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ABSTRACT 

 
        Age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) are the 

two leading causes of blindness in the world today.  Despite enormous efforts and 

advances in clinical treatment of eye diseases, there is no established method or cure of 

degenerative processes in the eye, such as ARMD and RP.  In these disorders, the 

primary cause of blindness is due to the loss of photoreceptors, however, the remaining 

conductive neural pathways in the inner retina are still intact and functional.  As a result, 

the University of Louisville in collaboration with the Center of Innovative Visual 

Rehabilitation at the Eye and Ear Infirmary of Harvard University is currently developing 

a microelectrode array for direct stimulation of the epiretinal surface of the eye.  A major 

problem associated with implantation of the microfabricated device is the inability to 

secure the implant to the epiretinal surface.  To address this issue, our group designed 

retinal microtacks to attach the microelectrode arrays to the inner surface of the eye.   

 Microtacks were successfully fabricated out of titanium and silicon using ultra-

high-precision micromachining and microfabrication methods, respectively.  Metrology 

was performed to verify the accuracy of both fabrication methods.  Insertion and 

retention force experiments were performed on each tack design in fiber reinforced 

synthetic rubber and porcine eye tissue. 

 Results show that the titanium microtack design required less insertion force and 

greater removal force than that of the other designs in the fiber reinforced synthetic 

rubber.  The synthetic rubber experiments displayed repeatable results with minimal 

deviation.  The porcine ocular tissue showed poor repeatability with high deviation across 

all microtack designs. 
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1. INTRODUCTION 

1.1. Purpose of the Study 

The purpose of this study is to develop alternative micromachining processes to 

fabricate retinal microtacks with 3-Dimensional features in biocompatible materials. 

1.2. Hypotheses 

• The 3-D microtack designs with the tapered tip point will require less insertion 

force than that of the planar microtack designs.   

• For the tapered tip point designs, the 3-D titanium microtack will require less 

insertion force than that of the 3-D silicon microtack. 

• The titanium microtack design with barbs will require greater removal force to 

extract the tack from a biomaterial compared to the silicon microtack designs. 

1.3. Significance of Study 

To this day, neither age-related macular degeneration (ARMD) nor retinitis 

pigmentosa (RP) have an effective treatment or cure.  Artificial retinal implant designs 

are leading the way to restore sight to those who have been blinded by these diseases.  

Independent of the design, the ability to mechanically fasten a retinal prosthesis to the 

interior of the eye is a problem.  Intraocular rotational motion can reach an angular 

velocity of more than 400 degrees per second [Humayun 2001 & Margalit 2002].  

Impulses such as these large velocities caused by the simple motion of the eye will 

require a sturdy device or structure to securely fasten any prosthesis slated for epiretinal 

attachment.  In addition, silicon is a highly brittle material (E=112.5 GPa, σy=120 MPa); 

thus, current silicon microtack designs are prone to breakage during insertion into tissue.  

Thus, alternative designs and different materials need to be investigated.   
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2. LITERATURE REVIEW 

2.1. Background 

Age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) are the 

two leading causes of blindness in the world today.  Despite enormous efforts and 

advances in clinical treatment of eye diseases, there is no established method or cure for 

these degenerative processes.  In these disorders, the primary cause of blindness is due to 

the loss or death of the rods and cones, which are the photoreceptors that convert light 

into electrical impulses; however, the remaining conductive neural pathways in the inner 

retina, e.g. the amacrine, horizontal, bipolar, and ganglion cells, as well as the optic nerve 

are still intact and functional [Medeiros 2001].  The University of Louisville 

Microfabrication Group in collaboration with the Center of Innovative Visual 

Rehabilitation Eye and Ear Infirmary of Harvard University is currently developing a 

microelectrode array for direct stimulation of the epiretinal surface of the eye [Rizzo 

2001, Shire 2002].  A major problem associated with implantation of such a 

microfabricated device is the inability to secure the implant to the tissue surface.  To 

address this issue, our group has designed retinal microtacks to physically attach the 

microelectrode arrays to the inner surface of the eye.  

 

2.2. Anatomy of the Human Eye 

 The anatomy of the eye consists of several significant components that are vital to 

visual acuity, focus, sense of color, and the overall vision of the eye.  Without the proper 

function of any of these anatomical features within the eye, vision can fade or be lost 

entirely.  Some visual aids can be issued to assist in improving vision after the loss of 
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some function, such as eye glasses, contact lenses, cortical prostheses or in the case of 

this study retinal prostheses.  In recent years, retinal and cortical prostheses have been 

explored to address the loss or degeneration of the retina and its corresponding neural 

layers. 

 

2.2.1. Retina and its neural layers 

 The retina is part of the nervous tunic and is a multi-layered sensory tissue that 

lines the back of the eye.  It is analogous to a charge-coupled device (CCD) chip in a 

digital camera.  Whereas a CCD chip contains millions of microphotodiodes, the retina 

contains millions of photoreceptors that capture light rays and convert them into electrical 

impulses that are then carried through the bipolar cell layer and transmitted to the 

ganglion cell region [Guyton 1996].  Axons of ganglion cells extend to the optic disk 

where they all exit as the optic nerve.  The electrical impulses travel along the optic nerve 

to the brain where they are interpreted as images.  The individual retina cellular layers 

and their functions are described below. 

 

2.2.1.1. Photoreceptors 

There are two types of photoreceptors in the retina:  rods and cones.  They are 

visual receptors highly specialized for stimulation by rays of light (Figure 1).  The retina 

contains approximately 6 million cones that are specialized for color vision and sharpness 

of vision or visual acuity [Tortura 1997].  The majorities of these cones are contained 

within the macula and function best in bright light.  Rods are specialized for vision in dim 

light and also allow us to discriminate between different shades of dark and light and to 
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see shapes and movement.  There are approximately 125 million rods spread throughout 

the peripheral retina.  

 

Figure 1.  Cross-sectional view of retinal neural layers in fovea region and peripheral 
region. (Adapted from The Physiology Coloring Book, 1997) 

 

2.2.1.2. Bipolar Cells 

 Bipolar cells are a class of retinal inter-neurons, named after their morphology, 

that receive input from the photoreceptors and send it to the ganglion cells. Bipolar cells 

are non-spiking neurons; their response to light is evenly graded, and shows lateral 

inhibition [Guyton 1996].  They are thus involved in the intermediate processing of light 

signals.  Amacrine and horizontal cells are also considered intermediate bipolar 

processors, except they have no axons. The amacrine cells only interact with the ganglion 

cells while the horizontal cells only interact with the photoreceptor cells (Figure 1). 
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2.2.1.3. Ganglion Cells 

The retina contains more than 130 million rods and cones; yet the number of 

ganglion cells is a small percentage of that, only about 1.6 million.  An average of 60 

rods and 2 cones converge on each ganglion cell [Guyton 1996].  Axons of ganglion cells 

extend to the optic disk where they all exit as the optic nerve (Figure 1).  These impulses 

travel along the optic nerve to the brain.   

There are three groups of ganglion cells, named the W, X, and Y cells.  Each 

ganglion cell type serves a specific function in the neuronal transfer of light into electrical 

signals [Guyton 1996]. 

• W-Cells 

The W cell constitutes approximately 40 percent of the total ganglion cell 

population.  They receive most of their excitation from the rods, and transmit 

through the bipolar cells.  This ganglion cell type has a broad visual field due 

completely to the dendrites spread across a wider area.  W cells are especially 

sensitive to the detection of directional movement anywhere in the visual field. 

• X-Cells 

The X cell, being the most abundant, constitutes approximately 55 percent of the 

total ganglion cell population.  The X cell transmission is responsible for all color 

vision due to input received from at least one cone.  The short dendrites of the X 

cells induce small fields which represent distinct retinal locations.   

• Y-Cells 
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The fewest of all types of ganglion cells, the Y cells fill the final 5 percent of the 

retinal population.  They also have the broadest of dendritic fields among the 

three, visual signals are detected by the Y cells in widespread areas.  This type of 

ganglion cell responds rapidly to either movement or light intensity. 

 

2.2.1.4. Macula 

 The macula is the highly sensitive portion of the retina responsible for central 

vision and is located roughly in the center of the retina, temporal to the optic nerve.  The 

macula allows a person to perform tasks that require central vision such as reading.  It is 

approximately 6 mm in diameter and covers the central 21.5° of visual angle [Jackson 

2002].  The macula contains two sub regions: the fovea and parafovea.  The fovea is the 

central region of the macula only 0.8 mm in diameter covering approximately 2.75° of 

visual angle and is responsible for sharpness vision (Figure 1).  It is in this region where 

there is a very high concentration of cones [Guyton 1996, Tortura 1997].  This visual 

acuity and spatial discrimination is primarily due to ~1:1 ratio between the cones and 

ganglion cells.    The parafovea encircles the fovea and is highly concentrated with rods.  

In young adults, rods outnumber cones in the macula by 9:1. 

 

2.2.1.5. Retinal Pigment Epithelium (RPE) and Bruch’s Membrane (BM) 

 The retinal pigment epithelium (RPE) and Bruch’s Membrane (BM) are 

sustenance layers, acting as the nursing layers for the retinal cell layers (Figure 1).  They 

sustain photoreceptor health by maintaining proper ionic balance, hydration, 

transportation and filtration of nutrients [Rowe-Rendleman 2003].  The RPE also 
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replenishes photopigment that is bleached during light exposure.  The BM acts as a 

support structure or basement membrane for the RPE and above the choroid [Anderson 

2002]. 

 

2.2.2. Choroid 

 The choroid is sandwiched between the retinal layers and sclera.  It is composed 

of layers of blood vessels that nourish the eye.  It is a dark brown color to prevent any 

reflection of light within the interior cavity of the eye which would cause fowling of 

vision.  The blood flow through the choroidal system, which nourishes the retina and 

RPE, are amongst the highest flow rates in the body [Jackson, 2002]. 

 

2.2.3. Sclera 

 The sclera is commonly known as the white of the eye.  It is the tough, opaque 

tissue that serves as the eye's protective outer coating which covers approximately five-

sixths of the posterior surface [Hecht 2003]. The sclera is continuous in the front of the 

eye with the cornea and in the back of the eye with the external sheath of the optic nerve. 

 

2.2.4. Conjunctiva 

The conjunctiva is the thin, transparent tissue that acts as a protective layer that 

covers the outer surface of the eye.  It begins at the outer edge of the cornea, covering the 

visible part of the sclera, and lining the inside of the eyelids.  The conjunctiva secretes 

oils and mucous that moistens and lubricates the eye. 
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2.3. Age Related Macular Degeneration 

Age-related macular degeneration (ARMD) is a degenerative condition of the 

macula.  It is the most common cause of vision loss in the United States in people 50 

years or older, and its occurrence increases with age [Tezel 2004, Ambati 2003, Jackson 

2002, Humayun 1999, De l'Aune 2001, Stone 1992].  There are two forms of ARMD: 

Exudative (EXARMD) or wet form and Non-Exudative (NEARMD) or dry form.  Both 

forms result in central vision deterioration. 

EXARMD is the least common of the two types, accounting for approximately 

15% of all ARMD patients diagnosed with the disease.  It is the most destructive form, 

and is responsible for rapid and severe loss of vision due to the formation of choroidal 

neovascularization (CNV) [Tezel 2004, Medeiros 2001, Ambati 2003].  CNV occurs 

when new blood vessels from the choroid grow through the weakened BM, which is 

caused by RPE degeneration, reducing the amount of nourishment to the BM.  The new 

blood vessels can leak or break in their adolescent state and newly formed hemorrhages 

lie between the RPE and BM, causing the RPE and retinal neural layers to swell inward.  

The gap between the retinal pigment epithelium and Bruch’s membrane reduces or 

completely halts the transmission of blood to the photoreceptors and their by-products, 

resulting in the death of rods and cones in the area of the hemorrhage.  In most patients, 

this can result in sudden loss of vision. 

NEARMD is the more common of the two; approximately 85% of all ARMD 

patients are diagnosed with this form [Rowe-Rendleman 2003].  As the macular RPE 

degenerates and ceases to function properly, the photoreceptors become malnourished 
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and gradually malfunction, resulting in a loss of central vision. RPE dysfunction also 

results in the formation of drusen.   Drusen are amorphous yellow-white deposits found 

between the RPE and BM and are by-products of photoreceptor metabolism [Tezel 2004, 

Anderson 2002, Rapantxikos 2003].  With increasing age, drusen can become calcified or 

filled with cholesterol, appearing crystalline [Ambati 2003].  The size of the drusen 

typically are less than 63 microns, over time the drusen can regress in size, leaving 

weakened RPE tissue along with voids between the RPE and BM. 

ARMD varies widely in severity.  In the worst cases, it causes a complete loss of 

central vision, making everyday functions like reading or driving impossible.  For others, 

it may only cause slight distortion.  Fortunately, ARMD does not result in total blindness 

since it does not affect the peripheral vision.  Both forms of ARMD can occur at the same 

time, producing symptoms of each. 

