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ABSTRACT 

A MECHANISM FOR TRIF ADAPTOR-BIASED SIGNALING BY TOLL-LIKE 
RECEPTOR 4 

 
Joseph Peterson Kolb, Jr. 

November 20, 2014 

 Host cells respond to bacterial lipid A through Toll-like receptor 4 (TLR4).  

Activation of TLR4 by lipid A triggers a response that involves two main adaptor 

proteins, MyD88 and TRIF.  MyD88-dependent gene expression is associated with 

proinflammatory protein production, while TRIF-dependent gene expression is essential 

for optimal activation of adaptive immunity by antigen-presenting cells.  Detoxified, 

monophosphoryl lipid A agonists (MPLA or synthetic MLA) were previously suggested 

to elicit TRIF-biased TLR4 signaling; that is, induction of weaker MyD88-associated 

gene expression but relatively intact TRIF-dependent gene expression when compared to 

fully active diphosphoryl lipid A (lipid A).  In this work, we explored potential 

mechanisms by which monophosphoryl lipid A could induce TRIF-biased signaling in 

mouse cells.  TRIF-dependent and MyD88-associated gene expression induced by both 

MPLA and lipid A was reduced to a similar extent by CD14 ablation, indicating that 

these two agonists do not differentially utilize CD14, despite this coreceptor’s primary 

role in directing the TRIF signaling pathway.  In a second study, we demonstrated that 

the observation of TRIF-biased gene expression by sMLA was not because the agonist 

induced a TRIF-biased gene expression profile, but rather that TLR4 itself was TRIF-
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biased.  The potencies of three different agonists were significantly higher for the 

induction of expression of TRIF-dependent genes than they were for induction of 

expression of MyD88-associated genes.  Autocrine and paracrine signaling by type I 

interferons contributed to higher potency of TLR4 agonists for induction of TRIF-

dependent gene expression because blocking the type I interferon receptor before agonist 

treatment diminished the effect.  We propose that TLR4 is a prime target for vaccine 

adjuvants.  The therapeutic window of TLR4 agonists may be inherently large due to the 

ease with which TRIF-dependent genes required for adaptive priming are activated 

relative to MyD88-dependent genes associated with toxicity
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CHAPTER I 

INTRODUCTION 

 

DISCOVERY OF THE LIPOPOLYSACCHARIDE RECEPTOR 

 For many years, immunologists knew that T and B cell activation in response to a 

protein antigen required the addition of certain mixtures called adjuvants, but the way 

adjuvants worked was largely unknown.  In 1989, the preeminent scientist Charles 

Janeway proposed the existence of evolutionarily ancient pattern recognition receptors 

(PRRs) expressed on innate immune cells that had evolved to respond to conserved 

microbial products called pathogen-associated molecular patterns (PAMPs) (1).  Janeway 

postulated that the cellular response elicited by these PAMPs must somehow provide a 

second signal to lymphocytes, instructing their activation, and allowing them to 

discriminate between self and non-self antigens.  In the following years, intensive 

searches for PRRs and their corresponding PAMPs were carried out. 

 One of the most well studied PAMPs is lipopolysaccharide (LPS).  LPS is a major 

component of the outer membrane of Gram-negative bacteria that promotes structural 

integrity and provides the bacteria a protective barrier to toxic compounds in the 

extracellular environment (2).  The inflammatory and immunostimulatory effects of LPS, 

initially known as endotoxin, had long been recognized since its discovery by Richard 

Pfeiffer in 1892 (3).  For example, endotoxin tolerance, or the hypo-responsiveness of a 

host to LPS treatment following an initial LPS exposure, was first described in 1946 by 
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Beeson (4).  In addition, LPS was known to induce B cell proliferation since the early 

1970s (5, 6). 

 In 1969, Sultzer published work describing a strain of mouse which was highly 

resistant to the toxic effects of LPS (7).  This mouse, called C3H/HeJ, provided evidence 

that responsiveness to LPS was genetically encoded.  It was not until the 1980s that 

strides began to be made in determining the nuts and bolts of the LPS response.  Tobias et 

al. (8) were the first to isolate the acute phase LPS-binding protein (LBP) from rabbit 

serum and to provide evidence of its interaction with LPS.  A few years later, another 

protein, CD14, was shown to bind LBP-LPS complexes (9).  CD14 is expressed on the 

surface of cells of the myelomonocytic lineage (10).  Initially, many considered CD14 to 

be a polyspecific PRR responsible for inducing the inflammatory response to LPS as well 

as Gram-positive bacterial components (11), but several lines of evidence indicated that 

CD14 was not alone in propagating the LPS response.  First, CD14 is expressed on the 

cell membrane via a short glycosylphosphatidylinositol (GPI) anchor which is incapable 

of transducing a signal by itself (12).  Second, deacylated LPS, which is antagonistic to 

LPS in human cells, inhibited the inflammatory response to LPS without preventing LPS 

binding to CD14, indicating that LPS might induce its signal at a different location (13).  

Third, the activity of LPS antagonists was dependent upon the species from which a cell 

was derived but independent of the species from which CD14 was derived (14).  In 

addition, experiments in CD14-deficient macrophages demonstrated the existence of 

CD14-independent LPS activation (15). 

 Several breakthroughs in our understanding of LPS recognition occurred in the 

late 1990s.  In 1996, Lemaitre et al. (16) published work demonstrating that the 
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Drosophila Toll signaling pathway, which was known to control embryonic dorsoventral 

patterning, was also responsible for the induction of an antifungal response by way of 

activation of an NF-κB-related transcription factor.  Most importantly, this work 

implicated the existence of conserved Toll-NF-κB-like signaling pathways responsible 

for non-adaptive activation of antimicrobial genes in mammalian cells (17).  In the 

following year, Janeway and Medzhitov (18) cloned the human homologue of Drosophila 

Toll (hToll) and expressed a constitutively active form of it in the human monocytic cell 

line THP-1.  Cells which expressed this hToll mutant also expressed higher levels of 

proinflammatory cytokines and the T cell costimulatory molecule CD80.  This data 

provided the first evidence that Toll signaling pathway activation in the context of 

infection was potentially involved in the activation of innate immune cells, which were, 

in turn, required to educate adaptive immune cells. 

 In 1998, Janeway’s PAMP and PRR hypothesis was clearly born out with the 

discovery by Beutler and colleagues (19) that LPS hyporesponsive C3H/HeJ and 

C57BL/10ScCr mice bore mutations in the Toll-like receptor 4 (TLR4) gene.  In 

particular, C3H/HeJ mice have a point mutation in the intracellular signaling domain of 

TLR4, and C57BL/10ScCr mice carry a TLR4 null mutation.  This work clearly 

demonstrated that TLR4 was responsible for inducing the inflammatory response to LPS.  

Interestingly, Janeway had unwittingly stumbled upon the LPS receptor before Beutler 

because hToll was actually the human TLR4 gene (20).  Shortly after Beutler’s 

publication, it was discovered that a coreceptor called MD-2, along with TLR4, made up 

the complete LPS receptor complex.  MD-2, in complex with TLR4, directly bound LPS, 

while TLR4 was responsible for transducing the intracellular signal (21, 22).  The 
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discovery of TLR4 ignited a flurry of research activities in the field of innate immune 

recognition of pathogen components that continues today.  It did not take long for much 

of the TLR4 signaling mechanism to be elucidated. 

 

THE TLR4 SIGNALING PATHWAY 

 TLR4 is expressed on a wide variety of immune and non-immune cells including 

monocytes, macrophages, dendritic cells, neutrophils, B cells, and endothelial cells, but 

the majority of TLR4 signaling work has been performed in macrophages and dendritic 

cells.  In order for TLR4 signaling to take place, monomeric LPS must be delivered to the 

receptor.  This process is accomplished by two coreceptors, LBP and CD14 (discussed in 

detail in Chapter III).  LBP in the serum extracts LPS monomers from bacteria or 

aggregates, and catalytically transfers them to CD14 (23, 24).  CD14 is expressed on the 

cell surface and is found in soluble form in the serum (12, 25).  CD14 transfers LPS from 

its binding pockets to MD-2 complexed with TLR4 on the cell surface (26). 

In general, the LPS molecule contains three structural components: the O-

polysaccharide or O-antigen, the core oligosaccharide, and lipid A (reviewed in (27)).  

The O-polysaccharide is the most variable moiety, consisting of 0 to 50 repeating sugar 

subgroups.  This high variability is responsible for the diversity of host antibody 

serotypes to Gram-negative bacteria.  The core oligosaccharide is much less variable than 

the O-polysaccharide.  It consists of an outer core composed of common hexose sugars 

and an inner core consisting of rare sugars such as 3-deoxy-D-manno-octulosonic acid 

(Kdo) and L-glycero-D-manno heptose.  Lipid A is the highly hydrophobic core of LPS 

which anchors into the outer Gram-negative bacteria membrane.  It is generally 
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composed of a di-glucosamine headgroup with two phosphate groups at the 1 and 4’ 

positions.  Up to 4 amide or ester linked primary acyl chains are attached to the 

diglucosamine, and up to 3 additional secondary acyl chains may be linked to the primary 

chains (up to 7 acyl chains in total).  Lipid A is called the “endotoxic principle” because 

it alone is sufficient to induce a response like that of the complete LPS molecule (28).  

This is because lipid A is the component of LPS that binds directly to MD-2 and interacts 

with TLR4 (29). 

TLR4 is a type I transmembrane protein.  Its extracellular N-terminal domain is 

made up of leucine-rich repeats (LRRs) which form a horseshoe-like shape.  TLR4’s C-

terminal cytoplasmic region is homologous to the intracellular domain of the IL-1 

receptor and is, therefore, called the Toll/IL-1 receptor (TIR) domain.  MD-2 is 

composed of two sandwiched anti-parallel β-sheets that form the lipid A-binding pocket 

(30).  The inside of the pocket is lined with hydrophobic residues that accommodate lipid 

A’s fatty acyl chains, and the pocket’s rim contains hydrophilic residues which are also 

important for ligand interaction (29, 30).  MD-2 stably binds with TLR4 on the concave 

surface of its extracellular domain through charge-charge interactions (31). 

Lipid A interaction with MD-2 at the cell surface induces the dimerization of two 

TLR4:MD-2 complexes (also called heterotetramerization) that brings TIR domains in 

the cytoplasmic tails into close proximity with one another (29, 31-33).  It is thought that 

the close interaction of TIR domains promotes the recruitment of signaling adaptor 

proteins.  There are four main adaptor proteins associated with TLR signaling: myeloid 

differentiation primary response gene 88 (MyD88), MyD88 adaptor-like (Mal), TIR 

domain-containing adaptor inducing interferon-β (IFN-β) (TRIF), and TRIF-related 
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adaptor molecule (TRAM).  TLR4 is unique in that is the only TLR which utilizes all 

four adaptor proteins (34).  The MyD88-dependent and the TRIF-dependent signaling 

pathways have unique characteristics and are required for the activation of different sets 

of genes. 

Upon TLR4 activation (Fig. 1), Mal and MyD88 are rapidly recruited to the 

cytoplasmic TIR domain of TLR4 and bind to it through their own TIR domains.  Mal is 

localized to the cell membrane via a phosphatidylinositol 4,5-bisphosphate (PIP2) 

binding domain, and facilitates the recruitment of MyD88 (35).  These events initiate the 

formation of the myddosome, a helical oligomer of IL-1 receptor-associated kinases 

(IRAKs)-4, -1, or -2 which interact through their death domains (36).  Close association 

causes IRAKs to become phosphorylated and to be released from the myddosome to then 

interact with TNF receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase (37). 

Both IRAK1 and TRAF6 are K63-polyubiquitinated in the process (38-40).  TGF-β-

associated kinase-1 (TAK1)-binding proteins (TABs), the regulatory components of 

TAK1, bind to the long ubiquitin chains attached to TRAF6 through their zinc-finger 

ubiquitin-binding domains (41, 42).  This then leads to activation of TAK-1, which 

activates downstream MAPKs.  Inhibitor of NF-κB kinase-γ (IKKγ) also binds to 

polyubiquitinated TRAF6, which brings the catalytic subunits IKKα and IKKβ into close 

proximity to TAK1 (37, 41, 43).  TAK1 phosphorylates IKKβ, which allows the IKK 

complex to phosphorylate IκB and mark it for ubiquitin-dependent degradation.  This 

process allows NF-κB to enter the nucleus.  Due to its robust NF-κB and MAPK 

activation the MyD88-dependent pathway is associated with proinflammatory gene 

induction (44-46). 
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Several minutes after MyD88-dependent signaling is initiated, TLR4:MD-2 

complexes are endocytosed via a CD14-dependent pathway (47).  This process induces 

the recruitment TRAM and TRIF to the TLR4 cytoplasmic TIR domains (48-50), which 

activates the E3 ubiquitin ligase TRAF3 (51).  TRAF3 become polyubiquitinated and 

activates TANK-binding kinase-1 (TBK1), which then activates IKKε.  This signaling 

cascade results in the activating phosphorylation of the transcription factor interferon 

regulatory factor 3 (IRF3), which is required for type I interferon production (52-55).  

TRIF signaling also overlaps with the MyD88 pathway by recruiting the E3 ubiquitin 

ligases TRAF6 and Pelino1 which polyubiquitinate receptor interacting protein-1 (RIP1) 

(56, 57).  Ubiquitinated RIP1 recruits and activates TAK1 and the IKK complex, which 

then activate MAPKs and NF-κB (58).  As a result of this overlap in signaling pathways, 

TRIF-deficiency frequently decreases production of proinflammatory mediators 

associated with the MyD88 pathway (59-62). 

 

THE TLR4 AGONIST MONOPHOSPHORYL LIPID A AS A VACCINE ADJUVANT 

Unquestionably, one of the most important medical achievements in current 

human history is vaccination against disease causing pathogens.  Vaccination has saved 

countless lives and countless dollars in medical treatment expenses by eradicating or 

dramatically decreasing the incidence of many diseases worldwide.  Despite the success 

of whole-pathogen vaccines, which make use of inactivated or attenuated microbes, there 

is a still a need for the development of new and safer vaccine strategies.  Current 

vaccination strategies have been unsuccessful in preventing intractable diseases such as 

cancer and HIV, as well as emerging threats such as Ebola (which at the time of writing 
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this dissertation is causing a severe epidemic in West Africa and global concern).  In 

addition, the rare occurrence of serious adverse events associated with whole-pathogen 

vaccination, whether real or perceived, has caused many to opt out of vaccination due to 

safety concerns (63). 

The answers to some of these problems may lie in subunit vaccination.  This 

strategy uses only the essential microbial antigens, and not the whole organism, to 

stimulate immunity.  Although subunit vaccines are considered very safe, protein 

antigens alone are usually inherently weak stimulators of the innate arm of the immune 

system, which is essential to long-term adaptive immunity.  Therefore, adjuvants 

(PAMPs or other immunostimulatory compounds) must be formulated with subunit 

vaccines. 

