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ABSTRACT 

 

Direct Band Gap Gallium Antimonide Phosphide 

(GaSbxP1-x) Alloys for Solar Fuels 

Harry Benjamin Russell 

April 22, 2016 

 

Photoelectrochemical water splitting has been identified as a promising route for 

achieving sustainable energy future. However, semiconductor materials with the 

appropriate optical, electrical and electrochemical properties have yet to be discovered.  

In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never 

tested for PEC performance is proposed here and investigated.  Density functional theory 

(DFT+U) techniques were utilized to predict band gap and band edge energetics for 

GaSbP alloys with low amount of antimony. The overall objective of this dissertation is 

to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting 

application. Specifically, the goals are to develop synthesis methods, grow GaSbxP1-x 

alloys, understand their optical and photoelectrochemical properties, and compare 

experimental values with theoretical predictions. 
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DFT+U calculations suggested that with less than 1% Sb incorporated into GaP, 

an indirect to direct band gap transition should occur.  Furthermore, predictions with 

band edge positions for GaSbxP1-x alloys with small amount of Sb composition suggest 

band edge straddling of the water splitting reaction. Preliminary experiments were 

performed using reactive vapor transport in a microwave plasma reactor. The 

experiments primarily resulted in growing GaSbxP1-x nanowires. Extensive 

characterization using electron microscopy and X-ray diffraction and photoluminescence 

spectroscopy corroborated the predictions using DFT+U calculations. Initial 

experimentation utilized a plasma transport scheme of Ga and Sb metals with di-tert-

butyl-phosphine gas on the reactor to synthesis GaSbxP1-x nanowires. Transmission 

Electron Microscopy (TEM) and X-ray Diffraction (XRD) confirmed ternary alloying of 

these GaSbxP1-x nanowires.  Direct band gaps were observed between 1.7 eV and 2.2eV 

with GaSbxP1-x compositions between 3% and 6%. However, the method used here is not 

suitable for growing single crystal films. 

 

In order to grow single crystal films on silicon substrates, a new reactor was 

designed and built for halide vapor phase epitaxy method. Experiments using Halide 

Vapor Phase Epitaxy (HVPE) reactor were conducted using silicon and sapphire 

substrates. Experiments using excessive Gallium yielded microwire morphologies. 

Further experiments with reduced Gallium precursor temperature allowed for growth of 

quality crystalline films on silicon substrate.  The films grown at different temperatures 

exhibited different amounts of antimonide alloying. The resulting samples exhibited 

direct band gaps of 1.7 to 2.1 eV evidenced by UV-Vis diffuse reflectance spectroscopy.. 
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Room temperature photoluminescence corroborated these findings. Photoelectrochemical 

studies of the HVPE grown samples show that they can be highly photoactive materials 

under the proper growth conditions.  The best performing sample had saturated 

photovoltages of .75 eV and a photoactivity of 8 mA/cm2 under unbiased conditions and 

4 suns illumination.  This photocurrent saturated to 11 mA/cm2 at 1 V vs. Ag/AgCl 

external bias.   

 

In summary, the work presented here provides fundamental insight into growth and 

properties of GaSbP alloy samples with low amount of Sb incorporation.  The 

experimental data corroborates predictions by DFT+U technique in terms of indirect to 

direct band gap transition, band gap as a function of Sb incorporation and band edge 

energetics for photoelectrochemical water splitting. This work also provides first of its 

kind use of halide vapor phase epitaxy technique for the growth of GaSbP alloys. 

Photoactivity data suggests that these materials are highly promising for 

photoelectrochemical devices. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Global energy challenge 

The production of clean fuels by utilizing solar energy is one of the most 

important milestones on the road to a sustainable energy future7.  Globally, power is 

currently consumed at a rate of approximately 15 TW and only approximately 11% of 

that energy came from renewable energy sources according to a report by the US Energy 

Information Administration (EIA) in 2014.  World energy consumption is expected to 

double by 2050 due to population rise and higher energy demand from developing 

countries.  CO2 thresholds of 350 ppm and 450 ppm have been proposed by climate 

scientists as maximum CO2 limits that need to be observed in order to mitigate 

catastrophic and potentially irreversible consequences to the earth’s climate8,9. Carbon 

dioxide levels have risen from approximately 310 ppm in the 1950’s and surpassed the 

350 ppm limit in the 1990’s.  Most recently in August of 2014, a reading of 397.01 ppm 

was reported by the Mauna Loa Observatory in Hawaii.  At the current rate of CO2 

production without ambitious CO2 mitigation policies the atmospheric concentration of 

greenhouse gases is expected to reach 685 ppm by 2050.  Such a significant rise in 

greenhouse gas levels will undoubtedly result in changes in patterns of precipitation, 

glacier liquefaction, sea-level rise and extreme weather conditions. Thus, it is imperative 
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to the survival of the human race and all other living creatures on earth that fossil fuels be 

replaced by sustainable energy sources that are free of greenhouse gas emissions. 

Many renewable sources have been suggested and researched to provide carbon 

free alternatives to fossil fuels.  Hydro, wave, geothermal and wind renewable energy 

sources are location based. Biofuels put a strain on agriculture, still have CO2 emissions 

when used and typical plants can only convert 1% of incoming light.  Nuclear reactors 

still have waste cleanup once decommissioned and are susceptible to natural disasters 

such as those recently seen in Japan.   

 

1.2 Solar Energy 

With over 120,000 Terawatts of solar radiation incident to the surface of the 

Earth, there is no other source of energy capable of providing clean sustainable energy 

close to that of the Sun.  Even if this energy was harnessed through the use of 

photovoltaics, it is an intermittent source and ways of storing the energy for use at night 

or on cloudy days is necessary.  Short of pumping water uphill to re-use as hydro 

electricity at night, the only way to store this energy is in the form chemical bonds.  Thus, 

large-scale production of solar hydrogen is proposed as a greenhouse gas free and 

sustainable form of energy to meet the world’s energy demand. 

Solar hydrogen can be accomplished by many methods including solar-

thermochemical, photosynthetic microbes, photovoltaic-electrolysis and 

photoelectrochemical (PEC) water splitting4.  Photovoltaic-electrolysis is the most 

practical method of sustainable hydrogen production at this time but requires two systems 

to produce hydrogen. In comparison, direct water splitting using a semiconductor 
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electrode has several advantages: (a) the electrode fabrication may or may not require 

certain processing steps necessary for making a complete photovoltaic cell; (b) 

theoretical maximum efficiency of direct water splitting using a semiconductor electrode 

can exceed that of non-tandem type PV + electrolysis; (c) no need for wiring for flow of 

electrons; and (d) allows many potential configurations for PEC reactors.  

 

1.3 Photoelectrochemical Water Splitting 

PEC water splitting is the most researched of the solar fuel generation routes and 

has even been defined in past research as the “Holy Grail” of electrochemistry10.  This 

method of renewable hydrogen generation works by absorbing incoming light utilizing a 

semiconductor photoabsorber and converting that energy for direct use in the water 

splitting reaction shown in equation 1.1.  

  (1.1) 

 

This technology is, however, still in the materials research phase as new and 

affordable semiconductor materials with the appropriate band gap, band edge placement, 

electron mobility, reaction kinetics and chemical stability are still greatly needed to meet 

the benchmark efficiency of 25% set by the Department of Energy by 202511.  
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PEC water splitting can be done 

utilizing many different device 

configurations. Most important for our 

research are the single semiconductor 

schottky device and the two 

semiconductor tandem device4. For a 

single semiconductor Schottky device, the 

band edges of the semiconductor material 

should straddle the hydrogen evolution 

and oxygen evolution reactions.  

Specifically, for a p-type semiconductor, 

the conduction band must be higher than 

the HER and the Fermi level lower than 

the OER as shown in Figure 1.1a.  Vice 

versa, for an n-type semiconductor the 

valence band should be lower than the 

OER and the Fermi level higher than the 

HER as shown in figure 1.1b.  Band gap 

energies of 1.6-2.2 eV are required in 

order to straddle these potentials, 

overcome overpotentials required to 

perform these reactions, compensate for 

losses within the semiconductor and 

FIGURE 1.1 – Band diagram schematics for 

(a) n-type Schottky, (b) p-type Schottky and 

(c) tandem PEC cell configurations 
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absorb as much of the visible light spectrum as possible.  The semiconductor is then 

ohmically contacted with an anode such as ruthenium oxide for a p-type cell or cathode 

such as platinum for n-type cells.  For dual semiconductor tandem devices, two 

semiconductors are combined in order to perform the HER on the photocathode and the 

OER on the photoanode as shown in Figure 1.1c.  By using two ohmically contacted 

semiconductors, lower band gap energies can be used and more of the solar spectrum can 

be absorbed between the two semiconductors.  Ideal band gap energies required for a 

tandem cell are 1.0 eV and 1.7 eV. 

To this day, the best performing semiconductor materials for PEC water splitting 

have been alloys formed by elements from groups III and V from the periodic table and 

are referred to as III-V’s hereafter.  The champion semiconductor chosen as the 

photoabsorber for PEC water splitting has been GaInP2.  It has a direct band gap of 1.83 

eV but its band energetics are not properly aligned to the water splitting reaction as 

shown in figure 1.2.  As such, Turner et al synthesized the material with a monolithic 

GaAs pn-junction incorporated into the device structure in order to provide the proper 

bias to overcome the band misalignment5.  The resulting device achieved 12.4% solar to 

hydrogen (STH) efficiency. Similarly, the final working PEC water splitting prototype 

presented by the Joint Center for Artificial Photosynthesis (JCAP) in 2015 utilized a 

GaInP2/GaAs multijunction photoabsorber approach and achieved 10% STH efficiency 

over 80 hours of continuous operation12. Many other III-V ternary alloys have touted 

tunable band gaps with the ability to straddle the water splitting redox reactions but have 

not exhibited efficient water splitting.  For example, InGaN has a direct tunable band gap 

that can be readily synthesized throughout the ternary composition range13.  The best 
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water splitting performance observed from InGaN has only reached 1.8% STH 

however14.   

 

1.4 Proposed approach 

As discussed above, to date, the best performing PEC devices have contained high 

quality III-V photoabsorber semiconductors.5,12  All of the binary III-V materials and 

many of the ternary and quaternary III-V alloys have been thoroughly examined for PEC 

water splitting.  On the other hand, there are still a few of these systems that have not 

been researched for their use as band gap engineered semiconductors for solar fuels.  One 

such of these ternary alloys is GaSbP.  GaP has a 2.3 eV indirect band gap with favorable 

band edge characteristics but poor charge carrier conductivities and light absorption 

properties.15-17  GaSb has a 0.7 eV direct band gap with favorable carrier conductivities 

but the band gap is too narrow to be used for water splitting18.  The approximate 

semiconductor band edges of GaP and GaSb are shown with respect to the water splitting 

reaction in Figure 1.2.  Also, from previous research with GaSbN, it has been shown that 

a minimal incorporation of Sb into GaN, dramatic changes in the band characteristics 

were observed.19  The main idea is that if GaP is alloyed with antimony in the dilute 

antimonide regime, it is possible to produce direct band gap semiconductors based on 

GaSbxP(1-x) alloys that can fully straddle the water splitting reactions.  Unlike GaSbxN1-x 

alloys, the sizes of Sb with P are closer which should not result in drastic band gap 

reduction in GaSbxP1-x with small amounts of Sb. At the same time, alloying in the dilute 

antimonide regime should lead to an indirect to direct band gap transition and 

modification of optical absorption properties without introducing deep level trap states. 
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Most importantly, such alloys can easily be grown single crystal epilayers on to silicon 

substrates due to allowable lattice mismatch.  GaSbP has been the subject of a few studies 

and as such the dilute GaSb incorporation regime of GaSbP has not been studied. 

 

 

 

Figure 1.2 – Band edge placement of GaSb1, GaN3, InP4, GaInP2
5 and GaP6 with 

respect to the hydrogen evolution reaction and oxygen evolution reaction potentials. 
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In order to understand the amount of antimonide alloying needed for indirect to 

direct band gap transition, Density Functional Theory (DFT+U) calculations were 

implemented. The results showed that with less than 1% incorporation of GaSb into GaP, 

a direct band gap transition is observed.  Furthermore, the ternary alloy should straddle 

the water splitting reaction at compositions up to 3% GaSb.  Guided by these 

calculations, we propose the gallium antimonide phosphide ternary alloy system as a 

semiconductor system potentially capable of meeting the known requirements for 

efficient photoelectrochemical water splitting.  

 

1.5 Objectives of this study 

The primary objective of this project is the development of the III-V ternary alloy 

semiconductor, GaSbxP1-x, as the working electrode for an efficient photoelectrochemical 

water splitting device.  Specific goals include the following: 

• Develop methods for synthesis of GaSbP alloys both in terms of single crystal 

nanowires (NW) and films.  

• Design and build a HVPE reactor to synthesize uniform composition high quality 

thin film alloys of varying compositions of GaSbP. 

• Investigate process conditions for growing GaSbP epilayers on silicon substrates.  

• Understand structure-property relationships for GaSbP semiconductors as a 

function of antimonide composition and compare the experimental data to that 

predicted using DFT+U techniques 
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• Investigate photoelectrochemical properties of the GaSbxP1-x to understand the 

conductivity type of as-synthesized films, onset potential and photoactivity for the 

synthesized films.    

 HVPE is chosen as our primary growth technique because of high growth rates and 

cheaper precursors than more common III-V growth methods such as metalorganic 

chemical vapor deposition and molecular beam epitaxy leading to a process that is highly 

economical and practical. 

 

1.6  Thesis organization 

 The dissertation is organized into eight distinct chapters.   

• Chapter 1 provides motivation and rationale for the research path undertaken in 

this dissertation.  The motivation for needing a renewable fuel source, choosing 

PEC water splitting as the method to accomplish this and reasoning for 

synthesizing GaSbP as the photoabsorber for this cell are all discussed.  

Furthermore, the objectives to be accomplished during this dissertation are stated.   

• Chapter 2 gives both a theoretical and experimental background of PEC water 

splitting and the many approaches that have been undertaken to perform it.   

• Chapter 3 explains the equipment and methods used for all experimental 

techniques including synthesis, materials characterization and 

photoelectrochemical testing.  The rationale and motivation behind utilizing 

HVPE and reasoning for the way in which the reactor was built is also discussed. 
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• Chapter 4 discusses the preliminary studies done to motivate growth of GaSbP via 

HVPE including DFT+U calculations, co-evaporative synthesis of amorphous 

GaSbP NWs and plasma transport synthesis of single crystal GaSbP NWs.   

• Chapter 5 contains the results of HVPE growth and discussion of those results.   

• Chapter 6 contains the conclusions to be made from these results.   

• Chapter 7 will discuss future recommendations for experiments utilizing GaSbP 

and HVPE.   
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CHAPTER 2 

BACKGROUND 

 

In this chapter, a thorough background of PEC water splitting including the working 

principles, semiconductor classes that have been researched and state-of-the-art materials 

in the field is presented.  This review clearly shows that III-V materials have been the 

best performing class of materials to date and that ternary III-V’s provide the ability to 

grow high-quality, tunable band gap semiconductors that may have the ideal 

characteristics for PEC water splitting.  This review of semiconductor classes provides 

the rationale for investigating GaSbP for water splitting.   Also the advantages and 

disadvantages of having nanowire/microwire architectures versus epitaxial films for PEC 

water splitting.  Finally, the progress and challenges in using HVPE method for growing 

single crystal quality, III-V materials is reviewed.   

 

2.1 Working principles of the PEC water splitting cell 

Photoelectrolysis  

True PEC water splitting was first accomplished by Fujishima and Honda in 1972 via the 

catalysis of TiO2.20 The full reaction is written as: 

   (2.1) 
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The water splitting reaction consists of two half-reactions that take place at separate 

electrodes.  Reduction occurs at the cathode, forming gaseous hydrogen via the hydrogen 

evolution reaction HER, which proceeds as follows: 

  (2.2) 

The other half the reaction occurs at the anode where oxygen is released via the OER as 

follows: 

(2.3) 

By virtue of the two reactions occurring at separate electrodes, hydrogen and oxygen are 

capable of being evolved separately, captured and used later. 

Water splitting is a non-spontaneous reaction requiring a minimum ΔG = 237.2 kJ/mol or 

𝐸!"#! =-1.23V to carry forth. Utilizing the Planck relation, the required wavelengths to 

provide 1.23 eV or more energy can be obtained as shown below. 

(2.4) 

(Where, e is the electronic charge magnitude, E is the energy of the photon in eV, h is 

Planck’s constant, c is the speed of light under vacuum and λ is the photon wavelength in 

nm).   

Based upon the above relationship, wavelengths equal or less than 1010 nm will provide 

1.23 eV or more energy is required to generate the energy necessary to drive the water 
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splitting reaction. The Earth’s atmosphere filters out certain wavelengths of the solar 

spectrum and according to the Beer-Lambert law the intensity of solar radiation decreases 

exponentially with distance.  To accommodate for this, the Air Mass standard was 

developed and is referred to as “AM-X” with “X” representing the air mass coefficient 

and can be determined by the following correlation. 

 (2.5) 

Where I is the light intensity after it has passed a certain distance through the atmosphere, 

I0 is the intensity of light prior to reaching the atmosphere and θ is the angle between the 

light path and a point on earth.  The most commonly used air mass standards are AM0, 

AM1 and AM1.5 which were measured in the NIST G173-03 standard2.  AM0 represents 

the solar flux to be expected in space without the earth’s atmosphere to interfere.  AM1 

represents the solar flux at the point exactly normal to the surface of the earth.  AM1.5 

represents the average solar flux at 37° incident to the earth during the day and is the 

standard spectrum used for solar testing.  The AM0, AM1 and AM1.5G spectrum is 

shown in Figure 2.12.  
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Energy can be provided for PEC water splitting by utilizing the band gap of a 

semiconductor to absorb photons with sufficient energy.  In a basic Schottky type PEC 

water splitting cell, a single semiconductor is used as either the photo-anode to drive the 

OER or photo-cathode to drive the HER.  A more in depth discussion of semiconductor 

principles will be discussed later in this chapter.  When testing this type of PEC cell, the 

semiconductor is designated as the working electrode (WE) while the catalytic metal used 

for the other electrode is designated as the counter electrode (CE).  To understand at what 

relative potential reactions are occurring, a reference electrode (RE) such as Ag/AgCl is 

used as the third electrode.  A basic three-electrode photoelectrochemical water splitting 

Figure 2.1. Standard AM0, AM1 and AM1.5 solar irradiation spectrum from the 

standard tables for solar spectral irradiances ASTM G173-03.2 
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setup is shown in Figure 2.2.  

