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ABSTRACT

A MECHANISM FOR TRIF ADAPTOR-BIASED SIGNALING BY TOLL-LIKE
RECEPTOR 4

Joseph Peterson Kolb, Jr.
November 20, 2014

Host cells respond to bacterial lipid A through Toll-like receptor 4 (TLR4).
Activation of TLR4 by lipid A triggers a response that involves two main adaptor
proteins, MyD88 and TRIF. MyD88-dependent gene expression is associated with
proinflammatory protein production, while TRIF-dependent gene expression is essential
for optimal activation of adaptive immunity by antigen-presenting cells. Detoxified,
monophosphoryl lipid A agonists (MPLA or synthetic MLA) were previously suggested
to elicit TRIF-biased TLR4 signaling; that is, induction of weaker MyD88-associated
gene expression but relatively intact TRIF-dependent gene expression when compared to
fully active diphosphoryl lipid A (lipid A). In this work, we explored potential
mechanisms by which monophosphoryl lipid A could induce TRIF-biased signaling in
mouse cells. TRIF-dependent and MyD88-associated gene expression induced by both
MPLA and lipid A was reduced to a similar extent by CD14 ablation, indicating that
these two agonists do not differentially utilize CD14, despite this coreceptor’s primary
role in directing the TRIF signaling pathway. In a second study, we demonstrated that
the observation of TRIF-biased gene expression by SMLA was not because the agonist

induced a TRIF-biased gene expression profile, but rather that TLR4 itself was TRIF-



biased. The potencies of three different agonists were significantly higher for the
induction of expression of TRIF-dependent genes than they were for induction of
expression of MyD88-associated genes. Autocrine and paracrine signaling by type |
interferons contributed to higher potency of TLR4 agonists for induction of TRIF-
dependent gene expression because blocking the type I interferon receptor before agonist
treatment diminished the effect. We propose that TLR4 is a prime target for vaccine
adjuvants. The therapeutic window of TLR4 agonists may be inherently large due to the
ease with which TRIF-dependent genes required for adaptive priming are activated

relative to MyD88-dependent genes associated with toxicity
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CHAPTER I

INTRODUCTION

DISCOVERY OF THE LIPOPOLYSACCHARIDE RECEPTOR

For many years, immunologists knew that T and B cell activation in response to a
protein antigen required the addition of certain mixtures called adjuvants, but the way
adjuvants worked was largely unknown. In 1989, the preeminent scientist Charles
Janeway proposed the existence of evolutionarily ancient pattern recognition receptors
(PRRs) expressed on innate immune cells that had evolved to respond to conserved
microbial products called pathogen-associated molecular patterns (PAMPS) (1). Janeway
postulated that the cellular response elicited by these PAMPs must somehow provide a
second signal to lymphocytes, instructing their activation, and allowing them to
discriminate between self and non-self antigens. In the following years, intensive
searches for PRRs and their corresponding PAMPs were carried out.

One of the most well studied PAMPs is lipopolysaccharide (LPS). LPS is a major
component of the outer membrane of Gram-negative bacteria that promotes structural
integrity and provides the bacteria a protective barrier to toxic compounds in the
extracellular environment (2). The inflammatory and immunostimulatory effects of LPS,
initially known as endotoxin, had long been recognized since its discovery by Richard
Pfeiffer in 1892 (3). For example, endotoxin tolerance, or the hypo-responsiveness of a

host to LPS treatment following an initial LPS exposure, was first described in 1946 by



Beeson (4). In addition, LPS was known to induce B cell proliferation since the early
1970s (5, 6).

In 1969, Sultzer published work describing a strain of mouse which was highly
resistant to the toxic effects of LPS (7). This mouse, called C3H/HeJ, provided evidence
that responsiveness to LPS was genetically encoded. It was not until the 1980s that
strides began to be made in determining the nuts and bolts of the LPS response. Tobias et
al. (8) were the first to isolate the acute phase LPS-binding protein (LBP) from rabbit
serum and to provide evidence of its interaction with LPS. A few years later, another
protein, CD14, was shown to bind LBP-LPS complexes (9). CD14 is expressed on the
surface of cells of the myelomonocytic lineage (10). Initially, many considered CD14 to
be a polyspecific PRR responsible for inducing the inflammatory response to LPS as well
as Gram-positive bacterial components (11), but several lines of evidence indicated that
CD14 was not alone in propagating the LPS response. First, CD14 is expressed on the
cell membrane via a short glycosylphosphatidylinositol (GPI) anchor which is incapable
of transducing a signal by itself (12). Second, deacylated LPS, which is antagonistic to
LPS in human cells, inhibited the inflammatory response to LPS without preventing LPS
binding to CD14, indicating that LPS might induce its signal at a different location (13).
Third, the activity of LPS antagonists was dependent upon the species from which a cell
was derived but independent of the species from which CD14 was derived (14). In
addition, experiments in CD14-deficient macrophages demonstrated the existence of
CD14-independent LPS activation (15).

Several breakthroughs in our understanding of LPS recognition occurred in the

late 1990s. In 1996, Lemaitre et al. (16) published work demonstrating that the



Drosophila Toll signaling pathway, which was known to control embryonic dorsoventral
patterning, was also responsible for the induction of an antifungal response by way of
activation of an NF-kB-related transcription factor. Most importantly, this work
implicated the existence of conserved Toll-NF-xB-like signaling pathways responsible
for non-adaptive activation of antimicrobial genes in mammalian cells (17). In the
following year, Janeway and Medzhitov (18) cloned the human homologue of Drosophila
Toll (hToll) and expressed a constitutively active form of it in the human monocytic cell
line THP-1. Cells which expressed this hToll mutant also expressed higher levels of
proinflammatory cytokines and the T cell costimulatory molecule CD80. This data
provided the first evidence that Toll signaling pathway activation in the context of
infection was potentially involved in the activation of innate immune cells, which were,
in turn, required to educate adaptive immune cells.

In 1998, Janeway’s PAMP and PRR hypothesis was clearly born out with the
discovery by Beutler and colleagues (19) that LPS hyporesponsive C3H/HeJ and
C57BL/10ScCr mice bore mutations in the Toll-like receptor 4 (TLR4) gene. In
particular, C3H/HeJ mice have a point mutation in the intracellular signaling domain of
TLR4, and C57BL/10ScCr mice carry a TLR4 null mutation. This work clearly
demonstrated that TLR4 was responsible for inducing the inflammatory response to LPS.
Interestingly, Janeway had unwittingly stumbled upon the LPS receptor before Beutler
because hToll was actually the human TLR4 gene (20). Shortly after Beutler’s
publication, it was discovered that a coreceptor called MD-2, along with TLR4, made up
the complete LPS receptor complex. MD-2, in complex with TLR4, directly bound LPS,

while TLR4 was responsible for transducing the intracellular signal (21, 22). The



discovery of TLR4 ignited a flurry of research activities in the field of innate immune
recognition of pathogen components that continues today. It did not take long for much

of the TLR4 signaling mechanism to be elucidated.

THE TLR4 SIGNALING PATHWAY

TLR4 is expressed on a wide variety of immune and non-immune cells including
monocytes, macrophages, dendritic cells, neutrophils, B cells, and endothelial cells, but
the majority of TLR4 signaling work has been performed in macrophages and dendritic
cells. In order for TLR4 signaling to take place, monomeric LPS must be delivered to the
receptor. This process is accomplished by two coreceptors, LBP and CD14 (discussed in
detail in Chapter I11). LBP in the serum extracts LPS monomers from bacteria or
aggregates, and catalytically transfers them to CD14 (23, 24). CD14 is expressed on the
cell surface and is found in soluble form in the serum (12, 25). CD14 transfers LPS from
its binding pockets to MD-2 complexed with TLR4 on the cell surface (26).

In general, the LPS molecule contains three structural components: the O-
polysaccharide or O-antigen, the core oligosaccharide, and lipid A (reviewed in (27)).
The O-polysaccharide is the most variable moiety, consisting of 0 to 50 repeating sugar
subgroups. This high variability is responsible for the diversity of host antibody
serotypes to Gram-negative bacteria. The core oligosaccharide is much less variable than
the O-polysaccharide. It consists of an outer core composed of common hexose sugars
and an inner core consisting of rare sugars such as 3-deoxy-D-manno-octulosonic acid
(Kdo) and L-glycero-D-manno heptose. Lipid A is the highly hydrophobic core of LPS

which anchors into the outer Gram-negative bacteria membrane. It is generally



composed of a di-glucosamine headgroup with two phosphate groups at the 1 and 4’
positions. Up to 4 amide or ester linked primary acyl chains are attached to the
diglucosamine, and up to 3 additional secondary acyl chains may be linked to the primary
chains (up to 7 acyl chains in total). Lipid A is called the “endotoxic principle” because
it alone is sufficient to induce a response like that of the complete LPS molecule (28).
This is because lipid A is the component of LPS that binds directly to MD-2 and interacts
with TLR4 (29).

TLR4 is a type | transmembrane protein. Its extracellular N-terminal domain is
made up of leucine-rich repeats (LRRs) which form a horseshoe-like shape. TLR4’s C-
terminal cytoplasmic region is homologous to the intracellular domain of the IL-1
receptor and is, therefore, called the Toll/IL-1 receptor (TIR) domain. MD-2 is
composed of two sandwiched anti-parallel B-sheets that form the lipid A-binding pocket
(30). The inside of the pocket is lined with hydrophobic residues that accommodate lipid
A’s fatty acyl chains, and the pocket’s rim contains hydrophilic residues which are also
important for ligand interaction (29, 30). MD-2 stably binds with TLR4 on the concave
surface of its extracellular domain through charge-charge interactions (31).

Lipid A interaction with MD-2 at the cell surface induces the dimerization of two
TLR4:MD-2 complexes (also called heterotetramerization) that brings TIR domains in
the cytoplasmic tails into close proximity with one another (29, 31-33). It is thought that
the close interaction of TIR domains promotes the recruitment of signaling adaptor
proteins. There are four main adaptor proteins associated with TLR signaling: myeloid
differentiation primary response gene 88 (MyD88), MyD88 adaptor-like (Mal), TIR

domain-containing adaptor inducing interferon-f (IFN-B) (TRIF), and TRIF-related



adaptor molecule (TRAM). TLR4 is unique in that is the only TLR which utilizes all
four adaptor proteins (34). The MyD88-dependent and the TRIF-dependent signaling
pathways have unigque characteristics and are required for the activation of different sets
of genes.

Upon TLR4 activation (Fig. 1), Mal and MyD88 are rapidly recruited to the
cytoplasmic TIR domain of TLR4 and bind to it through their own TIR domains. Mal is
localized to the cell membrane via a phosphatidylinositol 4,5-bisphosphate (PIP2)
binding domain, and facilitates the recruitment of MyD88 (35). These events initiate the
formation of the myddosome, a helical oligomer of IL-1 receptor-associated kinases
(IRAKS)-4, -1, or -2 which interact through their death domains (36). Close association
causes IRAKSs to become phosphorylated and to be released from the myddosome to then
interact with TNF receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase (37).
Both IRAK1 and TRAF6 are K63-polyubiquitinated in the process (38-40). TGF-p-
associated kinase-1 (TAK1)-binding proteins (TABs), the regulatory components of
TAKZ1, bind to the long ubiquitin chains attached to TRAF6 through their zinc-finger
ubiquitin-binding domains (41, 42). This then leads to activation of TAK-1, which
activates downstream MAPKS. Inhibitor of NF-«B kinase-y (IKKy) also binds to
polyubiquitinated TRAF6, which brings the catalytic subunits IKKa and IKKf into close
proximity to TAK1 (37, 41, 43). TAK1 phosphorylates IKKp, which allows the IKK
complex to phosphorylate IkB and mark it for ubiquitin-dependent degradation. This
process allows NF-«B to enter the nucleus. Due to its robust NF-xB and MAPK
activation the MyD88-dependent pathway is associated with proinflammatory gene

induction (44-46).



Several minutes after MyD88-dependent signaling is initiated, TLR4:MD-2
complexes are endocytosed via a CD14-dependent pathway (47). This process induces
the recruitment TRAM and TRIF to the TLR4 cytoplasmic TIR domains (48-50), which
activates the E3 ubiquitin ligase TRAF3 (51). TRAF3 become polyubiquitinated and
activates TANK-binding kinase-1 (TBK1), which then activates IKKe. This signaling
cascade results in the activating phosphorylation of the transcription factor interferon
regulatory factor 3 (IRF3), which is required for type I interferon production (52-55).
TRIF signaling also overlaps with the MyD88 pathway by recruiting the E3 ubiquitin
ligases TRAF6 and Pelinol which polyubiquitinate receptor interacting protein-1 (RIP1)
(56, 57). Ubiquitinated RIP1 recruits and activates TAK1 and the IKK complex, which
then activate MAPKs and NF-«xB (58). As a result of this overlap in signaling pathways,
TRIF-deficiency frequently decreases production of proinflammatory mediators

associated with the MyD88 pathway (59-62).

THE TLR4 AGONIST MONOPHOSPHORYL LIPID A AS A VACCINE ADJUVANT
Unquestionably, one of the most important medical achievements in current
human history is vaccination against disease causing pathogens. Vaccination has saved
countless lives and countless dollars in medical treatment expenses by eradicating or
dramatically decreasing the incidence of many diseases worldwide. Despite the success
of whole-pathogen vaccines, which make use of inactivated or attenuated microbes, there
is a still a need for the development of new and safer vaccine strategies. Current
vaccination strategies have been unsuccessful in preventing intractable diseases such as

cancer and HIV, as well as emerging threats such as Ebola (which at the time of writing



this dissertation is causing a severe epidemic in West Africa and global concern). In
addition, the rare occurrence of serious adverse events associated with whole-pathogen
vaccination, whether real or perceived, has caused many to opt out of vaccination due to
safety concerns (63).

The answers to some of these problems may lie in subunit vaccination. This
strategy uses only the essential microbial antigens, and not the whole organism, to
stimulate immunity. Although subunit vaccines are considered very safe, protein
antigens alone are usually inherently weak stimulators of the innate arm of the immune
system, which is essential to long-term adaptive immunity. Therefore, adjuvants
(PAMPs or other immunostimulatory compounds) must be formulated with subunit
vaccines.

The first successful clinical vaccine adjuvant was alum (non-crystalline gels of
aluminum salts), which has been used in vaccines since 1926 (64). To date, alum is the
most commonly used adjuvant. Alum promotes delivery of antigen to APCs and
stimulates APC maturation by inducing an intracellular signaling pathway caused by its
interaction with cell membrane lipids (65). Alum promotes a Th2 humoral immune
response typified by non-complement fixing antibody isotypes. While these responses
are effective against microbes where neutralizing are required for protection, they are not
well suited for stimulating protective immunity to intracellular pathogens or to
endogenous antigens present in pre-cancerous, transformed cells (66). Therefore, there is
still a need for the development of new vaccine adjuvants which stimulate different facets

of the immune response.