The first successful clinical vaccine adjuvant was alum (non-crystalline gels of 

aluminum salts), which has been used in vaccines since 1926 (64).  To date, alum is the 

most commonly used adjuvant.  Alum promotes delivery of antigen to APCs and 

stimulates APC maturation by inducing an intracellular signaling pathway caused by its 

interaction with cell membrane lipids (65).  Alum promotes a Th2 humoral immune 

response typified by non-complement fixing antibody isotypes.  While these responses 

are effective against microbes where neutralizing are required for protection, they are not 

well suited for stimulating protective immunity to intracellular pathogens or to 

endogenous antigens present in pre-cancerous, transformed cells (66).  Therefore, there is 

still a need for the development of new vaccine adjuvants which stimulate different facets 

of the immune response. 
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LPS has long been known as an effective vaccine adjuvant, but its strong 

pyrogenicity and association with septic shock has precluded its use in the clinical 

setting.  Beginning in the late 1970s, Edgar Ribi systematically studied the biological 

properties of chemically modified LPS.  Acid hydrolysis of Salmonella minnesota Re595 

(deep rough mutant) LPS, which contains a mixture of congeners with different numbers 

of acyl chains, removed the core-oligosaccharide (Kdo), as well as the diglucosamine 1-

phosphate group (67).  The resulting molecule (Fig. 2), called monophosphoryl lipid A 

(MPLA), was shown to be at least 1,000 times less toxic than parental LPS in a battery of 

tests, including chick embryo lethality and rabbit pyrogenicity (68).  Surprisingly, MPLA 

retained 100% of the ability of LPS to induce tumor regression and systemic immunity in 

the transplantable line-10 tumor model in guinea pigs (68).  This seminal work 

demonstrated that the beneficial immunomodulatory functions of LPS could be separated 

from its toxicity. 

  Ribi’s discovery would make a dramatic impact in the field of vaccine adjuvant 

development with the purchase and mass production of clinical grade MPLA called MPL 

adjuvant by Corixa Corporation and later GlaxoSmithKline (GSK).  MPL adjuvant is 

approved for use in the hepatitis B virus vaccine Fendrix in Europe and in the human 

papillomavirus (HPV) vaccine Cervarix in the USA.  In both of these vaccines, MPL 

adjuvant is used in combination with alum in the GSK adjuvant system called AS04.  The 

benefits of MPL were clearly shown in follow-up studies in women vaccinated with 

either Cervarix or Merck’s Gardasil, which is adjuvanted with alum alone.  Up to 24 

months after vaccination, Cervarix was shown to induce significantly higher titers of 

HPV-18 and HPV-16 neutralizing antibodies, and better antigen specific CD4 T cell and 



10 
 

memory B cell responses (69, 70).  To date, MPL adjuvant is the only TLR agonist-based 

adjuvant to be approved by the FDA.  Its success demonstrated the feasibility of using 

TLR4 agonists in the clinical setting and caused a dramatic increase in studies aimed at 

elucidating the structural features of LPS or lipid A required for beneficial adjuvanticity 

but low toxicity, with the hope that these features could be fine tuned. 

 

MONOPHOSPHORYL LIPID A AS A TRIF-BIASED AGONIST OF TLR4 

 The basis of MPLA’s unique adjuvant properties has been debated.  Early studies 

comparing the ability of MPLA and LPS to elicit gene products downstream of TLR4 

seemed to indicate that MPLA was a less potent version of LPS (71-73).  Over a dose 

range of 0.1 to 1000 ng/ml, MPLA was weaker than LPS in the induction of Ifng, 

Il12p40, and Il12p35 mRNA in mouse peritoneal macrophages (71).  MPLA was also 

weaker than LPS in stimulating IL-12 protein production by both mouse macrophages 

and human monocyte-derived DC (71, 72).  In contrast, additional studies indicated that 

MPLA may retain the ability to induce certain responses just as well as LPS, while 

remaining weak in others (71, 74, 75).  More MPLA than LPS was required to induce 

endotoxin tolerance in mice, but at doses where equivalent tolerance was induced, MPLA 

was still less capable than LPS at eliciting proinflammatory cytokines (74).  Also, MPLA 

was reported to induce a similar abundance of Il1b mRNA compared to LPS, but lower 

amounts of IL-1β protein (75).  Still, others concluded that MPLA may be better able to 

induce certain responses than LPS.  For example, MPLA treatment induced more Il10 

mRNA expression in mouse macrophages than LPS (71).  Lower production of 
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proinflammatory cytokines like IL-1β, and higher production of anti-inflammatory 

cytokines like IL-10 were proposed to contribute to the low toxicity of MPLA. 

 During the time in which MPL adjuvant was showing promise in the clinic, our 

lab became interested in determining how a low inflammatory environment elicited by 

MPLA would specifically affect the quality of T cell priming.  Our initial studies (76) 

demonstrated that MPLA was better able than LPS to induce early clonal expansion of 

ovalbumin-specific CD4 T cells, despite being about 5 times less toxic.  In contrast, 

MPLA was less capable than LPS at stimulating long-term retention of antigen-specific 

CD4 T cells. 

 A breakthrough in our understanding of MPLA’s adjuvanticity occurred with the 

work of Mata-Haro et al. (77).  In this study, 30 ug of MPLA and 10 ug of LPS induced 

indistinguishable expansion kinetics and numbers of antigen-specific CD4 and CD8 T 

cells in an adoptive transfer model with OT-I and OT-II T cells in mice.  Strikingly, 

MPLA was not equivalent to LPS in inducing production of certain serum cytokines and 

chemokines during this T cell activation.  Serum levels of MyD88-associated proteins, 

such as IL-6, IL-1β, and IFN-γ were significantly lower when MPLA was used as an 

adjuvant as opposed to LPS.  In contrast, production of TRIF-associated proteins such as 

G-CSF and IP-10 was induced similarly by MPLA and LPS.  This phenomenon, which 

we termed “TRIF-bias,” was confirmed by gene chip mRNA expression analysis on 

spleen cells harvested 6 hours after immunization with MPLA or LPS.  TRIF-bias was 

also shown in vitro with mouse macrophages.  MPLA was significantly weaker than LPS 

in inducing MyD88-associated IL-6 production and NF-κB activation, but was equivalent 

to LPS in TRIF-dependent IP-10 production and IRF3 activation. 
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 In this same study, we demonstrated that the TRIF pathway, and not the MyD88 

pathway, was required for the early expansion of antigen-specific CD4 and CD8 T cells 

with MPLA or LPS as adjuvant.  This observation and the association of MyD88 

signaling with proinflammatory outcomes gave rise to the hypothesis that TRIF-biased 

signaling by MPLA allowed it to be an effective adjuvant without overwhelming toxicity. 

 Our lab went on to demonstrate that the absence of the 1-phosphate on lipid A 

was a potential determinate of TRIF-biased TLR4 signaling in mice (78, 79).  The 

synthetic monophosphoryl lipid A based on the E. coli chemotype, which we call sMLA, 

was equivalent to diphosphoryl lipid A (called sLipid A in this dissertation) (Fig. 3) in the 

induction of TRIF-dependent gene products but weaker in MyD88-associated gene 

products at the concentrations tested (78).  In addition, we showed that sMLA, like 

MPLA, was equivalent to sLipid A in its induction of Il1b mRNA, but weaker in 

induction of IL-1β protein due to its weak activation of the MyD88-dependent NLRP3 

inflammasome (79).  Still, we were aware of the fact that TLR4 signaling caused by 

MPLA and sMLA was not completely devoid of MyD88 activity.  For example, sMLA 

induced more sustained MyD88-dependent SHIP1 phosphatase than sLipid A (80).  In 

addition, sMLA was capable of inducing the same amount of many MyD88-associated 

events as sLipid A if sMLA was given at a higher dose (78, 81).  Therefore, TRIF-biased 

signaling by MPLA and sMLA was always appreciated as being more nuanced than 

simply TLR4 signaling in the absence of MyD88 engagement. 
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DISSERTATION GOALS 

 Although we have begun to characterize many of the qualitative aspects of TLR4 

signaling by MPLA and sMLA, we have yet to determine a definitive mechanism for 

TRIF-bias.  Observations of TLR4 adaptor signaling biases have been published by other 

labs, but adaptor bias remains a controversial topic within the scientific community.  The 

goal of this dissertation was to expand our understanding of TRIF-biased signaling by 

monophosphorylated lipid A agonists and to define a potential mechanism for its 

occurrence.  In Chapter III, the role of the coreceptor CD14 in signaling by MPLA is 

analyzed to determine whether this receptor, which plays a prominent role in TRIF 

signaling, is utilized differently by a TRIF-biased agonist.  In Chapter IV, we refine our 

definition of TRIF-biased signaling and propose a mechanism which depends upon the 

interaction of TLR4 and the type I interferon receptor signaling pathways.  These 

findings have direct implications for the design and utilization of TLR4 agonists as 

vaccine adjuvants.  They may also provide insight into the coevolution of the microbiome 

and the host innate immune system. 
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Fig. 1.  The TLR4 signaling pathway.  LPS or lipid A induced heterotetramerization of 

TLR4:MD-2 causes signaling through the MyD88- and TRIF-dependent pathways.  

MyD88 signaling occurs first from the cell membrane and leads to rapid activation of 

MAPKs and NF-κB.  MAPKs activate transcription factors, such as the AP1 family.  

These transcription factors, along with NF-κB drive the expression of proinflammatory 

genes such as Il6, Cox2, and Il1b.  TRIF signaling occurs after endocytosis of TLR4:MD-

2 and is, therefore, delayed.  TRIF activates NF-κB and MAPKs through RIP1 and 

TAK1.  It also uniquely induces IRF3 activating phosphorylation and dimerization which 

is required for type I interferon expression. 
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Fig. 2.  Salmonella minnesota lipid A and MPLA structures.  Acid hydrolysis of S. 

minnesota LPS removes the Kdo group to yield lipid A.  Because lipid A is prepared 

from biological LPS isolates, it is composed of a mixture of congeners with different 

numbers of acyl chains (from 3 to 7).  This variability is due to inherent heterogeneity in 

the biosynthesis of LPS by the bacterium.  The hepta-acyl form is shown above.  Further 

acid hydrolysis removes the 1-phosphate of lipid A to yield MPLA.  Shown above is the 

hexa-acyl form which is presumably the most active congener.  Although the hepta-acyl 

form is removed from clinical preparations of MPL adjuvant by alkaline hydrolysis, this 

was not the case for the agonists used in these studies. 
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Fig. 3.  Synthetic lipid A (sLipid A) and MPLA (sMLA) structures.  The synthetically 

prepared lipid A and MPLA based on the E. coli chemotype are homogeneous, both 

bearing 6 acyl chains.  sMLA differs from sLipid A at the 1-position and at the third acyl 

chain from the left. 
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CHAPTER II 

METHODS 

 

Mice and reagents 

C57BL/6, TRIFlps2/lps2 and CD14-/- mice were purchased from the Jackson Laboratory. 

MyD88-/- mice were a gift of S. Akira (through R. Kedl, University of Colorado School of 

Medicine). Mice were housed in a specific pathogen-free barrier facility at the University 

of Louisville and cared for according to regulations set forth by its Institutional Animal 

Care and Use Committee.  Salmonella minnesota MPLA and lipid A (sold dissolved in 

water) were purchased from Alexis/Enzo Life Sciences. The compounds sMLA (MW 

1763.5, sold as PHAD, Cat. no. 699800, Avanti Polar Lipids), sLipid A [MW 1798.4, 

sold as Lipid A (E. coli), Cat. no. CLP-24005-s, Peptides International], and synthetic 

lipid IVa (MW 1405.7, Cat. no. CLP-24006-s, Peptides International) were dissolved by 

vortexing in 100% DMSO (Sigma-Aldrich) at 1 mg/ml and then promptly frozen in 

single use aliquots at -80°C. Agonists were serially diluted in culture medium before 

being added to cell cultures. The DMSO concentration in cell culture was ≤ 0.32%. A 

vehicle control corresponding to the highest DMSO concentration in each experiment 

(0.1 or 0.32%) was always used. Primary antibodies for the Western blotting analysis of 

the following targets were purchased from Cell Signaling Technology: pIRF3 (Ser396, 

Cat. no. 4947), pJNK (Thr183/Tyr185, Cat. no. 4668), pp38 (Thr180/Tyr182, Cat. no. 9215), 

pERK1/2 (Thr202/Tyr204, Cat. no. 4370), pcJun (Ser63, Cat. no. 9261), pMAPKAPK2 
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(Thr222, Cat. no. 3316), total p38 (Cat. no. 9212), total ERK1/2 (Cat. no. 4695), total cJun 

(Cat. no. 9165), total MAPKAPK2 (Cat. no. 3042), and IκBα (Cat. no. 4814). Primary 

antibodies for the Western blotting analysis of the following targets were purchased from 

Santa Cruz Biotechnology: IRAK1 (Cat. no. sc-5288), total IRF3 (Cat. no. sc-9082), β-

actin (Cat. no. sc-1616), and total JNK (Cat. no. sc-137018). All horseradish peroxidase 

(HRP)-conjugated secondary antibodies were purchased from Jackson ImmunoResearch. 

The JNK inhibitor SP600125 (Sigma-Aldrich) and the p38 MAPK inhibitor SB202190 

(Calbiochem) were dissolved in 100% DMSO at concentrations of 25 and 3 mM, 

respectively, and were frozen at -20°C until needed for use. The anti-mouse IFNAR1 

antibody MAR1-5A3 and the functional grade mouse IgG1 isotype control were 

purchased from Leinco Technologies. Recombinant mouse IFN-β protein was purchased 

from the PBL Interferon Source.  Recombinant mouse TNFα was purchased from 

eBioscience. 

 

Generation and culture of bone marrow-derived dendritic cells (BMDCs) 

BMDCs were prepared with a procedure modified from that of Lutz et al. (82). Briefly, 

bone marrow plugs were flushed from the femurs and tibiae of mice with sterile Hank’s 

balanced salt solution (HBSS) and resuspended in BMDC medium containing R10F 

[RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM 

L-glutamine, 1 mM sodium pyruvate, penicillin (50 U/ml), streptomycin (50 μg/ml), 50 

μM β-mercaptoethanol, and GM-CSF (5 ng/ml, Miltenyi Biotec or R&D Systems]. Bone 

marrow cells (2 × 106, excluding red blood cells) were seeded in 100-mm bacteriological 

petri dishes in 10 ml of BMDC medium and incubated at 37°C. On days 3 and 8, 10 ml of 
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BMDC medium was added to the cultures. On day 6, 10 ml of BMDC medium was 

removed and replaced with fresh medium. On day 10, non-adherent BMDCs were 

collected. BMDCs were typically > 85% CD11c+CD11b+MHCII+CD86lowCD14+CD4-

CD8-B220-CD19-GR1- as determined by flow cytometric analysis. 

 

Collection of mouse serum 

Mice were euthanized by CO2 asphyxiation.  Blood was collected in Microtainer tubes 

with a serum separator (BD) after cardiac puncture, and serum was collected after 

centrifugation.  Fully concentrated serum and serum diluted to 30% in RPMI was frozen 

at -80°C until needed. 

 

Maturation of BMDC and flow cytometry 

BMDC were seeded at 1 x 106 cells/well in 6 well plates and incubated for 2 hours at 

37°C.  TNFα or sLipid A diluted in R10F was used to activate the cells for approximately 

18 hours.  Matured BMDC were then collected using cell scrapers.  Calcium and 

magnesium free HBSS washes and versene treatment was used to facilitate cell removal.  

