wheeler transform 

(BWT) of a text T is constructed as in Figure 2.14. Initially a $ or any special character 

(lexicographically smaller than all the possible characters) is appended to the input sequence. 

Next, all cyclic rotations of this text are found in the matrix and are sorted lexicographically. 

The last column of each row in the sorted matrix form the actual transform BWT(T) and is of 

the same length as the text T. The remarkable property of BWT(T) is reversibility, allowing 

the original text to be recreated. 

agcaat$ $agcaat 

gcaat$a aat$agc 

caat$ag agcaat$ 

T= agcaat$ l aat$agc at$agca BWT(T) = 
agcaat at$agca caat$ag tc$agaa 

t$agcaa gcaat$a 

$agcaat t$agcaa 
_ 1 

Figure 2.14: Constructing Burrows- Wheeler transform. 

The exact match alignment in Bowtie uses the above sorted matrix and calculates the range 

of matrix rows beginning with successively longer suffixes of the query. Bowtie also addresses 

inexact alignments that may occur due to sequencing errors or polymorphisms. The algo-

rithm is similar to that of exact match, calculating matrix ranges for successively longer query 

suffixes. At any point when the matrix range becomes empty, Bowtie may select an already 

matched query position and substitute with a different base. This introduces a mismatch into 

the alignment and proceeds with finding the matrix range again. Each substitution is consis-

tent with the alignment policy. Bowtie is a greedy approach and in the case where multiple 

substitution positions are found, the algorithm selects the position having the minimum qual-

ity value. Bowtie avoids excessive backtracking while balancing the sensitivity of the aligner 
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by maintaining two indexes: a forward index and a mirror index. Bowtie limits the maximum 

number of backtracks to 125. 

Bowtie2 is an upgraded version of Bowtie for aligning comparatively long sequencing reads of 

about 50 bp up to 1000 or more. Bowtie2 supports gapped, local and paired-end alignment 

modes. For sequences shorter that 50 bp, Bowtie sometimes performs better than Bowtie2. 

Other software are available for performing referencfr-based assembly. This include: MAQ (Map­

ping and Assembly with Quality) [37J is based on the mapping quality concept, ELAND (Efficient 

Local Alignment of Nucleotide Data) [38J which searches DNA files for short DNA reads allowing 

up to two errors per match and SOAP (Short Oligonucleotide Alignment Program) [39, 40J which 

uses a Burrows-Wheeler algorithm to perform alignment and are fast and memory-€fficient. 

De novo assembly algorithms assemble the short reads to create full-length sequences. These 

types of assemblers are complex, time consuming and memory inefficient as they require many more 

comparisons (in the worst case, all possible comparisons) to construct a sequence. Examples of such 

assemblers include Velvet [41], ALLPATH-LG [42], Quality Value Guided SRA (QSRA) [43J and 

VCAKE [44J. These algorithms are outside the scope of this thesis work and thus not explained. 

2.5 The Human Genome Project 

The Human Genome Project (HGP) started in October 1990, initially estimated to sequence 

the whole human genome in about fifteen years at $200 million per year at a cost rate $1 per base 

pair. Sponsored by US Department of Energy (DOE) and National Institute of Health (NIH), the 

specific goal of HGP was to identify all the genes in human DNA, determine the sequences of the 

three billion chemical base pairs that make up human DNA, store this information in databases, 

improve tools for data analysis, transfer related technologies to the private sector, and address 

the ethical, legal, and social issues (ELSI) that may arise from the project. The advent of PCR 

technology by Kary Mullis [45J and other sequencing methods such as the whole genome shotgun 

(WGS) sequencing, cDNA technology and others fueled the competition. Private players including 

Celera started using WGS to rapidly sequence the genome. Celera, led by J. C. Venter sequenced 
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the whole genome of Haemophilus influenza in 1995 with this brute-force shotgun strategy [8]. The 

competition between public and private was so high that the completion of 'draft' genome was 

announced on June 26th, 2000. Science and Nature published the genome paper in the same week 

of February 2001 [46] [15]. The first draft of the human genome contained roughly three billion base 

pairs and was almost 90 percent complete. A startling finding of this first draft was that the number 

of human genes appeared to be significantly fewer than previous estimates, which originally ranged 

from 50,000 genes to as many as 140,000. The full sequence was completed and published in April 

2003. 

2.6 Expressed sequence tags (ESTs) 

An expressed sequence tag (EST) is a short (200 to 800 base pair in length), unedited single-read 

sequence generated by sequencing cDNA. The cDNA itself is prepared from mRNA by an enzyme 

called reverse transcriptase [47]. Once the cDNA representing an expressed gene has been isolated, 

a few hundred nucleotides can be sequenced from either end to create 5'ESTs or 3'ESTs. ESTs 

have been primarily used in the discovery of novel human genes and genomic coding regions since 

they represent transcribed sequence. ESTs are a rapid and inexpensive method for understanding 

an organism's transcriptome that may be helpful in the prediction of their protein products and 

ultimately their function. ESTs of length 150 to 400 base pairs have been shown to contain sufficient 

information for similarity searching and mapping which permit the design of precise probes for 

DNA microarrays that then can be used to determine the gene expression and other downstream 

exploratory analyses. 

2.7 Microarrays 

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface such as glass 

or silicon chip. Each DNA spot contains picomoles of a specific DNA sequence or oligonucleotides, 

known as probes. A microarray chip may contain tens of thousands of spots and each of these spots 

may contain millions of oligos or DNAs of a particular gene for that spot. A microarray works 

30 



by exploiting the ability of an mRNA molecule to bind, or hybridize to, the DNA template from 

which it originated. By using an array containing many DNA samples, scientists can determine, 

in a single experiment, the expression levels of hundreds or thousands of genes within a cell by 

measuring the amount of mRNA bound to each site on the array. A microarray may be used mostly 

in three different ways: 1) In Microarray ExpTession Analysis, expression of a set of genes in one 

particular condition can be compared to the expressions of another set of genes in another condition, 

2) Microarray Mutation Analysis is used for performing SNP detection and 3) Compamtive Genomic 

Hybridization is used mostly by Agilent Technologies to assess genome content in different cells or 

closely related organisms. 

Three types of microarrays are widely used for analysis of gene expression. The first is based 

on short oligonucleotides (oligos), the second is based on long oligos and the last is based on cDNA 

technology. Though the short oligo (25-30 base pairs) arrays are the mainstay for expression analysis, 

long oligo (50-80 base pairs) arrays are gradually gaining popularity. The cDNA arrays are variable 

in length and are also popular among scientists because of flexibility in array synthesis that it gives 

to the user. 

The major steps while performing microarray experiments are as follows: [48]: 

• Sample Prepamtion and Labeling: The RNAs from the tissue of interest are extracted and 

are reverse transcribed to produce cDNAs. These cDNAs are then labeled depending on the 

platforms being used. Affymetrix uses a single channel biotin-labeled complimentary RNA 

for hybridization. Other cDNA arrays use a dual channel approach to label the samples (e.g. 

control labeled with green dye and the contrasting sample labeled using red dye) . 

• Hybridization: These cDNAs are allowed to hybridize onto the same glass slide. A cDNA 

sequence will hybridize to specific spots that contain its complimentary sequence. Hybridiza­

tion is a complex process and highly dependent on factors such as temperature, humidity, 

salt concentration volume of target solution etc, and may be performed either manually or by 

robots. 

31 



Data 
mining 

Image 
processing 

Quality assessment ... 
Quantification 

& norml ization 

Image segmentation ... 

Figure 2.15: Microarray analysis steps [49] 

• Washing: Washing is performed to remove extra hybridization solution to ensure that only 

the labeled target on the array is the actual target of interest. 

• Image Acquisition: After hybridization, the dyes are excited by a laser at an appropriate 

wavelength and scanned by laser that reads the surface. The fluorescence detected are stored 

as a digital image usually in tagged image file format (.tiff) into the computer [48]. 

• Image Processing: In this step, potent ial spots are found and distinguished from spurious 

signals. These spots are then quantified by combining the pixel intensity values into unique 

quantitative measures that can be used to represent the expression level of the gene deposited 

in a particular spot. T his amount is directly proportional to the mRNA present in the solution 

that hybridized the chip. 

• Data transformation and normalization: The signal intensities are usually transformed and 

normalized in several steps in order to improve comparability and signal/noise ratio. The 

transformation step may include subtract ion of an estimated background signal and logarithmic 
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transform or subtraction of the reference signal. Microarray experiments involve many steps 

and each step can introduce variabilities in the results. These variabilities can be minimized 

by performing normalization on the data, including total intensity normalization, quantile 

normalization, lowess normalization, linear regression and Chen ratio statistics [50] . 

• Analysis of Gene Expression Data: Once the normalized data is available, various techniques 

may be used to determine subsets of genes that are significantly changed between conditions. 

Determination of the sets of differentially expressed genes is a statistical problem that involves 

calculation of a p-value for significance. Example of different methodologies that may be 

used include Significant Analysis of Microarray(SAM) [51], Random Forest [52], entropy based 

gene selection method [53] and False Discovery Rate(FDR) [54]. A number of software tools 

are available to find differentially expressed genes in microarray including SAM, Limma [55], 

Multtest [56], twilight [57], Nudge [58], penalizedSVM [59] and RandomForest. 

• Once an important gene set is derived from the steps above, a scientist may apply differ­

ent algorithms to accomplish their tasks, such as classification, clustering and phylogenetic 

analysis [60] [48]. 

Efforts have been taken to standardize microarray data. The Microarray Gene Expression Data 

(MGED) society has proposed MIA ME (Minimum Information About a Microarray Experiment) 

standard that requires the submitter of the data to furnish some required information such as raw 

data for each hybridization, normalized data and sample annotation data processing protocol etc. 

This will reduce ambiguity in the data and lead to better interpretation, verification and reusability 

of the microarray data. Public repositories such as ArrayExpress at EBI, GEO at NCBI and CIBEX 

at DDBJ are designed to accept MIAME compliant data. In addition, most journals (complete list 

can be found on http://WWTJ . mged. org/Workgroups/MIAME/ journals. html) now require MIAME 

compliant data for publishing a microarray based paper [61]. 

While microarray techniques have some inherent limitations, they are useful in helping scientists 

determine differentially expressed genes, pathway analysis of genes, drug development and drug 

response, therapy development, tumor classification and clustering, tracking disease progression, 
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alternative splice detection, phylogenetic analysis, mapping deleted or duplicated regions in genome 

and mapping genes to phenotype [62] [63]. 

2.8 Genome annotation 

Genome sequencing projects produce huge amount of sequencing data. Genome annotation is the 

process of adding the layers of analysis and interpretation to these sequences necessary to extract 

their biological significance and place these into the context of our understanding of biological 

processes [64]. Genome annotations can be broadly categorized into three levels: 

• Nucleotide or structural annotation has the goal of determining the location of sequences and 

where do they found on genome including the start and end locations, ORF locations, locations 

of non~coding RNAs and regulatory regions, exon landmarks, repetitive regions and mapping 

variations. 

• Functional annotations are more concerned with what these sequences do, what are the cor­

responding proteins and their putative biological and biochemical functions. 

• Process annotations relate these sequences to various processes such as cell cycle, cell death, 

embryogenesis, metabolism etc. and how do they behave in a system (regulations, interactions). 

Nucleotide annotation 

The first step in genome annotation is to identify the location of genetic elements such as genes, 

genetic markers, tRNAs, rRNAs, ncRNAs, repeat regions and ORFs., and the next step is to attach 

biological information to these elements. There are a number of algorithms that automatically 

annotate these entities. 

Gene prediction software identifies the regions of genomic DNA that encode genes. This includes 

protein-coding genes as well as RNA genes, but may also include prediction of other functional 

elements such as regulatory regions. In ab initio gene finding, the DNA sequence is systematically 

searched for certain signals or sequences that indicate the presence of gene. Examples include GEN­

SCAN [65] and geneid [66] algorithms. Advanced gene finders such as GLIMMER (Gene Locator 
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and Interpolated Markov ModelER) [67] and GeneMark [68] use complex probabilistic models, such 

as hidden Markov models, in order to combine information from a variety of different signal and con­

tent measurements. Other algorithms such as mSplicer [69], CONTRAST [70] and mGene [71] use 

machine learning techniques like support vector machines for successful gene prediction. Database 

projects such as RefSeq, Entrez Gene, Ensembl and ENCODE are involved in annotation of genes 

and will be described shortly. Similar to gene prediction algorithms, there are algorithms that search 

for non-coding RNAs (such as tRNA, rRNA and snRNA) and transcriptional regulatory regions. 

tRNAscan-SE [72] detects tRNA, RNAmmer [73] uses HMMER to annotate rRNA, RNAmicro [74] 

and miRNAminer [75] recognize microRNA. Annotations for transcription binding sites are avail­

able in curated databases such as TRANSFAC [76] and PROSITE [77]. RepeatMasker screens DNA 

sequences in FASTA format against a library of repetitive elements and returns a masked query 

sequence along with the annotated masked regions. There are a number of algorithms available to 

perform SNP detection and segmental duplication detection. NCBI's dbSNP is a comprehensive 

database of SNP annotation. 

Functional annotation 

Functional annotations seeks to compile a definitive catalog of the functions of specific genomic 

regions of the organisms such as protein naming and putative functions. Putative functions can be 

computationally assigned using sequence similarity with algorithms such as BLASTP or PSI-BLAST 

against the curated database of proteins. UniProtKBjSwiss-Prot [78] is based on this methodology. 

The Pfam (Protein family) [79] database is a large collection of protein families and use probabilistic 

hidden Markov models (HMMs) for annotating proteins based on functional motifs. NCB! maintains 

a protein database which is a collection of sequenees from several sources, including translations from 

annotated coding regions in GenBank, RefSeq and third party annotation, as well as records from 

SwissProt, PIR [80], PRF, and PDB (Protein Data Bank) [81]. 
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Process annotations 

Process annotations annotates sequences to its biological processes. For instance, the Gene Ontology 

(GO) project is a collaborative effort of associating process level information to the genetic products. 

The specific aims of the project is: 1) the development and maintenance of the ontologies them­

selves; 2) the annotation of gene products; and 3) development of tools that facilitate the creation, 

maintenance and use of ontologies. The GO ontology covers three domains: molecular function, 

biological process and cellular component. Molecular function describes activities, such as cell cycle, 

cell death and embryogenesis, that occur at the molecular level. A biological process is used for 

broader biological goals, such as meiosis. A cellular component is just that, a component of a cell, 

but with the provision that it is part of some larger object [82]. 

2.9 Annotation databases 

A large number of annotation databases are available that annotate genomes or sequences produced 

by various high~throughput methods. The Nucleic Acid Research (NAR) 2012 database issue [2] 

features 1380 databases covering various aspects of molecular biology including sequences, annota­

tions, gene expression, structures, pathways and diseases. This section gives a brief introduction of 

some of the popular annotations databases available. 

Ensembl 

The Ensembl project, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has 

been used for the annotation, analysis and display of vertebrate genomes [83]. Since its inception in 

2000, Ensembl added support for many more organisms in its database. Ensemble uses genebuild 

pipeline to automatically annotate the protein coding genes, pseudo~genes, non-coding RNAs and 

EST~based genes. Ensembl provide genome specific sequence data for all the ensembl transcripts and 

genes in different format through its ftp website ftp: / /ftp. ensemb!. org/pub/ current_f asta/. 

Unspliced gene sequences, unspliced transcript sequences, exon sequences, cDNA sequences, flanking 

region sequences and many more can also be downloaded. 
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HUGO Gene Nomenclature Committee (HGNC) 

HGNC [84] assigns nomenclature to the human genes following well defined guidelines and store these 

into its database. As of May 31 st , 2012, it has approved almost 33,000 symbols; a vast majority 

of these are protein~coding genes (:::::; 19,000), but also include symbols of pseudogenes, ncRNAs, 

phenotypes and genomic features. HGNC also interact with other organism specific nomenclature 

committees on regular basis. 

The International Nucleotide Sequence Database Collaboration (INSDC) 

The INSDC is a collaborative step to maintain a comprehensive database of nucleotide sequences. 

It comprises of DNA Data Bank of Japan (DDBJ), the European Molecular Biology Laboratory 

(EMBL) and GenBank at NCBI which exchange their data on a daily basis to achieve maximal 

synchronization. 

GenBank 

NCBI's GenBank [85] is an annotated genetic sequence database of publicly available DNA sequences 

and their protein translation. As of April 2011, there are approximately 126,551,501,141 bases 

in 135,440,924 sequence records in the traditional GenBank divisions and 191,401,393,188 bases 

in 62,715,288 sequence records in the WGS division http://www.ncbLnlm.nih.gov/genbank/. 

Sequence data can be submitted through NCBI's GenBank submission system program such as 

Banklt and Sequin. 

RefSeq 

NCBI's RefSeq [86] is a curated, annotated and non--redundant collection of DNA, RNA and pro­

tein sequences. Sequences from plasmids, organelles, viruses, archea, bacteria, and eukaryotes are 

included in the database. This database can be searched using genomic location, sequence, or text 

as query. It is based on records submitted to the INSDC. RefSeq has support for genome annotation, 

gene characterization, comparative genomics, reporting sequence variation, and expression studies. 
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RefSeqGene 

NCBI's RefSeqGene project is a subset of RefSeq and defines genomic sequences to be used as refer­

ence standard for well characterized genes. It provides more stable gene--specific genomic sequence 

for each gene along with upstream and downstream flanking regions. 

UniProt 

UniProt [87] provides a comprehensive, high quality and freely accessible resource for protein se­

quences and their functional annotation. It consists of two sections: Swiss-Prot where the anno­

tations are performed manually and reviewed, and TrEMBL, where the annotations are performed 

automatically and are not reviewed. 

Entrez 

The NCBI's Entrez [88] is a powerful database to search and retrieve sequences, structures and 

references for a particular entity. It also provide views of genes, proteins and chromosome maps. 

Using a single query, several linked databases can be searched including ESTs, Gene, Genome, GEO 

dataset, GEO profiles, probe, PubMed, SNP, structure, taxonomy, UniGene and UniSTS. 

Gene 

The NCBI's Gene database supplies gene specific information including nomenclature, Reference 

Sequences (RefSeqs), maps, pathways, variations, phenotypes, and links to genome-, phenotype-, 

and locus-specific resources worldwide. 

dbEST 

The dbEST database, a division of GenBank stores sequence data and annotation information for 

cDNA sequences or ESTs for a number of organisms. dbEST provide a robust sequence resource that 

can be exploited for rapid gene discovery, genome annotation and comparative genomics, guiding 
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SNPs (Single Nucleotide Polymorphism) discovery, gene structure prediction, investigating alter­

native splicing and discovering cancer biomarkers [89] [90] [91]. Scientists and researchers across 

the world and genome sequencing centers submit tens of thousands of ESTs everyday to NCBI's 

GenBank. As of May 1, 2012, the total number public entries of ESTs in NCBI's dbEST repository 

was 72,693,656 across more than 2000 organisms http://www.ncbi.nlm.nih.gov/dbEST/dbEST_ 

summary. html. 

The UCSC Genome browser 

The UCSC Genome Browser [92] is an online interactive website to access genome annotation data for 

a large number of organisms in a variety of ways. It enables researchers to visualize and browse entire 

genomes on annotation track for different types of data including gene locations, SNPs, proteins, 

expression, comparative analysis, homology etc. A user can also define and view his own custom 

track. This is an open source project and all its data is freely available to download via ftp for 

non-commercial use. Different utilities and softwares such as BLAT, lift Over and The Genome 

Browser can be downloaded freely. The Genome Browser also hosts proteome browser and browsers 

for microbial genomes. 