LPS has long been known as an effective vaccine adjuvant, but its strong
pyrogenicity and association with septic shock has precluded its use in the clinical
setting. Beginning in the late 1970s, Edgar Ribi systematically studied the biological
properties of chemically modified LPS. Acid hydrolysis of Salmonella minnesota Re595
(deep rough mutant) LPS, which contains a mixture of congeners with different numbers
of acyl chains, removed the core-oligosaccharide (Kdo), as well as the diglucosamine 1-
phosphate group (67). The resulting molecule (Fig. 2), called monophosphoryl lipid A
(MPLA), was shown to be at least 1,000 times less toxic than parental LPS in a battery of
tests, including chick embryo lethality and rabbit pyrogenicity (68). Surprisingly, MPLA
retained 100% of the ability of LPS to induce tumor regression and systemic immunity in
the transplantable line-10 tumor model in guinea pigs (68). This seminal work
demonstrated that the beneficial immunomodulatory functions of LPS could be separated
from its toxicity.

Ribi’s discovery would make a dramatic impact in the field of vaccine adjuvant
development with the purchase and mass production of clinical grade MPLA called MPL
adjuvant by Corixa Corporation and later GlaxoSmithKline (GSK). MPL adjuvant is
approved for use in the hepatitis B virus vaccine Fendrix in Europe and in the human
papillomavirus (HPV) vaccine Cervarix in the USA. In both of these vaccines, MPL
adjuvant is used in combination with alum in the GSK adjuvant system called AS04. The
benefits of MPL were clearly shown in follow-up studies in women vaccinated with
either Cervarix or Merck’s Gardasil, which is adjuvanted with alum alone. Up to 24
months after vaccination, Cervarix was shown to induce significantly higher titers of

HPV-18 and HPV-16 neutralizing antibodies, and better antigen specific CD4 T cell and



memory B cell responses (69, 70). To date, MPL adjuvant is the only TLR agonist-based
adjuvant to be approved by the FDA. Its success demonstrated the feasibility of using
TLR4 agonists in the clinical setting and caused a dramatic increase in studies aimed at
elucidating the structural features of LPS or lipid A required for beneficial adjuvanticity

but low toxicity, with the hope that these features could be fine tuned.

MONOPHOSPHORYL LIPID A AS A TRIF-BIASED AGONIST OF TLR4

The basis of MPLA’s unique adjuvant properties has been debated. Early studies
comparing the ability of MPLA and LPS to elicit gene products downstream of TLR4
seemed to indicate that MPLA was a less potent version of LPS (71-73). Over a dose
range of 0.1 to 1000 ng/ml, MPLA was weaker than LPS in the induction of Ifng,
1112p40, and 1112p35 mRNA in mouse peritoneal macrophages (71). MPLA was also
weaker than LPS in stimulating IL-12 protein production by both mouse macrophages
and human monocyte-derived DC (71, 72). In contrast, additional studies indicated that
MPLA may retain the ability to induce certain responses just as well as LPS, while
remaining weak in others (71, 74, 75). More MPLA than LPS was required to induce
endotoxin tolerance in mice, but at doses where equivalent tolerance was induced, MPLA
was still less capable than LPS at eliciting proinflammatory cytokines (74). Also, MPLA
was reported to induce a similar abundance of 111b mRNA compared to LPS, but lower
amounts of IL-1p protein (75). Still, others concluded that MPLA may be better able to
induce certain responses than LPS. For example, MPLA treatment induced more 1110

MRNA expression in mouse macrophages than LPS (71). Lower production of

10



proinflammatory cytokines like IL-1p, and higher production of anti-inflammatory
cytokines like 1L-10 were proposed to contribute to the low toxicity of MPLA.

During the time in which MPL adjuvant was showing promise in the clinic, our
lab became interested in determining how a low inflammatory environment elicited by
MPLA would specifically affect the quality of T cell priming. Our initial studies (76)
demonstrated that MPLA was better able than LPS to induce early clonal expansion of
ovalbumin-specific CD4 T cells, despite being about 5 times less toxic. In contrast,
MPLA was less capable than LPS at stimulating long-term retention of antigen-specific
CDAT cells.

A breakthrough in our understanding of MPLA’s adjuvanticity occurred with the
work of Mata-Haro et al. (77). In this study, 30 ug of MPLA and 10 ug of LPS induced
indistinguishable expansion kinetics and numbers of antigen-specific CD4 and CD8 T
cells in an adoptive transfer model with OT-1 and OT-11 T cells in mice. Strikingly,
MPLA was not equivalent to LPS in inducing production of certain serum cytokines and
chemokines during this T cell activation. Serum levels of MyD88-associated proteins,
such as IL-6, IL-1p, and IFN-y were significantly lower when MPLA was used as an
adjuvant as opposed to LPS. In contrast, production of TRIF-associated proteins such as
G-CSF and IP-10 was induced similarly by MPLA and LPS. This phenomenon, which
we termed “TRIF-bias,” was confirmed by gene chip mRNA expression analysis on
spleen cells harvested 6 hours after immunization with MPLA or LPS. TRIF-bias was
also shown in vitro with mouse macrophages. MPLA was significantly weaker than LPS
in inducing MyD88-associated IL-6 production and NF-kB activation, but was equivalent

to LPS in TRIF-dependent IP-10 production and IRF3 activation.
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In this same study, we demonstrated that the TRIF pathway, and not the MyD88
pathway, was required for the early expansion of antigen-specific CD4 and CD8 T cells
with MPLA or LPS as adjuvant. This observation and the association of MyD88
signaling with proinflammatory outcomes gave rise to the hypothesis that TRIF-biased
signaling by MPLA allowed it to be an effective adjuvant without overwhelming toxicity.

Our lab went on to demonstrate that the absence of the 1-phosphate on lipid A
was a potential determinate of TRIF-biased TLR4 signaling in mice (78, 79). The
synthetic monophosphoryl lipid A based on the E. coli chemotype, which we call SMLA,
was equivalent to diphosphoryl lipid A (called sLipid A in this dissertation) (Fig. 3) in the
induction of TRIF-dependent gene products but weaker in MyD88-associated gene
products at the concentrations tested (78). In addition, we showed that SMLA, like
MPLA, was equivalent to sLipid A in its induction of 111b mRNA, but weaker in
induction of IL-1p protein due to its weak activation of the MyD88-dependent NLRP3
inflammasome (79). Still, we were aware of the fact that TLR4 signaling caused by
MPLA and sMLA was not completely devoid of MyD88 activity. For example, SMLA
induced more sustained MyD88-dependent SHIP1 phosphatase than sLipid A (80). In
addition, SMLA was capable of inducing the same amount of many MyD88-associated
events as sLipid A if SMLA was given at a higher dose (78, 81). Therefore, TRIF-biased
signaling by MPLA and sMLA was always appreciated as being more nuanced than

simply TLR4 signaling in the absence of MyD88 engagement.
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DISSERTATION GOALS

Although we have begun to characterize many of the qualitative aspects of TLR4
signaling by MPLA and sSMLA, we have yet to determine a definitive mechanism for
TRIF-bias. Observations of TLR4 adaptor signaling biases have been published by other
labs, but adaptor bias remains a controversial topic within the scientific community. The
goal of this dissertation was to expand our understanding of TRIF-biased signaling by
monophosphorylated lipid A agonists and to define a potential mechanism for its
occurrence. In Chapter I11, the role of the coreceptor CD14 in signaling by MPLA is
analyzed to determine whether this receptor, which plays a prominent role in TRIF
signaling, is utilized differently by a TRIF-biased agonist. In Chapter 1V, we refine our
definition of TRIF-biased signaling and propose a mechanism which depends upon the
interaction of TLR4 and the type I interferon receptor signaling pathways. These
findings have direct implications for the design and utilization of TLR4 agonists as
vaccine adjuvants. They may also provide insight into the coevolution of the microbiome

and the host innate immune system.

13



\'I\‘I\'Ii'f;‘;!I?I\"ﬂ'ft‘fifi'-’?f&\"\'ﬁl'ﬁft‘ffl’r a:.t:w:;:;:g:m:;:w:g:;:.t:ga:;:;:.\m:ﬂ:w:;:;:g:m:.\:.\:,\:

Qe
MyD88 MyD88
IRAK4 IRAK4
K63-polyubiquitin

—
MAPK cascade
! - \
INK, p38, ERK1/2

Proinflammatory
NF-kB | IRF3 |
@- | cytokines @m S |—>Tvpellnterferons

Fig. 1. The TLR4 signaling pathway. LPS or lipid A induced heterotetramerization of
TLR4:MD-2 causes signaling through the MyD88- and TRIF-dependent pathways.
MyD88 signaling occurs first from the cell membrane and leads to rapid activation of
MAPKSs and NF-kB. MAPKs activate transcription factors, such as the AP1 family.
These transcription factors, along with NF-kB drive the expression of proinflammatory
genes such as 116, Cox2, and 111b. TRIF signaling occurs after endocytosis of TLR4:MD-
2 and is, therefore, delayed. TRIF activates NF-kB and MAPKs through RIP1 and
TAKZ1. Italso uniquely induces IRF3 activating phosphorylation and dimerization which

is required for type | interferon expression.
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Fig. 2. Salmonella minnesota lipid A and MPLA structures. Acid hydrolysis of S.

minnesota LPS removes the Kdo group to yield lipid A. Because lipid A is prepared

from biological LPS isolates, it is composed of a mixture of congeners with different

numbers of acyl chains (from 3 to 7). This variability is due to inherent heterogeneity in

the biosynthesis of LPS by the bacterium. The hepta-acyl form is shown above. Further

acid hydrolysis removes the 1-phosphate of lipid A to yield MPLA. Shown above is the

hexa-acyl form which is presumably the most active congener. Although the hepta-acyl

form is removed from clinical preparations of MPL adjuvant by alkaline hydrolysis, this

was not the case for the agonists used in these studies.
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Fig. 3. Synthetic lipid A (sLipid A) and MPLA (sMLA) structures. The synthetically
prepared lipid A and MPLA based on the E. coli chemotype are homogeneous, both
bearing 6 acyl chains. SMLA differs from sLipid A at the 1-position and at the third acyl

chain from the left.
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CHAPTER II

METHODS

Mice and reagents

C57BL/6, TRIF™?"2and CD14” mice were purchased from the Jackson Laboratory.
MyD88”" mice were a gift of S. Akira (through R. Kedl, University of Colorado School of
Medicine). Mice were housed in a specific pathogen-free barrier facility at the University
of Louisville and cared for according to regulations set forth by its Institutional Animal
Care and Use Committee. Salmonella minnesota MPLA and lipid A (sold dissolved in
water) were purchased from Alexis/Enzo Life Sciences. The compounds SMLA (MW
1763.5, sold as PHAD, Cat. no. 699800, Avanti Polar Lipids), sLipid A [MW 1798.4,
sold as Lipid A (E. coli), Cat. no. CLP-24005-s, Peptides International], and synthetic
lipid IVa (MW 1405.7, Cat. no. CLP-24006-s, Peptides International) were dissolved by
vortexing in 100% DMSO (Sigma-Aldrich) at 1 mg/ml and then promptly frozen in
single use aliquots at -80°C. Agonists were serially diluted in culture medium before
being added to cell cultures. The DMSO concentration in cell culture was < 0.32%. A
vehicle control corresponding to the highest DMSO concentration in each experiment
(0.1 or 0.32%) was always used. Primary antibodies for the Western blotting analysis of
the following targets were purchased from Cell Signaling Technology: pIRF3 (Ser®®,

Cat. no. 4947), pIJNK (Thr'®/Tyr'®, Cat. no. 4668), pp38 (Thr'®/Tyr'®, Cat. no. 9215),

PERK1/2 (Thr*®Tyr®™, Cat. no. 4370), pcun (Ser®®, Cat. no. 9261), pMAPKAPK?2
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(Thr?%?, Cat. no. 3316), total p38 (Cat. no. 9212), total ERK1/2 (Cat. no. 4695), total cJun
(Cat. no. 9165), total MAPKAPK2 (Cat. no. 3042), and IkBa (Cat. no. 4814). Primary
antibodies for the Western blotting analysis of the following targets were purchased from
Santa Cruz Biotechnology: IRAK1 (Cat. no. sc-5288), total IRF3 (Cat. no. sc-9082), B-
actin (Cat. no. sc-1616), and total INK (Cat. no. sc-137018). All horseradish peroxidase
(HRP)-conjugated secondary antibodies were purchased from Jackson ImmunoResearch.
The JNK inhibitor SP600125 (Sigma-Aldrich) and the p38 MAPK inhibitor SB202190
(Calbiochem) were dissolved in 100% DMSO at concentrations of 25 and 3 mM,
respectively, and were frozen at -20°C until needed for use. The anti-mouse IFNAR1
antibody MAR1-5A3 and the functional grade mouse 1gG; isotype control were
purchased from Leinco Technologies. Recombinant mouse IFN-B protein was purchased
from the PBL Interferon Source. Recombinant mouse TNFa was purchased from

eBioscience.

Generation and culture of bone marrow-derived dendritic cells (BMDCs)

BMDCs were prepared with a procedure modified from that of Lutz et al. (82). Briefly,
bone marrow plugs were flushed from the femurs and tibiae of mice with sterile Hank’s
balanced salt solution (HBSS) and resuspended in BMDC medium containing R10F
[RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM
L-glutamine, 1 mM sodium pyruvate, penicillin (50 U/ml), streptomycin (50 pg/ml), 50
uM B-mercaptoethanol, and GM-CSF (5 ng/ml, Miltenyi Biotec or R&D Systems]. Bone
marrow cells (2 x 10°, excluding red blood cells) were seeded in 100-mm bacteriological

petri dishes in 10 ml of BMDC medium and incubated at 37°C. On days 3 and 8, 10 ml of
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BMDC medium was added to the cultures. On day 6, 10 ml of BMDC medium was
removed and replaced with fresh medium. On day 10, non-adherent BMDCs were
collected. BMDCs were typically > 85% CD11c*CD11b*MHCII*CD86'YCD14*CD4"

CD8B220°CD19°GR1 as determined by flow cytometric analysis.

Collection of mouse serum

Mice were euthanized by CO, asphyxiation. Blood was collected in Microtainer tubes
with a serum separator (BD) after cardiac puncture, and serum was collected after
centrifugation. Fully concentrated serum and serum diluted to 30% in RPMI was frozen

at -80°C until needed.

