
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2015

OptCluster : an R package for determining the optimal clustering OptCluster : an R package for determining the optimal clustering

algorithm and optimal number of clusters. algorithm and optimal number of clusters.

Michael N. Sekula
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Bioinformatics Commons, and the Biostatistics Commons

Recommended Citation Recommended Citation
Sekula, Michael N., "OptCluster : an R package for determining the optimal clustering algorithm and
optimal number of clusters." (2015). Electronic Theses and Dissertations. Paper 2147.
https://doi.org/10.18297/etd/2147

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.library.louisville.edu%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.library.louisville.edu%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2147
mailto:thinkir@louisville.edu

OPTCLUSTER: AN R PACKAGE FOR DETERMINING THE OPTIMAL
CLUSTERING ALGORITHM AND OPTIMAL NUMBER OF CLUSTERS

By

Michael N. Sekula
B.A., Saginaw Valley State University, 2010

A Thesis
Submitted to the Faculty of the

School of Public Health and Information Sciences of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Biostatistics: Decision Science

Department of Bioinformatics and Biostatistics
University of Louisville

Louisville, Kentucky

May 2015

	

	 ii	

OPTCLUSTER: AN R PACKAGE FOR DETERMINING THE OPTIMAL
CLUSTERING ALGORITHM AND OPTIMAL NUMBER OF CLUSTERS

By

Michael N. Sekula
B.A., Saginaw Valley State University, 2010

A Thesis Approved on

April 9, 2015

by the following Thesis Committee:

Dr. Susmita Datta

Dr. Somnath Datta

Dr. Ryan Gill

	 	 iii	

ABSTRACT

OPTCLUSTER: AN R PACKAGE FOR DETERMINING THE OPTIMAL
CLUSTERING ALGORITHM AND OPTIMAL NUMBER OF CLUSTERS

Michael N. Sekula

April 9, 2015

Determining the best clustering algorithm and ideal number of clusters for a

particular dataset is a fundamental difficulty in unsupervised clustering analysis. In

biological research, data generated from Next Generation Sequencing technology and

microarray gene expression data are becoming more and more common, so new tools and

resources are needed to group such high dimensional data using clustering analysis.

Different clustering algorithms can group data very differently. Therefore, there is a need

to determine the best groupings in a given dataset using the most suitable clustering

algorithm for that data. This paper presents the R package optCluster as an efficient way

for users to evaluate up to ten clustering algorithms, ultimately determining the optimal

algorithm and optimal number of clusters for a given set of data. The selected clustering

algorithms are evaluated by as many as nine validation measures classified as

“biological”, “internal”, or “stability”, and the final result is obtained through a weighted

rank aggregation algorithm based on the calculated validation scores. Two examples

using this package are presented, one with a microarray dataset and the other with an

RNA-Seq dataset. These two examples highlight the capabilities the optCluster package

and demonstrate its usefulness as a tool in cluster analysis.

	 	 iv	

TABLE OF CONTENTS

PAGE	
ABSTRACT ... iii
LIST OF FIGURES ...v

CHAPTER
I INTRODUCTION ...1

II CLUSTERING ALGORITHMS .. 10
III VALIDATION MEASURES ... 15

IV RANK AGGREGATION ... 22
V OPTCLUSTER PACKAGE ... 27

VI EXAMPLES ... 33
VII CONCLUSIONS AND FUTURE RESEARCH 55

REFERENCES ... 59
APPENDIX A ... 64

APPENDIX B ... 70
CURRICULUM VITAE ... 75
	 	

	 	 v	

LIST OF FIGURES
	
FIGURE PAGE

1 FLOWCHARTS FOR DETERMINING OPTIMAL CLUSTERING
ALGORITHM AND OPTIMAL NUMBER OF CLUSTERS 9

2 OPTCLUSTER PACKAGE LOADING FLOWCHART 34

3 VALIDATION PLOTS FOR EXAMPLE 1 ... 41
4 “CE” RANK AGGREGATION WITH “SPEARMAN” DISTANCE

PLOTS FOR EXAMPLE 1 ... 42
5 “CE” RANK AGGREGATION WITH “SPEARMAN” DISTANCE

PLOTS FOR EXAMPLE 2 .. 50
6 VALIDATION PLOTS FOR EXAMPLE 2 ... 51

7 “CE” RANK AGGREGATION WITH “KENDALL” DISTANCE PLOTS
FOR EXAMPLE 2 ... 52

8 “GA” RANK AGGREGATION WITH “SPEARMAN” DISTANCE
PLOTS FOR EXAMPLE 2 .. 53

9 “GA” RANK AGGREGATION WITH “KENDALL” DISTANCE
PLOTS FOR EXAMPLE 2 .. 54

	 1

CHAPTER I

INTRODUCTION

 Research dealing with high dimensional data, such as microarray gene expression

data, data generated from Next Generation Sequencing (NGS) technology, and mass

spectrometry data, are commonplace in biomedical sciences. Just to summarize them in

an unsupervised manner, cluster analysis plays an important role. The unsupervised

technique of clustering organizes data by assigning similar observations together into the

same group when “little” or “no” other information is known about the data. For

example, not only do biologists need to expose underlying structures inside large

microarray datasets, but they also need to do so in an optimal way that will create groups

of genes with similar biological functions. However, the number of choices for

clustering algorithms is vast and different algorithms can provide different results on the

same data. Choosing the optimal clustering algorithm along with the optimal cluster size

(number of clusters) for a given dataset becomes an overwhelming task. For this paper,

the terms “cluster size” and “number of clusters” will be considered synonymous and will

be used interchangeably.

 The process of clustering can essentially be broken down into three steps: pre-

processing, cluster analysis, and cluster validation (Handl et al., 2005). The first step,

pre-processing, deals with transforming the dataset to improve the likelihood that similar

observations will be grouped together. In the second step of the clustering process,

parameters and clustering techniques are chosen and then applied to the data. Cluster

	 2

validation, the third step, evaluates the performance of the selected clustering algorithms.

This clustering process is cyclic and can repeat itself many times as different choices in

any of the steps will result in different conclusions.

Cluster validation has become an increasingly important step in determining the

most appropriate clustering algorithm given a dataset, especially when working with high

dimensional data such as microarray data or NGS data. Validation measures serve as

guidance to choosing the appropriate clustering algorithm for a dataset by providing

performance evaluations based on some particular criteria such as compactness,

separation, or biological homogeneity. Internal validation and external validation are the

two major classes of cluster validation measures (Handl et al., 2005). The main

difference between these two categories is whether or not the measurement utilizes

additional information outside of the data in its validation technique. In many cases,

there is “little” to “no” information known about the data so internal validation is the only

option.

Handl et al. (2005) recommends using multiple validation measures to compare

clustering algorithms while in the process of determining the “best” clustering algorithm.

The inherent problem with using multiple validation measures is that an algorithm that

performs well with one measure may perform poorly with another. When a researcher is

comparing a large number of clustering algorithms and using multiple validation

measures, the results become muddled and determining the optimal clustering algorithm

visually from a plot (based on the validation scores for different number of clusters)

becomes unclear.

	 3

 There has been some recent research in the literature dealing with cluster analysis.

Several of these works attempted to identify the types of clustering methods and

validation measures that perform the best in a given situation. In 2006, Thalamuthu et al.

compared six clustering algorithms commonly used for microarray analysis. For both

simulated and real data, it was determined that tight clustering (Tseng & Wong, 2005)

and model-based clustering (Fraley & Raftery, 2002) were the top performing algorithms,

while SOM (Kohonen, 2001) and hierarchical clustering (Anderberg, 1973; Sneath &

Sokal, 1973) had the worst performances. Rendón et al. (2011) used the clustering

algorithms K-means (Hartigan & Wong, 1979) and Bisecting K-means (Theodoridis &

Koutroumbas, 2006) to compare internal and external validation measures. The purpose

of this study was to determine which type of validation measure was better at correctly

identifying the true number of clusters within a dataset. Using thirteen different datasets,

internal validation indices were concluded to be more accurate. An extensive study was

performed by Arbelaitz et al. (2013) to assess the performance of thirty unique validation

measures. While it was determined that there was not a single validation measure that

outperformed the rest in every situation, the silhouette index (Rousseeuw, 1987) was

noted as a high performer for many of situations evaluated.

Many of the recent clustering algorithms found in the literature have been

developed for use in the cluster analysis of high dimensional data. Using a proposed

Poisson dissimilarity matrix, Witten (2011) introduced a hierarchical algorithm for

clustering RNA-Seq data. Other algorithms have been presented as improvements to the

K-means algorithm in order to increase its performance when clustering genes and gene

expression data (Wu, 2008; Lam & Tsang, 2012; Nazeer et al., 2013). Mavridis et al.

	 4

proposed a partitioning-based clustering algorithm called PFClust (Parameter Free

Clustering) in 2013. This unique algorithm clusters data and determines an ideal number

of clusters without requiring the user to specify any parameters. In 2014, Si et al.

described several clustering algorithms based on probability models for RNA-Seq data.

These new algorithms were able to provide better clustering results than the commonly

used methods of hierarchical clustering, K-means, and SOM for both simulated and real

data.

R Packages

 A popular statistical resource for researchers in the field of biomedical sciences is

the open source R software environment (R Core Team, 2014). Because this software is

open sourced, new packages extending the statistical capabilities of R are developed and

become readily accessible to all users through repositories such as the Comprehensive R

Archive Network (CRAN) and Bioconductor (Gentleman et al., 2004). A variety of R

packages providing tools for cluster analysis can be found at these repositories. Many of

these packages offer functions that calculate cluster validation measures, with some

popular examples including clValid (Brock et al., 2011), clv (Nieweglowski, 2013),

cclust (Dimitriadou 2014), clusterSim (Walesiak & Dudek, 2014), and fpc (Hennig,

2015). The RankAggreg package (Pihur et al., 2009) can take ranked lists of clustering

algorithms and combine them into an overall optimal list with the “best” clustering

algorithm placed in the first position. The package NbClust (Charrad et al., 2014)

provides two clustering algorithms and thirty cluster validation measures to determine the

relevant number of clusters in a dataset. The “best” choice for number of clusters is

determined by a majority rule. The COMMUNAL package (Chen et al., 2015)

	 5

determines the optimal k number of clusters and then creates a best clustering assignment

based on overlap between clustering results for up to fourteen different clustering

algorithms.

It is evident that there are numerous cluster analysis R packages, however this

paper will focus on two specific packages, clValid and RankAggreg, while presenting a

new package called optCluster. The clValid package offers nine different cluster

validation measures and can create ranked lists of clustering algorithms based on the

calculated validation scores for each validation measure chosen. Using these lists, the

RankAggreg package is able to perform weighted rank aggregation and obtain an

optimal ranked list of clustering algorithms such that the first clustering algorithm in this

list is the “best” clustering algorithm for that specific dataset across all the cluster

validation measures and all the different cluster sizes that the user has selected.

Capitalizing on how well these two packages work together, the optCluster package

determines an optimal clustering algorithm and optimal number of clusters for a given

dataset by combining functions from both the clValid and RankAggreg packages into

one single, easy to use function.

 The R package clValid was developed to provide researchers with a useful

resource for cluster validation. This package offers nine different validation measures,

classified as “biological”, “internal”, or “stability”, and ten different clustering algorithms

for use in cluster analysis. The user may select the type (or types) of validation measures

to use, define the number (or range of numbers) of clusters to create, and select any

number of clustering algorithms to evaluate in a single function call. For a given dataset,

the clValid() function calculates the validation measure scores for each selected

	 6

clustering algorithm with each desired cluster size. This function provides an output of

the optimal cluster algorithm and optimal number of clusters for each validation measure.

These optimal choices are determined by maximizing or minimizing the validation scores

of multiple clustering algorithms, with multiple cluster sizes, for each of the given

validation methods.

Clustering algorithms can be placed in a list of ranks according to their

performances given a particular validation measure. When using multiple validation

measures, there are multiple ranked lists. However, given one dataset, it is desirable to

have a unique answer with one optimized list. A weighted rank aggregation method was

proposed by Pihur et al. (2007) as a way to achieve a unique list, given a dataset, using a

stochastic optimization technique. The idea is that the ranked lists from multiple

validation measures can be combined and analyzed with a Monte Carlo cross-entropy

approach (Pihur et al., 2007) and an overall optimal ranked list is produced that is as

similar as possible to the ordered lists created by each validation measure. From this

optimal list, the “best” clustering algorithm for a specific dataset can then be obtained.

 An R package called RankAggreg was developed by Pihur et al. (2009) to

provide users with the Monte Carlo cross-entropy method for combining ordered lists. A

second stochastic optimization method, the Genetic algorithm (Goldberg, 1989), was also

included in this package as another option for rank aggregation. A matrix of ordered

rows (clustering algorithms) as well as a matrix of weights (validation measure scores)

can be input into the function RankAggreg() for evaluation, and an optimal ordered list

of clustering algorithms is provided in the output.