GEO 

NCBI's Gene Expression Omnibus (GEO) [93, 94] is a public functional genomics data repository 

that archives and distributes data from high-throughput experiments such as microarrays and next­

generation sequencing, serial analysis of gene expression, protein arrays and ChIP-chip data. The 

contents in GEO can be describes as platforms, series, samples and datasets. The contents of GEO 

can be browsed or text queried. As of May 15, 2012, GEO contains 10,081 platforms, 741,557 

samples, 30,107 series and 2,720 datasets. 
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Array Express 

ArrayExpress from EMBL-EBI is a database functional genomics experiments where data can be 

queried or downloaded using MIA ME (Minimum Information About a Microarray Experiment) [61J 

standards. It can be queried using accession or keywords. 

Affymetrix® N etAffx ™ 

Affymetrix® GeneChip® is one of the microarray platforms that is used widely and most popular 

among scientists and researchers. In this technology each gene is typically represented by a set 

of 11-20 pairs of probes. Gene expression is measured by extracting mRNA from the cells or 

tissues of interest and hybridizing the mRNA sample to the 25-mer probes on the microarray (Fig. 

2.16). Each expressed transcript is represented on an array by a series of probe pairs known as 

a probe set. Each pair consists of a perfect match probe, with its 25-base sequence identical to 

the gene of interest, and a mismatch probe, whose sequence is the same as the perfect match 

except for position thirteen, where the base is set to the complementary of the perfect match. Each 

probe set on the Affymetrix® arrays consists of 11 probe pairs, and is given a unique identifier 

consisting of a seven digit number, followed by the optional characters ..8, _a, or -x, and ending in _at 

[http://WTiIW.affymetrix.com/support/technical/index . affxJ. Affymetrix® probe sequences 

can be downloaded from the NetAffx'I'M Analysis center at Affymetrix® website. Affymetrix® 

probes give excellent coverage of known genes. For the human genome, as of January 4, 2007, 

24,198 of the 24,259 (99.7 percent) sequences present in the RefSeq database were covered by four 

or more probes on the Affymetrix® exon array. More than 98 percent of RefSeq and more than 90 

percent of the Ensembl protein-coding transcripts were covered by 10 or more probes [96J. 

The NetAffx'I'M [97J analysis center details and annotates probesets on Affymetrix®'s GeneChip® 

arrays. It annotates each probeset with its composition: the probes that constitute the probeset, 

sequence information and the genomic locations, protein sequence-level annotations and associated 

ontological terms. Each probeset is structurally annotated using GenBank, LocusLink and Swiss-
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Figure 2.16: Affymetrix GeneChip® design [95] 

Prot identifiers as well as funct ional information in terms of GO terms and GenMAPP pathways. 

It is a searchable database and can be queried using annotation terms and pro beset IDs. 

2.9.1 Agilent Technologies's eArray utilities 

Agilent Technologies manufactures a variety of catalog and custom long-oligonucleotide (60-mer) 

microarrays that can be used in multiple two-color microarray applications. Optimized methods and 

techniques have been developed for two such applications: gene expression profiling and comparative 

genomic hybridization. Methods for a third technique, location analysis, are evolving rapidly. A 

key component of Agilent's Custom Microarray Design process includes the array layout and basic 

QC components of the design process. In array layout which is an aspect of the collaborative design 

service that gives you complete flexibility in your design. The processes enables you to rapidly iterate 

and print new array layouts. The user has the flexibility to design probes of size ranging from 25-

60. You can also randomize probe placement on the micro array. Agilent microarrays are used in a 

number of different applications such as gene expression profiling, microarrays, comparative genomic 

hybridization (CGH) and ChIP on Chip. Agilent provides a web portal in the form of eArray as a 

mean to create custom microarrays, enrichment libraries, and mutagenic oligos online. eArray also 
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provides facilities including download of the latest annotations for each probe and compare groups 

of probes. 
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CHAPTER 3 

INTERVAL-TREES FOR REPRESENTATION OF 

OVERLAPPING GENETIC ENTITIES 

3.1 Introduction 

The origin of all nucleic acid and protein-based entities is genomic DNA sequences. For species 

where a reference genome is available, these DNA sequences can be aligned to the reference genome 

and assigned absolute numeric coordinates on the genome. These coordinates consist of information 

such as the start and end location(s) on the genome, underlying gaps, and intron--exon boundaries. 

Their lengths range from one base (SNP) to kilobases (gene locus), or even megabases (chromosomal 

bands). Different databases annotate these entities differently and their annotations tend to show 

a large degree of overlap. Fig. 3.1 shows the extent of overlap between the intervals of different 

annotations in the region of human BRCA2 (Breast Cancer 2, early onset) gene on chromosome 13. 

3.2 Interval representation of genetic entities 

Having been assigned numerical coordinates, possibly with gaps (intronic regions), a GE can be 

represented as an interval on a genomic scale. As shown in Fig. 3.1, a genetic entity may be a 

continuous region (microarray probe, SNP etc.) on the genome or may contain gaps in between 

(genes and transcripts). Availability of different types of GEs in different databases, each with 

different size (different granularity), complicates its representation as a large number of these entities 

overlap each other by sharing same region on the genome. 
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Figure 3.1: Different types of GEs in the region of the human BRCA2 gene. Generated on the UCSC 

genome browser [98]. 
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An interval is a convenient representation of events spanning a continuous period of time or 

space. Time examples include transactions in a bank, or time spent on a web page whereas space 

intervals include map features, photographs, words in a document, or genetic entities (GE). Interval 

structures can also be found in application areas such as life sciences, computer graphics, databases, 

robotics, computational geomet ry and geographic information systems. All of these problems have 

a similar structure, where one entity shares space or time with many other entities. 

An interval is an ordered pair [tt, t2] of real numbers with tl, the low- and t2, the high-end 

point. If i is an object with an associated interval, then i can be represented as [tt , t2], with tl ~ t2' 

An interval may be closed, open or half open. A closed interval can be represented as: 

Open intervals are represented as: 

Fig. 3.2 shows different examples of one- and two-dimensional interval structures. Fig. 3.2(a) 

shows overlapping intervals in one-dimension. An interval i is shown with low end point as tl and 

high end point as t2' Fig. 3.2(b) and Fig. 3.2(c) show the overlapping intervals in 2-dimensions. 

I 
I 

I I I 

I 
I 

a b c 

Figure 3.2: Overlapping intervals in one (a) and two (b,c) dimensions. 

James F . Allen, in his paper "Maintaining knowledge about temporal intervals" [99], elaborated 

thirteen basic relations among temporal (time) intervals. These intervals are distinct (no pair of 

definite intervals can be related by more than one of these relations) and exhaustive (any pair of time 

intervals can be represented by one of these relations) and are shown in Figure 3.3. Each relation 

relates two temporal intervals X and Y, with the time moving from left to right. These relations 

are sorted by the degree to which X begins before Y and then within that by the degree to which 
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X ends before Y . All the thirteen basic relations are constituted by six relations and their inverses 

and equality relation. These are shown in Table 3.1. X < Y (X precedes Y) means the interval X 

completed before Y started. T he inverse relation for this is > (preceded by). Whenever X < Y is 

true, its inverse Y > X (Y preceded by X) is always true. 

precedes meets overlilps finished contilins stilrts equills I started during finishes overlilp- met by preceded 
by by ped by by 

X X X -IS- --L. ..A ± I ....JL X ~ -IS- X ..L - .J... - -L - ..L .J... ...::L ..:L- ...::L. ..I.... --y- ....:L.. ...::L. - ..:L. 

Figure 3.3: The t hirteen interval relations defined by J ames F. Allen . 

Table 3.1: Basic temporal relations and inverses. 

Relation Symbol Inverse relat ion Symbol 
precedes < preceded by > 
meets m met by mi 
overlaps o overlapped by oi 
finished by fi finishes f 
contains di during d 
starts s started by si 
equal equal 

In a system with a large number of intervals , there is always a chance they overlap. Two 

intervals must always satisfy the interval trichotomy that exactly one of the following three properties 

holds [100] : 

1. i and if overlap (i .e . i n i f 1= ¢ == tl :::; t~ and tl :::; t2) 

2. i is to the left of i f (i.e., t2 < tl) , 

3. i is to the r ight of i f (i .e., t~ < t 1 ) 

F igure 3.4 shows the interval t richotomy for two closed intervals i and i ' . 
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(b ) (e) 

i' i' 

Figure 3.4: Interval trichotomy 

3.3 Interval t rees 

There are a number of data structures and associated algorithms to deal with intervals [100- 103J. 

Finding overlapping intervals is an output sensitive algorithm and depends on the number of inputs 

n (query intervals) as well as the the outputs m (intervals that map to an interval). Considering 

the fact that GEs are large in number , overlap with many other GEs, and are highly dynamic, an 

efficient data structure is needed for storage, information retrival, and update. 

A red-black tree is a binary search tree having an extra attribute: the color, the value of which 

is either red or black. Other than the requirements imposed on binary search trees, a red- black tree 

follows the following properties: 

• Every node is either red or black. 

• If a node is red, then both its children are black. 

• The root node is black. 

• Every simple path from a node to a descendant leaf contains the same number of black nodes. 

• Every leaf node (sometimes called sentinels) is black. 

Each node of red- black tree contains the attributes color, key, left, right, and p. If a child or the 

parent of a node does not exist, the corresponding pointer attribute of the node contains the value 
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NIL. The constraint on the color of the nodes make the tree approximately balanced by ensuring 

that, no simple path from the root to a leaf is more than twice as long as any other. The height of 

a red-black tree is at most 2 * log2(n + I), where n is the total number of nodes. Since operations 

such as inserting, deleting, update and finding values require worst-case time proportional to the 

height of the tree, this theoretical upper bound on the height allows red-black trees to be efficient 

in the worst-case, unlike ordinary binary search trees. 

An interval-tree is an augmented red-black tree that maintains a dynamic set of elements, 

where each node i contains an interval storing the two endpoints tdil, t2[i] and max[il, which is the 

maximum value of all right endpoints in the subtree rooted at i. 

max[i] = max(t2[i], max[left[i]l, max [right [i]]). 

Here, left[i] and right[i] represents the left and right child of node i respectively. Nodes may store 

additional information. These nodes are ordered according to the low endpoint of the intervals 

and the inorder traversal of the tree always gives a sorted list. An example interval tree is shown 

in Fig. 3.5 which is constructed from the intervals shown at the bottom of the figure. Each node 

contains end-points of an interval and max (as described in text). The entry in the root node 

represents the interval with low-end point as 17, high-end point as 22 and max value as 29. 

An interval tree allows dynamic insertion, deletion and search operations to be performed ef­

ficiently. Nodes are inserted and deleted in such a way that the properties mentioned above are 

always followed. The running time for all three operations is 0(log2n) , and the updating of max 

can be done in 0(1) time. When there are multiple intervals (m) that overlap a query interval, the 

run time is O(m + log2n). The preprocessing time to construct the tree is 0(nlo92n), with a space 

complexity of O(n) [100]. 

The following operations can be performed on an interval tree: 

(a) INTERVAL-INSERT(T, x): add an interval x into the interval-tree T. The running time for 

this operation is 0(lOg2 n). 

(b) INTERVAL-DELETE(T, x): delete an interval x from the interval-tree T. The running time 

for this operation is 0(log2 n). 
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Figure 3.5: Example interval tree. 

(c) INTERVAL-SEARCH (T, i): return a pointer to a node x in T such that int[x} overlaps interval 

i. INTERVAL- SEARCH (T, i) procedure is shown in Algorithm 1. If there is no interval that 

overlaps i in the tree, then the procedure returns nil. The running time for this operation is 

O(log2 n). if there are multiple intervals that overlap i, then the running time will be O(k + 

log2 n), assuming that there are k overlapping intervals. In case of genomic annotations , finding 

multiple overlaps is frequent because a particular region on a genome may be annotated at 

different granularity level , and by different authoritative organizations. 

The preprocessing time to construct the tree is O(n log2 n) , with a space complexity of O(n). The 

interval- tree is a special data structure to deal with the type of problem we are concerned about, 

since the number of genomic annotations are huge and require frequent insertions and deletions. 
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Algorithm 1 Algorithm for searching interval i in tree T [lOOJ. 

1: procedure INTERVAL-SEARCH(T, i) 
2: x f--- T. root; 
3: while x =1= T.nil and i does not overlap x.int do 
4: if x.left =1= T.nil and x.left.max ~ i.low then 
5: x = x.left 
6: else 
7: x = x.right 
8: end if 
9: end while 

10: return x 
11: end procedure 

3.4 Using interval trees for finding overlapping GEs 

Finding all genetic entities (GEs) in a given region of a particular genome is a common task in high-

throughput molecular biology experiments. Considering the large number of available annotations 

and the fact that the structural annotations are dynamic (frequent insertions and deletions), an 

interval tree is implemented to store these annotations and perform various operations efficiently. A 

common operation is to find overlapping intervals. To accomplish this, sequence level information for 

different entities were downloaded from respective authoritative websites. Those considered include 

Affymetrix® and Agilent microarray probes, Entrez genes [88], EST sequences [104], and Ensembl 

transcripts [83J. Reference genomes were obtained from the UCSC Genome Browser website (rat 

version 3.4, mouse version mm9 and human version hg19). These annotations were then mapped 

onto their respective organism's reference genomes using either the BLAT [34J (GE sequence length 

> 100 bases) or Bowtie [35, 36J (::; 100 bases) sequence alignment algorithms. For Bowtie alignments, 

the maximum number of mismatches allowed was two. Each alignment annotation includes LStart 

(the start coordinate on the genome), LEnd (end coordinate on the genome), size (of the mapped 

region), and chromosome number. Organism and annotation specific interval trees are maintained. 

IRanges [105J is used to incorporate the interval trees. The total number of GEs mapped from rat, 

mouse and human genomes are 34.1 million for this test set. These interval trees can be then queried 

for overlapping intervals (annotations). The design flow is shown in Fig. 3.6. 
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3.5 R esults 

TREE building step 
.-----------------------------------------------~ 

annotations using BLAT and Bowtie 

Bui ld the organism and ident ifier 
specif ic interval trees 

L_______________________ _ _____________________ _ 

QUERY step 
Find the overlapping genes 
and produce t he output. 

Figure 3.6: Steps to find overlapping annotations 

To demonstrate the efficiency of the interval tree implementation, random samples of 10,000 (10k), 

50k, lOOk, 500k and 1 million human EST accessions were mapped against themselves to find all 

overlapping ESTs. The number of nodes in the tree is increased exponentially adding one level in 

the tree at each increment. When the tree is small, the mapping time is less than a second. The 

number of overlapping identifiers and elapsed time were calculated five times and averaged. Fig. 3.7 

shows the average overlap time plotted against the number of nodes in the interval tree. It took 27.3 

seconds to map 10,000 nodes against an interval tree containing 8.27 million nodes, whereas 500,000 

ESTs were mapped in 3.8 hours (not shown). The number of overlapping ESTs for 1 million ESTs 

was not considered due to memory constraints. The plot shows the run time to be linear as the 

number of nodes in the tree increases exponentially. One million randomly sampled EST identifiers 

in rat were also mapped to a total of 271 .3 million overlapped ESTs in 276.5 seconds. 

Fig. 3.8 shows the average number of overlapping EST identifiers as the number of nodes in the 

interval tree is increased exponentially. EST intervals with total number of inputs 10k, 50k, lOOk, 

500k and 1 million are given as input to find average number of overlaps. Mapping 1 million ESTs 

against an interval tree of size 4.19 million resulted in 787.9 million overlapping EST intervals. 
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Overlap time Vs number of nodes 
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Figure 3.7: Average elapsed time for mapping ESTs. 
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Figure 3.8: Average number of overlapping EST intervals. 
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An interval tree method was implemented and used to query these interval information. For 

comparison with relational databases, an equivalent MySQL database was also implemented to per-

form ID conversion based on coordinate information, and the run time for both of these methods 

were compared. Fig. 3.9 shows the run- time comparison of the interval tree and MySQL implemen-

tation when randomJy sampled EST IDs from rat are converted to Entrez gene IDs. The number of 

EST IDs was increased exponentially for each test point and the corresponding time in seconds was 

measured. The run time using the interval tree takes negligible time to map hundreds of thousands 

of overlapping genes as compared to the relational database method. The execution time increases 

rapidly in the case of MySQL as searching intervals is a linear process. Conversion of one million 

EST identifiers into Entrez using the interval tree method took just 11.28 seconds. 

100 

80 

20 

2 3 4 5 6 
log10 (Number of inputs) 

Figure 3.9: Run time comparison for converting EST IDs into Entrez Gene IDs. 

Finally, Affymetrix@ HG-U133 Plus 2.0 probes were mapped onto the human genome and the 

corresponding intervals determined . These intervals were then queried against the Agilent CGH 

105a, GenBank ESTs, and Ensembl transcripts intervals. The number of overlapping intervals and 

the elapsed time are shown Table 3.2. Here n represents the number of intervals being queried . The 

number of nodes in the interval tree for Agilent CGH 105a, EST and Ensembl transcript is 206712 , 

8277548, and 151222 respectively. Querying 1.02 million intervals from the Affymetrix® probe on 
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EST took 42.94 seconds. All of the overlapped Ensembl transcripts and Agilent probes were found 

in 3.9 seconds. 

Table 3.2: Number of overlapping intervals and overlapping time (sec.) 

CGH105a EST Ensembl 
Size(n) Overlap time Overlap time Overlap time 

2 0 4.63 2258 26.84 318 3.77 
4 26 3.74 3117 27.97 136 3.48 
8 0 3.55 4186 25.28 265 3.46 

16 4164 5.51 1862002 30.93 254878 3.92 
32 3146 3.75 1681155 29.28 195395 4.52 
64 5288 3.68 2546796 26.24 325845 4.66 

128 5916 4.68 :3032338 29.4 372675 4.02 
256 6234 4.61 :3769694 31.63 395812 5.1 
512 7790 4.67 4884356 31.85 485259 4.05 

1024 8086 3.72 5695468 33.14 500769 4.92 
2048 9018 4.59 7100439 31.43 568468 4.95 
4096 11164 4.65 10268391 31.44 672567 6.05 
8192 14288 5.47 1:3732435 30.84 801939 5.09 

16384 18690 7.46 21452652 39.53 1016474 5.19 
32768 25670 6.69 29380179 44.81 1344805 4.47 
65536 35078 4.91 41891464 54.02 1794852 4.65 

131072 46740 4.85 54268926 59.75 2314813 4.85 
262144 54514 4.01 61601695 50.14 2673404 5 
524288 56292 4.03 6:3060840 51.52 2753457 5.06 

1026588 56302 3.89 63306821 42.94 2754880 3.91 

3.6 Conclusion 

An interval tree was implemented as an augmented red-black, tree for storing and querying the 

genomic structural coordinates of GEs. The results demonstrate that an interval tree is a better al-

ternative for maintaining data that represents intervals by providing queries that grow in logarithmic 

time with respect to the number of annotations present as opposed to the linear growth of relational 

approaches. Interval trees serve as a dynamic data structure that can handle insertion, deletion and 

search operations efficiently. Representing genetic intervals is one of numerous applications where 

interval trees have an edge over contemporary methods in terms of efficiency. These techniques are 

readily applicable to others applications such as database transactions, weblogs, and others where 

the number of intervals run into tens of millions. Insertion and deletion in an interval tree can be 

performed efficiently in log2n time whereas finding overlaps can be performed in O( m + log2n) time 
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with a space complexity of O(n). The interval tree method is limited by the fact that it needs to 

be in memory all the time to perform interval queries. This may not be as big of a concern as the 

memory size in modern computer systems is typically large enough to hold these annotations. How­

ever, if data can not fit into main memory, a method such as that proposed by Arge et al. [102J [lmJ 

can be used that maintains the interval tree in secondary memory efficiently. The power of interval 

trees for querying annotations in genetic entities will prove useful in the context of the information 

explosion from high throughput molecular biology technologies such as next generation sequencing, 

proteomics and metabolomics. 
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CHAPTER 4 

ABSIDCONVERT: AN APPROACH TO CONVERT GENETIC 

IDENTIFIERS AT DIFFERENT GRANULARITIES 

4.1 Introduction 

The Nucleic Acid Research (NAR) 2012 database issue [2] features 1380 databases covering various 

aspects of molecular biology including sequences, gene expression, structures, pathways and diseases. 