Maturation of BMDC and flow cytometry

BMDC were seeded at 1 x 10° cells/well in 6 well plates and incubated for 2 hours at
37°C. TNFa or sLipid A diluted in R10F was used to activate the cells for approximately
18 hours. Matured BMDC were then collected using cell scrapers. Calcium and
magnesium free HBSS washes and versene treatment was used to facilitate cell removal.
Cells were incubated in 20% FC receptor block (2.4.G2 supernatants) for about 10
minutes and then stained with the following antibodies: CD11c-FITC, CD40-APC,
CD14-APC (all from eBioscience). CD40-APC and CD14-APC were replaced with the
corresponding isotype control antibodies in separate tubes. Cells were stained for
approximately 45 min in the dark at 4°C. Five minutes before acquiring data on the
FACScalibur, 7AAD viability staining solution (eBioscience) was added to the cells with

vortexing. In ELISA experiments, BMDC were seeded in 96 well plates at 1 x 10°
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cells/well and incubated at 37°C for 2 hours. BMDC were then activated with TNFa or
left unactivated for about 18 hours. The cells were then washed twice with HBSS and
new media added to the wells. Cells were rested for an additional 2 hours at 37°C,
followed by activation with agonist for about 18 hours. Supernatants were then collected

and protein concentrations analyzed by ELISA.

Intracellular phospho-protein staining

BMDC (1 x 10°%) were incubated with MAR1-5A3 or media alone for 1 hour in
polystyrene snap cap tubes. The cells were then activated for 1 hour with 100 ng/ml
sLipid A or DMSO as control. Cells were then washed in ice cold HBSS and
resuspended in cold Fc block for 10 min. After another wash with cold HBSS, 1.5%
formaldehyde was added to the cells slowly with vortexing. The cells were then
incubated for 10 at room temperature. After washing out the formaldehyde, ice cold
methanol was added to the cells with vortexing and the cells were incubated at 4°C for 10
min. The methanol was then washed out and the cells were stained with anti-pSTAT1

(pY701)-PE (BD) or isotype control antibody. Data was acquired on a FACScalibur.

Cytokine measurement

BMDCs (1 x 10°/well) suspended in R10F medium were incubated in flat-bottom, 96-
well plates for 2 hours at 37°C before TLR4 agonists or DMSO (vehicle control) diluted
in R10F were added. In the MAPK inhibition experiments, 10 uM SP600125, 10 uM
SB202190, or DMSO (vehicle control) was added 30 min before addition of the TLR4

agonists. In the IFNAR1-blocking experiments, MAR1-5A3 (10 pg/ml) or isotype control
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antibody was added immediately before plating the BMDCs for a 2-hour pre-incubation.
After 18 hours of stimulation with TLR4 agonists at 37°C, supernatants were collected,
and IL-6 (BD Biosciences) and IP-10 (R&D Systems) concentrations were measured by

ELISA, according to each manufacturer’s specifications.

Quantitative real-time PCR

BMDCs (5 x 10°) suspended in R10F medium were incubated in 5-ml polystyrene round-
bottom tubes at 37°C for 2 hours before TLR4 agonists or IFN-p was added. MAPK
inhibitors and the IFNAR1 blocking antibody were used in the manner described earlier.
After they were stimulated, the cells were washed with ice-cold HBSS. Cell lysis and
total RNA isolation were performed with RNeasy plus mini kits (Qiagen) according to
the manufacturer’s protocol, and complementary DNA (cDNA) was synthesized with
Qscript cDNA Supermix (Quanta BioSciences). gPCR analysis was performed with a
Bio-Rad CFX96 real-time system with Power SYBR Green PCR Mastermix (Applied
Biosystems) and pre-optimized Quantitect primer pairs (Qiagen). Fold-increases in
mRNA abundances in treated cells relative to those in vehicle control cells were
calculated with the 2" method, and GAPDH mRNA abundance was used for

normalization.

Western blotting analysis
BMDCs (2.5 to 3 x 10°) in R10F medium were pre-incubated for 2 hours in 5-ml
polystyrene round-bottom tubes at 37°C, which was followed by activation with different

concentrations of sLipid A or DMSO. After stimulation for 15 min or 1 hour, BMDCs

21



were washed with ice-cold HBSS containing 50 pM NaF. Cells were lysed with
radioimmunoprecipitation buffer [50 mM Tris-HCI (pH 7.4), 150 mM NaCl, 1 mM
EDTA, 1% Triton x-100, 1% sodium deoxycholate, and 0.1% SDS] containing Complete
Mini protease inhibitor cocktail tablets (Roche) and phosphatase inhibitor cocktail
(Sigma), and the BCA assay (Pierce) was used to determine the protein concentrations of
the lysates. Samples normalized for protein content were resolved by 10% SDS-PAGE.
Proteins were transferred onto nitrocellulose membranes (GE Healthcare). The
membranes were blocked with 5% non-fat dry milk or 5% bovine serum albumin (BSA,
for the analysis of pIRF3 only) for 1 hour and then were incubated overnight at 4°C with
primary antibodies in 5% BSA or 5% non-fat dry milk (for the detection of B-actin,
IRAK1, and total IRF3 only). HRP-conjugated secondary antibodies were resuspended in
5% non-fat dry milk and incubated with the Western blots for 1 hour. The blots were
developed with ECL Prime (GE Healthcare) or SuperSignal ELISA Femto substrate
(Pierce) on a Fujifilm LAS-4000 Mini, and data were quantified with Multi Gauge V3.0

software (Fujifilm).

Statistical analysis and log(EC50) measurement
Log(ECso) values for each agonist-induced response were calculated by generating four-
parameter nonlinear fits to dose-response data with GraphPad Prism software using the

following equation:

(Top — Bottom)

1+ 10(LogEC 50—x)*Hillslope

y = Bottom +
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Differences between logeC50 values were analyzed by unpaired two-tailed t test (for
comparisons between two sets of genes) or by ordinary one-way ANOVA with Tukey’s
multiple comparisons post-test (for comparisons between three or more sets of genes).
Differences between protein production in the presence of WT or CD14KO mouse serum
were determined with ordinary two-way ANOVA with Sidak’s multiple comparisons
test. TNFa-induced upregulation of CD14 surface expression was analyzed by a paired
two-tailed T test. Statistically significant inhibition of increases in mRNA abundance by
MAPK inhibitors was determined with repeated measures two-way ANOVA with
Dunnett’s multiple comparison post-test. Ordinary two-way ANOVA analysis with
Sidak’s multiple comparisons post-test was used to analyze the effects of MAPK
inhibitors on gene logEC50s, and to compare IFNP vs sLipid A-induced time courses.
Differences in the logeC50 values in the IFNAR1-blocking experiments were analyzed

with repeated measures two-way ANOVA with Sidak’s post-test.
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CHAPTER IlI
THE CONTRIBUTION OF CD14 TO MYD88- AND TRIF-ASSOCIATED

RESPONSES ELICITED BY BIOLOGICAL MPLA AND LIPID A

INTRODUCTION

The quality of the cellular response to a TLR4 agonist depends not only upon the
structural characteristics of the agonist itself, but also upon the presence of the TLR4 co-
receptor CD14. Like the TLRs, CD14 is a member of the LLR family of proteins (83). It
is expressed in varying abundance as a GPl-anchored surface protein (called membrane-
bound or mCD14) (12) on certain non-myeloid and myeloid cells including endothelial
and epithelial cells, monocytes, macrophages, dendritic cells, and granulocytes (84). In
addition, CD14 is found in a soluble form (sCD14) in the serum and is thought to be
released by enzymatic cleavage of mCD14 or cellular secretion (25). Its structure is that
of a curved solenoid which forms an N-terminal hydrophobic ligand-binding pocket with
peripheral cationic amino acid residues (85). The ligand-binding pocket is deep and
flexible (85), presumably allowing CD14 to bind a variety of different molecules
including LPS (9), peptidoglycan (86), and lipoteichoic acid (87). Interaction between
hydrophobic patches at the C-termini cause CD14 to form a horseshoe-like homodimer
(85).

A major role of CD14 is to enhance TLR4 activity in response to low

concentrations of LPS. Initially, LBP in the serum extracts LPS monomers from either
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bacterial membranes or smaller aggregates and catalytically transfers them to CD14 (23,
24). CD14 then loads monomeric LPS into the binding pocket of MD-2 associated with
TLR4 which promotes TLR4/MD2 heterotetramerization and intracellular signaling (88,
89). Both mCD14 and sCD14 are capable of this process, and sCD14 may be especially
important for TLR4 responsiveness in cell types that express little if any mCD14 such as
human umbilical vein endothelial cells (90, 91). If extracellular concentrations of LPS
are very high, TLR4 is activated independently of CD14 (15).

In addition to its function as an LPS transport protein, CD14 was shown to be
actively involved in the TRIF-dependent signaling pathway of TLR4. Early work by
Perera et al. supported the existence of unique CD14-dependent and CD14-independent
pathways in the response of macrophages to LPS even before the discovery of TLR4
(15). In this study, CD14-deficient macrophages expressed minimal TRIF-dependent
Ip10 mMRNA compared to WT macrophages at high LPS concentrations. At these same
agonist doses, MyD88-associated 111b and Tnfa expression was unaffected by CD14-
deficiency. Jiang et al. (92) were the first to make a direct connection between CD14 and
TRIF signaling, demonstrating that CD14-deficient mouse macrophages were defective
in TRIF-dependent type | IFN production in response to smooth (containing O-antigen)
and rough (lacking O-antigen) LPS chemotypes, but were largely unaffected in MyD88-
associated TNFa production in response to rough LPS. Later, Zanoni et al. (47)
elaborated on this work, confirming the dependence of TRIF signaling on CD14, but also
showing that CD14 itself directs the endocytosis of TLR4, independent of TLR4-induced
signaling events. Therefore, TRIF signaling, which is initiated from an endocytic

compartment (50), is weak in the absence of CD14 because TLR4 endocytosis is minimal
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under these conditions. Presumably, CD14 controls endocytosis of TLR4 through an
immunoreceptor tyrosine-based activation motif (ITAM)-mediated event that then
activates PLCy2 and Syk (47).

Several groups have reported that certain TLR4 agonists may have a reduced
requirement for CD14-dependent TLR4 stimulation (72, 93, 94). MPLA has been placed
in this category (72, 93). Blocking CD14 on the surface of human monocyte-derived DC
had no effect on MPLA-induced IL-12p40 secretion, although the use of very high doses
of MPLA may have biased these experiments (72). In addition, Tanimura et al. (93)
showed that TNFa production by CD14-deficient mouse BMDC in response to MPLA
was not reduced when compared to WT BMDC. On the other hand, this same study
concluded that CD14 was required for MPLA-induced heterotetramerization and
endocytosis of TLR4/MD2, suggesting that MPLA may engage CD14 and require its
presence for full activity. Therefore, there is still some confusion concerning the extent
to which MPLA requires CD14 to stimulate TLR4 and to the specific responses that
MPLA can elicit independently of CD14.

We previously published that MPLA was a TRIF-biased agonist in mouse, both in
vitro and in vivo (77), but the mechanism by which this occurs has not been fully
revealed. One hypothesis is that MPLA interacts with TLR4:MD-2 or CD14 in a
fundamentally different manner than LPS or lipid A, which allows the TRIF pathway to
be more completely engaged while MyD88 signaling remains weak. Given that mCD14
expression is linked to TLR4 endocytosis and TRIF signaling, we sought to determine the
extent to which CD14 ablation affects TRIF-dependent and MyD88/TRIF co-dependent

responses to MPLA and lipid A in mouse DC. High and low concentrations of these
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agonists were tested to fully assess the degree to which both pathways are affected. In
this study, MPLA did not induce a TRIF-biased response profile in WT BMDC. Instead,
MPLA was less potent than lipid A in stimulating both TRIF- and MyD88 and TRIF-co-
dependent outcomes. Tests in WT and CD14-deficient BMDC did not reveal obvious
differences between MPLA and lipid A requirements for CD14 for either TRIF- or co-
dependent signaling events. Therefore, variations in the interaction of MPLA or lipid A
with CD14 in the TLR4 receptor complex are unlikely to explain any TRIF-bias by

MPLA in mouse.

RESULTS
MPLA is not a TRIF-biased agonist in mouse dendritic cells.

In previous experiments, we characterized MPLA as a TRIF-biased agonist by
comparing the inflammatory response of mouse macrophages (thioglycolate-elicited or
bone marrow-derived) to MPLA or LPS, or by measuring inflammatory outcomes in vivo
(77). The roles of macrophages and DC differ during the response to an infection.
Macrophages are critical in the initial control of pathogens while DC specialize in antigen
presentation in lymph nodes. Therefore, it is plausible that these cells’ responses to
MPLA may differ. In order to determine whether MPLA is a TRIF-biased agonist in DC,
BMDCs were exposed to different concentrations of MPLA and lipid A, followed by
measurement of MyD88- and TRIF-co-dependent or TRIF-dependent gene products.
MPLA induced co-dependent IL-6 protein production and Cox2 mRNA more weakly
than did lipid A, confirming our previous results (77) (Fig. 4A). Surprisingly, MPLA

was also less potent than lipid A in inducing TRIF-dependent Ifitl mRNA, a response the
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two agonists induced equivalently in previous experiments (77) (Fig. 4B). To
quantitatively determine the extent of MPLA’s potency deficit for each analyte, we used
non-linear regression to fit curves to the data points, allowing the estimation of each
agonist’s log(EC50) values. Lipid A was approximately 30 times more potent than
MPLA for both TRIF- and co-dependent gene products, indicating no obvious biases in
adaptor signaling by MPLA [log(EC50) values for lipid A: IL-6 = 0.86; Cox2 = 1.17,
Ifitl = 1.19; log(EC50) values for MPLA: IL-6 = 2.33; Cox2 = 2.67; Ifitl = 2.97]. These

results indicate that MPLA is not a TRIF-biased agonist in mouse BMDC.

MyD88- and TRIF-co-dependent responses are reduced at low concentrations of MPLA
and lipid A in CD14-deficient BMDCs.

Regardless of the fact that MPLA did not behave as a TRIF-biased agonist in
BMDC, we compared the responses of MPLA and lipid A in WT and CD14KO BMDCs
to determine whether one of these agonists exhibited a greater dependence on CD14 to
induce signaling outcomes downstream of MyD88 or TRIF. Several studies have shown
that induction of MyD88- and TRIF-co-dependent genes like Tnfa in CD14-deficient
cells is reduced in response to low concentrations (less than 1000 ng/ml) of LPS (15, 47,
95). We activated WT and CD14KO BMDCs with different concentrations of MPLA or
lipid A in medium containing mouse serum collected from CD14KO mice. This allowed
us to focus solely on mCD14’s contribution to TLR4 signaling because sCD14 was
absent from the system.