With the RE, bias is applied to the WE relative to the known reference potential based on 

RE used so that the working voltage of the WE can be known.  Under illumination, 

photons are absorbed by the semiconductor WE, split into electron-hole pairs (ehp) and 

utilized between the WE and CE to split water.    

Figure 2.2. Typical Schottky-type PEC water splitting testing cell 
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Semiconductor/electrolyte interface and the working PEC cell 

The most basic water splitting PEC cell arrangement is one containing a single 

semiconductor.  This type of configuration is referred to as a Schottky type PEC 

watersplitting cell.  More advanced multijunction cells are possible and provide increased 

theoretical performances due to increased absorption and built in layers to provide built-

in bias.  As such, only the principles of single Schottky-type interaction will be discussed 

here.   

When contact takes place between a semiconductor and electrolyte, the Fermi 

levels of both the semiconductor and electrolyte equilibriate with each other21,22. For 

discussion, a schottky type PEC water splitting cell with an n-type semiconductor 

photoanode and a metal cathode will be considered.  When considering an 

electrochemical interaction, it is helpful to utilize the electrochemical scale where voltage 

is referred relative to the normal hydrogen electrode (NHE).  All reference to energy 

level for the rest of this chapter will be in regard to the electrochemical scale. In this 

typical Schottky type configuration, the conduction and valence band energy levels need 

to straddle the HER and OER redox levels for un-assisted water splitting.  When contact 

is made between the SC and electrolyte, a capacitance is formed at the interface causing a 

positive charge to accumulate at the surface of the semiconductor.  This capacitance 

causes a Helmholtz layer in the electrolyte to be formed as the negative ions in the 

electrolyte are attracted to positive charges at the semiconductor interface.  Further 

discussion of this double layer can be found in the literature23-25.  It is due to this layer 

that the energy band levels stay pinned at the SC/electrolyte interface and don’t change 

during electrochemical reaction.  This energy level pinning is different for each 
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individual semiconductor/electroylyte system.  A change in the Fermi level of the 

semiconductor also results in a change in the bulk positions of the conduction and 

valence bands of the material, each shifting equally.  When a shift like this occurs, a 

bending of the energy band levels occurs between the bulk of the semiconductor and 

electrolyte interface resulting in a space charge region being formed with an electric field 

attracting the negative ions to the interface.  The direction of band bending has a direction 

determined by the Fermi band energy level of the SC compared to that of the redox 

potential of the electrolyte.  In an n-type semiconductor, the OER redox potential is 

positive of the semiconductor Fermi level.  Thus, whenever equilibriation occurs between 

the semiconductor-electrolyte interface (SCEI) a negative shift in bands occurs. 

This band bending creates a favorable pathway for photogenerated holes to be 

used by the OER at the SCEI while electrons are driven into the bulk of the 

semiconductor and ultimately to the metal cathode in order to provide electrons for the 

HER.  This clearly illustrates that PEC water splitting at the SCEI is a minority carrier 

driven process.  The catalytic metal material used as the counter electrode will have a 

density of carriers that is orders of magnitude greater than the SC and has the same Fermi 

level of the bulk SC. Under illumination, charges are generated that are opposite in 

charge to that of the electric field within the space charge region.  This causes flatening 

of the bands.  Under saturated illumination, these bands completely unbend to an energy 

level known as the flat band potential (Ufb) of the semiconductor.  In an n-type 

semiconductor, Ufb is the maximum possible Fermi level under saturated illumination in 

the semiconductor without applying external bias.  For p-type semiconductors, Ufb is the 

minimum possible Fermi level under saturated illumination without applying external 
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bias. 

Figure 2.3 shows voltage vs. distance diagrams for both working and non-

working semiconductor configurations for PEC water splitting.  For n-type 

semiconductors, in order to provide electrons thermodynamically capable of driving the 

HER at the metal cathode, the Fermi level of the cathode needs to be at a higher potential 

than the HER, therefore the Fermi level of the SC needs to be at this same energy level 

under illumination. Figure 2.3a-d show an n-type semiconductor that has the appropriate 

band straddling to perform water splitting but requires some form of external bias 

because the flat band potential is too high to easily provide electrons to the metal cathode 

to perform the HER.  Figure 2.3a shows the band edge positions of the respective PEC 

cell components prior to SC/electrolyte contact though the metal cathode/electrolyte 

contact has been made.  The semiconductor’s conduction, valence and flat band 

potentials are shown with respect to the HER and OER redox levels and the cathode 

Fermi level has equilibriated to that of the electrolyte redox potentials21,26.  Figure 2.3b 

shows the energy levels of the SCEI after contact has been made and equilibriation has 

occurred.  At the SCEI, the conduction band and valence band energy levels are pinned at 

the same energy as before contact.  On the other hand, the Fermi level of the 

semiconductor equilibriates with that of the electrolyte and this causes the conduction 

band and valence band energy levels in the bulk of the semiconductor to shift or bend 

with the Fermi energy level an amount equal to the difference between the electrolyte 

Fermi level and semiconductor flat band potential.  Figure 2.3c shows the SCEI band 

energy levels after illumination.  Ehps are created and the holes generated have an 

immediately favorable energetic pathway to participate in the OER.  The electrons 
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ejected into the conduction band flow through the back contact to the metal cathode 

whose Fermi level is at an energy level too low to drive the HER.  Figure 2.3d shows the 

same semiconductor/cathode configuration except with a provided external bias.  The 

bias is in a direction that gives the metal cathode a Fermi level higher than the HER, thus 

providing a favorable pathway for electrons to be used by the HER.  Figure 2.3e shows 

the ideal n-type semiconductor band energies to drive spontaneous water splitting under 

illumination.  The conduction and valence bands straddle the HER and OER and the flat 

band potential is at a higher energy level than the HER.  Upon equilibriation with the 

electrolyte and illumination, the Fermi level of the SC and subsequently the metal 

cathode provides a favorable energetic pathway to provide electrons to the HER.  Figure 

2.3f shows the ideal p-type band energy level configuration for Schottky type PEC water 

splitting.  The conduction and valence bands straddle the HER and OER just as in the 

case of the n-type electrode and the flatband potential is at an energy level slightly higher 

than the OER.  Ehp’s are created and electrons have an immediate favorable energetic 

pathway to drive the HER at the semiconductor surface.  Holes are driven to the metal 

cathode where the Fermi level is at an energy level favorable to drive the OER.  
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Figure 2.3: voltage vs. distance plots for various SC and metal counter electrode band 

energy level positions with respect to the OER and HER redox levels.  Figures 2.3a-d 

show band configuration of a non-working n-type semiconductor (a) before contact, 

(b) after equilibration with the electrolyte, (c) after illumination and (d) with an 

external bias to make the configuration functional for PEC water splitting.  



	  21	  

 

PEC Material Requirements:  

The most basic PEC water splitting cell configuration is the Schottky type water 

splitting cell that utilizes a single semiconductor.  This type of PEC cell has been 

extensively studied and as such, the materials requirements for efficient water splitting 

utilizing this type of cell are well known27.  Extensive research for the requirements for a 

tandem cell configuration have also been considered, the only place these cells majorly 

differ is the band gap(s) required for optimal efficiency.  For further considerations in this 

chapter beyond the band gap, only the single electrode configuration will be studied. 

First and foremost, the single semiconductor needs to have a minimum band gap 

1.7 eV and a maximum band gap of 2.2 eV.  This is to ensure the most efficient 

absorption and conversion of the visible light range where the highest density of solar 

energy is located.  It also provides more bias than the 1.23 V needed for water splitting in 

order to overcome different losses inherent to the PEC water splitting process.  A tandem 

device requires two semiconductors, one with approximately 1.0 eV band gap and the 

other with approximately a 1.7 eV band gap.  Other major requirements of the 

semiconductor are that it have appreciable charge carrier conductivity, band edge 

placement and reaction kinetics. To perform water splitting unless the semiconductor 

already has favorable conduction band potential higher than the HER, valence band 

potential lower than the OER and appropriate flat band potential with respect to the half-

reaction being driven by the SC.  The OER and HER must also be the favorable reactions 

at the SC surface and not another reaction such as a corrosion reaction.  Furthermore, 
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doping for conductivity can only improve a material to an extent and so the majority and 

minority carrier conductivities of the semiconductors also play a role in efficient water 

splitting.  Also of major concern for a semiconductor capable of performing efficient 

water splitting is that it should be stable in aqueous solution.  The current benchmark for 

this stability is that it be stable for more than 1000 hours but much higher stabilities will 

be necessary11.  Finally, and probably most importantly, the material needs to be 

abundant enough to make production affordable on a mass-scale.   

Efficiency 

 The ultimate parameter to be considered of an operating PEC cell is the efficiency 

at which it operates.  In order to measure the exact solar-to-hydrogen efficiency, a 

complicated PEC setup requiring a gas capturing and measurement set-up in order to 

measure every mole of hydrogen produced compared to each photon of incoming light is 

needed.  The next best alternative is to use a potentiostat/galvanostat to measure the 

energy generated at the semiconductor surface in comparison to all of the incoming light 

as shown in equation 2.628. 

                           (2.6) 

Where ε is the solar energy efficiency, Ip is the photocurrent measured at the 

semiconductor under illumination and Pt is the power of the total incoming light.  One 

major assumption of this efficiency is that the Faradaic yield is 100% meaning that all of 

the generated photocurrent is utilized for the water splitting reaction.  If current is being 
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generated by other reactions at the semiconductor surface such as corrosion reactions, 

this efficiency is not a true measure of water splitting efficiency.  The only way to rule 

this out is the complicated setup mentioned prior to this.  The other major assumption of 

this efficiency is that no external bias is used.  In order to account for external bias, 

modification can be done to equation 2.6 as shown in equation 2.7. 

      (2.7) 

Where Vbias is the external voltage applied between the semiconductor and counter 

electrode.   

 

2.2 State-of-the-art semiconductor review for photoelectrochemical water splitting  

Due to the many semiconductor properties required to be considered for PEC 

water splitting, one has to choose one of two routes when researching a semiconductor 

photoabsorber for PEC water splitting.  One option is to research a previously un-

researched semiconductor system and attempt to discover a semiconductor with all of the 

requirements to efficiently split water.  The other approach would be to take one of the 

many researched semiconductors and modify them in some way in order to make them 

suitable for water splitting such as adding protective coatings to materials that aren’t 

stable or doping to improve conductivity.  Many semiconductor material types have been 

explored for use in solar hydrogen production but none have fulfilled all of the 

requirements.  The material classes that have already been investigated fall into the 
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following categories: metal oxides, silicon based, metal chalcogenides and III-V 

materials.  The advantages and disadvantages for each of the classes of materials are 

discussed below.   

 

Metal Oxides:  Metal oxides have been heavily researched for photoelectrochemical 

water splitting.  This is largely because TiO2 was the first material to successfully 

demonstrate photoelectrochemical water splitting as shown by Fujishima and Honda in 

197220.  TiO2 as well as other 3 eV and wider band gap metal oxide semiconductors such 

as ZrO2, KTaO3 and SrTiO3 have conduction and valence bands that straddle both the 

HER and OER but their high band gap only allows them to absorb enough of the solar 

spectrum to have 2% maximum theoretical efficiencies4.  Cuprous oxide (CuO) has a 

favorable 2.0 eV direct band gap and bands favorable for use as a photocathode.  Gratzel 

et al have developed a cuprous oxide device that has the best performance of all current 

metal oxide semiconductors but shows photocorrosion in aqueous solution29.  Hematite 

has a 2.1 eV band gap but suffers from an indirect band gap, poor photovoltage, low 

minority carrier diffusion length and its conduction band falls short of the HER30-34.  

Major efforts have been taken to overcome these drawbacks such as doping with silicon 

and using nanomorphologies to reduce the amount minority carriers would have to travel 

to get to the surface of the material 35,36.   Tungsten trioxide (WO3) is a 2.6 eV n-type 

semiconductor that has been used as a photoanode for water splitting37-39.  It has decent 

photo absorption characteristics, good electron transport and high stability in acidic 

aqueous solutions.  The band gap however is too wide to absorb enough of the solar 

spectrum and limits the materials theoretical STH efficiency to below 3%.  It also has a 
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conduction band that falls short of the HER and as such would need some form of 

external bias to split water.  Copper tungstate (CuWO4) has a band gap of 2.2 eV and its 

band edges straddle the HER and OER40,41.  CuWO4 unfortunately has poor transport 

properties that need to be improved before it becomes viable for PEC watersplitting.  

Bismuth vanadate (BiVO4) has a band gap of 2.4 eV with band edges sufficient to run the 

OER but falls just short of the HER42-44.  The 2.4 eV band gap also limits its efficiency as 

much of the visible light region is not absorbed.  As such, van de Krol et al grew BiVO4 

utilizing a doping gradient with W and combined it in tandem with a Si solar cell to 

achieve STH efficiencies as high as 5.2%45,46.   

 

Silicon and Silicon Carbide: Due to its heavy use in integrated circuits and solar 

industries, silicon and silicon carbide have been studied heavily for use in PEC 

watersplitting.  p-type silicon has a band gap of 1.1 eV and well placed band alignment 

for use as photocathode in a two electrode device.  It also has the advantage of having an 

established market where low defect materials are easily obtained, interface junctions for 

monolithic devices are easily incorporated and mass production techniques are well 

established.  It unfortunately suffers from having an indirect band gap and corrodes over 

long term use though many efforts have been made to address these issues such as 

covalent attachment of methyl groups and ultra-thin layers of nickel.44,47-49 To date, the 

most efficient use of Si for PEC water splitting has been the device developed by Domen 

et al which incorporates three or four spherical Si p-n junction solar cells in tandem as the 

photoabsorber and encapsulated in epoxy for protection.  These Si photovoltaic cells 
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integrated between NiO and NiFe as the anode and cathode.  STH efficiencies of 7.4% 

and 6.4% were obtained for the 3 and 4 solar cell devices respectively. 

Silicon carbide has a band gap of 3.0 eV which, as addressed above, is far too 

large to efficiently absorb enough light but it straddles the HER and OER potentials.  By 

synthesizing a hydrogenated amorphous silicon carbide and alternating the carbon gas 

source, the band gap can be readily tuned between 1.9 eV and 2.3 eV, both n and p-type 

doped and easily integrated into amorphous Si tandem cells50,51.  The state of the art a-

Si/a-SiC tandem cell configuration using an RuO2 counter electrode as OER catalyst 

reaches a 6.1% efficiency and had an operation lifetime of over 500 hours52,53.  The major 

challenges still involved are the development of a surface barrier to address corrosion, 

improvement of current matching at each junction, improvement of surface energetics 

and better performing PV layers as the a-Si is currently limiting the cell to a 7.6% STH 

efficiency. 

Metal Chalcogenides: Metal chalcogenides markets have also seen much development in 

the thin film PV market and as such have also been looked at for water splitting.  

Tungsten sulfide (WS2) has a 1.4eV band gap and band edges straddle the HER54.  

Molybdenum sulfide (MoS2) has a 1.2 eV band gap and is stable in acidic condition 

making it promising as a photocathode but its conduction band falls short of the HER 

which would make it require an external bias to split water55,56.  MoS2 also shows a 

metallic behavior inhibiting its use as a photoabsorber.  Both Both WS2 and MoS2 have 

band gaps too narrow for unassisted water splitting.  As such, efforts have been made to 

study CuInGaS and CuGaSe2 by several groups due to their tunable direct band gap 
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nature by modifying the In:Ga ratio, but have misaligned band edges for water splitting 

and poor aqueous stability.57,58,59,60  

III-V Semiconductors: III-V materials are, to date, the best photoabsorber materials 

known.  III-V materials currently hold the records in both photovoltaic cells and 

photoelectrochemical water splitting.  Of the researched III-V materials for water 

splitting, it can be seen that III-V materials have performed closer to their thermodynamic 

potentials than any other class of semiconductor. 

Indium phosphide (InP) has a direct 1.35 eV band gap and band edges appropriate 

for use as a photocathode to drive the HER. 11-13% solar to chemical conversion 

efficiencies calculated under ideal operation conditions were reported by Heller et al by 

decorating InP with Ru catalyst islands, however, actual STH efficiencies of this 

magnitude have not been observed.61  

Gallium phosphide (GaP) is a well-known semiconductor with an indirect band 

gap of 2.3 eV, band edge alignment desirable both for photoelectrochemical water 

splitting as well as CO2 reduction,16,17,62 and appears to be stable as a photocathode for 

PEC water splitting under reducing conditions63,64 GaP is also desirable due to its low 

lattice mismatch with Silicon of .37%, which allows for the more economical growth of 

GaP epi-layers using silicon substrates as has been demonstrated by several groups.65-67 It 

unfortunately has an indirect band gap which causes a relatively large absorption depth in 

comparison to the relatively low minority carrier diffusion length68 and poor surface 

kinetics.63   

Gallium antimonide (GaSb) is also well-known with a direct band gap of 0.725 

eV69.  It has been interesting largely as a substrate due to its lattice parameter that 
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matches many other ternary and quaternary III-V compounds.  It has not however been 

tested for use in PEC water splitting.  This has largely to do with its low band gap, only 

allowing it to efficiently take advantage of a small part of the visible light spectrum. 

Much interest has recently been generated in ternary III-V alloys due to their 

ability to exhibit tunable band gap across a range of energies while still having strong 

electrical capabilities.  In fact, the current state of the art water splitting device is GaInP2, 

a III-V ternary alloy, with a 12.4% water splitting efficiency.70 GaInP2 has a band gap of 

1.83 eV but its valence band edge potential is higher than the oxygen evolution potential.  

To overcome this, Turner et al grew the semiconductor as a monolithic tandem cell with 

built in photovoltaic GaAs p-n junction.  The current challenges with this material are the 

costs of the GaAs growth substrates and photocorrosion of the material.  Furthermore, 

this GaInP2/GaAs multijunction strategy was used as the photoabsorber material for the 

ultimate project device generated by JCAP in 2015, which was able to generate 10% 

efficiency for 80+ hours12.   

Gallium nitride has a very wide direct band gap of 3.45 eV, band edge placement 

capable of splitting water and high stability as a photoanode for direct water splitting.  