Most of these databases are independent of each other and have been created as a result of the re­

spective developers' domain of interest and resource limitations. Due to a lack of standard naming 

conventions, most of these databases prefer to assign their own custom generated identifiers (IDs) to 

the biological entities. Major public databases such as GenBank [85] and RefSeq [86] use accession 

numbers, Gene Ontology (GO) [82] uses a naming convention from organism specific databases, 

the HUGO (Human Genome Organization) Gene Nomenclature Committee (HGNC) [84] uses the 

gene symbol and a custom generated ID, Entrez [88] uses numeric integers, sequencing projects 

use systematic names and biologists sometimes use additional aliases. As an example, the breast 

cancer early onset gene has the official gene symbol of BRCA2 provided by HGNC and an asso­

ciated ID 1101, Ensembl [83] gene ID ENSG000001~19618, OMIM (Online Mendelian Inheritance 

in Man) [106] ID 600185, HPR (Human Protein Reference) database [107, 108] ID 02554, RefSeq 

ID NM_000059, GenBank Accession U43746, Entrez Gene ID 675, VEGA (the Vertebrate Genome 

Annotation database) [109] gene ID OTTHUMG0000001741l, UCSC [92, 98] gene ID ucOOluub.l, 

UniProt [87] ID P51587, and gene aliases FAD, FAD1, BRCC2, FANCD1, FACD, FANCD. 

Fortunately, there is a wealth of information available to the research community in a wide 

variety of databases. However, it is often difficult to extract or integrate information about a 
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particular biological entity from multiple resources. For instance, a researcher may be interested 

in extracting functional information spread across different databases for a biological entity such as 

a gene or a protein; comparing two independent pathways which use different types of identifiers; 

or comparing results across species, platforms or labs. The lack of a common identifier across 

these heterogeneous and sometimes redundant biological databases makes the functional analysis of 

biological data tedious, time consuming, and error prone. 

One solution to handle heterogeneous databases is to use a global identifier for annotations such as 

the one described by MIRIAM (Minimum Information Requested In the Annotation of biochemical 

Model) [110J. MIRIAM requires a global identifier to contain both the data source as well as an 

internal identifier. For example, urn:miriam:hgnc:brca2 is composed of urn:miriam that defines 

the notation to be a URN (Uniform Resource Name) using the MIRIAM scheme with data type 

hgnc and identifier brca2. This method appears promising and has the potential to solve some of 

the previously mentioned problems, but very few databases follow this standard. Another solution 

is to manually search for these genes one by one in publicly available databases such as Entrez, 

KEGG [111, 112], or GEO [93, 94J and infer their functionality. This method is fruitful when the 

number of genes is small, but is impractical for high throughput experiments, where the number of 

gene fragments can be on the order of tens of thousands or more. A third solution is to use an ID 

converter tool that uses a database to store all possible annotations where a list of IDs may be input 

as a query which is then converted into the corresponding target IDs in a precise and efficient way. 

One difficulty in the development and maintenance of such conversion tools is the varying gran­

ularity of the identifiers. More specifically, the data generated by biological experiments may be at 

the locus, transcript, sequence or probe level, with varying coverage of a region of interest (Fig. 4.1). 

This granularity ranges from very fine, at the level of DNA microarrays (tens of bases in length, con­

taining probe level information relevant to only a short region of the corresponding mRN A molecule) 

through coarser granularity with sequence reads (few hundreds), transcripts (thousands), loci, and 

chromosomes. It is also possible that annotations at the same level may have different granulari­

ties. For example, among DNA microarray probes, Affymetrix@ probes are usually short (25 bases) 
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whereas Agilent probes are longer (60 bases) and cDNA probes are generally;::: 500 nucleotides in 

length. The relationships between entities at the same or different granularities may be either 1-1, 

I-n, n-l or n-m: for example, an Affymetrix@ probe may span more than one EST; more than 

one such probe may be contained inside an EST; a cDNA probe may contain zero, one or more 

Affymetrix@ and Agilent probes. 
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ACTTTCCCTTTGGGAAACCGGTCGTGCCGTACGATGCAGTTGGCAAAGTCAACCCGTGGAAAAAGGGT 

Figure 4.1: Granularity of annotations 

Another difficulty in the development of such tools is the dynamic nature of annotations. Of 

late, rapid advances in sequencing and their declining costs have enabled researchers to perform 

novel sequencing as well as resequencing projects. These result in an increased depth of coverage of 

a genomic sequence, with gaps being filled and repeats more accurately mapped. Sometimes, the 

sequence underlying a genetic entity may change, and on a less frequent basis the whole genomic 

sequence needs to be updated (as of April 15th , 2012, the currently available genome versions for 

human, mouse and rat are 19 (GRCh37), 10 (GRCm38) and 4 (RGSC v3.4) respectively). These 

changes may modify the structural and functional annotations of a genetic entity (GenBank, RefSeq 

and Ensembl are updated everyday). Frequent updates in annotations also create problems in the 

manufacturing of DNA rnicroarrays. Microarray chips are designed and their probes are annotated 

using the current build of a specific genome. Regardless of the care taken in this design, the 
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system will include flaws due to the combination of the delay inherent in the process of microarray 

design-manufacture-deployment (compounded by the latency to use) and the dynamic nature of 

annotations. Attempts to address these problems have been the focus of a number of previous studies. 

Gautlier et al. [113] found redundancies in the annotations of Affymetrix® probes at a sequence 

level that map to multiple RefSeq genes. Such ambiguities may result in inaccurate interpretations. 

AffyProbeMiner [114] uses RefSeq and GenBank's validated complete coding sequences to regroup 

the probes on an Affymetrix® chip into consistent probe sets. In their study, regrouping of the 

probes affected almost 65% of the probes on the HG-U133A chip. Harbig et al. [115] reidentified the 

Affymetrix® U133 plus 2.0 GeneChip® array probes in an attempt to increase the reproducibility 

of microarray experiments. They used BLAST [33] to remap the probes against the genome and 

redefined approximately 37% of the probes. These studies suggest that redefinition or reorganization 

of probesets will improve the analytical accuracy of the microarray data, a process that would be 

greatly facilitated by a means for high-throughput query and mapping/comparison of given sequences 

(such as microarray probes) to other genomic annotations stored across a wide variety of databases. 

4.2 Currently available ID conversion tools 

The problem of ID conversion persists even though a number of tools exist to address this problem. 

Some of these are generic and perform ID conversion for probes, genes, proteins, and additional 

annotations while others are more specific to DNA microarray probes. Organism support varies 

with many of the tools catering to either a single organism or a small set of comparable species. In 

addition, cross--species comparison is variable, with most methodologies providing only intra-species 

conversion. Almost every approach uses some sort of relational database with the unique identifier 

being Ensembl IDs, RefSeq IDs, or custom generated IDs. A brief description of some popular tools 

follows. 

DAVID (Database for Annotation, Visualization and Integrated Discovery) [116-118] is a web 

based structural and functional annotation tool to extract biological meaning from a gene list. It 

uniquely generates custom IDs for querying a set of relations and is dependent on annotations from 
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other databases. A component of DAVID, DICT [119] (DAVID gene ID Conversion Tool), facilitates 

ID conversion. EASE [120], developed by the DAVID Bioinformatics team, is a customizable, 

standalone, Windows® desktop software application, having similar analytic capabilities as that 

of DAVID. Babelomics [121, 122] is an integrated web based tool for structural and functional 

annotation with an ID converter being one of its components. This component uses a universal index 

linked to Ensembl to create a database of 11 species. g:Convert [123], a component of g:Projiler, 

allows arbitrary conversion of genes, proteins and probes into one another. Every alias in g:Projiler 

is mapped through a three-level index of gene, transcript and protein Ensembl IDs. For each index 

level, all corresponding IDs are stored in the database. The Hyperlink Management System and ID 

Converter System [124] automatically updates and maintains hyperlink information among major 

public biological and chemical databases. It downloads data everyday from authoritative databases 

and produces a large correspondence table which is used to show the most up-to-date URL for 

genes of interest. Users can use CGI programs to create hyperlinks to this data. Synergizer [125] 

assigns a unique internally generated identifier, "peg", to all external IDs that refer to the same 

biological entity. It mostly uses the NCBI "gene2accession" file to maintain a database of synonym 

relationships and produce a simple web interface. MADGene [126] uses correspondence tables 

and allows conversions in an efficient way. The Clone/Gene ID Converter [127], MatchMiner [128], 

the Gene name converter in GeneMerge [129], RESOURCERER [130] and GeneLynx [131] are 

additional ID conversion tools. 

Some of the ID conversion tools are more specific, such as those that work only at the probe level. 

GATExplorer [132] is a web based tool for analysis and visualization of Affymetrix® probes at the 

genomic and transcriptomic level. It performs de-novo mapping of all the probes of Affymetrix®'s 

expression and exon arrays against the transcriptome of the corresponding organism using BLAST 

and records the coordinates on the genome. Unmapped probes are mapped to an ncRNA database 

downloaded from RNAdb. Only the perfect match alignment is selected while mapping these probes. 

The location of a gene or probe on the genome can be visualized along with all the transcripts present 

in that region. NetAffx™ [97]' provided by Affymetrix®, performs ID conversion of Affymetrix® 
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probes for different organisms and has a feature to perform structural and functional annotation. 

PLANdbAffy [133] is a Probe-Level ANnotation database for Affymetrix® microarrays (HG-U133A, 

HG-U133B, HG-U133 plus 2.0, Human Exon 1.0, Human Gene 1.0) that uses BLAT [34] to map 

individual probes onto the human genome. These probes are then annotated using information 

extracted from RefSeq. ProbeMatchDB [134] uses a number of public databases to perform cross­

species and cross-platform probe mapping. The database conversions are enabled by UniGene and 

HomoloGene identifiers. UniProts [78, 135] ID mapping tool works on the gene and protein level 

and converts gene IDs into UniProt IDs and vice versa. 

Some software tools have unique methods for mapping between different IDs. Onto~ Translate [60, 

136] converts one type of IDs into another by calculating the optimal path between IDs, taking into 

account the "trustworthiness" of data contained in various databases. The AliasServer [137] uses a 

custom generated unique 64-bit reference identifier which is computed from the amino acid sequence 

using the CRC (Cyclic Redundancy Check) algorithm where each ID is a unique combination of 

species identifier, type of database and the ID itself. 

Some databases/tools aid in ID conversion but do not function as a full fledged ID conversion 

tool. BioMart [138, 139], earlier known as EnsMart [140], provides a web and API interface to 

download data such as GO terms, genes, transcripts and expression arrays from different databases 

using filters. BridgeDb [141] provides an interface to connect bioinformatics tools such as Cytoscape, 

Path Visio, or WikiPathways with other mapping services such as Ensembl, PICR (Protein Identifier 

Cross-Reference services) [142], and any local database or text files. It is intended to be used by 

bioinformatics developers and works on the novel idea of mapping custom identifiers to established 

identifiers such as Ensembl ID and then relies on Ensembl to provide the rest of the conversion. Side 

by side feature comparisons of these tools are provided in Table 4.1. Data sources for select tools 

are listed in Table 4.2. 
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Table 4.1: Feature comparison of different conversion tools. 

Name Caters to 
intervals seqs ID Annot 

Iinkou 
Query 

Input Output Annot 
Basis of output 

Organisms availability 
Last up-

to IDs to IDs lookup View mode conversion format date 

DAVID 
probes, genes, 

./ ./ ./ ./ batch select one select one S, F 
custom gen-

html, txt NA 
web, API, 

Sep, 2009 
prots. erated EASE, JJ. 

Babelomics 
probes, genes, 

./ ./ batch select one 
select 

S, F 
custom gen-

html, txt 11 org. web Sep, 2009 
prots. multiple erated 

g:Convert 
genes , prots. and 

batch select one select one S,F Ensembl 
html, 

H,M,R,O web Jun,2011 probes txt, xis 

HMS and IC 
genes, prots. and 

./ ./ batch select one select one S, F corr. files html, txt H,M,O web, JJ. bio. molecules current 

Synergizer 
probes, genes and 

batch select one select one S 
Peg/custom 

html, xis H,M,R,O web, API May, 2011 
Prots. generated 

Clone/Gene ID 
genes and prots. ./ batch select one 

select 
S,F Ensembl 

html, 
H,M,R web Apr, 2008 

Converter multiple txt, xis 

MADGene 
probes, genes, 

./ batch NA 
select 

S, F 
MADGene 

html, xis 
H,M,R,O web, open 

Aug, 2009 
trans. multiple link (17org.) source 

GATExplorer 
Affy expression & 

./ ./ ./ single probes 
genes, 

S Ensembl html H,M,R web, JJ. Mar, 2010 
exon arrays trans. - ~ 

NetAffxTM genes, prots., 
./ ./ batch select one select one S,F 

UniGene, 
html, txt H,M,R,O web CND 

probes, other LocusLink 

PLANdbAffy 
Affy pxpreBsion ar-

./ ./ single 
Affy, Affy, 

S RefSeq html H web, JJ. May, 2009 
rays Hugo,Ens Hugo,Ens. 

probeMatchDB 
probes, eDNA, 

./ ./ batch select one select one S 
UniGene, 

html H,M,R web 2006 EST, gene, prots. Homologene 

Uniprot genes and prots. ./ ./ batch 
genes or prots. or 

S, F UniProt ID html NA web, API, JJ. Jul,2011 
prots. gene 

Onto-Translate 
Affy, uniGene clus-

./ batch select one select one S, F 
RefSeq, En- html, H,M,R,O 

web May, 2009 
ters, Acc num trez email (58org.) 

AliasServer Affy, genes, prots. ./ batch select one 
select 

S 
custom gen-

html, txt 
Not Avail- Not Avail-

CND 
multiple erated able able 

MatchMiner Affy, genes ./ batch select one 
choose 

S 
custom gen- Email 

H,M web Sep. 2006 
from erated (txt,xIs) 

GeneMerge genes and prots. batch select one NA S,F corr. files html 50rg. web Apr, 2007 

BioMart 
genes, prots., 

./ ./ NA select one 
select 

S, F NA 
html, 

H,M,R,O web, API, JJ. 
depends 

probes, other multiple txt, xis on DB 

BridgeDb 
probes, genes, 

NA NA ./ NA NA NA S, F 
Ensembl, 

NA 36org . open source May, 2011 
prots., metabolites other 

AbsIDconvert 
genes, trans., seqs., 

./ ./ ./ ./ ./ batch select one 
select 

S 
Genomic Se-

html, txt 
H,M,R,O 

web, JJ.VM Dec, 2011 
probes multiple quence (530rg.) 

- ----- _ .. _.- -

Abbreviations: Annat. View: Custom Annotation view, Annat.: Annotation (8: Structural annotation. F: Functional annotation), oeg: Organisms (H: Human, M: Mouse, R: Rat, 0: others), prots: proteins. Affy. 

Affymetrix@, trans; transcripts. seqs: sequences, Ens.: EnsembI. corr: correspondence, ace: accession, bio: biological, NA: Not Applicable, 1: Could not determine, .l,l.:download Knowledgebase, VM: Virtual Machine. 



Table 4.2: ID converter tools, data sources and availability. 

Name Data Sources Webpage 

DAVID 
GenBank. Rd'Seq. KEGG, OMIM, Un i- http://david.abcc.ncifcrf.gov/ 
Genp 

Babelolllies Go, KEGG, Ensclllbi and others http://babelomics.bioinfo.cipf.es/ 

g:Convcrt 
GO, KEGG, Enselllbl, TRANSFAC. http://biit.cs.ut.ee/gprofiler/ 
Reactollle 

HMS and IC Enselllbl, GO. KEGG and others http://biodb.jp/ 

Synergi~pr 
Enselllbl, NCB!, RGD, SGD, KEGG. http://llama.mshri.on.ca/synergizer/translate/ 
WorlllBasc and EcoCyc 

Clonp/Gellc ID Enselllbl, NCB!, Pubmed. UCSC, http://idconverter.bioinfo.cnio.es/ 
Converter KEGG, Reactome 

MADGenc GEO, UniGene, Entrc~ and others http://wvw.madtools.org/ 

GATExplorcr Ensembl, Affymetrix® http://bioinfow.dep.usal.es/xgate/principal.php 

NetAffx'M NCB!, GO. KEGG and others wvw.affymetrix.com/analysis/netaffx/ 

PLANdbAffy Affymctrix®, VCSC, NCB! http://affymetrix2.bioinf.fbb.msu.ru/ 

probeMatchDB VniGcnc, HOlIloloGenc http://brainarray.mbni.med.umich.edu/Brainarray/ 

Uniprot GellBank. Ret'Seq, GO and others http://www.uniprot.org/ 

Onto-Translatp Enscmbl, GO. KEGG and others http://vortex.cs.wayne.edu/ 

AliasScrvpr 
Ensembl, EMBL, NCBI, SGD and oth-

http://cbi.labri.fr/outils/alias/ 
ers 

MatchMiIlPr 
Affymetrix®, UCSC, UniGenc, Entrl'~. http://discover.nci.nih.gov/matchminer/index.jsp 
OMIM 

GencMerg(, GO,KEGG http://genemerge.cbcb.umd.edu/ 

BioMart NCBI, GO, KEGG and others http://www.biomart.org/ 

BridgcDb Ensembl and others http://www.bridgedb.org/ 

AbsIDconvert 
UCSC, NCB!, Enselllbl, Agilent. http://bioinformatics.louisville.edu/abid/ 
AffYlIlctrix® and others 
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4.3 Drawbacks associated with existing approaches 

Most of the ID conversion tools mentioned above use a two step conversion method. To convert 

an ID A to ID B, the first step is to use a correspondence annotation relation or table to find a 

common intermediary ID C (Fig. 4.2). This common ID C is then converted into target ID Busing 

another correspondence table. Some tools use Ensembl or RefSeq as an intermediary while others 

generate unique custom identifiers. For example, the Clone/Gene ID Converter and GATExplorer 

use Ensembl ID, PLANdbAffy uses RefSeq whereas DAVID and Synergizer use a custom generated 

DAVID ID and peg respectively. These tools convert smaller fragments (probes, sequences, reads) 

into coarser genetic entities (Ensembl, RefSeq, EntrezID) using inferred annotation level information 

irrespective of the fact that these small fragments may not be representative of the annotation as 

a whole. These methodologies also tend to lose structural and other information available at the 

probe or sequence level. 

A- - - - - - - - - --6 

C 
Ensembl. RefSeq. 

peg. 
custom generated 10 

Figure 4.2: ID Conversion -- A two step process. 