Phenotyping by flow cytometry demonstrated that WT and CD14KO BMDCs

expressed an equivalent surface abundance of CD11c, CD86, and MHCII. The
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expression of both CD86 and MHCII was low indicating an immature phenotype (Fig. 5).
MyD88- and TRIF-co-dependent IL-6 protein abundance in culture supernatants,
measured after 6 hours activation, was reduced in CD14KO versus WT BMDC activated
with lipid A concentrations below 1000 ng/ml (Fig. 6A). Similarly, IL-6 production was
reduced in CD14KO BMDC activated with MPLA concentrations below 10,000 ng/ml
(Fig. 6B). Co-dependent Cox2 mRNA measured 2 hours after activation followed the
same pattern as IL-6 when induced with either agonist (Fig. 6 A and B).

In order to estimate the decrease in potency of lipid A and MPLA in the absence
of mCD14, we compared the agonist concentrations required to induce equivalent
expression of IL-6 protein or Cox2 mRNA in WT or CD14KO BMDC. Calculation of
agonist log(EC50) values by non-linear regression was not possible in this case because
the concentrations of agonist need to produce a plateau in the dose response curves were
not feasible. Equivalent production of IL-6 protein and expression of Cox2 mRNA was
induced by 100 ng/ml lipid A in WT BMDC and 1000 ng/ml lipid A in CD14KO BMDC
(Fig. 6A), a 10 fold difference. Similarly, approximately 10 times more MPLA was
needed to induce maximal IL-6 and Cox2 in CD14KO BMDC. Similar expression levels
of IL-6 and Cox2 were induced by 1000 ng/ml and 100 ng/ml in CD14KO and WT
BMDC, respectively (Fig. 6B). Therefore, it is likely that mCD14 contributes similarly

to MyD88-associated signaling events induced by lipid A or MPLA.
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TRIF-dependent responses are reduced at both high and low concentrations of lipid A
and MPLA in CD14-deficient BMDCs.

TRIF-dependent responses like type I IFN production and the induction of type I
interferon-inducible genes has been shown to be severely decreased by the absence of
mCD14 (15, 47, 92, 93). In order to determine whether MPLA differed from lipid A in
its requirement for mCD14 for TRIF-dependent signaling events, we compared MPLA-
and lipid A-induced Ifitl mRNA expression in WT and CD14KO BMDC. Ifitl mRNA
expression was reduced in CD14KO BMDC compared to WT over all doses of lipid A
and MPLA tested. Although a very high dose of lipid A (10,000 ng/ml) was unable to
completely compensate for the lack of mCD14, approximately 50% of maximum Ifitl
MRNA expression was retained (Fig. 7). In contrast, MPLA-induced Ifitl mRNA
expression remained very low over all doses (Fig. 7). These results confirm that optimal
TRIF-dependent TLR4 signaling is dependent upon mCD14 expression. The lack of
complete dose response curves in these experiments made it difficult to conclude that
MPLA and lipid A differ in their dependence on mCD14 for TRIF-dependent signaling.
Similar Ifitl mRNA expression was induced by 1000 ng/ml and 10 ng/ml lipid A in
CD14KO and WT BMDC, respectively. Similar expression was induced by 10,000
ng/ml and 100 ng/ml MPLA in CD14KO and WT BMDC, respectively. Therefore, the
decrease in potency of both agonists in the absence of CD14 may be about 100 fold. The
apparent weakness in MPLA’s ability to induce Ifitl compared to lipid A in CD14KO

BMDC may be due to the fact that it is an inherently less potent agonist.
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BMDC culture in serum from wild-type mice has no effect on IL-6 production.

Previous studies have shown that sCD14 can partially rescue MyD88-associated
responses in CD14KO macrophages (92, 96). In contrast, only mCD14 seems to be able
to rescue TRIF-dependent responses such as IFNP production (97). In certain cases,
sCD14 may also inhibit the response to LPS, presumably by sequestering it from
TLR4:MD2 (98, 99). It is unknown whether lipid A or MPLA have differential abilities
to utilize sCD14 in order to enhance TLR4 signaling. Therefore, we asked whether
sCD14 in WT mouse serum could rescue the IL-6 response to lipid A or MPLA. WT and
CD14KO BMDC were cultured in media containing the serum collected from WT and
CD14KO mice, and activated with different concentrations of MPLA or lipid A.
Activation in WT, sCD14 replete, serum had no significant effect on the IL-6 response to
either agonist in WT or CD14KO BMDC (Fig. 8). Because we were unable to
demonstrate a restoration of the IL-6 response with the addition of WT serum in CD14-
deficient BMDC, we could not make a conclusion about MPLA or lipid A’s ability to

utilize sCD14.

Maturation of BMDC does not enhance MyD88- and TRIF-co-dependent or TRIF-
dependent responses.

During the completion of the experiments presented above, we also discovered
that a SMLA (Fig. 3) which we had also proposed was a TRIF-biased agonist (78, 79),
was not behaving as a true TRIF-biased agonist over a complete concentration range
(discussed in Chapter 1V). We wondered if some unintentional phenotypic drift had

occurred in our BMDC cultures over time that had caused TRIF-bias to disappear. One
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such difference could be the maturation state of the cells. BMDCs matured with TNFa
were shown to upregulate mCD14 expression, in addition to costimulatory molecules
(47). Higher mCD14 surface expression correlated with faster and more robust
internalization of TLR4, and with secretion of larger amounts of TRIF-dependent type |
IFN in response to stimulation with LPS. MyD88- and TRIF-co-dependent TNFa, on the
other hand, was unaffected (47). Therefore, we hypothesized that monophosphorylated
agonists would exhibit greater TRIF-bias if used to activate matured BMDC.

BMDC were matured with TNFa for 18 hours and then activated with different
doses of SMLA or sLipid A for an additional 18 hours. A clear increase in BMDC CD40
expression occurred upon TNFa treatment indicating maturation (Fig. 9). As predicted,
mCD14 expression also increased, although this increase did not score as significant (p =
0.0834). Unexpectedly, TNFo maturation decreased production of TRIF-dependent IP-
10 in response to low doses of SMLA or sLipid A (Fig. 10B). Co-dependent IL-6 was
largely unaffected by TNFo maturation (Fig. 10A). Therefore, maturation and increased
surface expression of mCD14 did not promote SMLA TRIF-bias by selectively enhancing

the TRIF-dependent gene product IP-10.

DISCUSSION

A major goal has been the elucidation of a mechanism for TRIF-biased TLR4
signaling since we proposed that MPLA’s TRIF-bias allowed it to retain beneficial
effects on adaptive priming without major toxicity (77). We now know that MPLA and
SMLA only weakly induce heterotetramerization of TLR4:MD-2, which explains why

they are defective in MyD88-associated signaling events such as IRAK-1 activation (81).
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Even so, these compounds can induce some MyD88 signaling, which may be beneficial
in certain cases (77, 80). The aim of this work was to narrow the gap in our
understanding of how MPLA is able to retain robust TRIF-dependent signaling alongside
weak MyD88-dependent signaling. We reasoned that a mechanism could be in place that
boosts MPLA-induced TRIF-dependent signaling despite its weakness in induction of
TLR4:MD-2 heterotetramerization. A stronger dependence on, or perhaps interaction
with, CD14 that promotes TRIF signaling was hypothesized to drive MPLA’s TRIF-bias.
Therefore, removal of CD14 from the cell system was expected to have a much greater
impact on MPLA’s versus lipid A’s ability to induce both co-dependent and TRIF-
dependent gene products.

Interpretation of the results of this study was made difficult by the fact that MPLA
did not behave as a TRIF-biased agonist in BMDC over the doses tested (Fig. 4).
Comparison of the lipid A and MPLA log(EC50) values for co-dependent IL-6 protein
and Cox2 mRNA, and TRIF-dependent Ifitl mRNA, clearly demonstrated that lipid A
was about 30 times more potent than MPLA in both pathways (Fig. 4). Despite its
potency deficit, MPLA was able to induce the same maximum response in all analytes
tested, indicating that the two agonist share the same efficacy. Therefore, MPLA is not a
partial agonist in the mouse BMDC system.

There are at least two ways to explain this observation. First, the TLR4:MD-2
heterotetramerization that MPLA is capable of inducing may be as efficient as that of
lipid A in the recruitment of downstream signaling adaptors. In this case, MPLA’s low
potency would be explained by a lower affinity for the receptor. Second, MPLA may

induce TLR4:MD-2 heterotetramerization in a conformation that less efficiently recruits
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signaling adapters, but that is capable of inducing a maximal response given the presence
of enough receptors on the cell surface. In this case, the affinities of MPLA and lipid A
for TLR4:MD-2 could be comparable.

We were unable to pinpoint the exact reason why MPLA did not exhibit TRIF-
bias in these experiments. TRIF-dependent IP-10 production was not selectively
enhanced by pre-stimulation with TNFa that caused increased mCD14 expression on
BMDC (Figs. 9 and 10), indicating that mature DC are not more likely to engage in
TRIF-biased signaling versus immature DC.

A second reason for the lack of TRIF-bias by MPLA could be due to the use of
BMDC instead of macrophages. As noted above, MPLA was initially characterized as a
TRIF-biased agonist in macrophages. Activated macrophages at an infection site play a
role in potentiating the inflammatory response and then contribute to anti-inflammatory
resolution, such as wound healing. On the other hand, activated dendritic cells become
potent antigen presenting cells and acquire the ability to home to secondary lymphoid
organs. Therefore, the nature of the inflammatory response to MPLA by these two cell
types could very well be different and reflect their unique physiological function (100).
Recent work by Ling et al. (101) demonstrated that CD11b expression in DC, but not in
macrophages, regulates LPS-induced TLR4 endocytosis, and MyD88- and TRIF-
dependent TLR4 signaling. Interestingly, TRIF signaling outcomes in BMDC required
CD11b expression even when LPS-induced TLR4 internalization was rescued by mCD14
upregulation by CpG treatment. Therefore, differences between DC and macrophage

responses to LPS, especially in the TRIF-dependent pathway, may be important.

34



Despite a lack of TRIF-bias, we were still able to assess the level of dependence
of MPLA and lipid A on mCD14. Approximately 10 times more lipid A or MPLA was
needed to induce equivalent MyD88/TRIF co-dependent IL-6 protein and Cox2 mRNA
induction in CD14KO BMDC (Fig. 6), suggesting that MPLA and lipid A utilize mCD14
in a similar fashion. Soluble CD14 seemed to play a negligible role in this system
because the use of WT serum had no effect on IL-6 production (Fig. 8). These results do
not support the conclusion of Tanimura et al. (93), who showed that MPLA can induce
co-dependent TNFa protein independently of mCD14 at low doses. The influence of
mCD14 on the MyD88-dependent pathway is linked to its transport of agonist to and
loading of TLR4:MD-2; therefore, we speculate that mCD14 has a similar affinity for
MPLA and lipid A.

Neither lipid A nor MPLA were capable of inducing maximal TRIF-dependent
Ifitl mMRNA expression, even at very high doses (Fig. 7). These data confirm the strong
dependence of TRIF-dependent signaling on mCD14 (47, 92, 93). MPLA induced
minimal Ifitl mRNA in the absence of mCD14 when compared to lipid A, which could
lead to the conclusion that MPLA does indeed have a stronger dependence upon the
coreceptor. But this might also be due to MPLA’s low potency, in which case a higher
MPLA dose might induce Ifitl mRNA levels comparable to lipid A. Given the similar
dependence of MPLA and lipid A on mCD14 for MyD88 activity, the latter explanation
is more plausible.

The fact that in CD14KO BMDC, lipid A was capable of inducing up to 50% of
the maximal TRIF-dependent Ifitl mMRNA expressed in WT BMDC (Fig. 7) demonstrates

that CD14 is not absolutely required for TRIF signaling and that a CD14-independent
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mechanism is also involved. Such a CD14-independent process has already been
described in DC, whereby a TLR4 agonist in the form of large, particulate phagocytic
cargo (i.e. whole E. coli) can induce TLR4 endocytosis and type | IFN production in
CD14KO DC (47). Alternatively, scavenger receptor-mediated uptake may provide a
means of delivering TLR4 agonists to the endocytic compartment where TRIF signaling
can proceed (102).

In conclusion, this chapter provides evidence to support the claim that a unique
interaction or utilization of CD14 by MPLA is not responsible for the difference between
its signaling profile and that of native lipid A. Rather, MPLA is likely a weak agonist of
TLR4 in mouse BMDC. As explored in Chapter 1V, observation of a TRIF-biased
response by MPLA is likely related to cross-talk between TLR4 and the type | IFN
receptor. In addition, this work supports a qualification of the notion that mCD14 directs
endocytosis of TLR4/MD2 and TRIF-dependent signaling. We suggest the existence of a
CD14-independent pathway that drives appreciable TRIF-dependent signaling in
response to soluble TLR4 agonists like lipid A. Future work is needed to explore this

phenomenon.
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Fig. 4. MPLA is not a TRIF-biased agonist in mouse BMDCs. WT BMDCs were
activated with the indicated concentrations of MPLA or lipid A in media containing 1 to
3% serum collected from CD14-deficient mice. (A, left) After 6 hours activation, culture
supernatants were measured for IL-6 protein abundance by ELISA. Steady-state
abundance of Cox2 mRNA (A, right) and Ifitl mRNA (B) relative to control (water)
treated samples was measured after 2 hours activation by qPCR. The fold increase over
control was measured in triplicate and converted to a percentage of maximum fold
increase within each independent experiment. Log(EC50) values were calculated by 4-
parameter nonlinear regression. Data are the mean £ SEM for at least 3 independent

experiments.
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Fig. 5. WT and CD14” BMDC are phenotypically similar. WT and CD14KO
BMDCs were stained with fluorochrome-conjugated antibodies against CD11b, CD11c,
MHCII (I-A/I-E), GR1, CD86, and CD14. Data were acquired using a FACScalibur and

analyzed with Flowjo software. Data shown are one representative experiment of 3

performed.
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Fig. 6. MPLA and lipid A utilize CD14 similarly to induce expression of MyD88-
and TRIF-co-dependent genes. WT and CD14KO BMDC were activated with the
indicated concentrations of (A) lipid A or (B) MPLA in media containing 1 to 3% serum
from CD14KO mice. IL-6 protein in culture supernatants was measured after 6 hours
activation by ELISA. The fold increase in abundance of steady-state Cox2 mRNA
relative to vehicle treated cells was measured by gPCR after 2 hours activation. Data are
the mean + SD of triplicate samples. An experiment representative of at least 3

independent experiments is shown.
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Fig. 7. MPLA and lipid A both require CD14 for optimal TRIF-dependent gene

expression. WT and CD14KO BMDC were activated with the indicated concentrations

of lipid A or MPLA in media containing 1 to 3% serum from CD14KO mice. The fold

increase in abundance of steady-state Ifitl mMRNA relative to vehicle treated cells was

measured by qPCR after 2 hours activation. Data are the mean + SD of triplicate

samples. An experiment representative of 3 independent experiments is shown.
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Fig. 9. Upregulation of mCD14 expression on BMDCs by TNFa-induced
maturation. WT BMDC were treated with 10 ng/ml TNFa, 100 ng/ml slipid A, or
vehicle control (NT) for 18 to 19 hours. BMDC were then stained with APC-conjugated
anti-CD14, APC-conjugated anti-CD40, or the corresponding isotype controls. Data
were collected on a FACScalibur and analyzed with Flowjo software. (Right) The
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cells. Data are the mean £ SEM of 5 independent experiments. Statistics were

determined using the paired two-tailed T test.
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Fig. 10. Increased surface expression of mCD14 does not preferentially enhance
TRIF-dependent protein production. WT BMDC were treated with 10 ng/ml TNFa or
left untreated for 18 to 19 hours and then activated with the indicated concentrations of
sLipid A or sSMLA for an additional 18 hours. (A) IL-6 and (B) IP-10 protein abundance
was measured in culture supernatants by ELISA. Data are the mean + SD of two

independent experiments.
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CHAPTER IV
AUTOCRINE AND PARACRINE SIGNALING BY TYPE | INTERFERONS