	 7

 Both the clValid and RankAggreg packages address different challenges in

cluster analysis. While these two packages are independent from another, they can be

used in conjunction to obtain an optimal clustering algorithm and optimal number of

clusters for a given dataset. The clValid() function is able to calculate validation scores

for multiple clustering algorithms and the getRanksWeights() function (also available in

the package clValid) can create a matrix of clustering algorithm ranks and a matrix of

validation score weights. The matrices of ranks and weights can then be entered into the

RankAggreg() function to obtain an optimal list of algorithms based on the chosen

weighted rank aggregation method. Since these two individual packages work so well

with each other, it seems logical to combine them in some way, ultimately minimizing

the amount of code needed to run the entire process of finding a “best” clustering

algorithm and also the optimal number of cluster size for clustering a particular dataset.

 This work introduces an R package called optCluster that determines the optimal

clustering algorithm and optimal cluster size for a given dataset. In this package, the

function optCluster() utilizes the capabilities of the functions clValid(),

getRanksWeights(), and RankAggreg() to obtain an optimal result. Figure 1 displays

two side-by-side flowcharts describing different procedures an R user would have go

through in order to obtain the optimal clustering algorithm and optimal number of

clusters. In these flowcharts, ellipses indicate internal processes and rectangles denote

output that the user can obtain. The procedure on the left uses the functions from the

clValid and RankAggreg packages, while the procedure on the right simply uses the

optCluster() function. From this figure, we see that the user only has to enter the dataset

and arguments from the clValid() and RankAggreg() functions into the optCluster()

	 8

function directly and the rest of the procedure is carried out internally. Therefore, the

number of steps one needs to take in order to obtain the final result is reduced with this

new function.

The optCluster package is able to cluster and obtain the optimal clustering

algorithm and optimal cluster size for any microarray, RNA-Seq, or protein expression

data. To the best of the our knowledge, an R package that combines cluster validation

measures, including biological validation, with weighted rank aggregation to determine

these optimal results is currently not available.

	 9

	 	
Figure 1: Two flowcharts comparing procedures for determining an optimal clustering
algorithm and optimal number of clusters. The chart on the left explains the procedure
using both the clValid and RankAggreg packages. The chart on the right explains the
procedure using only the optCluster package. 	

Enter data and clValid
arguments into clValid()

function

Output a list containing a matrix
of clustering algorithm ranks and

a matrix of validation score
weights

Output a “clValid” object

Enter “clValid” object into
getRanksWeights() function

Cluster data and
compute validation

measures

RUN

RUN

RUN

Enter ranks, weights, and
RankAggreg arguments into

RankAggreg() function

Output a “raggr” object

Enter data, clValid arguments,
and RankAggreg arguments
into optCluster() function

Output an “optCluster” object

RUN

Obtain optimal clustering
algorithm and optimal number

of clusters

Obtain optimal clustering
algorithm and optimal number

of clusters

Perform weighted rank
aggregation

Perform weighted rank
aggregation

Extract clustering
algorithm ranks and

validation score
weights

STOP

STOP

STOP STOP

Procedure using clValid
and RankAggreg packages

Procedure using
optCluster package

Cluster data and
compute validation

measures

	 10

CHAPTER II

CLUSTERING ALGORITHMS

 The package optCluster provides a total of ten popular clustering algorithm

options that are obtained through the package clValid. The clValid package itself

contains a function for the SOTA algorithm (Dopazo & Carazo, 1997; Herrero et al.,

2001) and utilizes other R packages for the remaining nine algorithms. The model-based

algorithm is included the mclust package (Fraley et al., 2014), and the self-organizing

maps (SOM) algorithm is available through the kohonen package (Wehrens & Buydens,

2007). The remaining algorithms are provided by either the cluster package (Maechler et

al., 2015) or the stats package in the base distribution of R (R Core Team, 2014).

These ten algorithms represent a wide range of clustering methods but are by no

means an exhaustive list. In the optCluster() function, the ten available clustering

algorithms are: “hierarchical”, “agnes”, “diana”, “kmeans”, “pam”, “clara”, “fanny”,

“model”, “som”, and “sota”. A description for each clustering algorithm is provided in

this chapter.

Agglomerative Hierarchical Clustering

Hierarchical methods create a cluster hierarchy and are usually illustrated by

dendrograms. The desired number of clusters does not need to be set in advance since a

dendrogram can be sliced at a particular height in order to generate a specified number of

clusters. The agglomerative hierarchical algorithms, such as the “hierarchical” and

“agnes” options in the optCluster() function, begin with each observation in a separate

	 11

individual cluster and merge the two closest clusters together to form a larger one. This

process of merging the two closest clusters together continues until all of the observations

are combined into a single cluster.

There are various options to determine the distance between clusters in

agglomerative hierarchical clustering algorithms. The four options considered in the

optCluster() function are: average method, complete linkage method, single linkage

method, and Ward’s method. The average method uses the average pairwise distance

between two clusters to determine how close the clusters are to each other. This

algorithm is known as the unweighted pair group method with arithmetic mean or

UPGMA (Sneath & Sokal, 1973). The complete linkage method evaluates the

observations that are the farthest away from each other, for each pair of clusters, and

merges the clusters that have the smallest maximum pairwise distance (Anderberg, 1973).

The single linkage method evaluates the observations that are nearest to each other, for

each pair of clusters, and combines the clusters that have the smallest minimum pairwise

distance (Anderberg, 1973). Ward’s method (Ward, 1963) evaluates the within-cluster

variance of merged clusters and combines the two clusters that produce the smallest

increase in the total within-cluster variance.

Diana

 Diana is a hierarchical clustering algorithm that is divisive rather than

agglomerative thus all the observations start in one large cluster (Kaufman & Rousseeuw,

1990). In each step, the largest cluster is first identified. Here, the largest cluster is the

one with the largest diameter as determined by the maximum distance between any two

points inside it. Within this largest cluster, the observation that has the greatest average

	 12

distance from all of the other members inside the cluster (as computed by a distance

function) is chosen to form a new group. Observations in the original cluster are then

moved into this new cluster if they are deemed “closer” to this group than to the original

one, as determined by average distance. The dividing process stops once all of the

members “closer” to the new group have been moved, and as a result, two smaller

clusters are created. The process of selecting the largest cluster and dividing it repeats

until each observation is in its own cluster.

K-means

 K-means is an iterative clustering algorithm requiring a fixed number of clusters

before it begins (Hartigan & Wong, 1979). An initial set of cluster centers, or centroids,

is established and each observation is grouped to the cluster with the closest center. Once

all observations have been allocated to a cluster, the cluster centers are recalculated and

the process of assigning observations to a cluster repeats. This process continues until

there are no new assignments, achieving a minimization of the total within-class sum of

squares.

PAM

 Partitioning around medoids (PAM) is a clustering algorithm that works in a very

similar way to the K-means clustering algorithm (Kaufman & Rousseeuw, 1990). A set

cluster size is determined and an initial set of cluster centers is established before this

clustering technique begins. Unlike K-means, these centers are medoids (not centroids)

and are always observations from the dataset. Once each observation is assigned to the

closest medoid cluster, new medoids are chosen in order to minimize a sum of

	 13

dissimilarities and reassignment of observations to the nearest medoid occurs. This

process repeats until there are no new assignments.

Clara

 Clara (Kaufman & Rousseeuw, 1990) is an extension of PAM and is a time-

efficient algorithm for clustering large datasets. A number of sub-datasets are drawn as

representatives of the larger dataset and medoids are established using PAM. The best

clustering is chosen from the sub-datasets and the rest of the observations in the entire

dataset are assigned to the closest medoid.

Fanny

 Fanny is a fuzzy clustering algorithm that uses probability to determine the cluster

allocation of the observations (Kaufman & Rousseeuw, 1990). Rather than having each

observation defined to a single cluster, this method allows observations to have some

degree of association to each cluster. Once the number of desired clusters is determined,

probability vectors are created. These vectors denote the partial membership an

observation has to each of the clusters. Each observation is sorted into the group with the

highest probability, creating hard clusters.

Model-based Algorithm

 The model-based algorithm of clustering assumes that the observations come

from a finite mixture of normal distributions and each component of that mixture

corresponds to a different cluster (Fraley & Raftery, 2002). Under this assumption, a

Gaussian mixture model is fit to the data. Estimates for the mixture components and

assignment of the observations to those clusters are obtained using maximum likelihood

	 14

in the expectation maximization (EM) algorithm (Dempster et al., 1977; McLachlan &

Krishnan, 1997).

SOM

 Self-organizing maps (SOM) is a clustering algorithm that is based on biological

neural networks (Kohonen, 2001). Initially, a two-dimensional grid of units is

established, each with its own randomly generated weight vector. These weight vectors

adjust according to predetermined rules during an iterative unsupervised learning process.

During each step of this process, a random observation is selected from the data and the

distance between that observation and all of the weight vectors is computed to determine

the closest vector. A best matching unit is determined and the weight vectors of all the

units are adjusted as defined by the preset rules. This process continues until the weight

vectors are no longer changing, at which point the observations are assigned to the closest

unit.

SOTA

 Self-organizing tree algorithm (SOTA) is a divisive clustering algorithm that has

properties similar to both hierarchical and SOM techniques (Dopazo & Carazo, 1997;

Herrero et al., 2001). This method maps a complex input space to a more simple output

much like SOM, but instead of mapping a two-dimensional grid, SOTA creates a binary

tree resembling those created by hierarchical methods. Starting with a root node with

two cells (clusters), a training cycle occurs in order to sort the observations into the two

clusters. Two new cells are formed from the cluster with the most variable population

and the process is repeated. The divisive process can be stopped at any step based on a

variety of different criteria or it can proceed until a complete dendrogram is created.

	 15

CHAPTER III

VALIDATION MEASURES

A high performing clustering algorithm is one that groups the data in such a way

that it retains some internal quality control of the clusters. These groups, or clusters,

should be stable and statistically meaningful. Additionally, as in the case of dealing with

microarray data and data generated from Next Generation Sequencing technology, the

groupings should also be biologically relevant. Validation measures are the quantities

that measure the above-mentioned qualities of clustering algorithms and provide scores to

help determine the validities of clustering algorithms for specific data. Various measures

for cluster validation have been introduced in the literature, but the focus of this chapter

will be on describing nine measures that can be utilized in the optCluster package.

These measures are directly sourced from the clValid package, which classifies them into

three groups: “biological”, “internal”, and “stability”.

Datta and Datta (2006) proposed two types of biological validation measures to

help provide some guidance in choosing a clustering technique for microarray data.

These measures can also be used for any other molecular expression data as well. The

biological homogeneity index (BHI) and biological stability index (BSI), both evaluate

the performance of an algorithm to produce biologically similar clusters.

Internal validation measures provide guidelines on the statistical properties of

clusters. Connectivity is a useful internal validation technique, measuring the extent at

which neighboring observations are clustered together (Handl et al., 2005). In 1987,

	 16

Rousseeuw introduced the silhouette width validation measure, which mathematically

combines how close the different clusters are to each other (inter-cluster separation) with

how large or small the intra-cluster variances are (compactness). The third internal

validation measure included in the clValid package, the Dunn index (Dunn, 1974), also

evaluates the compactness and separation of the clusters.

Several other validation measures, called stability measures, have been proposed

to address validation of clustering techniques for microarray data. Unlike the internal

validation techniques, these measures evaluate whether the cluster assignments remain

stable even if the data is reduced somewhat. Yeung et al. (2001) proposed the figure of

merit technique (FOM), and in 2003, Datta and Datta presented the three other stability

measurements available in the clValid package: average proportion of non-overlap,

average distance, and average distance between means.

Biological Homogeneity Index (BHI)

 The biological homogeneity index (Datta & Datta, 2006) has the range [0,1] and

is a biological validation measure evaluating how biologically similar defined clusters

are. A microarray dataset will have M number of rows (genes) and T number of columns

(e.g. time points). Here we define 𝒜 = {A1, …, AF} with F functional classes, which are

not necessarily disjoint, such that A(i) is the functional class that contains gene i. In this

definition, there is the possibility that i is contained in more than one functional class.

A(ℓ𝓁) is defined in a similar manner as the functional class that contains gene ℓ𝓁. An

indicator function is assigned such that I(A(i) = A(ℓ𝓁)) takes the value of 1 when A(i) and

A(ℓ𝓁) match and 0 otherwise. In the case of multiple memberships to functional classes,

any single match is adequate. Given the biological class set of 𝒜 and the statistical

	 17

clustering partition of K number clusters obtained from a clustering algorithm P’ = {C1,

…, CK}, BHI can be defined as

𝐵𝐻𝐼 𝑃!,𝒜 = !
!