As stated previously, annotations are dynamic and databases such as Ensembl and RefSeq are 

updated daily making it difficult to keep the databases of ID conversion tools current. This is 

more problematic when the interme<;liate IDs are custom generated as these require more effort to 

update. Most of the tools are based on a relational database and the dynamic nature of annotations 

may introduce database anomalies because of the frequent insertion, deletion and updating of the 

annotations. If a gene is discovered, deleted or updated in any of these databases, or the annotations 

corresponding to an entity are added, deleted or updated, then all the databases or correspondence 
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tables also need to be updated. In the case of microarray experiments, if a probe corresponds to a 

recently deleted entity then that probe annotation needs to be edited as well. Updating any of these 

authoritative databases may induce a chain-reaction for any other systems using that information 

and any experimental result deduced from the updated probe may become invalid. Those tools that 

generate their own unique identifier such as DAVID, Synergizer or Babelomics, although efficient, 

face a similar situation and need to be updated frequently. As updating an annotation database is 

labor and resource intensive, some of the tools cannot afford to update their knowledge base regularly. 

4.4 Absolute (sequence based) method for ID conversion 

A feature of biological entities that is currently ignored in ID conversion is the sequence mapping 

information. For species where a reference genome is available, all nucleic acid and protein-based 

annotations, no matter the granularity, can be aligned to that reference genome sequence and there­

fore annotated by genomic intervals. Once the absolute genomic coordinates on a reference genome 

for all entities have been determined, these can be queried to find all overlapping entities, thus per­

forming ID conversion. This conversion uses the same two step method as adopted by most of the 

ID conversion tools, considering the genomic coordinates as the basis of conversion, rather than the 

annotation level information used by other tools. Compared to other types of intermediate IDs, the 

intervals on a reference genome sequence are relatively static, and remapping of entities to modified 

genomic sequences is relatively trivial, making it possible to easily update the system. Using interval 

trees, conversion by finding overlapping intervals is fast and efficient [143J. 

Fig. 4.3 shows the steps to perform sequence-based or absolute ID conversion. In the figure, all 

transcripts corresponding to probe A are being found. The first step (step 1) in this conversion is 

to find the genomic coordinates corresponding to probe A and the second step (step 2) is to find 

all transcripts that span those coordinates. In this example transcript 2 and transcript 3 are the 

converted IDs corresponding to the probe A. Transcript 1 is not represented by probe A as the 

underlying genomic sequence is not part of transcript 1. Subsequent sections describe the design 

and implementation of a genomic interval based ID conversion tool, AbsIDconvert. 
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Figure 4.3: Absolute ill conversion process 

4.5 System design and implementation 
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The design of AbsIDconvert was accomplished using a preprocessing and a query step. In the 

preprocessing step, reference genomes were downloaded from the uese Genome Browser (http : 

/ /hgdmmload. ese. uese . edu/downloads .html) and the NeBI website. The sequence information 

for a variety of identifiers at different granularities such as probes, sequences (ESTs), transcripts and 

genes were downloaded from their respective authoritat ive websites or uese. The identifier types 

include Affymetrix@ probes, Agilent probes, EST sequences, Ensembl transcripts and Entrez genes. 

Each identifier sequence was mapped to the respective genome using either BLAT [34] or Bowtie [35]. 

BLAT was used to map longer (>100 BP) sequences, while Bowtie was used for relatively short (::; 

100 BP) sequences such as Affymetrix@ and Agilent probes. Each identifier was then annotated with 

structural information such as start (identifier's start coordinate on genome), end (the end coordinate 

on the genome), size (sequence size) and chrom (corresponding chromosome). This information 

was collected for each identifier as a genomic interval. Genetic entities with multiple exons such 
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as transcripts were treated differently as there are two ways in which these can be structurally 

annotated. One method is to use the extreme ends (i.e. start and end codons of the transcript) 

as their intervals including both the exons as well as intronic regions, or alternatively exclude the 

intronic regions and assume the transcript's genomic intervals are an assembly of genomic intervals 

of the participating exons (AbsIDconvert incorporates both). Finally organism and identifier type 

specific interval trees were constructed and stored. A list of all identifiers and their type was also 

stored in a relational database to facilitate batch look-up for the types of identifiers. Fig. 4.4 shows 

the design steps of AbsIDconvert. 

Query Step 

1 
1 

I 1 
-_ . --_ .. _-_ .. - - --_ .. _-_ .. - .. - .. _-_ .. _-_ .. _-_ .. _--+ .. _-_ . 

1 I 
Balch lookup 1 ~ 

" --_ .' --- ' - " --- " ---

IDs 

IrtecYills 

.--- " --- " --- '--- " --- ' --_ .. _-_ .. --_ .. --_ .. --- .. --_ .. _-_. --~ 
1 

_ I 
1 

J Find the g4IIlOI11ic 

l:=====c:oonfi"Ia:::::::::::::::=Ies===: 
Map 0010 genome using 

Bowtie.'8lAT ancIlind 
1 genomic coordinates I 

~ __ .. _ __ .. - __ .. - __ . __ ~ _-::-' ___ .. __ _ • .. ___ . . - - _ .. __ _ .. 1- __ .. _1 

TqellOs ~""_IliI> .. ucsc .................. -.... .-­
IDs .. UCSC Genamea-

Figure 4.4: Steps involved in the construction of AbsIDconvert. 

Once structural annotation for each of the identifiers is available, AbsIDconvert can query this 

information. This query step uses the structural annotation information of each identifier and the 

organism specific database generated from the previous step. AbsIDconvert assumes two biological 

entities (nucleic acid, protein entity) are the same if their genomic sequences are also the same, 

overlap or one is contained within the other. As the number of annotations are large and frequent 

insertions and deletions are routine, an efficient data structure for storage and computational oper-

ations is needed. Considering that the structural annotation is in the form of genomic intervals, a 
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modified Red-Black tree, known as an interval tree, is used to store the information for all IDs. An 

interval tree maintains a dynamic set of elements, with each element x containing an interval int(x). 

This int(x} stores the start and end of the interval apart from other auxiliary information. This data 

structure is dynamic in nature and can perform insertions and deletions efficiently in time O(1092n), 

where n is the number of elements. Interval trees have been shown to be efficient for working with 

a large number of genomic intervals as covered in Chapter 3 

There are four possible ways in which AbsIDconvert may be queried: 

• Lookup identifiers: Given a mixed list of identifiers, AbsIDconvert can determine the types of 

identifiers in the list. This step uses the relational database created in the preprocessing step 

and can efficiently categorize the IDs in the list . 

• Batch conversion of IDs: Given a list of identifiers, AbsIDconvert uses the interval tree to 

find their genomic coordinates. Once the coordinate information is available, all overlapping 

identifiers can be found by querying the interval tree. This uses the IRanges [144] and Ge­

nomicRanges [105] packages internally to maintain the genomic intervals which are based on 

Allen's Interval Algebra [99]. Users can specify various range parameters using the interface. 

The overlap type ('type') parameter may take anyone of 'any', 'start', 'end', 'equal' or 'within' 

as its value. By default 'any' overlap is accepted. If 'type' value is 'start' or 'end' then the query 

intervals are required to have matching 'start' and 'end' respectively with subject intervals in 

the database. If 'type' is 'equal' then only those subjects are retrieved which have the exact 

same coordinates. For 'within', the query must be contained wholly within the subject inter­

vals. Another parameter is for specifying the maximum gap ('maxgap') between subject and 

query intervals to consider them as overlapping. The default value is zero which assumes there 

should not be any gap between the subject and query intervals. This parameter is useful for 

finding genes in the flanking regions of the specified intervals. The third parameter is the min­

imum overlap ('minoverlap') size that specifies the minimum number of overlapping base pairs 

needed to consider the query and subject an overlap. The default overlap value is one. The 

last parameter is the 'select' parameter that specifies which type of overlaps will be reported. 
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By default, all overlapping intervals will be reported. Selecting 'first', 'last' and 'arbitrary' 

will report first, last and arbitrary overlapping intervals from the result. A simple example 

using intervals is shown in Fig. 4.5. In this case, the reference genome is 10 BP long. The 

subject database contain four intervals sl, s2, s3 and s4 that represent the interval database. 

Query intervals also consist of four intervals ql, q2, q3 qnd q4. Considering default values for 

range parameters, ql overlaps with sl, q2 and q3 overlap with all the intervals in the subject , 

whereas q4 overlaps with s2, s3 and s4 . If the values of the parameters are type= 'wi thin , , 

maxgap = 0, minoverlap=l, select= 'all' then ql overlaps with sl, q2 with s2 and q4 with s2 

and s3. If the values of the parameters are type= 'end ', maxgap = 1, minoverlap = 1, select= 

'all' then q2 overlaps with s2, q3 with s3 and q4, and q4 with s2. 

1 2 

sl 

ql 

3 4 

Reference Genome 

5 6 

Subject Database 

s2 

Query Intervals 

q2 

q4 

q3 

7 8 

s3 

s4 

Figure 4.5: Example of interval overlaps . 

9 10 

• Intervals as input to AbsIDconvert: A unique feature of the ID conversion is to find target 

identifiers corresponding to a given interval. For example, ne>.."t-generation sequencers generally 

map the DNA sequences or reads to a reference genome and output the intervals for each aligned 

reads. Finding desired target identifiers corresponding to these intervals is routinely required. 

AbsIDconvert efficiently converts these coordinates into target identifiers in a high throughput 

manner. For instance, a user of AbsIDconvert is able to take a set of intervals upstream of 
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a set of transcription start sites to determine if any features are annotated proximal to the 

regions of interest . 

• Sequences as input to AbsIDconvert: Sometimes a user may be interested in finding all identi­

fiers that correspond to a particular sequence or a list of sequences. For instance, a user may be 

interested in finding all gene names and Entrez IDs corresponding to a set of sequences. In this 

case, AbsIDconvert maps these sequences to the corresponding genome (or any other genome 

for cross-species comparisons) and determines the genomic intervals they belong to and then 

retrieves all the desired target identifiers that overlap these intervals. Due to the computa­

tional complexity involved in mapping long sequences using a generic mapping algorithm such 

as BLAT or BLAST, the web version of AbsIDconvert supports only short sequence mapping 

using Bowtie. Longer sequences can be mapped using BLAT in the virtual machine version of 

AbsIDconvert. Sequence output from next-generation sequencing technologies can be catered 

efficiently using AbsIDconvert. Alternatively, the coordinate information may be obtained by 

submitting the sequences to Galaxy [145-147] or the UCSC genome browser and subsequently 

inputting the intervals using AbsIDconvert. Mapping parameters can be specified by the user 

through the interface. Parameters include the maximum number of mismatches which can 

range from zero (default) to three. The second mapping parameter specifies which type of 

alignments are to be reported. The default value is 'all Best' in which all best alignments 

will be reported by Bowtie. However, 'all', 'k' or 'k Best' can be selected for Bowtie output. 

AbsIDconvert also has another parameter 'Do not report ( .. more)' that takes a positive integer 

value which specifies that Bowtie will suppress all alignments for a particular read if the total 

number of reportable alignments for that read is more than the specified value. The default 

value of -1 specifies that all alignments will be accepted. For instance, if this value is set to 

100, then Bowtie will suppress all those alignments for reads that map to 100 or more loca­

tions on the genome. This is an effective option to mask repeat sequences or small sequences 

from appearing into the output because their probability to map at multiple locations on the 

genome is higher. 
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AbsIDconvert supports 53 major species for performing ID conversion on a list of identifiers and 

a list of intervals. It also has sequence level mapping support for 12 major species including Homo 

sapiens, Mus musculus, Rattus norvegicus, Bos taurus, Gallus gallus, Sus scrofa, Xenopus tropicalis, 

Anopheles gambiae, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and 

Danio rerio. AbsIDconvert converts the input (intervals, IDs and sequences) into target identifiers 

with links to authoritative databases. All intermediate interval files are available to download for 

later use. It also generates custom annotation files that can be used to view the IDs simultaneously 

(chromosome-wise) as a custom track in the U CSC Genome Browser. The performance and potential 

uses for AbsIDconvert are discussed in the following sections. 

4.6 Results 

4.6.1 Intervals vs. relational database 

The genomic coordinate information for different identifier types mapped to 53 species were stored as 

intervals. An interval tree method was implemented and used to store and query the corresponding 

interval information for each identifier type. For comparison with relational databases, an equivalent 

MySQL database was implemented to perform ID conversion based on coordinate information, and 

the run time for both of these methods were compared. 

Run-time comparisons of the interval tree and MySQL implementations were performed using 

randomly sampled rat EST IDs which were subsequently converted to Entrez gene IDs. To test 

the actual runtime, the number of EST IDs was increased exponentially for each test point and the 

corresponding execution time (in seconds) was measured. The run time complexity of the interval 

tree maintained a constant rate while the relational methodology grows in linear fashion, allowing 

for the conversion of millions of identifiers in only a few seconds (Fig. 4.6). 

Further analysis of conversion runtime was performed using 1000 random sampled IDs from 

Affymetrix® Rat230_2 microarray probes, Agilent Cgh105a microarray probes, RefSeq IDs, En­

sembI transcripts, Entrez genes, HUGO gene symbols and EST IDs which were converted into one 

another using the web version of AbsIDconvert (Table 4.3). The extreme left column represents the 
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Figure 4.6: Run time comparison between MySQL and interval-trees approach. 

source identifiers which are converted to target identifiers shown in first row. The numbers in small 

parentheses in the first row show the total number of genomic coordinates for individual ID types 

(For instance, Affymetrix® Rat230...2 .0 probes have altogether 231,971 intervals stored). Since Ab-

sID convert suppor ts conversion to multiple target types, the last column represents the time elapsed 

when an input type is converted into all other ID types. 

Table 4.3: Run time (sec.) to convert 1000 IDs from one type to another using web-based AbsID-

convert. 

x.at:tJU~ vgnlU:>a Kell>eq r;ru;'Hans r;ntrez gene t;enel>ymool r;I>T seq 
All (23 1.971) (97.973) (160.644) (349.445) (30.972) (30.972) (3.9 18,403) 

Affymetrix Rat230.2 5.6 3.2 4.1 7.6 3.2 3.3 33 47.6 
Agilent Cghl05a 5.1 3.9 2.5 2.7 2.92 3.05 31.3 55.6 
RefSeq 4.5 3.1 3.6 3.6 2.3 2.2 31.9 34.5 
Ensembl transcript 2.9 3.8 3.1 4 2.47 3.02 34.6 47.1 
Entrez gene 2.7 2.9 2.8 3 7.5 7.1 18.4 35.3 
Gene symbol 2.9 2.8 2.7 2.9 8.5 7.5 16.6 38.2 
EST sequences 18.6 17.6 31 30.3 28.3 29.3 64.1 73.7 

4.6.2 Run- time comparison 

Direct comparison to other ID conversion approaches is not straightforward due to the differences 

in annotation information (based on the last available update), supported ID types, and devel-

opment/deployment platforms. In order to test the runtime of comparable solutions (DAVID, 
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Clone/Gene ID Converter, GATExplorer , MADGene, and AbsIDconvert) , a varying number (100 

to 30,000) of Affymetrix® Rat230...2.0 microarray probesets were converted to Entrez IDs (Fig. 4.7). 

When the number of probes sets converted was small (100), the conversion time for all tools was 

nominal . For a moderate number of probe sets (5 ,000) MAD Gene, DAVID and AbsIDconvert per-

formed similarly (12.6, 6.1 and 5.1 sec. respectively) , while GATExplorer took around a minute 

and Clone/Gene ID Converter took 15 minutes (Fig.4.7(a)) . As the number of probe sets further 

increased, all of the tools, with the exception of MADGene and AbsIDconvert , were incapable of 

tractably handling such a large number of inputs. Since the Affymetrix® Rat230...2.0 has roughly 

31,000 unique probe sets and over 300,000 individual perfect match probes, a run time comparison 

for a large number of inputs (> 30, 000) was performed by converting randomly sampled human 

transcripts into Entrez IDs (direct conversion of individual probes is not possible within all of the 

tools; therefore the closest comparison is made to the same number of human transcripts) . For 

100,000 inputs , only MADGene and AbsIDconvert completed successfully, taking 45 sec and 24 sec, 

respectively (Fig.4.7(b)). Note that DAVID limits user input to 30,000 identifiers. The run- time 

complexity for AbsIDconvert compares favorably to other similar tools, demonstrating its applica-

hility in the analysis of high throughput data. 
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Figure 4.7: Run time comparison for ID conversion. 
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4.6.3 Output accuracy 

The accuracy of conversions performed using AbsIDconvert was assessed based on the overlap of 

the successfully converted IDs with those found using other tools for three types of conversions. 

In the first conversion, 1000 unique Entrez IDs were randomly sampled from the "org.Hs.eg.db" 

Bioconductor annotation package and converted to their corresponding official gene symbols. Ten ID 

conversion tools, from a total of 19 tools listed in Table 4.1, can perform this conversion. Considering 

NCBI as the authority for Entrez IDs, the accuracy of different conversion tools were evaluated using 

the following assumptions: 

1. NCBI contains the most up to date information and its annotations are correct. 

2. An Entrez ID may be annotated by more than one gene symbol. 

3. Given an Entrez ID x, if a tool converts x to a set of gene symbols, Y (x --+ Y), and NCBI 

annotates x to another set of gene symbols, Z (x --+ Z), then accuracy terms can be defined 

as: 

• True positives (TP) are those conversions in which the converted gene symbol set 

contains all the gene symbol(s) annotated by NCBI (i.e. Z ~ Y). 

• False positives (FP) are unexpected results. This includes incorrect conversions (Z % 

Y), as well as those conversions in which NCBI does not annotate an Entrez ID with any 

gene symbol, but a tool finds some gene symbol corresponding to that Entrez ID (Z = dJ 

and Y =J ¢). 

• False negatives (FN) are missing conversions in which a tool could not find correspond-

ing gene symbol(s) (Z =J ¢ and Y = ¢). 

• True negatives (TN) are the correct absence of conversion in which NCB I as well as a 

particular tool does not convert an Entrez to any gene symbol (Z =J ¢ and Y =J ¢). 

4. Accuracy is defined as 

TP+TN 
%Accuracy (ACC) =, TP + TN + FP + FN x 100 
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Table 4.4 shows the contingency table and associated statistics for the conversion of 1000 Entrez 

IDs to gene symbols. AbsIDconvert converted a total of 885 Entrez IDs with an accuracy of 87.2% 

followed by DAVID (853, 79.1%), MAD Gene (854, 73.1%) and HMS & IC (724, 72.9%). Although 

Onto-Translate converted a total of 823 Entrez IDs, it has more FP conversions than HMS & IC and 

therefore a lower accuracy. We further investigated the conversions from the top four tools on the 

basis of their accuracy and summarized the results in a Venn diagram (Fig. 4.8(a)). AbsIDconvert 

converted a total of 83 Entrez IDs which are missed by the other tools. NCBI places all these 

Entrez IDs onto the reference genome and annotates them with gene symbols that are in agreement 

with AbsIDconvert (Table A.l). Of these 83 Entrez IDs, 48 are categorized as "pseudo", 27 as 

"miscRNA", four as "protein-coding", three as "unknown" and one as "other". AbsIDconvert was 

unable to convert a total of 115 Entrez IDs, out of which 21 IDs were not converted by any of the 

tools examined. 

Table 4.4: Entrez ID to gene symbol conversion accuracy. 