Unfortunately, the wide band gap limits its efficiency to below 2% similarly to SiC 

making it very inefficient for water splitting.  Efforts have been undertaken however to 

alloy this material into ternary and quaternary structures in order to tune the band gap 

including the following: InGaN71, ZnO:GaN72, GaSbN19, GaAsPN73, and GaPN73.   

Another ternary III-V alloy, GaPSb has previously been researched by several 

groups.  Initially thought impossible to grow in epitaxial layers due to the 530oC 

miscibility gap between GaP and GaSb across the entire range of compositions, GaP(1-
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x)Sbx epilayers were still eventually synthesized by Stringfellow et al using 

organnometalic vapor phase epitaxy.74  The layers were grown in several discrete 

compositions with correlated photoluminescence responses but were localized at 4 

approximate compositions.  The composition and PL data obtained are as follows 

xSb1=.14/PLSb1=1.6eV, xSb2=.3/PLSb2=1.4eV, xSb3=.37/PLSb3=1.3eV and 

xSb4=.93/PLSb4=.794eV.  GaSbP has further been researched by other groups for its 

ability to form a Schottky diode with InP,75 as a vertical cavity emitting surface laser,76 

and the Stranski Krastananov mode growth on GaP.77 Electron transport in a GaPSb films 

have also been studied.78  GaSbP has not, on the other hand, been explored for use as a 

photoelectrochemical water splitting electrode and the indirect to direct transition has not 

been observed. 

 

Summary of advantages and disadvantages for each material class  

Metal Oxides have great aqueous stability but generally have band gaps that are 

too wide, poor light absorption and poor charge carrier transport.  The exception to this is 

cuprous oxide, however it shows poor stability.  Silicon benefits from having good band 

edge placement as a photocathode and from being an already established technology for 

high-quality crystal growth.  Silicon, however, suffers from an indirect band gap and 

corrosion in aqueous solution.  Amorphous hydrogenated silicon carbide also benefits 

from the established silicon technologies and an ability to tune the band gap of the 

material.  Corrosion, poor energy matching at junctions, surface energetics and PV layers 

for tandem cells need to be improved for a-SiC to be viable.  Metal chalcogenides tend to 

have low band gap, poor band alignment and poor aqueous stability.  III-V materials have 
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tunable band gaps within the visible light absorbing region, superb absorption 

characteristics and high charge carrier mobilities.  The biggest drawbacks of using III-V’s 

are that most have stability issues in aqueous solutions, expensive and toxic precursors 

and expensive substrates are required.  Regardless of this, III-V materials have performed 

closer to their theoretical efficiencies than any other class of materials. 

 

2.3 III-V nanowires vs. epitaxial layers 

 There are two general approaches towards the state of the art water splitting 

devices being researched currently.  Both have shown their strengths and limitations.  

One of these approaches involves growing semiconductors in high quality planar layers 

utilizing techniques such as MOCVD. These techniques provide precise control over 

semiconductor quality and layer thickness but are expensive. The other approach is to 

grow semiconductors with nanostructured morphologies. Nanostructuring provides 

greater surface areas than planar films that allow for increased light absorption and 

surface reaction area. These types of morphologies are more difficult to control however 

and proper electrical contact between the nano-structures is not always feasible.  

 There are multiple ways to nanostructure a semiconductor.  Nanowires are one of 

the more popular routes to nanostructuring as it provides desirable attributes to assist in 

PEC water splitting.  One of these advantages is due to the high surface to volume ratio 

provided by nanowires.  With proper orientation, this provides increased surface area for 

light absorption in the same electrode area compared to planar films.  This also provides 

increased area for reaction to take place.  Nanowires can also be grown single crystalline, 

providing fewer grain boundaries 33,35,79-85 where recombination can occur, than a 
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polycrystalline film, assuming proper electric contact can be made to each nanowire 

through proper device structuring86-88.  High aspect ratio nanostructured morphologies 

like nanowires and nanorods also provide short diffusion distances to the surface due to 

minority carriors only needing to diffuse radially to the semiconductor surface.  This 

helps to mitigate recombination due to minority carriers having to traverse distances 

longer than their respective diffusion lengths as shown in materials such as hematite89. 

Nanostructuring films for PEC has demonstrated better PEC performance than using 

amorphous and multicrystalline thin films in several systems such as TiO2, ZnO and 

Hematite90-93. 

On the other hand, all of the best performing solar devices to date have come from 

high quality planar devices, photovoltaics and PEC included.  This has to do with the 

ability to finely control the layer size and quality of crystal grown using metal organic 

chemical vapor depositions (MOCVD), molecular beam epitaxy (MBE) and atomic layer 

deposition (ALD) techniques among others.  All photovoltaic records are held by 

materials containing single crystal layers94.  The PEC water splitting record also uses 

high quality single crystalline materials5.  Quite plainly, high-quality, single crystal layers 

take the most advantage of semiconductor electrical properties while limiting unwanted 

effects like recombination.   

Current state of the art research on water splitting focused on achieving high 

efficiencies by growing photovoltaic grade single crystal materials. Faster progress could 

potentially be made with single crystal nanowire arrays but high surface to volume ratio 

could introduce high density of surface states within the band gap that could hinder the 

photo-electrochemical water splitting performance.  



	  32	  

 

2.4 Halide vapor phase epitaxial growth of III-V materials 

HVPE is a relatively unexplored technique but with tremendous promise. HVPE 

provides much higher epitaxial growth rates than MOCVD and MBE (100+ microns per 

hour) and doesn’t require expensive precursors necessary for MOCVD making it a much 

cheaper alternative as well.  Due to lower required operating temperatures, HVPE should 

also require a much lower energy input than doing high-pressure solution growth of 

semiconductors.  The process however produces byproducts that are either toxic or 

corrosive and thus requires extreme care in designing the reactor. For example, HVPE 

reactions can require gas phase species from group V of the periodic table such as 

ammonia, phosphine, and arsine.   

 Nitrides have been the most explored class of III-Vs grown by HVPE13,95-110.  

InN, GaN, and AlN were all grown in single crystalline layers by Koukitu et al on several 

substrates including sapphire (Al2O3), silicon carbide (SiC) and gallium arsenide (GaAs) 

111.  Gallium nitride was grown utilizing a five-zone tube furnace with NH3, N2 and 

HCl/N2 gas inlets.  The HCl/N2 stream was passed over a gallium boat held at 

temperatures between 500-1000 °C to react near the initial zones of the heater and yield 

GaCl, GaCl2 and GaCl3 in the gas phase.  The ammonia and GaClx gases then react where 

the substrate is held in the final zone of the heater at 500-900 °C.  Across the reviewed 

publications, this is the typical reactor scheme used for HVPE with variations typically 

being changes in orientation to vertical setups or utilizing different heating mechanisms 

such as induction heating.  Koukitu et al also grew InN and AlN in a similar manner, 

replacing In or Al in the Ga boat.  This reactor scheme achieved epitaxy rates of over 120 
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microns per hour in the case of AlN, 60 microns per hour in GaN and .5 microns per hour 

in InN.  Furthermore, many substrate removal techniques to yield free standing wafers 

were explored including laser lift-off, self-separation, mechanical polishing, reactive-ion 

etching, chemical etching and spontaneous self-separation.  The Koukitu group also grew 

GaAs (1 monolayer/ 32 second cycle) and InGaAs by atomic layer epitaxy techniques 

(3Å/10s) utilizing HVPE112,113.   

 Gallium phosphide (GaP) was grown by Sudlow et al using a similar reactor 

scheme except instead of directly utilizing HCl to transport the gallium hydrogen is 

bubbled through a PCl3 source, which reacts and yields both HCl and P2 in the gas 

phase114. The HCl then reacts with a pool of Ga and then the P2 and GaClx react at the 

deposition zone to form epitaxial GaP at growth rates of 80 microns per hour.  Yang et al, 

were able to grow InGaN NWs across the full ternary compositional range of InxGa1-x 

making HVPE also promising for exploring different compositions of ternary III-V 

alloys, furthermore these samples were characterized for PEC water splitting 

performance but incapable of splitting water 13. Epitaxial InP was grown by Park et al 

reaching growth rates of 20 microns per hour 115.  At the time of this writing, GaSb has 

not been synthesized by HVPE techniques.   

 As seen above, HVPE has been accomplished for many III-V alloy systems in 

several reactor schemes.  Utilizing HVPE, growth rates near or above 100 microns per 

hour have been observed for several systems and ternary alloys have been grown 

throughout their ternary composition range. Furthermore, the typical precursors used are 

available on a large scale due to wide use in industry making the process economical as 

well. The high growth rates and economical precursor costs provided by HVPE could 
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lend the process to scalable synthesis schemes for advanced III-V manufacturing.  Many 

challenges must be overcome to utilize HVPE however as these very same precursors are 

toxic, corrosive and pyrophoric, however, making sophisticated safety systems and 

redundancies mandatory when utilizing this technique on any scale.  To date GaSbP 

alloys have not been synthesized using HVPE.  On the other hand, GaSbP has been 

grown via other epitaxy techniques and Sb-halide precursors such as SbCl3 are readily 

available making HVPE a well-suited candidate for enabling GaSbP epitaxy. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

 

This chapter presents the methods undertaken for computation and to complete these 

studies. The various approximations and parameters utilized to perform these DFT+U 

calculations on the GaSbP system are explained.  This is followed by the procedures for 

growing GaSbP nanowires in reactive vapor transport experiments done on GaSbP.  After 

this, the design, assembly and operation of the HVPE reactor will be discussed.  Next, the 

structural and optical characterization techniques utilized to study the grown samples are 

discussed.  Finally, the photoelectrochemical techniques undertaken will be discussed.  

 

3.1 Computational Techniques: Density Functional Theory  

DFT+U calculations were utilized in collaboration with Professor Madhu Menon 

at University of Kentucky to investigate the structure and band edge properties of GaSbP.  

DFT+U has shown tremendous value for predicting band gap in recent reports1,19,116. 

However, fitting existing data can yield negative U values117-122.  DFT+U calculations 

approximated at the Perdew-Burke-Ernzerhof approximation level of the generalized 

gradient approximation.123  These calculations were implemented using the Vienna Ab-

initio simulation package124-126. Core electrons are described by the projected augmented 
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wave potential 125,126. To more accurately address band gap estimation, the Hubbard 

correction parameter, U, was utilized116 first implemented by Dudarev22.  Convergence 

testing led to a 2x2x1 centered pack being utilized for k-vector sampling.  These k-values 

were used in density of states calculations. A kinetic energy limit of 520 eV was deemed 

acceptable for complete convergence of total system energies within 1 meV and in order 

to accelerate convergence Gaussian smearing of .05 eV was chosen.   Optimal atomic 

positions were converged upon when each atom had less than 5meV/A force on it. 

Structurally optimized supercells were determined before moving onto density of 

states calculations.  U values for the GGA+U calculations were as follows: and Up(Sb)= -

4.2 eV, Ud(Ga) = 6.5 eV and Up(P) = -14.5 eV.  Other values for U were set to zero.  

Both experimental and theoretical data were utilized to fit band gap and density of states 

calculations when possible.  Convergence for band gap calculations was set to 10-6 eV.   

 

3.2 Reactive Vapor Transport Method for Growing GaSbxP1-x Nanowires 

The first sets of synthesis experiments were performed using a reactive vapor 

transport.  Gallium antimonide and gallium phosphide powders were ball milled together 

into a powder and placed in a boronitride (BN) crucible.  The BN cup with a quartz 

substrate on top was then placed on a heater inside of a chemical vapor depositon (CVD) 

reactor that was pumped down to 3.5 millitorr and purged several times with nitrogen.  

The heater was then raised to temperatures between 650°C and 900°C and the powders 

were able to be evaporated together and react at the lower temperature quartz substrate at 

the top of the BN crucible.  
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The second set of synthesis experiments were performed using reactive transport 

employing an ASTeX AX 5310 microwave plasma reactor. Intrinsic (111) oriented 

silicon substrates were first prepared using standard RCA SC1, HF treatment and SC 2 

cleaning procedures to ensure the removal of trace metals, organic compounds and native 

oxides at the silicon surface. Ga and Sb metals were placed on opposite sides of a 

graphite susceptor with clean growth substrates placed in between.  Iron and quartz were 

also used as substrates in subsequent experimentation.  Hydrogen was bubbled through 

di-tert-butyl-phosphine (DTBP) precursor held at 720 torr at a rate of 20 sccm. Hydrogen 

was used at a flow rate of 200 sccm. The reactor was cycled to a 10-2 torr vacuum three 

times then filled with hydrogen stream to an atmosphere of 100 torr.  The plasma was 

then ignited and adjusted to plasma power between 800 and 1000W.  Upon reaching the 

target plasma power, the DTBP stream was introduced and the plasma reaction was 

allowed to carry out for two hours.  

 

3.3 Halide Vapor Phase Epitaxy Reactor 

Previous efforts have used MOCVD and MBE to grow GaSbxP(1-x) films74-76.  MOCVD 

requires precursors that are very expensive such as trimethyl-gallium, trimethyl-antimony 

and phosphine.  Molecular beam epitaxy requires extremely low pressures, extremely low 

growth rates and high operation costs (heating and vacuum).  High pressure solution 

growth offers high growth rates and high quality for growing binary III-V 

semiconductors, it requires high operation costs however (high pressure and heating) and 

is incapable of growing many ternary alloys due to miscibility gaps under equilibrium 

conditions.   



	  38	  

 HVPE is another CVD process capable of growing III-V epilayers.  Relative to 

the aforementioned techniques, there are very few scientific reports available on HVPE 

synthesis of III-V materials.  In a review of III-V materials grown by HVPE less than 20 

scientific reports were found among all of the III-V materials.  The primary reason 

behind this is due to the dangerous nature of the precursors involved for reaction.  A 

typical HVPE reactor will utilize HCl gas to generate group III gas phase precursors such 

as GaCl.  Furthermore, to provide group V column gas phase precursors gases such as 

ammonia or phosphine are required.  These gases require the utmost in regard to safety 

and this drives many researchers away from wanting to use these reaction schemes.   

 HVPE offers many advantages over the aforementioned growth techniques as 

well.  The precursors required for doing reactions are industry standards and are widely 

and affordably available, especially in comparison to MOCVD precursors.  HVPE also 

provides much higher growth rates with as high as 100+ µm/hr in comparison to typical 

growth rates of 5 µm/hr for MOCVD and 1 µm/hr for MBE.   It is also a non-equilibrium 

growth technique potentially enabling the growth of ternary and quaternary alloys. Here, 

a HVPE reactor is designed and built to be utilized for the growth of GaSbP epitaxial 

layers.  The reactor was built with the utmost safety in mind. 

 The initial reactor scheme proposed can be seen in Figure 3.1.  In this scheme, 

HCl gas and PH4 gas would be flowed over Sb and Ga boats held at different 

temperatures where the HCl would react with the Sb and Ga to form SbCl and GaCl gas 

species.  The GaCl, SbCl and PH3 would react at the 3rd deposition temperature zone to 

form GaSbP.  A thorough discussion of reaction chemistry is discussed in Chapter 5. 
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 This proposed scheme was the initial scheme pursued for the HVPE reactor.  

However, the use of ultra-pure HCl gas and highly toxic phosphine makes the above 

scheme a difficult proposition.  

Figure 3.1 An illustration of a reaction scheme attempted for HVPE. 

Another possibility is to use PCl3 for phosphorous source. When placed in a 

bubbler, H2 gas can be flowed through the bubbler in order to not only provide gas phase 

phosphorus, but reacts with the PCl3 vapor to give both HCl gas and P2.  This is much 

easier to maintain than both HCl and PH3 gases and is much easier to obtain.  

Furthermore, PCl3 is an abundant industrial material making it readily available and 

affordable. 

 
Figure 3.2 – Reaction scheme including PCl3  chemistry 
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 The reaction scheme involves flowing H2 through the PCl3 bubbler to produce 

HCl and P2 gases.  The HCl gas reacts with Ga and Sb held at different temperatures to 

form GaCl and SbCl gases.  The GaCl, SbCl and P2 gases react at the deposition zone 

held at a third temperature.  The exhaust gases are then pumped through a KOH bubbler 

to neutralize both acidic gases and phosphorus containing gases. This reactor scheme was 

approved with the condition that a third heating source be on top of the in-house provided 

two-zone furnace and appropriate engineering measures be taken to make the process 

safe.   

  

 

Figure 3.3 Process flow diagram of custom-designed HVPE reactor  

 

3.3.1 Reactor Assembly  

A process flow diagram of the built reactor is shown in Figure 3.3.  The hydrogen line is 

split into two lines each is controlled by a MKS mass flow controller.  The first line 

provides only H2 to the reactor at rates between 1-1000 sccm.  The second line provides 

H2 to the PCl3 bubbler at rates between 0.1 and 100 sccm. Having this H2 bypass allows 
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facile control over both the partial pressure of PCl3 and H2/HCl ratio provided to the 

reactor.  Just after the bubbler, an MKS type 640 pressure controller valve holds the 

bubbler at a chosen operating pressure.  The amount of PCl3 available for carrier gas to 

transport out of the bubbler is controlled by the pressure on the bubbler.  The higher the 

pressure maintained on the bubbler, the lower the ratio of PCl3 available to be 

transported.  With these controls, the flow rate of PCl3 transported to the reactor can be 

estimated.  Pyrometer readings of the bubbler during operation show that it is 

approximately 35°C +/- 3°C.  At the temperature, thermochemical data from JANAF 

tables were utilized to determine that PCl3 at 35°C has a vapor pressure of 150 torr.  

Utilizing this partial pressure, the bubbler pressure and the flow rate of the carrier gas, the 

molar flow rate of PCl3 provided to the reactor can be estimated as shown in equation 3.1. 

 

𝑚!!"! = 𝑝!"#! ∗ 𝑃!"!!#$% ∗ 𝑉!"##$%# (3.1) 

 

Where 𝑚!!"!is the molar flow rate of PCl3 transported from the bubbler, 𝑝!"#!is the 

partial pressure of PCl3 bubbler, 𝑃!"!!#$%  is the pressure the bubbler is held at and 

𝑉!"##$%# is the volumetric flow rate of gas being passed through the bubbler. 