!
!! !!!!

!
!!! 𝐼 𝐴 𝑖 = 𝐴 ℓ𝓁!!ℓ𝓁∈!! ,

where 𝛼! = 𝑛(𝐶! ∩ 𝐴) is the number of annotated genes within the cluster 𝐶!. Genes

belonging to the same functional classes should ideally be placed in the same statistical

cluster, so more biologically homogeneous clusters correspond to larger BHI values.

Biological Stability Index (BSI)

 The second biological validation measurement is the biological stability index

(Datta & Datta, 2006), which measures the reliability an algorithm has of clustering

similar biologically functioning genes together. After removing the observations from

column r in the data, the cluster assignments of genes with similar functionality from the

reduced dataset are compared to the cluster assignments from the full dataset. Using

previously defined terms from BHI, the definition for BSI is

𝐵𝑆𝐼 𝑃!,𝒜 = !
!

!
! !! ! !! !! !

!
!!!

! !!,!∩!ℓ𝓁,!

! !!,!!!ℓ𝓁∈!!
!
!!! ,

where 𝐶!,! is the original cluster, based on the full set of data, containing observation i,

and 𝐶ℓ𝓁,! is the cluster containing observation ℓ𝓁 when column r is removed. Just like

BHI, the value for BSI has the range of [0,1] and stable clusters of similarly functioning

genes have larger values.

Connectivity

For this internal validation measure let 𝑛∗!(!) be the 𝑗th nearest neighbor of

observation i such that 𝑦!,!∗!(!)is 0 if i and 𝑛∗!(!)are in the same cluster, otherwise it is 1/𝑗.

	 18

The connectivity (Handl et al., 2005) for M observations into K clusters for a specific

clustering partition P’= {C1, …, CK} is defined as

𝐶𝑜𝑛𝑛 𝑃′ = 𝑦!,!∗!(!)
!
!!!

!
!!! ,

where the parameter G determines the number of neighbors contributing to the

connectivity measure. The connectivity, with a value ranging between zero and ∞,

should be minimized.

Silhouette Width

 The average of all of the observation’s silhouette values defines a second type of

internal validation measure called silhouette width (Rousseeuw, 1987). For an

observation i, the silhouette value has a range of [-1,1] and is a measurement of the

degree of confidence in that specific observation’s cluster assignment. This value is

defined as

𝑆𝑖𝑙 𝑖 = !!
∗!!!

!"#(!!
∗,!!)

 ,

where 𝑐! is the average distance between observation i and the remaining observations in

the same cluster and 𝑐!∗ is the average distance between the observations in the “nearest

neighboring cluster” and observation i. Defining 𝐶! as the cluster that contains the

observation i, and 𝐶! as the “nearest neighboring cluster” to i, the equations for 𝑐! and 𝑐!∗

are as follows

𝑐! =
1

(𝑛(𝐶!)) 𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁 ,
ℓ𝓁∈!!

 𝑐!∗ = min
!!∈!!\!!

𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁
𝑛(𝐶!) ,

ℓ𝓁∈!!

where the cardinality of a cluster C is n(C) and the distance (Euclidean, Manhattan, etc.)

between observations i and ℓ𝓁 is represented by 𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁 . Silhouette values near 1 mean

	 19

that the observation is clustered well, while values near -1 mean the observation is poorly

clustered. Therefore, silhouette width should be maximized.

Dunn Index

 The Dunn index (Dunn, 1974) is an internal validation measure indicating a ratio

of the minimum distance between observations in different clusters and the maximum

cluster diameter. With 𝐶ℓ𝓁 defined as cluster that contains the observation ℓ𝓁, this ratio is

calculated by the equation

𝐷𝑢𝑛𝑛 𝑃! =
!"#!!,!ℓ𝓁 ∈!!, !!!!ℓ𝓁 !"#! ∈!!,ℓ𝓁∈!ℓ𝓁 !"#$(!,ℓ𝓁)

!"#!!∈!! !"#$(!!)
,

where 𝑑𝑖𝑎𝑚 𝐶! is the maximum distance between any two points inside cluster 𝐶!.

With a value between zero and ∞, the Dunn index should be maximized.

Figure of Merit (FOM)

 The figure of merit (Yeung et al., 2001) is a stability validation measurement

based on the remaining samples when a single column is removed. FOM can be defined

for column r, which is removed from T total columns, as

𝐹𝑂𝑀 𝑟,𝑃′ = !
!

𝑑𝑖𝑠𝑡 𝑦!,! ,𝑦!!(!)!∈!!(!)
!
!!! ,

where 𝑦!,! is the value of the ith observation in the rth column and 𝑦!!(!)is the center

(average) of the cluster 𝐶!(𝑟). There is a tendency for FOM to decrease as the number of

clusters increases, so an adjustment of !
!!!

 is multiplied to the measurement. The final

value is determined by calculating the mean of all of the FOM values from the removed

columns. The FOM values can range between zero and ∞ and a better performing

clustering algorithm is indicated by smaller values.

	 20

Average Proportion of Non-Overlap (APN)

 The average proportion of non-overlap measure (Datta & Datta, 2003) determines

the average proportion of observations placed in different clusters, as compared to the full

data clustering, when a single column of data is removed. Defining 𝐶!,! as the original

cluster, based on the full set of data, containing observation i, and 𝐶!,! as the new cluster

containing observation i when column r is removed, the APN measure can be computed

as

𝐴𝑃𝑁 𝑃! = !
!"

1− ! !!,!∩!!,!

! !!,!
.!

!!!
!
!!!

The APN measure can range from 0 to 1, with highly stable results having values close to

zero.

Average Distance (AD)

 The average distance (Datta & Datta, 2003) stability validation measure calculates

the average distance between the observations in clusters formed with the full dataset and

the observations in clusters formed with data with a single column removed. AD can be

defined as

𝐴𝐷 𝑃! = !
!"

!
! !!,! ! !!,!

𝑑𝑖𝑠𝑡(𝑖, ℓ𝓁)!∈!!,!,ℓ𝓁∈!!,! .!
!!!

!
!!!

 .

The AD measure can range between zero and ∞ and should be minimized.

Average Distance Between Means (ADM)

 The average distance between means (Datta & Datta, 2003) stability validation

measure computes the average distance between the centers of clusters for observations

put into the same cluster based on the full data and the data with a single column

removed. Let 𝑦!!,! be the mean of the observations in the cluster based on the full dataset

	 21

containing observation i and let 𝑦!!,! be the mean of the observations in the cluster

containing observation i with column r removed. ADM is defined as

𝐴𝐷𝑀 𝑃! = !
!"

𝑑𝑖𝑠𝑡(!
!!!

!
!!! 𝑦!!,!, 𝑦!!,!).

Much like the AD measure, ADM values can range between zero and ∞, with smaller

values representing better performing algorithms.

	 22

CHAPTER IV

RANK AGGREGATION

 A ranked list of clustering algorithms can be generated based on the performance

of those algorithms for a specific validation measure. If multiple validation measures are

used in cluster analysis, multiple lists are created. The problem of rank aggregation is

faced when trying to combine these multiple ranked lists together in some way to form a

single list that best represents the original rankings. Many rank aggregation techniques

have been developed and used in various applications ranging from building meta-search

engines on the Web (Dwork et al., 2001) to combining microarray experiment results

(DeConde et al., 2006). For rank aggregation of cluster validation measures, the

stochastic optimization method of the cross-entropy Monte Carlo algorithm (Pihur et al.,

2007) was proposed. This algorithm and the Genetic algorithm (Goldberg, 1989) are

included in the RankAggreg package and are available as rank aggregation methods in

the optCluster package. These two aggregation techniques are explained in more detail

in this chapter along with the two distance functions that can be utilized with these

techniques, the weighted Spearman’s footrule distance and the weighted Kendall’s tau

distance (Pihur et al., 2007, 2009).

Objective Functions

In a mathematical context, ranked aggregation can be explained in a fairly

straightforward manner. Suppose there are m number of ranked lists (𝑉!,… ,𝑉!) of

	 23

length 𝑘, such that each 𝑉! is associated with a weight 𝜇!. We obtain a definition of an

objective function for a proposed list 𝛽 as

Φ 𝛽 = 𝜇!𝑑𝑖𝑠𝑡 𝛽,𝑉!

!

!!!

 ,

where 𝑑𝑖𝑠𝑡 𝛽,𝑉! represents a distance function. The goal is to find a list 𝛽∗ that will

minimize the total distance between all of the 𝑉!’s and 𝛽∗. There are many options

available to measure the distances, but careful selection of an option is warranted since

final results depend on the choice of distance measure. Two different methods used for

distance measures in rank aggregation are included in RankAggreg package: weighted

Spearman’s footrule distance and weighted Kendall’s tau distance. Pihur et al. (2007,

2009) introduced these weighted methods as modifications to two popular methods,

Spearman’s footrule distance and Kendall’s tau distance (Fagin et al., 2003), in order to

stabilize the aggregation algorithms while using a discrete ranking system.

 Suppose for an ordered list 𝑉! there are Si(1), …, Si(k) scores associated with it.

These scores are normalized in order to spread the corresponding values for each list over

the interval [0,1], avoiding a strong influence from disproportionally large or small

values. In this notation the scores are ordered with Si(1) being the best and Si(k) being the

worst. Depending on the context, Si(1) may either be the maximum or minimum score.

Let 𝑅!!(𝑗) denote the rank of j in list 𝑉!, again with 1 being the best rank all the way to a

rank k. If the rank of j does not fall within the top k ranks, the value of 𝑅!!(𝑗) will equal

k + 1. With these definitions, weighted Spearman’s footrule distance is defined as

𝑊𝑆 𝛽,𝑉! = 𝑆 𝑅! 𝑗 − 𝑆 𝑅!! 𝑗 × 𝑅! 𝑗 − 𝑅!!(𝑗)!∈!!∪! .

	 24

The weight of 𝑆 𝑅! 𝑗 − 𝑆 𝑅!! 𝑗 adjusts this distance by the score differences

between the ranks of j in lists 𝛽 and Vi .

 The weighted Kendall’s tau distance compares pairs of elements (j and ℓ𝓁) from

the union of the two lists. This algorithm is defined as

𝑊𝐾 𝛽,𝑉! = 𝑆 𝑅!! 𝑗 − 𝑆 𝑅!! ℓ𝓁 × 𝐾!,ℓ𝓁
!

!,ℓ𝓁∈!!∪! .

Here 𝐾!,ℓ𝓁
! can take three possible values 0, 1, or p. If the rank of j is greater than the rank

of ℓ𝓁 (or vice versa) for both lists 𝑉! and 𝛽, 𝐾!,ℓ𝓁
! is 0. If j is ranked higher than ℓ𝓁 for one

list but ℓ𝓁 is ranked higher than j on the other list, 𝐾!,ℓ𝓁
! is 1. When neither j nor ℓ𝓁 appear in

either list, 𝐾!,ℓ𝓁
! takes the value of p, which can be specified within the range [0,1]. The

adjustment for the weighted Kendall’s tau distance 𝑆 𝑅!! 𝑗 − 𝑆 𝑅!! ℓ𝓁 is the

difference in scores for j and ℓ𝓁 within list Vi.

Cross-Entropy Monte Carlo Algorithm

 Originally developed by Rubinstein (1997) to compute probabilities of rare

events, the cross-entropy Monte Carlo algorithm was later proposed by Pihur et al. (2007)

as a method for weighted rank aggregation of lists composed of cluster validation

measures. Here, a ranked list can be represented in terms of an n x k matrix where all

entries are either 0 or 1. The dimensions of this matrix are defined as n, the total number

of unique elements (clustering algorithms) in all the ordered lists being combined, and k,

typically the length of the combined ordered lists. It is important to note that the value of

k can also be made smaller if one desires. The constraints of this matrix are that the

columns sum up to 1 and the rows sum up to at most 1. Thus, each column variable

follows a multinomial distribution. Reading from left to right, the position of the 1’s in

	 25

each column of this matrix determines the ordering in the ranked list (Lin & Ding, 2009).

This approach is available in the package RankAggreg and can be briefly summarized in

the following four steps:

1. Initialization: An initial matrix of parameters is established such that each of the

n elements (clustering algorithms) has an equal chance of being selected in each

of the k positions of the ranked list.

2. Sampling: A random sample is selected from the most recently generated matrix

of parameters. The corresponding optimal lists are determined and objective

functions values are calculated.

3. Updating: The parameter matrix is updated based on the current sample and the

objective function values so that the next sample group will have smaller

objective function values.

4. Convergence: The sequence of sampling and updating will repeat until the

optimal list remains the same for a selected number of iterations.