Cells were incubated in 20% FC receptor block (2.4.G2 supernatants) for about 10 

minutes and then stained with the following antibodies: CD11c-FITC, CD40-APC, 

CD14-APC (all from eBioscience).  CD40-APC and CD14-APC were replaced with the 

corresponding isotype control antibodies in separate tubes.  Cells were stained for 

approximately 45 min in the dark at 4°C.  Five minutes before acquiring data on the 

FACScalibur, 7AAD viability staining solution (eBioscience) was added to the cells with 

vortexing.  In ELISA experiments, BMDC were seeded in 96 well plates at 1 x 105 



20 
 

cells/well and incubated at 37°C for 2 hours.  BMDC were then activated with TNFα or 

left unactivated for about 18 hours.  The cells were then washed twice with HBSS and 

new media added to the wells.  Cells were rested for an additional 2 hours at 37°C, 

followed by activation with agonist for about 18 hours.  Supernatants were then collected 

and protein concentrations analyzed by ELISA. 

 

Intracellular phospho-protein staining 

BMDC (1 x 106) were incubated with MAR1-5A3 or media alone for 1 hour in 

polystyrene snap cap tubes.  The cells were then activated for 1 hour with 100 ng/ml 

sLipid A or DMSO as control.  Cells were then washed in ice cold HBSS and 

resuspended in cold Fc block for 10 min.  After another wash with cold HBSS, 1.5% 

formaldehyde was added to the cells slowly with vortexing.  The cells were then 

incubated for 10 at room temperature.  After washing out the formaldehyde, ice cold 

methanol was added to the cells with vortexing and the cells were incubated at 4°C for 10 

min.  The methanol was then washed out and the cells were stained with anti-pSTAT1 

(pY701)-PE (BD) or isotype control antibody.  Data was acquired on a FACScalibur. 

 

Cytokine measurement 

BMDCs (1 × 105/well) suspended in R10F medium were incubated in flat-bottom, 96-

well plates for 2 hours at 37°C before TLR4 agonists or DMSO (vehicle control) diluted 

in R10F were added. In the MAPK inhibition experiments, 10 μM SP600125, 10 μM 

SB202190, or DMSO (vehicle control) was added 30 min before addition of the TLR4 

agonists. In the IFNAR1-blocking experiments, MAR1-5A3 (10 μg/ml) or isotype control 
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antibody was added immediately before plating the BMDCs for a 2-hour pre-incubation. 

After 18 hours of stimulation with TLR4 agonists at 37°C, supernatants were collected, 

and IL-6 (BD Biosciences) and IP-10 (R&D Systems) concentrations were measured by 

ELISA, according to each manufacturer’s specifications. 

 

Quantitative real-time PCR 

BMDCs (5 × 105) suspended in R10F medium were incubated in 5-ml polystyrene round-

bottom tubes at 37°C for 2 hours before TLR4 agonists or IFN-β was added.  MAPK 

inhibitors and the IFNAR1 blocking antibody were used in the manner described earlier. 

After they were stimulated, the cells were washed with ice-cold HBSS. Cell lysis and 

total RNA isolation were performed with RNeasy plus mini kits (Qiagen) according to 

the manufacturer’s protocol, and complementary DNA (cDNA) was synthesized with 

Qscript cDNA Supermix (Quanta BioSciences). qPCR analysis was performed with a 

Bio-Rad CFX96 real-time system with Power SYBR Green PCR Mastermix (Applied 

Biosystems) and pre-optimized Quantitect primer pairs (Qiagen). Fold-increases in 

mRNA abundances in treated cells relative to those in vehicle control cells were 

calculated with the 2-ΔΔCt method, and GAPDH mRNA abundance was used for 

normalization. 

 

Western blotting analysis 

BMDCs (2.5 to 3 × 106) in R10F medium were pre-incubated for 2 hours in 5-ml 

polystyrene round-bottom tubes at 37°C, which was followed by activation with different 

concentrations of sLipid A or DMSO. After stimulation for 15 min or 1 hour, BMDCs 
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were washed with ice-cold HBSS containing 50 μM NaF. Cells were lysed with 

radioimmunoprecipitation buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM 

EDTA, 1% Triton x-100, 1% sodium deoxycholate, and 0.1% SDS] containing Complete 

Mini protease inhibitor cocktail tablets (Roche) and phosphatase inhibitor cocktail 

(Sigma), and the BCA assay (Pierce) was used to determine the protein concentrations of 

the lysates. Samples normalized for protein content were resolved by 10% SDS-PAGE. 

Proteins were transferred onto nitrocellulose membranes (GE Healthcare). The 

membranes were blocked with 5% non-fat dry milk or 5% bovine serum albumin (BSA, 

for the analysis of pIRF3 only) for 1 hour and then were incubated overnight at 4°C with 

primary antibodies in 5% BSA or 5% non-fat dry milk (for the detection of β-actin, 

IRAK1, and total IRF3 only). HRP-conjugated secondary antibodies were resuspended in 

5% non-fat dry milk and incubated with the Western blots for 1 hour. The blots were 

developed with ECL Prime (GE Healthcare) or SuperSignal ELISA Femto substrate 

(Pierce) on a Fujifilm LAS-4000 Mini, and data were quantified with Multi Gauge V3.0 

software (Fujifilm). 

 

Statistical analysis and log(EC50) measurement 

Log(EC50) values for each agonist-induced response were calculated by generating four-

parameter nonlinear fits to dose-response data with GraphPad Prism software using the 

following equation: 

 

HillslopexLogEC

BottomTopBottomy ∗−+
−

+= )50(101
)(  

 



23 
 

Differences between logEC50 values were analyzed by unpaired two-tailed t test (for 

comparisons between two sets of genes) or by ordinary one-way ANOVA with Tukey’s 

multiple comparisons post-test (for comparisons between three or more sets of genes). 

Differences between protein production in the presence of WT or CD14KO mouse serum 

were determined with ordinary two-way ANOVA with Sidak’s multiple comparisons 

test.  TNFα-induced upregulation of CD14 surface expression was analyzed by a paired 

two-tailed T test.  Statistically significant inhibition of increases in mRNA abundance by 

MAPK inhibitors was determined with repeated measures two-way ANOVA with 

Dunnett’s multiple comparison post-test. Ordinary two-way ANOVA analysis with 

Sidak’s multiple comparisons post-test was used to analyze the effects of MAPK 

inhibitors on gene logEC50s, and to compare IFNβ vs sLipid A-induced time courses. 

Differences in the logEC50 values in the IFNAR1-blocking experiments were analyzed 

with repeated measures two-way ANOVA with Sidak’s post-test. 
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CHAPTER III 

THE CONTRIBUTION OF CD14 TO MYD88- AND TRIF-ASSOCIATED 

RESPONSES ELICITED BY BIOLOGICAL MPLA AND LIPID A 

 

INTRODUCTION 

 The quality of the cellular response to a TLR4 agonist depends not only upon the 

structural characteristics of the agonist itself, but also upon the presence of the TLR4 co-

receptor CD14.  Like the TLRs, CD14 is a member of the LLR family of proteins (83).  It 

is expressed in varying abundance as a GPI-anchored surface protein (called membrane-

bound or mCD14) (12) on certain non-myeloid and myeloid cells including endothelial 

and epithelial cells, monocytes, macrophages, dendritic cells, and granulocytes (84).  In 

addition, CD14 is found in a soluble form (sCD14) in the serum and is thought to be 

released by enzymatic cleavage of mCD14 or cellular secretion (25).  Its structure is that 

of a curved solenoid which forms an N-terminal hydrophobic ligand-binding pocket with 

peripheral cationic amino acid residues (85).  The ligand-binding pocket is deep and 

flexible (85), presumably allowing CD14 to bind a variety of different molecules 

including LPS (9), peptidoglycan (86), and lipoteichoic acid (87).  Interaction between 

hydrophobic patches at the C-termini cause CD14 to form a horseshoe-like homodimer 

(85). 

A major role of CD14 is to enhance TLR4 activity in response to low 

concentrations of LPS.  Initially, LBP in the serum extracts LPS monomers from either 
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bacterial membranes or smaller aggregates and catalytically transfers them to CD14 (23, 

24).  CD14 then loads monomeric LPS into the binding pocket of MD-2 associated with 

TLR4 which promotes TLR4/MD2 heterotetramerization and intracellular signaling (88, 

89).  Both mCD14 and sCD14 are capable of this process, and sCD14 may be especially 

important for TLR4 responsiveness in cell types that express little if any mCD14 such as 

human umbilical vein endothelial cells (90, 91).  If extracellular concentrations of LPS 

are very high, TLR4 is activated independently of CD14 (15). 

In addition to its function as an LPS transport protein, CD14 was shown to be 

actively involved in the TRIF-dependent signaling pathway of TLR4.  Early work by 

Perera et al. supported the existence of unique CD14-dependent and CD14-independent 

pathways in the response of macrophages to LPS even before the discovery of TLR4 

(15).  In this study, CD14-deficient macrophages expressed minimal TRIF-dependent 

Ip10 mRNA compared to WT macrophages at high LPS concentrations.  At these same 

agonist doses, MyD88-associated Il1b and Tnfa expression was unaffected by CD14-

deficiency.  Jiang et al. (92) were the first to make a direct connection between CD14 and 

TRIF signaling, demonstrating that CD14-deficient mouse macrophages were defective 

in TRIF-dependent type I IFN production in response to smooth (containing O-antigen) 

and rough (lacking O-antigen) LPS chemotypes, but were largely unaffected in MyD88-

associated TNFα production in response to rough LPS.  Later, Zanoni et al. (47) 

elaborated on this work, confirming the dependence of TRIF signaling on CD14, but also 

showing that CD14 itself directs the endocytosis of TLR4, independent of TLR4-induced 

signaling events.  Therefore, TRIF signaling, which is initiated from an endocytic 

compartment (50), is weak in the absence of CD14 because TLR4 endocytosis is minimal 



26 
 

under these conditions.  Presumably, CD14 controls endocytosis of TLR4 through an 

immunoreceptor tyrosine-based activation motif (ITAM)-mediated event that then 

activates PLCγ2 and Syk (47). 

Several groups have reported that certain TLR4 agonists may have a reduced 

requirement for CD14-dependent TLR4 stimulation (72, 93, 94).  MPLA has been placed 

in this category (72, 93).  Blocking CD14 on the surface of human monocyte-derived DC 

had no effect on MPLA-induced IL-12p40 secretion, although the use of very high doses 

of MPLA may have biased these experiments (72).  In addition, Tanimura et al. (93) 

showed that TNFα production by CD14-deficient mouse BMDC in response to MPLA 

was not reduced when compared to WT BMDC.  On the other hand, this same study 

concluded that CD14 was required for MPLA-induced heterotetramerization and 

endocytosis of TLR4/MD2, suggesting that MPLA may engage CD14 and require its 

presence for full activity.  Therefore, there is still some confusion concerning the extent 

to which MPLA requires CD14 to stimulate TLR4 and to the specific responses that 

MPLA can elicit independently of CD14. 

We previously published that MPLA was a TRIF-biased agonist in mouse, both in 

vitro and in vivo (77), but the mechanism by which this occurs has not been fully 

revealed.  One hypothesis is that MPLA interacts with TLR4:MD-2 or CD14 in a 

fundamentally different manner than LPS or lipid A, which allows the TRIF pathway to 

be more completely engaged while MyD88 signaling remains weak.  Given that mCD14 

expression is linked to TLR4 endocytosis and TRIF signaling, we sought to determine the 

extent to which CD14 ablation affects TRIF-dependent and MyD88/TRIF co-dependent 

responses to MPLA and lipid A in mouse DC.  High and low concentrations of these 
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agonists were tested to fully assess the degree to which both pathways are affected.  In 

this study, MPLA did not induce a TRIF-biased response profile in WT BMDC.  Instead, 

MPLA was less potent than lipid A in stimulating both TRIF- and MyD88 and TRIF-co-

dependent outcomes.  Tests in WT and CD14-deficient BMDC did not reveal obvious 

differences between MPLA and lipid A requirements for CD14 for either TRIF- or co-

dependent signaling events.  Therefore, variations in the interaction of MPLA or lipid A 

with CD14 in the TLR4 receptor complex are unlikely to explain any TRIF-bias by 

MPLA in mouse. 

 

RESULTS 

MPLA is not a TRIF-biased agonist in mouse dendritic cells. 

 In previous experiments, we characterized MPLA as a TRIF-biased agonist by 

comparing the inflammatory response of mouse macrophages (thioglycolate-elicited or 

bone marrow-derived) to MPLA or LPS, or by measuring inflammatory outcomes in vivo 

(77).  The roles of macrophages and DC differ during the response to an infection.  

Macrophages are critical in the initial control of pathogens while DC specialize in antigen 

presentation in lymph nodes.  Therefore, it is plausible that these cells’ responses to 

MPLA may differ.  In order to determine whether MPLA is a TRIF-biased agonist in DC, 

BMDCs were exposed to different concentrations of MPLA and lipid A, followed by 

measurement of MyD88- and TRIF-co-dependent or TRIF-dependent gene products.  

MPLA induced co-dependent IL-6 protein production and Cox2 mRNA more weakly 

than did lipid A, confirming our previous results (77) (Fig. 4A).  Surprisingly, MPLA 

was also less potent than lipid A in inducing TRIF-dependent Ifit1 mRNA, a response the 
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two agonists induced equivalently in previous experiments (77) (Fig. 4B).  To 

quantitatively determine the extent of MPLA’s potency deficit for each analyte, we used 

non-linear regression to fit curves to the data points, allowing the estimation of each 

agonist’s log(EC50) values.  Lipid A was approximately 30 times more potent than 

MPLA for both TRIF- and co-dependent gene products, indicating no obvious biases in 

adaptor signaling by MPLA [log(EC50) values for lipid A: IL-6 = 0.86; Cox2 = 1.17; 

Ifit1 = 1.19; log(EC50) values for MPLA: IL-6 = 2.33; Cox2 = 2.67; Ifit1 = 2.97].  These 

results indicate that MPLA is not a TRIF-biased agonist in mouse BMDC. 

 

MyD88- and TRIF-co-dependent responses are reduced at low concentrations of MPLA 

and lipid A in CD14-deficient BMDCs. 

 Regardless of the fact that MPLA did not behave as a TRIF-biased agonist in 

BMDC, we compared the responses of MPLA and lipid A in WT and CD14KO BMDCs 

to determine whether one of these agonists exhibited a greater dependence on CD14 to 

induce signaling outcomes downstream of MyD88 or TRIF.  Several studies have shown 

that induction of MyD88- and TRIF-co-dependent genes like Tnfα in CD14-deficient 

cells is reduced in response to low concentrations (less than 1000 ng/ml) of LPS (15, 47, 

95).  We activated WT and CD14KO BMDCs with different concentrations of MPLA or 

lipid A in medium containing mouse serum collected from CD14KO mice.  This allowed 

us to focus solely on mCD14’s contribution to TLR4 signaling because sCD14 was 

absent from the system. 

Phenotyping by flow cytometry demonstrated that WT and CD14KO BMDCs 

expressed an equivalent surface abundance of CD11c, CD86, and MHCII.  The 
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expression of both CD86 and MHCII was low indicating an immature phenotype (Fig. 5).  

MyD88- and TRIF-co-dependent IL-6 protein abundance in culture supernatants, 

measured after 6 hours activation, was reduced in CD14KO versus WT BMDC activated 

with lipid A concentrations below 1000 ng/ml (Fig. 6A).  Similarly, IL-6 production was 

reduced in CD14KO BMDC activated with MPLA concentrations below 10,000 ng/ml 

(Fig. 6B).  Co-dependent Cox2 mRNA measured 2 hours after activation followed the 

same pattern as IL-6 when induced with either agonist (Fig. 6 A and B). 