 

2.3.1. Symptoms of ARMD 

• Loss of central vision. This may be gradual for those with the dry form.  

Patients with the wet form may experience a sudden decrease of the central 

vision.  

• Difficulty reading or performing tasks that require the ability to see detail. 

• Distorted vision for wet form.  Straight lines such as a doorway or the edge of 

a window may appear wavy or bent (Figure 2).  

• Blurred vision for dry form. 
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Figure 2.  Possible visual symptoms of ARMD (Obtained from 

http://www.stlukeseye.com/Conditions/MacularDegeneration.asp) 
 

2.4. Retinitis Pigmentosa 

Retinitis pigmentosa (RP) is a rare, non-inflammatory hereditary disease that causes the 

rod photoreceptors in the retina to gradually degenerate; approximately 1 out of 3500 

people is affected by this disease [Sharma 1999, Medeiros 2001, Gupta 2003].  The 

majority of the rod population is located near the periphery of the retina and is 

responsible for peripheral and night vision.  Usually, patients with RP first notice 

difficulty seeing in dim light, such as difficulty with night vision, and gradually lose their 

peripheral vision.  The course of RP varies.  For some, the effect on vision may be mild.  

Others experience a progression of the disease that leads to blindness.   Clinicians 

diagnose RP by examining the retina with an ophthalmoscope.  The classic sign of RP is 

clumps of pigment in the peripheral retina called bone-spicules, which are spots on the 

peripheral retina that are relatively darker in color than that of the central macula region. 
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In many cases, RP is diagnosed during childhood when the symptoms begin to become 

apparent.  However, depending on the progression of the disease, it may not be detected 

until later in life. 

 

2.4.1. Symptoms of RP 

• Difficulty seeing in dim lighting or night vision 

• Gradual loss of peripheral vision (tunnel vision, Figure 3) 

• Glare  

• Loss of contrast sensitivity  

 
Figure 3.  .  Example of RP visual symptom, loss of peripheral vision 

 

2.5. Treatment Possibilities for ARMD and RP 

There are several treatment possibilities for ARMD.  A high-dose vitamin and 

antioxidant treatment is the only proven treatment for slowing the progression of the 

degeneration process caused by both wet and dry forms of ARMD [Tezel 2004].  
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Currently, the goal for treating wet ARMD is the destruction and removal of the CNV.  

Below is a list of processes for CNV removal: 

• Laser photocoagulation 

• Photodynamic treatment 

• Anti-Angiogenic Therapy 

• Radiation 

• Thermotherapy 

At best, the above treatments yield scarring beneath the photoreceptor layer, leading to 

eventual receptor death and loss of vision.  All target the removal of CNV, ignoring the 

fact that the reformation of a healthy RPE is required to regain vision [Tezel 2004].  

Treatments that do not change or heal the subretinal RPE interface only serve as a band 

aid and do not cure ARMD.  

 Like ARMD, retinitis pigmentosa has several treatment possibilities.  Doses of 

vitamin A reduce the degeneration process [Sharma 1999].  Gene therapy, investigations 

into growth factors, and even a patient’s diet have been determined to influence RP as 

well.  To date, there is no cure to revitalize the lost photoreceptors and restore vision back 

to normal. 

 

2.6. Preservation of Ganglion Cells 

Although both age related macular degeneration and retinitis pigmentosa 

ultimately result in the loss of photoreceptors in the respective areas affected by the 

disease, the remaining bipolar and ganglion cell layers are moderately undamaged.  In a 

study of pathological correlation by comparison, Medeiros et al. (2001) determined that 
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in the case of wet ARMD, despite immense loss of photoreceptors, there was a 53% 

preservation of ganglion cells in the end stage of the disease.  In the case of dry ARMD, 

there is no significant loss of ganglion cells [Medeiros 2001].  There was less than a 10% 

loss of ganglion cells in 5 out of 6 eyes tested, compared to healthy eyes used as the 

control.  As for RP, 30% to 75% of the ganglion cells survived in the macular regions 

compared to the control eyes [Stone 1992, Santos 1997, Humayun 1999].  The same eyes 

had a survival rate of 20% to 30% compared to the control eyes.  Thus, with a sufficient 

number of ganglion cells being preserved in both diseases, electrical stimulation of the 

remaining neural retinal layers is a possibility for these patients to regain at least some 

vision. 

 

2.7. Current Visual Prosthetic Possibilities 

 A visual prosthesis is a man-made device intended to partially restore or improve 

the vision of a person who has succumbed to diseases such as RP and ARMD.  To help 

these patients, visual prostheses are being developed for placement in the visual cortex of 

the brain for direct stimulation, or in the eye, either under the retina as a subretinal 

implant or on the retinal surface as an epiretinal implant, to excite the functioning optic 

nerve path.  Each design possibility has certain advantages and disadvantages. 

 

2.7.1. Cortical Prosthesis 

The initial work towards a visual prosthetic was initiated with direct electrical 

stimulation of the visual cortex [Dobelle 2000].  While patients can lose their sight 

through degenerative processes such as RP, ARMD, or any other vision impairment 
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disease, a cortical implant essentially bypasses the phototransduction performed by the 

retina; therefore, does not require any functionality of the eyes nor the optic nerves, 

which travel from the eyes through the optic chiasm to the visual cortex (Figure 4).   

 

Figure 4.  Neural pathway of the human brain.  (Adapted from 
http://faculty.etsu.edu/currie/images/vision4.jpg)  

 

Cortical stimulation requires placement of a microelectrode array into the visual 

cortex.  The electrical stimulation produces one to four closely spaced phosphenes from 

each electrode [Dobelle 2000].  A phosphene is a sensation of light caused by excitation 

of the retina or visual cortex by mechanical or electrical means rather than by light 

[Hecht 2003].  The cortical implant from the Dobelle Institute (Portugal) Lda. consists of 

several components [Dobelle 2000].  A miniature video camera is mounted to a pair of 

special glasses which connects to a computer contained in a pack worn on the patient’s 

waist (Figure 5).  The computer interprets and simplifies the video via image pixilation 
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and transmits it to the electrode array consisting of 64 individual electrodes in an 8 by 8 

staggered array (Figure 5).  The electrode array is implanted in the back of the head 

through a hole in the skull, which is drilled by the surgeon, directly on the visual cortex 

region of the brain.  This type of visual implant has been successfully placed into eight 

human patients, each suffering from different types of blindness.  Most cases were 

primarily from blindness due to traumatic accidents; however, the implant is applicable to 

virtually all causes of blindness.  The device setup has been approved for commercial use 

in Europe.   

 
Figure 5.  The cortical implant from the Dobelle Institute.  (Obtained from 

http://www.dobelle.com) 
 
 

Seven out of 8 patients whom have successfully had the cortical prosthesis implanted 

noted changes in vision, including four who stated the ability to see color [Dobelle 2000].   

Two patients were able to detect people in light colored clothing, and were also able to 

detect straight edges as small as a pencil.  Both were capable of driving an automobile, 

albeit slowly.  Another patient demonstrated these abilities ten minutes after the viewing 

camera was turned on.  On the downside, the implantation procedure is basically a form 

of brain surgery, entailing a serious risk to the patient.  This fact suggests that other 
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possibilities of visual stimulation should be explored, especially ones with less risk of 

severe injury or death to the patient. 

 

2.7.2. Microphotodiode Array Implant 

The microphotodiode array prosthesis is placed subretinally, i.e. under the retina, 

or sandwiched between the retinal pigment epithelium and the retinal neural layer.  The 

prosthesis is placed in the region where the photoreceptors have been lost (Figure 6).  The 

subretinal approach is considered a direct physical replacement of the degenerated 

photoreceptors [Schubert 1999, Tassicker 1954, Michelson 1985, Chow 1990, Nisch 

1999].   

 

Figure 6.  Cross-sectional view of the placement of a subretinal implant in the eye 
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One type of subretinal prosthetic implant is an array of microphotodiodes which 

are used to power the implant and supply the stimulation to the electrodes for excitation 

of the remaining functional bipolar and ganglion cells of the retina in the general vicinity 

of the implant.  These microphotodiodes convert light rays into electrical current, 

delivering potential changes correlating to changes in light intensity [Schubert 1999, 

Margalit 2002].  The microphotodiodes do not require any external power; they are solely 

powered by the incident light.  Initially, the array consisted of a single microphotodiode 

with electrode however, currently, it ranges from 5000 to 7500 electrodes [Chow 1993, 

Peachey 1999, Zrenner 1999, Gekeler 2001].  Chow et al. (1993) and Zrenner et al. 

(1999) have separately developed their version of the subretinal implant, and both groups 

have created companies to investigate their respective designs, Optobionics Corporation 

and Retinal Implant AG, respectively.  Both designs are quite similar, using 

microphotodiodes with a stimulating electrode in the middle of each.  The prostheses are 

fabricated using traditional CMOS and microfabrication techniques.  For both groups, the 

chip diameter ranges from 1 to 3 mm and has a thickness of approximately 25 to 50 

microns.  Both chip designs also have a span of approximately 30 microns between the 

20 by 20 micron microphotodiodes, leaving a 10 micron gap between the photodiodes 

[Chow 1993, Zrenner 1999].  

In Vivo experiments have been performed by both groups.  Zrenner et al. (1999) 

have performed experiments in pigs and rabbits.  The United States Food and Drug 

Administration authorized Optobionics Corporation to implant their subretinal chip 

design into 6 human patients that have lost vision due to retinitis pigmentosa, for a 2 year 

safety and feasibility study.   Chow et al. [2004] reported that, at this time, no patients 
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have shown signs of implant rejection, infection, inflammation, erosion, 

neovascularization, retinal detachment, or migration and most patients showed improved 

perception of brightness, contrast, color, movement, shape, resolution, and visual field 

size. However, the results of their study have not been duplicated by other investigators, 

so their results have come under close scrutiny.  

 The positioning of the subretinal implant is advantageous since the stimulating 

electrodes are inherently closer to the bipolar cells, which may lower the stimulation 

thresholds [Chow 1993, Zrenner 1999].  Subretinal implantation actually mimics 

physiologically the direction of phototransduction.  Because the circular chip is 

sandwiched between the retinal neural layers and the choroid, it forms a virtually 

impermeable boundary for oxygen and nutrients to pass, causing malnourishment to the 

retina and potentially damaging or killing the already damaged bipolar and ganglion cell 

layers.  One group has developed a procedure of drilling holes into the implant with a 

laser to prevent this possible barrier effect [Schubert 1999, Margalit 2002].  Currently, 

the subretinal design has much less sensitivity than naturally occurring photoreceptors.  

Normal ambient lighting conditions are at an approximate intensity level of 8 lux (lumen 

per square meter), the amount of light intensity needed to generate sufficient stimulation 

for the Chow and Zrenner devices are 12000 lux and 70000 lux, respectively [Maynard 

2001].  More efficient diodes or active electronics requiring external power sources need 

to be developed for the subretinal approach to operate properly under normal or even dim 

lighting conditions.  Thus, other implant approaches need to be developed. 
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2.7.3. Microelectrode Array 

The microelectrode approach is somewhat different from that of the 

microphotodiode approach.  Specifically, the microelectrode arrays are typically placed 

on the inner surface of the eye, on top of the retina.  It is analogous to placing a poster on 

a bulletin board, where the bulletin board is the retina and the poster is the microelectrode 

array (Figure 7).   

 

Figure 7.  Section view of the placement of an epiretinal implant in the eye 
 

There are a handful of groups that are developing and testing versions of a 

microelectrode array (MEA) device.  All are using the same basic approach, which is an 

electrode array placed directly on the retinal surface [Rizzo 1997, Rizzo 2001, Meyer 

2002].  Early designs began with a single electrode, while new arrays consist of 25 
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electrodes.  The electrodes stimulate the ganglion cells and their corresponding axons, 

instead of following the direction of phototransduction [Humayun 1999].  The cortical 

implant and epiretinal implant have their similarities whereas both devices require a high 

resolution CCD camera mounted to a pair of tinted glasses, a waist or belt mounted image 

processing unit that is connected to the electrode array.  The ultimate goal in the 

microelectrode array project is to replace the belt mounted image processor with an 

implantable CMOS device, converting the wired setup into a wireless one, with a 

transmitter loop on the glasses and a receiver loop in the vitreous cavity of the eye 

(Figure 8).   

 
Figure 8.  Schematic of wireless epiretinal implant 

 

Two groups are leading the way in the MEA approach, Humayun et al. (2001) 

with Second Sight LLC, and Rizzo et al. (2001) with The Boston Retinal Implant Project.  