Genetic Algorithm

 Genetic algorithms (Goldberg, 1989) were developed as a natural selection type

solution to problems involving many possible solutions. The idea is that the “fittest”

solution survives after many generations of the algorithm, just like the concept of natural

selection in evolution. The Genetic algorithm in the RankAggreg package follows the

five steps below:

1. Initialization: An initial population of solutions is created as randomly generated

ordered lists, each of the same length, k. The number of lists generated is based

	 26

on a predetermined population size, with larger sizes having a better chance of

containing the “best” solution at some point.

2. Selection: Each list is evaluated for fitness by the selected objective function.

Using the objective function scores as weights, a weighted random sampling

technique is employed to select the lists that will create a new population.

3. Crossover: From a specified crossover probability, the selected lists in the new

population perform a one-point crossover. This means a list will swap the

elements that are ranked lower than a given point (as determined by the crossover

probability) with the elements from another list that are also ranked lowered than

that same point.

4. Mutation: To create lists in the new population that are drastically different from

the current ones, one or more elements from any of the lists are randomly changed

or rather, mutated. A mutation probability is pre-determined before the algorithm

begins, which affects the frequency at which the mutations occur.

5. Convergence: The newly created population replaces the previous population and

the sequence of the selection, crossover, and mutation steps will repeat until a list

remains the optimal one for a selected number of successive iterations.

	 27

CHAPTER V

OPTCLUSTER PACKAGE

 When a minimal amount of information is know about a particular dataset, which

is much the case in high dimensional data, cluster analysis becomes a vital technique for

examining the data. A variety of R packages have been developed as tools to help

researchers with cluster analysis and the issues associated with it. There are some

packages that offer clustering algorithm functions (e.g. cluster, kohonen, and mclust),

while some packages provide functions to calculate validation measures (e.g. cclust,

clusterSim, clv, and fpc). Performing a thorough process of determining the optimal

number of clusters and finding the “best” clustering algorithm for a given dataset often

requires the use of more than one R package.

Writing and running code for multiple functions in multiple packages may be a

minor inconvenience, but it can become a tedious task prone to error especially if using

the same functions and code over and over for a variety of different sets of data. An

efficient way to streamline the cluster analysis process is to unite multiple functions from

different packages together into one overlapping function in a single package. This

chapter introduces the package optCluster, which joins together functions from the

packages clValid and RankAggreg in order to determine the optimal clustering

algorithm and optimal number of clusters for a given dataset.

The core function available in the optCluster package is called optCluster(). As

we saw from Figure 1 in Chapter I, this function completely eliminates the need for the

	 28

user to extract the necessary information provided by the clValid() function and input it

into the RankAggreg() function for additional analysis. Essentially, the user only needs

to enter a dataset, along with a few additional arguments (e.g. cluster size range,

clustering algorithms, validation measure types, and rank aggregation method), and the

optimal clustering algorithm and optimal number of clusters will be determined. Since

the use of functions from the clValid and RankAggreg packages are required, both

packages must be installed in the user’s R library in order to run the optCluster()

function. All of the R code used in this function, as well as all of the code for the entire

optCluster package, can be found in Appendix A.

 A total of ten clustering algorithms, coming from various R packages, are

available for cluster analysis through the optCluster() function argument clMethods. The

stats package contains the algorithms of “hierarchical” and “kmeans”. The algorithms of

“agnes”, “clara”, “diana”, “fanny”, and “pam” are available in the cluster package. The

algorithm "model" is available through the package mclust, “som” is provided through

the package kohonen, and “sota” is in the clValid package. Details for all of these

clustering algorithms were described in Chapter II. It should be noted that clMethods is

the same argument that the clValid() function uses for selecting clustering algorithms. In

the clValid package, arguments and output use the term “methods” to denote clustering

algorithms. To remain consistent with this terminology, the optCluster() function also

refers to clustering algorithms as “methods” in arguments and output.

All ten algorithms are included as default in the optCluster() function so that

every available option is being considered in the evaluation. The user, however, may

select any number of algorithms as desired. The package cluster is required to run the

	 29

optCluster() function because it is automatically loaded when the clValid package is

loaded. The packages mclust and kohonen are suggested packages and will only be

needed if the user chooses to evaluate the “som” and “model” algorithms respectively.

For each cluster size entered, validation measures are calculated for all of the

selected clustering algorithms. The function clValid() is called by optCluster() to

perform these validation measure calculations. Using the argument validation, the user

has the option of choosing nine validation measures, described in Chapter III, based on

three categories: “biological” (BHI and BSI), “internal” (connectivity, Dunn index, and

silhouette width), and “stability” (FOM, APN, AD, and ADM). While “stability” is the

default option as defined by clValid(), the function optCluster() uses the default of both

“internal” and “stability” to include more validation measures in determining the optimal

clustering algorithm.

While it would be most efficient to also include the biological validation measures

(Datta & Datta, 2006) in the default analysis, there are additional packages that would

need to be required. If “biological” is chosen as a type of validation measure, the

packages Biobase (Gentleman et al., 2004), GO.db (Carlson, 2015a), and annotate

(Gentleman, 2014) will need to be installed and loaded from Bioconductor (Gentleman et

al., 2004). The user would also need to provide an appropriate annotation argument of

either the name of a Bioconductor package that maps genes to Gene Ontology (GO)

categories or a list of functional classes and the observations that belong to each one.

Since the annotation argument depends on the data and may not even be available for a

particular dataset, the “biological” type of validation measures is not included in the

default for the validation argument in the optCluster() function.

	 30

Once validation measures are calculated for all combinations of number of

clusters and clustering algorithms, lists are compiled for each validation measure ranking

the algorithms according to their performance. These lists are created within the

optCluster() function by calling the getRanksWeights() function from the package

clValid. In many cases, the top-performing algorithm for one measure is different from

the top-performing algorithm in another. This makes determining the optimal clustering

algorithm with a visual inspection of the lists nearly impossible. To overcome this

challenge, the optCluster() function calls the RankAggreg() function (from the package

RankAggreg) to combine all of the lists into one overall “top” list.

The methods of a cross-entropy Monte Carlo algorithm and a Genetic algorithm

are available as options for rank aggregation with the RankAggreg() function, using

either the weighted Spearman’s footrule distance or the weighted Kendall’s tau distance.

Chapter IV described the methods for both distance measures and both rank aggregation

algorithms in detail. The user may select either aggregation method along with either

distance measure in the optCluster() function using the rankMethod and distance

arguments respectively. Since the Genetic algorithm may require many iterations to

converge and the weighted Kendall’s tau distance calculations are time intensive, the

default weighted rank aggregation arguments are the cross-entropy Monte Carlo

algorithm and the weighted Spearman’s footrule distance.

 The function optCluster() will output the “best” clustering algorithm along with

the corresponding optimal number of clusters after an overall “top” list has been decided.

An object of S4 class “optCluster” is returned by this function, which has several options

for viewing results. The top.method() statement will return only the name of the optimal

	 31

clustering algorithm and the optimal number of clusters. The print() statement returns

the same output as top.method() along with the optimal ranked list and the minimum

objective score calculated by the selected rank aggregation algorithm. The summary()

statement displays a table of all of the calculated validation measures, the optimal

clustering algorithm and number of clusters for each individual validation measure, and

all of the previous information provided in the print() statement.

The “optCluster” class object also allows access to the internal objects that were

created by clValid() and RankAggreg() functions while the optCluster() function was

running. With the cl.valid() method, the user can obtain an S4 object of class “clValid”

to extract and even plot the clustering results and validation measure scores for each

measure. The rank.aggreg() method allows the user to obtain an S3 object of class

“raggr” to get the overall top list of clustering algorithms. A visual representation of the

rank aggregation results can also be viewed using the plot() function. These two

methods for the “optCluster” class acquire all of the information provided by the

functions clValid() and RankAggreg(), so there is no need to run either of the functions

independently of the optCluster() function.

Almost all of the arguments from the clValid() and RankAggreg() functions can

be entered by the user directly into the optCluster() function and passed to the

appropriate function. The arguments of method and verbose are used by both of these

functions, and therefore have been divided into separate input arguments for the

optCluster() function. The method argument is divided into hierMethod to specify the

agglomerative method used in the hierarchical clustering algorithms (either “ward”,

“single”, “complete”, or “average”) and rankMethod to specify the rank aggregation

	 32

method as either cross-entropy Monte Carlo (“CE”) or Genetic algorithm (“GA”). The

default for hierMethod is “average”, the UPGMA algorithm, and the default for

rankMethod is the “CE” method. To account for the commonality of the verbose

argument, clVerbose is used for displaying output on the cluster validation progress in the

clValid() function, while rankVerbose is used for displaying output at each iteration of

the RankAggreg() function. To avoid superfluous output and increase performance

speed, both clVerbose and rankVerbose are set to FALSE as default.

 The optCluster package also offers a second function called repRankAggreg()

that can repeat weighted rank aggregation once the optCluster() has produced an initial

result. Since cluster validation scores are often the same as long as the same clustering

algorithms and validation measures are desired, it is redundant to repeat these

calculations again with the optCluster() function. For small datasets this may be a minor

inconvenience, but calculating validation scores for high dimensional data can be very

time consuming. Therefore, it would be beneficial to only have to run cluster validation

once.

A user can simply input an “optCluster” class object into the repRankAggreg()

function and weighted rank aggregation using the same rank aggregation method and

distance measure chosen in the original optCluster() function will be performed. A new

rank aggregation method can be selected using the rankMethod argument and a new

distance measure can be chosen using the distance argument. Just like the optCluster()

function, the rankVerbose argument will determine whether or not output is displayed for

each iteration of rank aggregation. All other arguments for the RankAggreg() can also be

passed through the repRankAggreg() function.

	 33

CHAPTER VI

EXAMPLES

In this chapter, we provide the detailed steps that are needed to run cluster

analysis using the proposed optCluster package on two different types of biological data.

These two examples were selected specifically for this paper because they represent

common methods of gene expression profiling in biomedical research. The first dataset

is microarray gene expression data from Bhattacherjee et al. (2007) and the second

dataset is RNA-Seq data from Di et al. (2011), generated from Next Generation

Sequencing technology. Both are arranged in the typical clustering format for gene

expression where the genes are rows and the samples are columns. Depending on an

individual dataset it may be advantageous to cluster either the genes or the samples, but

for these two examples we will focus on clustering only the genes.

To begin cluster analysis with the optCluster package, it must first be loaded into

R with the library() function, library(optCluster). Upon loading the optCluster

package, three other packages will be automatically loaded: clValid, cluster, and

RankAggreg. Once the function optCluster() begins running, it will load the packages

kohonen and mclust if the clustering algorithms of “som” and “model” are selected

respectively. If “biological” is entered as a validation type, three additional packages

needed for biological validation will also be loaded once the function optCluster() begins

running: Biobase, GO.db, and annotate. Figure 2 displays a flowchart of this package

loading process.	 	

	 34

	

Figure 2: A flowchart describing when additional R packages are loaded by the
optCluster package. The user input of library(optCluster) will load the clValid, cluster,
and RankAggreg packages. Other packages will be loaded depending on the user inputs
for the clMethods and validation arguments in the optCluster() function.

User Input:
library(optCluster)

Load clValid

Load cluster

Load RankAggreg

User Input: Enter data and
arguments into

optCluster() function

Is “som” in
clMethods?

Is “model” in
clMethods?

Is “biological”
in validation?

Load kohonen

Load mclust

Load Biobase

Load GO.db

Load annotate Begin
Calculations

YES

YES

YES

NO

NO

NO

RUN

RUN

STOP

	 35

Example 1: Microarray Data Analysis

This dataset comes from the Bhattacherjee et al. (2007) microarray experiment

evaluating gene expressions of mesenchymal cells in mice. It is available in the package

clValid, which is automatically loaded with the optCluster package. Two lineages of

mesenchymal cells important in the development of the orofacial region were compared:

neural crest and mesoderm-derived. In the analysis, the expressions of genes and

Expressed sequence tags (ESTs) that were different between the two cell lineages by at

least 1.5 fold (either in an increase or decrease) were considered to be significantly

different. A total of 147 genes and ESTs were determined to be significantly different

and are represented as the rows in this data. Three samples were taken from both the

neural crest and mesoderm-derived cells, for a total of six columns in the dataset. The

data() function allows us to load this data from the clValid package, and some initial

manipulation is needed to gather only the necessary information from the original dataset.