In order to estimate the decrease in potency of lipid A and MPLA in the absence 

of mCD14, we compared the agonist concentrations required to induce equivalent 

expression of IL-6 protein or Cox2 mRNA in WT or CD14KO BMDC.  Calculation of 

agonist log(EC50) values by non-linear regression was not possible in this case because 

the concentrations of agonist need to produce a plateau in the dose response curves were 

not feasible.  Equivalent production of IL-6 protein and expression of Cox2 mRNA was 

induced by 100 ng/ml lipid A in WT BMDC and 1000 ng/ml lipid A in CD14KO BMDC 

(Fig. 6A), a 10 fold difference.  Similarly, approximately 10 times more MPLA was 

needed to induce maximal IL-6 and Cox2 in CD14KO BMDC.  Similar expression levels 

of IL-6 and Cox2 were induced by 1000 ng/ml and 100 ng/ml in CD14KO and WT 

BMDC, respectively (Fig. 6B).  Therefore, it is likely that mCD14 contributes similarly 

to MyD88-associated signaling events induced by lipid A or MPLA. 

 

 

 



30 
 

TRIF-dependent responses are reduced at both high and low concentrations of lipid A 

and MPLA in CD14-deficient BMDCs. 

 TRIF-dependent responses like type I IFN production and the induction of type I 

interferon-inducible genes has been shown to be severely decreased by the absence of 

mCD14 (15, 47, 92, 93).  In order to determine whether MPLA differed from lipid A in 

its requirement for mCD14 for TRIF-dependent signaling events, we compared MPLA- 

and lipid A-induced Ifit1 mRNA expression in WT and CD14KO BMDC.  Ifit1 mRNA 

expression was reduced in CD14KO BMDC compared to WT over all doses of lipid A 

and MPLA tested.  Although a very high dose of lipid A (10,000 ng/ml) was unable to 

completely compensate for the lack of mCD14, approximately 50% of maximum Ifit1 

mRNA expression was retained (Fig. 7).  In contrast, MPLA-induced Ifit1 mRNA 

expression remained very low over all doses (Fig. 7).  These results confirm that optimal 

TRIF-dependent TLR4 signaling is dependent upon mCD14 expression.  The lack of 

complete dose response curves in these experiments made it difficult to conclude that 

MPLA and lipid A differ in their dependence on mCD14 for TRIF-dependent signaling.  

Similar Ifit1 mRNA expression was induced by 1000 ng/ml and 10 ng/ml lipid A in 

CD14KO and WT BMDC, respectively.  Similar expression was induced by 10,000 

ng/ml and 100 ng/ml MPLA in CD14KO and WT BMDC, respectively.  Therefore, the 

decrease in potency of both agonists in the absence of CD14 may be about 100 fold.  The 

apparent weakness in MPLA’s ability to induce Ifit1 compared to lipid A in CD14KO 

BMDC may be due to the fact that it is an inherently less potent agonist. 
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BMDC culture in serum from wild-type mice has no effect on IL-6 production. 

 Previous studies have shown that sCD14 can partially rescue MyD88-associated 

responses in CD14KO macrophages (92, 96).  In contrast, only mCD14 seems to be able 

to rescue TRIF-dependent responses such as IFNβ production (97).  In certain cases, 

sCD14 may also inhibit the response to LPS, presumably by sequestering it from 

TLR4:MD2 (98, 99).  It is unknown whether lipid A or MPLA have differential abilities 

to utilize sCD14 in order to enhance TLR4 signaling.  Therefore, we asked whether 

sCD14 in WT mouse serum could rescue the IL-6 response to lipid A or MPLA.  WT and 

CD14KO BMDC were cultured in media containing the serum collected from WT and 

CD14KO mice, and activated with different concentrations of MPLA or lipid A.  

Activation in WT, sCD14 replete, serum had no significant effect on the IL-6 response to 

either agonist in WT or CD14KO BMDC (Fig. 8).  Because we were unable to 

demonstrate a restoration of the IL-6 response with the addition of WT serum in CD14-

deficient BMDC, we could not make a conclusion about MPLA or lipid A’s ability to 

utilize sCD14. 

 

Maturation of BMDC does not enhance MyD88- and TRIF-co-dependent or TRIF-

dependent responses. 

 During the completion of the experiments presented above, we also discovered 

that a sMLA (Fig. 3) which we had also proposed was a TRIF-biased agonist (78, 79), 

was not behaving as a true TRIF-biased agonist over a complete concentration range 

(discussed in Chapter IV).  We wondered if some unintentional phenotypic drift had 

occurred in our BMDC cultures over time that had caused TRIF-bias to disappear.  One 
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such difference could be the maturation state of the cells.  BMDCs matured with TNFα 

were shown to upregulate mCD14 expression, in addition to costimulatory molecules 

(47).  Higher mCD14 surface expression correlated with faster and more robust 

internalization of TLR4, and with secretion of larger amounts of TRIF-dependent type I 

IFN in response to stimulation with LPS.  MyD88- and TRIF-co-dependent TNFα, on the 

other hand, was unaffected (47).    Therefore, we hypothesized that monophosphorylated 

agonists would exhibit greater TRIF-bias if used to activate matured BMDC. 

BMDC were matured with TNFα for 18 hours and then activated with different 

doses of sMLA or sLipid A for an additional 18 hours.  A clear increase in BMDC CD40 

expression occurred upon TNFα treatment indicating maturation (Fig. 9).  As predicted, 

mCD14 expression also increased, although this increase did not score as significant (p = 

0.0834).  Unexpectedly, TNFα maturation decreased production of TRIF-dependent IP-

10 in response to low doses of sMLA or sLipid A (Fig. 10B).  Co-dependent IL-6 was 

largely unaffected by TNFα maturation (Fig. 10A).  Therefore, maturation and increased 

surface expression of mCD14 did not promote sMLA TRIF-bias by selectively enhancing 

the TRIF-dependent gene product IP-10. 

 

DISCUSSION 

A major goal has been the elucidation of a mechanism for TRIF-biased TLR4 

signaling since we proposed that MPLA’s TRIF-bias allowed it to retain beneficial 

effects on adaptive priming without major toxicity (77).  We now know that MPLA and 

sMLA only weakly induce heterotetramerization of TLR4:MD-2, which explains why 

they are defective in MyD88-associated signaling events such as IRAK-1 activation (81).  
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Even so, these compounds can induce some MyD88 signaling, which may be beneficial 

in certain cases (77, 80).  The aim of this work was to narrow the gap in our 

understanding of how MPLA is able to retain robust TRIF-dependent signaling alongside 

weak MyD88-dependent signaling.  We reasoned that a mechanism could be in place that 

boosts MPLA-induced TRIF-dependent signaling despite its weakness in induction of 

TLR4:MD-2 heterotetramerization.  A stronger dependence on, or perhaps interaction 

with, CD14 that promotes TRIF signaling was hypothesized to drive MPLA’s TRIF-bias.  

Therefore, removal of CD14 from the cell system was expected to have a much greater 

impact on MPLA’s versus lipid A’s ability to induce both co-dependent and TRIF-

dependent gene products. 

Interpretation of the results of this study was made difficult by the fact that MPLA 

did not behave as a TRIF-biased agonist in BMDC over the doses tested (Fig. 4).  

Comparison of the lipid A and MPLA log(EC50) values for co-dependent IL-6 protein 

and Cox2 mRNA, and TRIF-dependent Ifit1 mRNA, clearly demonstrated that lipid A 

was about 30 times more potent than MPLA in both pathways (Fig. 4).  Despite its 

potency deficit, MPLA was able to induce the same maximum response in all analytes 

tested, indicating that the two agonist share the same efficacy.  Therefore, MPLA is not a 

partial agonist in the mouse BMDC system. 

There are at least two ways to explain this observation.  First, the TLR4:MD-2 

heterotetramerization that MPLA is capable of inducing may be as efficient as that of 

lipid A in the recruitment of downstream signaling adaptors.  In this case, MPLA’s low 

potency would be explained by a lower affinity for the receptor.  Second, MPLA may 

induce TLR4:MD-2 heterotetramerization in a conformation that less efficiently recruits 
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signaling adapters, but that is capable of inducing a maximal response given the presence 

of enough receptors on the cell surface.  In this case, the affinities of MPLA and lipid A 

for TLR4:MD-2 could be comparable. 

We were unable to pinpoint the exact reason why MPLA did not exhibit TRIF-

bias in these experiments.  TRIF-dependent IP-10 production was not selectively 

enhanced by pre-stimulation with TNFα that caused increased mCD14 expression on 

BMDC (Figs. 9 and 10), indicating that mature DC are not more likely to engage in 

TRIF-biased signaling versus immature DC. 

A second reason for the lack of TRIF-bias by MPLA could be due to the use of 

BMDC instead of macrophages.  As noted above, MPLA was initially characterized as a 

TRIF-biased agonist in macrophages.  Activated macrophages at an infection site play a 

role in potentiating the inflammatory response and then contribute to anti-inflammatory 

resolution, such as wound healing.  On the other hand, activated dendritic cells become 

potent antigen presenting cells and acquire the ability to home to secondary lymphoid 

organs.  Therefore, the nature of the inflammatory response to MPLA by these two cell 

types could very well be different and reflect their unique physiological function (100).  

Recent work by Ling et al. (101) demonstrated that CD11b expression in DC, but not in 

macrophages, regulates LPS-induced TLR4 endocytosis, and MyD88- and TRIF-

dependent TLR4 signaling.  Interestingly, TRIF signaling outcomes in BMDC required 

CD11b expression even when LPS-induced TLR4 internalization was rescued by mCD14 

upregulation by CpG treatment.  Therefore, differences between DC and macrophage 

responses to LPS, especially in the TRIF-dependent pathway, may be important. 
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Despite a lack of TRIF-bias, we were still able to assess the level of dependence 

of MPLA and lipid A on mCD14.  Approximately 10 times more lipid A or MPLA was 

needed to induce equivalent MyD88/TRIF co-dependent IL-6 protein and Cox2 mRNA 

induction in CD14KO BMDC (Fig. 6), suggesting that MPLA and lipid A utilize mCD14 

in a similar fashion.  Soluble CD14 seemed to play a negligible role in this system 

because the use of WT serum had no effect on IL-6 production (Fig. 8).  These results do 

not support the conclusion of Tanimura et al. (93), who showed that MPLA can induce 

co-dependent TNFα protein independently of mCD14 at low doses.  The influence of 

mCD14 on the MyD88-dependent pathway is linked to its transport of agonist to and 

loading of TLR4:MD-2; therefore, we speculate that mCD14 has a similar affinity for 

MPLA and lipid A. 

Neither lipid A nor MPLA were capable of inducing maximal TRIF-dependent 

Ifit1 mRNA expression, even at very high doses (Fig. 7).  These data confirm the strong 

dependence of TRIF-dependent signaling on mCD14 (47, 92, 93).  MPLA induced 

minimal Ifit1 mRNA in the absence of mCD14 when compared to lipid A, which could 

lead to the conclusion that MPLA does indeed have a stronger dependence upon the 

coreceptor.  But this might also be due to MPLA’s low potency, in which case a higher 

MPLA dose might induce Ifit1 mRNA levels comparable to lipid A.  Given the similar 

dependence of MPLA and lipid A on mCD14 for MyD88 activity, the latter explanation 

is more plausible. 

The fact that in CD14KO BMDC, lipid A was capable of inducing up to 50% of 

the maximal TRIF-dependent Ifit1 mRNA expressed in WT BMDC (Fig. 7) demonstrates 

that CD14 is not absolutely required for TRIF signaling and that a CD14-independent 
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mechanism is also involved.  Such a CD14-independent process has already been 

described in DC, whereby a TLR4 agonist in the form of large, particulate phagocytic 

cargo (i.e. whole E. coli) can induce TLR4 endocytosis and type I IFN production in 

CD14KO DC (47).  Alternatively, scavenger receptor-mediated uptake may provide a 

means of delivering TLR4 agonists to the endocytic compartment where TRIF signaling 

can proceed (102). 

In conclusion, this chapter provides evidence to support the claim that a unique 

interaction or utilization of CD14 by MPLA is not responsible for the difference between 

its signaling profile and that of native lipid A.  Rather, MPLA is likely a weak agonist of 

TLR4 in mouse BMDC.  As explored in Chapter IV, observation of a TRIF-biased 

response by MPLA is likely related to cross-talk between TLR4 and the type I IFN 

receptor.  In addition, this work supports a qualification of the notion that mCD14 directs 

endocytosis of TLR4/MD2 and TRIF-dependent signaling.  We suggest the existence of a 

CD14-independent pathway that drives appreciable TRIF-dependent signaling in 

response to soluble TLR4 agonists like lipid A.  Future work is needed to explore this 

phenomenon.  
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Fig. 4.  MPLA is not a TRIF-biased agonist in mouse BMDCs.  WT BMDCs were 

activated with the indicated concentrations of MPLA or lipid A in media containing 1 to 

3% serum collected from CD14-deficient mice.  (A, left) After 6 hours activation, culture 

supernatants were measured for IL-6 protein abundance by ELISA.  Steady-state 

abundance of Cox2 mRNA (A, right) and Ifit1 mRNA (B) relative to control (water) 

treated samples was measured after 2 hours activation by qPCR.  The fold increase over 

control was measured in triplicate and converted to a percentage of maximum fold 

increase within each independent experiment.  Log(EC50) values were calculated by 4-

parameter nonlinear regression.  Data are the mean ± SEM for at least 3 independent 

experiments.  
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Fig. 5.  WT and CD14-/- BMDC are phenotypically similar.  WT and CD14KO 

BMDCs were stained with fluorochrome-conjugated antibodies against CD11b, CD11c, 

MHCII (I-A/I-E), GR1, CD86, and CD14.  Data were acquired using a FACScalibur and 

analyzed with Flowjo software.  Data shown are one representative experiment of 3 

performed.  
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Fig. 6.  MPLA and lipid A utilize CD14 similarly to induce expression of MyD88- 

and TRIF-co-dependent genes.  WT and CD14KO BMDC were activated with the 

indicated concentrations of (A) lipid A or (B) MPLA in media containing 1 to 3% serum 

from CD14KO mice.  IL-6 protein in culture supernatants was measured after 6 hours 

activation by ELISA.  The fold increase in abundance of steady-state Cox2 mRNA 

relative to vehicle treated cells was measured by qPCR after 2 hours activation.  Data are 

the mean ± SD of triplicate samples.  An experiment representative of at least 3 

independent experiments is shown.  
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Fig. 7.  MPLA and lipid A both require CD14 for optimal TRIF-dependent gene 

expression.  WT and CD14KO BMDC were activated with the indicated concentrations 

of lipid A or MPLA in media containing 1 to 3% serum from CD14KO mice.  The fold 

increase in abundance of steady-state Ifit1 mRNA relative to vehicle treated cells was 

measured by qPCR after 2 hours activation.  Data are the mean ± SD of triplicate 

samples.  An experiment representative of 3 independent experiments is shown.  
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Fig. 8.  Serum collected from WT mice does not rescue IL-6 production in response 

to MPLA or lipid A.  BMDC derived from WT and CD14KO mice were activated for 6 

hours with the indicated concentrations of lipid A (left) or MPLA (right) in media 

containing 1 to 3% serum collected from WT or CD14KO mice.  IL-6 protein abundance 

in culture supernatants was measured by ELISA.  Data are the mean ± SEM of 3 

independent experiments.  Data were not significant by two-way ANOVA with Sidak’s 

multiple comparisons test; ns (P > 0.05).  