The designs of both groups have similarities.  Rizzo et al. (2001), developed initial 

designs that contained a platinum electrode array encased in a thin film of polyimide, the 
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array shown in Figure 9 contains 25 electrodes (5 by 5 array, ?? mm x ?? mm), whereas 

Humayun et al. (2001) has developed an implant that is fabricated using CMOS 

techniques and their first generation design consists of 16 electrodes (4 by 4 array, ?? mm 

x ?? mm). Both groups have been authorized by the USFDA to perform clinical trials for 

human implantation.  Target patients will have been diagnosed with RP and ARMD, 

typically mild or end stage cases.   

 

Tacks placed here 

 

Figure 9.  Preliminary epiretinal implant electrode design 
 

2.7.3.1. Fastening of MEA to Retinal Surface 

 The ability to mechanically fasten the MEA prosthesis is a predicament.  The 

intraocular rotational motion can reach an angular velocity of more than 400 degrees per 

second [Humayun 2001, Margalit 2002].  With this near impulse velocity created by the 

twitching motion of the eye, a sturdy device or structure will be needed to securely hold 

the prosthesis on the epiretinal surface.  Several techniques for attaching the implant to 

the epiretinal surface were attempted in experiments by other groups, such as 
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bioadhesives [Margalit 2002] and retinal tacks [Gerding 2001, Burke 1987, de Juan 1987, 

Abrams 1986, Puustjarvi 2001].  Bioadhesives used in the studies consisted of 

commercial fibrin sealants, UV curable glues, and hydrogels.  The studies by Margalit et 

al., determined that one type of hydrogel, SS-PEG hydrogel (Shearwater Polymers Inc.) 

proved to be a strong adhesive and also nontoxic to the retina or other ocular tissue 

[Margalit 2000].  Bioadhesives do not allow easy replacement of the implant, possibly 

damaging retinal tissue under and around the adhered area.  Whereas retinal tacks when 

removed for replacement may only damage the tissue at the removal site [Majji 1999].     

 Retinal tacks have been used in ocular surgeries for decades, most notably for the 

fixation of a detached retina.  Having a resemblance to its household counterpart, the 

thumbtack, it is fairly large, with a head approximately 2 to 3 mm in diameter and a pin 

diameter of approximately 1 mm in diameter.  These tacks are typically made of titanium, 

a highly biocompatible material that can either be used as an alloy or in its pure state 

[Brunette 2001, Barbucci 2002, Park 1992, Dee 2002].  This technique has been proven 

to be an effective approach for reattaching the retina, providing a permanent, stable and 

biocompatible form of adhesion [Gerding 2001, Burke 1987, de Juan 1987, Abrams 

1986, Puustjarvi 2001].  Although these macroscale tacks have been successful in retinal 

reattachment, these tacks are too large for attaching MEAs to the epiretinal surface since 

the dimensions of the MEAs are approximately the size of the head of a single retinal 

tack, which is insufficient to securely fasten the MEA to the epiretinal surface. Thus, 

researchers have begun to design microscale tacks.    
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 The initial microtack designed for epiretinal attachment was developed by Doug 

Shire at Cornell University [Shire 2002], it was composed of silicon and had a minimal 

cross sectional area of approximately 100 square microns (Figure 10).   

 
Figure 10.  SEM image of first silicon microtack., Shire et al. (2002) 

 

The ophthalmic surgeons had several problems inserting the initial designs of the silicon 

microtacks.  Having such a small structural geometry induced failure of the microtack 

upon insertion into the epiretinal tissue.  There were three basic modes of failure: 1) 

buckling of the relatively long, slender and brittle microtack shaft; 2) off-axis loading of 

the microtack imposed by the surgeon; and, 3) the micro-forceps slipping down the shaft 

of the microtack, ultimately breaking the microtack.  Therefore, new microtack designs 

must be developed to increase the structural integrity during tissue insertion while 

minimizing the insertion force to reduce tissue damage. 
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3. INSTRUMENTATION AND EQUIPMENT 

3.1. Ultra-High-Precision Micro Milling/Drilling Machine 

The Ultra-High-Precision Micro Milling/Drilling Machine (micromill) is a 

computer-numeric-controlled (CNC) milling station, using G-code, which is quite similar 

to those at the macro-scale (Figure 11).  The micromill was exclusively developed by 

Craig Friedrich [Friedrich 1996, Vasile 1996] in collaboration with Dover Instruments 

Corporation (Westboro, Ma).    The micromill at the University of Louisville is the 

newest of only three custom fabricated systems existing in the world; the other two are at 

Louisiana Tech (Ruston, LA) and Michigan Tech (Houghton, MI).   

 
Figure 11.  Ultra-High-Precision Micro Milling/Drilling Machine 

 
 

The micromill is a four axis system, consisting of the X, Y, and Z translational 

directions of motion and the θ direction which represents the spindle rotation.  All three 

of the translational and the rotational stages float on a thin cushion of air, or air bearings.  
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Lubrication is not required for the bearings of this design, which minimizes the 

maintenance required for the system, and therefore increasing the accuracy.  All that is 

needed for the bearings to function properly is clean, moisture and oil free air, regulated 

at 100 PSI.  The absolute positions of the X and Y translational axes are controlled with a 

laser interferometry system (Zygo Corp, Middlefield, CT); having a highly accurate 

translational resolution of 1.25 nm.  Linear motors are used to actuate the X and Y axes.  

The Z axis consists of a brushless servo motor (Parker Hannifan Corp., Rohnert Park, 

CA) to turn a precision ground lead-screw (Universal Thread Grinding Co., Fairfield, 

CT).  The rotation of the servo motor is translated into linear motion by the lead-screw. 

The absolute vertical position of the spindle is controlled using an exposed linear encoder 

(Heidenhain Corp., Shaumburg, IL) and a rotary encoder/resolver.  The translational 

resolution of the Z axis is 20 nm.  All three translation axes have an overall travel of 150 

mm (~ 6 inches).  The spindle has a speed range that varies from 3 RPM to a maximum 

speed of 20000 RPM.   

There are two major concerns for mechanical machining at the micro-scale: 1) 

vibration from the surrounding environment; and, 2) thermal expansion/contraction of 

material due to temperature variations.  To minimize the risk of vibration, four pneumatic 

cylinders are used to dampen and support a two ton granite block surface, in which all 

stages are mounted.  The combination of the two techniques reduces the external 

vibrations to an absolute minimum.  Holding the room to a constant ambient temperature 

and using cutting fluid or a misting fluid during machining procedures ensures that 

fluctuation in the temperature is also kept to a minimum. 
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Machining is not the sole function of the micromill; it is a much more versatile 

machine.  In the initial experiments, the micromill was used as a means for mounting a 

load cell and using the ultra-precise positioning capabilities for programmed input 

displacements.    The adaptability of the micromill is only limited by the creativity of the 

user. 

3.2. Custom Fabricated Micro-Clamp 

Due to the size of the microtacks, a special fixture needed to be fabricated in order 

to properly secure the microtacks prior to testing.  The custom-made micro-clamp 

allowed for firm grasp and proper orientation of the microtack for the force measurement 

experiments.  The base or motionless portion of the micro-clamp (Figure 12), is 

comprised of 316 stainless steel and was manually machined in the UofL Mechanical 

Engineering Department machine shop.  The retractable jaw (Figure 12) is made of 6061 

aluminum and was machined on the micromill.  The PMAC code that was written for the 

retractable jaw machining process is included in Appendix I.  This clamp was used in the 

force measurement experiments in the RSAIII rheometric system to grip the microtack 

during microtack testing.  

 

  

Retractable Jaw 
Base Jaw 

b.)  a.) 
Figure 12.  Images of micro clamp, a.) Solid Edge rendering, 

b.) machined micro-clamp 
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3.3. Ophthalmic Vacuum Fixture 

To securely grip the porcine eyes used in the force measurement experiments, a 

vacuum fixture was loaned from Dr. Henry Kaplan’s group at the Department of 

Ophthalmology and Visual Sciences at the University of Louisville.  The fixture (L = 

75mm, W = 30 mm, H = 50 mm) was made of polymethylmethacrylate (PMMA), having 

a spherical cavity (D = 25 mm) to hold an eye ball (Figure 13).  A vacuum line was 

drilled below the cavity allowing the eye to be partially pulled down, creating a secure 

and nondestructive grip on the eye. 

 
Figure 13.  Image of ophthalmic vacuum fixture 

 
 

3.4. RSA III Rheometrics System Analyzer 

The RSA III Rheometrics System Analyzer (TA Instruments, New Castle, DE) 

tests the dynamic mechanical properties of solid materials by using a servo drive linear 

actuator to mechanically impose an oscillatory deformation, or strain, upon the material 

being tested (Figure 14).  The sample is coupled between the motor and a transducer, 
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which measures the resultant force generated by sample deformation [TA Instruments 

2003]. Displacement and velocity are set by the operator, and the actual sample 

deformation is determined by the measured actuator and transducer displacement.  The 

low load transducer, (Transducer #1) has a maximum load of 367 grams and the high 

load transducer, (Transducer #2) has a maximum load of 3670 grams.  The system has an 

overall resolution of 0.100 grams.   

 
Figure 14.  TA Instruments Rheometric Series RSA III 

 
 

 The RSA3 was used to accurately measure the load required to insert the different 

microtack designs and the load required to remove the microtacks from a synthetic 

material and actual biological eye tissue.  The displacements and velocities were inputted 

into the computer interface and varied depending on material and microtack design.  The 

recorded data was output as an ASCII text file and input into Microsoft Excel for 

analysis. 
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3.5. WYKO Metrology System 

The WYKO NT-2000 interferometer (Veeco Instruments, Woodbury, NY) takes 

data by combining the path of light reflecting off of a sample with the path of light 

reflecting off an internal reference surface (Figure 15).  When the two paths combine, 

which occurs when alignment and focus of the test sample is satisfactory, the light waves 

interfere to produce a pattern of dark and light bands called fringes [Lichtenan 1997]. 

 In vertical scanning interferometry (VSI) mode, the surface is profiled by 

scanning vertically downward so that each point on the surface produces an interference 

signal.  At evenly spaced intervals during the scan, frames of interference data imaged by 

the video camera are captured and processed.  Using a series of advanced computer 

algorithms, the system precisely locates the peak of the interference signal for each point 

on the surface and processes them to determine the surface height profile.  The software 

program then calculates and displays the analysis output. VSI mode on the WYKO 

interferometer was used to perform metrology on all the fabricated microtacks.  Overall 

and critical dimensions were recorded. 

 
Figure 15.  WYKO NT-2000 interferometer 
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3.6. Zeiss SUPRATM 35VP Scanning Electron Microscope 

 The SUPRATM 35VP Scanning Electron Microscope (Carl Zeiss SMT Inc. 

Thornwood, NY) has a nominal resolution of 1.7 nanometers at 15 kV, and a nominal 

resolution of 2.0 nanometers at 30 kV in variable pressure (VP) mode (Figure 16).  It has 

a magnification range of 12x to 900,000x, and a VP vacuum range of 2 to 133 Pa in steps 

of 1 Pa.  The Zeiss SUPRATM 35VP scanning electron microscope was used to record 

true three dimensional and top view images of all fabricated microtacks.   

 
Figure 16.  Zeiss SUPRATM 35VP Scanning Electron Microscope 

 

3.7. SolidEdge Modeling Software 

 SolidEdge V17 (UGS, Plato, TX) was implemented to generate three dimensional 

CAD models of the retinal microtack designs, fixtures and the microclamp components.  

This software assisted the user in determining proper geometric design constraints the 

microtack designs.     
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4. PROCEDURES 

4.1. Description of Microtack Design 

 There were three basic microtack designs investigated in this study, two of which 

were constructed out of silicon and the third machined in pure titanium.  The most simple 

design of the three, the chisel tipped silicon microtack (Figure 17, a) is basically a two 

dimensional structure that is extruded in the direction normal to the mask.  This 

microtack design is similar in geometry to that reported by Shire et al. (2002); however, it 

is a more robust design, with a larger shaft width and thickness, reducing its ability to 

buckle.  To improve upon the chisel concept, a pointed tip was added to the design, 

which, theoretically, should reduce the amount of force required for insertion (Figure 17, 

b).  Both silicon microtacks have the same straight barb geometry and “grip head” 

feature. 

 The third tack design, mechanically machined out of titanium, has a partially 

conical, tapered tip, which created a sharp point.  Two curved barbs, similar to a fish 

hook, were added to increase the amount of retention force required to remove the tack, 

to prevent the microtack from “backing out” from the inner eye tissue (Figure 17, c).  A 

modified “head” structure with two ledges and a step was also integrated into the new 

design to increase and enhance the gripping area for a pair of micro forceps during 

surgery, basically preventing the micro-forceps from slipping down the length of the tack 

and inducing failure in the tack or damaging retinal tissue.   
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Figure 17.  Solid Edge rendering of three microtack designs: a) silicon chisel tip,  

b.) silicon pointed tip, c.) titanium sharp tip 
 

4.2. Microtack Fabrication 

 Two different micromachining processes were used in the fabrication of the 

microtacks: 1) traditional silicon microfabrication techniques; and, 2) micro mechanical 

machining.  The silicon microfabrication procedures (described in section 4.2.1) were 

performed by Dr. Jose Franco Sarabia while the micro mechanical machining procedures 

were performed by the author.  The specific details of these fabrication techniques are 

described below. 