CONTRIBUTES TO TOLL-LIKE RECEPTOR 4 TRIF-BIAS

INTRODUCTION

In general, the TRIF signaling pathway is more associated with the initiation of
adaptive immune responses than is the MyD88 signaling pathway, which is more
commonly associated with proinflammatory outcomes. For example, TRIF-deficiency in
mice substantially impairs the induction of antigen-specific T cell proliferation by APCs,
whereas MyD88-deficiency has little effect on this process (77, 103). This impairment
arises partly because IFN- production absolutely requires the activation of IRF3 through
TRIF (52, 55). IFN-B is essential for the adjuvant effects of several TLR agonists on T
cell priming, including TLR4 (103), which may be due to the ability of IFN-f to drive
upregulation of costimulatory molecules and MHCII on APCs (104, 105). In one study,
the TLR3 agonist polyl:C was the best of a panel of adjuvants, including LPS, at
inducing antigen-specific Thl CD4 responses because it induced the most robust type |
IFN response (106). In addition, type I IFN promotes antigen cross-presentation (107)
and T cell survival (108). TRIF signaling is also linked to adaptive immunity through
TRIF-dependent chemokines, such as IP-10 (CXCL10), which promote the recruitment

of T cells to DC for priming (109).
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Because TLR4 is the only TLR to signal through both MyD88 and TRIF, it is the
only TLR with the potential for adapter modulation, the ability to signal more strongly
through one adapter compared to the other. Given the distinct processes primarily
controlled by each pathway, we and other groups have studied whether defined
differences in agonist structure can cause MyD88- or TRIF-biased responses at the level
of producing distinctive gene profiles (77-79, 110-112). As noted above, we previously
proposed that the success of MPL adjuvant was related to its ability to function as a
TRIF-biased agonist of TLR4, which is favorable for vaccination by limiting pro-
inflammatory endpoints more than it limits those involved in T cell priming (77). Those
studies were performed with a research grade version of MPL adjuvant (MPLA). In
addition to MPLA, which is a mixture of monophosphorylated Salmonella minnesota
lipid A species differing in numbers of acyl chains (Fig. 2), we also studied synthetic
MPLA (sMLA), a single hexa-acyl species based on the E. coli lipid A structure (Fig. 3).
We concluded that SMLA was also TRIF-biased in mouse cell systems (78, 79).

TLR4 adapter modulation is a controversial topic. Some have questioned its
existence citing the use of heterogeneous compounds and insufficient doses as
confounding factors that make it impossible to draw useful conclusions about structure-
activity relationships (113). Here, we compared the potencies of SMLA and its
diphosphorylated counterpart synthetic Lipid A (sLipid A) (Fig. 3) in inducing the
expression of a panel of TRIF-dependent or MyD88-associated genes (all of which are
MyD88- and TRIF-co-dependent) in mouse BMDCs. None of the analytes we have
tested to date appear to be truly TRIF-independent (MyD88-sufficient) (45, 59, 60). We

evaluated IP-10, IFIT-1, and CD86 as representative TRIF-dependent gene products,
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because TRIF alone is sufficient to induce the expression of the corresponding genes,
whereas we evaluated IL-6, Cox-2, and CD80 as MyD88- and TRIF-co-dependent gene
products, because optimal expression of the corresponding genes require both adaptor
pathways. We found that TRIF-bias was not unique to SMLA as judged by
pharmacological potency. Instead, expression of TRIF-dependent genes was induced
with substantially less agonist than was required for the expression of MyD88- and TRIF-
co-dependent genes. Together, these data suggest that the TLR4 signaling network is

itself biased toward TRIF-dependent events.

RESULTS
SMLA is not a TRIF-biased agonist as assessed by pharmacological measurements

To quantitatively evaluate SMLA as a TRIF-biased agonist, we activated BMDC
with an extensive dilution series of SMLA or sLipid A and measured these agonists’
potencies using a panel of TRIF-dependent and MyD88- and TRIF-co-dependent gene
products by log(EC50) calculation, a pharmacological method. As expected, sLipid A
was more potent than SMLA at inducing the expression of the MyD88- and TRIF-co-
dependent genes 116 and Cox2 (Fig. 11A). However, sLipid A was also more potent than
SMLA at inducing expression of the TRIF-dependent genes Ip10 and Ifitl (Fig. 11A).
We compared the log(EC50) values of sLipid A and SMLA for each analyte to determine
whether adapter bias was present despite obvious differences in agonist potency. We
found that sLipid A was approximately 10 fold more potent than SMLA at inducing the
expression of both co-dependent and TRIF-dependent genes, regardless of whether they

were measured early (steady-state mMRNA at 4 hours) or late (secreted protein at 18 hours)
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(Fig. 11, A and B). Therefore, SMLA was not functioning as a true TRIF-biased agonist
compared to sLipid A because SMLA’s deficiencies in potency were the same for
indicators of both adapter pathways.

To determine whether our experimental system (cells and agonists) had changed
since our initial experiments using SMLA, we directly compared agonist concentrations
similar to those explored in our previous studies of TRIF-bias (78). We found that
SMLA-stimulated BMDC induced lower amounts of MyD88- and TRIF-co-dependent
IL-6 and equivalent amounts of TRIF-dependent IP-10 in culture supernatants compared
to sLipidA (Fig. 11C), consistent with TRIF-biased signaling occurring over these doses.
Therefore, these results were not fundamentally different from those in our previous

studies.

The expression of TRIF-dependent genes is activated with less agonist than is required to

activate the expression of MyD88- and TRIF-co-dependent genes

Although sSMLA was a weak agonist for both co-dependent and TRIF-dependent
genes, as measured by log(EC50)s, Figures 11A and 11C demonstrated that there were
distinct concentrations at which SMLA was equivalent to sLipid A in induction of TRIF-
dependent genes, but that SMLA was also weaker in induction of co-dependent genes.
One explanation for this trend is that TRIF-dependent genes are more “easily” triggered
than co-dependent genes; more agonist is required to stimulate TLR4-induced co-
dependent events than is required for TRIF-dependent events. To test this hypothesis, we
compared the log(EC50) values of SMLA or sLipid for the activation of TRIF-dependent

and co-dependent signaling events, and expected the log(EC50) values for TRIF-
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dependent events to be lower than those for co-dependent events. As expected, the
log(EC50) values of SMLA or sLipid A for TRIF-dependent IP-10 protein production
was lower than their corresponding log(EC50) values for co-dependent IL-6 protein
production (Fig. 12A). Similarly, the log(EC50) values of sLipid A and SMLA for TRIF-
dependent mRNA responses were lower than the log(EC50) values for co-dependent
MRNA responses (Fig. 12A). These results suggest that in mouse BMDC, weak TLR4
agonists such as SMLA can appear to be TRIF-biased because expression of TRIF-
dependent genes is induced more effectively with less agonist than is the expression of
co-dependent genes.

Both SMLA and sLipid A are hexa-acylated lipid A molecules, differing only in
the presence or absence of the 1-phosphate of the diglucosamine head group and by 2
carbons on one of the secondary acyl chains (Fig. 3). Because the potential for a lipid A
molecule to elicit the production of various cytokines is affected by both the number and
length of its acyl chains (114, 115), it is possible that efficient activation of TRIF-
dependent signaling events at low doses of agonist may be unique to these hexa-acylated
molecules. To determine whether the relative ease of activating TRIF-dependent events
was common to agonists with markedly different structures, we stimulated BMDCs with
tetra-acylated molecule lipid IVVa and measured the log(EC50) values for TRIF-dependent
IP-10 and co-dependent IL-6 production. Lipid IVa is an agonist of mouse TLR4, but an
antagonist of human TLR4 (116, 117). Similar to SMLA, Lipid I\VVa was less potent than
sLipid A in stimulating production of both IP-10 and IL-6 (Fig. 12B). As was seen with
hexa-acylated SMLA and sLipid A, lipid IVa induced TRIF-dependent IP-10 production

with a log(EC50) value that was significantly lower than its co-dependent IL-6 log(EC50)
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value (Fig. 12B). This result suggests that robust activation of TRIF-dependent events at
low agonist doses may be intrinsic to TLR4 and less dependent on TLR4 agonist

structure.

CdB86 mRNA expression is increased with less agonist than is required to increase Cd80
MRNA expression

Our characterization of TLR4 agonist potencies for TRIF and MyD88- and TRIF-
co-dependent event induction was initially focused on genes encoding proinflammatory
cytokines and chemokines. In addition to the release of these mediators, DC function is
inextricably linked to the upregulation of costimulatory molecules that promote adaptive
immunity via T cell priming. We and others described previously the TLR4 adapter
requirements for the upregulation of the costimulatory molecules CD80 and CD86 in
mouse DC subsets in vivo, with CD86 upregulation appearing to be dependent on TRIF
alone and CD80 upregulation dependent on both MyD88 and TRIF (103, 118). To
confirm the specific adapter dependence of CD86 and CD80 in BMDCs, we generated
BMDC from WT, TRIF-*?*%2 (which contain a non-functional mutation in the TRIF
protein), or MyD88"" mice, treated them with sLipid A, and measured increases in Cd80
and Cd86 mRNA abundance by qPCR analysis. The ability of sLipid A to induce
increases in Cd86 mRNA abundance was reduced in cells in which TRIF signaling was
inhibited, whereas its ability to induce increases in Cd80 mRNA abundance was reduced
by the absence of either TRIF or MyD88 signaling (Fig. 13A). These results confirm that
in BMDCs the expression of Cd86 is TRIF-dependent, while the expression of Cd80 is

MyD88- and TRIF-co-dependent.
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Because TLR4 signaling-induced increases in Cd86 mRNA abundance are strictly
TRIF-dependent, whereas increases in Cd80 mRNA are MyD88- and TRIF-co-
dependent, we hypothesized that sLipid A would have a higher potency for induction of
Cd86 expression than for Cd80 expression. When BMDC were treated with increasing
concentrations of sLipid A, the log(EC50) value for increased Cd86 mRNA abundance
was significantly lower than that for Cd80 mRNA (Fig. 13B), suggesting that the TRIF-
dependent expression of Cd86 was more easily induced than was the co-dependent
expression of Cd80. Therefore, the enhanced potency of TLR4 agonists for TRIF-
dependent gene expression may pertain to a variety of gene subsets with different roles in

the immune response.

The low log(EC50) values of sLipid A for the expression of TRIF-dependent genes are not

explained by TRIF adaptor selectivity

One potential explanation for the low log(EC50) values of TLR4 agonsits for
TRIF-dependent genes is that comparatively more TRIF adapter engagement than
MyD88 engagement is triggered immediately downstream of TLR4 dimerization at
limiting doses of agonist. To test this hypothesis, we measured the potency of sLipid A
to activate IRF3 and IRAK1 (Fig. 14A), two signaling proteins that mediate the TRIF and
MyD88 pathways, respectively (36, 48). The log(EC50) values for IRF3 activating
phosphorylation and IRAK1 disappearance, which is due to an increase in molecular
weight from Lys®® polyubiquitination upon signaling (38, 119), were not significantly
different when measured in 4 independent experiments (Fig. 14B). In two paired

experiments, the log(EC50) values for IRF3 phosphorylation were greater than those for
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IRAK1 disappearance (Fig. 14B). These data suggest that initial TRIF signaling is not
induced more efficiently than initial MyD88 signaling at suboptimal TLR4 agonist
concentrations; indeed, MyD88 signaling may be triggered more easily than TRIF
signaling. Therefore, the low log(EC50) values of TLR4 agonists for the production of
TRIF-dependent gene products cannot be explained by dose-dependent TRIF selectivity

at the level of initial adapter engagement.

The log(EC50) values of sLipid A for the activation of MAPKs and NF-«B are different
Because simple TLR4 TRIF adapter bias did not seem to explain the low
log(EC50) values of TLR4 agonists for TRIF-dependent events, we explored signaling
mediators that are activated through both the TRIF and MyD88 pathways. TLR4-
induced gene expression is controlled by NF-kB and transcription factors activated by
MAPK signaling cascades, and considerable crosstalk exists between the MyD88 and
TRIF signaling pathways in their activation. For example, TRIF signaling enhances NF-
kB activity, a canonical MyD88-dependent event, through a Ripl-mediated pathway (57).
In addition, signaling through both TRIF and MyD88 contribute to MAPK activation (44,
46). TLR4-induced genes have varying MAPK and NF-kB requirements for optimal
expression, but the strength of TLR4 signal needed to efficiently activate these mediators
is unknown. We determined the log(EC50) values for the activation of p38, c-Jun N-
terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and IxBa by
treating BMDC with a series of doses of sLipid A and quantifying relative protein
abundance by Western blotting (Fig. 15A). Significantly less sLipid A was needed to

induce half-maximal IkBa degradation, as an indicator of NF-«xB activation, and p38
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activating phosphorylation [low log(EC50) values] compared to JNK and ERK1/2
activating phosphorylation [high log(EC50) values] (Fig. 15B). We were not surprised
that NF-kB activation required very little agonist given its prominence as a readily
triggered component of proinflammatory gene regulation, but the low potency with which
the MAPKSs JNK and ERK1/2 were activated was striking. Thus, although MAPKSs are
influenced by both TRIF and MyD88 pathways, there are considerable differences in the

ease with which they are activated.

The high log(EC50) values of sLipid A for MyD88- and TRIF-co-dependent events
correlate with a dependence on JNK

We and others published previously that MAPKSs differ in their involvement in
transcription factor activation and gene expression downstream of TLR4 (78, 120-124).
Although substantial overlap and redundancy in MAPK requirements for gene expression
exist, specific TLR4-induced genes may have a greater requirement for certain MAPKS.
It is unclear whether specific MAPKSs preferentially control the expression of TRIF-
dependent versus co-dependent genes. We hypothesized that the high log(EC50) values
of agonists for the expression of co-dependent genes may be, in part, a result of their
strong dependence on JNK, which is also associated with high log(EC50) values.
Conversely, the low log(EC50) values of agonists for TRIF-dependent genes may be
because their expression depends on p38 activity, which is characterized by a low
log(EC50) value.