Tool totalMapped TP FP FN TN TPR FPR ACC FDR Fl..score 
AbsIDconvert 885 866 19 109 6 88.82 76.00 81.20 2.15 93.12 
DAVID 853 790 63 146 1 84.40 98.44 19.10 7.39 88.32 
MADGene 854 730 124 145 1 83.43 99.20 13.10 14.52 84.44 
HMS & IC 724 723 1 270 6 72.81 14.29 72.90 0.14 84.22 
Onto-Translate 823 722 101 176 1 80.40 99.02 72.30 12.27 83.90 
MatchMiner 539 457 82 458 3 49.95 96.47 46.00 15.21 62.86 
Clone/Gene ID converter 537 441 96 457 6 49.11 94.12 44.10 17.88 61.46 
g:Convert 445 433 12 549 6 44.09 66.67 43.90 2.70 60.69 
Synergizer 445 433 12 549 6 44.09 66.67 43.90 2.70 60.69 
Babelomics 486 421 65 508 6 45.32 91.55 42.10 13.37 59.51 

Of the 94 Entrez IDs that AbsIDconvert was not able to convert but other tools were (Table A.2), 

most were either "not on current assembly", meaning that the reference sequence for that Entrez 

ID could not be mapped to the current genome (28 IDs), but could be mapped to previous genome 

assemblies; or "not annotated on reference assembly", indicating that the sequence cannot be found 

on the reference assembly at all (61 IDs). Five conversions were found where the Entrez IDs reported 

had since been deleted and replaced (DAVID and MAD Gene both converted these IDs). 
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In a second conversion test, 1000 randomly sampled Entrez IDs were converted to RefSeq IDs 

using ten of the 19 tools listed in Table 4.1 (the others are not able to perform this type of conversion 

and were not evaluated). There are many different classes of RefSeq IDs, including mRNA (ID starts 

with NM_ ), RNA (NR_ ), protein (NP _ ), as well as predicted versions of each one (XM_ , XR_ and 

XP _ respectively). How RefSeq IDs are segregated for conversion differs among the tools tested. 

For example, a number of tools combine all the different types of RefSeq IDs into one converted ID 

type while others treat each one separately. Other tools ignore the predicted RefSeq IDs and only 

consider mRNA and RNA. For example, AbsIDconverts RefSeq database combines both mRNA and 

RNA, whereas MAD Gene includes predicted products (XM). DAVID and Synergizer have separate 

options for RNA and mRNA RefSeq. Therefore, to enable comparison between all the tools, only 

those conversions that result in mRNA or RNA RefSeq IDs are considered, and for those tools that 

report them separately, the results from both conversions were combined. In addition, any predicted 

RefSeq IDs (i.e. those that begin with X) were removed. 

Using the same assumptions as reported for the Entrez to Symbol conversion, the accuracy of 

conversion for each tool was calculated (Table 4.4). Of the 1000 Entrez IDs used, NCBI annotates 

only 599 with one or more RefSeq. In this case, the accuracy for the various tools ranged from a 

high of 75.6% (AbsIDconvert) to a low of 38.9% (HMS & ID). 

Table 4.5: Entrez ID to RefSeq conversion accuracy. 

Tool Total Mapped TP FP FN TN TPR FPR ACC FDR FLscore 
AbsIDconvert 586 362 224 20 394 94.76 36.25 75.60 38.23 74.79 
MADGene 551 335 216 49 400 87.24 35.06 73.50 39.20 71.66 
Onto-Translate 501 291 210 99 400 74.62 34.43 69.10 41.92 65.32 
DAVID 549 311 238 72 379 81.20 38.57 69.00 43.35 66.74 
Synergizer 482 278 204 121 397 69.67 33.94 67.50 42.32 63.11 
g:Convert 482 278 204 121 397 69.67 33.94 67.50 42.32 63.11 
MatchMiner 474 268 206 126 400 68.02 33.99 66.80 43.46 61.75 
Babelomics 501 267 234 128 371 67.59 38.68 63.80 46.71 59.60 
Clone/Gene ID converter 421 219 202 195 384 52.90 34.47 60.30 47.98 52.46 
HMS & ID 461 227 430 181 162 55.64 72.64 38.90 65.45 42.63 

The results from the four most accurate tools were investigated further. 497 Entrez IDs were 

converted commonly by all tools (Fig. 4.8(b)). AbsIDconvert converted 586, followed by MADGene 

(551), DAVID (549) and Onto-Translate (501). Five conversions specific to MADGene were not 
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fOtUld by AbsIDconvert (Table A.3). In this case, AbsID onvert correctly mapped the Entrez IDs 

to the genome (Table A.4): however, the corresponding RefSeq IDs were not in the data obtained 

from VCSC. Other conversions that AbsIDconvert did not report were found to be false positives 

reported by other tools. For example, DAVID and Onto-Translate both reported converting "4586 

to "N~L017511" and 1'441956" to mvLOO1013729"j however, the genomic intervals for those IDs do 

not overlap, and both RefSeq IDs are shown in )lCBI as '-permanently suppressed". For the twenty 

conver ions specific to DAVID, the reported RefSeq IDs were found to be associated with different 

Entrez IDs in NCB! (Table A.5). 
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Figure 4.8: Velm diagram showing the conversion results. 

The thirty-eight Entrez IDs converted only by AbsIDconvert were investigated further to verify 

whether they were "correct". Thirty-three are in agreement with the NCB! data (Table A.6). For 

the other five, we examined the genomic intervals of both the Entrez IDs and reported RefSeq IDs 

to verify that they do indeed overlap (interval are reported in Table A.7). In all cases the converted 
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IDs do have overlapping intervals with two of the Entrez IDs discontinued and replaced since the 

initial construction of the AbsIDconvert database, "100505905" (to "23189" on March 2, 2012) and 

"100652874" (to "100505641" on Feb 3,2012). 

To better assess the accuracy of AbsIDconvert compared to other tools, the Entrez to RefSeq ID 

conversion was repeated ten times, randomly choosing 1000 Entrez IDs each time. Out of the 10,000 

randomly selected Entrez IDs, 8,974 were unique. AbsIDconvert converted 5700 (63%), followed by 

MAD Gene (5343, 59.5%), DAVID (5254, 58.5%) and Onto-Translate (4786, 53.3%) (Fig. 4.8(c)). A 

total of 945 (10%) of the IDs were exclusively converted by AbsIDconvert. 

In the third conversion, 1000 randomly sampled human Affymetrix® GeneChip HG-U133 Plus 

2.0 probesets were converted to Agilent Cgh44b probes (Fig 4.8(d)). This type of cross-platform 

conversion is important in meta-analysis studies where results are drawn by integrating and analyzing 

data from a number of independent studies/platforms. As this type of conversion is available only in 

Synergizer, we compared the conversion results of this tool with AbsIDconvert. Synergizer converted 

183 whereas AbsIDconvert converted 162 probesets. The reason for the small number of conversions 

is primarily due to the design differences of the probes on these chips. Two questions required 

deeper investigation: 1. Why was AbsIDconvert not able to convert 64 Affymetrix® IDs that were 

successfully converted by Synergizer; and 2. Are the 43 conversions exclusive to AbsIDconvert valid? 

To answer these, we extracted the design annotation of all the Affymetrix® GeneChip HG-U13~{ 

Plus 2.0 probesets provided by Affymetrix's NetAffx [148] along with the design annotations for the 

Agilent Cgh44b probes supplied by Agilent [149]. These provided the individual locations of each 

probe on the hg19 genome, thereby enabling investigation of the interval separation between the 

probesets. 

In order to examine the 64 probesets converted by Synergizer but not by AbsIDconvert, the 

genomic location(s) of the Affymetrix® probesets were compared to the genomic locations of the 

Agilent probes. Fifty-six (out of 64) of the probes are separated according to their genomic locations 

and do not overlap at all. This separation ranges from 75 to 418,671 BP with a median separation 
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of 4,736 bases. Further analysis determines that these all lie in the regions between the individual 

probes of the respective probesets and therefore have no shared sequence identity. 

Most of the ID converter tools including Synergizer map the genetic entities (probes, probesets) 

spanning tens of bases to an intermediary such as Ensembl that is at a coarser granularity spanning 

a few kilobases with possible intronic regions. 'Vhile performing conversions, these tools only use the 

probe annotation, disregarding the actual sequence information. The above false positives provided 

by Synergizer are likely the result of ignoring the sequence level information as the two types of 

probes actually span different genomic intervals. 

Next we considered conversions found exclusively by AbsIDconvert. Based on the official anno­

tation from NetAffxTM, we found that intervals for all 43 Affymetrix® probesets actually contain 

or overlap the converted Agilent probes with a mean overlap of 56.43 bases. Considering that most 

of the Agilent probes are 60 bases long and an Affymetrix® probeset contains overlapping 25 bp 

probes, this indicates most of these Agilent probes are contained in the Affymetrix® probeset region. 

These probesets were checked at the probe level and it was determined that these converted Agilent 

probes overlap with individual Affymetrix® probes to some extent, or are completely contained with 

a mean overlap length of 38.70 BP. We are not sure why Synergizer was unable to convert these 4~~ 

probes; however, the official annotation confirms these annotations and bolsters our confidence in 

the power and accuracy of our sequence based ID conversion. 

4.7 Case studies 

Three illustrative case studies were explored to demonstrate the capabilities of AbsIDconvert. The 

first case study considers sequence-based mapping of identifiers in a comparative genomics analysis 

of organisms involved in malaria; the second examines remapping of probes to annotations within 

and across species using a historical cDNA platform from Incyte; and the third identifies Ensembl 

transcripts mapped by Agilent and Affymetrix® arrays. 
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4.7.1 Case study 1: Comparative genomics: plasmodium mapped to hu­

man and Anopheles gambiae 

Recent studies have surveyed the role of both host and pathogen genetic variability to deter­

mine molecular signatures for host-pathogen interactions [150]. While the interactions between 

a pathogen and its host are often mediated by the host immune system responses to the pathogen, 

host-pathogen relationships theoretically have the potential to create a metagenomic environment 

whereby the total transcript orne is contributed by both the host and pathogen genes. In some 

cases, such as Neisseria meningitidis, a direct interaction between host and pathogen genes has been 

demonstrated [151]. As an illustrative example, it might be possible that shared sequence similar­

ities between pathogen and host genes play a role in host gene regulation via pathogen genes and 

gene products that provide additional promoter sites, miRNA targets, and binding motifs similar to 

those found in the host. To test the feasibility of this possibility in the context of malaria, we used 

absIDConvert to identify coding sequences identical between the PF and PV species and the human 

and anopheles genomes. 

Plasmodium is a parasite responsible for causing malaria in humans primarily in tropical and 

sub--tropical areas. About 3.3 billion people are at risk of this disease, leading to 250 million malaria 

cases and one million deaths worldwide every year (http://www . who. int/features/factfiles/ 

malarial). Altogether four Plasmodium species are responsible which are carried by the female 

Anopheles gambiae mosquito. Plasmodium Jalciparum (PF) and Plasmodium vi vax (PV) are the 

most common, with PF being the deadliest. 

Coding sequences for each gene for these two species were downloaded from the PlasmoDB 

website (http://plasmodb . org/) [152]. The total number of coding sequences in PF and PV were 

5,524 and 5,435 respectively. Sequences for each of these genes were then fragmented into 50 base­

pair (BP) long sequences with an overlap of 25 BP. The fragmented sequences were given a unique 

name by attaching a numerical suffix onto the gene name that denotes the order of appearance in the 

gene sequence. These fragmented sequences were analyzed using AbsIDconvert by selecting default 
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Figure 4.9: (a). Number of gene fragments from PF and PV that overlaps with at least one gene from 

Anopheles gambiae and Homo sapiens. (b). Corresponding genes in Anopheles gambiae (AnoGam2) 

and Homo sapiens (hg19) that were mapped by gene fragments from PF and PV. 

parameters including no mismatch while aligning to the Anopheles gambiae (AnoGam2) and Homo 

sapiens (hg19) genomes (Fig. 4.9). 

A total of 75 gene fragments from PF (PF JIg19 in Fig. 4.9(a)) had an exact sequence match 

to 692 human genes (PF JIg19 in Fig. 4.9(b)). For PV, the aligned number of gene fragments and 

corresponding genes were 17 (PV JIg19 in F ig. 4.9(a)) and 340 (PV JIg19 in Fig. 4.9(b)), respec-

tively. These numbers indicate that the gene fragments align to multiple locations on the human 

genome. Among genes that were mapped from PF and PV gene fragments, a total of 134 genes were 

common. When the same gene fragment sequences from PF and PV were aligned to the Anophe-

les gambiae genome (AnoGam2), a total of 99 (PF ...AnoGam2 in Fig. 4.9(a)) gene fragments from 

PF were mapped to 87 (PF ...AnoGam2 in Fig. 4.9(b)) different genes, showing that the correspon-

dence between the gene fragments and genes is largely one-to-one. These numbers for PV were 12 

(PV...AnoGam2 in Fig. 4.9(a)) and 31 (PV...AnoGam2 in Fig. 4.9(b)), respectively. 

A more detailed analysis of the genes identified using ontological information indicates a signifi-

cant enrichment in cell adhesion processes (Table 4.6). These are present in the GO terms 'cell-cell 

adhesion' (and others), but also implied by the large number of terms regarding neuronal a..'{ono-

genesis and synapse formation, which require specific regulation of cellular adhesion. While purely 
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speculative at this point, it is possible these plasmodium genes interact with the human host to help 

sequester human erythrocytes in small blood vessels which aids in the invasion plasmodium into the 

immune system [153]. While benchtop analysis of these genes is needed to determine if the "feasible" 

actually occurs, it is clear that analysis using AbsIDconvert has identified, via cross-species anal-

ysis, a limited set of genes that can be further interrogated for understanding the malaria-related 

pathophysiology, including the process of plasmodium incorporation into erythrocytes. 

Table 4.6: Significantly enriched (p-value < 0.001, number of genes ~ 2) Gene Ontology biological 

processes for the P. Jalciparum and P. vivax genes. 

GO ID Description list Membership pFal.Pvaluc pViv.Pva.iue 
GO:0048639 positive regulation of developmental growth pFai 0.0002a 0.078421 
GO:005186S protein autoubiquitination pFai 0.000611 0.310842 
GO:OOO7417 central nervous system development pFal 0.000749 0.052751 
GO:0010559 regulation of glycoprotein biosynthetic process pFal 0.0005:14 0.189699 
GO:0043062 extracellular structure organization pFal 0.000896 0.056366 
GO:00:U290 retinal ganglion cell axon guidance pFal 0.000729 0.020543 
GO:OOS0772 positive regulation of axonogenesis pFal 0.000671 0.108078 
GO:0007268 synaptic transmission pFal 9.63E-005 0.0044:17 
GO:00071.56 homophilic cell adhesion pFal 2.90E-00S 0.00181 
GO:0048745 smooth muscle tissu(' development pFal 0.00097 0.211";514 
GO:OOO8038 neuron recognition pFal,pViv 0.000611 2.71E-005 
GO:0071702 organic substance transport pViv 0.358064 0.000932 
GO:0010827 regulation of glucose transport pViv 0.15634 0.000705 
GO:0016337 cell-cell adhesion pViv 0.002316 0.00061S 
GO:0045725 positive regulation of glycogen biosynthetic process pViv 0.316458 0.000806 
GO:00080:17 cell recognition pViv 0.041274 0.000425 
GO:0010907 positive regulation of glucose metabolic proc{'ss pViv 0.486254 0.000312 
GO:004S913 positive regulation of carbohydrate metabolic process pViv 0.561654 0.000731 
GO:0010676 positive regulation of cellular carbohydrate metabolic process pViv 0.S61654 0.000731 
GO:0030036 actin cytoskeleton organization pViv 0.13:1792 8.55E-00S 
GO:0030029 actin filament-based process pViv 0.099:!08 2.74E-005 

4.7.2 Case study 2: Reinterpretation of prior datasets 

Annotations used for DNA microarray studies quickly become out-of-date as more knowledge 

emerges about a species' transcriptome. In addition, there are instances where one microarray 

platform may be used to measure gene products from a comparative species. For example, In-

cyte arrays spotted with human ESTs have been used to query gene expression levels in mouse 

and/or rat, based on the assumption that the human ESTs would bind to and provide measure-

ments of the corresponding gene in rodents [154-156]. Using the original EST sequences spotted 

on the array from these studies, we sought to verify the current annotations of the ESTs, and also 
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determine which rodent genes should bind the ESTs based on sequence alignment to the human, 

mouse, and rat genomes. Original EST sequences were found by searching two sources using the 

Incyte IDs supplied on the chip. The first source was the NCBI EST database, using a search 

string composed of IMAGE: and the Incyte clone ID number (identifies clones generated from the 

IMAGE consortium sequencing project). The second source was the Open Biosystems database 

(http://www.openbiosystems.com/).using a search string composed of LIFESEQ and the clone 

ID number. In some instances, multiple EST sequences were returned for each clone ID . A total 

of 8,392 sequences were downloaded and aligned to the genomes of human, rat, and mouse using 

AbsIDconvert with the default BLAT settings. The genome wide best alignment was found for 

each probe by considering only those alignments falling within 5% of the maximal alignment score 

(Fig. 4.10(a)) . Corresponding to each of these aligned coordinates, overlapping Entrez IDs were 

found for all three organisms. Out of the 7,095 human Incyte IDs which had corresponding genomic 

interval(s), 4,155 have at least one human Entrez ID associated with them. This number was 2,081 

(out of 3,368) for mouse and 1,438 (out of 2,776) for rat (Fig. 4.1O(b)). 

(a) 

Figure 4.10: (a). Number of Incyte IDs mapping to the human , mouse and rat genomes within 

5% of the maximum alignment score. (b). Incyte IDs with at least one Entrez ID found using 

A bsIDconvert. 

Homologous genes can be compared across species using NCBl's Homologene resource [157] when 

gene names are known. However, if sequence information is available, it would be best to use that 
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sequence information to determine if homology exists based on sequence conservation, particularly 

in cases where probes of known sequence are being used to measure a specific gene, such as in DNA 

microarrays or in-situ hybridization. Both methodologies were applied to the Incyte array used 

in [154-156]. 

For the Homologene based comparison, all of the Incyte IDs that map to at least one Entrez 

ID using AbsIDconvert were used to determine if a homologous gene exists, and if so, if there are 

corresponding entries for each of the species studied. Similarly, for those Incyte probes matching 

at least one Entrez ID, the sequence was used as a query into each of the other species using 

AbsIDconvert to determine if the probe maps to and overlaps an Entrez ID in a cross-species sense. 

As Table 4.7 indicates, using the Homologene conversion alone yields a high number of homologs 

(82% - 88%); however, using the sequence level information, it can be seen that a much lower 

percentage of probes (19% - 74%) actually map to known Entrez gene regions in the other species. 

These demonstrate that only a small number of the probes on the array should be utilized for cross 

species comparisons. 

4.7.3 Case study 3: Meta-analytic studies across platforms 

Meta-analysis enables the integration of many different experiments with a common research hy­

pothesis. However, high-throughput -omies meta-analyses are hindered due to the heterogeneity 

of DNA microarray array designs (length and location of probes), data acquisition, analysis, and 

inter- and intra-study variability. Therefore, many meta-analyses use the same species or even the 

same array platform to mitigate some of these heterogeneities. However, many studies do still at­

tempt to perform cross-platform and inter-species meta-analyses, and tools such as AIL UN (Array 

Information Library Universal Navigator) [158], A-MADMAN (Annotation-based microarray data 

meta-analysis tool) [159], and LOLA (List Of Lists Annotated) [160] enable cross-species meta­

analysis using Entrez ID, gene symbol or other IDs as a conversion intermediary. AbsIDconvert 

can perform cross-platform / -species analysis efficiently using the sequence based approach. We 
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Table 4.7: Comparison of Homologene and sequence based homologs. 