42 
 

 

Fig. 9.  Upregulation of mCD14 expression on BMDCs by TNFα-induced 

maturation.  WT BMDC were treated with 10 ng/ml TNFα, 100 ng/ml slipid A, or 

vehicle control (NT) for 18 to 19 hours.  BMDC were then stained with APC-conjugated 

anti-CD14, APC-conjugated anti-CD40, or the corresponding isotype controls.  Data 

were collected on a FACScalibur and analyzed with Flowjo software.  (Right) The 

geometric mean of surface CD14 was compared between untreated and TNFα treated 
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cells.  Data are the mean ± SEM of 5 independent experiments.  Statistics were 

determined using the paired two-tailed T test.  
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Fig. 10.  Increased surface expression of mCD14 does not preferentially enhance 

TRIF-dependent protein production.  WT BMDC were treated with 10 ng/ml TNFα or 

left untreated for 18 to 19 hours and then activated with the indicated concentrations of 

sLipid A or sMLA for an additional 18 hours.  (A) IL-6 and (B) IP-10 protein abundance 

was measured in culture supernatants by ELISA.  Data are the mean ± SD of two 

independent experiments.
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CHAPTER IV 

AUTOCRINE AND PARACRINE SIGNALING BY TYPE I INTERFERONS 

CONTRIBUTES TO TOLL-LIKE RECEPTOR 4 TRIF-BIAS 

 

INTRODUCTION 

 In general, the TRIF signaling pathway is more associated with the initiation of 

adaptive immune responses than is the MyD88 signaling pathway, which is more 

commonly associated with proinflammatory outcomes.  For example, TRIF-deficiency in 

mice substantially impairs the induction of antigen-specific T cell proliferation by APCs, 

whereas MyD88-deficiency has little effect on this process (77, 103).  This impairment 

arises partly because IFN-β production absolutely requires the activation of IRF3 through 

TRIF (52, 55).  IFN-β is essential for the adjuvant effects of several TLR agonists on T 

cell priming, including TLR4 (103), which may be due to the ability of IFN-β to drive 

upregulation of costimulatory molecules and MHCII on APCs (104, 105).  In one study, 

the TLR3 agonist polyI:C was the best of a panel of adjuvants, including LPS, at 

inducing antigen-specific Th1 CD4 responses because it induced the most robust type I 

IFN response (106).  In addition, type I IFN promotes antigen cross-presentation (107) 

and T cell survival (108).  TRIF signaling is also linked to adaptive immunity through 

TRIF-dependent chemokines, such as IP-10 (CXCL10), which promote the recruitment 

of T cells to DC for priming (109). 
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 Because TLR4 is the only TLR to signal through both MyD88 and TRIF, it is the 

only TLR with the potential for adapter modulation, the ability to signal more strongly 

through one adapter compared to the other.  Given the distinct processes primarily 

controlled by each pathway, we and other groups have studied whether defined 

differences in agonist structure can cause MyD88- or TRIF-biased responses at the level 

of producing distinctive gene profiles (77-79, 110-112).  As noted above, we previously 

proposed that the success of MPL adjuvant was related to its ability to function as a 

TRIF-biased agonist of TLR4, which is favorable for vaccination by limiting pro-

inflammatory endpoints more than it limits those involved in T cell priming (77).  Those 

studies were performed with a research grade version of MPL adjuvant (MPLA).  In 

addition to MPLA, which is a mixture of monophosphorylated Salmonella minnesota 

lipid A species differing in numbers of acyl chains (Fig. 2), we also studied synthetic 

MPLA (sMLA), a single hexa-acyl species based on the E. coli lipid A structure (Fig. 3).  

We concluded that sMLA was also TRIF-biased in mouse cell systems (78, 79). 

 TLR4 adapter modulation is a controversial topic.  Some have questioned its 

existence citing the use of heterogeneous compounds and insufficient doses as 

confounding factors that make it impossible to draw useful conclusions about structure-

activity relationships (113).  Here, we compared the potencies of sMLA and its 

diphosphorylated counterpart synthetic Lipid A (sLipid A) (Fig. 3) in inducing the 

expression of a panel of TRIF-dependent or MyD88-associated genes (all of which are 

MyD88- and TRIF-co-dependent) in mouse BMDCs.  None of the analytes we have 

tested to date appear to be truly TRIF-independent (MyD88-sufficient) (45, 59, 60).  We 

evaluated IP-10, IFIT-1, and CD86 as representative TRIF-dependent gene products, 
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because TRIF alone is sufficient to induce the expression of the corresponding genes, 

whereas we evaluated IL-6, Cox-2, and CD80 as MyD88- and TRIF-co-dependent gene 

products, because optimal expression of the corresponding genes require both adaptor 

pathways.  We found that TRIF-bias was not unique to sMLA as judged by 

pharmacological potency.  Instead, expression of TRIF-dependent genes was induced 

with substantially less agonist than was required for the expression of MyD88- and TRIF-

co-dependent genes.  Together, these data suggest that the TLR4 signaling network is 

itself biased toward TRIF-dependent events. 

 

RESULTS 

sMLA is not a TRIF-biased agonist as assessed by pharmacological measurements 

To quantitatively evaluate sMLA as a TRIF-biased agonist, we activated BMDC 

with an extensive dilution series of sMLA or sLipid A and measured these agonists’ 

potencies using a panel of TRIF-dependent and MyD88- and TRIF-co-dependent gene 

products by log(EC50) calculation, a pharmacological method.  As expected, sLipid A 

was more potent than sMLA at inducing the expression of the MyD88- and TRIF-co-

dependent genes Il6 and Cox2 (Fig. 11A).  However, sLipid A was also more potent than 

sMLA at inducing expression of the TRIF-dependent genes Ip10 and Ifit1 (Fig. 11A).  

We compared the log(EC50) values of sLipid A and sMLA for each analyte to determine 

whether adapter bias was present despite obvious differences in agonist potency.  We 

found that sLipid A was approximately 10 fold more potent than sMLA at inducing the 

expression of both co-dependent and TRIF-dependent genes, regardless of whether they 

were measured early (steady-state mRNA at 4 hours) or late (secreted protein at 18 hours) 
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(Fig. 11, A and B).  Therefore, sMLA was not functioning as a true TRIF-biased agonist 

compared to sLipid A because sMLA’s deficiencies in potency were the same for 

indicators of both adapter pathways. 

To determine whether our experimental system (cells and agonists) had changed 

since our initial experiments using sMLA, we directly compared agonist concentrations 

similar to those explored in our previous studies of TRIF-bias (78).  We found that 

sMLA-stimulated BMDC induced lower amounts of MyD88- and TRIF-co-dependent 

IL-6 and equivalent amounts of TRIF-dependent IP-10 in culture supernatants compared 

to sLipidA (Fig. 11C), consistent with TRIF-biased signaling occurring over these doses.  

Therefore, these results were not fundamentally different from those in our previous 

studies. 

 

The expression of TRIF-dependent genes is activated with less agonist than is required to 

activate the expression of MyD88- and TRIF-co-dependent genes 

Although sMLA was a weak agonist for both co-dependent and TRIF-dependent 

genes, as measured by log(EC50)s, Figures 11A and 11C demonstrated that there were 

distinct concentrations at which sMLA was equivalent to sLipid A in induction of TRIF-

dependent genes, but that sMLA was also weaker in induction of co-dependent genes.  

One explanation for this trend is that TRIF-dependent genes are more “easily” triggered 

than co-dependent genes; more agonist is required to stimulate TLR4-induced co-

dependent events than is required for TRIF-dependent events.  To test this hypothesis, we 

compared the log(EC50) values of sMLA or sLipid for the activation of TRIF-dependent 

and co-dependent signaling events, and expected the log(EC50) values for TRIF-
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dependent events to be lower than those for co-dependent events.  As expected, the 

log(EC50) values of sMLA or sLipid A for TRIF-dependent IP-10 protein production 

was lower than their corresponding log(EC50) values for co-dependent IL-6 protein 

production (Fig. 12A).  Similarly, the log(EC50) values of sLipid A and sMLA for TRIF-

dependent mRNA responses were lower than the log(EC50) values for co-dependent 

mRNA responses (Fig. 12A).    These results suggest that in mouse BMDC, weak TLR4 

agonists such as sMLA can appear to be TRIF-biased because expression of TRIF-

dependent genes is induced more effectively with less agonist than is the expression of 

co-dependent genes. 

Both sMLA and sLipid A are hexa-acylated lipid A molecules, differing only in 

the presence or absence of the 1-phosphate of the diglucosamine head group and by 2 

carbons on one of the secondary acyl chains (Fig. 3).  Because the potential for a lipid A 

molecule to elicit the production of various cytokines is affected by both the number and 

length of its acyl chains (114, 115), it is possible that efficient activation of TRIF-

dependent signaling events at low doses of agonist may be unique to these hexa-acylated 

molecules.  To determine whether the relative ease of activating TRIF-dependent events 

was common to agonists with markedly different structures, we stimulated BMDCs with 

tetra-acylated molecule lipid IVa and measured the log(EC50) values for TRIF-dependent 

IP-10 and co-dependent IL-6 production.  Lipid IVa is an agonist of mouse TLR4, but an 

antagonist of human TLR4 (116, 117).  Similar to sMLA, Lipid IVa was less potent than 

sLipid A in stimulating production of both IP-10 and IL-6 (Fig. 12B).  As was seen with 

hexa-acylated sMLA and sLipid A, lipid IVa induced TRIF-dependent IP-10 production 

with a log(EC50) value that was significantly lower than its co-dependent IL-6 log(EC50) 
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value (Fig. 12B).  This result suggests that robust activation of TRIF-dependent events at 

low agonist doses may be intrinsic to TLR4 and less dependent on TLR4 agonist 

structure. 

 

Cd86 mRNA expression is increased with less agonist than is required to increase Cd80 

mRNA expression 

Our characterization of TLR4 agonist potencies for TRIF and MyD88- and TRIF-

co-dependent event induction was initially focused on genes encoding proinflammatory 

cytokines and chemokines.  In addition to the release of these mediators, DC function is 

inextricably linked to the upregulation of costimulatory molecules that promote adaptive 

immunity via T cell priming.  We and others described previously the TLR4 adapter 

requirements for the upregulation of the costimulatory molecules CD80 and CD86 in 

mouse DC subsets in vivo, with CD86 upregulation appearing to be dependent on TRIF 

alone and CD80 upregulation dependent on both MyD88 and TRIF (103, 118).  To 

confirm the specific adapter dependence of CD86 and CD80 in BMDCs, we generated 

BMDC from WT, TRIFLps2/Lps2 (which contain a non-functional mutation in the TRIF 

protein), or MyD88-/- mice, treated them with sLipid A, and measured increases in Cd80 

and Cd86 mRNA abundance by qPCR analysis.  The ability of sLipid A to induce 

increases in Cd86 mRNA abundance was reduced in cells in which TRIF signaling was 

inhibited, whereas its ability to induce increases in Cd80 mRNA abundance was reduced 

by the absence of either TRIF or MyD88 signaling (Fig. 13A).  These results confirm that 

in BMDCs the expression of Cd86 is TRIF-dependent, while the expression of Cd80 is 

MyD88- and TRIF-co-dependent. 
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Because TLR4 signaling-induced increases in Cd86 mRNA abundance are strictly 

TRIF-dependent, whereas increases in Cd80 mRNA are MyD88- and TRIF-co-

dependent, we hypothesized that sLipid A would have a higher potency for induction of 

Cd86 expression than for Cd80 expression.  When BMDC were treated with increasing 

concentrations of sLipid A, the log(EC50) value for increased Cd86 mRNA abundance 

was significantly lower than that for Cd80 mRNA (Fig. 13B), suggesting that the TRIF-

dependent expression of Cd86 was more easily induced than was the co-dependent 

expression of Cd80.  Therefore, the enhanced potency of TLR4 agonists for TRIF-

dependent gene expression may pertain to a variety of gene subsets with different roles in 

the immune response. 

 

The low log(EC50) values of sLipid A for the expression of TRIF-dependent genes are not 

explained by TRIF adaptor selectivity 

One potential explanation for the low log(EC50) values of TLR4 agonsits for 

TRIF-dependent genes is that comparatively more TRIF adapter engagement than 

MyD88 engagement is triggered immediately downstream of TLR4 dimerization at 

limiting doses of agonist.  To test this hypothesis, we measured the potency of sLipid A 

to activate IRF3 and IRAK1 (Fig. 14A), two signaling proteins that mediate the TRIF and 

MyD88 pathways, respectively (36, 48).  The log(EC50) values for IRF3 activating 

phosphorylation and IRAK1 disappearance, which is due to an increase in molecular 

weight from Lys63 polyubiquitination upon signaling (38, 119), were not significantly 

different when measured in 4 independent experiments (Fig. 14B).  In two paired 

experiments, the log(EC50) values for IRF3 phosphorylation were greater than those for 
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IRAK1 disappearance (Fig. 14B).  These data suggest that initial TRIF signaling is not 

induced more efficiently than initial MyD88 signaling at suboptimal TLR4 agonist 

concentrations; indeed, MyD88 signaling may be triggered more easily than TRIF 

signaling.  Therefore, the low log(EC50) values of TLR4 agonists for the production of 

TRIF-dependent gene products cannot be explained by dose-dependent TRIF selectivity 

at the level of initial adapter engagement. 

 

The log(EC50) values of sLipid A for the activation of MAPKs and NF-κB are different 

Because simple TLR4 TRIF adapter bias did not seem to explain the low 

log(EC50) values of TLR4 agonists for TRIF-dependent events, we explored signaling 

mediators that are activated through both the TRIF and MyD88 pathways.  TLR4-

induced gene expression is controlled by NF-κB and transcription factors activated by 

MAPK signaling cascades, and considerable crosstalk exists between the MyD88 and 

TRIF signaling pathways in their activation.  For example, TRIF signaling enhances NF-

κB activity, a canonical MyD88-dependent event, through a Rip1-mediated pathway (57).  

In addition, signaling through both TRIF and MyD88 contribute to MAPK activation (44, 

46).  TLR4-induced genes have varying MAPK and NF-κB requirements for optimal 

expression, but the strength of TLR4 signal needed to efficiently activate these mediators 

is unknown.  We determined the log(EC50) values for the activation of p38, c-Jun N-

terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and IκBα by 

treating BMDC with a series of doses of sLipid A and quantifying relative protein 

abundance by Western blotting (Fig. 15A).  Significantly less sLipid A was needed to 

induce half-maximal IκBα degradation, as an indicator of NF-κB activation, and p38 
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activating phosphorylation [low log(EC50) values] compared to JNK and ERK1/2 

activating phosphorylation [high log(EC50) values] (Fig. 15B).  We were not surprised 

that NF-κB activation required very little agonist given its prominence as a readily 

triggered component of proinflammatory gene regulation, but the low potency with which 

the MAPKs JNK and ERK1/2 were activated was striking.  Thus, although MAPKs are 

influenced by both TRIF and MyD88 pathways, there are considerable differences in the 

ease with which they are activated. 

 

The high log(EC50) values of sLipid A for MyD88- and TRIF-co-dependent events 

correlate with a dependence on JNK 

We and others published previously that MAPKs differ in their involvement in 

transcription factor activation and gene expression downstream of TLR4 (78, 120-124).  

Although substantial overlap and redundancy in MAPK requirements for gene expression 

exist, specific TLR4-induced genes may have a greater requirement for certain MAPKs.  