Manual valves are present for both the H2 and PCl3 lines just before entering the 

reactor chamber.  These valves proved a positive shut-off for the precursor gases and add 

another level of safety to the process.  The reactor chamber consists of a quartz tube with 

compression vacuum fittings to allow its use as a CVD reactor.  The quartz tube is placed 

inside of an MTI OTF-1200X-II tube furnace.   
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Just after this two-zone tube furnace, an induction heater provides the third 

heating zone.  An induction heater adds functionality beyond the capabilities of the tube 

furnace.  The induction heater can heat up at far greater rates than the tube furnace and 

can reach temperatures of 2000°C with ease while the tube furnace struggles to get above 

1000°C.  The ability to attain temperatures as high as 2000°C enables any required 

temperature for III-V growth to be achieved. To pull the lowest vacuum, a large manual 

Figure 3.4 – Photographs of the assembled reactor.  The precursor boats for Ga and Sb 

are shown in (a) and (b).  Process readouts and controllers are shown in (c).  An 

overview of the reactor is shown in (d).  The induction heater during operation is 

shown in (e).  The PCl3 bubbler is shown in (f). 
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control valve was used, however, during operation a pressure control valve with a very 

small orifice  was used.  The gases are then pumped out of the vacuum pump where they 

will be treated by a KOH bubbler (further description below) then subsequently diluted 

with air by at least 10 times. 

 Photographs of the assembled reactor are shown in Figure 3.4.  In Figures 3.4a 

and 3.4b, the quartz boats holding Sb and Ga metals are shown.  In Figure 3.4c, process 

controls and readouts for the reactor are shown.  In Figure 3.4d, an overview of the 

reactor is shown from outside of the safety enclosure.  In Figure 3.4e, the induction heater 

during operation is shown and finally in Figure 3.4f the PCl3 bubbler is shown. 

3.3.2 Safety Considerations 

Even though major safety hazards were overcome by utilizing the PCl3 chemistry 

over HCl and PH3. As such, the utmost in safety is required when preparing the reactor, 

operating the reactor and even when the reactor is not in use.  First and foremost, the 

reactor was built inside of a custom-built safety enclosure that is held under negative 

pressure during operation such that if the first line of defense (the reactor chamber) were 

to be breached, any reactants released would be contained within this safety enclosure.  

All controls were removed from reactor elements inside the enclosure, such as the 

temperature controls for the tube furnace, and mounted to the outside of the safety 

enclosure in order to enable complete operation of the reactor from outside of the safety 

enclosure.  Furthermore, a PH3 and H2 detector is present inside the reactor enclosure. A 

thermocouple is also embedded in the ceiling of the safety enclosure so that temperature 

inside the safety enclosure can be monitored. 



	  44	  

 Consideration has also been taken for any gases that do not react during operation.  

Immediately following the vacuum pump is a bubbler filled with 1M KOH.  GaCl, SbCl, 

HCl and PH3 all readily react with 1M KOH such that any of these exhaust gases that 

pass through the bubbler should be neutralized.  Furthermore, an air dilution line is added 

after the bubbler that dilutes any remaining undesirable gases by at least 10 times to safe 

levels. 

 

3.3.3 Operation of Reactor 

 

Figure 3.5 (a) temperature controllers for the tube furnace and (b) temperature 

programming for tube furnace ramping. 

 

Function of the tube furnace’s two temperature zones is controlled by temperature 

controllers for each zone mounted to the front of the safety enclosure as seen in Figure 

3.5a.  Control of the tube furnace works utilizing a typical temperature ramp scheme for 

each temperature zone as presented in Figure 5.5b.  In order to do this, values for C1, t1, 

C2, t2, C3, t3 and C4 are required.  C1 represents the starting temperature of the tube 

furnace. The amount of time it takes to ramp from the starting temperature (C1) to the 

operating temperature of the zone (C2) is indicated by t1 and was determined by trial and 
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error to be 35 minutes.  This is the fastest the tube furnace can ramp to the highest 

required temperature, in this case the Ga zone.  Upon reaching operating temperature 

(C2), the amount of time for reaction at this temperature is represented by t2 and in this 

case is set to 1 hour.  C3 is again set to the operating temperature (same value as C2) 

required by the reactor and t3 is the amount of time required for the tube furnace to cool 

down (1 hour in our case) back to the starting temperature (C4, same value as C1 in this 

case).  

 

 An induction heater provides the necessary operating temperature at the 

deposition zone. A pyrometer is used for measuring the temperature at the substrate 

heater through a viewport located at the end of the reactor.  The induction heater and 

pyrometer are shown in Figure 3.6a and the ON/OFF controller and power switch are 

shown in Figure 3.6b.   In order to keep wear and tear on the induction heater down, a 

duty cycle of 50% was maintained during operation resulting in an approximate 25°C 

temperature hysteresis at the carbon susceptor.  It is recommended that future work be 

undertaken to reduce the size of this hysteresis to within 5°C or alternatively implement a 

PID control loop to allow precise temperature control of the induction heater. 
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Figure 3.6 Photographs showing induction heater, pyrometer and on/off controller in the 

HVPE reactor. 

 

PCl3 bubbler: The PCl3 bubbler shown in Figure 3.7b was purchased from STREM 

chemicals prefilled with PCl3.  An MKS type 640 pressure control valve controls the 

pressure of the PCl3 bubbler at all times.  The 640 control valve has a built-in capacitance 

manometer and solenoid valve.  Utilizing a set point provided by an MKS type 247 

process controller, the solenoid valve opens and closes in order to maintain the set 

pressure.  The PCl3 bubbler is shown in Figure 3.7a. Pressure in PCl3 bubbler is 

maintained at all times. 
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Figure 3.7 (a) the PCl3 bubbler assembly and (b) MKS Type 247 gas controller that 

controls gas flow rate and bubbler pressure.  

 

Typical operating procedure: Upon loading the precursors and deposition stage into the 

reactor, the following typical operation procedure is utilized.  First, vacuum is pulled on 

the reactor down to 1 torr and cycled to 500 torr with H2 three times.  This purges 

virtually all O2 and other undesirable gases from the system.  After this purge cycle, the 

reactor pressure is filled to 500 torr with H2. Once reactor pressure is reached, the H2 

flow is set to a certain rate for operation (125 sccm typically) and the deposition zone is 

heated to the deposition temperature (TDep).  This is done prior to heating the Ga and Sb 

precursor zones in order to keep the condensation of reactants from occurring at the 

deposition substrate surface and only the epitaxial reaction to occur when the appropriate 

amount of precursors are present. 

 The tube furnace takes approximately 35 minute to heat up to operating 

temperatures.  Alongside heat-up of the Ga and Sb precursor zones, PCl3 is gradually 

added to the reactor in 5 sccm increments so that phosphorus is available for reaction as 

the Ga and Sb reactants are first generated.  The flow of PCl3 is started once temperature 

for Ga reaches 450 °C then increased by 5 sccm with every 50°C increase until 30 sccm 
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of PCl3 flow till Ga temperature reaches  700°C. Improvement in this ramp-up procedure 

could aid in better nucleation and subsequently crystal quality.  

Upon reaching precursor temperatures, process conditions are kept constant and 

the reaction is allowed to carry out for 1 hour.  The shutdown is done using the following 

procedure. First, the H2 flow rate is increased to 300 sccm and the tube furnace is shut 

off.  The hydrogen flow rate is increased in order to dilute the available reactants during 

shutdown.  Unfortunately, just as it took 35 minutes for the tube furnace to heat up, it 

takes nearly twice as long to cool down so as much as possible needs to be done to limit 

deposition during this stage of the experiment.  As the tube furnace cools down, the PCl3 

is gradually shut off in the opposite manner as they were turned on.  As the Ga 

temperature is decreased from 700 °C to 450 C,  the PCl3 flow is decreased by 5 sccm.  

Instead of just shutting off the flow through the PCl3 bubbler at this temperature, flow 

through the bubbler is diverted through the bypass line and the H2 is allowed to purge any 

remaining PCl3 from the line leading to the reactor.  Upon TGa reaching 100°C or lower, 

the induction heater is switched off and allowed to cool down.  Finally, a H2 purge cycle 

is performed 3 times to remove any unwanted gases from the system.  The reactor is then 

vented and the samples are removed using the following unloading procedure. 

 

Unloading/Cleaning/Reloading Procedure: There are several necessary steps to prepare 

the reactor for operation.  At the end of operation of the reactor, a vacuum/purge with H2 

gas should have been performed.   Pumping is continued until the pressure inside reactor 

reaches approximately 1 torr then refilling it to 500 torr with H2 three times. The reactor 

should then have been vented to the atmosphere and allowed to set overnight.  After this 
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has been done, the following procedures were required between each experiment 

performed in the reactor.  Justification for each step is also included. 

 

(a) Perform a vacuum/vent cycle 3 times before opening the reactor: The hydrogen 

purge cycle performed at the end of each HVPE experiment was used to purge 

any reactant gases generated during each experiment.  Unfortunately, there are 

also some reactions that can occur between phosphorus and oxygen.  In order to 

mitigate these gases, vacuum should be pulled to 1 torr, then increase to 

atmospheric pressure three times before opening the reactor and extracting the 

precursor boats and carbon suscepter that holds the sample. 

(b) Remove the precursors and sample from reactor chamber: Improvements in 

procedure have allowed all three reaction elements from the front of the reactor at 

the KF flange between the gas inputs and quartz tube compression fitting.  Using 

long metal rods with hooks attached at the end, the precursor boats and substrate 

heater were hooked on to in order to pull them out of the quartz reactor.  By 

accessing only the front of the reactor, the rear of the reactor where the majority 

of unwanted deposits was left undisturbed.   

(c) Replace empty stage and bake at 900°C for 1 hour under H2: After removing the 

deposit, the carbon stage was replaced. The method for loading the carbon 

susceptor is somewhat tedious with the current reactor design as it required access 

of the back of the reactor where unwanted GaCl and P deposits have accumulated.  

Future improvements are needed so that these deposits are avoided. These 

deposits generated gas cloud that made it difficult to hold the temperature stable 
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at the deposition zone.  The gas clouds were caused by previous GaCl deposition 

in the reaction area and as such needed to be baked off in order to stop the 

generation of a gas cloud during an experiment. 

(d) Remove stage after repeating purge/vent cycle: After performing both a hydrogen 

purge cycles 3 times and an oxygen purge cycle 3 times.  The carbon susceptor 

was removed from the reactor chamber in the same manner as step 2. 

(e) Clean carbon susceptor: Inevitably during each experiment there was some 

deposition on the carbon stage as shown in Figure 3.8.  This deposition was 

removed before future experiments were performed.  The deposits were finely 

sanded off the stage leaving it flat and smooth for the next reaction.  

 

Figure 3.8 – Carbon susceptor with deposition from previous reaction. 
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(f) Clean the pressure control valve: During the course of an experiment deposition 

occurred at the pressure control valve.  The disassembled pressure control valve 

with deposits on it is shown in Figure 5.9a.  The orifice for controlling the 

pressure is actually quite small and as such any deposition can cause the valve to 

stick.  As such, the pressure control valve was cleaned after each experiment.  

This required disassembling the VCR fittings on each side of the pressure control 

valve then completely disassembling the valve inside of the fume hood.  The 

disassembled components were then ultrasonicated in methanol for 30 minutes, 

rinsed and ultrasonicated in a new methanol solution for 30 more minutes.  

Removal of the deposits after cleaning is clearly shown in Figure 5.9b.  The valve 

was then reassembled and placed back onto the reactor utilizing two new VCR 

gaskets. 

Figure 3.9 Pressure control valve orifice before and after cleaning procedure. 
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(g) Change the pump oil: Generated reactants reacted with the typical pump oils used 

in a rotary vane pump.  This caused the failure of 3 pumps over the course of 

these experiments.  Furthermore, this reaction caused vapor pressures (60+ torr 

has been observed) to be emitted from the pump oil once the pump was heated up.  

As such, after each experiment it was necessary to change the oil in the pump.  

This required removing the vacuum connections from the pump and removing the 

pump from the safety enclosure.  The contaminated oil was then drained out of 

the pump.  The pump was then refilled with flushing fluid and operated for 1 

hour.  The flushing fluid was then drained out of the pump and the pump was 

filled with technical grade white vacuum pump oil.  Finally, the pump was 

reassembled back into the reactor.  

(h) Replace/refill precursor boats: After each experiment the quartz precursor boats 

were weighed to see the amount of each precursor lost during the experiment.  An 

appropriate amount of Sb or Ga was then loaded back into the boats and replaced 

into the reactor. 

(i) Treat Si substrate: In order to remove the native silicon oxide as well as other 

organic or metal deposits, a solution of HCl:HF:HNO3:DI Water in a 1:1:1:1 ratio 

was used to etch the samples for 1 hour.  The samples were then cleaned with DI 

water and placed on the carbon susceptor to be loaded into the chamber.  Once 

this step was performed the next experiment needs to be run without any breaks.   

The reactor could not be loaded then left overnight because this would yield 

enough time for the Si substrate to oxidize and the vacuum pump could not be 

operated safely overnight. 
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(j) Reload and position precursors and stage: Precursor boats were loaded into the 

reactor from the front and positioned in the middle of their respective temperature 

zones, the substrate heater was loaded from the back of the reactor and exact 

position was measured using a premeasured rod. 

(k) Operation of reactor: Finally, the experiments were conducted at sub-atmospheric 

pressures around 500 torr to allow for gas flow inward in the case of leaks. 

 

The above rigorous list of procedures required to prepare the reactor for operation clearly 

illustrates the need for improvements to the reactor. Several recommendations are 

provided to make the process an inherently safer process. 

 

3.3.4 Problems and Troubleshooting: In operation of the reactor, there have been many 

complications that were unforeseen during the design of the reactor.  For example, when 

designing the reactor, excess precaution was taken so that the excess reactants would be 

captured after they left the vacuum pump.  What wasn’t considered was just how 

detrimental these reactants could be to everything deposited on from the deposition zone 

to the rear of the reactor, vacuum pump included.  Another unforeseen phenomenon were 

the gas clouds generated during operation of the reactor that inhibited line of sight to the 

deposition stage causing the on/off control to put the induction heater into an infinite 

work loop where it could heat the substrate heater to temperatures well above the 

temperature of quartz, representing a major safety hazard in the case of a major breach to 

the reactor under operation.  During the course of the experimentation, many of these 

problems were overcome.  These problems and their solutions are discussed here.   
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 One of the first problems encountered was the difficulty in making leak-tight 

vacuum connections to the quartz tube utilizing the metal to quartz compression adapters 

that were provided with the tube furnace.  Without a leak-tight seal, oxygen will leak into 

the reactor during operation and easily oxidize the samples grown.  Furthermore, in the 

adapters current design, the quartz made direct contact with the stainless steel on the 

inside of the adapters which caused cracking of the tube.  An extra set of smaller O-rings 

were added to the ridge where quartz/metal contact occured so that, when vacuum was 

pulled, the quartz tube seated itself up against the O-ring inset in the adapter.  Vacuum 

leaks at the quartz tube adapters stopped occurring after this modification.  A photo of a 

compression fitting and a diagram of the fitting before and after modification are seen in 

Figure 3.10.  

 

  

Figure 3.10 Photograph of quartz vacuum compression adapter and diagrams showing 

the fitting before and after modification. 
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The next major problem that had to be overcome was the consequences of 

deposition on the reactor tube and the gas cloud generated.  In the initial configuration of 

the reactor, the pyrometer’s line of sight was from the side of the reactor through the 

quartz tube as can be seen in Figure 3.6a.  Within the first set of experiments however it 

was quickly realized that deposition completely disabled the ability to control 

temperature at the reaction zone.  In order to overcome this, a viewport was installed at 

the rear of the reactor and the pyrometer was positioned to look through this viewport 

where no deposition should occur as shown in Figure 3.11.  This unfortunately did not fix 

the issue and needs further modifications of avoiding such deposition.   

 

 Lastly, due to the detrimental effects of the excess reactants generated during 

synthesis; many vacuum leaks were found during the course of the experimentation done 

using the HVPE reactor.   Each of these incidences will not be discussed however the 

method for detecting these leaks will be.  Typically to check for vacuum leaks, methanol 

can be sprayed on a seal while the reactor is under vacuum and an increase in pressure 

can be seen if there is a leak.  This method is not always reliable when the leak is very 

Figure 3.11 Diagrams of set-up before and after modification. 
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small however.  In order to detect extremely small leaks, vacuum was pulled on the 

reactor chamber then refilled to 500 torr with hydrogen and allowed to maintain pressure.  

A hydrogen detector was then operated and run over the course of the reactor.  Even 

though the reactor is under vacuum conditions, the high diffusion rate of H2 allows facile 

detection of H2 at any leak.   

 

3.4 Materials Characterization 

3.4.1 Structural Characterization 

Morphologies of the resulting GaSbxP1-x samples were characterized using Tescan 

and FEI scanning electron microscopes (SEM). Samples were cleaved and the cross 

sectional interfaces of the GaSbP films were observed in order to identify interface 

growth, grain boundaries and other growth defects.  An estimate of film thickness will 

also be able to be made from this cross section.  Electron dispersive x-ray spectroscopy 

(EDS) point source measurements were employed to determine approximate elemental 

compositions over surface and cross sections of the thin films. 

Transmision electron miscroscope (TEM) + EDS line scan experiments were 

performed on GaSbP alloy nanowires to confirm composition of the ternary alloy. It is 

important to understand phase purity and composition of resulting samples using x-ray 

diffraction (XRD) data. GaSb and GaP both have zinc blende crystal structures and their 

XRD patterns have very similar signatures, just shifted in degrees of where peaks for 

each crystal plane occur.  If GaSbP is present as a ternary alloy it will show a singular 

peak that is shifted somewhere between peaks for GaP and GaSb for that respective 

crystal plane.  Starting with the lowest amount of antimonide alloying, XRD of these 
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films should exhibit GaP-like peaks but with a shift in lattice expansion as more 

antimonide is incorporated into the ternary lattice such as in previous work19.  Ternary 

alloys in the GaSb regime should show GaSb-like peaks with a shift in lattice contraction 

as more phosphorus is incorporated into the lattice.  From these shifts in XRD peaks, 

lattice constants were extracted and correlated with DFT results.  Furthermore, utilizing 

Vegard’s law for ternary alloys, approximate compositions based upon these shifts were 

obtained and compared the alloy composition measurements from EDS and band gap 

measurements.   

Raman spectroscopy was also performed to investigate the vibrational and 

rotational modes exhibited by the bonds in GaSbP.  The generated Raman spectrum 

effectively acts as a fingerprint for the molecule.  Responses similar to that of GaSb and 

GaP can be expected along with new responses that result from the ternary interaction.  