Organism mappedt Entrez t Homol§ Human (Hom) Mouse (Hom) Rat (Hom) Human (Seq) Mouse (Seq) Rat (Seq) 

Human 7095 4155 3854 - 3648 (88%) 3401 (82%) - 1002 (24%) 806 (19%) 

Mouse 3368 2081 1872 1794 (86%) - 1715 (82%) 1002 (48%) - 1064 (51 %) 

Rat 2776 1438 1263 1210 (84%) 1222 (85%) - 806 (56%) 1064 (74%) -

mappedt:Number of probef! mapped to Genome: Entrez+:Mapped probes with Entrez 10: Homol§: Probes with Entrez 10 as well as Homologene 10: Hom: Homologene Based Homologs; Seq: Sequence Based Homologs 

determined using AbsIDconvert. 



previously demonstrated that AbsIDconvert efficiently and accurately converted Affymetrix® HG_­

U133Plus2.0 probes into Agilent Cgh105a probes, among other types of conversions. 

To determine how comparable two microarray studies using different array platforms on a com­

mon organism could be, Affymetrix® HG_U133Plus2.0 and Agilent Cgh105a probe sequences were 

mapped and converted to corresponding human Ensembl transcripts using the default AbsIDconvert 

parameters. For the Affymetrix platform, 423,815 out of 603,158 probes were mapped to one or more 

transcripts, with 94,713 of the total Ensembl transcripts (173,742) being mapped (Fig. 11). This 

leaves 79,029 Ensembl transcripts that were not mapped by any Affymetrix® probes. For Agilent, 

27,184 (out of 99,026) mapped to 60,829 Ensembl transcripts. 79,029 (45% of the total) Ensembl 

transcripts do not have any mapped Agilent Cgh105a probes. The number of shared Ensembl tran­

scripts between platforms was surprisingly small (46,308), indicating that each platform appears to 

have probe specific subsets of Ensembl transcripts. The number of Ensembl transcripts not probed 

by either platform was surprisingly large. This appears to be due to a lack of probes designed to 

bind those Ensembl transcripts, as the majority of unmapped transcripts are much shorter than 

those that are mapped (Fig. 4.12). As Fig. 4.11 illustrates, 46,308 transcripts should be directly 

comparable between Affymetrix® HG_U133Plus2.0 and Agilent Cgh105a, while a large number of 

transcripts are not available in one or the other (or both) platforms. 

Figure 4.11: Ensembl transcripts mapped by Agilent Cgh 105a and Affymetrix® HG_U133Plus2.0 

probes. 
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Figure 4.12: Exonic lengths of Ensembl transcripts mapped/ unmapped by probes 

4.8 Conclusion 

A bsIDconvert is the only known gene ID conversion tool based on genomic coordinates / intervals of 

which we are aware. This is a novel and important contribution in the realm of gene ID conversion 

due to the large variety of genetic entities in current use by biologists, the need to convert between 

them , and the fact that most biological entities (nucleic acid, protein entities etc.) have an associated 

sequence. Mapping of the entity sequence to a reference genome sequence provides the concomitant 

genomic interval that allows determination of other entities that have overlapping genomic intervals. 

The interval basis of AbsIDconvert provides ease of flexibility with respect to any additions, 

deletions or updates of the underlying objects , requiring only adding of intervals , removing intervals, 

or modifying the intervals themselves , respectively. This makes it possible to easily keep the structure 

updated as the current state of biological knowledge changes. A major update is only required 

when the underlying genome changes, a fairly rare occurrence for most organisms, especially when 

compared to how often other genomic databases are modified. 

These intervals also allow easy discovery of genetic entities that only partially overlap with 

queried IDs / intervals, or that are within a specified distance nearby. More frequently, researchers 

are interested in those genes that are near specific genomic intervals corresponding to various types of 
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genetic control elements such as transcription factor binding sites, enhancers, untranslated regions, 

and hyper / hypo methylated regions. AbsIDconvert makes it easy to find those entities that 

overlap or lie nearby regions of interest. With the incorporation of a sequence mapping algorithm, 

AbsIDconvert integrates the determination of genomic intervals for any supplied sequence, making 

it possible to easily find and convert between IDs from any platform and organism, such as the 

examination of correspondence of the human EST clones with rat and mouse genes (case study 2) 

and of plasmodium and human genes (case study 1). We do not know of any other system that can 

easily accomplish these types of analyses. 

AbsIDconvert can greatly facilitate the work of those who are involved in meta analyses studies. 

When comparing studies where either the species and / or platform varies, this methodology will 

have clear advantages over others as it is based on common genomic coordinates. 

The use of an interval tree structure makes it possible to perform large conversions quickly and 

efficiently. This method is efficient while dealing with genomic intervals and has a significant ad­

vantage over other methods such as relational databases. Although theoretically limited by working 

memory, none of the interval trees generated and used by AbsIDconvert require more than 300MB 

of RAM on the deployed server, with the majority being rather small in size (less than 10 MB). If 

the data cannot fit into main memory, a method such as that proposed by Arge et al. [102] [103] 

can be used that maintains the interval tree in secondary memory efficiently. 

AbsIDconvert is provided as a web page at http://bioinformatics.louisville.edu/abid/, 

and is also available as a virtual machine for those wishing to run a local instance. Future work will 

include providing command line access, a RESTful interface, and modifying the interface to utilize 

a workflow management tool for genomic data such as GALAXY, where the primary data units are 

genomic sequences and intervals. 
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CHAPTER 5 

A HEURISTIC ALGORITHM FOR DETECTING 

INTERCELLULAR INTERACTIONS 

5.1 Introduction 

Cell--cell interactions are important aspects of many biological processes. Examples include migra­

tory processes (e.g., immune cell transvascular migration, nervous system development, and cancer 

metastasis), binding processes (e.g., oocyte implantation and leukocyte tethering and rolling), induc­

tion processes (e.g., stem cell generation and floor-plate or roof-plate modulation of neuronal fate), 

and adaptation/plasticity processes (e.g., neovascularization, axonal regeneration or sprouting, and 

sequestration of cancerous or infected cells). Chemical factors released by the skin both constitu­

tively and in response to various stimuli activate receptors expressed by the sensory axons providing 

innervation of the skin [161]. This activation can initiate a signaling process which ultimately influ­

ences neuronal structure and/or function by affecting transcription and translation. The structural 

nature of the nervous system is unique in that for a single cell the location of the initiation of the 

signaling cascade (skin) and the location of transcription/translation (sensory neuron cell body in 

the dorsal root ganglia between vertebrae) can be separated by great distances, in cases of large an­

imals up to many meters. Thus, the interaction site and the transcription/translation site represent 

different tissue samples, and are run separately for proteomic and transcriptomic analyses. Informa­

tion regarding intercellular interactions, particularly when the interacting elements are represented 

in separate samples, is generally not efficiently/accurately extracted with existing analytical tools, 

but may be extracted by examining the list of regulated genes/proteins against databases of known 

molecular interactions. 
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Figure 5.1: Evidence view of BRCA2 protein interactions from the STRING protein database. 

Given a list of relevant genes or proteins (here, the concept of gene and protein is used inter­

changeably) reacting to a given condition, it is a simple process to find all interactions within the 

gene list and with other genes using known interaction network data. As an example, Fig. 5.1 shows 

the interaction network of BRCA2 from the STRING [1621 database. BRCA2 is connected to many 

genes or proteins. These interactions may be direct or indirect through a transitive relationshlp. 

For example, BRCA2 is connected directly to BRCA1 and indirectly to ATM via BRCAl. As the 

number of genes in the list increases, the complexity of the network generated will also increase 

exponentially. 

It has been widely established that cell-cell interactions are mediated via protein- protein (gene­

gene) interactions. Having lists of genes that are differentially expressed from two different tissues, it 

is of interest to determine how the expression of genes in one tissue might influence gene expression 

in another tissue. The influence may be positively correlated (up- regulation of gene A in tissue 1 

up- regulates gene B in tissue 2) or negatively correlated (up- regulation of gene A in tissue 1 down­

regulates gene B in tissue 2) . The signal may be carried from one tissue to another via a number of 

intermediate proteins. Therefore, it would be advantageous to find all possible interactions between 
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two sets of genes with up to n-intermediaries. Finding all possible paths leading to these interactions 

is computationally intensive especially when the number of interactions is on the order of hundreds 

of thousands as each of the nodes may interact with hundreds of other nodes. 

To solve this problem, a heuristic method is developed that combines the" Backtracking Algo­

rithm" and a novel concept of exclusion vector (EV). The EV supports two functions: (1) restricting 

the interaction search space at each iteration; (2) restricting the search space based on defined prop­

erties of the proteins. In this work, the location of the proteins according to the cellular component 

annotation in the Gene Ontology (GO) [82] is used. This method can be readily applied to sepa­

rate tissue samples that interact, such as neuronal cell bodies and their target tissues, or specific 

cell-types separated from their native tissue (for example, laser-capture or FACS). 

5.2 Interaction databases 

To find the pathways or interactions in which a particular gene is involved, we need to search into 

the available interaction databases. There are many interaction databases publicly available such as 

PathwayCommons ( wwv. pathwaycommons. org), STRlNG [162]' STITCH [163] [164]' HaPPI [165], 

InPrePPI [166], KEGG [111], BioCarta, GenMapp [167], BioGRlD [168], MINT [169] and In­

tAct [170]. A detailed review pertaining to the protein-protein interactions and pathway databases 

and visualization software can be found in [171]. 

PathwayCommons provides a common platform to access pathway information from multiple 

sources represented in a common format. It collects, stores and integrates pathway and interaction 

information from various publicly available databases. These interaction include biochemical reac­

tions, complex assembly, transport and catalysis events, and physical interactions involving proteins, 

DNA, RNA, small molecules and complexes. As of February 2012, it contains 442,182 interactions, 

1,668 pathways and 86,282 physical entities spanning across 414 organisms. This database can also be 

accessed programmatically via a web service API. For example, the command get-pathways retrieves 

all pathways involving a particular physical entity such as BRCAl. PathwayCommons import data 

from the databases which store the interaction data in BioPAX format ( http://wwv . biopax. org/). 
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BioPAX is a common standard format to enable integration, exchange, visualization and analysis of 

biological pathway data. 

STITCH (Search Tools for Interaction of Chemicals) integrates data from different sources such as 

bench-top experiments, databases and literature to mine known and predicted interactions of chem­

icals and proteins. The scoring method adopted gives more weight to manually curated interaction 

while a relevance score is attached to the interactions that are based on experimental information. To 

search for interactions in chemical databases, STITCH uses the SMILES (Simplified Molecular In­

put Line Entry System) (www.daylight.com) strings and the InChI(IUPAC's International Chemical 

Identifier) codes. As of May 31st , 2012, STITCH contains interaction for over 300,000 small molecules 

and over 2.6 million proteins in 1,133 organisms (http://stitch.embl.del). The interaction 

database as well as the query results of interactions are publicly available to download from http: 

Iistitch.emblode/. STRlNG (Search Tool for the Retrieval of Interacting Genes/proteins) is a 

similar database of physical and functional interaction of proteins. It relies upon the manually 

curated data from primary interaction databases such as BioGRID, IntAct, MINT, and BIND and 

combines it with the information extracted from pathway databases such as KEGG, EcoCyc and Re­

actome. STRING also incorporates protein-protein prediction algorithms. The database currently 

conains 5,214,234 proteins across 1133 organisms ( http://string . embl. del). 

HAPPI (Human Annotated and Predicted Protein Interactions) is a comprehensive web-based 

resource for exploring human protein interactions. It integrates data from various interaction 

databases and stores them in a relational database. It also incorporates a unified scoring scheme 

to calculate the quality/confidence of the protein interaction results by giving them a star rat­

ing ranging from 1 through 5 [165]. As of November 2009, this database contained informa­

tion for 13,601 proteins and almost 1.3 million PPI (http://discern . ui ts. iu. edu: 8340/HAPPI/). 

BioGRID (http://thebiogrid . org/) is another online interaction database that searches over 

30,287 publications for 461,097 raw protein and genetic interactions from major model organ­

ism species (as of February 2012). The new curated interactions are updated monthly. The in­

teraction data are freely available to download in tab delimited text and PSI-MI XML which 
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are HUPO's standard to store interactions. IntAct provides freely available database system for 

containing information(as of February 2012) for 60,993 proteins and over 291,835 binary interac­

tions (http://www.ebi.ac . uk/intact/). 

5.3 A vailable algorithms 

There are a number of methods that integrate information from different interaction databases to 

predict gene functions. GeneMANIA[172] [173] is one such tool that integrates multiple functional 

association networks and predicts gene functions. There are a few approaches that address the issue 

of intercellular interaction using the available interaction network information. In one study, Tarca 

et al. used signaling pathway impact analysis to gain biological insight from two set of genes [174]. 

Kirouac et al. [175] studied the intercellular and intracellular networks in a stem cell derived, hi­

erarchically organized tissue by analyzing cultured human umbilical cord blood progenitors. They 

showed that secreted factor-mediated intercellular communication networks regulate blood stem 

cell fate decisions. However, in none of these studies has a general method to determine possible 

intermediaries in intercellular signaling been proposed. 

5.4 Methodology 

A naive algorithm and the proposed heuristic algorithm are outlined here to solve the above problem. 

The gene lists are assumed to be from two different tissues, Tl and T2 and may be subsets of much 

larger lists, selected using some criteria such as the level of expression of individual genes. One 

protein may interact with another either directly or indirectly via a number of other proteins. One 

direct interaction between two proteins is called a hop. 

5.4.1 NaIve algorithm 

The naive approach to find all possible interactions between two sets of proteins is to take the protein 

list Tl as a seed into the interaction database to find all possible interactions. Using the targets from 

the previous step as the source nodes, a new set of interactions are found. This step is repeated up 

93 



p 

Q 

R 

S 

D 

K 

L 

lvi 

N 

Figure 5.2: Nalve approach to find gene interaction. 

to h hops iteratively. Fig. 5.2 illustrates the nalve approach where a gene or protein in tissue Tl 

may interact with other genes or proteins, and those in turn interact with others and so on, finally 

reaching genes in tissue T2. If the initial gene set is {A, B} , then using the interaction database 

it can be determined that these two genes in turn interact with four genes {X, Y , Z, W} where A 

interacts with {X,Y} and B interacts with {X, Y, Z, W} as shown by the edges in Fig. 5.2. Some of 

these genes may be found to be expressed in the same or different cellular components such as the 

nucleus, cytoplasm or cellular membrane. Gene X belongs to the same cellular component as {A, B} 

whereas genes {Y, Z, W} belong to different cellular components. Fig. 5.2 shows the network after 

two degrees of separation or hops (h) in tissue T1 . In this example, gene A interacts with X and 

X interacts with P, resulting in two hops to traverse from A to P . The number of hops between a 

pair of nodes from one tissue to another may vary. To address this concern, the interactions may be 

checked for a number of hops ranging from 1 through h. The pseudocode for finding all interactions 

using a nalve algorithm is shown in Algorithm 2. In this example, intxnDB is a PathwayCommons 

interaction database in simple interaction file (SIF) format where each entry represents an interaction 

from a source ('from') node to a destination ('to') node with each node being a gene or protein. 

Although there is no directionality in the actual interaction data, directionality is explicitly added 

by appending a symmetric property to the data. In this case, if entry A interacts with B (A ,B) then 

B interacts with A (B,A) is added into the set of interactions. 
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Algorithm 2 Naive Algorithm for Finding all Interactions. 

1: procedure ALLINTXNNAlvE(input, h, int:rnDB) 
2: 

3: 

n ~ length(input); t> input contains all start nodes (A and B in Fig. 5.2) 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

hops ~ 1 
repeat 

for j ~ l,n do 
node = input[j] 
for k ~ l,lenlntxnDb do 

if node = intxnDB[k, 'from'] then 
end if 

end for 

t> for each input find all direct interactions 

t> for each input find all direct interactions 
t> Add intxnDB[k, 'to'] as child of node; 

11: end for t> input is now all the children attached in the previous step 
12: n = length(input) 
13: hops = hops + 1 
14: until hops::; h 
15: end procedure 

Starting with n initial nodes (A and B are two initial nodes in Fig. 5.2), finding all possible 

interactions requires searching for all interactions of a gene or protein and incrementally building the 

interaction network. Taking the rat interactome as an example (511,408 interactions and 3,778 nodes 

as of April 18th , 2011. Average interactions per node = 136), and assuming that the interactions 

are represented as a tree structure, on average each of the nodes at the root level has 136 children. 

Each of these children at the first level, on average, has 136 children in the second level, and so on. 

Finding all the interactions in such a way is an intractable problem as the run time for the algorithm 

will be O( n * 136h * m) where h is the maximum number of hops (levels in tree example) required and 

m is the total number of interactions in the intxnDB. Using a binary search to find interactions in 

the intxnDB will take O(n * 136h * log2(m)) time, where intxnDB is the rat interaction data, and 

O(n * kh * log2(m)) time in general, when k is the average number of interactions for each node. 

5.4.2 Proposed heuristic approach 

To address the computational issues with the naive approach, a heuristic algorithm is proposed to 

find all possible interactions across tissues in an iterative way. The heuristic uses an exclusion vector 

(EV) that is updated at each iteration to maintain a list of those nodes that should not be considered 

in future iterations. The "backtracking approach" removes in each iteration all those nodes already 

used in the previous iterations. This reduces the complexity of the search space as the removal of a 
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Figure 5.3: Flow diagram for finding participating nodes and interactions. 

single node in 136 - ary tree removes the subtree rooted at that node, thereby reducing the overall 

complexity to be directly proportional to the number of participating node p in the final interaction. 

A meet-in-the-middle (MIM) concept is used to limit the number of participating interactions by 

removing all those nodes that do not lead to MIM nodes. MIM nodes are defined as those nodes 

found in common at some place between two tissues when the traversal begins from the set of nodes 

from either tissue. Once the common nodes are known, a trace-back can be used to include only 

those interactions that lead to MIM nodes, while the rest of the interactions are removed. 

The EV can also be used to store a set of nodes that should be excluded from the interaction 

calculation. The EV can be initialized with an optional set of nodes that are known not to play 

any role in the interaction. A hash table is used for storing the interactions, thereby reducing the 

running time to B( n * 136h * B(l)) in contrast to B( n * 136h * m) in the nai've approach. The complete 

heuristic algorithm is shown as flow diagram in Fig. 5.3 and the steps are explained as follows. 

1. Location Awareness: Considering that many proteins are localized to a specific region of 

the cell, have different molecular functions or are involved in different biological processes 
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that may restrict the possibility of interacting across tissues, a desirable property is to have 

some control over which genes are considered. For instance, if it is known that a protein is 

restricted to the nucleus and is not going to playa role in some form of direct intercellular 

interaction, it is better to be able to exclude (optionally) all those genes that are in the nucleus 

and not found anywhere else. One popular source of information for these properties is Gene 

Ontology (GO), which contains annotated information concerning the cellular localization of 

proteins. Therefore, it is advantageous to populate the EV based on those genes with/without 

particular GO annotations as an initial step in the algorithm. However, searching all genes that 

are exclusively annotated by a subset of GO annotations may take time {}(n * m), where n is 

number of genes while m is total number of cell components. In the worst case the complexity 

will be {}(n2 ). This algorithm stores the annotations as bit vectors to allow quick searching of 

genes that are annotated with particular GO terms in time {}(n). 