 

4.2.1. Silicon Microtack using DRIE and Microfabrication Techniques 

Deep Reactive Ion Etching (DRIE) in combination with silicon fusion bonding 

(SFB) and buried sacrificial oxide layers were utilized in forming the microtacks 

constructed in silicon.  Both the chisel tip and pointed tip designs started with bonding a 

thermally oxidized “handle” wafer (d = 100 mm, t = 500 micrometers) to a thermally 
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oxidized <100> silicon double side polished wafer (d = 50 mm, t = 250 micrometers).  

The two wafers were bonded at room temperature and then annealed in nitrogen at 

1000ºC to complete the permanent silicon fusion bonding process (Figure 18, A).  For the 

chisel tip design, a thick negative photoresist was first spun-on the device wafer (Figure 

18, B), photolithography was then performed on the top surface of the device wafer using 

a microtack mask similar to Figure 19.  An oxide etch in buffered oxide etchant (BOE) 

was performed to open the windows for the DRIE process.  The patterned oxide layer 

(Figure 18, C) functioned as a masking layer during the DRIE etch step.  The device 

wafer was then anisotropically etched in an ICP (inductively coupled plasma) DRIE etch 

system (STS, Newport, United Kingdom) until the buried oxide layer was reached 

(Figure 18, D).  The oxide layer on the handle wafer served as an effective etch stop 

during the DRIE process and also functioned as a subsequent release layer.  The final step 

was to release the precisely etched silicon tack structures in hydrofluoric acid (HF) from 

the handle wafer (Figure 18, E). 
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Figure 18.  Microfabrication processes for the chisel tip microtack design 
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Figure 19.  DRIE mask 

 

To produce the pointed tip microtack design, the same SFB processes were 

performed as described above (Figure 20, A).  Subsequently, a layer of positive resist was 

spun-on (Figure 20, B) and patterned (Figure 20, C) using the mask shown in Figure 21.  

To form the tip of the microtack, a V-groove was anisotropically etched into the device 

wafer (Figure 20, D), leaving a 54.74° V-shaped tip.  Photolithography is then performed 

on the top surface of the device wafer using a thick negative photoresist which functions 

as a masking layer during the DRIE etch step (Figure 20, E).  The microtack mask in 

Figure 19 was then aligned to the existing V-grooves using the alignment markers and 
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patterned as described above in the chisel tip section.  The device wafer was then 

anisotropically etched in the DRIE etch system (Figure 20, F) and the microtacks were 

released from the handle wafer (Figure 20, G) using the same processing parameters as 

described above in the chisel tip section. 

 
Figure 20.  Microfabrication processes for the pointed tip microtack design 
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Figure 21.  V-Groove anisotropic etch mask 

 

4.2.2. Sharp Tip 3-D Microtack Fabrication Technique 
 

Given the capabilities of the ultra-high-precision micromilling machine, a more 

ductile and biocompatible material, such as titanium, could be used in the 

micromechanical machining process [Cambron, 2003].  Prior to micromechanical 

machining, 25 mm square coupons were cut from a sheet of pure titanium foil (Alpha 

Aesar, Ward Hill, MA) with a thickness of 250 micrometers using a dicing saw (Disco, 

Manassas Park, VA). The Ti coupons were bonded and clamped using a 1 inch C-clamp 

(apply 5 – 10 lbs of force) to a silicon wafer of similar size using a two part epoxy (88 

Epoxy laminating resin & 87 epoxy hardener, Fibre Glast Development Corp., 
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Brookville, OH) and allowed to cure in an oven at 65ºC for approximately one hour 

(Figure 22).   

 

 

 

APPLIED CLAMPING LOAD 

Figure 22.  Schematic of bonding process for titanium foil 
 

This procedure ensured flatness of the titanium substrate while increasing the precision of 

the micromachining processes by removing all gaps between titanium foil and silicon 

wafer and also protecting the milling stage from any damage resulting from the 

machining processes, when machining through the titanium the endmill will cut into the 

handle wafer instead of the milling stage.  The thickness of the commercially available 

titanium foil provided the desired microtack thickness and enabled proper 3-D machining 

of the tack’s sharpened tip, perimeter, and “grip head” for the micro-forceps..  

Additionally, the versatility and ultra-high resolution of the x-, y-, and z-translational 

stages of the micromilling machine allowed these new features to be incorporated into the 

updated design.  Several machining algorithms were written and programmed into the 

milling machine motion controller using programmable multi axis controller (PMAC) 

code (Appendix I).  Each microtack was machined serially, i.e. one tack at a time, around 

a radial array to reduce machining time (Figure 23).  Initially, the machining program 

was written with an embedded scaling factor (10:1) to debug the program by machining a 

macroscale block (75 mm by 75 mm by 10 mm thick) of polycarbonate (Lexan®) using a 

1.588 mm ( 0.0625 inch) two flute endmill (Figure 24).  This debugging procedure saved 
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time and money since the machining larger tack patterns enabled visual identification of 

machining errors and tools and substrate materials are both significantly cheaper than the 

150 micron endmills and titanium material. 

 
Figure 23.  Solid Edge rendering of the radial array design for machining of the 

microtacks 
 

 

Figure 24.  Image of the radial array of microtacks machined in a block of Lexan® using 
the 10:1 scale for debugging the machining program 
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For micromachining the sharpened Ti tacks, a 2 mm standard jobber drill bit was used as 

bulk material removal of the pointed tip cavity (Figure 26).  Then a 150 micrometer 

micro grain tungsten carbide end-mill (MiniTool Inc., Los Gatos, CA) was used to 

machine tacks at the final 1:1 scale (Figure 25).  The endmill was relocated to the center 

of the microtack array and cut the perimeter, forceps grip and the pointed tip.  The 

spindle speed, feed rate, plunge rate, depth of cut, and cutting fluid were characterized to 

determine the optimum machining process parameters (Table 1).  An image of the actual 

machining process is shown in Figure 26.  The machining time to complete a single 

microtack was approximately 25 minutes.   

 

Figure 25.  SEM image of 150 micrometer endmill 
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Table 1.  Optimized machining variables for machining Ti microtacks 

Spindle Speed 8000 RPM 

Feedrate 50 µm/s 

Plunge Rate 25 µm/s  

Depth of Cut 12.50 µm 

Cutting Fluid Trico Misting Fluid

 

 

Figure 26.  Image of machining process using 150 micrometer endmill in Ti 
 

Post-machining processing of the tacks consisted of removal of the two-part epoxy, as 

well as the burrs and surfaces flaws created during the micromilling process.  The Ti 

coupon was placed in a pure Dichloromethane bath at room temperature for 

approximately two hours to dissolve the epoxy and release the microtacks from the 

silicon substrate. All burrs and flaws created during the machining process by the cutting 

tools (Figure 27) were etched away by placing the microtacks in a 40:1 dilution of HF at 

room temperature for 5 to 6 minutes.  
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Figure 27.  SEM image of Ti microtack with burrs and machining flaws 
 
 
4.3. Metrology 

Metrology was performed using the WYKO NT-2000.  The microtacks were 

placed on a polished silicon wafer, to ensure flatness during the measurements.  Standard 

operating procedures were used in vertical scanning interferometry (VSI) mode to 

measure the overall and critical dimensions of both the silicon and titanium microtacks.  

A two dimensional sketch of each microtack design is shown in Figure 28, all features 

and geometries that were measured are labeled accordingly and the original design 

specifications are listed with a brief description in Table 2.  Three dimensional isometric 

images were recorded of each microtack using the SUPRATM 35VP SEM as well. 
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Figure 28.  2D sketch displaying the top and side views of the overall and critical 

dimensions measured for the microtack designs 
    
       

Table 2.  Designed dimensions for microtacks, in micrometers (µm) 
 Description Titanium Silicon 

A Overall Length 1950 1950 
B Overall Width 750 950 
C Grip Head Width 500 750 
D Grip Head Length 500 750 
E Dual Barb Width 600 500 
F Dual Barb Length 500 600 
G Shaft Width 250 325 
H Stop Thickness 100 200 
I Overall Thickness 250 250 
J Grip Step Depth 100 N.A. 
K Tip Angle 32° 54.74° 

 

4.4. Determination of Buckling Force 

  Buckling, as noted in prior sections, has been a source of failure for the silicon 

microtacks fabricated by Shire et al. (2002).  With the microtack material and dimensions 

identified, buckling forces can be determined for each new microtack design using four 
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different analytical methods.  All four of these analytical methods assume that the tack 

geometry acts as a column with the same cross-sectional area as the microtacks and the 

microtacks have a clamped-free end condition [Juvinall 2000, Beer 1992] (Figures 29 and 

30a).   

 
Figure 29.  Clamped-Free end condition for buckling. 

 
 

 
Figure 30.  Comparison of microtacks for a: a) simply loaded column; b) titanium sharp 

tip; c) silicon pointed tip; and, d) silicon chisel tip 
 

The first analytical method used to calculate the buckling force was based on the 

superposition method for a compressive and bending load combination.  Specifically, 

Beer et al. (1992) states that  
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Where A is the cross-sectional area of the column, I is the column moment of inertia, c is 

the distance from the neutral axis to the outer most point of the column, σy is the yield 

strength of the material, P is the applied load, and M is the moment that is applied to the 

column (P·d, d is the distance from the centroid to point of application of the load).  To 

determine the load at which the column would yield, solve for P by 
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For the titanium sharp tip and silicon pointed tip microtacks this equation is valid, but for 

the chisel tipped tack there would not be an induced moment due to load symmetry, 

therefore 

AP yσ=                                                            (3) 

 A second method for computing the buckling force is Euler’s equation: 
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Where E is the modulus of elasticity, Le is the effective column length where in the 

clamp-free end condition, Le=2.1L, and Pcr is the critical load at which the column will 

buckle when a centric load is applied [Juvinall 2000].  With this method, assuming axial 

loading, the critical load will essentially be much higher than the actual case. 

 The third analytical method for the determining the buckling load incorporates the 

J. B. Johnson parabola equation for column buckling.  The equation: 
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where ρ is the radius of gyration (ρ = 0.289h) [Juvinall 2000], h is the thickness of the 

microtack (h = 250 micrometers) and the quantity 
ρ

eL  is the slenderness ratio which was 

43.95.  This signifies that the microtacks at their designated length of 1.500 mm are 

considered an intermediately long column [Juvinall 2000], which falls within the range 

for using the Johnson equation. 

 The fourth and final method for determining buckling force is the Secant Formula 

for eccentric column loading [Juvinall 2000, Beer 1992, Norton 1998].  This eccentricity 

occurs when the line of action of the applied load does not pass through the centroid of 

the column cross-section as seen in all tack designs.  The equation for finding the critical 

eccentric load is: 
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where e is the eccentric distance from the applied load to the centroidal axis.  This 

equation is very similar to Equation (1) since it also accounts for both the applied 

compressive and bending loads, and combines them.  The quantity 2ρ
ec  is called the 

eccentricity ratio, where it was equal to 2.99 for the titanium and silicon pointed tip 

microtack designs since the load is eccentrically applied while the eccentricity ratio is 

equal to 0.5 for the silicon chisel tip tack.  The smaller ratio for the chisel tipped 

microtack would account for the typical variations in the loading eccentricity for a 

concentrically loaded structure [Norton 1998].    

 Table 3 lists all the critical loads required to buckle the simply clamped-free 

column for each of the analytical methods.  The Euler method computed the highest load 
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primarily due to the equation assuming a centric load.  The other three methods computed 

more realistic loads, all under 1000 gramsforce, with the Secant and Bending methods 

yielding similar results for each design.  The Johnson equation is also valid since the 

microtack ‘columns’ possess slenderness ratios within its calculated range.  It is 

anticipated that the measured buckling failure loads for the microtacks will fall between 

the values computed by the Johnson Equation (Eqn. 4) for the maximum load and the 

Secant/Bending Equations (Eqns. 1, 2 and 5) for the minimum load.  The calculations for 

each microtack can be seen in Appendix II. 

 

Table 3.  Different theoretical values for buckling force for each microtack design using 
the four analytical methods 

 Bending Euler Johnson Secant 
Titanium 222.99 3828.65 840.12 211.90 

Silicon Pointed Tip 248.47 4827.08 988.78 237.53 
Silicon Chisel Tip 993.88 4827.08 988.78 624.40 

**Units = gramsforce** 
 

4.5. Characterization of Microtack Performance in Fiber Reinforced Silicone 
Rubber Gasket Material 

 
 Prior to testing the microtacks in biological eye tissue, the tacks were 

characterized in a 380 micron thick sample (25 mm x 125 mm) of biomedical grade fiber 

reinforced silicone rubber gasket material (Specialty Manufacturing, Inc., Saginaw, MI) 

with a Shore durometer hardness of 40.  This was the material of choice due to its 

availability in our laboratory and its ease of use for the comparative tests between 

microtack designs. 