 

3.4.2 Optical Characterization 

UV-Vis spectroscopy was used in order to determine band gap characteristics of 

the GaSbP alloy.   Diffuse Reflection UV-Vis experiments were performed on GaSbP 

because they were opaque and grown on Si. Tauc plots were generated utilizing the 

Kubelka-Monk method for interpreting UV-VIS diffuse reflectance measurements and 

from it the band gap and transition type (direct/indirect) was determined.  By coupling 

this band gap data with the alloy composition and lattice constant information inferred 

from XRD and EDS observations on band gap and Sb incorporation into GaP were made.  

Next, profilometry was conducted and the sample thickness was determined.   
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Photoluminescence (PL) experiments at 77 K were then undertaken to understand 

more about the optical transitions in the samples.  Under low temperatures, excited 

electrons are less likely to utilize phonons to thermally excite to higher energy levels and 

at the same time less likely to relax by phonon release to non-radiative recombination 

centers.  Therefore, PL should be observed from the true band edge and defect states of 

the material under low temperature conditions.   

A review of impurity states in GaP can help to identify whether dopants are 

present in GaSbP and aid in determining whether a photoluminescence response is due to 

radiative recombination or due to photoluminescence from a direct band edge. Carbon 

could be introduced from the graphite susceptor used to heat the deposition zone.  It can 

form a defect acting as an acceptor approximately .05 eV above the valence band of 

GaP127.  Silicon can form gallium or phosphorus vacancies and acts as a donor .08 eV 

below the conduction band or an acceptor .21 eV above the valence band respectively128.  

Oxygen acts as a deep level donor with an impurity state almost directly in the middle of 

band gap of GaP at .89 eV below the conduction band129. Gallium can exist in three 

different acceptor vacancy states with energy levels approximately .38 eV, .8 eV and .9 

eV above the valence band130. Phosphorus vacancies act as acceptor states however work 

to locate the vacancy energy levels has been inconclusive131. 

3.5 Electrochemical and Photoelectrochemical Characterization 

Prior to photoelectrochemical characterization, GaSbP alloy samples were 

prepared into electrodes for electrochemistry in such a way that they are electrically 

contacted but only the face of the sample is exposed to electrolyte.  Photoelectrochemical 

experiments were carried out in a house-made three-port photoelectrochemical cell with a 
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quartz window for transmission of illumination.  Measurements were taken in 3M H2SO4 

or sodium sulfate solution with a platinum mesh counter electrode and Accumet Ag/AgCl 

reference electrode filled with 4M KCl.  Illumination was provided by a Newport 

Instruments Oriel 300W Xe lamp solar simulator that was calibrated to the AM 1.5 

spectrum.  A Thorlabs D10MM power meter with PM100 readout was used to measure 

illumination intensity and measurements were taken using a Princeton Applied Research 

Model 273A Potentiostat/Galvanostat. 

 

3.5.1 Open circuit potential measurements  

First, open circuit potential (OCP) measurements were performed under 

concentrated illumination to determine conductivity type of the material and the flat band 

potential.  In OCP experiments, no current or voltage is applied to the semiconductor and 

the voltage between the working and reference electrodes is measured in the dark.  

Illumination is then applied to the working electrode and if the material is photoactive, a 

change in the measured voltage will occur.  As discussed in Chapter 2, a shift to more 

positive energy levels upon illumination indicates a p-type response while a shift to more 

negative energy levels upon illumination indicates an n-type response.   

 

3.5.2 Chopped I-V Measurements  

 

The photocurrent of the material and onset potential, three electrode linear sweep 

voltammetry (LSV) testing was performed.  Depending on the conductivity type obtained 

from OCP, voltages were applied and swept in the positive or negative direction and the 
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current at these voltages were measured in the dark and under illumination.  The 

difference between the light and dark current at a given voltage is the photocurrent 

generated by the sample at that voltage. 

 

3.5.3 Unbiased two-electrode chronoamperometry 

Assuming photocorrosion at the semiconductor is not occuring, photocurrent observed 

under these measurements provides verification of true band straddling of the water 

splitting reaction redox potentials and demonstrates water splitting without external bias.   
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CHAPTER 4  

COM PUTATION STUDIES AND EXPERIMENTAL VALIDATION OF GASBP 

ALLOYS  

 

In this chapter, the preliminary studies involving computational predictions and 

experimental studies for validation for GaSbxP1-x alloys in the dilute antimonide regime 

are presented.  First, DFT+U calculations are performed in collaboration with Professor 

Madhu Menon to understand the band gap and band edge energetics of GaSbP alloys. 

Experimentally, GaSbP alloys are synthesized as nanowires using reactive vapor 

transport schemes.  

4.1 Density function theory  

The theoretical work modeled bulk GaP with zinc blende structure using a 

relatively large, 216 atom 2x2x1 gamma-centered pack supercell with periodic boundary 

conditions. The size of the supercell is large enough to allow for random distribution of 

Sb atoms.  GaSbxP(1-x)  structures are obtained by substituting P atoms with Sb. In each 

case considered, both the cell volume and the individual atomic positions have been fully 

optimized without any symmetry constraints. The optimized structure of the alloy with 

composition for four incorporations of Sb (x=.036) is shown in Figure 4.1a. 
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Figure 4.1 (a) 216 atom-supercell of GaP.963Sb.037 optimized using DFT calculations and 

comparison of density of states diagrams for (b) GaP and (c) GaP.963Sb.037 showing the 

direct optical band gap transition. 

 

The alloying of GaP by Sb introduces impurity (spd-hybridized Sb-related) states 

at the gap edges.  Those at the valence band maximum (VBM) are more pronounced (not 

shown). The Sb-related states lead to significant modifications in the energy bands.  As 

evident from Figures 4.1b and 4.1c, the Sb-states induce a strong band repulsion at the 

conduction band minimum (CBM) of the GaP bands that lead to the lowering of the 

bands at the Γ-point which results in turning the indirect gap into a direct one. On the 

other hand, new Sb bands are introduced at the VBM. The new bands lead to a band 

repulsion that lifts the degeneracy of the GaP-bands at the Γ-point, which in turn, leads to 

a small reduction in the energy gap.  This trend in band gap reduction is seen for 

increasing Sb incorporation alongside a corresponding increase in d-spacing (Figure 4.2). 
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The band gap data points depend on the configuration of the distributed Sb 

impurities. So there will be an error bar associated with each calculated point of the data. 

Unfortunately the estimation of the error bars is computationally prohibited. For this 

reason, the plot of band gap as a function of x can be better redrawn and instead of 

having the curve simply connect the data points, the calculated data can be fitted to a 

least square polynomial function. As long as no Sb-Sb interactions are present (i.e. the Sb 

atoms are far from each other) a linear variation of band gap vs. x could be expected as 

this results from the appearance of Sb states in the band edges and band repulsion effects. 

Both of these effects however, may not be simply proportional to x for large enough x. 

Nevertheless, in the range of the studied Sb concentrations, (maximum 3-4 Sb atoms in 

108 set of P-atoms) no Sb-Sb interactions should be expected and therefore the effect 

from each Sb atom should be additive.   

  Another important study is to estimate the band edge location with respect to 

vacuum. Recall that the ionization potential (IP) of a (non-polar) semiconductor specifies 

Figure 4.2 (a) Change in band gap and  (b) percent change in d-spacing for # of Sb 

atoms incorporated in the 216 atom supercell.  Both plots were obtained from DFT 

calculations. 
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the energy of the VBM with respect to vacuum.132 Very recently, the same group reported 

accurate IP estimation for a set of non-polar semiconductors in good agreement with 

experiment.133 For GaP and GaSb, the corresponding ionization potential values are in the 

ranges [5.95-6.01] eV and [4.70-4.94] eV. In view of these, the VBM of GaP is at 

approximately 6.0 eV below the vacuum level while the CBM is approximately at the 

energy: VBM+Egap.  In order to find the variation of the VBM of GaP as the Sb 

concentration, x, is varied, the recently proposed134, virtual crystal approximation (VCA) 

extension of Harrison’s method for evaluating the VBM was used135,136. The values so 

obtained are shifted in such a way that the VBM-value for x=0 (i.e., that for GaP) 

coincides with values that are negative of the IP of GaP. In order to find the CBM as a 

function of Sb-concentration, the band gap values for each concentration are added to the 

corresponding VBM at the same concentration.  

A plot of VBM and CBM with respect to vacuum in terms of Sb-concentration is 

presented in figure 4.3 in comparison to the HER and OER potentials.  As can be seen 

from the position of these bands, theoretical results predict the straddling of the HER and 

OER for up to x= .074 incorporation of Sb. 

 

4.2 Amorphous GaSbP NWs 

Initial growths were performed utilizing a reactive vapor transport scheme. 

Gallium antimonide and gallium phosphide powders were evaporated at temperatures 

between 650°C and 900°C in a boron nitride crucible and deposits reacted at a lower 

temperature quartz substrate placed at the top of the BN crucible. For samples grown at 



	  65	  

heater temperatures between 750°C and 870°C, thin films with nanowire morphologies 

were synthesized.   

 

Figure 4.3 Valence band maximum and conduction band minimum positions calculated 

by the generalized Harrison’s approach as a function of Sb concentration in Ga(Sb)P at 

pH  =  7 alongside the redox potentials for the HER and OER.  
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HR-TEM shows that the nanowires possess an amorphous morphology (Figure 

4.4a) and TEM-EDAX shows that they consist of gallium, antimony and phosphorus but 

also contain small amounts of copper and oxygen.  The copper could have come from 

impurities within the reactor or ball mill while the oxygen may have been caused by a 

leak in the reactor.  TEM EDAX on three points along the length of a single nanowire 

shows that the nanowires grew by copper-antimony tip lead growth.  This can be seen in 

Figure 4.4  (a) HRTEM imaging of an amorphous nanowire that contains Ga, Sb, P, 

Cu and O. Figure 2b-c show 3 TEM-EDAX point source measurements along an 

nanowire indicating an antimony copper eutectic droplet led nanowire growth	  
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Figure 4.4b-c, at point 1 (droplet) the composition is primarily antimony and copper and 

as you move along the wire the Sb and Cu concentrations go down while gallium and 

phosphorus concentrations go up.  No UV-Vis nor photoelectrochemical responses were 

observed from these materials.  From these experiments it could not be confirmed that 

any ternary alloy was made. 

 

4.3 Single crystal GaSbP NWs 

GaSbxP(1-x) NW samples were grown by microwave plasma enhanced co-

evaporation. Ga and Sb metals were placed on opposite sides of a graphite susceptor with 

clean growth substrates placed in between.  The reactor was pressurized with H2 to 

Figure 4.5 – (a) A high resolution transmission electron micrograph of a GaSbP 

nanowire; (b) A scanning electron micrograph of GaSbP Nanowires; and (c) An EDS 

line scan for composition using transmission electron microscopy showing Ga, Sb and 

P concentration across a radial cross section of the GaSbP nanowire from part a. 
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chamber pressure of 100 torr and microwave plasma was held over the susceptor at 

powers between 800 W and 1000 W.  Upon stabilizing the plasma at the target operating 

power, DTBPwas fed into the reactor.  The reaction was allowed to take place for two 

hours. The growth mechanism is similar to that of self-catalyzed growth of nanowires in 

a reactive vapor transport mode. 

The resulting GaSbxP(1-x) samples were investigated by both transmission electron 

microscopy (TEM) and scanning electron Mmcroscopy (SEM) and exhibited nanowire 

morphologies from 20 nm up to 1 µm in diameter and several microns in length (Figure 

4.5a). A cross section of the GaSbxP(1-x) sample was exposed by cleaving the sample and 

investigated using energy dispersive X-ray spectroscopy (EDS).  At the interface between 

the silicon and film growth, only Ga and Sb are present at a 1:1 atomic ratio as a thin 

film. This formation of GaSb at the growth interface is expected, however, due to the 

operation of the plasma with only Ga and Sb present before the addition of the 

phosphorous precursor, DTBP.   At the surface of the sample, however, the presence of 

phosphorus is observed in addition to Ga and Sb.   

 

XRD of five GaSbxP(1-x) samples show major peaks for GaSb as well as a set of 

peaks similar to GaP, but shifted toward those of GaSb (Figure 4.6).  The XRD peak at 

25.3 degrees indicates the presence of GaSb which is expected to be formed in the initial 

stages of growth prior to the introduction of phosphorous precursor.  For the (111) 

reflection, the observed Bragg angle shifts toward lower angles from 28.3 degrees 

expected for pure GaP (111);  this peak shift can be used for estimating the Sb 

composition in the GaSbxP(1-x) alloy using Vegard’s law. The Sb compositions based on 
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XRD peak shift for various samples were determined to be between x = 0.06 and x = 

0.12.  

 

Diffuse reflectance ultraviolet-visible spectroscopy (UV-Vis) measurements for 

the above five GaSbxP(1-x) samples were performed.  Tauc plots for the direct allowed 

transition indicating direct band gaps between 1.33 and 1.72 eV are shown in Figure 4.7.  

The measurement utilizes absorption over an area exceeding 1 cm2 such that the 

estimated optical band gap is an average value. Most importantly, the UV-Vis data and its 

Figure 4.6  XRD pattern of GaSbP samples indicating alloy compositions.	  Individual 

concentrations were determined to be xSb  =  0.121, 119, 106, 100 and 0.059 (from top 

to bottom).  
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corresponding analysis using Tauc plots did not show the presence of binary III-V phases 

(GaSb or GaP) thus confirming the presence of primarily ternary III-V alloys.  

 

 

In all of the samples, there is a spatial variation for compositions of ternary alloys. 

In some samples, the variation for Sb composition can be anywhere from x = 0.02 to x =  

0.24  over a two-inch area. However, there is little or no (less than x = .01) variation in 

Figure 4.7 Tauc plot analysis for the direct allowed transition from UV-Vis diffuse 

reflectance for the GaSbxP(1−x) samples indicating direct band gap transitions from 

1.33  eV up to 1.72  eV. 
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Sb composition along the length of each nanowire. High resolution TEM images in 

Figure 4.5b reveal high single crystallinity for GaSbxP(1-x) nanowires with no defects and 

no amorphous sheath. Increased amount of stacking faults were observed in nanowires 

with high amounts of Sb composition. TEM-EDS line-scan profiles shown in Figure 4.5c 

radially across the nanowire diameter show similar profile curves for Ga, P, and Sb 

indicating true alloy formation with no segregation.  Furthermore, no binary (GaSb or 

GaP) nanowires were observed. 

Micro-photoluminescence (PL) measurements were performed using a spot size 

on the order of few microns on the 1.72 ev band gap GaSbP sample at liquid nitrogen 

(77K) and room temperature (300 K). At 77 K, a GaSbxP(1-x) nanowire film sample 

showed responses at 1.73 and 1.82 eV.  A GaP control sample at this temperature showed 

a response at 2.3 eV as expected and no response was observed at 300 K due to the 

indirect nature of band gap.  From the PL measurements at 77 K shown in Figure 4.8a, it 

can be inferred that there is no pure GaP phase present in the measured GaSbxP(1-x) 

nanowire film region.  At liquid nitrogen temperatures, non-radiative recombination is 

minimized and electrons are trapped in the GaP conduction band edge only allowing 

them to emit PL from that band. Thus, if there was binary GaP present in the 

measurement area at 77 K, an emission at ~2.3 eV would be expected.  PL measurements 

at 300k have yielded varying PL peak positions at various locations indicating different 

direct band gap values with different compositions for nanowires. The observed PL peak 

positions ranged from 1.73 eV to 2.21 eV across the same sample as shown in Figure 

4.8b.  The range of band gaps estimated using PL are consistent with optical band gap 

measurements for this material obtained by UV-Vis spectroscopy. UV-Vis and XRD 



	  72	  

techniques use averaged information over 1 cm2 area while PL spectroscopy’s 

information is from about few micron square area and TEM data corresponds to 

individual nanowire.  

 

Figure 4.8 (a) Visible photoluminescence spectra at liquid nitrogen temperature (77  K) 

for GaSbP alloy containing peaks at 1.73 and 1.84  eV and a peak at 2.3  eV for GaP 

control sample; (b) Visible photoluminescence from various regions (A–E) of GaSbP 

nanowire film sample at room temperature that exhibit peaks at 1.74  eV (A), 1.77  eV (B), 

1.84  eV (C), 1.89  eV (D), and 2.21  eV (E). 

 

The room temperature PL peaks could also be due to the presence of impurity 

states within the band gap of the GaP semiconductor. As discussed previously, in order to 

be sure that these PL responses are not from other impurity donor and acceptor levels, the 

levels for possible donors and acceptors are reviewed.  Silicon acts as a shallow donor (Ec 

- .085 eV) when found in a Ga vacancy and a shallow acceptor (Ev + .21 eV) when found 

in a phosphorus vacancy, if emission occurred from this donor to acceptor level, a PL 
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emission of approximately 2 eV would be expected.  Oxygen can only be found in 

phosphorus vacancies and acts purely as a deep level donor (Ec-.89 eV) so an 

approximate emission from this deep state would be expected at 1.41 eV137. Three levels 

of Ga vacancies can exist, all of which act as acceptors, and based upon MS XCK cluster 

model calculations by Fazzio, Brescansin and Leite have values as follows:  V0
Ga ~ EV + 

.38 eV,  V-1
Ga ~ EV + .8 eV, and  V-2

Ga ~ EV + .9 eV138.  If these vacancies were present 

expected emissions would occur at 1.92 eV, 1.5 eV and 1.4 eV. So, the observed room 

temperature and cold PL peaks correspond to band edge to band edge transitions and thus 

represent band gaps for the synthesized GaSbxP1-x alloy nanowires.   

As can be seen in Figure 4.9a, the Raman peak observed at 201 cm-1 is shifted 

from that expected for pure GaSb phase. This slight mismatch can be attributed to both 

the nanocrystalline and ternary nature of the GaSbxP(1-x) alloy. Peak shifts could arise 

from temperature rise within nanowire samples due to laser irradiation139. In Figure 4.9b, 

Raman spectra for a pure GaP control sample is presented along with that obtained for a 

GaSbxP(1-x) sample. The data shows a significant peak shift for the two major peaks 

expected for GaP phase and also an additional peak in that region.  Additional peaks at 

464, 637 and 750 cm-1 are also observed. No previous Raman data exists for the 

GaSbxP(1-x) system. Similarly, additional peaks were observed in dilute ternary GaSbxN1-x 

alloys in addition to those expected for binary phase, GaN.19  The origin of such peaks 

needs further investigation.  
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Figure 4.9 Raman of GaSbP against (a) GaSb and (b) GaP control samples. Major peaks 

for GaSbP are observed at 201  cm−
1, 356  cm−1, 390  cm−1, 417  cm−1, 464  cm−1, 637  cm−1 

and 750  cm−1. 