> data(mouse)
> ex1 <- mouse[, c("M1", "M2", "M3", "NC1", "NC2", "NC3")]
> rownames(ex1) <- mouse$ID
	

Both Brock et al. (2011) and Pihur et al. (2009) have evaluated this data in a

limited context as examples of cluster analysis using weighted rank aggregation. In the

Brock et al. analysis, three algorithms (“hierarchical”, “kmeans”, and “pam”) were

evaluated over the range of four to six clusters using the “internal” and “stability” types

of validation measures available in the package clValid. After applying rank aggregation

using the cross-entropy Monte Carlo algorithm with weighted Spearman’s footrule

distance from the RankAggreg package, PAM with six clusters was determined the best

clustering algorithm over this range. The Pihur et al. rank aggregation analysis only used

the first 100 genes of the dataset and only evaluated clustering algorithms for five clusters

	 36

to obtain the optimal clustering algorithm, rather than using a range of cluster sizes. All

ten of the clustering algorithms available in the clValid package were evaluated ("agnes",

"clara", "diana", "fanny", "hierarchical", "kmeans", "model", "pam", "som", and "sota")

using the “internal” and “stability” validation measures. Both rank aggregation methods

concluded SOM was the best clustering algorithm for five clusters using weighted

Spearman’s footrule distance and K-means was the optimal algorithm for five clusters

using weighted Kendall’s tau distance.

To determine the optimal clustering algorithm and optimal number of clusters

using the optCluster package, an extensive cluster analysis is performed for this

microarray dataset. All ten of the clustering algorithms available in the optCluster()

function are evaluated. As default for the agglomerative hierarchical clustering

algorithms, “hierarchical” and “agnes”, the agglomerative method is set to “average”

(Unweighted Pair Group Method with Arithmetic Mean or UPGMA). All three types of

validation measures are chosen for a total of nine different validation measures and the

package moe430a.db (Carlson, 2015b) is set as the biological annotation. The cross-

entropy Monte Carlo algorithm (“CE”) is selected for rank aggregation methods using the

method of weighted Spearman’s footrule (“Spearman”) for distance measures. The

maximum number of aggregation iterations is set to 1500.

While testing the optCluster() function with this dataset, we found that the

RankAggreg() function often chooses the optimal number of clusters to be the upper

bound of the given range of cluster sizes. Because of this, the appropriate range of

cluster sizes to be considered for this example was determined by looking for a situation

where the upper bound was not chosen as the optimal number of clusters. We first

	 37

started with an initial cluster size range of two to four and ran the optCluster() function

using the above-mentioned arguments. If the upper bound of the range was chosen as the

optimal cluster size, we increased the upper bound by one and ran the optCluster()

function again. This process continued until the optimal number of clusters was not

equal to the upper bound of the range. For this dataset, the range of cluster sizes being

considered is from two to nine. This range is represented in the second argument in the

optCluster() function.

> optMouse <- optCluster(ex1, 2:9, clMethods = “all”, validation = “all”, seed
+ = 123, annotation ="moe430a.db", maxIter = 1500)
> top.method(optMouse)
[1] "som-8"
	
 The time needed to run the optCluster() function for this analysis was 6.10 hours

using 16 GB of RAM on the University of Louisville’s Cardinal Research Cluster (CRC).

To view the results of the analysis, the top.method() statement is used. From this simple

output, we see that SOM with eight clusters is the optimal clustering algorithm for the

data. Appendix B contains the results produced by the output from the print() and

summary() methods, which are much more detailed compared to the top.method()

statement but also very similar to the rest of the analysis provided in this section.

An object of class “clValid” is created using the method cl.valid(), allowing the

utilization of all of the methods available for that S4 class. The optimal values for each

validation measure, over the cluster size range from two to nine, are obtained with the

“clValid” class method optimalScores(). These values represent the optimal rank

aggregated score for each validation measure and are listed under the score column in the

output table.

	 38

> valMouse <- cl.valid(optMouse)
> optimalScores(valMouse)
 Score Method Clusters
APN 0.0424388 som 7
AD 1.3075210 clara 9
ADM 0.1296167 som 7
FOM 0.4328808 som 9
Connectivity 5.3269841 agnes 2
Dunn 0.1467466 agnes 9
Silhouette 0.5132739 agnes 2
BHI 0.3457009 model 8
BSI 0.7949653 agnes 2

 The results shown above highlight the complexity of selecting a “best” clustering

algorithm. The optimal values from the nine validation measures come from six different

combinations of clustering algorithms and cluster sizes. Agnes with two clusters is the

best algorithm for three measures (connectivity, silhouette width, and BSI), SOM with

seven clusters is the optimal algorithm for APN and ADM, and the four remaining

algorithms (Clara with nine clusters, SOM with nine clusters, Agnes with nine clusters,

and model-based with eight clusters) are only the top choice for one measure.

 A graphical representation of the validation measures can be produced using the

“clValid” class method plot(). The plots of all the validation measures can be seen in

Figure 3. The clustering algorithms, with the exception of the model-based clustering

algorithm, follow the same decreasing trend across the number of clusters for the

biological stability index, average distance, and figure of merit measures. These

algorithms (excluding the model-based algorithm) also have a similar increasing trend

across the number of clusters in connectivity. There is much more variation between the

validation scores in the biological homogeneity index, Dunn index, and average

proportion of non-overlap measures. From these plots, it is difficult to visually determine

one overall best clustering algorithm.

	 39

 An object of class “raggr” can be created, using the rank.aggreg() method for the

“optCluster” class object, in order to gather additional results dealing with the weighted

rank aggregation of this data. With this object, an overall optimal list can be acquired

along with the minimum objective score from the selected rank aggregation method and

distance measure.

> aggMouse <- rank.aggreg(optMouse)
> aggMouse
The optimal list is:
 som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9
 kmeans-8 pam-6 hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7
 fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6 som-3 diana-9 agnes-6
 som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9
 som-4 clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4
 sota-7 diana-7 diana-5 kmeans-6 agnes-2 som-5 fanny-3 kmeans-2
 kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4 sota-2 diana-3
 diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6
 clara-4 fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4
 pam-4 model-3 model-7 model-8 model-9 model-6 model-5 model-4

 Algorithm: CE
 Distance: Spearman
 Score: 239.4503

Looking at the optimal list, the top three clustering algorithms are SOM with eight

clusters, SOM with seven clusters, and Clara with eight clusters. Agnes with two clusters

may have been the top performer for three validation measures but it ranks 45th in the

final list because of its poor performance in the five other measures. Final rank

aggregation correctly identified that fact. The model-based clustering algorithm is an

overall poor choice for this dataset as it occupies eight of the ten lowest ranked algorithm

spots in the list.

A visual representation of the weighted rank aggregation results can be displayed

using the plot() function on the “raggr” class object. There are three plots produced (see

Figure 4) providing information on the convergence properties of the rank aggregation

method and the final ranking analysis. After 1048 iterations, convergence was achieved

	 40

with a minimum objective score of 239.45 from the cross-entropy Monte Carlo algorithm

with weighted Spearman’s footrule distance. The final sampling distribution has a very

high concentration centered very close to the minimum objective score.

All R code used for this cluster analysis can be found in Appendix A. The

repRankAggreg() function, in the optCluster package, was run twenty times using the

same set of arguments but different seeds to look at the consistency of the optimal

clustering algorithm and cluster size result from rank aggregation. SOM with eight

clusters was determined the optimal clustering algorithm all twenty out of twenty times.

Using the repRankAggreg() function, the rank aggregation analysis took an average of

6.02 hours using 16 GB of RAM on the CRC. This function is slightly more time

efficient than running the optCluster() function over again for this dataset, with a

difference of 0.08 hours (about 5 minutes).

The combinations of the cross-entropy Monte Carlo algorithm with weighted

Kendall’s tau distance and the Genetic algorithm with both types of distance measures

were also considered as weighted rank aggregation options for this dataset analysis.

However when running the repRankAggreg() function, these methods did not converge

within the long queue wall-time of 168 hours on the Cardinal Research Cluster (CRC),

using 16 GB of RAM. For this reason, the results from these methods could not be

obtained and, therefore, are not included in this paper.

	 41

Figure 3: Plots of all nine validation measures for Example 1. The BHI, BSI, Dunn
index, and silhouette width measures should be maximized. The AD, ADM, APN,
Connectivity, and FOM measures should be minimized.

1 1 1
1 1

1
1

1
0.
22

0.
26

0.
30

0.
34

Biological validation

Number of Clusters

B
H
I

2 2 2 2 2 2
2 2

3
3 3 3

3 3
3

34 4 4 4
4 4 4

4

5 5 5
5 5

5
5

5

6 6 6
6 6 6

6 6

7
7

7

7

7
7

7
7

8 8 8 8 8 8
8 8

9 9 9 9 9 9
9 9

0 0 0
0 0 0 0

0

2 3 4 5 6 7 8 9

1

1

1 1 1 1 1 10.
2

0.
4

0.
6

0.
8

Biological validation

Number of Clusters

B
S
I 2

2
2 2 2 2 2 2

3
3

3
3 3 3 3 3

4

4
4

4 4 4 4 4

5

5

5 5 5 5 5 5

6

6
6 6 6 6 6 6

7

7
7

7
7 7 7

7

8

8
8 8

8 8 8 8

9

9
9

9 9 9 9 9

0
0

0 0 0 0
0 0

2 3 4 5 6 7 8 9

1

1 1 1 1

1

1 1

0.
02

0.
06

0.
10

0.
14

Internal validation

Number of Clusters

D
un
n

2

2 2
2

2
2

2

2

3 3
3

3 3 3
3 3

4 4
4 4 4

4

4 4

5

5 5 5 5

5

5 5

6

6
6 6

6

6

6
6

7 7 7
7

7
7 7

7
8

8
8

8 8
8

8 8

9

9

9
9

9

9

9
9

0
0 0 0 0 0

0 0

2 3 4 5 6 7 8 9

1

1
1

1 1
1 1 1

0.
0

0.
2

0.
4

Internal validation

Number of Clusters

S
ilh
ou
et
te

2
2 2 2 2 2 2 2

3

3 3 3 3
3

3 3

4

4
4 4

4 4
4

4

5

5
5

5 5
5 5 5

6
6

6 6 6
6 6

6

7

7

7

7 7 7
7 7

8
8 8 8

8 8 8 8
9

9
9 9

9 9 9
9

0
0

0 0 0 0 0 0

2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1

0
50

10
0

15
0

Internal validation

Number of Clusters

C
on
ne
ct
iv
ity

2 2
2 2 2 2

2 2

3 3
3 3 3 3 3 3

4
4 4 4

4
4

4 4

5 5 5 5 5 5 5 5

6 6
6 6 6

6 6 6
7

7

7
7

7

7 7

7

8 8 8
8

8 8 8 8

9 9
9 9 9 9 9

9

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

1

1

1
1

1
1 1 11.
5

2.
5

3.
5

Stability validation

Number of Clusters

A
D

2
2

2
2

2
2 2 2

3
3

3 3 3 3
3 3

4

4
4

4
4 4 4 4

5

5

5
5

5
5 5 5

6

6 6
6 6

6 6 6

7

7

7

7

7
7 7 7

8

8 8
8

8 8 8 8

9

9
9 9

9
9 9 9

0

0 0 0
0 0

0 0

2 3 4 5 6 7 8 9

1

1
1

1 1 1 1 10.
5

1.
0

1.
5

2.
0

Stability validation

Number of Clusters

A
D
M

2

2 2
2 2

2 2 23
3

3
3 3 3 3 34 4 4 4

4 4
4 45

5
5

5 5 5 5 5
6 6

6

6 6
6 6 6

7

7

7
7

7
7 7

7

8

8

8
8

8
8 8

89
9 9

9

9
9

9
9

0 0

0 0
0 0

0 0

2 3 4 5 6 7 8 9

1
1

1 1 1
1 1

1

0.
1

0.
3

0.
5

Stability validation

Number of Clusters

A
P
N

2

2
2 2 2

2 2 2
3

3 3
3

3 3
3 3

4 4
4 4

4 4
4 4

5
5

5 5 5
5 5

5

6 6

6
6 6

6
6

6
7

7

7

7

7 7 7

7

8

8

8
8

8
8 8

8

9 9
9

9

9
9

9
9

0 0

0
0

0 0
0 0

2 3 4 5 6 7 8 9

1

1

1
1 1 1

1 10.
5

0.
7

0.
9

1.
1

Stability validation

Number of Clusters

FO
M

2

2

2 2

2 2 2 2

3

3

3 3 3
3

3 3

4

4
4

4
4 4 4 4

5

5

5
5 5 5

5 5

6

6 6
6 6

6
6 6

7

7

7 7

7 7 7

7

8

8
8

8

8 8 8 8

9

9
9

9
9

9 9 9

0

0

0 0 0
0

0 0

2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9
0

agnes
clara
diana
fanny
hierarchical
kmeans
model
pam
som
sota

	 42

Figure 4: Visual representation of the “CE” rank aggregation results for Example 1 using
the “Spearman” distance. The top left plot shows the minimum values of the objective
function as the number of iterations increases. The top right plot is a histogram of the
objective function scores at the last iteration. The bottom plot shows the individual ranks
from the data (in grey), the final solution (in red), and average ranking (in black).