It is unclear whether specific MAPKs preferentially control the expression of TRIF-

dependent versus co-dependent genes.  We hypothesized that the high log(EC50) values 

of agonists for the expression of co-dependent genes may be, in part, a result of their 

strong dependence on JNK, which is also associated with high log(EC50) values.  

Conversely, the low log(EC50) values of agonists for TRIF-dependent genes may be 

because their expression depends on p38 activity, which is characterized by a low 

log(EC50) value. 

To test this hypothesis, BMDC were pretreated with specific chemical inhibitors 

of JNK and p38 before measuring the effects of a range of concentrations of sLipid A on 
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TRIF- and co-dependent gene expression.  The efficacy (maximum amount) of MyD88-

dependent IL-6 protein production was reduced by JNK inhibition but not by p38 

inhibition (Fig. 16A), but neither inhibitor significantly changed the potency of sLipid A 

in stimulating IL-6 production (Fig. 16B).  The efficacy of the TRIF-dependent 

production of IP-10 protein was unchanged by JNK and p38 inhibitors (Fig. 16A).  Both 

inhibitors slightly reduced IP-10 production at doses of sLipid A below 1 nM (Fig. 16A).  

The JNK inhibitor caused a statistically significant increase in the log(EC50) value of 

sLipid A for IP-10 production, whereas the p38 inhibitor caused an increase in the 

log(EC50) for IP-10 that approached statistical significance (Fig. 16B).  Neither inhibitor 

increased the log(EC50) for IP-10 to match that for IL-6 production.  These data suggest 

that a varying dependence on specific MAPKs is unlikely to be the cause of the 

differences in log(EC50) values between co-dependent and TRIF-dependent events. 

Because the efficacy of sLipid A for the production of co-dependent IL-6, but not 

TRIF-dependent IP-10, was decreased by JNK inhibition, we explored the role of JNK 

signaling in expression of other TRIF-dependent or co-dependent genes.  JNK inhibition 

reduced the sLipid A-stimulated increases in MyD88-dependent Il6 and Cd80 mRNA at 4 

hours, but had no effect on TRIF-dependent Ip10 mRNA abundance (Fig. 16C).  JNK 

inhibition did significantly reduce the TRIF-dependent increase in Cd86 mRNA 

abundance at 4 hours, but less effectively than it inhibited increased Cd80 mRNA 

abundance (Fig. 16C).  Unexpectedly, inhibition of p38 had no significant effect on the 

expression of any genes (Fig. 16C), despite confirmation that SB202190 had been 

effectively delivered (Fig. 17).  Therefore, the expression of MyD88- and TRIF-co-
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dependent genes, such as Il6 and Cd80, correlates with a dependence on the JNK 

signaling pathway for full induction. 

 

The high log(EC50) value of sLipid A for Ifnb mRNA expression correlates with a 

dependence on JNK 

IFN-β production in response to TLR4 stimulation absolutely requires TRIF 

signaling and is downstream of the activation of IRF3 (48, 55, 125).  In addition, optimal 

IFN-β production requires intact MyD88 signaling (118), because the activity of the Ifnb 

promoter requires the activation of MyD88-associated transcription factors such as AP-1, 

which is activated downstream of JNK and NF-κB (126, 127).  Because JNK-dependence 

was correlated with co-dependent genes characterized by logEC50s, we wondered 

whether the log(EC50) value for the induction of Ifnb expression was also high.  We 

measured Ifnb mRNA abundance in BMDCs activated with a dose series of sLipid A and 

calculated the log(EC50) values at 1 hour, the time at which Ifnb mRNA was maximally 

expressed.  The log(EC50) value of sLipid A for Ifnb expression was substantially higher 

than that for TRIF-dependent Ip10 and was as high as that for co-dependent Il6 (Fig. 

18A).  To confirm that sLipid A-induced Ifnb expression was JNK-dependent, we 

pretreated BMDCs with JNK inhibitor and measured Ifnb mRNA abundance over time.  

As expected from previous reports (128, 129), Ifnb mRNA expression was markedly 

decreased in the absence of JNK signaling (Fig. 18B).  In contrast, p38 inhibition had 

relatively little influence on Ifnb expression, only slightly decreasing it at 1 hour (Fig. 

18B).  These data demonstrate that the TLR4-dependent expression of Ifnb is 

characterized by a high log(EC50), consistent with it being a co-dependent event. 
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Autocrine and paracrine signaling by type I interferon determines the low log(EC50) 

values of sLipid A for TRIF-dependent responses 

Although we observed a correlation between JNK-dependence and MyD88- and 

TRIF-co-dependence, differential MAPK-dependence could not completely explain 

either the high log(EC50) values of TLR4 agonists for the expression of co-dependent 

genes or the low log(EC50) values for the expression of TRIF-dependent genes (Fig. 16).  

Alternatively, the lower log(EC50) values of agonists for TRIF-dependent events could 

be caused by crosstalk or synergy between TLR4 and other receptors.  In addition to 

inputs directly from TLR4, signaling through the IFN-α/β receptor (IFNAR) by secreted 

type I IFN enhances the expression of TRIF-dependent genes through the activation of 

the IFN-stimulated gene factor 3 (ISGF3) complex, which binds to and activates 

interferon stimulated response elements (ISREs) in gene promoters (130, 131). 

 We found that sLipid A induced robust Ifnb expression in BMDCs (Fig. 18).  

Therefore, we hypothesized that the relatively low log(EC50) values of sLipid A for 

TRIF-dependent gene expression were caused by enhancement of TRIF-dependent 

responses through secondary IFNAR signaling.  To determine the extent to which IFN-β 

alone could induce expression of TLR4-regulated genes, we exposed BMDCs to 

recombinant IFN-β or sLipid A and measured increases in steady-state TRIF-dependent 

Ip10 and Cd86 mRNA abundance, and compared them to changes in co-dependent Il6 

and Cd80 mRNA abundance.  As expected, the abundances of TRIF-dependent Cd86 and 

Ip10 mRNAs were increased by IFN-β treatment (Fig 19A).  In fact, the increases in 

steady-state mRNA abundance by IFN-β were comparable to those with sLipid A 
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stimulation, indicating that IFN-β is sufficient to induce the expression of Cd86 and Ip10 

(Fig. 19A).  In contrast, IFN-β stimulation caused no measurable increases in Cd80 

mRNA abundance and relatively small increases in Il6 mRNA abundance when 

compared to sLipid A stimulation (Fig. 19B).  Although both Cd80 and Il6 are type I 

IFN-responsive genes in certain contexts (130, 132-134), IFN-β was insufficient to 

induce their expression in BMDCs. 

 To determine whether autocrine and paracrine signaling by IFN-β was responsible 

for the low log(EC50) values of sLipid A for the expression of Ip10 and Cd86, we 

blocked IFNAR signaling by pre-treating BMDCs with the IFNAR1 antagonistic 

antibody MAR1-5A3, or isotype control, and measured the log(EC50) values of sLipid 

A.  We demonstrated that MAR1-5A3 was effective at blocking STAT1 phosphorylation 

downstream of IFNAR in response to sLipid A-induced type I IFN production at a 

concentration of 10 ug/ml (Fig. 20).  The efficacy, or maximal responses, of both TRIF-

dependent Ip10 and co-dependent Il6 mRNA expression were decreased in MAR1-5A3 

treated cells (Fig. 21A), consistent with both of these genes being type I IFN-inducible 

(Fig. 19A and B).  Despite dampening of global Il6 and Ip10 expression, the log(EC50) 

value of sLipid A for Ip10 was significantly increased, whereas the log(EC50) value for 

Il6 was unchanged (Fig. 21A).  Similarly, increases in Cd80 and Cd86 mRNA abundance 

were dampened by the addition of MAR1-5A3, but only the log(EC50) value of sLipid A 

for TRIF-dependent Cd86 was significantly increased (Fig. 21B).  Furthermore, the 

log(EC50) values of sLipid A for both TRIF-dependent Ip10 and Cd86 mRNA 

expression were increased to values similar to those for co-dependent Il6 and Cd80 

mRNA, suggesting that secondary signaling by IFNβ through IFNAR enhances the 
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potency of TLR4 agonists like sLipid A for TRIF-dependent gene expression (Fig. 21A 

and B).  We also tested whether secondary type I IFN signaling was responsible for the 

low log(EC50) values of sLipid A for TRIF-dependent protein production downstream of 

mRNA.  MAR1-5A3 treatment increased the log(EC50) values for IP-10 production, but 

not for IL-6 production, when compared to those in stimulated control cells (Fig. 21C).  

Together, these results show that autocrine and paracrine signaling via IFNAR is a 

determinant of the low log(EC50) values of sLipid A for TRIF-dependent gene 

expression. 

 

DISCUSSION 

 We and others have proposed that TLR4 adapter modulation is a function of an 

agonist’s structural characteristics.  Zughaier et al. (111) reported that LPSs from E. coli 

and Vibrio cholerae were MyD88-biased while LPSs from Salmonella species were 

TRIF-biased over a range of doses when compared to a Neisseria meningitidis 

lipooligosaccharide reference.  We later proposed that MPLA functions as a TRIF-biased 

agonist of mouse TLR4, relative to the LPS from which it is derived, in an effort to 

understand how MPLA maintains immunostimulatory activity in spite of losing 

approximately 99.9% of its inflammatory activity (77).  Bowen et al. (110) also reported 

TRIF-bias in demonstrating that the lipid A mimetic CRX-547 was significantly less 

efficacious than a stereoisomeric compound, CRX-527, in eliciting NF-κB activation and 

MyD88- and TRIF-co-dependent TNFα production, but was comparable in inducing 

TRIF-dependent IP-10 and RANTES. 
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Despite this evidence for TLR4 TRIF-bias, other data called its existence into 

question.  Earlier dose response experiments with mouse peritoneal macrophages 

demonstrated that MPL adjuvant was much less potent than LPS in activating both TRIF-

dependent IP-10 and co-dependent TNF-α and IL-1β (73).  More recently, Gaekwad et al. 

(113) tested preparations of a variety of lipid A structures proposed to modulate TLR 

adapter signaling.  Using mouse macrophage cell lines, they found no evidence for 

adapter modulation; instead cytokine and transcript potency data conformed to an 

additive model in which changes in agonist structure affect the potency for all genes 

equally regardless of their adapter association.  In addition, TLR4 mutagenesis studies 

were inconsistent with a clear structural basis for TRIF-biased signaling by 

monophosphorylated agonists (135). 

Our results support the conclusion that sMLA is not a TRIF-biased agonist of 

TLR4 relative to sLipid A because sMLA was approximately 10% as potent as sLipid A 

for both the TRIF- and MyD88- and TRIF-co-dependent genes we tested (Fig. 11).  

However, by comparing log(EC50) values, we found that TRIF-dependent genes are 

activated with significantly less TLR4 agonist than are MyD88- and TRIF-co-dependent 

genes (Fig. 12 and Fig. 13).  This characteristic seemed to be independent of TLR4 

agonist structure and potency because sMLA and Lipid IVa, two weaker agonists that 

differ in phosphorylation status and acyl chain number, also induced TRIF-dependent 

genes more effectively.  As we have only tested three different agonists, we have not 

definitively ruled out the possibility that other agonists may be incapable of this process. 

We demonstrated that the log(EC50) value of sLipid A for the increase in 

abundance of mRNA of the TRIF-dependent T cell costimulatory molecule Cd86 was 
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also low compared to the log(EC50)s for co-dependent genes such as Il6, Cox2 (Fig. 12), 

and Cd80 (Fig. 13), supporting the idea that enhancement of T cell priming can proceed 

without high amounts of MyD88-associated proinflammatory cytokine production, as 

was seen in our first in vivo adjuvant tests with MPLA (77).  Because all TRIF-dependent 

outcomes were characterized by low log(EC50) values compared to MyD88- and TRIF-

co-dependent outcomes, we propose that TLR4 itself, not sMLA, can be considered to be 

TRIF-biased. 

We were able to discard several possible mechanisms for TLR4 TRIF-bias.  TRIF 

adaptor engagement was not likely induced at lower doses of TLR4 agonist than was 

MyD88 adaptor engagement because the log(EC50) values of sLipid A for TRIF-

dependent activating phosphorylation of IRF3 and for MyD88-dependent 

polyubiquitination of IRAK1 were not significantly different (Fig. 14).  In fact, two 

paired experiments seemed to indicate that TRIF signaling was initially more difficult to 

induce, which is not surprising given that MyD88 signaling occurs at the plasma 

membrane whereas TRIF signaling requires comparatively more complex CD14-

dependent endocytosis of TLR4 (47).  In addition, differential requirements for JNK are 

unlikely to explain TRIF-biased signaling because inhibition of JNK had little effect on 

the log(EC50) values of sLipid A in its stimulation of the expression of either TRIF-

dependent or co-dependent genes (Fig. 16). 

Many TRIF-dependent genes are also type I IFN-inducible and their activation in 

response to TLR4 stimulation decreases dramatically in the absence of IFN-β within a 3 

hour timeframe (130) indicating that autocrine and paracrine signaling by type I IFN may 

be involved in TLR4 TRIF-bias.  When we blocked type I IFN signaling, we found that 
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the log(EC50) values for the expression of TRIF-dependent genes increased to values 

similar to those of co-dependent genes, suggesting that the TRIF-biased nature of TLR4 

depends  on IFNAR (Fig. 21).  In contrast, blocking IFNAR did not change the 

log(EC50) values for the MyD88- and TRIF-co-dependent production of IL-6 and 

increase in Cd80 mRNA abundance; however, IFNAR inhibition led to a decrease in their 

maximum abundance, suggesting that IFNAR signaling enhances the expression of their 

respective genes.  TRIF-dependent, IFN-β-sufficient genes appear to be characterized by 

low log(EC50) values because they are regulated primarily by transcription factors that 

are activated by autocrine and paracrine IFNAR signaling stimulated by type I IFN 

released in response to TLR4 activation (130). 

Though many consider IFN-β to be the canonical TRIF-dependent gene, it may be 

characterized more accurately as MyD88- and TRIF-co-dependent because its production 

is reduced in the absence of MyD88 signaling (118).  Like other co-dependent genes, the 

log(EC50) values of sLipid A for Ifnb mRNA expression is high compared to those of 

TRIF-dependent genes.  Moreover, its expression is JNK-dependent, in line with co-

dependent genes (Fig. 18).  Compared to other genes which absolutely require TRIF 

signaling to be expressed, the promoter complexity of Ifnb is high, requiring inputs from 

AP1, NF-κB, and IRF3 (126, 127).  In contrast, the promoter of TRIF-dependent IFIT-1 

has been shown to only contain ISREs (136).  Therefore, differences in promoter 

complexity likely contribute to the relatively high log(EC50) of agonists for Ifnb 

expression. 

It is unclear how TRIF-dependent responses characterized by low log(EC50) 

values could be caused by IFN-β, a gene product characterized by high log(EC50) values.  
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One possibility is that IFN-β is a potent inducer of the expression of TRIF-dependent 

genes.  Additionally, locally high concentrations of secreted IFN-β may be present 

around the responding cell, which may enhance the effective potency of this cytokine.  

We have also not ruled out contributions from IFN-α, which may be produced in 

response to TLR4 stimulation in certain contexts (137).  From a teleological perspective, 

the high log(EC50) value for IFN-β production may be beneficial to the host during 

infection, because type I IFNs can contribute to endotoxic shock and the production of 

proinflammatory IL-1β through the activation of caspase-11 (138, 139).  These 

observations suggest that IFN-β may have biphasic functionality, supporting adaptive 

immune priming at low concentrations and becoming more proinflammatory at high 

concentrations. 