Preliminary OCP measurements were performed on the GaSbP NW samples.  All 

PEC measurements on these GaSbP NWs were performed at 1 sun of illumination.  Upon 

illumination, a positive shift in potential was observed providing conclusive evidence of 

p-type conductivity making it a promising candidate for use as the photocathode in a 

water splitting cell (Figure 4.10a).  Three electrode linear sweep voltammetry 

measurements under chopped illumination show a photocurrent density of approximately 

40 µA/cm2, however the large cathodic current observed without illumination would 

suggest that, simultaneously, a corrosion reaction may be happening (Figure 4.10b).  

Furthermore, photoresponse is seen at potentials very close to the HER indicating an 

onset potential for photoactivity unbiased.  As such, unbiased two electrode IV 

measurements were performed on the 1.6 eV band gap GaSbP sample grown on quartz 

substrate. A photocurrent of approximately 15 µA/cm2 was observed (Figure 4.10c).  
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These chronoamperometry essays show that the photoactivity remains constant over time 

indicating it is a result of true water-splitting by GaSbxP(1-x). 

 

Figure 4.10 Fundamental photoelectrochemical characterization at 1 sun illumination 

including linear sweep voltammetry showing an approximate photocurrent density of 40 

µA/cm2 at -.65 eV (a), open circuit potential under chopped illumination indicating p-

type conductivity (b) and unbiased two electrode chronoamperometry under chopped 
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illumination showing approximately 15 µA/cm2 photoactivity and confirming true water 

splitting. 

These studies served as a preliminary look into GaSbP and its potential as a 

photoabsorber.  These studies however were not completed utilizing the reactor scheme 

for making a III-V semiconductor.  The reactor was chosen because it was the only 

phosphorus source available in our lab but the variability inherent to the process did not 

yield samples that could clearly correlate composition to band gap.  These studies did 

however serve to motivate the building of a halide vapor phase epitaxy (HVPE) reactor 

capable of making high quality GaSbP epi-layers.  In the following chapter, the rationale 

for choosing HVPE as the reaction scheme to grow GaSbP is explained. 
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CHAPTER 5 

HALIDE VAPOR PHASE EPITAXIAL GROWTH AND 

PHOTOELECTROCHEMICAL CHARACTERIZATION OF GASBP FILMS  

 

In this chapter, the experiments performed utilizing the HVPE reactor are 

discussed.  The resulting samples were characterized using structural, optical and 

photoelectrochemical techniques to investigate properties such as morphology, elemental 

composition, band gap and photo-activity.  

5.1 Reaction chemistry 

 HVPE utilizes halogen containing gases such as HCl, HBr, or HI to react and 

transport both group III in the gas phase as metal halide gases such as GaCl(1<x<3) or 

InCl(1<x<3).  These metal halides then react with a group V gas precursor such as NH3, PH3 

to form the III-V alloy.  Group V precursors can also be provided in the form of halide 

gases such as PCl(1<x<3) or SbCl(1<x<3). 

 For these experiments, phosphorus is provided in the form of a PCl3 bubbler. 

When hydrogen is used as a carrier gas to transport the PCl3 it readily reacts to form 

gaseous P2 and HCl as seen in equations 6.1 and 6.2. 

𝟒𝐏𝐂𝐥𝟑(𝐠)+ 𝟔𝐇𝟐(𝐠) → 𝟏𝟐𝐇𝐂𝐥(𝐠)+ 𝐏𝟒(𝐠)           (6.1) 

𝐏𝟒(𝐠) → 𝟐𝐏𝟐(𝐠)     (6.2) 
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Ga has a +3 oxidation state and as such, when reacted with the HCl generated in 

equation 6.1 can form GaCl, GaCl2, GaCl3 or 2(GaCl3) gaseous species by the reaction 

pathways shown in Equations 6.1-6.4.  Experiments by Koukitu et al have shown that at 

temperatures above 500oC the formation of GaCl as seen in Equation 6.1 dominates 

producing partial pressures of GaCl equivalent to the incoming partial pressure of HCl.111  

Antimony has an oxidation state of +5 and as such can form SbCl, SbCl2, SbCl3, SbCl4 

and SbCl5 gaseous species.  Thermodynamic analysis on the SbClx system to see which 

forms dominate is not present in literature and further investigation of this is warranted.  

𝐆𝐚𝐂𝐥 𝐬  𝐨𝐫  𝐥 + 𝐇𝐂𝐥 𝐠 → 𝐆𝐚𝐂𝐥 𝐠 + 𝟏
𝟐
𝐇𝟐(𝐠)   (6.3) 

𝐆𝐚𝐂𝐥 𝐬  𝐨𝐫  𝐥 + 𝟐𝐇𝐂𝐥 𝐠 → 𝐆𝐚𝐂𝐥𝟐 𝐠 + 𝐇𝟐 𝐠           (6.4) 

𝐆𝐚𝐂𝐥 𝐬  𝐨𝐫  𝐥 + 𝟑𝐇𝐂𝐥 𝐠 → 𝐆𝐚𝐂𝐥𝟑 𝐠 + 𝟑
𝟐
𝐇𝟐 𝐠      (6.5) 

𝟐𝐆𝐚𝐂𝐥𝟑 𝐠 → 𝐆𝐚𝐂𝐥𝟑 𝟐(𝐠)        (6.6) 

 

At the deposition zone, GaCl, SbCl and P2 will be present to react.  The formation 

of GaP occurs as seen in Equations 6.7 and 6.8.  The formation of GaSb is shown in 

Equation 6.9 and finally the reaction schemes are combined to shown the formation of 

GaSbP shown in Equation 6.10. 

 

𝟒𝐆𝐚𝐂𝐥 𝐠 + 𝟐𝐇𝐂𝐥 𝐠 → 𝟐𝐆𝐚𝐂𝐥𝟐 𝐠 + 𝐇𝟐 + 𝐆𝐚(𝐬)       (6.7) 

𝟐𝐆𝐚 𝐬 + 𝐏𝟐(𝐠) → 𝟐𝐆𝐚𝐏(𝐬)     (6.8) 

𝟐𝐆𝐚 𝐬 + 𝟐𝐒𝐛𝐂𝐥 𝐠 + 𝐇𝟐(𝐠) → 𝟐𝐆𝐚𝐒𝐛(𝐬)+2HCl(g)          (6.9) 

2  𝟒𝐆𝐚 𝐬 + 𝟐𝐒𝐛𝐂𝐥 𝐠 + 𝐇𝟐 𝐠 + 𝐏𝟐 𝐠 → 𝟐𝐆𝐚𝟐𝐒𝐛𝐏 𝐬 + 𝟐𝐇𝐂𝐥(𝐠)         (6.10) 
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 In order to provide compositional control of the gaseous precursors there are 

several variables available for controlling the materials growth using  HVPE reaction 

scheme.  To control the amount of Sb and Ga precursors available for reaction, the 

temperature in each precursor’s temperature zone can be changed and an increase in 

temperature will produce more gas phase. Furthermore, the H2/HCl ratio in the reactor 

can be changed in order to change the ratio of Ga and Sb precursor flux for deposition. In 

Equations 6.7-6.10 suggest potential reactions that could happen during deposition of 

GaSbP films. Even though, the mechanism is not entirely clear, GaCl, SbCl and PCl 

species could potentially act as growth species in the formation of GaSbxP1-x films. 

The amount of phosphorus precursor available for reaction can also be changed 

using multiple approaches including flow rate of precursor through the bubbler, the 

pressure that the bubbler is held at and the bubbler temperature.  At room temperature, 

PCl3 provides approximately 150 torr vapor pressure, which is more than adequate for the 

scope of these studies, and as such no control over the bubbler temperature is provided in 

this HVPE reactor.  ‘ 

Finally, the deposition temperature provides another variable for improving the 

crystal growth.  Increasing the temperature increases the rate of desorption and decreases 

the rate of absorption for equations 6.7-6.10 to occur.  When these rates are almost equal, 

conditions for epitaxy occur and crystal formation occurs without defects.  Just above this 

temperature, the rate of absorption falls lower than the rate of desorption and no 

deposition is observed.  Below this temperature, absorption will happen readily at 

locations besides the step edges of growths causing defects to occur.  
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5.2 Synthesis and Materials Characterization of HVPE grown GaSbP 

Several experiments were performed using the HVPE reactor by keeping certain 

variables constant. The total reactor pressure was always held at 500 torr.  The PCl3 

bubbler pressure was set to 650 torr and was assumed to be at an average temperature of 

35°C +/- 5°C.  The hydrogen flow during operation was set to 125 sccm and the 

hydrogen carrier gas flowing through the PCl3 bubbler was held at 30 sccm.  This 

temperature was measured during reactor operation utilizing a handheld pyrometer.  

Reactions were held for 1 hour after gallium reached its operating temperature unless an 

unforeseen problem arose requiring the reaction to be stopped.  

The goal of the initial set of experiments was to find appropriate levels of 

precursor reaction and deposition temperatures to provide enough precursors and the 

appropriate temperature to make deposits on the growth substrate.  The first conditions 

used were borrowed mostly from Sudlow et al’s HVPE growth of GaP114.  In these initial 

experiments, the Sb temperature zone was held at 600°C and the gallium temperature 

zone was held at 800°C.    The deposition temperature was set to 750°C, however, thick 

clouds of gas and rapid depositions such as those seen in Figure 6.1 formed between the 

pyrometer and deposition stage so the temperature at this zone may have reached much 

higher temperatures.  These thick clouds and depositions caused the reactor to be shut 

down prematurely.  After the experiments, no deposit was evident at the deposition zone 

on the Si substrate.  Further temperatures were explored before deposits were made at the 

substrate including TSb=750°C, TGa=970°C and TDep=900°C.  It should be noted that at 

these higher temperatures, the entirety of the 25 g Sb boat was reacted/evaporated while 
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only approximately 5 g of Ga were reacted/evaporated.  This was obtained by measuring 

the precursor boats before and after reactor operation. 

 

 

The experiments are summarized in Table 5.1. The first three experiments did not 

yield deposits at the Si substrate.  In the case of the third experiment, depositions were 

present on the quartz tube.  From this, it was inferred that the temperature at the 

deposition area was too high to enable GaSbP to deposit on the substrate however 

deposition was enabled on the quartz tube that was at a lower temperature than the 

Figure 5.1 Photograph of reactor immediately following the induction heater zone.  On 

the left, black and silver deposition can clearly be seen on the reactor tube, in the 

middle a thick gas cloud can clearly be seen in the quartz tube.   
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deposition heater.  The deposits present on the tube after the third experiment were 

collected and characterized.  These samples will be referred to as experiment A3  

hereafter.  From the photographs and scanning electron microscopy images shown 

in Figure 5.2 it can be seen that 3 different distinct morphologies were grown along this 

tube growth for experiment A3. In Figure 5.2a, a macroscale photograph shows an orange 

deposit.  In Figure 5.2b, an SEM image showing microwire morphology for resulting 

materials. Based upon TEM shown in  

Figure 5.2c and EDAX analysis, these microwires are highly faceted single 

crystal GaP with no Sb present and diameters of approximately 1 µm.  Figure 5.2d shows 

a macroscale photograph of the second tube deposit growth area.  It is gray in color and 

under SEM shows a multi-crystalline structure as shown in Figure 5.2e.  EDAX shows 

Sample 
ID: 

TSb 
(oC) 

TGa 
(oC) 

TDep 
(oC) 

H2 flow 
(sccm) 

Deposit? Procedural Changes 

A1 600 800 750 125 NO  
A2 750 970 900 125 NO Emergency shutdown 
A3 750 970 900 125 TUBE  
A4 650 970 625 125 YES  
A5 650 970 660 125 NO LEAK 
A6 650 970 660 125 YES  
A7 650 970 700 125 NO  
A8 650 970 620 125 YES PCl3 off 1st & first exact 

distance measurement of 
substrate heater 

A9 650 970 620 125 YES PCl3 gradually off 
A10 650 970 670 300 YES Emergency shutdown 
A11 650 970 670 125 YES PCl3 gradually off 
A12 650 870 670 125 YES PCl3 gradually off 

A13 650 770 670 125 NO PCl3 gradually off 

Table 5.1 Summary of conditions used for several HVPE experiments 
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that there is approximately 1% Sb in this sample and this is corroborated by XRD shown 

in Figure 5.3.  XRD shows peaks at approximately 27.8° and 27.9° indicating ternary 

alloy compositions of GaSb0.17P0.83 and GaSb0.13P0.87 present in the sample.  UV-Vis 

spectroscopy shows that this sample has approximately a 1.7 eV direct band gap and this 

was corroborated by room temperature photoluminescence as shown in Figure 5.4.  

Figure 5.2f shows a photograph of the third area of tube deposition.  It is black in color 

and under scanning microscopy shows large tetrahedron-like structures with feature sizes 

as large as 100 µm.  EDAX of this area shows an Sb composition of approximately 32% 

of the ternary alloy representing a chemical formula of Ga3Sb2P however the XRD 

spectrum does not confirm.  It is possible that this is indicative of a different material 

phase with a different crystal lattice than expected for GaSbP however further study of 

this phenomenon is not within the scope of this study. 
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 Figure 5.2 – Photography and electron microscopy for sample A3 grown.  Sample 

was collected from quartz tube wall after attempting to deposit GaSbP at Tdep = 

900°C. (a) Photograph, (b) SEM and (c) TEM for A3-orange. (d) Photograph and 

(e) cross section SEM for A3-gray and (f) photograph and (g) SEM for A3-black. 
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Figure 5.3 XRD pattern for sample A3-gray and A3-black showing the 111-peak region 

for GaSb and GaP.  Peaks can clearly be seen for sample A3-gray at approximately 27.8° 

and 27.9° that indicate compositions of GaSb0.17P0.83 and GaSb0.13P0.87 respectively.  
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b)	  

a)	  

Figure 5.4 Optical band gap properties of sample A3-gray.  (a) Tauc plot of the n=2 

direct allowed band gap transition indicating a 1.72 eV direct band gap and (b) 

Photoluminescence spectrum at 77K also indicating a 1.72 eV direct band gap. 
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In order to keep deposits on the quartz tube from stopping line of sight between 

the pyrometer and deposition stage, a glass viewport window was installed at the rear of 

the reaction chamber (as discussed in Chapter 3) and a line of sight was created between 

the back of the deposition stage and the pyrometer.  This drastically improved our ability 

to maintain temperature at the deposition stage, however it did not fix all of the problems.  

When a gas cloud is created during reactor operation line of sight between the deposition 

zone and pyrometer is lost and the infinite process loop ensues.  

After this first reconfiguration of the reactor, it was decided to utilize lower 

deposition temperatures for future experimentation.  TGa was kept at 970oC, TSb was 

lowered to 650°C and the temperature at the deposition zone was lowered to 625°C.   

This experiment was successful in making a deposit on our silicon substrate.   
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This sample will be referred to hereafter as sample A4.  The deposit delaminated 

from the silicon substrate yielding a freestanding film.  Photographs and SEM images of 

the resulting deposit are shown in Figure 5.5.  Photograph shown in Figure 5.5a shows 

gallium pool on top of the silicon as well as on the back of the GaSbP deposit where the 

GaSbP film delaminated.  The freestanding GaSbP film can also be seen.  

As can be seen from the cross section SEM images in 5.5b and 5.5c, the deposit 

consists of a microwire conglomerate with a thickness of approximately 250 

Figure 5.5 (a) Photograph and (b-c) cross section SEM images of sample A4.  A 

thickness of approximately 250 micrometers was observed. 
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micrometers.  EDAX of the deposit shows ratios indicating an incorporation of Sb of 

2.5%.  EDAX at the bottom of the sample showed that initial growth was primarily 

gallium with very little Sb or P present.  This excess gallium at the growth interface is an 

indication that the growth mechanism seen in this sample is a vapor liquid solid 

mechanism and not true epitaxy.  At initial growth conditions gallium deposits at the 

silicon substrate providing a pool for Sb and P precursor dissolution.  At a certain 

solubility threshold, GaSbP crystalizes out of the gallium droplet forming microwire 

structures.  These microwire structures grow together forming the microwire network.  

This phenomenon is well documented in GaSbN19.  XRD of the freestanding wafer shows 

the same signature of GaP as shown in Figure 5.6b.  Thus, it is inferred that the Sb 

present in EDAX is not incorporated as an alloy in sample A4.   

A Tauc plot for sample A4 showing the direct allowed transitions from UV-Vis 

spectroscopy in the diffuse reflectance mode is shown in Figure 5.6a.  The Tauc plot 

indicates a direct band gap of 1.72 eV.  Room temperature photoluminescence 

measurements were performed at five discrete locations on the sample and showed 

responses ranging from 1.7 eV to 2.2 eV, this is shown next to the 2.26 eV band gap 

expected for GaP shown in Figure 5.6c. 
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  The goals of the next set of experiments were two-fold.  First, initial growth 

conditions were changed in order to keep Ga from condensing at the substrate.  In order 

Figure 5.6 Optical and structural characterization of sample A4.  (a) Tauc plot for n=2 

direct allowed band gap transition indicating a 1.72 eV direct band gap. (b) XRD 

pattern showing the 111-peak region for GaSb and GaP.  A peak is clearly observed at 

28.3° indicating the sample is pure GaP. (c) Multiple photoluminescence 

measurements at different discrete locations on sample A4 indicating several direct 

band gap responses between 1.72 eV and 2.2 eV. 
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to accomplish this, the deposition heater was heated up under flowing H2 first before the 

precursors were turned on.  By maintaining the deposition zone at temperature before 

flowing any precursors, the condensation reaction will be thermodynamically limited and 

the epitaxial growth of GaSbP will be encouraged.  Secondly, in order to improve crystal 

quality a slightly higher deposition temperature of 660°C was used.  Hereafter this 

sample will be referred to as sample A6. 

 A photograph and cross section SEM of A6 is shown in Figure 5.7.  The 

morphology is a microwire array with microwires that have radii of approximately 5 µm.  

EDAX of the microwires show that approximately 1.22% Sb incorporation.  The EDAX 

spectrum also shows that there is excess gallium present throughout the sample.  This 

sample did not delaminate from the silicon substrate. 