0 200 400 600 800 1000

25
0
30
0
35
0
40
0
45
0
50
0

Minimum Path

Iteration

S
co
re
s

min = 239.45

Final Sample Distribution

Objective function scores

Fr
eq
ue
nc
y

240 245 250 255 260

0
50
00

15
00
0

25
00
0

0
20

40
60

80

Rank Aggregation

Optimal List

R
an
ks

som-8 pam-6 diana-8 clara-7 fanny-8 agnes-2 sota-2 pam-5 pam-2 model-5

Data CE Mean

	 43

Example 2: RNA-Seq Data Analysis

This second set of data from Di et al. (2011) is an RNA-Sequencing analysis of

Arabidopsis thaliana, a plant widely used in genetic and molecular biology research. In

this study, plants were infected with either a bacteria (ΔhrcC mutant of Pseudomonas

syringae pathovar tomato DC3000) or a mock inoculation (10 mM MgCl2) in order to

study the defense response of the plants. Three independent samples were used for each

infection type in this experiment, for a total of six columns in the dataset. The 26,222

rows of data correspond to different genes, and each individual cell of the matrix contains

the counts of the RNA-Seq reads that are mapped to a reference database of known

genes. This dataset is available in R through the package NBPSeq (Di et al., 2015).

Because the obtained dataset consists of plain read counts, Di et al. (2011) normalized the

data with respect to library size (column totals) and so we will do the same for our

analysis.

> library(NBPSeq)
> data(arab)
> ex2 <- t(arab)/colSums(arab)
> ex2 <- t(ex2)

To use the optCluster package on this dataset, a cluster analysis using eight out

of the ten available clustering algorithms is performed. Due to the wall-time of 168 hours

on the Cardinal Research Cluster (CRC), two clustering algorithms, Agnes and Diana,

were removed from the analysis. Using 32 GB of RAM on the CRC, these two

algorithms had the longest times of calculating validation measures. Table 1 contains the

average times for all ten of the clustering algorithms to calculate the nine validation

measures available in the clValid package using only a cluster size of both two, rather

than a range of cluster sizes.

	 44

Algorithm Time (Hours)
Clara 0.63
SOTA 1.06
SOM 1.13
PAM 1.13
Kmeans 1.23
Hierarchical 1.24
Fanny 2.00
Model 11.31
Agnes 83.04
Diana 92.97

Table 1: Average calculation times for all nine validation measures with a cluster size of
two for Example 2, using 32 GB of RAM.

For only a cluster size of two, Agnes took on average 83.04 hours to compute

validation measures, and Diana took an average of 92.97 hours for the same calculations.

In comparison, out of the eight algorithms used in this analysis, the model-based

algorithm had the longest calculation time for two clusters, with an average time of 11.31

hours. The complete analysis (both cluster validation and rank aggregation) using the

eight other clustering algorithms took 85.33 hours using 32 GB of RAM on the CRC.

For the remaining arguments in the optCluster() function, UPGMA is used as the

“hierarchical” clustering algorithm, with the agglomerative method set to the default of

“average”. All nine cluster validation measures are selected and the package

org.At.tair.db (Carlson, 2015c) is designated as the biological annotation. The rank

aggregation method is set as the cross-entropy Monte Carlo algorithm (“CE”) with

distance measures calculated by weighted Spearman’s footrule distance (“Spearman”).

Just like Example 1, the cluster size range was determined by looking for a

situation where the optimal number of clusters was not equal to the upper bound of the

given range of cluster sizes for the arguments mentioned above. The optCluster()

	 45

function was initially run with a cluster size range of two to four and the upper bound

was not chosen. Therefore, the range of two to four clusters is used in this analysis.

> optArabid <- optCluster(ex2[,], 2:4, clMethods = c("clara", “fanny”,
+ "hierarchical", "kmeans", "model", "pam", "som", "sota"), validation = “all”,
+ seed = 123, annotation = "org.At.tair.db", maxitems = nrow(ex2[,]))
> print(optArabid)

The overall optimal method with number of clusters is:
 hierarchical-3

The optimal list is:
 hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 hierarchical-4
 hierarchical-2 som-3 clara-3 clara-2 sota-3 pam-4 sota-2 kmeans-3 som-2
 pam-3 pam-2 fanny-2 fanny-3 model-2 fanny-4 clara-4 model-3 model-4

 Algorithm: CE
 Distance: Spearman
 Score: 55.13205

From the print() method, the optimal clustering algorithm is obtained, which is

UPGMA (hierarchical) with three clusters. The optimal list of relative performances of

all the clustering algorithms considered from the weighted rank aggregation is also

displayed using this method. The cross-entropy Monte Carlo algorithm using the

weighted Spearman’s footrule distance reported the minimum objective score of

55.13205. Figure 5 shows a visual display of the aggregation results. Convergence to the

optimal list was achieved after 186 iterations and most of the mass in the final Monte

Carlo sampling distribution is slightly right of the minimum objective score.

The top performing clustering algorithm and optimal validation score for each

validation measure can be acquired using the optimalScores() function on a created

“clValid” class object. Looking at the optimal scores below, the hierarchical algorithm

(UPGMA) seems like an appropriate clustering algorithm for this range of cluster sizes.

UPGMA with three clusters is the optimal choice for four validation measures (APN,

ADM, Dunn index, and BSI), UPGMA with two clusters is the top choice for two

	 46

different validation measures (connectivity, silhouette width), and UPGMA with four

clusters in the “best” algorithm with BHI. Appendix B has the full list of validation

scores obtained from the summary() method for an object of “optCluster” class.

> valArabid <- cl.valid(optArabid)
> optimalScores(valArabid)
 Score Method Clusters
APN 0.000000e+00 hierarchical 3
AD 9.715409e-05 pam 4
ADM 0.000000e+00 hierarchical 3
FOM 1.533618e-04 kmeans 4
Connectivity 2.928968e+00 hierarchical 2
Dunn 1.108241e+00 hierarchical 3
Silhouette 9.971414e-01 hierarchical 2
BHI 3.340580e-01 hierarchical 4
BSI 9.999677e-01 hierarchical 3

The graphs of the validation scores in Figure 6 also seem to support the idea that

the hierarchical algorithm is a suitable choice as a clustering algorithm for this cluster

size range. The hierarchical algorithm (UPGMA) clearly outperforms the other

algorithms across all three numbers of clusters for the Dunn index and the average

distance between means measures. This algorithm also appears to be the among the top

performing algorithms, if not the top performing algorithm, for all three values of cluster

sizes for the biological stability index, silhouette width, connectivity, and average

proportion of non-overlap measures. However, looking at the average distance (AD)

validation measure, UPGMA is not the best but rather the worst performing algorithm

across all three numbers of clusters. Hence, concluding just by visual inspection of the

figures may not be suitable while optimizing in terms of a large number of validation

measures.

To look at the consistency of the optimal clustering algorithm and cluster size

choice, using the cross-entropy Monte Carlo algorithm with the weighted Spearman’s

footrule distance, the function repRankAggreg(), in the optCluster package, was used to

	 47

repeat rank aggregation for a large number of seeds (twenty). Since this dataset is so big,

calculating all of the validation measures for all of the clustering algorithms is very time-

consuming. The repRankAggreg() function was used to repeat only the rank aggregation

analysis and took, on average, only 13.83 seconds to complete using 16 GB of RAM on

the CRC. For all twenty times this dataset was run using the same arguments but

different seeds, UPGMA with three clusters was the optimal choice. However, using

weighted Kendall’s tau as the rank aggregation distance in the repRankAggreg() function

does change the results.

> KenArabid <- repRankAggreg(optArabid, distance = “Kendall”)
> print(KenArabid)

The overall optimal method with number of clusters is:
 kmeans-4

The optimal list is:
 kmeans-4 hierarchical-3 kmeans-2 hierarchical-4 hierarchical-2 som-4
 som-3 clara-2 kmeans-3 som-2 sota-4 sota-3 fanny-2 pam-4 clara-3
 fanny-4 fanny-3 pam-2 sota-2 model-2 clara-4 pam-3 model-4 model-3

 Algorithm: CE
 Distance: Kendall
 Score: 19.56713

The repRankAggreg() function took an average of 8.36 hours to complete this

analysis using 16 GB of RAM on the CRC. For this changed distance measure, K-means

with four clusters is chosen as the optimal algorithm, while hierarchical (UPGMA) with

three clusters is ranked 2nd in the optimal list. By connecting the results with the

validation measure plots in Figure 6, K-means with four clusters seems to fall within the

upper quartile of rankings (top six clustering algorithms) for many of the validation

measures. This algorithm’s performance also seems to rank either slightly higher or

lower than UPGMA with three clusters for several of these measures. Therefore, it is not

surprising that these two algorithms were switched in the optimal lists produced by rank

	 48

aggregation when different distance measures were used for the cross-entropy Monte

Carlo algorithm. Figure 7 displays the visual results from the rank aggregation using

Kendall’s tau distance. Convergence was achieved after 192 iterations with a minimum

score of 19.56713, and similar to the weighted Spearman’s footrule distance plot, the

mass of the final sampling distribution is slightly right of the minimum objective score.

Changing the distance measure for the cross-entropy Monte Carlo algorithm did

change both the optimal clustering algorithm and the optimal number of clusters. For this

range of cluster sizes, UPGMA with three clusters was chosen with the weighted

Spearman’s footrule distance while K-means with four clusters was selected using the

weighted Kendall’s tau distance. From these results, we can see that the rank aggregation

using weighted Kendall’s tau distance chose the upper bound of the cluster size range as

the optimal number of clusters, just as we had mentioned previously. This choice of

cluster size makes it difficult to determine whether or not four clusters is an optimal

number of clusters for the dataset. Since this chapter’s intent is to demonstrate the

capabilities of the optCluster package, our analysis stops here. However, further

investigation into the optimal number of clusters, by extending the range of cluster sizes

for this dataset, would be required if one were to choose rank aggregation using the

weighted Kendall’s tau distance for cluster analysis.

The Genetic algorithm was also used for rank aggregation is this analysis, and

produced the same results as the cross-entropy Monte Carlo algorithm for the weighted

Spearman’s footrule distance (UPGMA with 3 clusters) but the optimal clustering

algorithm and cluster size was SOM with four clusters when the weighted Kendall’s tau

distance was used. For the sake of brevity, visual representations of the aggregation

	 49

using “Spearman” and “Kendall” distance measures are displayed in Figure 8 and Figure

9 respectively, and the print() method outputs are provided in Appendix B. Table 2 lists

the average amount of time required to run the repRankAggreg() function for all methods

of weighted rank aggregation for Example 2. It is interesting that although the cross-

entropy Monte Carlo algorithm takes, on average, less time when using the weighted

Spearman’s footrule distance compared to the Genetic algorithm, when the weighed

Kendall’s tau distance is used, the Genetic algorithm, on average, is actually more time-

efficient.

Method	 Distance	 Time	 (Minutes)	
“CE”	 “Spearman”	 0.23	
“GA”	 “Spearman”	 0.75	
“CE”	 “Kendall”	 501.60	
“GA”	 “Kendall”	 97.53	

Table 2: Average weighted rank aggregation calculation times for Example 2, using 16
GB of RAM.

Appendix A contains the entire code used for the Arabidopsis thaliana RNA-Seq

data analysis. The package bigmemory (Kane et al., 2013) was utilized in this analysis

to create a file-backed matrix for this dataset. The function as.big.matrix() stored this

high dimensional data on the hard drive rather than keeping it in memory, which avoided

maxing out the memory and freezing R while running the optCluster() function.

	 50

Figure 5: Visual representation of “CE” rank aggregation results for Example 2 using the
“Spearman” distance. The top left plot shows the minimum values of the objective
function as the number of iterations increases. The top right plot is a histogram of the
objective function scores at the last iteration. The bottom plot shows the individual ranks
from the data (in grey), the final solution (in red), and average ranking (in black).

0 50 100 150

56
58

60
62

Minimum Path

Iteration

S
co
re
s

min = 55.132

Final Sample Distribution

Objective function scores

Fr
eq
ue
nc
y

55.15 55.20 55.25 55.30 55.35

0
10
00

30
00

50
00

0
5

10
15

20
25

Rank Aggregation

Optimal List

R
an
ks

hierarchical-3 sota-4 som-3 sota-3 kmeans-3 pam-2 model-2 model-3

Data CE Mean

	 51

Figure 6: Plots of all nine validation measures for Example 2. The BHI, BSI, Dunn
index, and silhouette width measures should be maximized. The AD, ADM, APN,
Connectivity, and FOM measures should be minimized.