Table 5.1: Occurence matrix using cellular component information for a sample gene set. 

NUCLEUS CYTOPLASM MITOCHONDRION PLASMA MEMBRANE CELL JUNCTION SYNAPSE 

swissProtID GeneName GO: 5634 GO: 5n7 GO: 5739 GO: 5886 GO: :10054 GO: 45202 

055007 Park2 1 1 1 0 0 0 

Q9ES40 Arl6ip5 0 1 0 0 0 0 
POR050 Gjal 0 1 0 1 1 0 
BOBNC4 Agxt212 0 0 0 0 0 0 

088407 Faim2 0 0 0 1 1 1 
BOBNCR Garnll 1 1 1 0 0 0 

Q8K5C2 Park2 1 1 0 1 1 1 
Q9JM59 Kenip2 0 1 0 1 0 0 
035049 Smpd3 0 0 0 1 0 0 

Given a set of gene-GO annotations, an occurrence vector (OV) is generated for each gene 

with all GO annotations in a given sub-ontology (biological process, molecular function, or 

cellular component (CC)). An example occurrence matrix (OM) is shown in Table 5.1. The 

table contains six cell components with GO identifiers 5634, 5737, 5739, 5886, 30054, 45202. 

The OV for all the genes will be generated once and can be used later. For instance, the OV for 

the gene park2 (swiss Prot ID 055007) is {111000} with 0 indicating absence and 1 indicating 

the presence of the park2 gene product in the corresponding CC. A list of GO identifiers 

are supplied. Genes that are exclusively annotated with those identifiers or their subsets are 

selected to serve as candidates for the exclusion vector. For instance, if the supplied GO CC 
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IDs are {5737, 5886}, then genes are exclusively annotated with 5737 or 5886 or both. The 

OV corresponding to the query will be OVq = {0101O0}. For each gene i, if OVq Q9 OVi = 0 

then gene i is included in the initial set of exclusion vector EVI . Here, the symbol Q9 can be 

defined as: 

where Xi represents the bitwise NOT of Xi and· represents the bitwise AND operation. In 

Table 5.1, only Q9ES40, BOBNC4, Q9JM59, 035049 qualify to be included in EVI while the 

rest of the genes are removed as they are either not annotated with 5737 or 5886 or they 

are also annotated with additional GO identifiers. Finding genes using the OV will require 

B(n) time as the OV of each gene is compared with the OVq using a bitwise operation. It 

should be noted that, in theory, any gene annotation data can be used to generate the OV and 

subsequently used to populate the EV at the initial step of the algorithm. 

2. Initial Step: The complete interaction database and two sets of genes (set of nodes from TI 

and T2 ) between which interactions are to be determined are given as input. A hash table 

(hashEdgeList) is generated from the edge list. An optional EVI from the previous step (EVI 

is empty when location awareness is not taken into consideration) is also converted to a hash 

(hashEV). For each source node a lookup is performed on hashEdgeList adding all those edges 

with targets not in hashEV. Once the interactions for all the nodes in the set are found then 

one hop (pass) is completed (Fig. 5.4a-b). 

3. Iterative Step: In the iterative step, the EV is first updated. In the ith iteration, EVi is 

populated as follows: 

EVi = EVi--1 U srCi-l, i :::: 2 

The EV at each step is a union of all the nodes in the EV and the source nodes (src) in 

the previous step (Fig 5.3). The EVi is then converted into a hash table (hashEV). Using 

the interactions from the previous iteration, hashEV and hashEdgeList, the interactions for 

each source node not in hashEV are found. This step is repeated for the required number 

of hops or until no more interactions can be added to the system. This will generate all 
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valid interactions considering the location-aware algorithm combined with the heuristic that 

iteratively populates the EV. 

Algorithm 3 Heuristic algorithm to generate all participating interactions. 

1: procedure HEURISTIC (geneList, hashEV, edgeList) 
2: hashEdgeList = hash(edgeList[,' from']' edgeList[,' to']) 
---- Initial step -----

3: intxn = ¢ 
/ * Store interactions in present hop. * / 

4: for i +-- 1,length(geneList) do 
5: src = geneList[i] 
6: tgts = hashEdgeList[[src]] 
7: if tgts != NULL then 
8: for j +-- 1,length(tgts) do 
9: tgt = tgts[j] 

10: if hashEV[[tgt]] == NULL then 
11: Add (src, tgt) to the intxn 
12: end if 
13: end for 
14: end if 
15: end for 
---- Iterative Step 

16: loop = TRUE; 
17: while loop do 
18: src = intxn[,' tgt'] 
19: if length(src) :::; 0 then 
20: loop == FALSE 
21: break 
22: end if 
23: EV = EV U src; 
24: hashEV = invert(hash(l : length(EV), EV)); 
25: for i +-- 1, length( src) do 
26: S = src[i] 
27: if hashEV[[sll != NULL then 
28: tgts = hashEdgeList[[srcll 
29: if tgts != NULL then 
30: Add (src, tgts) to the intxn 
31: else 
32: Exit 
33: end if 
34: end if 
35: end for 
36: end while 
l!ihd procedure 

Pseudocode for the heuristic algorithm is given in Algorithm 3. These interactions are only 

generated once for a particular set of differentially expressed nodes. Line 2 builds a hash table. 

Lines 3 to 15 represent the initial step. Lines 16 to 30 iteratively find the interactions. 
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Figure 5.4: Steps in the construction of an interaction network using the heuristic algorithm. 

4. Steps 2 and 3 are performed for both gene sets under consideration to find all possible interac-

tions fulfilling the criteria. Fig. 5.4(c) shows two hops of interactions from Tl while Fig. 5.4(d) 

shows three hops of interactions from T2 . 

5. The MIM nodes are determined, and the edges and nodes that do not lead to MIM nodes are 

removed. Fig. 5.4(e) shows the interaction network after performing this trace- back. The size 

of resulting interaction graph is smaller than the one with the full set of interactions. The 

interacting proteins between the tissues can then be viewed in a graph visualization package 

such as Cytoscape [176] [177]. 

5.5 Finiteness and completeness of the heuristic approach 

The proposed heuristic algorithm is finite, meaning that the algorithm will come to a halt after 

performing a certain number of steps. T he EV is populated at each iteration and its size increases 

after every iteration. T he algorithm converges and ceases when no new nodes can be added into the 

interaction . At this moment, the EV contains the same set of nodes as those in the network itself. 

In contrast, the nai"ve algorithm does not contain any criteria of finiteness and a maximum number 

of hops (h) must be supplied to the algorithm to force completion. The EV in the it" iteration are 

updated as below: 

EVi = EVi- l U STC; - l , i ~ 2 
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Inclusion of all the nodes in srCi-l in the equation is guaranteed to include all the back edges and 

correctly include all the nodes and interactions. The initial step of the algorithm in Fig. 5.3 applies 

the EVon the target nodes instead of source nodes (iterative step) to keep all nodes that are nuclear 

and in the geneList as the cell interaction may generate from the nucleus and go out to some other 

cells. 

5.6 Results 

The following results all use the interaction database for rat from PathwayCommons database. This 

interactome contains a total of 511,408 interactions with 3,778 nodes as of April 18th , 2011. Each 

node on an average contains 136 direct interactions with other nodes. Finding interactions using 

the naive approach presented in Algorithm 2 quickly becomes intractable. For instance, with a 

random starting gene set of just 10 initial genes, the first hop for determining interactions takes 3.5 

seconds. The second hop takes 5,820, and the third hop does not complete. Therefore, a modified 

naive approach was implemented that uses a hash to speed up retrieval of gene interactions for 

comparative purposes. 

Table 5.2: Comparison of Heuristic and Naive algorithm. 

Heuristic naive using hash 
geneList # hops time #intxn #nodes time #intxn #nodes 

10 7 10.57 388372 1099 91.78 2714869 1107 
50 7 11.26 388384 1108 83.54 2343199 1153 
100 6 11.66 388420 1131 70.41 1962689 1220 
200 7 11.89 388516 1196 90.92 2376875 1361 
300 6 11.76 388478 1180 75.39 2016790 1449 
400 5 11.76 388554 1216 114.61 2821283 1583 
500 5 11.36 388565 1224 63.93 1674262 1692 

The speed-up of the heuristic algorithm versus the modified naive approach with hashing was 

computed by taking random gene lists (ranging from 10 to 500 in number of genes) extracted 

from the PathwayCommons rat interact orne dataset for both the "from" and "to" gene lists which 

conceptually represent different tissue types. The generated gene list size is given in the geneList 

field of Table 5.2. An additional input for the number of maximum hops must be supplied for 
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the naIve algorithm, as it will otherwise continue adding interactions ad infinitum. For each of 

the gene lists, the maximum number of hops used was the number of hops taken by the heuristic 

algorithm before completion to provide a fair comparison of the approaches. Since the gene lists 

are generated randomly, the number of required hops fluctuates between five and seven as shown in 

the Table 5.2. In these examples the EV was used only to remove nodes that had been previously 

encountered (Le. no localization information was included). As can be seen in Table 5.2, the 

number of nodes (i.e. genes) and the number of interactions both remain relatively stable with 

the heuristic approach, while the naive algorithm has greater fluctuations. However, the number 

of interactions increases substantially in the naIve approach, ranging from four to seven times as 

high as the number of interactions found using the EV heuristic. The actual computational time for 

generating the respective interaction networks is given in the third column. From these results, the 

heuristic approach is anywhere between five to nine times faster than the modified naIve approach, 

which could be reduced further when localization is incorporated in the EV. 

To further illustrate the applicability of the heuristic algorithm for intercellular signaling, we gen­

erated gene lists from different tissues using a publicly available dataset from Gene Expression Om-

nibus (GEO) [93J (GEO accession GDS1864, http://www.ncbLnlm.nih.gov /sites/GDSbrowser?acc=GDS18 

64) containing 62 total samples studying the effects of two antiepileptic drugs (levetiracetam, pheny-

toin) on the expression of genes in three brain tissues: brainstem, frontal cortex, and hippocampus. 

As the drugs are administered to whole animals, it is possible that some of the changes in gene 

expression are due to intercellular signaling between the tissues. Differentially expressed genes are 

found using empirical Bayes statistics [178J from the Bioconductor [179J limma [55J package with 

a p-value < 0.05. The initial gene lists contained 311 and 324 differentially expressed genes for the 

frontal cortex and the hippocampus tissues respectively. Up-- and down- regulated gene lists for each 

tissues 10gFC > 0.5 for up-regulated, 10gFC < -0.5 for down-regulated genes) were generated for the 

comparison of exposure to phenytoin with controls. The interactions between up-regulated genes 

in cortex and up--regulated genes in hippocampus are shown in Fig. 5.5. Four hops from the frontal 

cortex and three hops from the hippocampus (a total of six intermediate nodes between cortex and 
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Figure 5.5: (a). Output from Cytoscape showing interactions between the frontal cortex (left) and 

the hippocampus (right). (b). Detail of the inset in (a). 

hippocampus) are considered here. Nodes (genes) up-regulated in the respective tissue are colored 

red, while those that are down- regulated are green. Nodes that are white represent genes that are 

either not significantly changed, or are not present on the array. The resulting interaction network 

contains a total of 387 nodes (genes) and 2170 interactioDS. This example demonstrates how an 

interaction network can be built, and subsequently visualized. Gene location information was not 

used in this example. Inclusion of location information and further filtering by an expression cut-off 

can significantly reduce the interaction network even further . 

5.7 Conclusion 

A heuristic algorithm is developed for detecting and predicting intercellular interactions. Considering 

the large number of interactioDS this algorithm may serve as a time efficient algorithm to view 

interactions between cells. The use of the EV allows location awareness in the interaction in an 

efficient manner. The MIM approach further limits the size of the interaction network without 

losing any information. The success of the method depends upon the information available in the 

respective databases. The more accurate the database , the more reliable the output network will 
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be. In this work the edge attributes are not considered, however their inclusion may increase the 

confidence in the generated interaction network. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

High-throughput techniques in molecular biology are generating high volumes of data waiting to be 

understood. A number of databases and software tools have been created to deal with these data. 

Oftentimes these databases and their methods for annotating biological entities are independent, 

heterogeneous and redundant, yet at the same time contain important information. When combined, 

these sources of information can provide a better understanding of a biological system as a whole. 

Integration or comparison of these databases is difficult, time-consuming and sometimes impossible 

because of the absence of a common platform to compare them directly. 

To mitigate issues with conversion among annotations, we developed AbsIDconvert, an absolute 

ID conversion tool. This tool is absolute in that it converts annotations to a common source based 

on underlying cytogenetic locations. These are represented as intervals with definite start and end 

locations, exonic boundaries and lengths. AbsIDconvert uses an efficient interval-tree approach to 

store the coordinate-level information and is effective in integrating and comparing heterogeneous 

databases. To our knowledge, AbsIDconvert is the only known gene ID conversion tool based 

on genomic coordinates. AbsIDconvert provides ease of flexibility with respect to any additions, 

deletions or updates of the underlying objects, requiring only adding of intervals, removing intervals, 

or modifying the intervals themselves, respectively. 

AbsIDconvert allows flexibility in specifying the overlapping parameters while performing ID 

conversion. It can discover partially overlapped IDs / intervals, or those which are within a specified 

distance nearby. It also allows discovery of overlapping IDs for a given set of sequences and intervals. 

With the incorporation of a sequence mapping algorithm, AbsIDconvert allows the determination 

of genomic intervals for any supplied sequence, making it possible to efficiently find and convert 
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between IDs from any platform and organism, as demonstrated by the case studies in chapter 4. 

AbsIDconvert is also helpful in meta analyses studies such as for performing cross-species and / 

or cross-platform studies (case study 3). All these functionalities of AbsIDconvert give it a clear 

advantage over other available tools. 

AbsIDconvert is currently available at http://bioinformatics . louisville . edu/abid/ with 

support to analyze data for 53 organisms, containing a total of over 50 million identifiers. Full 

support for additional 1497 bacterial strains are also available. 

Since annotations are dynamic, AbsIDconvert also require regular updates; however it is stable 

compared to annotation based tools. An update is required when a genome is updated or the DNA 

sequence for an entity changes which is not so frequent. Future work includes providing command 

line access, modifying the interface to utilize a workflow management tool for genomic data such as 

GALAXY, development of fully automated updates, and support for other genomes including plant, 

microbial and viral genomes. 

Current high-throughput gene expression analyses treat data as if they are obtained from a 

single or homogeneous cell population and account only for intracellular interactions. However, 

intercellular interactions are equally important and are generally ignored in these analyses. To 

account for the interplay between different cells or tissues, we developed a heuristic algorithm for 

detecting and predicting intercellular interactions between two populations of interest using publicly 

available interaction datasets. Our tractable heuristic algorithm incorporates location awareness at 

each iteration using GO ontological cellular component information. An exclusion vector (EV) is 

used that efficiently keeps only those interactions that are relevant by restricting the search space 

based on defined properties of the genes. An MIM (meet-in-the-middle) criteria is also applied to 

further limits the size of the interaction network without losing any information. This method has 

been applied to find interactions between frontal cortex and hippocampus tissues as well as skin 

and DRG data from Dr. Jeff Petruska's lab. This method can be readily applied to separate tissue 

samples that interact, such as neuronal cell bodies and their target tissues, or specific cell-types 

separated from their native tissue. 
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The success of the method depends upon the accuracy of interaction information available in 

public databases. The current method considers all interactions to be equally probable. However, 

in an actual biological system, this assumption is limiting. A future improvement to this work 

would be to include weight or probability information on each interaction which would lead to more 

accurate detection of protein interactions. Using this a priori information, a Bayesian algorithm 

can be applied to find the posterior. Additionally, movement of signaling information from one 

tissue to another may be systematically determined by considering a hierarchical system based on 

localization such as cellular component. For instance, a signal that moves from cell A to another 

cell B, will always have to pass from cytoplasm of A, plasma membrane of A, extracellular matrix, 

plasma membrane of B and cytoplasm of B. This definitive path may be used instead of MIM nodes 

to get more accurate results. 

The maintenance of a steady state in complex organisms requires individual cells to perform 

activities in a coordinated manner. Ignoring communication of these components while performing 

gene expression analysis and assuming that expression is isolated, does not give a complete picture 

to biological system as a whole. The systems-based approach proposed in this dissertation overcome 

these limitations by taking into account the complete coordinated system. This approach is further 

enhanced by AbsIDconvert that considers all annotations to be sequence-based. These methods 

will further advance our knowledge of biological systems at a molecular level by looking at the gene 

expression data in a more plausible manner. 
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Appendix A 

SUPPLEMENTARY TABLES 

A.I Entrez IDs converted to GeneSymbol 

Table A.l: Entrez IDs converted to gene symbols uniquely by AbsIDconvert. 