   

 

  

A tauc plot of the direct allowable transitions for sample A6 is shown in Figure 

5.8a indicating a 1.9 eV direct band gap.  Room temperature photoluminescence 

Figure 5.7 (a) Photograph and (b-c) cross section SEM images of sample A6.  Faceted 

microwire geometries are clearly observed with diameters up to 5µm. 
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measurements were performed at five discrete locations on the sample A6 that confirm 

the 1.9 eV response as well as several other responses between 1.7 to 2.0 eV in Figure 

5.8b.    

 

 

   

XRD data for sample A6 as well as samples A8 through A12 is shown in Figure 

5.9.  The samples all had XRD peaks between 27.96 and 28.23 degrees indicating GaSbP 

alloy values of GaSb.037P.963 to GaSb.127P.833 with the exception of A12 that had an 

identical XRD to GaP.  Sample A6 particularly has a peak  at 28.23 degrees.  This shift in 

XRD peak away from GaP at 28.34 represents an x of .037 (GaSb.037P.963).  XRD spectra 

and their ternary alloy composition will be discussed case by case for samples A8-A12. 

Figure 5.8 (a) Tauc plot for the n=2 direct allowed band gap transition band gap 

transition for sample A6 indicating a 1.9 eV direct band gap and (b) multiple 

photoluminescence measurements performed at 77 K at different discrete 

locations on sample A6 indicating several direct band gap responses between 

1.7 eV and 2.2 eV. 
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 The change in start-up procedure was successful in limiting the excess pure 

gallium at the surface but not in completely stopping the microwire growth from 

occurring and subsequently from improving the crystal quality of the thin film.  Growth 

Figure 5.9 Normalized XRD data of the region around the (111) peaks of GaP and 

GaSb for samples A4 through A12.  Peaks are clearly observed from 27.8° up to 

28.3° indicating compositions between GaSb.037P.963 to GaSb.127P.833.  Samples A4 

and A12 show XRD peaks identical to GaP. 
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temperature seems to be important for growing films. For the first four experiments, the 

measurement of deposition temperature is not reliable. In the following experiments, the 

deposition temperature is monitored more accurately and also the shut down procedure is 

changed to reduce precursors during shut down period.  Samples A8 and A9 both utilized 

the same operating conditions.  TSb was set to 650°C, TGa was set to 970°C and TDep was 

set to 620°C.  For the shutdown procedure in sample A8, the phosphorus trichloride 

precursor was turned off immediately when the reaction was finished and the hydrogen 

flow was increased to 300 sccm in order to decrease the partial pressure of precursor 

reactants present during cooldown.  The tube furnace was then immediately turned off 

and the lid cracked to vent heat more rapidly.  The deposition stage was kept at the 

deposition temperature until the precursor temperature zones were both below 100°C.  

The shutdown procedure for sample A9 was very similar except the only difference was 

the PCl3 was gradually shut off at the same rate in which it was turned on during start-up.   
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 Photographs and SEM images of samples A8 and A9 are shown in Figure 5.10. 

As can be clearly seen in the photographs of each sample, there is a clear difference in the 

final deposition at the surface when the shutdown procedure is changed.  When the 

phosphorus precursor was shut off first, gallium phosphide nanowires were deposited at 

Figure 5.10 (a,c) Photographs and (b,d) cross section SEM images of samples A8 

and A9 respectively.  Both samples exhibit microwire conglomerate geometries with 

thicknesses of approximately 150 µm and more densely packed growth near the 

growth interface.   
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the surface of A8 as shown in Figure 5.10a.  These nanowires were easily removed by 

blowing using compressed air.  As evidenced from the cross section SEM images in 

Figures 5.10b and 5.10d, the growths are very similar in nature.  Both samples consist of 

microwire conglomerates approximately 150 µm thick with more densely packed growth 

near the growth interface. 

Samples A8 and A9 show excellent correlation between XRD and EDAX 

measurements.  EDAX analysis showed that there is 2.49% Sb in A8 and 2.31% Sb in A9 

which would indicate alloy compositions of GaSb.05P.95 and GaSb.046P.954. XRD from 

Figure 5.9 shows a peak for A8 at 28.18 and a peak for A9 at 28.16 indicating alloy 

compositions of GaSb.053P.947 and GaSb.06P.94 by Vegard’s law.  The Tauc plots in Figures 

5.11a and 5.11b for these samples show direct band gaps of between 1.3 and 1.5 eV for 

A8 and 1.2 and 1.6 eV for A9.  Photoluminescence in Figures 5.11c and 5.11d show 

ranges of responses for both materials similar to previous samples, all peaks are less than 

2.26 eV, indicating the response is from GaSbP and not GaP. 
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For samples, A10 and A11, the same operating conditions were used as in A8 and 

A9 except the deposition temperature was increased to 670°C.  A10 had to be abruptly 

shutdown immediately after completing the reaction due to a gas cloud that caused 

deposition on the viewport and complete loss of sight between the pyrometer substrate 

Figure 5.11 Optical measurements for samples A8 and A9. (a,b) Tauc plots for the 

n=2 direct allowed band gap transition for samples A8 and A9, respectively, indicating 

a 1.3 eV and 1.5 eV direct band gaps for sample A8 and 1.2 eV to 1.6 eV direct band 

gaps for sample A9.  (c,d) Multiple photoluminescence measurements performed at 77 

K at different discrete locations on samples A8 and A9, respectively, indicating 

several direct band gap responses between 1.7 eV and 2.2 eV in each sample. 
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heater.  Furthermore, the H2 flow was inadvertently left at 300 sccm during operation for 

A10.  Sample A11 was shutdown in the same manner as A9. 

  

 

Figure 5.12 – (a,c) Photographs and (b,d) cross section SEM images of samples A10 

and A11 respectively.  Both samples exhibit microwire conglomerate geometries with 

thicknesses of approximately 200 µm and highly oriented crystallinity with boulder-

like features in excess of 10 µm.   
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Photographs and SEM images of samples A10 and A11 are shown in Figure 6.12.  As 

shown in Figure 5.12b, near the growth interface, boulder-like features are clearly 

observed with crystals in excess of 10 µm.  The total sample thickness is approximately 

200 µm.  As the sample nears the growth surface, a clear morphological change is seen as 

the growth begins to change into a microwire growth.  EDAX of sample A10 shows that 

it contains 8.05% Sb.  In Figure 5.12d, the SEM image for A11 is shown.  It also shows a 

compact crystalline growth but with smaller feature sizes than A10.  EDAX of A11 

shows that it has approximately 2.77% Sb representing an alloy composition of 

GaSb.054P.946.  

Tauc plots of the direct allowable transitions for samples A10 and A11 are shown in 

Figures 5.13a and 5.13b.  They clearly show direct band gaps of 2.1 eV for A10 and 2.1 

eV for A11.  Figure R9 shows the XRD of samples A10 and A11 with peaks at 28.18 and 

27.96 degrees indicating alloy compositions of GaSb.053P..947and GaSb.127P.873 

respectively.  Figure 5.13c and 5.13d shows photoluminescence of samples A10 and A11. 

Peaks are observed between 1.7 eV and 2.2 eV for each sample.   

In samples A8-A11, EDAX also consistently showed small amounts of oxygen and 

aluminum.  This was most likely due to the insulators used to help secure the silicon at 

the deposition zone.  In sample A12 these insulators were replaced with machined 

graphite holders.  The presence of aluminum and oxygen were not detected in EDAX 

analysis.  
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Figure 5.13 Optical measurements for samples A10 and A11. (a,b) Tauc plots for the n=2 

direct allowed band gap transition for samples A10 and A11, respectively, indicating a 

1.3 eV and 1.5 eV direct band gaps for sample A8 and 1.2 eV to 1.6 eV direct band gaps 

for sample A9.  (c,d) Multiple photoluminescence measurements performed at 77 K at 

different discrete locations on samples A10 and A11, respectively, indicating several 

direct band gap responses between 1.7 eV and 2.2 eV in each sample. 

 

Analysis of reactant flow during HVPE: One of the major factors in these experiments 

has been the excess production of gas phase precursors, primarily GaCl that results in not 

only growth issues but operational, maintenance and safety issues as well.  When 

possible, Ga and Sb precursor boats were weighed before and after experiments in order 

to determine the mass of precursors that reacted during the experiment. Conversion of 
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these masses to moles of desirable reactants will serve to show the amount of moles 

available for reaction during the experiment.  By tuning these molar flow rates, precise 

compositional control can be achieved in future experiments.   

   At 970°C, the Ga boat lost approximately 5.5 g of mass and at 650°C the Sb boat 

lost an average of 3.0 g of mass during a 1 hour experiment.  This experiment also 

includes 30-35 minutes of temperature ramp to get to the precursor zones to operating 

conditions and approximately 1 hour of precursor cooldown time after the experiment 

where precursors could still be being generated.  Utilizing the atomic masses of Ga (69.7 

g/mol) and Sb (121.8 g/mol), it can be seen that 78.9 mmol of Ga and 24.6 mmol of Sb 

are generated over the course of a single experiment at these temperatures.  The amount 

of moles of phosphorus provided by the carrier gas flowing through the PCl3 bubbler can 

also be estimated.  Utilizing the JANAF thermochemical data for PCl3, the partial 

pressure of PCl3 in the gas phase ready to be transported by the carrier gas can be known. 

Based upon a bubbler pressure of 650 torr, average bubbler temperature of 35°C and 30 

sccm of H2 carrier gas flowing through the bubbler for an operating time of 1 hour, 

between 27.8 and 37.1 mmol of P are provided for reaction during a 1-hour experiment.   

 There are about 78.9 mmol of group III column precursors compared to at most 

61.7 mmol of group V precursors and serves to clearly explain the observation of excess 

GaCl being generated.  Future experiments should focus on lowering the amount of GaCl 

generated tremendously.  MOCVD and MBE III-V growths have required as little as 7:3 

ratio of group V precursors to group III precursors and in some cases in excess of 40:1 

the amount of group V precursors as group III precursors.  In these two cases, if Sb and 

PCl3 conditions are kept the same, as little as 1.5 mmol of Ga or as much as 26.4 mmol 
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would be required to limit the excess Ga, representing almost a two order of magnitude 

decrease in generation of GaCl.   

The primary goal of the final experiment set was to lower the amount of available 

GaCl available for reaction so that excess gallium conditions would not be present and 

hopefully an improvement in crystallinity is observed.  In order to accomplish this goal, 

temperatures of 870°C and and 770°C were used in the gallium temperature zone.  This is 

100°C and 200°C below the 970°C used in previous experiments.  The temperatures 

chosen for the antimony and deposition zones for this set of experiments is the same as 

that used for samples A10 and A11 of 670°C, this is because these samples showed the 

highest quality crystallinity.  The resulting deposit using TGa of 870°C will be referred to 

here-after as A12. No deposit was observed when using TGa of 770°C.  Unfortunately, 

FIGURE  5.14 (a) Photograph and (b,c) cross section SEM images of sample A12. 

The sample exhibits single crystal features in excess of 30 µm and displays clear 

evidence of epitaxial growth at the growth interface.  The  marks perpendicular to 

the growth interface where the crystal was cleaved are another clear sign of the 

single crystallinity exhibited.	  
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operational circumstances kept mass measurements from being taken on the Sb and Ga 

precursor boats and the mass of precursor lost at these temperatures is unknown.  

A photograph and SEM images of sample A12 are shown in Figure 5.14.  As can 

be seen, the growth thickness is not nearly as thick as samples A10 and A11, measuring 

approximately 50 µm.  The SEM cross section images shown in Figures 5.14c and 5.14d 

clearly show that the epitaxial growth has been achieved.  The cleave marks observed in 

Figure 5.13d are clear indication of the single crystalline nature of the film.  EDAX of the 

sample show an approximate Sb incorporation of 1.27% Sb representing a composition of 

GaSb.026P.974.  Furthermore, neither O2 nor Al peaks were observed in EDAX, indicating 

that replacing the insulators used to hold the samples to the substrate heater with graphite 

holders remedied these impurities. 

 

Figure 5.15 Optical measurements for sample A12. (a) Tauc plot for the n=2 direct 

allowed band gap transition for samples A12 indicating a 2.15 eV direct band gap.  

(b) Multiple photoluminescence measurements performed at 77 K at different 

discrete locations on samples A12 indicating several direct band gap responses 

between 1.7 eV and 2.15 eV.	  
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A Tauc plot of sample A12 indicates a direct band gap of 2.15eV shown in Figure 

5.15a.  XRD of the sample showed nearly identical peaks to GaP indicating an 

incorporation of 0% Sb.  It is possible that the incorporation of less than 1% Sb would be 

difficult to observe in XRD however and the indication of direct band gap and high 

quality crystallinity with 1% Sb in EDAX lends itself to the hypothesis that ternary 

GaSbP with a formula close to GaSb.026P.974 was formed.  Room-temperature  

photoluminescence measurements showed peaks mostly centered around 1.7 eV 

but some less intense peaks all the way up to 2.15 eV in Figure 6.15b. 

 

Sample ID Deposition 
Temperature (oC) 

Morphology EDS  
(xSb) 

XRD 
(xSb) 

UV-
VIS 
(eV) 

PL (eV) 

A4 625 Microwire .05 0 1.72 1.7-2.2 
A6 660 Microwire .024 .037 1.9 1.7-2.0 
A8 620 Microwire .05 .053 1.3-

1.5 
1.7-2.2 

A9 620 Microwire .046 .06 1.2-
1.6 

1.7-2.2 

A10 670 Microwire/Highly 
Oriented Crystal 

.16 .053 2.1 1.7-2.2 

A11 670 Microwire/Highly 
Oriented Crystal 

.054 .127 2.1 1.7-2.2 

A12 670 Microwire/Single 
Crystal 

.026 0 2.15 1.7 

Table 5.2  Summary of structural and optical properties of relevant GaSbxP1-x films 

A4 through A12 as a function of deposition temperature including general 

morphology type, elemental compositions from EDS, alloy composition from XRD 

and measurements of direct band gaps from Tauc plots from UV-VIS diffuse 

reflectance and photoluminescence measurements performed at 77 K.	  
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Processing-Property Relationships: As can be seen from Table 5.2 below, a clear 

improvement in crystal growth occurred with controlling Ga/P precursor ratio and 

adjustment of deposition temperature. Initial experiments (A4 andA5) exhibited 

microwire conglomerate geometries with different microwire packing densities.  EDAX  

clearly shows that there is Sb present in the growths with ternary alloy compositions of 

GaSb.024P.976 to GaSb.16P.84.  XRD measurements for samples from experiments labeled 

A6 to A11 confirm that the observed growth resulted in ternary GaSbP films with 

compositions between GaSb.037P.963 and GaSb.127P.873. The XRD of samples A4 and A12 

suggest that antimony may not be incorporated into the alloy.  UV-Vis confirmed direct 

band gaps in all of the samples with values from 1.2 eV up to 2.15 eV.  

Photoluminescence corroborated these UV-Vis measurements but also showed other 

energies between 1.7 eV to 2.2 eV for each sample. 

 

The high quality crystal growth shown in samples A10-A12 is a tremendous step 

forward toward large-scale epilayers of GaSbP being grown. There is no doubt that with 

a reconfiguration of the reactor and a rigorous design of experiments that in short time 

this process will be capable of generating freestanding wafers of single crystal GaSbP.  

 

5.3 Photoelectrochemical testing of HVPE grown GaSbP  

Photoelectrochemical characterization for samples A4, A6 and A8 through A12 are 

presented here.  Three electrode linear sweep voltammetry and open-circuit potential 

(OCP) under saturated illumination conditions were performed for each sample.  When  
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photo-response was good enough, two electrode chronoamperometry under unbiased 

conditions was performed. The results from these GaSbP alloys are extremely promising 

and have potential to open up an entire field of research in the PEC water splitting 

community.    

Photoelectrochemical characterization on samples A4 and A6 serve as a preliminary 

look into the behavior observed thus far in HVPE grown GaSbP films.  Three-electrode 

linear sweep voltammetry (LSV) and open circuit potential testing for sample A4 is 

shown in Figures 5.16a and 5.16b respectively at a concentrated illumination of 4 suns in 

sodium sulfate solution with pH = 9.  Unexpectedly, OCP shows a negative step in 

voltage upon illumination indicating an n-type behavior.  This is contrary to previous 

results from plasma transport experiments that exhibited p-type conductivity.  This 

phenomenon is seen in all HVPE grown samples tested thus far.  The source of n-type 

doping in HVPE is not known and needs to be investigated further.  I-V analysis further 

corroborated with the highest photoactivity of 0.5 mA/cm2 being generated at OER 

potentials.  A high background current is also observed in the dark.  This could be due to 

electrolyte migrating through the microwire network to exposed electrical contact at 

where the microwire mesh is contacted.  If these microwire geometries are utilized in the 

future, the background dark current needs to be reduced by passivating high surface area.  
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A previously mentioned, sample A6 did not delaminate from the silicon substrate.  As 

such, two different electrodes for sample A6 were prepared.  One electrode was 

fabricated in the same manner as all other electrodes, by making an InGa eutectic contact 

to the back of the sample, in this case the Si substrate that growth occurred on, causing 

generated carriers to flow through this GaSbP/Si junction.  A second sample was 

fabricated by making an InGa contact to the top of the GaSbP microwire film instead of 

on the back of the Si.  If the film is conductive enough, generated carriers will flow 

directly to the InGa contact and bypass the Si altogether.  This was done in order to see if 

there is any observed benefit to having this built in junction to Si junction.  In the design 

phase for HVPE experimentation, p-type silicon was chosen as the deposition substrate of 

choice because it was believed that the GaSbP growth would also be p-type.  With HVPE 

Figure 5.16 – Fundamental PEC studies of sample A4 at 4 suns illumination in sodium 

sulfate solution (pH = 9).  (a) OCP under chopped illumination for 200 seconds 

indicating n-type conductivity and (b) chopped illumination LSV measurements 

exhibiting approximately .5 mA/cm2 photoactivity under bias and high background 

currents in the dark. 
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GaSbP showing n-type conductivity, this creates a built-in p-n junction into the cell. The 

junction is in the wrong direction to provide extra bias for water splitting however and 

should cause a site of major recombination within the electrode. 

OCP and IV measurements are shown in Figures 5.17a and 5.17b respectively for the 

bottom contacted A6 sample and 5.17c and 5.17d for the top contacted A6 sample.  

Contrary to what is expected, the bottom contacted sample both showed a higher 

photovoltage in OCP and a higher photoactivity in IV testing.  This could be due to poor 

conductivity in the top contacted film however.  Further study of this phenomenon is 

warranted in future experimentation, however investigating this type of p-n junction 

further is not within the scope of this study. 
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OCP and IV measurements at 4 suns illumination were also performed for sample A8 

and A9 which were grown under the same conditions except for a change in the 

Figure 5.17  Fundamental PEC studies for samples A6 with bottom and top 

contacts, respectively, at 4 suns illumination in sodium sulfate solution (pH = 10).  