In conclusion, our results provide a new understanding of TLR4 TRIF-bias.  In 

our culture system, monophosphorylation of lipid A did not cause TRIF-bias; rather, 

TLR4 itself signaled in a TRIF-biased manner in which TRIF-dependent, IFN-β-

sufficient genes associated with T cell priming were induced with less agonist than co-

dependent genes associated with proinflammatory outcomes.  The extent to which TRIF-

bias can occur will likely depend upon a cell type’s ability to respond to type I IFN 

within the system and to the characteristics of type I IFN-inducible gene regulation 

within that cell.  These results are relevant to ongoing translational efforts because sMLA 

is the active component of GLA (glucopyranosyl lipid adjuvant) formulations that are 

being tested clinically (140).  Future studies are needed to determine whether cell types 

other than mouse BMDC, including human cells, are capable of agonist-independent 

TRIF-bias.  We have also not ruled out the ability of other species or cell types to 
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undergo true TRIF-biased agonism based on agonist structural features, which may 

depend upon unique engagement of TLR4:MD-2. 
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Fig. 11. sMLA is not a TRIF-biased TLR4 agonist. (A) BMDCs from C57BL/6 mice 

were treated with the indicated concentrations of sMLA or sLipid A. After 4 hours, 

increases in the steady-state abundances of the indicated mRNAs in agonist-treated cells 

compared to those in vehicle-treated cells were determined by qPCR analysis. After 18 

hours, the amounts of the indicated proteins that were secreted into the culture media 

were determined by ELISA. Fold increases in mRNA abundance were converted to 

percentages of the maximal response measured in each experiment. Data are means ± 

SEM of three independent experiments. Insets show log(EC50) values (with SE values in 

parentheses) derived from the goodness of the fit of the nonlinear regression calculation. 

(B) The sLipid A logEC50 values were subtracted from the sMLA logEC50 values for 
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each analyte measured in (A) within each independent experiment, and then graphed.  

The logEC50 difference represents the potency difference between sMLA and sLipid A. 

Solid grey bars represent MyD88- and TRIF-co-dependent gene products and white bars 

represent TRIF-dependent gene products. The striped bar represents the average logEC50 

difference between sMLA and sLipid A calculated for all analytes within each 

independent experiment.  Data are mean log(EC50) differences ± SEM from three 

independent experiments. Differences between the means were not statistically 

significant when analyzed by one-way ANOVA (P > 0.05). (C) The amounts of IL-6 and 

IP-10 proteins secreted by BMDCs in response to the indicated concentrations of sLipid 

A and sMLA from the experiments shown in (A) are plotted to show the appearance of 

TRIF-bias at low concentrations. 
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Fig. 12. The expression of TRIF-dependent genes is activated with lower 

concentrations of TLR4 agonists than are required for the expression of MyD88- 

and TRIF-co-dependent genes. (A) Log(EC50) values of the sLipid A– and sMLA-

stimulated changes in the abundances of the indicated proteins and mRNAs from the 

experiments shown in Fig. 1A. Individual log(EC50) values and mean values from three 

independent experiments (vertical bars) are shown. (B) BMDCs from C57BL/6 mice 

were activated with half-log dilutions of Lipid IVa or sLipid A for 18 hours, after which 

IP-10 and IL-6 concentrations in culture media were measured by ELISA. Left: 

Individual log(EC50) values from three independent experiments were compared. 

Nonlinear regression analysis of the means ± SEM of those experiments is shown for IL-

6 (middle) and IP-10 (right). Insets show log(EC50) values with SE values given in 
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parentheses. Statistical differences were analyzed for the data in (A) and (B) by an 

unpaired, two-tailed t test or by one-way ANOVA with Tukey’s post-test. *P < 0.05; **P 

< 0.01; ****P < 0.0001; NS, not significantly different (P > 0.05). 
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Fig. 13. The TRIF-dependent expression of Cd86 is activated with lower TLR4 

agonist concentrations than are required for the MyD88- and TRIF-co-dependent 

expression of Cd80. (A) BMDCs from wild-type (WT), MyD88-/-, or TRIFLps2/Lps2 mice 

were treated with vehicle control (VC) or were stimulated with the indicated 

concentrations of sLipid A for 4 hours. The steady-state abundances of Cd80 and Cd86 

mRNAs were then analyzed by qPCR. Data are the mean fold-increases in mRNA 

abundance in sLipid A–stimulated cells compared to those in vehicle-treated cells and are 

combined from two independent experiments. (B) Log(EC50) values were determined for 

the sLipid A–stimulated increases in the abundances of Cd80 and Cd86 mRNAs after 4 

hours by nonlinear regression analysis. Data are means ± SEM from three independent 

experiments. Right: Log(EC50) values from individual experiments. Statistical 

differences were determined with an unpaired, two-tailed t test. **P < 0.01. 
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Fig. 14. Low log(EC50) values for TRIF-dependent genes are not explained by 

biased adaptor use. (A) BMDCs from WT mice were treated with vehicle (VC) or were 

stimulated with a half-log dilution series of sLipid A for 1 hour. Samples were then 

analyzed by Western blotting with antibodies specific for the indicated proteins. The 

abundances of IRAK1 and pIRF3 (Ser396) were quantified by densitometric analysis and 

normalized to those of β-actin and total IRF3, respectively. Representative blots are 

shown. Normalized values from densitometric analysis were converted to percentage 

maximal responses for each experiment. Data in graphs are means ± SEM from four 
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independent experiments. (B) Individual log(EC50) values (squares and triangles indicate 

matched experiments) and means from the experiments shown in (A) were plotted and 

compared by an unpaired, two-tailed t test. NS, not statistically different (P > 0.05). 
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Fig. 15. The logEC50s of sLipid A for MAPKs and NF-κB are distinct. (A) BMDCs 

from WT mice were treated with vehicle as a control (VC) or were stimulated with a half-

log dilution series of sLipid A for 15 min. Samples were then subjected to Western 

blotting analysis to determine the relative extents of phosphorylation of JNK 

(Thr183/Tyr185), p38 (Thr180/Tyr182), and ERK1/2 (Thr202/Tyr204), as well as of the 

degradation of IκBα. Representative Western blots are shown. Densitometric analysis 

was performed to determine the relative abundances of the indicated phosphorylated 

proteins normalized to the abundances of their respective total proteins, whereas IκBα 

abundance was normalized to that of β-actin. Normalized values were converted to 

percentage maximal responses for each experiment. Data are means ± SEM from the 

nonlinear regression analysis of at least four independent experiments. (B) Log(EC50) 

values from the independent experiments shown in (A). Statistical differences were 

analyzed by one-way ANOVA with Tukey’s post-test. **P < 0.01; ***P < 0.001. 
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Fig. 16. MyD88- and TRIF-co-dependent genes with high log(EC50) values have a 

greater dependence on JNK for their expression than do TRIF-dependent genes. (A) 

BMDCs from WT mice were pretreated with the JNK inhibitor SP600125, the p38 

inhibitor SB202190, or DMSO (vehicle) for 30 min before being stimulated with a half-

log dilution series of sLipid A for 18 hours. The concentrations of secreted IL-6 and IP-

10 proteins in the culture media were then measured by ELISA. Data are means ± SEM 

from the nonlinear regression analysis of at least three independent experiments. (B) 

Log(EC50) values were calculated from the dose-response curves of the independent 

experiments shown in (A) and then were compared by two-way ANOVA with Sidak’s 

post-test. *P < 0.05; ns, not statistically significant. (C) BMDCs from WT mice were 

pretreated with DMSO or the indicated inhibitors for 30 min before being treated with 

vehicle (VC) or sLipid A (100 ng/ml) for the indicated times. Increases in the steady-state 

abundances of the indicated mRNAs in sLipid A–treated cells compared to those in 

vehicle-treated cells were determined by qPCR analysis. Data are means ± SEM from 

four independent experiments. Statistical differences between agonist-treated samples 
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and DMSO-treated samples were analyzed with repeated measures two-way ANOVA 

with Dunnett’s post-test. *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Fig. 17. SB202190 and SP600125 inhibit p38 MAPK and JNK signaling, 

respectively. (A and B) BMDCs from wild-type mice were pre-incubated with DMSO 

(vehicle control) or increasing concentrations of (A) SB202190 (a p38 inhibitor) or (B) 

SP600125 (a JNK inhibitor) for 30 min. Cells were then treated with DMSO (vehicle 

control) or were stimulated with sLipid A (100 ng/ml) for 15 min. Samples were then 

subjected to Western blotting analysis with antibodies specific for the indicated proteins. 

Representative Western blots from two independent experiments are shown. 
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Fig. 18. The high log(EC50) values for the expression of Ifnb correlate with a 

dependence on JNK signaling. (A) BMDCs from WT mice were stimulated with a half-

log dose series of sLipid A for 1 hour. The steady-state abundance of Ifnb mRNA in each 

of the samples was determined by qPCR analysis, and fold-increases in mRNA 

abundance in agonist-treated cells compared to that in vehicle-treated cells were 

calculated and then converted to percentage maximal responses for each experiment. 

Top: Data are means ± SEM of three independent experiments that were subjected to 

nonlinear regression analysis. Bottom: One hour Ifnb logEC50s are compared to those of 

Il6 and Ip10 (reproduced from Fig. 2A), both measured at 4 hours (bottom). (B) BMDCs 

from WT mice were pretreated with the indicated inhibitors or DMSO for 30 min before 
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being treated with vehicle (VC) for 1 hour or with sLipid A (100 ng/ml) for the indicated 

times. The abundance of Ifnb mRNA in each sample was determined by qPCR analysis. 

Data are means ± SEM in the fold increase in Ifnb mRNA in agonist-treated cells 

compared to that in vehicle-treated cells and are from three independent experiments. 

Statistical differences between agonist-treated and DMSO-treated samples were 

determined by repeated measures two-way ANOVA with Dunnett’s post-test. *P < 0.05; 

****P < 0.0001. 
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Fig. 19. IFN-β is sufficient to induce the maximal expression of genes with low 

log(EC50) values. (A and B) BMDCs from WT mice were activated with either IFN-β 

(1000 U/ml) or sLipid A (100 ng/ml) for the indicated times. Samples were then analyzed 

by qPCR, and the relative fold-increases in the abundances of the mRNAs of (A) TRIF-

dependent and (B) MyD88- and TRIF-co-dependent genes in stimulated cells compared 

to those in DMSO-treated cells were determined. Data are means ± SEM from at least 

three independent experiments. Statistical differences between sLipid A- and IFN-β-

stimulated mRNA abundances at each time point were determined by two-way ANOVA 

with Sidak’s post-test. *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not 

statistically significant (P > 0.05). 
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Fig. 20.  MAR-5A3 effectively blocks IFNAR signaling.  WT BMDC were 

preincubated with the indicated concentrations of MAR1-5A3 or media alone for 1 hour.  

The cells were then activated with 100 ng/ml sLipid A for 1 hour.  Intracellular staining 

for pSTAT1 was performed.  Data were collected on a FACScalibur.  The percentage of 

cells staining positive for pSTAT1-PE is presented.  
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Fig. 21. Autocrine and paracrine signaling by IFN-β contributes to the low 

log(EC50) values of TRIF-dependent genes. (A to C) BMDCs from WT mice were 

pre-treated with MAR1-5A3 (an anti-IFNAR1 antibody) or isotype control antibody for 2 

hours before being stimulated with a half-log dose series of sLipid A for 4 or 18 hours. 

(A and B) After 4 hours, samples were analyzed by qPCR to measure the steady-state 

abundances of the indicated mRNAs in stimulated cells relative to those of vehicle-

treated cells. (C) After 18 hours, the concentrations of the indicated proteins in the culture 

media were determined by ELISA. Data are means ± SEM from the nonlinear regression 

analysis of at least three independent experiments. Right: The log(EC50) values derived 

from each experiment were averaged and are compared in bar graphs. Statistical 
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differences between the log(EC50) values of isotype -treated and MAR1-5A3–treated 

cells were determined by repeated measures two-way ANOVA with Sidak’s post-test. 

**P < 0.01; NS, not statistically significant (P > 0.05).
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CHAPTER V 

CONCLUSION 

 

CD14 DOES NOT PLAY A SPECIAL ROLE IN TLR4 SIGNALING IN RESPONSE 

TO MONOPHOSPHORYL LIPID A 

 Following our proposal that MPLA induced a TRIF-biased response by TLR4, 

our search for potential mechanisms led us to consider the coreceptor CD14.  Although 

CD14 is well known to enhance the expression of MyD88-associated genes in response 

to TLR4 agonists, its primary role in driving endocytosis of TLR4-MD2 signaling 

complexes to initiate TRIF signaling has only recently come to light (47).  We reasoned 

that a TRIF-biased agonist may utilize CD14 in a different manner than a MyD88- and 

TRIF-balanced agonist. 

Although CD14 promotes endocytosis of TLR4 through a Syk- and PLCγ2-

dependent pathway, the exact mechanism by which it activates this pathway is unknown.  

For example, it is unknown whether CD14 must bind its ligand directly, or if its mere 

presence on the cell surface promotes internalization.  It is likely that in the process of 

transferring ligands to TLR4-MD2, the dimeric CD14 molecule promotes 

heterotetramerization of TLR4-MD2 by physically bringing together the two complexes.  

In fact, the distance between the ligand-binding domains of CD14 corresponds closely to 

the distance between adjacent MD2 molecules in the heterotetramer (141).  Perhaps this 

transient interaction with TLR4-MD2 promotes the endocytic pathway. 
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The ligand-binding pocket of CD14 is large and hydrophobic with charged 

residues around its rim (85).  These charged residues are thought to interact with the 

hydrophilic headgroup of lipid A.  Because MPLA contains one less phosphate, it is 

conceivable that its interaction with CD14 may be different than that of lipid A, but we 

found little evidence to suggest that MPLA utilizes CD14 differently than lipid A.  Our 

data suggest that CD14 ablation decreases the potency of lipid A and MPLA to the same 

extent.  This is not surprising given the ability of CD14 to bind molecules with 

significantly different structures. 

Our results also confirm the importance of CD14 in the initiation of the TRIF 

pathway because the efficacy of lipid A was reduced by 50% for induction of TRIF-

dependent Ifit1 expression.  The efficacy of lipid A for MyD88-associated events, on the 

other hand, was not decreased.  Interestingly, Tanimura et al. (93) have shown that CD86 

upregulation on BMDCs in response to lipid A and MPLA is unaffected by CD14 

ablation, despite the fact that this process is TRIF-dependent.  This group suggests that in 

the absence of CD14, some TRIF-dependent signaling may originate from the cell 

membrane, which is sufficient to induce certain TRIF-dependent responses.  Therefore, 

TRIF-dependence and CD14-dependence should not be considered one in the same.  

Perhaps alternative methods exist to initiate TRIF signaling independent of endocytosis 

of TLR4-MD2 heterotetramers. 