To test this hypothesis, BMDC were pretreated with specific chemical inhibitors

of INK and p38 before measuring the effects of a range of concentrations of sLipid A on
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TRIF- and co-dependent gene expression. The efficacy (maximum amount) of MyD88-
dependent IL-6 protein production was reduced by JNK inhibition but not by p38
inhibition (Fig. 16A), but neither inhibitor significantly changed the potency of sLipid A
in stimulating 1L-6 production (Fig. 16B). The efficacy of the TRIF-dependent
production of IP-10 protein was unchanged by JNK and p38 inhibitors (Fig. 16A). Both
inhibitors slightly reduced IP-10 production at doses of sLipid A below 1 nM (Fig. 16A).
The JNK inhibitor caused a statistically significant increase in the log(EC50) value of
sLipid A for IP-10 production, whereas the p38 inhibitor caused an increase in the
log(EC50) for IP-10 that approached statistical significance (Fig. 16B). Neither inhibitor
increased the log(EC50) for IP-10 to match that for IL-6 production. These data suggest
that a varying dependence on specific MAPKSs is unlikely to be the cause of the

differences in log(EC50) values between co-dependent and TRIF-dependent events.

Because the efficacy of sLipid A for the production of co-dependent IL-6, but not
TRIF-dependent IP-10, was decreased by JNK inhibition, we explored the role of INK
signaling in expression of other TRIF-dependent or co-dependent genes. JNK inhibition
reduced the sLipid A-stimulated increases in MyD88-dependent 116 and Cd80 mRNA at 4
hours, but had no effect on TRIF-dependent Ip10 mMRNA abundance (Fig. 16C). JNK
inhibition did significantly reduce the TRIF-dependent increase in Cd86 mRNA
abundance at 4 hours, but less effectively than it inhibited increased Cd80 mRNA
abundance (Fig. 16C). Unexpectedly, inhibition of p38 had no significant effect on the
expression of any genes (Fig. 16C), despite confirmation that SB202190 had been

effectively delivered (Fig. 17). Therefore, the expression of MyD88- and TRIF-co-
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dependent genes, such as 116 and Cd80, correlates with a dependence on the INK

signaling pathway for full induction.

The high log(EC50) value of sLipid A for Ifnb mRNA expression correlates with a
dependence on JNK

IFN-B production in response to TLR4 stimulation absolutely requires TRIF
signaling and is downstream of the activation of IRF3 (48, 55, 125). In addition, optimal
IFN-pB production requires intact MyD88 signaling (118), because the activity of the Ifnb
promoter requires the activation of MyD88-associated transcription factors such as AP-1,
which is activated downstream of JNK and NF-«xB (126, 127). Because JNK-dependence
was correlated with co-dependent genes characterized by logeC50s, we wondered
whether the log(EC50) value for the induction of Ifnb expression was also high. We
measured Ifnb mMRNA abundance in BMDCs activated with a dose series of sLipid A and
calculated the log(EC50) values at 1 hour, the time at which Ifnb mRNA was maximally
expressed. The log(EC50) value of sLipid A for Ifnb expression was substantially higher
than that for TRIF-dependent Ip10 and was as high as that for co-dependent 116 (Fig.
18A). To confirm that sLipid A-induced Ifnb expression was JNK-dependent, we
pretreated BMDCs with JNK inhibitor and measured Ifnb mRNA abundance over time.
As expected from previous reports (128, 129), Ifnb mRNA expression was markedly
decreased in the absence of JNK signaling (Fig. 18B). In contrast, p38 inhibition had
relatively little influence on Ifnb expression, only slightly decreasing it at 1 hour (Fig.
18B). These data demonstrate that the TLR4-dependent expression of Ifnb is

characterized by a high log(EC50), consistent with it being a co-dependent event.
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Autocrine and paracrine signaling by type | interferon determines the low log(EC50)
values of sLipid A for TRIF-dependent responses

Although we observed a correlation between JNK-dependence and MyD88- and
TRIF-co-dependence, differential MAPK-dependence could not completely explain
either the high log(EC50) values of TLR4 agonists for the expression of co-dependent
genes or the low log(EC50) values for the expression of TRIF-dependent genes (Fig. 16).
Alternatively, the lower log(EC50) values of agonists for TRIF-dependent events could
be caused by crosstalk or synergy between TLR4 and other receptors. In addition to
inputs directly from TLR4, signaling through the IFN-a/p receptor (IFNAR) by secreted
type | IFN enhances the expression of TRIF-dependent genes through the activation of
the IFN-stimulated gene factor 3 (ISGF3) complex, which binds to and activates
interferon stimulated response elements (ISRES) in gene promoters (130, 131).

We found that sLipid A induced robust Ifnb expression in BMDCs (Fig. 18).
Therefore, we hypothesized that the relatively low log(EC50) values of sLipid A for
TRIF-dependent gene expression were caused by enhancement of TRIF-dependent
responses through secondary IFNAR signaling. To determine the extent to which IFN-
alone could induce expression of TLR4-regulated genes, we exposed BMDCs to
recombinant IFN-B or sLipid A and measured increases in steady-State TRIF-dependent
Ip10 and Cd86 mRNA abundance, and compared them to changes in co-dependent 116
and Cd80 mRNA abundance. As expected, the abundances of TRIF-dependent Cd86 and
Ip10 mMRNAs were increased by IFN-B treatment (Fig 19A). In fact, the increases in

steady-state mMRNA abundance by IFN-f were comparable to those with sLipid A
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stimulation, indicating that IFN-p is sufficient to induce the expression of Cd86 and 1p10
(Fig. 19A). In contrast, IFN- stimulation caused no measurable increases in Cd80
MRNA abundance and relatively small increases in 116 mMRNA abundance when
compared to sLipid A stimulation (Fig. 19B). Although both Cd80 and 116 are type |
IFN-responsive genes in certain contexts (130, 132-134), IFN-p was insufficient to
induce their expression in BMDCs.

To determine whether autocrine and paracrine signaling by IFN- was responsible
for the low log(EC50) values of sLipid A for the expression of 1p10 and Cd86, we
blocked IFNAR signaling by pre-treating BMDCs with the IFNAR1 antagonistic
antibody MAR1-5A3, or isotype control, and measured the log(EC50) values of sLipid
A. We demonstrated that MAR1-5A3 was effective at blocking STAT1 phosphorylation
downstream of IFNAR in response to sLipid A-induced type I IFN production at a
concentration of 10 ug/ml (Fig. 20). The efficacy, or maximal responses, of both TRIF-
dependent Ip10 and co-dependent 116 MRNA expression were decreased in MAR1-5A3
treated cells (Fig. 21A), consistent with both of these genes being type I IFN-inducible
(Fig. 19A and B). Despite dampening of global 116 and 1p10 expression, the log(EC50)
value of sLipid A for Ip10 was significantly increased, whereas the log(EC50) value for
116 was unchanged (Fig. 21A). Similarly, increases in Cd80 and Cd86 mRNA abundance
were dampened by the addition of MAR1-5A3, but only the log(EC50) value of sLipid A
for TRIF-dependent Cd86 was significantly increased (Fig. 21B). Furthermore, the
log(EC50) values of sLipid A for both TRIF-dependent Ip10 and Cd86 mRNA
expression were increased to values similar to those for co-dependent 116 and Cd80

MRNA, suggesting that secondary signaling by IFNf through IFNAR enhances the
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potency of TLR4 agonists like sLipid A for TRIF-dependent gene expression (Fig. 21A
and B). We also tested whether secondary type I IFN signaling was responsible for the
low log(EC50) values of sLipid A for TRIF-dependent protein production downstream of
MRNA. MAR1-5A3 treatment increased the log(EC50) values for IP-10 production, but
not for IL-6 production, when compared to those in stimulated control cells (Fig. 21C).
Together, these results show that autocrine and paracrine signaling via IFNAR is a
determinant of the low log(EC50) values of sLipid A for TRIF-dependent gene

expression.

DISCUSSION

We and others have proposed that TLR4 adapter modulation is a function of an
agonist’s structural characteristics. Zughaier et al. (111) reported that LPSs from E. coli
and Vibrio cholerae were MyD88-biased while LPSs from Salmonella species were
TRIF-biased over a range of doses when compared to a Neisseria meningitidis
lipooligosaccharide reference. We later proposed that MPLA functions as a TRIF-biased
agonist of mouse TLRA4, relative to the LPS from which it is derived, in an effort to
understand how MPLA maintains immunostimulatory activity in spite of losing
approximately 99.9% of its inflammatory activity (77). Bowen et al. (110) also reported
TRIF-bias in demonstrating that the lipid A mimetic CRX-547 was significantly less
efficacious than a stereoisomeric compound, CRX-527, in eliciting NF-«xB activation and
MyD88- and TRIF-co-dependent TNFa production, but was comparable in inducing

TRIF-dependent IP-10 and RANTES.
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Despite this evidence for TLR4 TRIF-bias, other data called its existence into
question. Earlier dose response experiments with mouse peritoneal macrophages
demonstrated that MPL adjuvant was much less potent than LPS in activating both TRIF-
dependent IP-10 and co-dependent TNF-a and IL-1f (73). More recently, Gaekwad et al.
(113) tested preparations of a variety of lipid A structures proposed to modulate TLR
adapter signaling. Using mouse macrophage cell lines, they found no evidence for
adapter modulation; instead cytokine and transcript potency data conformed to an
additive model in which changes in agonist structure affect the potency for all genes
equally regardless of their adapter association. In addition, TLR4 mutagenesis studies
were inconsistent with a clear structural basis for TRIF-biased signaling by
monophosphorylated agonists (135).

Our results support the conclusion that SMLA is not a TRIF-biased agonist of
TLRA4 relative to sLipid A because SMLA was approximately 10% as potent as sLipid A
for both the TRIF- and MyD88- and TRIF-co-dependent genes we tested (Fig. 11).
However, by comparing log(EC50) values, we found that TRIF-dependent genes are
activated with significantly less TLR4 agonist than are MyD88- and TRIF-co-dependent
genes (Fig. 12 and Fig. 13). This characteristic seemed to be independent of TLR4
agonist structure and potency because SMLA and Lipid 1Va, two weaker agonists that
differ in phosphorylation status and acyl chain number, also induced TRIF-dependent
genes more effectively. As we have only tested three different agonists, we have not
definitively ruled out the possibility that other agonists may be incapable of this process.

We demonstrated that the log(EC50) value of sLipid A for the increase in

abundance of mMRNA of the TRIF-dependent T cell costimulatory molecule Cd86 was
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also low compared to the log(EC50)s for co-dependent genes such as 116, Cox2 (Fig. 12),
and Cd80 (Fig. 13), supporting the idea that enhancement of T cell priming can proceed
without high amounts of MyD88-associated proinflammatory cytokine production, as
was seen in our first in vivo adjuvant tests with MPLA (77). Because all TRIF-dependent
outcomes were characterized by low log(EC50) values compared to MyD88- and TRIF-
co-dependent outcomes, we propose that TLR4 itself, not SMLA, can be considered to be
TRIF-biased.

We were able to discard several possible mechanisms for TLR4 TRIF-bias. TRIF
adaptor engagement was not likely induced at lower doses of TLR4 agonist than was
MyD88 adaptor engagement because the log(EC50) values of sLipid A for TRIF-
dependent activating phosphorylation of IRF3 and for MyD88-dependent
polyubiquitination of IRAK1 were not significantly different (Fig. 14). In fact, two
paired experiments seemed to indicate that TRIF signaling was initially more difficult to
induce, which is not surprising given that MyD88 signaling occurs at the plasma
membrane whereas TRIF signaling requires comparatively more complex CD14-
dependent endocytosis of TLR4 (47). In addition, differential requirements for JNK are
unlikely to explain TRIF-biased signaling because inhibition of JNK had little effect on
the log(EC50) values of sLipid A in its stimulation of the expression of either TRIF-
dependent or co-dependent genes (Fig. 16).

Many TRIF-dependent genes are also type | IFN-inducible and their activation in
response to TLR4 stimulation decreases dramatically in the absence of IFN-f within a 3
hour timeframe (130) indicating that autocrine and paracrine signaling by type I IFN may

be involved in TLR4 TRIF-bias. When we blocked type I IFN signaling, we found that

60



the log(EC50) values for the expression of TRIF-dependent genes increased to values
similar to those of co-dependent genes, suggesting that the TRIF-biased nature of TLR4
depends on IFNAR (Fig. 21). In contrast, blocking IFNAR did not change the
log(EC50) values for the MyD88- and TRIF-co-dependent production of IL-6 and
increase in Cd80 mRNA abundance; however, IFNAR inhibition led to a decrease in their
maximum abundance, suggesting that IFNAR signaling enhances the expression of their
respective genes. TRIF-dependent, IFN-B-sufficient genes appear to be characterized by
low log(EC50) values because they are regulated primarily by transcription factors that
are activated by autocrine and paracrine IFNAR signaling stimulated by type | IFN
released in response to TLR4 activation (130).

Though many consider IFN-f to be the canonical TRIF-dependent gene, it may be
characterized more accurately as MyD88- and TRIF-co-dependent because its production
is reduced in the absence of MyD88 signaling (118). Like other co-dependent genes, the
log(EC50) values of sLipid A for Ifnb mRNA expression is high compared to those of
TRIF-dependent genes. Moreover, its expression is JNK-dependent, in line with co-
dependent genes (Fig. 18). Compared to other genes which absolutely require TRIF
signaling to be expressed, the promoter complexity of Ifnb is high, requiring inputs from
AP1, NF-xB, and IRF3 (126, 127). In contrast, the promoter of TRIF-dependent IFIT-1
has been shown to only contain ISREs (136). Therefore, differences in promoter
complexity likely contribute to the relatively high log(EC50) of agonists for Ifnb
expression.

It is unclear how TRIF-dependent responses characterized by low log(EC50)

values could be caused by IFN-B, a gene product characterized by high log(EC50) values.
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One possibility is that IFN-f is a potent inducer of the expression of TRIF-dependent
genes. Additionally, locally high concentrations of secreted IFN- may be present
around the responding cell, which may enhance the effective potency of this cytokine.
We have also not ruled out contributions from IFN-a, which may be produced in
response to TLR4 stimulation in certain contexts (137). From a teleological perspective,
the high log(EC50) value for IFN-B production may be beneficial to the host during
infection, because type | IFNs can contribute to endotoxic shock and the production of
proinflammatory IL-1p through the activation of caspase-11 (138, 139). These
observations suggest that IFN-p may have biphasic functionality, supporting adaptive
immune priming at low concentrations and becoming more proinflammatory at high
concentrations.