(a,c) OCP under chopped illumination for 200+ seconds indicating n-type 

conductivity for both samples and (b,d) chopped illumination LSV measurements 

exhibiting approximately 0.2 mA/cm2 and 0.15 mA/cm2 maximum photocurrents 

under bias respectively. 
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shutdown procedure.  The OCP measurement form sample A8 in Figure 5.18a indicates 

an n-type conductivity and sizable photovoltage response of .7 V.  This is an incredibly 

promising result as large photovoltages are a sign of a highly photoactive material.  LSV 

measurements for sample A8 are shown in Figure 5.18b.  The sample has a photoactivity 

Figure 5.18 Fundamental PEC studies for samples A8 and A9, respectively, at 4 

suns illumination in 3M sulfuric acid (pH = 0).  (a,c) OCP under chopped 

illumination for 500+ seconds indicating n-type conductivity for both samples and 

(b,d) chopped illumination LSV measurements exhibiting approximately 3 

mA/cm2 and 0.2 mA/cm2 maximum photocurrents under bias respectively. 
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of approximately 1.5 mA/cm2 at 0 V vs RHE and a maximum of 3 mA/cm2 before the 

onset of dark current.  PEC results for sample A9 are also promising, but did not perform 

as well as sample A8.  Figure 5.18c shows the OCP for sample A9.  Again, n-type 

behavior and a high photovoltage of .5 V was observed.  IV measurements were quite 

poor however showing less than .1 mA/cm2 even at 1V vs RHE shown in Figure 5.18d.  

Samples A10 and A11 were also grown under almost the same conditions.  In this 

case however, the H2 flow rate of A10 was inadvertently left at 300 sccm instead of 125 

sccm.  There were also major complications during shutdown causing an abrupt 

shutdown of the reactor.  These factors seem to have yielded beneficial results, however, 

as sample A10 is the best performing PEC sample in this study.  As can be seen in Figure 

5.19a, OCP for sample A10 has an excellent photovoltage of .75 V, the highest observed 

in this study.  IV measurements yielded an incredible 8 mA/cm2 photocurrent at 0 V vs. 

RHE and a saturated photoactivity of 11 mA/cm2 before the onset of dark current as 

shown in Figure 5.19b. Chopped illumination 2-electrode chronoamperometry further 

confirmed this behavior under unbiased conditions as showing Figure 5.19c. Over the 

course of 10 minutes, photocurrents between 5 and 8 mA/cm2 were observed with no 

external bias.  Sample A11 on the other hand, showed very poor performance in 

comparison to A11.  OCP measurements shown in Figure 5.19d show that n-type 

behavior with only .35 V photovoltage is observed.  IV measurements yielded 

photocurrents less than 50 µA/cm2 even under external bias as shown in Figure 5.19e.  In 

the case of samples A8-A11, it seems that shutting off the PCl3 immediately after 

operation of the reactor rather than gradually provides superior PEC properties.   
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Figure 5.19  Fundamental PEC studies for samples A10 and A11, respectively, at 4 

suns illumination in 1M sulfuric acid (pH = 0).  (a,d) OCP under chopped illumination 

for 500+ seconds indicating n-type conductivity for both samples.  (b) Unbiased two-

electrode chronoamperotry measurements under chopped illumination for sample A10 

exhibiting steady photocurrents between 4 mA/cm2 and 8 mA/cm2 for 10 minutes. 

(b,e) chopped illumination LSV measurements exhibiting approximately 11 mA/cm2 

and 0.02 mA/cm2 maximum photocurrents under bias respectively. 
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Finally, PEC characterization was performed on sample A12.  Figure 5.20a shows 

OCP for sample A12 indicating an appreciable photovoltage of .5 V.  IV measurements, 

shown in Figure 5.20b, also yielded appreciable photocurrents of .5 mA/cm2.  These are 

not nearly as high as those seen for sample A10 but are still very promising results. 

 

Figure 5.20 Fundamental PEC studies for sample A12 at 4 suns illumination in 3M 

sulfuric acid (pH = 0).  (a) OCP under chopped illumination for 500+ seconds 

indicating n-type conductivity  and (b) chopped illumination LSV measurements 

showed approximately 0.05 mA/cm2 maximum photocurrents under bias.	  
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Sample ID Deposition 
Temperature 
(oC) 

Maximum 
Photoactivity 
(mA/cm2) 

Photoactivity 
at 0V vs RHE 
(mA/cm2) 

FLATBAND 
POTENTIA
L (V vs.  
Ag/AgCl) 

A4 625 .5 .3 -0.55 
A6 660 .05 .005 -0.55 
A8 620 3 1.5 -.65 

A9 620 .2 .1 -0.35 
A10 670 11 8 -0.55 
A11 670 .02 .05 -0.2 
A12 670 .05 .2 -0.25 

 

Summary on photoelectrochemical performance: As can be observed from Table 6.3, 

each sample exhibits a flat band potential negative of the HER, implying that the 

conduction band and Fermi level of the synthesized semiconductors is appropriate to 

provide energetically favorable electrons to the counter-electrode that can drive the HER 

spontaneously under illumination.  Furthermore, by incorporating what is known about 

the band gap from UV-Vis and PL, valence band positions can be obtained.  The 

observed band placement based upon the flat-band potentials and band gaps for samples 

A4, A6 and A8-A12 are shown in Figure 6.21.  As can be clearly seen.  All samples 

Table 5.3  Summary of photoelectrochemical data obtained for relevant GaSbxP1-x 

samples A4 through A12 vs. the temperature at which they were deposited.  Maximum 

photoactivities observed under bias and photoactivities at 0 V vs. RHE from LSV 

measurements are reported as well as the observed flatband potentials from OCP 

measurements.  All samples were measured at 4 suns illumination while samples A4 

and A6 were measured in sodium sulfate solution (pH 9-10) and samples A8-A12 

were measured in 3 M sulfuric acid (pH = 0).	  



	  115	  

should straddle the watersplitting reaction with the exception of portions of A8, A9 and 

A10.   

 

 

 

 

 

Figure 5.21 – Approximate band edge placement for each sample based upon the 

observed flatband potentials and band gaps.  All samples exhibit n-type conductivity 

thus the observed flatband potential is used to place the conduction band for the 

material.  The band gap is then used to determine the position of the valence band.  

The green marker indicates the conduction band energy level, the red marker 

represents the valence band level based upon the lowest observed bandgap and the 

blue marker represents the valence band level for the highest observed band gap. 
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Summary: The photoelectrochemical data observed for several samples grown using 

HVPE method are very promising.  The data shows that the band edges of GaSbxP1-x 

films can straddle water splitting reactions for antimony concentrations between 4-6%. 

The photoelectrochemical performance of samples improved with crystallinity of the 

samples, i.e., crystallite size and orientation.  The best performing sample (A10) utilized 

higher flow rates of H2 resulting in higher concentrations of Sb than any other sample and 

highly oriented crystallinity. This sample exhibited the highest photovoltage of more than 

.7 V and photoactivities of 11 mA/cm2 at 4 suns of illumination. Most importantly, the 

electrode also exhibited over 2 mA/cm2 under two electrode measurements indicating un-

assisted water splitting. As expected, improvements in crystallinity also yielded superior 

PEC performance such as in the case of samples A8 through A12, each exhibiting 

photovoltages in excess of .5 V.  Samples A8 and A10 also had abrupt shut-off of the 

PCl3 precursor instead of gradually shutting off the PCl3 indicating that this gradual flow 

of PCl3 may have modified the surface in a way that makes it less photoactive. 

Samples A8-A11 also contained higher amounts of antimony (between 4-6% Sb) 

and exhibited higher photovoltages than the samples with lower concentrations of Sb 

while still straddling the water splitting reaction.  This increase in photoactivity could be 

a direct result of increased carrier mobility in the conduction band of GaSbP with 

increased Sb concentration.  Lastly and most surprisingly, HVPE grown GaSbP samples 

are capable of providing the photovoltage and catalysis necessary for driving the OER 

and relatively stable with limited decrease in photoactivity after fundamental PEC testing 

and 10 minutes of continuous operation in highly acidic conditions (pH = 0).  GaP has 
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been stabilized for water oxidation as a photoanode utilizing TiO2 coating previously140 

but has not been shown to be stable for water oxidation as reported here.   

The studies presented in this chapter uniquely establish GaSbxP1-x alloys as 

promising materials for both un-assisted and tandem cells for solar water splitting. 
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CHAPTER 6 

CONCLUSIONS 

The growth of gallium antimonide phosphide (GaSbxP1-x) alloys within the regime 

of 0-10% antimonide composition is studied using reactive vapor transport and halide 

vapor phase epitaxy methods. The resulting films were characterized for structural, 

optical and photoelectrochemical activity for the water splitting reaction. The 

experimental results on structure and optical properties are compared with theoretical 

computations using the DFT+U technique. The following are the conclusions from this 

dissertation study. 

 

DFT+U calculations predicted that the GaSbP alloys in the dilute antimonide 

regime will exhibit transition from indirect to direct band gap and straddling of 

conduction and valence band edge positions for water splitting reactions. Theoretical 

computations using DFT+U type methodology were specifically used to investigate the 

GaSbxP(1-x) alloy system with x ranging from 0 to 0.065. The computations predicted 

direct optical band gap transition for alloys containing x = 0.0092 or more. Theoretical 

results also showed that for up to x = 0.065, the band edges straddle the HER and OER 

reactions.  

 

Reactive vapor transport was utilized as an exploratory technique to synthesize 
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GaSbP NW alloys in the dilute antimonide regime as confirmed by electron microscopy 

and diffraction techniques. GaSbxP(1-x)  nanowires were obtained using a reactive 

transport method without the use of any additional catalyst. TEM and SEM confirmed 

synthesis of single crystal GaSbxP(1-x) alloy NWs with uniform compositions of Ga, Sb 

and P.  Sb concentrations in these NWs ranged from x=0.02 to x=0.24. XRD both 

confirmed the presence of the GaSbxP(1-x) at the length scale of the sample, and that there 

is no GaP present in the samples.  Most importantly, the experimental findings 

corroborate the DFT+U calculations which predicted the incorporation of Sb in the GaP 

lattice, without phase segregation at the studied concentrations, as well as the band gaps 

and band edge positions of the alloys with respect to water splitting. 

 

Optical band gap measurements confirm an indirect to direct transition in dilute 

antimonide GaSbP alloys and fundamental PEC testing shows that GaSbP is photoactive. 

UV-Vis diffuse reflectance measurements taken over a 1 cm2 area of multiple samples, 

confirmed direct band gaps between 1.33 eV and 1.72 eV.  Room temperature 

photoluminescence micro-measurements confirmed direct band gaps for GaSbxP1-x 

nanowires while cold photoluminescence (77 K) confirmed the lack of GaP.  

Photoelectrochemical linear sweep voltammetry measurements indicated the material is 

photoactive.  OCP measurements indicated the alloy has an extrinsic p-type response and 

two electrode voltammetry showed a consistent photoresponse indicating the material 

straddles the water splitting reaction and is capable of splitting water as a photocathode in 

a Schottky type water splitting device.  
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A halide vapor phase epitaxy method was developed and used to grow highly 

oriented crystal morphology GaSbP films that exhibited direct band gaps from 1.2 to 2.2 

eV.   GaSbxP1-x alloys were grown using a custom-designed HVPE reactor using PCl3, 

hydrogen, Ga and Sb as precursors. Experiments using various III/V precursor flux ratios 

resulted in films with morphologies from microwire geometries to highly crystalline 

layers. Resulting films had antimony compositions up to 6% confirmed by both EDS and 

XRD techniques. Optical characterization using UV-Vis spectroscopy and room 

temperature photoluminescence spectroscopy (PL) showed direct band gaps in the range 

of 1.7 to 2.1 eV. 

 

Fundamental photoelectrochemical testing of the HVPE samples unveiled HVPE 

grown GaSbP as highly photoactive electrodes for performing the OER with the 

champion sample showing a 0.75 V photovoltage and 8 mA/cm2 at unbiased 

photocurrents that is relatively stable in highly acidic conditions under 4 suns 

illumination.  Photoactivity of the samples seem to correlate with sample quality in terms 

of crystal size and film texturing. The sample exhibited stability under oxidizing 

conditions at this photoactivity for over 10 minutes of two electrode chronoamperometry 

measurements in highly acidic electrolyte (pH = 0).  This photocurrent saturated at 11 

mA/cm2 at 1 V vs. Ag/AgCl external bias as seen in LSV measurements.   

 

Synthesis of GaSbP in the dilute antimonide regime has been confirmed and it’s 

indirect to direct band gap transition at these compositions along with its highly active 

photoelectrochemical properties as either a photocathode or photoanode for water 
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splitting have been confirmed thus corroborating exploratory DFT+U calculations. 

Highlights of both experimental and theoretical studies include the transition from 

indirect to direct band gap with minimal antimonide incorporation, and the straddling of 

the water splitting reaction under dilute antimony alloying.  The data presented here 

represent first of its kind use of HVPE to grow GaSbP films and the 

photoelectrochemical studies suggest as significant activity for a semiconductor with un-

assisted water splitting.  
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CHAPTER 7 

RECOMMENDATIONS  

7.1 Changes with reactor design and operation  

 The operation of the reactor can be made more reliable and easier to operate by 

making the following changes.  

 The first recommendation is the addition of a N2 or Ar purge gas to allow the 

chamber to be purged and refilled with an inert gas during cooldown of the reactor.  This 

would keep deposition from occurring during cooldown after the experiment has finished 

and may keep the formation of the varying compositional range microwires at the surface 

of the samples from occurring.  Another recommendation is to utilize individual quartz 

tubes for each precursor.  This will serve to both limit the amount of Ga produced during 

a reaction by splitting the gas flow into three isolated zones until it reaches the deposition 

zone and to keep the Ga from diffusing backwards and condensing at the Sb quartz boat.  

Furthermore, a carbon-coated quartz liner tube should be used at the deposition zone for 

each experiment and disposed of afterwards.  This will keep deposition from 

accumulating in this area and presenting a health hazard when it is disturbed.  This would 

also provide a method of reliably placing the substrate heater from the front of the reactor 

and accessing the back of the reactor where unwanted depositions occur, thus decreasing 

any safety risks associated with the reactor tremendously.   
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 Accompanying this change should be a reconfiguration of the pyrometer to have a 

line of sight from the front of the reactor.  The focus of the pyrometer is very accurate 

and has as much as a 60” focal length.  This would easily allow for the measurement of 

the front of the substrate heater, through the entirety of the quartz tube from a viewport 

placed at the front of the reactor.  In order to accomplish this, a T-junction will need to be 

installed at the front of the reactor in order to provide access for gases to enter the reactor.  

By moving the pyrometer to the front of the reactor, the gas clouds generated will no 

longer stop the pyrometer from losing line of sight to the substrate heater. Once the 

pyrometer is moved to the front of the reactor, the line of sight required from the back of 

the reactor will no longer be needed.  This will allow installation of a manual valve 

immediately following the quartz tube adapter between the 4 way cross.  By installing a 

manual valve here, the area of the reactor with unwanted depositions can be closed off 

while the precursor boats and substrate heater are removed from the stage, keeping the 

operator from being exposed from any of these unwanted deposits.   

 In order to keep the pressure control valve from getting stuck with metal 

condensation, a larger pressure control valve needs to be installed that can overcome 

these depositions readily.   Foreline traps should be installed immediately following the 

pressure control.  Metal mesh foreline traps are typically used for trapping condensation 

products, a sodasorb trap can be used to trap acidic gases and a carbon filter can be used 

to catch any other excess reactants.  Alternatively, a liquid N2 trap can be used to the 

same effect however this requires a dewar of liquid nitrogen on-hand to be used. 

 If the liquid N2 trap were used, the dewar could also conveniently be used for the 

utilization of a dry gas pump in place of the rotary vane pump being used.  Reaction of 
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the generated species with the current rotary vane pump oil causes a damage to the pump 

and added maintenance time.  A dry pump does not use oil for lubrication and as such 

there is nothing for the exhaust gases to react with.  Dry pumps are expensive and require 

liquid N2 as previously stated however a dry pump may be necessary for reliable 

operation of the HVPE reactor. 

 After experimentation is done and the tube furnace is opened in order to vent heat 

faster, the temperature inside of the safety enclosure spikes to 140°F.  In order to mitigate 

this as well as to provide a stronger negative pressure on the safety enclosure itself, a 

strong ventilation fan should be installed on the safety enclosure.  As an added 

precaution, an inline carbon filter should be installed to catch any gases before they are 

vented from the safety enclosure.  This endeavor is already underway.   

 A diagram of the reactor scheme after the recommended implementations has 

Figure 7.1  Reactor scheme after implementation of proposed changes 
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been made is seen in Figure 7.1.  With these recommendations, future experimentation 

with the HVPE reactor should be much safer and more reliable. 

  

7.2 Recommended experiments using HVPE  

 Future experiments are recommended to grow single crystalline, epitaxial films of 

varying thicknesses on silicon substrates using HVPE reactor. There is a large amount of 

parametric space for obtaining GaSbP alloys with different antimonide compositions. 

This can be done by performing a rigorous design of experiments around the Ga 

temperature zone to reliably tune the amount of moles of Ga generated during a reaction 

by weighing the precursors before and after an experiment.  Once this is known, a Ga 

temperature that generates between 1.5 mmol and 26.4 mmol of Ga should be chosen. 

Once this is known, another design of experiments around the deposition temperatures 

should be performed in order to find the appropriate deposition for large-scale epitaxy to 

occur. Once large-scale epilayers have been grown at a given composition, changes in the 

available Sb and P for reaction should be changed in order to see if GaSbxP1-x should be 

grown throughout the compositional range.  Experiments should also be undertaken to 

appropriately dope the epilayers either n-type or p-type. It will also be interesting to grow 

thin, single crystal layers of GaSbP using the existing MOCVD reactor.  

 

7.3 Electrical and PEC device testing  

 Initial PEC characterization of HVPE grown GaSbP samples has shown them to be 

some of the best performing PEC materials grown to date.  A future PEC experimentation 

path should look at the stability of the material, the effects of doping on the observed PEC 
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behavior, performance in a highly active redox couple and the addition of catalyst to the 

surface.  
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