 Each silicone gasket sample was cut to size, special care was given to maintain 

similar orientation of the reinforcement fibers, so repeatable and comparable results could 
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be obtained between tests (Figure 29).  Three holes were punched into each silicone 

gasket sample, to match those in the vacuum fixture.  The test sample was then placed, 

under tension (~1737 ± 30.5 grams [Appendix II]), over the vacuum fixture via three 

tightened screws (Figure 30) to reduce the overall compliance of the material [Frick 

2001] during testing.  Thereby, reducing the amount displacement required to overcome 

the residual compliance of the reinforced material.  The insertion and retention force 

experiments were conducted in the RSA III system described in Chapter 3.  The 

operating parameters and testing procedures implemented in the silicon gasket material 

experiments are described below in section 4.7. 

 
Figure 31.  Prepared gasket material alongside vacuum fixture 
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Figure 32.  Gasket material mounted under tension over the vacuum fixture 

 
 

4.6. Characterization of the Microtack Performance in a Porcine Eye 

 After characterization of the microtacks in the silicon gasket material, the 

microtacks were tested in biological tissue, i.e. porcine eyes.  The porcine eyes were 

donated by Swift, Inc. in Louisville, KY. Since the eyes were not in suitable condition for 

immediate experimentation due to an abundance of conjunctiva and residual ocular 

muscle tissue, surgical scissors and forceps were used to remove the remaining tissue, 

leaving the scleral tissue, cornea, and clipped optic nerve exposed for testing. 

Subsequently, the eyes were preserved in a Saline solution (0.9% sodium concentration) 

and stored in refrigeration for no more than 3 days.  After proper preparation of the eyes, 

the eyes were mounted in the vacuum fixture with the optic nerve protruding out to top of 

the fixture. Saline was applied every 5 to 10 minutes to the secured eye specimen via 

pipette to prevent the ocular tissue from drying.  The insertion and retention force 

experiments were conducted in the RSA III system described in Chapter 3.  The 

 49



operating parameters and testing procedures implemented in the biological tissue 

experiments are described below in section 4.7. 

 

4.7. Insertion and Retention Force Experiments 

The force measurement experiments were performed using the RSA III rheology 

system described in Chapter 3.  Prior to performing the insertion and retention tests, the 

high and low load transducers were calibrated to ensure the validity of the results.  The 

calibration process consisted of hanging known masses from the high and low load 

transducers and adjusting the output reading to match the known mass (TA Instruments 

2003).  The complete calibration process is fully described in Appendix II. 

A testing protocol was developed to ensure each tack design would be 

investigated in the same manner.  The force measurement experiments were partitioned 

into three zones: insertion, hold, and removal, based upon the direction of microtack 

motion [Bzostek 1999].  During the insertion zone, the motion of each tack was inserted 

into the substrate and the compressive force encountered by the microtack increased until 

it punctured through the test sample.  The Hold zone occurred when the tack was held in 

a static position for 1 second, allowing the test specimen to settle prior to removal.  

During the removal zone, the compressive force quickly reduces to zero and the removal 

(tensile) force created by the tack increases until the tack is entirely removed from the 

test specimen, at which time the force level again returns to zero.  A constant microtack 

velocity of 1 mm/s was used for both the insertion and removal zones.  The input 

displacements incremented until insertion and removal occurred.  This process was 

performed on each tack design and test sample.   
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Initially, the microtacks were inserted into the synthetic rubber samples.  The 

vacuum fixture with mounted material sample was placed in the RSA III system.  Using 

tweezers, along with a steady hand under a lighted stereo microscope, the microtack was 

securely positioned in the micro-clamp and tightened.  The micro-clamp was then 

mounted into the RSA3 (Figure 31).   

 
Figure 33.  Synthetic rubber sample placed in the RSA III system 

 
 
A stereo microscope with a mounted CCD camera plugged into a viewing monitor was 

used to observe the microtack during testing.  The RSA III Z-axis traversed down until 

the tip of the microtack just touched (i.e. visual check and force detection on RSA III) the 

silicone gasket material.  To determine the amount of displacement needed to overcome 

the residual compliance in the sample, the user simply started at the low end of the scale, 

~500 micrometers of displacement, and increased in 500 micrometer increments until 

tack penetration occurred.  There were 10 force measurement experiments performed in 

each silicone gasket sample, similar to the one series of images in Figure 34.  One 
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silicone gasket sample was used per microtack, however, the silicone gasket sample 

holding fixture was moved 1 mm to ensure that the microtacks were not inserted in the 

same location more than once.   

 

 
a.) b.) c.) 

Figure 34.  Series of images from force measurement experiment,  
a.) Touch, b.) Insertion, c.) Removal 

 
 

 The force measurement experiments with the porcine samples consisted of the same 

protocol as described for the silicone gasket material, except for the requisite vacuum line 

connected to the vacuum fixture (Figure 35 & 36).  Tissue puncture tests were performed 

primarily in the region surrounding the optic nerve since this area is where the implant 

would typically be placed inside the eye (Figure 37).  Compliance of the biological tissue 

was also a major issue and had to be overcome (Figure 38).  The same procedure was 

used to determine input displacement as well. 
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Figure 35.  Overall test setup for insertion and retention force experiments in the eyes 

 
 

 

Figure 36.  Close up of vacuum fixture holding a porcine eye 
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Figure 37.  Typical placement of tack for insertion 
 

 

 
Figure 38.  Insertion of microtack demonstrating tissue compliance issues 

 
 

4.8. Data Extraction and Analysis 

The three different microtack designs were tested in two different sample 

materials: fiber reinforced synthetic rubber gasket material and porcine eye tissue.  Ten 

 54



insertion/removal tests were performed on each microtack unless the tack was damaged 

due to breakage or bending under high insertion.  The data in the form of an ASCII text 

file was retrieved from each force measurement experiment consisted of the time duration 

(seconds), displacement (millimeters), and normal force (grams).  Combinations of the 

recorded data was analyzed and input into the plots listed: 

• Normal Force versus Time 

• Normal Force versus Displacement 

• Total Force – Derived from the Normal Force curve 

The data files were exported as text files (.txt) from the RSA III and imported into a 

Microsoft Excel worksheet.  The data was recorded at a sample rate of 300 sample points 

per zone, the maximum number available with the RSA III system.  This sample rate 

exceeds the minimum number required by the Nyquist Criterion to avoid data aliasing 

[Dally 1993, Taylor 1997].    The duration for each of the three zones previously 

described are:  1) insertion: ∆t = 3 seconds, hold: ∆t = 1 second, and removal:  ∆t = 6 

seconds.  Table 4 describes the sample rates for each zone.   

 
Table 4.  Sample rates for each zone of experimental setup 

 ∆t (s) Sample Rate (Hz)
Insertion 3.00 100 

Hold 1.00 300 
Removal 6.00 50 

 
 

 Total force is an alternative quantitative value that can be used for comparing force 

data between microtack designs.  The total force was computed as the area under the 

curve for the normal force versus time plot and was calculated using MathCAD 2001 

Professional (Mathsoft Inc.).  The data file was imported into the developed software 
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macro (Appendix II) and converted to a single line using the lspline() command.  The 

area under the curve was calculated by integrating the resulting line equation.   There 

were two areas of interest, the area during insertion and the area during removal.  Each of 

these areas was integrated separately.  The area of insertion was integrated from t = 0 

seconds (F = 0 grams) to the time of maximum insertion force occurred.  The area of 

removal was integrated from the time removal began t ~ 4 seconds (F = 0 grams) to the 

time of maximum removal force occurred.  A student's paired t-Test, with a two-tailed 

distribution was performed on all results determining significance. 
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5. RESULTS AND DISCUSSION 

5.1. Microtack Fabrication 

5.1.1. Fabrication of Chisel Tip and Pointed Tip Silicon Microtacks 

A total of 96 silicon microtacks of each design were batch fabricated using the 

DRIE and anisotropic etch processes (Figures 39 and 40).  The DRIE process was able to 

produce a sharp edge in the silicon; however, the overall shape is a chiseled tip similar to 

the microtacks produced by Shire, et al. (2002).  SEM images of all other microfabricated 

silicon microtacks are included in Appendix III.  Four silicon microtacks were measured 

using the WYKO.  The top view and 3D rendering of a single Si microtack is shown in 

Figure 41a) and 41b).  The recorded measurements are shown in Table 6.   

 

 
Figure 39. SEM images of silicon chisel tip microtack 
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Figure 40.  SEM images of silicon pointed tip microtack 

 
 

   

A b) 

Figure 41.  a) Top view and b) 3D rendering of a silicon pointed tip microtack scanned 
using the WYKO 
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Table 5.  List of designed, actual and percent difference of silicon pointed tip microtacks 
 Silicon Chisel/Pointed Tip Microtack 
 Design Actual ± SD % DIFF 

A 1950 1918 ± 11.84 -1.7% 
B 950 941.5 ± 13.99 -0.9% 
C 750 738.5 ± 7.51 -1.5% 
D 750 746.8 ± 8.50 -0.4% 
E 500 506.5 ± 4.04 1.3% 
F 600 586.5 ± 14.06 -2.3% 
G 325 327.3 ± 6.70 0.7% 
H 200 199.0 ± 4.62 -0.5% 
I 250 267.8 ± 4.50 7.1% 
J N.A. N.A. N.A. 
K 54.74 54.0 ± .430 -1.3% 

 

The dimensions measured for the chiseled and pointed silicon microtacks vary 

from the design parameters; there are several potential reasons for these discrepancies.  

Specifically, in the case of the undersized dimensions, the photolithographic process 

could have contributed to this discrepancy since overexposure of the photoresist would 

cause the etched region to be larger.  In addition, under cutting of the masked region 

during the DRIE process could also contribute to excess material being removed.  

 The surface roughness (R in figure in Table 6) of the silicon microtack was also 

measured using the WYKO.  The root-mean-squared roughness (Rq) was 0.236 ± 0.040 

µm.  The surface roughness of the silicon microtack was relatively low due to the wafer 

being double-sided polished, minimizing surface roughness. 

 

5.1.2. Fabrication of 3-D Sharp Tip Titanium Microtacks 

A total of 10 titanium microtacks were successfully machined using the ultra-

high-precision micromilling process (Figure 42), which clearly illustrates the 3-D 
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features that the micromilling technique is capable of producing in the new microtack 

design.  SEM images of all other machined titanium microtacks are included in Appendix 

III.   

 
Figure 42.  SEM images of machined and deburred titanium microtack 

 
 

Metrology was performed using the WYKO VSI to measure the overall and critical 

dimensions of four titanium microtacks.  Vertical scanning interferometer output images 

were obtained for each microtack (Figure 43) and the dimensions defined previously 

were measured.  The recorded metrology data showed that all of the measured 

dimensions of the titanium tacks were within 6.5% of the design parameters (Table 6).   
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a) b) 

Figure 43.  Typical Vertical Scanning Interferometer output image for a Titanium 
microtack: a) Top view; and, b) 3D rendering 

 
 

Table 6.  WYKO metrology data for the measured titanium microtacks 
 Titanium Tapered Tip Microtack 
 Design Actual ± SD % DIFF 

A 1950 1920.5 ± 4.57 -1.5% 
B 750 709.3 ± 18.98 -5.4% 
C 500 471.0 ± 6.90 -5.8% 
D 600 573.2 ± 2.52 -4.5% 
E 450 424.5 ± 4.80 -5.7% 
F 550 514 ± 10.24 -6.5% 
G 225 222.9 ± 10.12 -1.0% 
H 100 98.7 ± 2.04 -1.3% 
I 250 258 ± 4.35 3.2% 
J 90 87.6 ± 8.90 -2.7% 
K 32 32.7 ± .86 2.1% 

 

All of the dimensions measured (A through J in Table 6) are less than the design 

parameters; there are several reasons for this phenomenon.  When machining pure 

titanium, if the machining parameters aren’t optimized, the chips removed during the 

machining process tend to gall onto the cutting tool due to the ductility of the material.  

This can increase the wear on the endmill; thereby, elevating the cutting forces required 
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to machine the material, which result in an increase in the amount of deflection of the 

endmill. Consequently, this increase in endmill deflection can lead to machining an 

oversized hole or slot [Shaw 2005].  Additionally, when an endmill is placed into the 

micromilling machine collet system it tends to have a small amount of eccentricity.  The 

collet system used on the micromilling system (ER 16) has an eccentricity tolerance of 

~10 micrometers. If this issue is not compensated for, it will cause discrepancies in the 

final product dimensions due to the increased movement of the tool during the machining 

process.  The chemical deburring process will also cause the titanium microtacks to be 

undersized because the HF etching procedure also results in the loss of material since it is 

a chemical material removal process, although the material loss by this process will be 

minute compared to the issues previously stated.  However, the combination of all three 

of these factors will contribute to the error in the final titanium microtack dimensions. 