EntrezID Gene symbol (NCBI) Gene type (NCBI) Gene symbol (AbsIDconvert) 
100505607 LOC100505607 miscRNA LOC100505607 
100505645 LOC100505645 miscRNA LOC100505645 
100505920 LOC100505920 miscRNA LOCI00505920 
100505938 LOC 1 00505938 miscRNA LOC100505938 
100505950 LOCI00505950 miscRNA LOC 100505950 
100506044 LOC100506044 miscRNA LOCI00506044 
100506122 LOCI00506122 miscRNA LOC100506122 
100506123 LOC100506123 miscRNA LOC100506123 
100506130 LOC100506130 miscRNA LOC100506130 
100506158 LOC100506158 miscRNA LOC100506158 
100506192 LOC100506192 miscRNA LOCI00506192 
100506272 LOCI00506272 miscRNA LOC100506272 
100506329 LOCI00506329 miscRNA LOCI00506329 
100506351 LOC 100506351 miscRNA LOCI00506351 
100506452 LOC100506452 miscRNA LOC100506452 
100506609 LOC100506609 miscRNA LOC100506609 
100506695 LOC100506695 miscRNA PHF2IB, 

LOC100506695 
100506837 LOC100506837 miscRNA LOCI00506837 
100507153 LOC100507153 miscRNA LOCI00507153 
100507205 LOC100507205 miscRNA LOC100507205 
100507389 LOC100507389 miscRNA LOCI00507389 
100507581 LOC100507581 miscRNA LOC100507581 
100507615 LOC100507615 miscRNA LOC100507615 
100507672 LOC100507672 miscRNA PPARD, 

LOC100507672 
100529145 TENI-CDK3 miscRNA C170RF106-

CDK3, TENl, 
CDK3 

100529211 CI7orf61-PLSCR3 miscRNA C170RF61-
PLSCR3, PLSCR3, 
C170RF61 

Continued on next page ... 
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Table A.I - continued from previous page 
Entrez ID Gene symbol (NCBI) Gene type (NCB I) Gene symbol (AbsIDconvert) 

100630923 LOC100630923 miscRNA LOC100630923, 
LOC100289561, 
PRKRIP1 

100652780 LOC100652780 other LOC100652780 
100329135 LOC100329135 protein-coding LOC100329135 
100505549 LOC100505549 protein-coding LOC100505549 
100507421 LOC100507421 protein-coding LOC100507421, 

LOC100130169 
100652826 LOC100652826 protein-coding LOC100652826 
100303743 LOC100303743 pseudo WWOX, 

LOC100303743 
100418753 LOC100418753 pseudo LOC100418753 
100418754 LOC100418754 pseudo LOC100418754 
100418951 LOC100418951 pseudo LOC100418951 
100418955 LOC100418955 pseudo LOC100418955 
100419014 LOC100419014 pseudo LOC100419014 
100419017 LOC100419017 pseudo LOC100419017 
100419108 LOC100419108 pseudo RBMS1, 

LOC100419108 
100419553 LOC100419553 pseudo LOC100419553 
100419621 LOC100419621 pseudo TADA2A, 

LOC100419621 
100419694 LOC100419694 pseudo LOC100419694 
100419779 LOC100419779 pseudo LOC100419779 
100419814 LOC100419814 pseudo CUL3, 

LOC100419814 
100419892 LOC100419892 pseudo LOC100419892 
100419951 LOC100419951 pseudo LOC100419951 
100419986 LOC100419986 pseudo LOC100419986 
100420064 LOC100420064 pseudo LOC100420064 
100420177 LOC100420177 pseudo LOC100420177 
100420305 LOC100420305 pseudo LOC100420305 
100420358 LOC100420358 pseudo LOC100420358 
100420741 LOC 100420741 pseudo LOC100420741 
100420886 LOC100420886 pseudo WDR35, 

LOC100420886 
100420949 LOC100420949 pseudo LOC100287225, 

LOC100420949 
100421028 LOC100421028 pseudo LOC100421028 
100421121 LOC100421121 pseudo LOC100421121 
100421437 LOC100421437 pseudo ZNF148, 

LOC100421437 
100421471 LOC100421471 pseudo LOC100421471 
100421494 LOC100421494 pseudo LOC100421494 
100421695 LOC100421695 pseudo LOC100421695 
100422265 LOC100422265 pseudo LOC100422265 
100422284 LOC100422284 pseudo LOC100422284 
100422299 LOC100422299 pseudo LOC 1 00422299 
100422510 LOC10042251O pseudo LOC10042251O 

Continued on next page ... 
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Table A.I - continued from previous page 
Entrez ID Gene symbol (NCBI) Gene type (NCBI) Gene symbol (AbsIDconvert) 

100422524 LOC100422524 pseudo MLLTlO, 
LOC100422524 

100422671 LOCI00422671 pseudo LOC100422671 
100500934 LOC100500934 pseudo LOC100500934 
100507388 LOC 100507388 pseudo LOC100505505, 

LOC100507388 
100507595 LOCI00507595 pseudo LRRC33, 

LOC100507595 
100526736 LOC100526736 pseudo LOC100526736 
100533622 LOC100533622 pseudo LOCI00533622 
100533658 LOC100533658 pseudo LOC100533658 
100533661 LOClO0533661 pseudo LOClO0533661 
100533663 LOCI00533663 pseudo LOCI00533663 
100533732 LOC100533732 pseudo LOC100533732 
100533846 LOClO0533846 pseudo LOClO0533846 
100631258 LOCI00631258 pseudo NELLI, 

LOC100631258 
100652752 LOC100652752 pseudo LOC100652752 
100652792 LOClO0652792 pseudo LOC100652792 
100505530 FLJ45825 unknown LOC100505530 
100506282 LOClO0506282 unknown LOC100506282 
100506342 LOClO0506342 unknown LOCI00506342 
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t--.:J 
CN 

EntrezID 

286750 
5374 
728795 
493620 
645128 
100507343 
100129836 
57234 
693204 

729634 

100189058 
283486 
100131497 
401021 
729683 
100288085 
100131004 
100131310 
100132365 
100286906 
100289058 

- ---

Table A.2: Entrez IDs converted to gene symbol by HMS & ID, DAVID and lVIADGene missed by AbsIDConvert. 

Gene symbol Gene type NCB I annotation HMS & ID DAVID MADGene 
(NCBI) (NCBI) 
- - replaced withGene ID: 9414 - DFNA51 DFNA51 
- - replaced withGene ID: 390831 - PMM2P1 PMM2P1 
- - replaced withGene ID: 100420746 - LOC728795 hCG_1644355 
- - replaced withGene ID: 100418887 - TAGLN2P1 TAGLN2P1 
- - replaced withGene ID: 100288486 - LOC645128 LOC645128 
CPB2-AS1 miscRNA Not on current assembly CPB2-AS1 - -

COL4A2-AS2 miscRNA Not on current assembly COL4A2-AS2 LOC100129836 LOC100129836 
FAM91A2 miscRNA Not on current assembly FAM91A2 FAM91A2 FAM91A2 
MIR619 miscRNA Not on current assembly MIR619 MIR619 MIR619 

KRT18P19, 
KRT18P26 pseudo Not on current assembly KRT18P26 KRT18, KRT18P26 

KRT18P26 
TRNAQ9 tRNA Not on current assembly TRNAQ9 TRNAQ9 TRNAQ9 
LINC00567 unknown Not on current assembly LINC00567 LOC283486 LOC283486 
LOC100131497 miscRNA Not on current assembly - LOC100131497 LOC100131497 
LOC401021 miscRNA Not on current assembly - LOC401021 LOC401021 
LOC729683 miscRNA Not on current assembly - LOC729683 LOC729683 
DYZ1L5 other Not on current assembly - LOC100288085 LOC 1 00288085 
LOClO0131004 protein-coding Not on current assembly - LOC100131004 LOC100131004 
LOC10013131O protein-coding Not on current assembly LOC10013131O LOC10013131O 
LOC100132365 protein-coding Not on current assembly - LOC100132365 LOC100132365 ! 

LOC100286906 protein-coding Not on current assembly - LOC100286906 LOC 1 00286906 
LOC 1 00289058 protein-coding Not on current assembly - LOC100289058 LOC100289058 

Continued on next page ... 
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Entrez ID 

653541 

727961 
100128019 
100129894 
100131043 
100288869 
400943 
440479 
645895 
645967 
648149 
727799 
693128 

28332 

3506 

Gene symbol 
(NCBI) 

LOC653541 

LOC727961 
LOClO0128019 
LOClO0129894 
LOC100131043 
LOC 1 00288869 
LOC400943 
FLJ34223 
LOC645895 
LOC645967 
LOC648149 
LOC727799 
MIR548B 

IGHD20R15-
2B 
IGHJ@ 

Table A.2 - continued from previous page 
Gene type NCBI annotation HMS & ID 
(NCBI) 

protein-coding Not on current assembly -

protein-coding Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

unknown Not on current assembly -

miscRNA Not annot. on reference assembly MIR548B 

other Not annot. on reference assembly 
IGHD20R15-
2B 

other Not annot. on reference assembly IGHJ@ 

DAVID MAD Gene 

LOC399839, 
HPX-2, 
LOC72841O, 
LOC653541, 
LOC653548, 
LOC653544, 
LOC653543, 
LOC653545, LOC653541 
LOC440014, 
LOC440013, 
LOC441056, 
LOC728022, 
DUX4, 
LOC652119, 
LOC440017 
LOC727961 hCG_1776047 
LOC100128019 LOClOO128019 
LOC 100129894 LOC100129894 
LOC100131043 LOC 1 00 131043 
LOC100288869 LOC 1 00288869 
UNQ5830 UNQ5830 
FLJ34223 FLJ34223 
LOC645895 LOC645895 
LOC645967 LOC645967 
LOC648149 LOC648149 
LOC727799 LOC727799 
MIR548B MIR548B 
IGHD20R15- IGHD20R15-
2B 2B 

IGHJ@ IGHJ@ 
Continued on next page ... 



>-' 
h:) 
en 

Entrez ID 

100313795 
100313815 
28301 
28854 
28861 
4699 
654813 
100189517 
25784 
3405 
4375 
554188 
594832 
6893 
7889 
882 
89760 
100302562 
400579 
286009 
387281 
402469 
26101 
283911 
55547 
653486 
100133452 
100292981 
100294336 
647349 

'----- -

Gene symbol 
(NCBI) 
PIRC73 
PIRC54 
IGRV30R16-15 
IGKV30R2-5 
IGKV20R2-1 
NDUFA5P1 
P2RYlOP1 
TRNAN35 
DGCR12 
IDDM6 
MRX11 
FCMTE2 
MYPll 
TAPVR1 
PSORS3 
CCAL1 
MRX75 
MENAQ2 
FLJ35934 
LOC286009 
LCRB 
LOC402469 
DKFZP564M146 
LOC283911 
RAB1 
LOC653486 
LOC100133452 
LOC100292981 
LOC100294336 
LOC647349 

-- -- -

Table A.2 - continued from previous page 
Gene type NCBI annotation HMS & ID 
(NCBI) 
other Not annot. on reference assembly PIRC73 
other Not annot. on reference assembly PIRC54 
pseudo Not annot. on reference assembly IGRV30R16-15 
pseudo Not annot. on reference assembly IGKV30R2-5 
pseudo Not annot. on reference assembly IGKV20R2-1 
pseudo Not annot. on reference assembly NDUFA5P1 
pseudo Not annot. on reference assembly P2RY10P1 
tRNA Not annot. on reference assembly TRNAN35 
unknown Not annot. on reference assembly DGCR12 
unknown Not annot. on reference assembly IDDM6 
unknown Not annot. on reference assembly MRX11 
unknown Not annot. on reference assembly FCMTE2 
unknown Not annot. on reference assembly MYPll 
unknown Not annot. on reference assembly TAPVRI 
unknown Not annot. on reference assembly PSORS3 
unknown Not annot. on reference assembly CCAL1 
unknown Not annot. on reference assembly MRX75 
unknown Not annot. on reference assembly -

miscRNA Not annot. on reference assembly -

other Not annot. on reference assembly -

other Not annot. on reference assembly -

other Not annot. on reference assembly -

protein-coding Not annot. on reference assembly -

protein-coding Not annot. on reference assembly -

protein-coding Not annot. on reference assembly -

protein-coding Not annot. on reference assembly -

pseudo Not annot. on reference assembly -

pseudo Not annot. on reference assembly -

pseudo Not annot. on reference assembly -

pseudo Not annot. on reference assembly -

-----

DAVID MAD Gene I 

- -
I 

- -

IGRV30R16-15 IGRV30R16-15 i 

IGKV30R2-5 IGKV30R2-5 I 

IGKV20R2-1 IGKV20R2-1 
NDUFA5P1 NDUFA5P1 

! 

P2RYlOP1 P2RYlOP1 
TRNAN35P TRNAN35P . 

DGCR12 DGCR12 
IDDM6 IDDM6 
MRXll MRXll . 

FCMTE2 FCMTE2 
MYP11 MYPll 
TAPVR1 TAPVR1 
PSORS3 PSORS3 
CCALI CCAL1 
MRX75 MRX75 
- MENAQ2 
FLJ35934 FLJ35934 
LOC286009 tcag7.929 
LCRB LCRB 
LOC402469 tcag7.1056 
DKFZP564M146 DKFZP564M146~ 

LOC283911 LOC283911 
RAB1 RAB1 
LOC653486 hCG_1741344 
LOC100133452 LOC100133452 
LOC100292981 LOC100292981 
LOC100294336 LOC100294336 
LOC647349 LOC647349 

Continued on next page ... 



>-' 
t-:l 
O'l 

Entrez ID 

652073 
730535 
100049541 
100134822 
100188748 
100188844 
100188852 
100188853 
100190985 
100271922 
100293044 
338030 
414058 
474225 
474261 
474285 
474294 
474295 
50989 
544599 
544616 
780911 
780925 
7834 
8008 
8041 
8173 
8205 

Gene symbol 
(NCBI) 
LOC652073 
LOC730535 
STUT1 
LOC100134822 
STHAG5 
MAFD6 
SHEP8 
BMND7 
IS5 
BFIC4 
LOC100293044 
GLM1 
ACRPV 
RA5 
BP15 
OA1 
BW19 
BW20 
HMSNO 
AASTH45 
COHEN2 
TQDS 
CHMRQ 
PCAP 
BDMF 
TP250 
CNSN 
TAM 

Table A.2 - continued from previous page 
Gene type NCBI annotation HMS & ID 
(NCBI) 
pseudo Not annot. on reference assembly -

pseudo Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

unknown Not annot. on reference assembly -

DAVID MAD Gene , 

LOC652073 LOC652073 
LOC730535 LOC730535 
STUT1 STUTl 
LOC100134822 LOC100134822 
STHAG5 STHAG5 
MAFD6 MAFD6 
SHEP8 SHEP8 
BMND7 BMND7 
IS5 IS5 
BFIC4 BFIC4 
LOC100293044 LOC100293044 
GLM1 GLM1 
ACRPV ACRPV 
RA5 RA5 
BP15 BP15 
OA1 GPR143 
BW19 BW19 
BW20 BW20 
HMSNO HMSNO 
AASTH45 AASTH45 
COHEN2 COHEN2 
TQDS TQDS 
CHMRQ CHMRQ 
PCAP PCAP 
BDMF BDMF 
TP250 TP250 
CNSN CNSN 
TAM TAM 



A.2 Entrez IDs converted to RefSeq 

Table A.3: Entrez IDs converted to Refseq by MADGene missed by AbsIDConvert. 

EntrezID RefSeq (NCBI) MAD Gene DAVID Onto-Translate 
NR_004385, NR_004406, 

6080 NR_002907 NR_002907 NR_004404, NR_002907, NR_002907 
NR_004386 
NR_001452, NR_001454, 

26822 NR_000022 NR_000022 NR_001453, NR_003125, NR_000022 
NR_000022 

100302146 NR_031634 NR_031634 - -
100302193 NR_031656 NR_031656 - -

100302167 NR_031629 NR_031629 NR_031629 -

Table A.4: Genomic intervals found by AbsIDconvert for the five unmapped Entrez IDs found by 

MADGene. 

Entrez ID chromosome start end width strand 
6080 chrl 28833877 28834083 207 + 

26822 chr11 17096200 17096291 92 -
100302146 chr20 49231173 49231322 150 -
100302193 chr4 102251459 102251571 113 -
100302167 chr9 69002239 69002321 83 -
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Table A.5: Entrez IDs to RefSeq conversion by DAVID, with missing annotation from NCB!. 

EntrezID DAVID NCBI Entrez annotation for DAVID RefSeq 
100129552 NM_001029 6231 
285176 NM_006013, NR_026898 6134 
388474 NM_000972 6130 
440991 NM_001005 6188 
642538 NM_006333, NM_173177 10438 
642585 NM_003374 7416 
644634 NR_027002 388692 
646050 NM_022831 64853 
653252 NM_006327 100287932 
727828 NM_OO 1164397 642446 
727984 NM_001035006, NM_000985 6139, 6140 
728513 NM_032882 84968 
728533 NM_014761 9798 
728698 NM_001416, NR_002912 1973 
728953 NM_001022 6223 
728970 NM_025113 80183 
729163 NM_001444 2171 
729458 NM_144614 125997 
729992 NM_003932 6767 
81458 NM_001001824 403239 
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-----------------

Table A.6: Entrez IDs converted to RefSeq IDs exclusively by AbsIDconvert. 

EntrezID RefSeq AbsIDconvert 
81104 - NR_015416 

100505905 - NM_001256876, NM_001256877 
400433 - NR_033787 

100131381 - NR_029697 
100652874 - NR_046251, NR_046252, NR_046253, NR_046254, NR_046255 
100463488 NM_001190708 NI\LOO 11 !)0708 
100271846 NM_001l91055 NM_001191055 

642612 NM_001195234 NM_001l95234 
100507421 NM_001195278 NM_001195278 
100287466 NM_001242319 NM_001242319, Nl\L032882 
100313837 NR_031576 NR_031576 
100329109 NR_033248 NR_033248 

647135 NR_034178 NR_034178 
100422851 NR_036200 NR_036200 
100422860 NR_036251 NR_036251 

284648 NR_036490 NR_036490 
100289373 NR_036531, NR_o:I6532 NR_036531. NR_036532 
100500878 NR_037450 NR_037450 
100506548 NR_037665 NR_037665 
100359394 NR_037842 NR_037842 
100507582 NR_037903 NR_037903 
100505687 NR_038301, NR_038302 NR_038301, NR_038302 

554206 NR_038379 NR_038379 
729444 NR_038388 NR_038388 

100129464 NR_038428 NR_038428 
253962 NR_038439 NR_038439 
147093 NR_038442 NR_038442 
284865 NR_038460 NR_038460 

100507401 NR_038909 NR_038909 
100506241 NR_038954 NR_038954 
100616164 NR_039616 NR_039616 
100616469 NR_039627 NR_039627 
100616499 NR_039634 NR_039634, NR_039636 
100616399 NR_039635 NR_039635 
100616315 NR_039942 NR_039942 

284395 NR_040029 NR_040029 
81343 NR_045005 NR_04500,5 

440519 NR_045525 NR_04552.'i 
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>-' 
CN 
o 

chromosome 
chr15 
chr9 
chr9 
chr15 
chrll 
chr3 
chr3 
chr3 
chr3 
chr3 
chr3 
chr3 
chr3 
chr3 
chr3 

start 
22332368 

540552 
540552 

85046982 
43600529 
14961857 
14961857 
14961857 
14961857 
14961857 
14961857 
14961857 
14961857 
14961857 
14961857 

Table A.7: Genomic intervals for AbsIDconvert Entrez to RefSeq conversion. 

end width strand name chromosome start end 
22333348 981 + 81104 chr15 22332387 22332775 

549535 8984 + 100505905 chr9 540507 540666 
549535 8984 + 100505905 chr9 549106 549720 

85049663 2682 + 400433 chr15 85046594 85050248 
43606151 5623 + 100131381 chrll 43602943 43603032 
14989931 28075 - 100652874 chr3 14984285 14987660 
14989931 28075 - 100652874 chr3 14984285 14987660 
14989931 28075 - 100652874 chr3 14984285 14987660 
14989931 28075 - 100652874 chr3 14984285 14987660 
14989931 28075 - 100652874 chr3 14984285 14987660 
14989931 28075 - 100652874 chr3 14988593 14989011 
14989931 28075 - 100652874 chr3 14988616 14989011 
14989931 28075 - 100652874 chr3 14988620 14989011 
14989931 28075 - 100652874 chr3 14989245 14989399 
14989931 28075 - 100652874 chr3 14989519 14989947 

width strand name 
389 + NR_015416 
160 + NM_001256876 
615 + NM_001256877 

3655 + NR_033787 
90 + NR_029697 

3376 - NR_046252 
3376 - NR_046253 
3376 - NR_046254 
3376 - NR_046255 
3376 - NR_046251 

419 - NR_046252 
396 - NR_046253 
392 - NR_046254 
155 - NR_046255 
429 - NR_046251 



AbsIDconvert, 56 
accuracy, 74 
design, 66 
method,65 

alternative splicing, 15 
annotation, 34 

database, 36 
functional, 35 
nucleotide, 34 
process, 36 
structural, 34 

BLAST,25 
BLAT,25 
Bowtie,28 

cDNA,31 

DAVID,60 
Deoxyribonucleic Acid, see DNA 
DNA,7 

replication, 9 

EST,30 
Eukaryote, 6 
exclusion vector, 91 
Expressed Sequence Tag, see EST 

gene, 13 
genome, 19 

alignment, 24 
assembly, 24 
sequencing, 20 

granularity, 58 

interval, 43 
overlap, 46 

interval-tree, 48 

messenger RNA, see mRNA 
microarray, 31 
microRN A, see miRN A 
miRNA, 11 
mRNA,lO 

nucleotide, 8 

INDEX 

adenineA,8 
cytosineC, 8 
guanineG,8 
thymineT,8 
uracilU, 8 

occurrence matrix, 98 
occurrence vector, 98 
open reading frame, 16 

post-transcription, 15 
Prokaryote, 6 
protein, 11 
purine, 8 
pyrimidine, 8 

red-black tree, 47 
rRNA,18 

small molecules, 7 

transcription, 12, 14 
translation, 12 
tRNA,18 

untranslated region, see UTR 
UTR,19 
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