1 1 1
0.
10

0.
20

0.
30

Biological validation

Number of Clusters

B
H
I

2 2 2
3 3

3

4

4
4

5 5 56
6 67

7

78
8

8

2 3 4

1

1

1

0.
3

0.
5

0.
7

0.
9

Biological validation

Number of Clusters

B
S
I

2

2
2

3 3 34 4 4

5

5

5

6
6

6

7 7 7

8 8 8

2 3 4

1 1 10.
0

0.
4

0.
8

Internal validation

Number of Clusters

D
un
n

2 2 2

3

3

34

4 45 5 56 6 67 7 78 8 8

2 3 4

1
1

1

0.
2

0.
4

0.
6

0.
8

1.
0

Internal validation

Number of Clusters

S
ilh
ou
et
te

2
2 2

3 3 34 4 4

5

5 5

6
6

6

7 7 7

8 8 8

2 3 4

1
1

1

0
10
00

30
00

Internal validation

Number of Clusters

C
on
ne
ct
iv
ity

2
2

2

3 3 34 4 4

5
5

5

6 6
6

7 7 7
8 8 8

2 3 4

1

1

1

0.
00
01
0

0.
00
01
4

Stability validation

Number of Clusters

A
D 2

2
2

3 3 3
4

4
4

5
5

5

6

6

6

7
7

78

8
8

2 3 4

1

1

1

0.
0e
+0
0

1.
5e
-0
5

Stability validation

Number of Clusters

A
D
M

2 2 2

3 3
3

4
4

4

5
5 5

6

6
6

7

7

78 8 8

2 3 4

1
1

1

0.
00

0.
04

0.
08

Stability validation

Number of Clusters

A
P
N

2
2

2

3 3 34 4 4

5

5

5

6
6

6

7 7 7
8 8 8

2 3 4

1 1 1

0.
00
01
6

0.
00
02
2

Stability validation

Number of Clusters

FO
M

2 2 2

3

3
3

4

4

4

5 5 5
6

6 6
7

7

7

8

8

8

2 3 4

1
2
3
4
5
6
7
8

clara
fanny
hierarchical
kmeans
model
pam
som
sota

	 52

Figure 7: Visual representation of “CE” rank aggregation results for Example 2 using the
“Kendall” distance. The top left plot shows the minimum values of the objective
function as the number of iterations increases. The top right plot is a histogram of the
objective function scores at the last iteration. The bottom plot shows the individual ranks
from the data (in grey), the final solution (in red), and average ranking (in black).

0 50 100 150

19
.5

20
.5

21
.5

Minimum Path

Iteration

S
co
re
s

min = 19.567

Final Sample Distribution

Objective function scores

Fr
eq
ue
nc
y

19.5 20.0 20.5 21.0 21.5

0
10
00

30
00

50
00

0
5

10
15

20
25

Rank Aggregation

Optimal List

R
an
ks

kmeans-4 hierarchical-2 kmeans-3 sota-3 clara-3 pam-2 clara-4 model-3

Data CE Mean

	 53

Figure 8: Visual representation of “GA” rank aggregation results for Example 2 using the
“Spearman” distance. The top left plot shows the minimum values of the objective
function as the number of iterations increases. The top right plot is a histogram of the
objective function scores at the last iteration. The bottom plot shows the individual ranks
from the data (in grey), the final solution (in red), and average ranking (in black).

0 2000 4000 6000 8000

55
60

65
70

Minimum Path

Iteration

S
co
re
s

min = 54.362

Final Sample Distribution

Objective function scores

Fr
eq
ue
nc
y

56 58 60 62

0
2

4
6

8
10

0
5

10
15

20
25

Rank Aggregation

Optimal List

R
an
ks

hierarchical-3 sota-4 sota-2 fanny-3 clara-2 pam-3 model-2 model-4

Data GA Mean

	 54

Figure 9: Visual representation of “GA” rank aggregation results for Example 2 using the
“Kendall” distance. The top left plot shows the minimum values of the objective
function as the number of iterations increases. The top right plot is a histogram of the
objective function scores at the last iteration. The bottom plot shows the individual ranks
from the data (in grey), the final solution (in red), and average ranking (in black).

0 500 1000 1500 2000

18
20

22
24

26

Minimum Path

Iteration

S
co
re
s

min = 17.077

Final Sample Distribution

Objective function scores

Fr
eq
ue
nc
y

18 20 22 24 26

0
2

4
6

8
10

0
5

10
15

20
25

Rank Aggregation

Optimal List

R
an
ks

som-4 clara-2 kmeans-3 clara-3 kmeans-2 pam-3 sota-2 model-4

Data GA Mean

	 55

CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

 The package optCluster is introduced in this thesis as a simple and convenient

option to add to the many cluster analysis packages already available for R. The

optCluster() function, in this package, offers the user nine validation measures

categorized into three types, “biological”, “internal”, and “stability”, as well as ten unique

clustering algorithms to be used in cluster analysis. A weighted rank aggregation using

either a cross-entropy Monte Carlo algorithm or a Genetic algorithm determines the

optimal clustering algorithm along with the optimal number of clusters for a given

dataset. The optCluster package also provides easy to use methods that give the user

access to the graphical capabilities of the clValid and RankAggreg packages.

It is recommended that the user run the optCluster() function several times with

different arguments to compare results. This is especially important for the cluster size

range because the rank aggregation methods may choose the upper bound of this range as

the optimal number of clusters. Changing the range of cluster sizes or the selections of

clustering algorithms will often produce different results, so choices in arguments may

need to be fine-tuned in order to discover the overall best result. The mouse microarray

dataset (Bhattacherjee et al., 2007) analyzed in Chapter VI provided an example of

producing different results using different arguments. This set of data was used as an

example of the clValid package by Brock et al. (2011), where three clustering algorithms

were analyzed using “internal” and “stability” validation measures over the range of four

	 56

to six clusters. PAM with six clusters was chosen as the optimal clustering method using

the cross-entropy Monte Carlo weighted rank aggregation from the RankAggreg

package. The same dataset was analyzed in this thesis with the optCluster() function,

but ten clustering algorithms were evaluated using all three types of validation measures

over a larger range of two to nine clusters. Under these new conditions, SOM with eight

clusters was chosen as the best clustering algorithm with rank aggregation using the

cross-entropy Monte Carlo method, a different result with a different selection of

arguments.

It is also recommended that the user tests the consistency of the rank aggregation

results, and the optCluster package provides the repRankAggreg() function as a useful

tool to do so. This function repeats the weighted rank aggregation using same weighted

rank aggregation method, ranked clustering algorithm lists, and validation score lists as

the original optCluster() function. A different aggregation algorithm or type of distance

measure for weighted rank aggregation can also be evaluated using the repRankAggreg()

function, but doing so may affect the final results. This was the case for analysis of the

Arabidopsis thaliana RNA-Seq dataset (Di et al., 2011) in Chapter VI. Using weighted

Spearman’s footrule distance, the optimal clustering algorithm and number of clusters

was determined to be UPGMA with three clusters. By only changing the rank

aggregation distance to weighted Kendall’s tau, the results changed and K-means with

four clusters was chosen as the optimal algorithm and cluster size.

Future Research

 As more and more research is being done on cluster analysis, especially in

microarray gene expression data and data generated from Next Generation Sequencing

	 57

technology, new tools and resources for analysis are becoming readily available. The

Comprehensive R Archive Network (CRAN) provides a whole slew of packages offering

different clustering algorithms and validation measures for researchers to use.

Submitting the optCluster package to CRAN is the next step following this paper, and

there are several opportunities to develop this package into a robust cluster analysis tool

before submission.

Currently, there are only ten clustering algorithms and nine validation measures

available through this package. Extending the number of clustering algorithms available,

including those specifically designed for RNA-Seq data like those found in the package

MBCluster.Seq (Si, 2015), would enhance the analysis capabilities of the optCluster

package. There are packages available for R that offer more validation measures for

researchers to use, such as the package NbClust (Charrad et al., 2014), which has a

collection of 30 different measures for users choose from. Adding more validation

measures to the optCluster package would also be a way to increase its usefulness as a

tool for cluster analysis.

The optCluster package is able to analyze small subsets (less than 1000 rows) of

high dimensional data across a small range of three or four cluster numbers in a fairly

time-efficient manner. While this may be sufficient in some cases, it may be more

worthwhile to analyze the entire dataset over a large range of cluster numbers. When the

datasets get larger and/or the range for the number of clusters increases, the amount of

time it takes for the optCluster() function to obtain a result becomes lengthy.

Both examples in Chapter VI experienced issues with long running times while

using the optCluster() function. The computations for the Arabidopsis thaliana RNA-

	 58

Seq dataset took over 85 hours on the Cardinal Research Cluster (CRC) to complete

using only eight of the ten available clustering algorithms and a range of three different

numbers of clusters. The two excluded algorithms (Agnes and Diana) were omitted from

the analysis because they took just too long to perform validation measures given the

time constraints for this paper. The weighted rank aggregation for the mouse microarray

data using either the Genetic algorithm or the weighted Kendall’s tau distance did not

converge after 168 hours on the CRC. The large range of cluster sizes resulted in long

lists to be used in the aggregation methods, and therefore, required more time to complete

all of the computations and iterations. With the abundance of resources available for

high-performance and parallel computing in R, increasing the speed of the optCluster

package would make it even more valuable for cluster analysis, especially for high

dimensional data.

	 59

REFERENCES

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., & Perona, I. (2013). An extensive
comparative study of cluster validity indices. Pattern Recognition, 46, 243-256.

Bhattacherjee, V., Mukhopadhyay, P., Singh, S., Johnson, C., Philipose, J. T., Warner, C.
P., ... & Pisano, M. M. (2007). Neural crest and mesoderm lineage‐dependent gene
expression in orofacial development. Differentiation, 75, 463-477.

Brock, G., Pihur, V., Datta, S., & Datta, S. (2011). clValid, an R package for cluster
validation. Journal of Statistical Software (Brock et al., March 2008).

Carlson, M. (2015a). GO.db: A set of annotation maps describing the entire Gene
Ontology. R package version 3.0.0.

Carlson, M. (2015b) moe430a.db: Affymetrix Mouse Expression Set 430 annotation data
(chip moe430a). R package version 3.0.0.

Carlson, M. (2015c) org.At.tair.db: Genome wide annotation for Arabidopsis. R package
version 3.0.0.

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package
for Determining the Relevant Number of Clusters in a Dataset. Journal of Statistical
Software, 61:6.

Chen, A., Sweeney, T.E., Gevaert, O. (2015). COMMUNAL: Robust Selection of Cluster
Number K. R package version 1.0, URL http://CRAN.R-
project.org/package=COMMUNAL.

Datta, S., & Datta, S. (2003). Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics, 19, 459-466.

Datta, S., & Datta, S. (2006). Evaluation of clustering algorithms for gene expression
data using a reference set of functional classes. BMC Bioinformatics, 7:397.

DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., & Etzioni, R. (2006).
Combining Results of Microarray Experiments: A Rank Aggregation Approach.
Statistical Applications in Genetics and Molecular Biology, 5.

	 60

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the royal statistical society. Series B
(methodological), 1-38.

Di, Y., Schafer, D. W., Cumbie, J. S., & Chang, J. H. (2011). The NBP negative binomial
model for assessing differential gene expression from RNA-Seq. Statistical Applications
in Genetics and Molecular Biology, 10, 1-28.

Di, Y., Schafer, D. W., Cumbie, J. S., & Chang, J. H. (2015). NBPSeq: Negative
Binomial Models for RNA-Sequencing Data. R package version 0.3.0, URL
http://CRAN.R-project.org/package=NBPSeq.

Dimitriadou, E. (2014). cclust: Convex Clustering Methods and Clustering Indexes. R
package version 0.6-19, URL http://CRAN.R-project.org/package=cclust.

Dopazo, J., & Carazo, J. M. (1997). Phylogenetic reconstruction using an unsupervised
growing neural network that adopts the topology of a phylogenetic tree. Journal of
molecular evolution, 44, 226-233.

Dunn, J. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of
Cybernetics, 4, 95-104.

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for
the web. Proceedings of the 10th international conference on World Wide Web, 613-622.

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing Top k Lists. SIAM Journal on
Discrete Mathematics, 17, 134-160.

Fraley, C., & Raftery, A. (2002). Model-Based Clustering, Discriminant Analysis, and
Density Estimation. Journal of the American Statistical Association, 97, 611-631.

Fraley, C., Raftery, A., & Scrucca, L. (2014). mclust: Normal Mixture Modeling for
Model-Based Clustering, Classification, and Density Estimation. R package version 4.4,
URL http://CRAN.R-project.org/package=mclust.

Gentleman, R. (2014). annotate: Annotation for microarrays. R package version 1.44.0

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., ... &
Zhang, J. (2004). Bioconductor: open software development for computational biology
and bioinformatics. Genome biology, 5(10), R80.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, Mass.: Addison-Wesley Pub.