 The surface roughness (R in figure in Table 6) of the titanium microtack was also 

measured using the WYKO.  The root-mean-squared roughness (Rq) was 7.33 ± 1.26 µm.  

The surface roughness of the titanium microtack was relatively high due to the chemical 

deburring process.  The etching process produced rough pitted areas throughout the 

surface area of the microtack, increasing the surface roughness.  This surface roughness 

could possibly promote tissue in growth which may assist in securing the microtack and 

implant in place. 
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5.2. Force Determination Experiments 

5.2.1. Characterization of Microtack Performance in a Fiber Reinforced Silicone 
Rubber Material  

All microtack designs were tested in a fiber reinforced silicone rubber material 

using the protocols defined in Chapter 4.  Specifically, each tack design was inserted into 

the material and normal force versus time plots were obtained (Figure 44) and the three 

zones previously described are clearly distinguished.  The first peak in the negative force 

domain represents the insertion (Zone 1) of the microtack into the synthetic rubber 

material.  The horizontal line in the hold zone (Zone 2) corresponds to the constant force 

applied once the synthetic rubber settles on the grip end of the microtack during the one 

second motionless hold period.  The second peak in the positive force domain represents 

the retention force (Zone 3) required to completely remove the microtack from the 

specimen.  Once the tack is fully removed, the force returned to zero.  The plot also 

shows the differences in load between the microtack designs.  As demonstrated in Figure 

44, the titanium microtack requires less force for insertion and greater force for removal, 

while the silicon pointed tip tack requires greater insertion force than the titanium and 

less than silicon chisel tip.  The removal force is approximately the same for the two 

silicon designs; this is primarily due to the fact that the ‘barbs’ on both silicon tack 

designs possess essentially the same dimensions and geometry.  Note the additional spike 

at the end of the insertion peaks for the two silicon microtacks compared to the titanium 

microtack which does not have this additional spike.  This spike is due to the tip 

geometry of the titanium microtack which induces a smoother transition during insertion, 

while the silicon tip designs “pop” through the interface resulting in the additional peak.  
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Furthermore, the amplitude of this additional peak is smaller for the pointed tip silicon 

microtack compared to the chisel tip design, which further corroborates this rationale.   

 

 
Figure 44.  Typical normal force versus time plot for all microtacks tested in the fiber 

reinforced silicone rubber gasket material  
 

Figure 45 illustrates the average insertion and removal forces, respectively, for all 

the experiments for each microtack design.  The average maximum insertion force of the 

titanium microtack (42.90 ± 5.20 grams) was found to be significantly (αinsertion << 0.001) 

smaller than the insertion force for the silicon chisel tip (41.7% higher) and silicon 

pointed tip (35.4% higher) microtacks.  The average maximum removal force of the 

titanium microtack (23.54 ± 1.50 grams) was found to be significantly (αremoval << 0.001) 
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higher than the silicon chisel tip (28.1% lower) and silicon pointed tip (30.1% lower) 

microtacks.  In comparing the results between the two silicon tip designs, the pointed tip 

was found to require significantly (αinsertion << 0.001) less insertion force than the chisel 

tip design.  Similarly, the retention forces were significantly (αremoval << 0.001) higher for 

the silicon pointed tip design compared to the chisel tip design.  These results indicate 

that all of the hypotheses are accepted for the fiber reinforced silicone rubber material.   

Individual microtack results are included in Appendix IV. 

 

 
Figure 45. Average maximum insertion and removal forces for all microtack designs in 

the fiber reinforced silicone rubber gasket material. (*α << 0.001) 
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Figure 46 displays a typical normal force versus displacement plot for a single run 

using each type of microtack design.  Three zones are observed.  Zone 1 (Insertion) starts 

at the plot origin represented in red and extends to the peak in the negative force domain.  

This point signifies the complete insertion of the microtack into the synthetic rubber 

material.  The vertical line in the positive displacement domain represents Zone 2 (Hold) 

displayed in green.  Zone 3 (Removal) displayed in blue immediately follows the Hold.  

The peak in the positive force domain represents the total retention force required to 

completely remove the microtack from the specimen.  Once the tack is fully removed, the 

force returns to zero.  The plot also shows the differences in the force and the required 

displacement between the microtack designs.   

 
Figure 46. Normal force versus displacement plot for all microtack designs in the fiber 

reinforced silicone rubber gasket material 
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Figure 47 exhibits the average displacement required for insertion and removal, 

respectively, for all the experiments for each microtack design.  The average maximum 

displacement required for insertion of the titanium microtack was 2.81±0.03 mm; this 

was 11.5% less than the silicon chisel tip design, and 8.5% less than the silicon pointed 

tip microtack.  The average maximum displacement required for removal of the titanium 

microtack was 0.78±0.07 mm, which was 8.8% greater than the silicon chisel tipped, and 

24.7% greater than the silicon pointed tip microtack.  The results illustrate that the 

titanium microtack requires less displacement for insertion and more displacement for 

removal than both the silicon microtack designs.  Individual microtack results are 

included in Appendix IV. 

 

 
Figure 47.  Average displacement required for insertion and removal for the microtacks 

designs in the fiber reinforced silicone rubber gasket material 
 
 

 67



 
An alternative quantitative value for comparing the force data between microtack 

designs is the total force.  The highlighted regions in Figure 48 shows the area under the 

force curve included in the calculation of the total force, specifically from 0 grams of 

load to the maximum value for insertion (red) and removal (blue).  These regions were 

used for ease of calculation within MathCAD. 

 
Figure 48.  Normal force versus time plot illustrating how total force was calculated 

 

Figure 49 summarizes the average total insertion and removal forces, respectively, for all 

the experiments for each microtack design.  The total insertion force for the titanium tack 

was the lowest of the three designs and it also had the greatest total removal force, while 

the silicon pointed tip tack requires greater insertion force than the titanium and less than 
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silicon chisel tip.  The total force for removal for the silicon pointed tip was 

approximately the same as the silicon chisel tip, due to the similar barb design.  The 

average total insertion force correlates well with the maximum insertion force results in 

that the titanium microtack (35.78±4.82 grams) was found to be significantly lower 

(αinsertion << 0.001) than the silicon chisel tip (51.1% higher) and silicon pointed tip 

(46.0% higher) microtacks. Similarly, the average total removal force of the titanium 

microtack (24.60±2.26 grams) was significantly higher (αremoval << 0.001) than the silicon 

chisel tip (37.2% lower) and silicon pointed tip (40.5% lower) designs. Whereas the total 

insertion and removal forces for the chisel tip and pointed tip silicon microtack designs 

were found to be significantly different from the titanium design.  This further supported 

the acceptance of the study’s hypotheses. Individual microtack results are included in 

Appendix IV.  Thus, the total force results correspond well with the maximum insertion 

and removal force results reported earlier. 
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Figure 49.  Average total insertion and removal force for the microtacks designs in the 

fiber reinforced silicone rubber gasket material. (*α < 0.001) 
 

Minimally invasive microtack insertion is desired, by doing so, damage to the 

retinal neural tissue will, theoretically, be low.  Puncture geometries varied between 

microtack designs in the fiber reinforced silicone rubber.  Figure 50 are representative 

stereomicroscope images of the insertion/removal points for each microtack design in the 

fiber reinforced silicone rubber material.  In figure 50a, the intersection of the four 

markings indicates the initial penetration point and the four lines radiating from this point 

of intersection represents the fracture/crack propagation through the material until 

complete insertion was achieved.  Figure 50b displays the point of insertion/removal of a 

silicon pointed tip microtack.  The puncture geometry is similar to that of the titanium 

tack, however, the two base fracture lines are clearly defined compared to the Ti sample 

and the fracture lines are less evenly distributed in the radial direction.  Figure 50c is the 
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insertion/removal point for the silicon chisel tack.  This puncture geometry is 

significantly larger and comparatively different than the two prior.   The vertical line is 

the initial line of penetration.  The other two lines are the fracture propagation due the 

parallel geometry of the chisel microtack. 

 

 
Figure 50. Stereomicroscope images of insertion/removal points of a) titanium, b) silicon 

pointed tip, and c) silicon chisel tip microtacks in the fiber reinforced 
synthetic rubber gasket material 

a) b) c)

   
 

5.2.2. Characterization of the Microtack Performance in a Porcine Eye 

Actual ocular tissue experiments were performed in porcine (pig) eyes.  Each 

microtack was inserted less than 6 mm from the optic nerve into the scleral tissue 

externally into the back of the eye.  The ease of testing and repeatability of the force 

experiments drastically decreased with the porcine eye specimens.  These two issues 

stemmed from several possible components encountered before and during the porcine 

eye testing.   

A total of 4 microtacks of each design were inserted into porcine eyes. Figure 51 

illustrates the average insertion and removal forces respectively, for all the experiments 

for each type of microtack design.  The results differ from that of the synthetic rubber 

material.  With this mode of experimentation, the silicon chisel tip microtack required 

less insertion force than both the silicon pointed tip microtack and the titanium sharp tip 
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microtack; however, the titanium sharp tip tack still required the greatest amount of 

removal force among the three.  The average maximum insertion force of the titanium 

microtack was 450.78±124.85 grams; this was 21.7% more than the silicon chisel tipped, 

and 5.5% more than the silicon pointed tip microtack.  The average maximum removal 

force for the titanium sharp tip microtack was 39.93±17.00 grams; this was 15.1% more 

than the silicon chisel tipped, and 32.9% more than the silicon pointed tip microtack.  

Notwithstanding, none of the three microtack designs were significantly different than 

another for the amount of insertion or removal force. Individual microtack results are 

included in Appendix IV.  

 
Figure 51.  Average maximum insertion and removal forces for each microtack design in 

the porcine ocular tissue 
 

Figure 52 illustrates the average displacement required for insertion and removal, 

respectively, for all ocular experiments using each type of microtack design.  These 
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results also differ from the synthetic rubber material results.  The silicon pointed tip 

microtack required less displacement for insertion than both the silicon chisel tip 

microtack and the titanium sharp tip microtack.  The titanium sharp tip and silicon chisel 

tip microtack were within 0.50% of one another.  The average displacement required for 

insertion of the silicon pointed microtack was 5.650±0.698 grams, which was 21.9% less 

than the silicon chisel tip tack and 21.6% less than the titanium microtack.  The average 

maximum displacement required for removal of the titanium microtack was 1.810±1.80 

grams, which was 5.8% more than the silicon chisel tip and 73.8% more than the silicon 

pointed tip microtacks. However, again, neither the displacements during insertion nor 

removal were significantly different between the microtack designs. Individual microtack 

results are included in Appendix IV. 

 
Figure 52.  Average displacement required for insertion and removal of the different 

microtack designs in the porcine ocular tissue 
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Figure 53 shows the average total insertion and removal forces respectively, for 

all the ocular experiments for each type of microtack design.  The silicon chisel tip 

microtack required less total insertion force than both the silicon pointed tip microtack 

and the titanium sharp tip microtack.   The average total insertion force of the silicon 

chisel microtack was 492.29±218.23 grams; this was 13.3% less than the titanium 

microtack and 9.7% less than the silicon pointed tip microtack.  The titanium tack 

required the most removal force of the three microtack designs with an average total 

removal force of 56.08±44.67 grams for the titanium microtack, which was 1.8% more 

than and 61.4% less than the silicon chisel tip and the silicon pointed tip microtacks, 

respectively. Again, no significant differences were found between the three microtack 

designs in the biological tissue experiments for the total insertion and removal forces. 

Individual microtack results are included in Appendix IV. 
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Figure 53. Average total insertion and removal force for the microtacks designs in the 

porcine ocular tissue 
 

5.2.3. Discussion of Variance Between Samples 

Several issues were of concern during and after the completion of the ocular 

experiments.  Repeatability between measurements was a major concern compared to the 

rubber experiments. The primary reason for the differences between the sample results is 

that the fiber reinforced silicone rubber is a man made material with near homogeneous 

material properties, whereas the porcine ocular tissue varies from sample-to-sample since 

biological tissue obtained from multiple animals will vary in material property uniformity 

due to each biological tissue sample having different amounts of collagen and cell density 

in the tissue based on age and gender of the animal. In addition, the length of time 

between removing the tissue from the animal and experimental testing would affect the 

amount of cross-linking between the collagen fibers and number of cells undergoing 
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apoptosis; thereby, altering the stiffness between the biological tissue samples. Similar 

structural variances also exist throughout the tissue, side-to-side, and from animal-to-

animal.  Unfortunately, all three tack designs were not tested in the same porcine tissue 

since alterations to the tissue during testing made it impossible  

The biomechanical properties of the eye, primarily the sclera, are largely 

associated with the collagen content.    Collagen is a protein that is the basic structural 

element for soft and hard tissues, including the sclera, the principal load bearing 

framework of the eye.  Scleral tissue contains approximately 90% collagen by weight 

[Rada 2005].  With this high percentage, scleral tissue is highly sensitive to the changes 

in collagen synthesis.  The biomechanical properties of the sclera depend largely on the 

interactions and crosslinking of collagen.  These interactions and alterations are 

influenced by, to name a few, aging [Diamant 1972, Fung 1993], vision problems such as 

myopia and hyperopia (nearsightedness and farsightedness, respectively) [Rada 2005], 

vitreous humor liquefaction [Ihanamaki 2004], and induced collagen crosslinkage 

[Wollensak 2004].   All of the stated alterations cause an increase in the crosslinking of 

collagen, which increases the visco-elasticity of the sclera, making it a more rigid 

structure.   Wollensak et al. (2004) reported that treating human and porcine scleral tissue 

with Glutaraldehyde induced collagen crosslinkage and significantly increased the 

Young’s Modulus by 122% and 817%, respectively.  The crosslinkage of the porcine 

tissue is probably the foremost contributor to the lack of repeatability in these 

experiments. 