In conclusion, our results provide a new understanding of TLR4 TRIF-bias. In
our culture system, monophosphorylation of lipid A did not cause TRIF-bias; rather,
TLR4 itself signaled in a TRIF-biased manner in which TRIF-dependent, IFN-f-
sufficient genes associated with T cell priming were induced with less agonist than co-
dependent genes associated with proinflammatory outcomes. The extent to which TRIF-
bias can occur will likely depend upon a cell type’s ability to respond to type I IFN
within the system and to the characteristics of type | IFN-inducible gene regulation
within that cell. These results are relevant to ongoing translational efforts because SMLA
is the active component of GLA (glucopyranosyl lipid adjuvant) formulations that are
being tested clinically (140). Future studies are needed to determine whether cell types
other than mouse BMDC, including human cells, are capable of agonist-independent

TRIF-bias. We have also not ruled out the ability of other species or cell types to
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undergo true TRIF-biased agonism based on agonist structural features, which may

depend upon unique engagement of TLR4:MD-2.
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Fig. 11. sMLA is not a TRIF-biased TLR4 agonist. (A) BMDCs from C57BL/6 mice
were treated with the indicated concentrations of SMLA or sLipid A. After 4 hours,
increases in the steady-state abundances of the indicated MRNASs in agonist-treated cells
compared to those in vehicle-treated cells were determined by gPCR analysis. After 18
hours, the amounts of the indicated proteins that were secreted into the culture media
were determined by ELISA. Fold increases in mRNA abundance were converted to
percentages of the maximal response measured in each experiment. Data are means *
SEM of three independent experiments. Insets show log(ECsp) values (with SE values in
parentheses) derived from the goodness of the fit of the nonlinear regression calculation.

(B) The sLipid A logEC50 values were subtracted from the SMLA logEC50 values for
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each analyte measured in (A) within each independent experiment, and then graphed.
The logeC50 difference represents the potency difference between sSMLA and sLipid A.
Solid grey bars represent MyD88- and TRIF-co-dependent gene products and white bars
represent TRIF-dependent gene products. The striped bar represents the average logeC50
difference between SMLA and sLipid A calculated for all analytes within each
independent experiment. Data are mean log(EC50) differences + SEM from three
independent experiments. Differences between the means were not statistically
significant when analyzed by one-way ANOVA (P > 0.05). (C) The amounts of I1L-6 and
IP-10 proteins secreted by BMDCs in response to the indicated concentrations of sLipid
A and sMLA from the experiments shown in (A) are plotted to show the appearance of

TRIF-bias at low concentrations.
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Fig. 12. The expression of TRIF-dependent genes is activated with lower

concentrations of TLR4 agonists than are required for the expression of MyD88-

and TRIF-co-dependent genes. (A) Log(EC50) values of the sLipid A— and SMLA-

stimulated changes in the abundances of the indicated proteins and mMRNAs from the

experiments shown in Fig. 1A. Individual log(EC50) values and mean values from three

independent experiments (vertical bars) are shown. (B) BMDCs from C57BL/6 mice

were activated with half-log dilutions of Lipid I\VVa or sLipid A for 18 hours, after which

IP-10 and IL-6 concentrations in culture media were measured by ELISA. Left:

Individual log(EC50) values from three independent experiments were compared.

Nonlinear regression analysis of the means £ SEM of those experiments is shown for IL-

6 (middle) and IP-10 (right). Insets show log(EC50) values with SE values given in
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parentheses. Statistical differences were analyzed for the data in (A) and (B) by an
unpaired, two-tailed t test or by one-way ANOVA with Tukey’s post-test. *P < 0.05; **P

<0.01; ****P < 0.0001; NS, not significantly different (P > 0.05).
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Fig. 13. The TRIF-dependent expression of Cd86 is activated with lower TLR4
agonist concentrations than are required for the MyD88- and TRIF-co-dependent
expression of Cd80. (A) BMDCs from wild-type (WT), MyD88™", or TRIF-P?P%2 mice
were treated with vehicle control (VC) or were stimulated with the indicated
concentrations of sLipid A for 4 hours. The steady-state abundances of Cd80 and Cd86
MRNAs were then analyzed by qPCR. Data are the mean fold-increases in mRNA
abundance in sLipid A-stimulated cells compared to those in vehicle-treated cells and are
combined from two independent experiments. (B) Log(EC50) values were determined for
the sLipid A—stimulated increases in the abundances of Cd80 and Cd86 mRNAs after 4
hours by nonlinear regression analysis. Data are means + SEM from three independent
experiments. Right: Log(EC50) values from individual experiments. Statistical

differences were determined with an unpaired, two-tailed t test. **P < 0.01.
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Fig. 14. Low log(EC50) values for TRIF-dependent genes are not explained by
biased adaptor use. (A) BMDCs from WT mice were treated with vehicle (VC) or were
stimulated with a half-log dilution series of sLipid A for 1 hour. Samples were then
analyzed by Western blotting with antibodies specific for the indicated proteins. The
abundances of IRAK1 and pIRF3 (Ser*®®) were quantified by densitometric analysis and
normalized to those of B-actin and total IRF3, respectively. Representative blots are
shown. Normalized values from densitometric analysis were converted to percentage
maximal responses for each experiment. Data in graphs are means + SEM from four
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independent experiments. (B) Individual log(EC50) values (squares and triangles indicate
matched experiments) and means from the experiments shown in (A) were plotted and

compared by an unpaired, two-tailed t test. NS, not statistically different (P > 0.05).
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Fig. 15. The logeC50s of sLipid A for MAPKs and NF-kB are distinct. (A) BMDCs
from WT mice were treated with vehicle as a control (VC) or were stimulated with a half-
log dilution series of sLipid A for 15 min. Samples were then subjected to Western
blotting analysis to determine the relative extents of phosphorylation of INK
(Thr®3/Tyr'®%), p38 (Thr®/Tyr'®?), and ERK1/2 (Thr*%/Tyr?®*), as well as of the
degradation of IkBa. Representative Western blots are shown. Densitometric analysis
was performed to determine the relative abundances of the indicated phosphorylated
proteins normalized to the abundances of their respective total proteins, whereas IkBa
abundance was normalized to that of 3-actin. Normalized values were converted to
percentage maximal responses for each experiment. Data are means = SEM from the
nonlinear regression analysis of at least four independent experiments. (B) Log(EC50)
values from the independent experiments shown in (A). Statistical differences were

analyzed by one-way ANOVA with Tukey’s post-test. **P < 0.01; ***P < 0.001.
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Fig. 16. MyD88- and TRIF-co-dependent genes with high log(EC50) values have a
greater dependence on JNK for their expression than do TRIF-dependent genes. (A)
BMDCs from WT mice were pretreated with the JINK inhibitor SP600125, the p38
inhibitor SB202190, or DMSO (vehicle) for 30 min before being stimulated with a half-
log dilution series of sLipid A for 18 hours. The concentrations of secreted IL-6 and IP-
10 proteins in the culture media were then measured by ELISA. Data are means + SEM
from the nonlinear regression analysis of at least three independent experiments. (B)
Log(EC50) values were calculated from the dose-response curves of the independent
experiments shown in (A) and then were compared by two-way ANOVA with Sidak’s
post-test. *P < 0.05; ns, not statistically significant. (C) BMDCs from WT mice were
pretreated with DMSO or the indicated inhibitors for 30 min before being treated with
vehicle (VC) or sLipid A (100 ng/ml) for the indicated times. Increases in the steady-state
abundances of the indicated mRNAs in sLipid A-treated cells compared to those in
vehicle-treated cells were determined by gPCR analysis. Data are means = SEM from

four independent experiments. Statistical differences between agonist-treated samples
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and DMSO-treated samples were analyzed with repeated measures two-way ANOVA

with Dunnett’s post-test. *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 17. SB202190 and SP600125 inhibit p38 MAPK and JNK signaling,
respectively. (A and B) BMDCs from wild-type mice were pre-incubated with DMSO
(vehicle control) or increasing concentrations of (A) SB202190 (a p38 inhibitor) or (B)
SP600125 (a JNK inhibitor) for 30 min. Cells were then treated with DMSO (vehicle
control) or were stimulated with sLipid A (100 ng/ml) for 15 min. Samples were then
subjected to Western blotting analysis with antibodies specific for the indicated proteins.

Representative Western blots from two independent experiments are shown.
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Fig. 18. The high log(EC50) values for the expression of Ifnb correlate with a
dependence on JNK signaling. (A) BMDCs from WT mice were stimulated with a half-
log dose series of sLipid A for 1 hour. The steady-state abundance of Ifnb mMRNA in each
of the samples was determined by qPCR analysis, and fold-increases in mMRNA
abundance in agonist-treated cells compared to that in vehicle-treated cells were
calculated and then converted to percentage maximal responses for each experiment.
Top: Data are means + SEM of three independent experiments that were subjected to
nonlinear regression analysis. Bottom: One hour Ifnb logEC50s are compared to those of
116 and 1p10 (reproduced from Fig. 2A), both measured at 4 hours (bottom). (B) BMDCs

from WT mice were pretreated with the indicated inhibitors or DMSO for 30 min before
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being treated with vehicle (VC) for 1 hour or with sLipid A (100 ng/ml) for the indicated
times. The abundance of Ifnb MRNA in each sample was determined by gPCR analysis.
Data are means = SEM in the fold increase in Ifnb mMRNA in agonist-treated cells
compared to that in vehicle-treated cells and are from three independent experiments.
Statistical differences between agonist-treated and DMSO-treated samples were
determined by repeated measures two-way ANOVA with Dunnett’s post-test. *P < 0.05;

****p < 0.0001.
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Fig. 19. IFN-B is sufficient to induce the maximal expression of genes with low
log(EC50) values. (A and B) BMDCs from WT mice were activated with either IFN-3
(1000 U/ml) or sLipid A (100 ng/ml) for the indicated times. Samples were then analyzed
by gPCR, and the relative fold-increases in the abundances of the mRNAs of (A) TRIF-
dependent and (B) MyD88- and TRIF-co-dependent genes in stimulated cells compared
to those in DMSO-treated cells were determined. Data are means + SEM from at least
three independent experiments. Statistical differences between sLipid A- and IFN--
stimulated mRNA abundances at each time point were determined by two-way ANOVA
with Sidak’s post-test. *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not

statistically significant (P > 0.05).
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Fig. 20. MAR-5A3 effectively blocks IFNAR signaling. WT BMDC were
preincubated with the indicated concentrations of MAR1-5A3 or media alone for 1 hour.
The cells were then activated with 100 ng/ml sLipid A for 1 hour. Intracellular staining
for pSTAT1 was performed. Data were collected on a FACScalibur. The percentage of

cells staining positive for pPSTAT1-PE is presented.
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Fig. 21. Autocrine and paracrine signaling by IFN-p contributes to the low

log(EC50) values of TRIF-dependent genes. (A to C) BMDCs from WT mice were

pre-treated with MAR1-5A3 (an anti-IFNAR1 antibody) or isotype control antibody for 2

hours before being stimulated with a half-log dose series of sLipid A for 4 or 18 hours.

(A and B) After 4 hours, samples were analyzed by qPCR to measure the steady-state

abundances of the indicated mRNAs in stimulated cells relative to those of vehicle-

treated cells. (C) After 18 hours, the concentrations of the indicated proteins in the culture

media were determined by ELISA. Data are means + SEM from the nonlinear regression

analysis of at least three independent experiments. Right: The log(EC50) values derived

from each experiment were averaged and are compared in bar graphs. Statistical

79



differences between the log(EC50) values of isotype -treated and MAR1-5A3—-treated
cells were determined by repeated measures two-way ANOVA with Sidak’s post-test.

**P < (0.01; NS, not statistically significant (P > 0.05).
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CHAPTER V

CONCLUSION

CD14 DOES NOT PLAY A SPECIAL ROLE IN TLR4 SIGNALING IN RESPONSE
TO MONOPHOSPHORYL LIPID A

Following our proposal that MPLA induced a TRIF-biased response by TLR4,
our search for potential mechanisms led us to consider the coreceptor CD14. Although
CD14 is well known to enhance the expression of MyD88-associated genes in response
to TLR4 agonists, its primary role in driving endocytosis of TLR4-MD2 signaling
complexes to initiate TRIF signaling has only recently come to light (47). We reasoned
that a TRIF-biased agonist may utilize CD14 in a different manner than a MyD88- and
TRIF-balanced agonist.

Although CD14 promotes endocytosis of TLR4 through a Syk- and PLCy2-
dependent pathway, the exact mechanism by which it activates this pathway is unknown.
For example, it is unknown whether CD14 must bind its ligand directly, or if its mere
presence on the cell surface promotes internalization. It is likely that in the process of
transferring ligands to TLR4-MD2, the dimeric CD14 molecule promotes
heterotetramerization of TLR4-MD2 by physically bringing together the two complexes.
In fact, the distance between the ligand-binding domains of CD14 corresponds closely to
the distance between adjacent MD2 molecules in the heterotetramer (141). Perhaps this

transient interaction with TLR4-MD2 promotes the endocytic pathway.
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The ligand-binding pocket of CD14 is large and hydrophobic with charged
residues around its rim (85). These charged residues are thought to interact with the
hydrophilic headgroup of lipid A. Because MPLA contains one less phosphate, it is
conceivable that its interaction with CD14 may be different than that of lipid A, but we
found little evidence to suggest that MPLA utilizes CD14 differently than lipid A. Our
data suggest that CD14 ablation decreases the potency of lipid A and MPLA to the same
extent. This is not surprising given the ability of CD14 to bind molecules with
significantly different structures.

Our results also confirm the importance of CD14 in the initiation of the TRIF
pathway because the efficacy of lipid A was reduced by 50% for induction of TRIF-
dependent Ifitl expression. The efficacy of lipid A for MyD88-associated events, on the
other hand, was not decreased. Interestingly, Tanimura et al. (93) have shown that CD86
upregulation on BMDC:s in response to lipid A and MPLA is unaffected by CD14
ablation, despite the fact that this process is TRIF-dependent. This group suggests that in
the absence of CD14, some TRIF-dependent signaling may originate from the cell
membrane, which is sufficient to induce certain TRIF-dependent responses. Therefore,
TRIF-dependence and CD14-dependence should not be considered one in the same.
Perhaps alternative methods exist to initiate TRIF signaling independent of endocytosis

of TLR4-MD2 heterotetramers.