 

IMPLICATIONS FOR VACCINE ADJUVANTS 

 Observation of “biased agonism” is not unique to TLR4.  This phenomenon has 

long been recognized to occur with members of the G protein-coupled receptor (GPCR) 
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family, the largest class of receptors in the human genome (142).  GPCR signaling is 

mediated by two groups of adaptor proteins, the heterotrimeric G proteins and the 

arrestins, the most common of which are the β-arrestins (143).  Similar to the TLR4 

adaptor proteins MyD88 and TRIF, G proteins and β-arrestins mediate different 

downstream signaling events.  Exchange of GDP for GTP by the Gα subunit induces 

signaling through second messenger systems such as cyclic AMP (143).  The β-arrestins 

are involved in GPCR desensitization and internalization, MAPK activation, and can also 

serve as cofactors during transcription (143).  Initially, it was thought that GPCR ligands 

induced balanced signaling through G proteins and β-arrestins, but there are now many 

studies confirming that certain ligands can induce biased signaling through either 

pathway, which may be caused by the existence of multiple active receptor 

conformations (144).  For example, SII angiotensin, a synthetically modified agonist of 

the angiotensin II type IA receptor, is unable to activate Gαq signaling, but retains 

activation of β-arrestin 2 which leads to ERK activity (145, 146). 

Similar to modification of LPS to reduce its toxicity while maintaining 

adjuvanticity, GPCR agonists are being developed to selectively target therapeutically 

beneficial signaling pathways.  Stimulation of the μ-opioid receptor by morphine induces 

clinically beneficial analgesic affects but is also associated with detrimental side-effects 

such as constipation and respiratory depression (147).  These side-effects have been 

linked to β-arrestin 2 signaling (147).  A morphine derivative called TRV130 has recently 

been shown to be better tolerated by patients because it induces signaling biased toward 

the G protein pathway (148, 149).  Therefore, a strong precedent has been set for 

harnessing biased receptor signaling to target clinically useful outcomes more effectively. 
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 Unexpectedly, this dissertation provides evidence that neither MPLA nor sMLA 

are bona fide TRIF-biased agonists.  In fact, they were less potent than their 

corresponding diphosphorylated agonist (lipid A or sLipid A) by the same magnitude for 

the expression of both TRIF-dependent and MyD88- and TRIF-co-dependent genes 

(Chapters III and IV).  Instead, we provide evidence to suggest that TLR4 itself can 

behave as a TRIF-biased receptor.  When using synthetic agonists, the amount of agonist 

required to induce half-maximal TRIF-dependent gene expression was significantly less 

than the amount of agonist needed to induce that of MyD88- and TRIF-co-dependent 

gene expression.  TRIF-bias by TLR4 was not at the level of early adaptor engagement 

because there was no significant difference between the log(EC50) values of sLipid A for 

MyD88-dependent IRAK1 disappearance and TRIF-dependent IRF3 phosphorylation.  

The log(EC50) values of sLipid A for the downstream activation of MAPKs and NF-κB 

began to diverge, even though these events are MyD88- and TRIF-co-dependent.  The 

strikingly consistent difference between the log(EC50) values for TRIF- and co-

dependent events occurred at the level of gene expression and protein secretion.  

According to our model, autocrine and paracrine signaling by type I IFN produced in 

response to TLR4 activation contributes to the relative ease with which TRIF-dependent 

genes are activated (Fig. 22). 

 We have yet to fully explain the paradox whereby the expression of a gene 

characterized by a high log(EC50) value, Ifnb, can promote the low log(EC50) values of 

agonists for TRIF-dependent genes.  In this work, we have only characterized the 

log(EC50) value for increases in steady-state Ifnb mRNA abundance.  The log(EC50) 

value for the secretion of IFN-β protein may in fact be lower which would support our 
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hypothesis that an autocrine and paracrine signaling loop through IFNAR promotes 

TLR4 TRIF-bias.  These tests are underway.  As discussed in Chapter IV, the potency of 

IFN-β may also be sufficient to promote TRIF-bias, even when the IFN-β concentration 

is relatively low. 

 Other non-mutually exclusive mechanisms may also be involved in TLR4 TRIF-

bias.  One hypothesis is that gene promoter complexity may promote a TLR4 TRIF-

biased gene expression profile.  In general, genes which require MyD88-dependent 

signaling for full activation (i.e. co-dependent genes) may have more complex promoters 

with multiple NF-κB and AP1 binding sites.  TRIF-sufficient genes likely have less 

complex promoters which require fewer cofactor inputs for sufficient expression.  For 

example, TRIF-dependent Ifit1 has only two ISREs in its promoter (136) and Ip10 

expression requires either two NF-κB binding sites or one NF-κB binding site and one 

ISRE (150).  Therefore, it is plausible that TRIF-dependent genes may simply be more 

easily activated because less TLR4 agonist is needed to induce the transcriptional inputs 

required to express these genes. 

 It should be noted that neither MPLA nor lipid A seemed to conform to our model 

of TLR4 TRIF-bias in the experiments presented in Figure 4.  In these experiments, the 

log(EC50) values for MPLA and lipid A for Ifit1 mRNA expression were not lower than 

those for co-dependent IL-6 and Cox2 mRNA.  A direct comparison of the log(EC50) 

values of sLipid A and lipid A, under the same conditions, for TRIF-dependent and co-

dependent gene expression will need to be completed before we can confirm that TLR4 

TRIF-bias is not exhibited with these biological compounds. 
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 A major limitation to the studies presented herein is that they were all assessed in 

vitro.  Therefore, they do not take into account the complex interplay between different 

cell types that occurs during vaccination or infection.  We chose to perform this work 

using BMDC because DC are expected to be the most important cells in the context of 

immunization.  But other cell types, such as monocytes and macrophages certainly 

respond during immunization as well.  Whether or not these cell types exhibit TLR4 

TRIF-bias must be determined in the future. 

Although we have not directly tested this hypothesis in vivo, work by Mata-Haro 

et al. (77) does suggest that TLR4 TRIF-bias may occur within a living host.  In this 

study, both serum cytokine and spleen cell mRNA measurements after immunization 

with LPS or MPLA demonstrated that the weak agonist MPLA was TRIF-biased relative 

to LPS.  This observation could very well be explained by inherent TRIF-bias by TLR4 

itself, especially since a higher dose of MPLA than LPS was used in these studies.  A 

definitive test of this hypothesis would be to perform immunizations with a series of 

dilutions of a potent agonist, like LPS or lipid A, and compare TRIF- and co-dependent 

outcomes.  Our hypothesis predicts that a dose of LPS or lipid A exists that mirrors the 

response induced by MPLA, both in T cell priming and cytokine production.  While our 

results clearly show that the potency of TLR4 agonists for TRIF-dependent events is 

higher than that of co-dependent events, they do not inform us of the actual levels of 

TLR4 signaling events needed to induce sufficient T cell priming.  By studying limiting 

doses of agonists in vivo, we can bypass issues of the physiological relevance of 

pharmacological potency and efficacy measured in vitro. 
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 Our findings have direct implications for the use of TLR4 agonists as vaccine 

adjuvants.  A paradigm has emerged in which TRIF-dependent gene activation is 

associated with events necessary for adaptive T cell priming and MyD88-associated gene 

activation is linked to proinflammatory cytokine release and toxicity.  Safe and 

efficacious vaccine adjuvants should induce maximal beneficial effects with the least 

amount of toxicity.  We speculate that TLR4’s TRIF-biased gene activation profile 

effectively widens the therapeutic window in which TLR4 agonists may be used as 

clinical adjuvants (Fig. 23).  In other words, there may be a broad range of doses at which 

a TLR4 agonist may be administered where adjuvanticity is retained and toxicity remains 

low.  Inherently less potent adjuvants like MPLA and sMLA may be better able to fit 

within this therapeutic window when administered in vivo.  At their effective doses, these 

agonists may also retain sufficient levels of MyD88-associated proinflammatory cytokine 

production which is likely important to promote long term immunity through effects on 

regulatory T cells (Tregs) and retention of memory T cells (151, 152). 

Our observation that type I IFN production was responsible for much of the TLR4 

TRIF-biased gene expression may also provide insight into the development of more 

effective adjuvants.  There is currently much interest in the combination of vaccine 

adjuvants to promote more robust immunity (153).  Specifically, combining TLR4 with 

TLR7, TLR8, or TLR9 agonists was shown to synergistically enhance production of IL-

12 and IL-23 in human and mouse DC, which promoted Th1 immunity (154).  TLR7 and 

TLR9 are expressed on plasmacytoid DC (pDC) and their activation induces production 

of large quantities of type I IFN (155), which induces many effects including APC 

maturation and migration, and B cell isotype switching (156).  We speculate that the 
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efficacy of combining TLR4-based adjuvants with those that target pDC may lie in the 

enhanced production of type I IFN.  In fact, a candidate clinical vaccine against a 

Mycobacterium tuberculosis antigen was recently shown to be more effective at inducing 

a Th1 response when adjuvanted with GLA (a formulation of sMLA) and CpG (a TLR9 

agonist) as opposed to GLA alone (157).  Adjuvant synergy between GLA and CpG was 

independent of TRIF signaling, but the adjuvant effects of GLA alone were TRIF-

dependent.  This result could be explained by rescue of TRIF-dependent, type I IFN-

inducible gene expression by the TLR9 signaling component.  Type I IFN signaling 

through IFNAR, either before or during TLR4 activation on conventional DC, may 

promote an even greater bias toward TRIF-dependent gene activation and further enhance 

adaptive immune priming and optimal T cell differentiation. 

 Preliminary studies in our lab using the human monocytic cell line THP1 and 

human peripheral blood mononuclear cells suggest that inherent TLR4 TRIF-bias is 

likely relevant to clinical medicine, but additional work needs to be performed to 

determine whether autocrine and paracrine signaling by type I IFN drives this response.  

Certain TLR4 agonist structures may also be TRIF-biased (i.e. ligand bias rather than 

receptor bias) in the human system as was demonstrated by Bowen et al. (110).  Current 

studies in our lab have shown that the biological mixture MPLA has a lower efficacy than 

lipid A for MyD88-associated gene expression in human cells.  In contrast, the efficacy 

of sMLA for these events is equivalent to that of sLipid A.  The lower efficacy of MPLA 

compared to sMLA may be explained by the presence of hypo-acylated congeners within 

the MPLA mixture that either act as antagonists or partial agonists of TLR4.  

Interestingly, studies performed by the Infectious Disease Research Institute (IDRI) 
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demonstrated that GLA was generally stronger than MPLA at inducing co-dependent and 

TRIF-dependent cytokines in human DC, including those implicated in adverse events 

such as TNFα and IL-6 (158).  Therefore, the fact that GLA is a homogeneous 

preparation of hexa-acylated molecules may be a barrier to its incorporation into clinical 

vaccines.  MPLA, on the other hand, may be a more tolerable vaccine adjuvant due to its 

heterogeneity which serves to tone down TLR4 activity. 

 

IMPLICATIONS FOR COEVOLUTION OF COMMENSAL BACTERIA AND 

INNATE IMMUNITY 

It is tempting to speculate on the selective pressures that would have promoted the 

evolution of bias toward the TRIF pathway of TLR4.  An answer may lie in the 

interaction between the host and its resident gut microbiota, which is essential for 

competent host immune system development, nutrition, and for maintenance of the 

mucosal barrier (159).  Trillions of bacteria colonize the host mucosal surfaces.  These 

bacterial colonies, although essential to host health, must be held in check by the host 

immune system.  An overly vigorous response to commensal bacteria may promote 

disease states such as colitis.  On the other hand, an inadequate immune response can 

promote infection by normally benign microbes.  The importance of gut microbiota 

homeostasis is demonstrated by the fact that disruption of commensal populations by 

antibiotic use promotes susceptibility to pathogenic Clostridium difficile infection (160). 

Intestinal CD103+ DC play an essential role in the maintenance of gut microbiota 

homeostasis (161).  These cells reside in the lamina propria and the gut-associated 

lymphoid tissue, and extend dendrites between intestinal epithelial cells to sample 
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commensal antigens within the lumen (161, 162).  Commensal bacteria themselves also 

relay signals to immune cells and lymphoid tissues through the release of PAMP-

containing membrane microvesicles that transverse the gut epithelium (163, 164).  To 

prevent an overly robust immune response to commensal bacteria, CD103+ DC promote 

the differentiation of commensal-specific induced T regulatory cells (Treg) through 

production of retinoic acid and TGF-β (161).  These Treg then promote commensal 

tolerance. 

Although tolerance to gut antigens is important, a mechanism must be in place to 

limit commensal loads and elicit immunity in the case of infection.  Intestinal DC support 

Th17 effector cell differentiation through production of IL-23 and IL-6 (161, 165).  Th17 

cells play an important role in controlling gut microbiota.  They promote the production 

of IgA (166), which limits commensal escape into the periphery (167), and have been 

implicated in lessening the severity of T cell-mediated colitis (168). 

 Interestingly, many commensal bacteria express weak TLR4 agonists 

characterized by hypo-acylation or monophosphorylation (169-171).  In addition, 

intestinal alkaline phosphatase (IAP) concentrated in the intestinal brush border and 

produced in response to bacterial colonization has been proposed to promote tolerance to 

commensal Gram-negatives by decreasing the potency of their LPS through the removal 

of the lipid A 1-phosphate group (172).  IAP-deficient zebrafish exhibited severe gut 

inflammation characterized by heightened infiltration of neutrophils (172).  We speculate 

that commensal bacteria may express weakened forms of LPS, produced either 

endogenously or by chemical modification by the host, to prevent strong TLR4 activity in 

intestinal DC that may promote Th17 mediated immunity over Treg mediated tolerance.  
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Weak activation of TLR4 on intestinal DC would be expected to induce a higher level of 

TRIF-dependent versus co-dependent gene activation in the context of our model of 

TRIF-bias.  Whether or not TRIF signaling plays a predominant role in maintenance of 

Tregs and tolerance is uncertain, but one study showed that TRIF signaling by gut DC in 

response to intestinal Candida albicans infection was required for Treg induction through 

the production of indoleamine dioxygenase (173). 

In cases where the T effector to Treg ratio should increase, such as infection by a 

pathogen, higher levels of TLR4 stimulation may occur through exposure of DC to higher 

bacterial loads or to more potent LPS chemotypes.  In this scenario, MyD88-associated 

genes would be more efficiently induced and promote conversion of tolerogenic DC to 

those which promote inflammation and immunity.  For example, stronger stimulation of 

gut DC through TLR4 may induce more robust production of co-dependent IL-6 which 

promotes Th17 differentiation (161, 174).  We speculate that commensal bacteria may 

have been selected to express low potency LPS structures in order to minimize clearance 

by the host immune system.  In addition, differential ease of activating TRIF- versus 

MyD88-associated gene expression by host APC may have coevolved with the 

microbiota to strike a balance between tolerance and immunity, which allows these 

beneficial bacteria to persist without damage to the gut, or other host-environment 

interfaces such as the skin and respiratory tract. 
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Fig. 22.  The proposed mechanism for TRIF-biased TLR4 signaling.  TLR4 

activation induces the expression of MyD88- and TRIF-co-dependent genes which 

require the activation of NF-κB and AP1 transcription factors.  TRIF dependent signaling 

activates IRF3, which, together with NF-κB and AP1, promotes type I IFN expression 

and low levels of type I IFN-inducible gene expression.  Type I IFN secreted by the cell 

activates ISGF3 through IFNAR signaling.  ISGF3 then promotes the expression of type I 

IFN-inducible genes.  The combined action of IRF3 and ISGF3, as well as other 

transcription factors, may increase the potency of TLR4 agonists for the induction of 

TRIF-dependent genes.  Though optimal co-dependent gene expression may require 

ISGF3 activity, the potency of agonists for the induction of these genes is unaffected. 
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Fig. 23.  TLR4 TRIF-bias opens a therapeutic window for vaccine adjuvants.  The 

therapeutic window shaded in blue represents doses of a TLR4 agonist that induce TRIF-

dependent responses sufficient for robust adjuvanticity with minimal toxicity.
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