The porcine eyes were removed from older age pigs and several eyes were used 

for testing.  The donated eyes due to the age of the pig had already begun to undergo 
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vitreous liquefaction.  The percentage of liquefaction differs between each eye; this 

places another variable into the equation, creating more uncertainty in the measurements.   

Tissue preservation also influenced the material properties of the eyes.  

Specimens were used in experiments typically within 2 to 3 days of pickup.  They were 

preserved in a saline solution for that time.   Collagen crosslinkage could have occurred if 

the preservation process was not optimized, creating an increase of uncertainty in the 

measurements.           

Breakage and deformation of the silicon and titanium microtacks were a key 

problem in the ocular force measurement experiments.  These buckling failures were 

primarily due to the increased visco-elasticity of the porcine tissue.  One out of four 

silicon chisel tip microtacks and two of the four silicon pointed microtacks broke upon 

insertion into the ocular tissue, while one of four titanium microtacks bent during 

insertion.  Table 7 displays the loads at which these microtacks failed along with the 

analytical results.  The titanium and silicon pointed microtacks failure loads fall within 

the designated analytical range stated earlier.  The silicon chisel tip microtack failed due 

to a much lower load than the analytical results.  This could be due to an over tightening 

of the micro-clamp, possibly cracking the brittle silicon before insertion.   Figures 54 

through 56 are SEM images of each of the microtack designs demonstrating the various 

modes of failures for the tacks.   

Table 7.  Actual buckling failure corresponding to analytical data. 
  Analytical 
 Failure Bending Johnson Secant 

Titanium 539.99 222.99 840.12 211.9 
539.60 

Si Point 
513.84 

248.47 988.78 237.53 

Si Chisel 161.41 993.88 988.78 624.4 
**Units = gramsforce** 
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Figure 54.  SEM image of the failure mode of the silicon chisel tip microtack 

 

 
Figure 55.  SEM image of the failure mode of the silicon pointed tip microtack (Note: the 

tack was imaged upside down, hence the surface of the pointed tip is not shown.) 
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Figure 56.  SEM image of the failure mode of the titanium microtack 

 

The figures above portray the ultimate difference between the silicon and titanium 

microtacks.  If either of the silicon microtack designs were used for actual clinical 

surgeries and was to fail, fragments of silicon would be dispersed throughout the vitreous 

and around the retinal region, leaving the patient in a worse situation.  Whereas, if the 

titanium microtack were to fail, it would simply bend, giving the clinician an easy 

opportunity to remove it and insert a new one. 

 

 

 

 

 

 

 79



6. CONCLUSIONS 

Retinal microtacks were successfully fabricated out of traditional silicon material 

and also out of a more biocompatible and ductile titanium material, using two different 

microfabrication procedures;  DRIE with wet anisotropic etching and ultra-high-precision 

micromilling techniques, respectively.  Metrology was performed to verify the accuracy 

of both fabrication methods. 

Force measurement experiments were successfully executed.  Results of the tests 

using fiber reinforced synthetic rubber gasket material proved the stated hypotheses, 

where the titanium microtack required less insertion force and more removal force than 

both silicon microtack designs.  The results were also quite repeatable, with minimal 

deviation.  On the other hand, the tests carried out in the porcine eye tissue did not 

coincide with the stated hypothesis, had poor repeatability and relatively high deviation.  

This was primarily due to the experimental plan.  Further studies should be performed to 

determine possible flaws in the experimental plan for testing the microtacks in actual 

ocular tissue.  The failures of all three microtack designs within the ocular tissue were 

unexpected but also determined that the titanium was the best choice of the design types. 
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7. RECOMMENDATIONS 

Several recommendations are listed below that may assist in the ongoing progress 

in determining optimal microtack design for retinal prosthesis fixation. 

 

• Vary insertion/removal velocity to determine whether this has any 

effect on loading scenarios. 

• Fabricate microtacks out of higher strength materials (i.e. titanium 

alloys) that have similar biocompatibility characteristics. 

• Design an insertion tool that will consistently grip microtacks of 

various geometries that can also by used by clinicians during surgeries. 

• Improve upon experimental plan for testing the microtacks within 

ocular tissue.  By designing a fixture that would replicate the 

compliance and cushioning of the socket which the eye ball rests.  By 

doing this, the tacks could be inserted within the eye, in the actual 

position it would be placed. 

• Implement eye testing within a test chamber consisting of a buffered 

saline solution heated to human body temperature of 98.6° F.  This 

would possibly emulate living tissue characteristics. 

• Implant various microtack designs of assorted biocompatible materials 

into living subjects to determine which material has better tissue 

response over a planned length of time. 
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APPENDIX I 
 

PMAC MACHINING CODE 
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1. PMAC program for micro clamp jaw machining process 
 
;MICTROTACK MICROCLAMP JAW 
;OF 6061 ALUMINUM 
;USING .0625" ENDMILL 
 
CLOSE 
DELETE GATHER 
OPEN PROG 1 
CLEAR  
I13=10 
P4=2500    ;2500 RPM 
P2=1 
INC 
DWELL 5000 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
Q0= 46.439650   ;X HOME 
Q1= 22.160000   ;Y HOME 
Q2= 133.147150   ;Z SURFACE 
Q3= Q2-.500    ;Z HOVER 
Q4= 10.00    ;RAPID TRAVERSE 
Q5= .500    ;FEEDRATE 
Q6= .100    ;PLUNGERATE 
Q7= Q2-5.00    ;HOME DECCELERATION 
Q8= 3.7592    ;DIMENSIONS 
Q9= .4572    ;DIMENSIONS 
Q10= 8.4836     ;DIMENSIONS 
Q11= .8001        ;DIMENSIONS 
Q12= 1.6764    ;DIMENSIONS 
Q13= 1.9368         ;DIMENSIONS 
Q14= 1.7018    ;DIMENSIONS 
Q15= .6350         ;DIMENSIONS 
Q16= .7874    ;DIMENSIONS 
Q17= 2.7178    ;DIMENSIONS 
Q18= 1.6256    ;DIMENSIONS 
Q19= 2.413    ;DIMENSIONS 
Q20= 5.0038    ;DIMENSIONS 
Q21= 10.3632   ;DIMENSIONS 
Q22= 2.2860    ;DIMENSIONS 
Q23= 8.5852    ;DIMENSIONS 
Q24= .635    ;CUT DEPTH 
Q25= .050    ;PECK DRILL PLUNGERATE 
Q26= .635    ;PECK DRILL PLUNGE DEPTH   
  
Q27= 1.00    ;PECK DRILL REMOVAL RATE 
 
ABS 
F(Q4) 
X(Q0)     ;MOVE TO HOME POSITION 
Y(Q1)  
Z(Q7)  
F(.5) 
Z(Q3)     ;TO Z HOVER 
DWELL 2000 
 
INC 
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F(Q4) 
X(-Q22) Y(Q23) 
DWELL 100 
 
ABS 
F(Q6) 
Z(Q2) 
DWELL 100 
 
INC 
Q100=1    ;HOLE 
WHILE (Q100<6) 
 F(Q25) 
 Z(Q26) 
 DWELL 100 
 F(Q27) 
 Z(-(Q100 * Q26)) 
 DWELL 100 
 Z(Q100 * Q26) 
 DWELL 100 
 Q100 = Q100 + 1 
ENDWHILE 
 
ABS 
F(Q4) 
Z(Q3) 
DWELL 100 
X(Q0) Y(Q1) 
DWELL 100 
Z(Q2) 
DWELL 100 
 
INC 
Q101=1 
WHILE (Q101<6) 
 F(Q6) 
 Z(Q101*Q24) 
 DWELL 100 
 F(Q5) 
 X(-Q8) 
 DWELL 100 
 X(-Q9) Y(Q10) 
 DWELL 100 
 CIRCLE1 
 X(Q11) Y(Q12) R(Q13) 
 DWELL 100(Q14) 
 DWELL 100 
 X(-Q15) Y(Q16) 
 DWELL 100 
 Y(Q17) 
 DWELL 100 
 X(Q18) 
 DWELL 100 
 X(Q19) Y(-Q20) 
 DWELL 100 
 Y(-Q21) 
 DWELL 100 
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 Z(-(Q101*Q24)) 
 DWELL 100 
 Q101=Q101+1 
END WHILE 
 
ABS 
F(Q4) 
Z(Q7) 
DWELL 100 
 
P2=0 
CLOSE 
 
 
2. PMAC program for titanium microtack machining processes 
 
;CONICAL CUTOUT OF RETINAL TACK  
;USING 2 MM CARBIDE DRILL BIT 
 
CLOSE 
DELETE GATHER 
OPEN PROG 1 
CLEAR  
P4=4000    ;4000 RPM 
P2=1 
DWELL 5000 
INC 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
Q0=.015    ;PLUNGE RATE 
Q1=.050    ;PECK DRILL DEPTH 
Q2=.500    ;CHIP REMOVAL RATE 
Q3=.025    ;REFERENCE PLANE 25 UM ABOVE SURFACE 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
Q100=1     
WHILE (Q100<7) 
 F(Q0) 
 Z(Q1) 
 DWELL 100 
 F(Q2) 
 Z(-(Q100 * Q1)) 
 DWELL 100 
 Z(Q100 * Q1) 
 DWELL 100 
 Q100 = Q100 + 1 
ENDWHILE 
 
F(5.0) 
Z(-5)     ;COMPLETE 
 
P2=0 
CLOSE 
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;RETINAL TACK PROCESS 
 ;PRIOR ROUGH DRILLING OF CONE USING 2MM CARBIDE DRILL 
 ;FINISH PASS AT END USING 150UM ENDMILL 
 
CLOSE 
DELETE GATHER 
OPEN PROG 1 
CLEAR  
 
P4=4000    ;SPINDLE RPM 
P2=1     ;SPINDLE ON 
I13=10    ;MOVE SEGMENTATION TIME 
ABS     ;ABSOLUTE POSITION 
DWELL 15000 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;RELATIVE HOME VARIABLES  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
Q100=0.000000   ;ABS X OF TACK PATTERN CENTERLINE 
Q101=0.000000   ;ABS Y OF TACK PATTERN CENTERLINE 
Q102=147.864760   ;ABS Z OF SUBSTRATE SURFACE 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;VARIABLES FOR CONICAL CUTOUT 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
Q30 = 1.00000   ;SCALING FACTOR  
     ;=(DIAMETER OF TOOL USED IN UM)/150 UM 
 
Q10 = Q30*(.150/2)  ;RADIUS OF ENDMILL 
Q0 = Q30*(.001)   ;1.0 UM DEPTH FOR EACH LAYER 
Q1 = Q30*(.0018)   ;1.8 UM DELTA RADIUS FOR EACH LAYER 
Q2 = (Q30*.610)-Q10  ;RADIUS OF CUT (610 UM - RADIUS OF 
ENDMILL) 
Q5 = .050    ;50 UM/S FEEDRATE 
Q6 = (2*Q10)-(Q30*.02)  ;DIAMETER OF TOOL MINUS 10 UM,  
     ;DELTA RADIUS FOR INTERIOR CUT 
Q7 = Q102-.25   ;Z HOVER 
Q8 = .000100   ;MINIMAL RADIAL OFFSET, 100 NM 
Q9 = Q102-5.0   ;RAPID TRAVERSE TOP POSITION 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
F(10.0) 
X(Q100) Y(Q101)   ;MOVE TO RELATIVE HOME IN X-Y PLANE 
DWELL 1000 
F(10.0) 
Z(Q9)     ;RAPID TRAVERSE TO 5 MM ABOVE SURFACE 
F(.5) 
Z(Q7)     ;MOVE TO RELATIVE HOME POSITION 
DWELL 2000 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;VARIABLES FOR TACK  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
Q31=Q30*(.78892)   ;Q31 THRU Q40 ARE DIMS OF TACK PERIMETER 
Q32=Q30*(.45548) 
Q33=Q30*(.06176) 
Q34=Q30*(.23048) 
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Q35=Q30*(.74784) 
Q36=Q30*(.22500) 
Q37=Q30*(.25000) 
Q38=Q30*(.12500) 
Q39=Q30*(.50000) 
Q40=Q30*(.65000) 
Q41=Q30*(.37500)   ;Q41 THRU Q44 ARE DIMS OF TWEEZER GRIP 
Q42=Q30*(1.7250) 
Q43=Q30*(.75000) 
Q44=Q30*(.12500) 
Q45=Q30*(.01250)   ;DEPTH OF CUT 
Q46=1.0    ;RAPID FEEDRATE BACK TO RELATIVE HOME 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
Q59=1     ;COUNTER FOR EACH TACK 
N25 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;TWEEZER GRIP 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
ABS 
F(Q46) 
X(Q100-Q42) Y(Q101-Q41)  ;MOVE TO INITIAL GRIP START POINT 
DWELL 500 
Z(Q102)    ;TO SURFACE 
DWELL 1000 
 