IMPLICATIONS FOR VACCINE ADJUVANTS
Observation of “biased agonism” is not unique to TLR4. This phenomenon has

long been recognized to occur with members of the G protein-coupled receptor (GPCR)
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family, the largest class of receptors in the human genome (142). GPCR signaling is
mediated by two groups of adaptor proteins, the heterotrimeric G proteins and the
arrestins, the most common of which are the p-arrestins (143). Similar to the TLR4
adaptor proteins MyD88 and TRIF, G proteins and B-arrestins mediate different
downstream signaling events. Exchange of GDP for GTP by the Ga subunit induces
signaling through second messenger systems such as cyclic AMP (143). The B-arrestins
are involved in GPCR desensitization and internalization, MAPK activation, and can also
serve as cofactors during transcription (143). Initially, it was thought that GPCR ligands
induced balanced signaling through G proteins and B-arrestins, but there are now many
studies confirming that certain ligands can induce biased signaling through either
pathway, which may be caused by the existence of multiple active receptor
conformations (144). For example, SlI angiotensin, a synthetically modified agonist of
the angiotensin Il type 1A receptor, is unable to activate Gog signaling, but retains
activation of B-arrestin 2 which leads to ERK activity (145, 146).

Similar to modification of LPS to reduce its toxicity while maintaining
adjuvanticity, GPCR agonists are being developed to selectively target therapeutically
beneficial signaling pathways. Stimulation of the p-opioid receptor by morphine induces
clinically beneficial analgesic affects but is also associated with detrimental side-effects
such as constipation and respiratory depression (147). These side-effects have been
linked to B-arrestin 2 signaling (147). A morphine derivative called TRV130 has recently
been shown to be better tolerated by patients because it induces signaling biased toward
the G protein pathway (148, 149). Therefore, a strong precedent has been set for

harnessing biased receptor signaling to target clinically useful outcomes more effectively.
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Unexpectedly, this dissertation provides evidence that neither MPLA nor SMLA
are bona fide TRIF-biased agonists. In fact, they were less potent than their
corresponding diphosphorylated agonist (lipid A or sLipid A) by the same magnitude for
the expression of both TRIF-dependent and MyD88- and TRIF-co-dependent genes
(Chapters 11l and IV). Instead, we provide evidence to suggest that TLR4 itself can
behave as a TRIF-biased receptor. When using synthetic agonists, the amount of agonist
required to induce half-maximal TRIF-dependent gene expression was significantly less
than the amount of agonist needed to induce that of MyD88- and TRIF-co-dependent
gene expression. TRIF-bias by TLR4 was not at the level of early adaptor engagement
because there was no significant difference between the log(EC50) values of sLipid A for
MyD88-dependent IRAK1 disappearance and TRIF-dependent IRF3 phosphorylation.
The log(EC50) values of sLipid A for the downstream activation of MAPKs and NF-xB
began to diverge, even though these events are MyD88- and TRIF-co-dependent. The
strikingly consistent difference between the log(EC50) values for TRIF- and co-
dependent events occurred at the level of gene expression and protein secretion.
According to our model, autocrine and paracrine signaling by type I IFN produced in
response to TLR4 activation contributes to the relative ease with which TRIF-dependent
genes are activated (Fig. 22).

We have yet to fully explain the paradox whereby the expression of a gene
characterized by a high log(EC50) value, Ifnb, can promote the low log(EC50) values of
agonists for TRIF-dependent genes. In this work, we have only characterized the
log(EC50) value for increases in steady-state Ifnb mMRNA abundance. The log(EC50)

value for the secretion of IFN-B protein may in fact be lower which would support our
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hypothesis that an autocrine and paracrine signaling loop through IFNAR promotes
TLR4 TRIF-bias. These tests are underway. As discussed in Chapter 1V, the potency of
IFN-B may also be sufficient to promote TRIF-bias, even when the IFN- concentration
is relatively low.

Other non-mutually exclusive mechanisms may also be involved in TLR4 TRIF-
bias. One hypothesis is that gene promoter complexity may promote a TLR4 TRIF-
biased gene expression profile. In general, genes which require MyD88-dependent
signaling for full activation (i.e. co-dependent genes) may have more complex promoters
with multiple NF-xB and AP1 binding sites. TRIF-sufficient genes likely have less
complex promoters which require fewer cofactor inputs for sufficient expression. For
example, TRIF-dependent Ifitl has only two ISRES in its promoter (136) and Ip10
expression requires either two NF-«xB binding sites or one NF-kB binding site and one
ISRE (150). Therefore, it is plausible that TRIF-dependent genes may simply be more
easily activated because less TLR4 agonist is needed to induce the transcriptional inputs
required to express these genes.

It should be noted that neither MPLA nor lipid A seemed to conform to our model
of TLR4 TRIF-bias in the experiments presented in Figure 4. In these experiments, the
log(EC50) values for MPLA and lipid A for Ifitl mRNA expression were not lower than
those for co-dependent IL-6 and Cox2 mRNA. A direct comparison of the log(EC50)
values of sLipid A and lipid A, under the same conditions, for TRIF-dependent and co-
dependent gene expression will need to be completed before we can confirm that TLR4

TRIF-bias is not exhibited with these biological compounds.
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A major limitation to the studies presented herein is that they were all assessed in
vitro. Therefore, they do not take into account the complex interplay between different
cell types that occurs during vaccination or infection. We chose to perform this work
using BMDC because DC are expected to be the most important cells in the context of
immunization. But other cell types, such as monocytes and macrophages certainly
respond during immunization as well. Whether or not these cell types exhibit TLR4
TRIF-bias must be determined in the future.

Although we have not directly tested this hypothesis in vivo, work by Mata-Haro
et al. (77) does suggest that TLR4 TRIF-bias may occur within a living host. In this
study, both serum cytokine and spleen cell MRNA measurements after immunization
with LPS or MPLA demonstrated that the weak agonist MPLA was TRIF-biased relative
to LPS. This observation could very well be explained by inherent TRIF-bias by TLR4
itself, especially since a higher dose of MPLA than LPS was used in these studies. A
definitive test of this hypothesis would be to perform immunizations with a series of
dilutions of a potent agonist, like LPS or lipid A, and compare TRIF- and co-dependent
outcomes. Our hypothesis predicts that a dose of LPS or lipid A exists that mirrors the
response induced by MPLA, both in T cell priming and cytokine production. While our
results clearly show that the potency of TLR4 agonists for TRIF-dependent events is
higher than that of co-dependent events, they do not inform us of the actual levels of
TLR4 signaling events needed to induce sufficient T cell priming. By studying limiting
doses of agonists in vivo, we can bypass issues of the physiological relevance of

pharmacological potency and efficacy measured in vitro.
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Our findings have direct implications for the use of TLR4 agonists as vaccine
adjuvants. A paradigm has emerged in which TRIF-dependent gene activation is
associated with events necessary for adaptive T cell priming and MyD88-associated gene
activation is linked to proinflammatory cytokine release and toxicity. Safe and
efficacious vaccine adjuvants should induce maximal beneficial effects with the least
amount of toxicity. We speculate that TLR4’s TRIF-biased gene activation profile
effectively widens the therapeutic window in which TLR4 agonists may be used as
clinical adjuvants (Fig. 23). In other words, there may be a broad range of doses at which
a TLR4 agonist may be administered where adjuvanticity is retained and toxicity remains
low. Inherently less potent adjuvants like MPLA and SMLA may be better able to fit
within this therapeutic window when administered in vivo. At their effective doses, these
agonists may also retain sufficient levels of MyD88-associated proinflammatory cytokine
production which is likely important to promote long term immunity through effects on
regulatory T cells (Tregs) and retention of memory T cells (151, 152).

Our observation that type | IFN production was responsible for much of the TLR4
TRIF-biased gene expression may also provide insight into the development of more
effective adjuvants. There is currently much interest in the combination of vaccine
adjuvants to promote more robust immunity (153). Specifically, combining TLR4 with
TLR7, TLR8, or TLR9 agonists was shown to synergistically enhance production of IL-
12 and IL-23 in human and mouse DC, which promoted Th1l immunity (154). TLR7 and
TLR9 are expressed on plasmacytoid DC (pDC) and their activation induces production
of large quantities of type I IFN (155), which induces many effects including APC

maturation and migration, and B cell isotype switching (156). We speculate that the
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efficacy of combining TLR4-based adjuvants with those that target pDC may lie in the
enhanced production of type I IFN. In fact, a candidate clinical vaccine against a
Mycobacterium tuberculosis antigen was recently shown to be more effective at inducing
a Thl response when adjuvanted with GLA (a formulation of SMLA) and CpG (a TLR9
agonist) as opposed to GLA alone (157). Adjuvant synergy between GLA and CpG was
independent of TRIF signaling, but the adjuvant effects of GLA alone were TRIF-
dependent. This result could be explained by rescue of TRIF-dependent, type I IFN-
inducible gene expression by the TLR9 signaling component. Type I IFN signaling
through IFNAR, either before or during TLR4 activation on conventional DC, may
promote an even greater bias toward TRIF-dependent gene activation and further enhance
adaptive immune priming and optimal T cell differentiation.

Preliminary studies in our lab using the human monocytic cell line THP1 and
human peripheral blood mononuclear cells suggest that inherent TLR4 TRIF-bias is
likely relevant to clinical medicine, but additional work needs to be performed to
determine whether autocrine and paracrine signaling by type | IFN drives this response.
Certain TLR4 agonist structures may also be TRIF-biased (i.e. ligand bias rather than
receptor bias) in the human system as was demonstrated by Bowen et al. (110). Current
studies in our lab have shown that the biological mixture MPLA has a lower efficacy than
lipid A for MyD88-associated gene expression in human cells. In contrast, the efficacy
of SMLA for these events is equivalent to that of sLipid A. The lower efficacy of MPLA
compared to SMLA may be explained by the presence of hypo-acylated congeners within
the MPLA mixture that either act as antagonists or partial agonists of TLRA4.

Interestingly, studies performed by the Infectious Disease Research Institute (IDRI)
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demonstrated that GLA was generally stronger than MPLA at inducing co-dependent and
TRIF-dependent cytokines in human DC, including those implicated in adverse events
such as TNFa and IL-6 (158). Therefore, the fact that GLA is a homogeneous
preparation of hexa-acylated molecules may be a barrier to its incorporation into clinical
vaccines. MPLA, on the other hand, may be a more tolerable vaccine adjuvant due to its

heterogeneity which serves to tone down TLR4 activity.

IMPLICATIONS FOR COEVOLUTION OF COMMENSAL BACTERIA AND
INNATE IMMUNITY

It is tempting to speculate on the selective pressures that would have promoted the
evolution of bias toward the TRIF pathway of TLR4. An answer may lie in the
interaction between the host and its resident gut microbiota, which is essential for
competent host immune system development, nutrition, and for maintenance of the
mucosal barrier (159). Trillions of bacteria colonize the host mucosal surfaces. These
bacterial colonies, although essential to host health, must be held in check by the host
immune system. An overly vigorous response to commensal bacteria may promote
disease states such as colitis. On the other hand, an inadequate immune response can
promote infection by normally benign microbes. The importance of gut microbiota
homeostasis is demonstrated by the fact that disruption of commensal populations by
antibiotic use promotes susceptibility to pathogenic Clostridium difficile infection (160).

Intestinal CD103™ DC play an essential role in the maintenance of gut microbiota
homeostasis (161). These cells reside in the lamina propria and the gut-associated

lymphoid tissue, and extend dendrites between intestinal epithelial cells to sample
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commensal antigens within the lumen (161, 162). Commensal bacteria themselves also
relay signals to immune cells and lymphoid tissues through the release of PAMP-
containing membrane microvesicles that transverse the gut epithelium (163, 164). To
prevent an overly robust immune response to commensal bacteria, CD103" DC promote
the differentiation of commensal-specific induced T regulatory cells (Treg) through
production of retinoic acid and TGF-f (161). These Treg then promote commensal
tolerance.

Although tolerance to gut antigens is important, a mechanism must be in place to
limit commensal loads and elicit immunity in the case of infection. Intestinal DC support
Th17 effector cell differentiation through production of IL-23 and IL-6 (161, 165). Th17
cells play an important role in controlling gut microbiota. They promote the production
of IgA (166), which limits commensal escape into the periphery (167), and have been
implicated in lessening the severity of T cell-mediated colitis (168).

Interestingly, many commensal bacteria express weak TLR4 agonists
characterized by hypo-acylation or monophosphorylation (169-171). In addition,
intestinal alkaline phosphatase (IAP) concentrated in the intestinal brush border and
produced in response to bacterial colonization has been proposed to promote tolerance to
commensal Gram-negatives by decreasing the potency of their LPS through the removal
of the lipid A 1-phosphate group (172). IAP-deficient zebrafish exhibited severe gut
inflammation characterized by heightened infiltration of neutrophils (172). We speculate
that commensal bacteria may express weakened forms of LPS, produced either
endogenously or by chemical modification by the host, to prevent strong TLR4 activity in

intestinal DC that may promote Th17 mediated immunity over Treg mediated tolerance.
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Weak activation of TLR4 on intestinal DC would be expected to induce a higher level of
TRIF-dependent versus co-dependent gene activation in the context of our model of
TRIF-bias. Whether or not TRIF signaling plays a predominant role in maintenance of
Tregs and tolerance is uncertain, but one study showed that TRIF signaling by gut DC in
response to intestinal Candida albicans infection was required for Treg induction through
the production of indoleamine dioxygenase (173).

In cases where the T effector to Treg ratio should increase, such as infection by a
pathogen, higher levels of TLR4 stimulation may occur through exposure of DC to higher
bacterial loads or to more potent LPS chemotypes. In this scenario, MyD88-associated
genes would be more efficiently induced and promote conversion of tolerogenic DC to
those which promote inflammation and immunity. For example, stronger stimulation of
gut DC through TLR4 may induce more robust production of co-dependent IL-6 which
promotes Th17 differentiation (161, 174). We speculate that commensal bacteria may
have been selected to express low potency LPS structures in order to minimize clearance
by the host immune system. In addition, differential ease of activating TRIF- versus
MyD88-associated gene expression by host APC may have coevolved with the
microbiota to strike a balance between tolerance and immunity, which allows these
beneficial bacteria to persist without damage to the gut, or other host-environment

interfaces such as the skin and respiratory tract.
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Fig. 22. The proposed mechanism for TRIF-biased TLR4 signaling. TLR4
activation induces the expression of MyD88- and TRIF-co-dependent genes which
require the activation of NF-xB and AP1 transcription factors. TRIF dependent signaling
activates IRF3, which, together with NF-kB and AP1, promotes type I IFN expression
and low levels of type I IFN-inducible gene expression. Type I IFN secreted by the cell
activates ISGF3 through IFNAR signaling. ISGF3 then promotes the expression of type |
IFN-inducible genes. The combined action of IRF3 and ISGF3, as well as other
transcription factors, may increase the potency of TLR4 agonists for the induction of
TRIF-dependent genes. Though optimal co-dependent gene expression may require

ISGF3 activity, the potency of agonists for the induction of these genes is unaffected.
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Fig. 23. TLR4 TRIF-bias opens a therapeutic window for vaccine adjuvants. The
therapeutic window shaded in blue represents doses of a TLR4 agonist that induce TRIF-

dependent responses sufficient for robust adjuvanticity with minimal toxicity.
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