INC 
F(Q5) 
Q60=1 
N30 
Z(Q60*Q45)    ;PLUNGE COUNTED DEPTH 
DWELL 1000 
Y(Q43) 
DWELL 250 
X(-Q44) 
DWELL 250 
Y(-Q43) 
DWELL 250 
X(-Q44) 
DWELL 250 
Y(Q43) 
DWELL 250 
X(-Q44) 
DWELL 250 
Y(-Q43) 
DWELL 250 
 
IF(Q60=6)    ;PULL OUT OF LOOP WHEN TO SPECIFIED DEPTH 
GOTO 35 
ENDIF 
 
Z(-(Q60*Q45))   ;PULL UP TO SURFACE HEIGHT 
DWELL 250 
X(3*Q44)     ;RETURN TO INITIAL GRIP START POINT 
DWELL 250 
Q60=Q60+1 
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GOTO 30 
 
N35 
ABS 
F(Q46) 
Z(Q7) 
DWELL 500    ;MOVE TO RELATIVE HOME POSITION 
X(Q100) Y(Q101) 
DWELL 1000 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;TACK PERIMETER 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
ABS 
F(Q46) 
Z(Q102)    ;TO SURFACE 
DWELL 1000 
 
INC 
F(Q5) 
Q61=1 
N40 
Z(Q61*Q45)    ;PLUNGE COUNTED DEPTH 
DWELL 500 
 
X(-Q31) Y(-Q32)    ;BEGIN CUTTING PERIMETER OF TACK 
DWELL 250    ;CLOCKWISE PASS, CLIMB MILLING 
X(Q33) Y(Q34) 
DWELL 250 
X(-Q35) 
DWELL 250 
Y(-Q36) 
DWELL 250 
X(-Q37) 
DWELL 250 
Y(Q38) 
DWELL 250 
X(-Q39) 
DWELL 250 
Y(Q40) 
DWELL 250 
 
X(Q39) 
DWELL 250 
Y(Q38) 
DWELL 250 
X(Q37) 
DWELL 250 
Y(-Q36) 
DWELL 250 
X(Q35) 
DWELL 250 
X(-Q33) Y(Q34) 
DWELL 250 
X(Q31) Y(-Q32) 
DWELL 250    ;END CUTTING PERIMETER OF TACK 
Z(-(Q45*Q61)) 
DWELL 1000 
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IF(Q61=22) 
GOTO 45    ;PULL OUT OF LOOP IF TO PROPER DEPTH 
ENDIF 
 
Q61=Q61+1 
GOTO 40 
 
N45 
ABS 
F(Q46) 
Z(Q7) 
DWELL 500    ;MOVE TO RELATIVE HOME POSITION 
X(Q100) Y(Q101) 
DWELL 1000 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;60 DEGREE ROTATION 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
TSEL 1    ;SELECT MATRIX 1 
Q50=COS(60) Q51=SIN(60) Q52=0 ;VARIABLES FOR 1ST ROW 
Q53=-SIN(60) Q54=COS(60) Q55=0;VARIABLES FOR 2ND ROW 
Q56=0 Q57=0 Q58=1   ;VARIABLES FOR 3RD ROW 
IROT 50    ;ASSIGN VARIABLES TO ROTATION 
 
IF(Q59=6)    ;PULL OUT OF LOOP IF COMPLETED 6 TACKS  
GOTO 50 
END IF 
 
Q59=Q59+1 
GOTO 25 
 
N50 
ABS 
F(Q46) 
Z(Q7) 
DWELL 500    ;MOVE TO RELATIVE HOME POSITION 
X(Q100) Y(Q101) 
DWELL 5000 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;CONICAL CUTOUT PORTION OF TACK (FORMING SHARP POINT) 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
X(Q100)Y(Q101+Q2)   ;MOVE TO LAYER START POINT 
DWELL 500 
Z(Q102)    ;MOVE TO CUTTING DEPTH 
DWELL 500 
 
P551=0 
WHILE (P551<275) 
ABS 
Q20=Q2-(P551*Q1) 
 
F(Q5) 
NORMAL K-1 
CIRCLE2    ;COUNTERCLOCKWISE CIRCLE 
X(Q100) Y(Q101+Q20) J(-Q20)  
DWELL 500 
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INC 
Y(-Q1) 
DWELL 200 
Z(Q0) 
DWELL 200 
P551=P551+1 
ENDWHILE 
 
ABS 
F(.5) 
Z(Q7) 
DWELL 1000 
X(Q100) Y(Q101)  
DWELL 1000 
 
F(5.0) 
Z(-50) 
 
P2=0     ;TURN OFF SPINDLE 
CLOSE 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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APPENDIX II 
 

BUCKLING CRITERIA 
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Figure 57.  Buckling criteria for titanium microtack 
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Figure 58.  Buckling criteria for silicon pointed tip microtack 
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Figure 59.  Buckling criteria for silicon chisel tip microtack 
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RSA3 CALIBRATION 
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1.) Open RSA III Orchestrator software. 
2.) From Main Menu, click Utilities tab, got to Calibrate Instrument. 
3.) Select transducer to be calibrated (Figure 54). 
4.) Click XducerCAl command button. 
 

 
Figure 60.  Set Transducer Characteristics window for transducer calibration on RSA3. 

 
5.) Hang the calibration weight that corresponds to selected transducer: 

• Transducer 1 → 3667 gram mass 
• Transducer 2 → 367 gram mass. 

6.) Press Force Cal command button to calibrate the selected transducer (Figure 55).  
 

 
Figure 61.  Transducer Calibration window 

 
7.) Press Accept command button to accept calibration. 
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RUBBER SAMPLE TENSILE TEST DATA 
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Table 8.  Fiber reinforced synthetic rubber gasket material tensile tests to determine 
amount of tension applied to experiment samples 

TRIAL MAXIMUM TENSION 
(grams) 

MAXIMUM DISPLACEMENT 
(mm) 

1 1791.95 8.002 
2 1778.19 8.002 
3 1758.07 8.002 
4 1743.63 8.002 
5 1732.31 8.002 
6 1724.91 8.002 
7 1718.25 8.002 
8 1712.19 8.002 
9 1707.51 8.002 
10 1702.94 8.002 
   

AVERAGE 1737.00 8.002 
SD 30.49 0 

 

 
Figure 62.  Normal force versus time of tensile tests to determine amount of tension 

applied to experiment samples 
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TOTAL FORCE CALCULATION 
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Figure 63.  Screen shot of total force calculation using MathCAD 
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APPENDIX III 
 

SEM IMAGES 
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Figure 64.  SEM of Titanium #1 

 
Figure 65.  SEM of Titanium #2 

  

 
Figure 66.  SEM of Titanium #3 

 
Figure 67.  SEM of Titanium #4 

  

 
Figure 68.  SEM of Silicon #1 

 
Figure 69.  SEM of Silicon #2 
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Figure 70.  SEM of Silicon #3 

 
Figure 71.  SEM of Silicon #4 

  

 
Figure 72.  SEM of Silicon #5 

 
Figure 73.  SEM of Silicon Chisel #1 

  

 
Figure 74.  SEM of Silicon Chisel #2 

 
Figure 75.  SEM of Silicon Chisel #3 
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Figure 76.  SEM of Silicon Chisel #4 

 
Figure 77.  SEM of Silicon Chisel #5 

 
Figure 78.  SEM image of array of Ti microtacks 
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APPENDIX IV 
 

FORCE DATA 
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AIV.1 Individual Microtack Data Tested in Fiber Reinforced Synthetic 
Rubber Gasket Material 

 
Table 9.  Maximum insertion and removal forces for each test sample of each microtack 

design in fiber reinforced synthetic rubber gasket material 
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Table 10.  Displacement at maximum insertion and removal forces for each test sample 
of each microtack design in fiber reinforced synthetic rubber gasket material 
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Table 11.  Total insertion and removal forces for each test sample of each microtack 
design in fiber reinforced synthetic rubber gasket material 
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A
IV

.2    Individual M
icrotack D

ata T
ested in Porcine E

ye T
issue 

  Table 12.  M
axim

um
 insertion and rem

oval forces for each test sam
ple of each m

icrotack 
design in porcine eye tissue 
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1 2 3 4 5 6 7 8 9 10 Avera e SD 

1 Maximum Insertion Force -310.66 -273.88 -257 .24 -31304 -297.74 -33808 -331.55 -315.76 -316.4 1 -350.17 310.453 28.259 

E Maximum Removal Force 39.554 56.2326 39.7029 43.5801 31.0532 470507 34 .6753 440194 11 .1585 22 .6885 36.972 12.870 

:::J 2 Maximum Insertion Force -37005 -389.6 1 -522 .88 -522 .88 -480.69 -1003 -475.78 -513.06 -490.32 -727 .22 549.549 186020 

C Maximum Removal Force 35.3834 32 .8834 55.1901 55.1901 20.311 8 84 .2999 111 .881 42 .6359 81.8075 62 .5685 58.215 27 .882 

ro 3 Maximum Insertion Force -209.87 -304.72 -354 .88 -882 .67 -661.86 -539.99 492 .332 251.893 
~ Maximum Removal Force 3.56285 4.74754 5.06748 40.6633 74 .9998 18.5247 24 .594 28.472 

i= 4 Maximum Insertion Force NA NA NA NA NA NA NA NA NA NA 
Maximum Removal Force NA NA NA NA NA NA NA NA NA NA 

1 Maximum Insertion Force -567 .260 -497 .240 -427070 -419070 -270.750 -456.350 -437 .300 -457040 -47 1.310 -465.630 446.902 74 .869 

C Maximum Removal Force 60.724 41.503 23.959 15097 34.454 7.827 36076 53 .630 31.065 32 .103 33.644 16036 

a 2 Maximum Insertion Force -387 .200 -380.620 -346.350 -465.460 -382 .970 -424010 -366.560 -445.600 -430010 -437 .120 406.590 38.889 

U Maximum Removal Force 46.409 41.139 27 .16 1 22 .260 15.498 46.496 18.390 25.168 16089 28099 28.67 1 11 .932 

3 Maximum Insertion Force -335.100 -424 .350 -527 .240 -349.540 -514.580 -539.600 448.402 91762 

if) Maximum Removal Force 3.327 8.911 13.395 6 .137 33.139 44 .856 18.294 16.792 

4 Maximum Insertion Force -188.830 -453.120 -500.470 -513.840 414.065 152.400 
Maximum Removal Force 3.394 68.288 59.170 34 .094 41.236 29.078 

1 Maximum Insertion Force -459.930 -353.950 -376.750 -396020 -378.680 -43 1.970 -391.500 -375.440 -416 .720 -362 .050 394 .301 33025 
Maximum Removal Force 69.382 30082 5033 14.334 4.732 90.178 8.899 7.410 7027 4.660 24 .174 30.669 

OJ 2 Maximum Insertion Force -161.4 10 161.410 o ()()() 
if) Maximum Removal Force 0.310 0.310 o ()()() 

.c 3 Maximum Insertion Force -353.180 -347 .130 -397 .760 -296.800 -644 .240 -470.800 -408.620 -640.250 -401.750 -657.430 461796 135.887 

0 Maximum Removal Force 4.995 4.458 44.745 3.734 122.407 52 .947 9.195 136.286 6.756 73.756 45.928 50.440 
Maximum Insertion Force 

4 (ABS) -445030 -331.840 -463.980 -304 .540 -265.890 -273.000 -423.050 -609.500 -460.770 -372.240 394 .984 106.785 
Maximum Removal Force 6 1.186 66 096 77.986 100.105 68.708 30.448 24 .806 46.392 91.267 84 .951 65.194 25.108 



 
Table 13.  Displacement at maximum insertion and removal forces for each test sample 

of each microtack design in porcine eye tissue 
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Table 14.  Total insertion and removal forces for each test sample of each microtack 
design in porcine eye tissue 
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