Handl, J., Knowles, J., & Kell, D. (2005). Computational cluster validation in post-
genomic data analysis. Bioinformatics, 21, 3201-3212.

	 61

Hartigan, J.A., & Wong, M.A. (1979). A K-Means Clustering Algorithm. Applied
Statistics, 28, 100-108.

Hennig, C. (2015). fpc: Flexible procedures for clustering. R package version 2.1-9, URL
http://CRAN.R-project.org/package=fpc.

Herrero, J., Valencia, A., & Dopazo, J. (2001). A hierarchical unsupervised growing
neural network for clustering gene expression patterns. Bioinformatics, 17, 126-136.

Kane, M., Emerson, J., Weston, S. (2013). Scalable Strategies for Computing with
Massive Data. Journal of Statistical Software, 55:14.

Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to
Cluster Analysis. New York: Wiley.

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.

Lam, Y., & Tsang, P. (2012). EXploratory K-Means: A new simple and efficient
algorithm for gene clustering. Applied Soft Computing, 12, 1149-1157.

Lin, S., & Ding, J. (2009). Integration of ranked lists via Cross Entropy Monte Carlo with
applications to mRNA and microRNA studies. Biometrics, 65, 9-18.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2015). cluster:
Cluster Analysis Extended Rousseeuw et al. R package version 2.0.1. URL
http://CRAN.R-project.org/package=cluster.

Mavridis, L., Nath, N., & Mitchell, J. (2013). PFClust: A novel parameter free clustering
algorithm. BMC Bioinformatics, 14:213.

McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. New York:
Wiley.

Nazeer, K., Sebastian, M., & Kumar, S. (2013). A novel harmony search-K means hybrid
algorithm for clustering gene expression data. Bioinformation, 9, 84-88.

Nieweglowski L (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1,
URL http://CRAN.R-project.org/package=clv.

Pihur, V., Datta, S., & Datta, S. (2007). Weighted rank aggregation of cluster validation
measures: A Monte Carlo cross-entropy approach. Bioinformatics, 23, 1607-1615.

Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank
aggregation. BMC Bioinformatics, 10:62.

	 62

R Core Team. (2014) R: A Language and Environment for Statistical Computing . R
Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org.

Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus External
cluster validation indexes. International Journal of computers and communications, 5,
27-34.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99, 89-112.

Si, Y. (2015). MBCluster.Seq: Model-based Clustering for RNA-seq Data. R package
version 1.0, URL http://CRAN.R-project.org/package= MBCluster.Seq.

Si, Y., Liu, P., Li, P., & Brutnell, T. (2014). Model-based clustering for RNA-seq data.
Bioinformatics, 30, 197-205.

Sneath, P., & Sokal, R. (1973). Numerical taxonomy: The principles and practice of
numerical classification. San Francisco: W.H. Freeman.

Tseng, G., & Wong, W. (2005). Tight Clustering: A Resampling‐Based Approach for
Identifying Stable and Tight Patterns in Data. Biometrics, 61, 10-16.

Thalamuthu, A., Mukhopadhyay, I., Zheng, X., & Tseng, G. (2006). Evaluation and
comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-
2412.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition (3rd ed.). Amsterdam:
Elsevier/Academic Press.

Walesiak, M., & Dudek, A. (2014). clusterSim: Searching for Optimal Clustering
Procedure for a Dataset. R package version 0.44-1, URL http://CRAN.R-
project.org/package= clusterSim.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58, 236-244.

Wehrens, R., & Buydens, L.M.C. (2007). Self- and Super-organising Maps in R: the
kohonen package. Journal of Statistical Software, 21:5.

Witten, D. (2011). Classification and clustering of sequencing data using a Poisson
model. The Annals of Applied Statistics, 5, 2493-2518.

	 63

Wu, F. (2008). Genetic weighted k-means algorithm for clustering large-scale gene
expression data. BMC Bioinformatics, 9, S12-S12.

Yeung, K., Haynor, D., & Ruzzo, W. (2001). Validating clustering for gene expression
data. Bioinformatics, 17, 309-318.

	 64

APPENDIX A

 R CODE

optCluster Package Code

########### optCluster Class Definitions #############

Change raggr to S4 class
setOldClass("raggr")
setClass("optCluster",representation(clVal ="clValid",
 optMethod ="character",
 rankAgg="raggr"))

########### optCluster Function ###########

Determine optimal clustering method
optCluster <- function(obj, nClust, clMethods = "all", validation =
c("internal", "stability"), hierMethod = "average", clVerbose = FALSE,
 rankMethod = "CE", rankVerbose= FALSE,...) {

 if("all" %in% clMethods) {
 clMethods <- c("agnes", "clara", "diana", "fanny", "hierarchical", "kmeans",
"model", "pam", "som", "sota")
 }

 if("all" %in% validation) {
 validation = c("internal", "stability", "biological")
 }

 addArgs <- list(...)
 ## 'verbose' and 'method' are both used in clValid and RankAggreg
 if(exists(c("verbose"), where = addArgs)){
 stop("must specify 'verbose' as 'clVerbose' or 'rankVerbose'")
 }
 if(exists(c("method"), where = addArgs)){
 stop("must specify 'method' as 'hierMethod' or 'rankMethod'")
 }

 ## Sort arguments to clValid or RankAggreg
 RankAggreg.names <- c(names(formals(RankAggreg)),"p")
 RankAggreg.args <- addArgs[names(addArgs) %in% RankAggreg.names]
 if(length(RankAggreg.args) > 0){
 clValid.args <- addArgs[-which(names(addArgs) %in% RankAggreg.names)]
 } else{
 clValid.args <- addArgs
 }

	 65

 ## Obtain validation measures for clustering results, cluster ranks and weights
 clusters <- do.call('clValid',c(list(obj, nClust, clMethods, validation, method
= hierMethod, verbose = clVerbose),
 clValid.args))
 cluster.order <- getRanksWeights(clusters)

 if(exists(c("k"), where = RankAggreg.args)){
 nList <- RankAggreg.args$k
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == "k")]
 } else {
 nList <- ncol(cluster.order$ranks)
 }

 if(exists(c("weights"), where = RankAggreg.args)){
 rank.weight <- RankAggreg.args$weights
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) ==
"weights")]
 } else {
 rank.weight <- cluster.order$weights
 }

 ## Perform weighted rank aggregation
 optimal.list <- do.call('RankAggreg', c(list(x = cluster.order$ranks, k =
nList, weights = rank.weight,
 method = rankMethod, verbose = rankVerbose), RankAggreg.args))

 ## Create 'optCluster' class object
 new("optCluster", rankAgg = optimal.list, clVal = clusters, optMethod =
optimal.list$top.list[1])

}

########## repRankAggreg Function ##########

Repeat weighted rank aggregation on "optCluster" object
repRankAggreg <- function(optObj, rankMethod = "same", distance = "same",
rankVerbose = FALSE, ...){

 RankAggreg.args <- list(...)

 clusters <- cl.valid(optObj)
 rankAgg <- rank.aggreg(optObj)
 cluster.order <- getRanksWeights(clusters)
 method <- match.arg(rankMethod, c("same", "CE", "GA"))
 distance <- match.arg(distance, c("same", "Spearman", "Kendall"))

 if(method == "same") {
 method <- rankAgg$method
 }

 if(distance == "same") {
 distance <- rankAgg$distance

	 66

 }

 if(exists(c("method"), where = RankAggreg.args)){
 message(" The argument 'method' has been changed to 'rankMethod' ")
 rankMethod <- RankAggreg.args$method
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) ==
"method")]
 }

 if(exists(c("verbose"), where = RankAggreg.args)){
 message(" The argument 'verbose' has been changed to 'rankVerbose' ")
 rankVerbose <- RankAggreg.args$verbose
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) ==
"verbose")]
 } }

 if(exists(c("k"), where = RankAggreg.args)){
 nList <- RankAggreg.args$k
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == "k")]
 } else {
 nList <- ncol(cluster.order$ranks)
 }

 if(exists(c("weights"), where = RankAggreg.args)){
 rank.weight <- RankAggreg.args$weights
 RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) ==
"weights")]
 } else {
 rank.weight <- cluster.order$weights
 }

 ## Perform weighted rank aggregation
 optimal.list <- do.call('RankAggreg', c(list(x = cluster.order$ranks, k =
nList, weights = rank.weight,
 method = method, distance = distance, verbose = rankVerbose), RankAggreg.args))

 ## Create 'optCluster' class object
 new("optCluster", rankAgg = optimal.list, clVal = clusters, optMethod =
optimal.list$top.list[1])
}

########### optCluster Methods ###########

########### Create Accessor Functions ##########

cl.valid accessor
setGeneric("cl.valid", function(object, ...) standardGeneric("cl.valid"))
setMethod("cl.valid",signature(object="optCluster"),
 function(object) return(object@clVal))

rank.aggreg accessor
setGeneric("rank.aggreg", function(object, ...) standardGeneric("rank.aggreg"))

	 67

setMethod("rank.aggreg",signature(object="optCluster"),
 function(object) return(object@rankAgg))

top.method accessor
setGeneric("top.method", function(object, ...) standardGeneric("top.method"))
setMethod("top.method",signature(object="optCluster"),
 function(object) return(object@optMethod))

########### Print, Show, and Summary Methods ##########

setMethod("print","optCluster",
 function(x) {
 cat("\nThe overall optimal method with number of clusters is: \n\t
", top.method(x), "\n\n")
 print(rank.aggreg(x))
 })

setMethod("show","optCluster",
 function(object) {
 cat("\nThe overall optimal method with number of clusters is: \n\t
", top.method(object), "\n\n")
 print(rank.aggreg(object))
 })

setMethod("summary","optCluster",
 function(object) {
 cat(summary(cl.valid(object)), "\nThe overall optimal method with
number of clusters is: \n\t ",
 top.method(object), "\n\n")
 print(rank.aggreg(object))
 })

Example 1 Analysis Code

library(optCluster)

load mouse data from clValid
data(mouse)
ex1 <- mouse[, c("M1", "M2", "M3", "NC1", "NC2", "NC3")]
rownames(ex1) <- mouse$ID

Run optCluster Function and Record Time
start.time <- Sys.time()
optMouse <-optCluster(ex1, 2:9, clMethods = “all”, validation = “all”, seed =
123, annotation = "moe430a.db", maxIter = 1500)
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken

Results
top.method(optMouse)
print(optMouse)
summary(optMouse)

	 68

Validation Scores
valMouse <- cl.valid(optMouse)
optimalScores(valMouse)

Validation Plots
par(mfrow = c(5,2))
plot(valMouse, measure = c("BHI", "BSI"), legend = FALSE)
plot(valMouse, measure = c("Dunn", "Silhouette", "Connectivity"), legend =
FALSE)
plot(valMouse, measure = c("AD", "ADM", "APN", "FOM"), legend = FALSE)
plot(nClusters(valMouse), measures(valMouse, "AD")[, , 1], type = "n", axes =
F, xlab = " ", ylab = " ")
legend("center", clusterMethods(valMouse), col = 1:10, lty = 1:10, pch =
paste(c(1:9,0)), cex = 0.8)

Aggregation Results
aggMouse <- rank.aggreg(optMouse)
aggMouse
aggMouse$num.it
plot(aggMouse)
which(aggMouse$top.list == "agnes-2")

Example 2 Analysis Code

library(NBPSeq)
data(arab)
ex2 <- t(arab)/colSums(arab)
ex2 <- t(ex2)
Create File-backed Matrix
ex2 <- as.big.matrix(ex2, backingfile = "arab.big.txt", backingpath =
"/scratch/home/mnseku01")

Run optCluster Function and Record Time
start.time <- Sys.time()
optArabid <- optCluster(ex2[,], 2:4, clMethods = c("clara", "fanny",
 "hierarchical", "kmeans", "model", "pam", "som", "sota"), validation =
 "all", seed = 123, annotation = "org.At.tair.db", maxitems = nrow(ex2[,]))
print(optArabid)
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken

save.image("arabTest24.Rdata")

Plot of Aggregation
aggArabid <- rank.aggreg(optArabid)
plot(aggArabid)
aggArabid$num.it

Validation Scores
valArabid <- cl.valid(optArabid)
optimalScores(valArabid)

	 69

Results
summary(optArabid)

Validation Plots
par(mfrow = c(5,2))
plot(valArabid, measure = c("BHI", "BSI"), legend = FALSE)
plot(valArabid, measure = c("Dunn", "Silhouette", "Connectivity"), legend =
FALSE)
plot(valArabid, measure = c("AD", "ADM", "APN", "FOM"), legend = FALSE)
plot(nClusters(valArabid), measures(valArabid, "AD")[, , 1], type = "n", axes =
F, xlab = " ", ylab = " ")
legend("center", clusterMethods(valArabid), col = 1:8, lty = 1:8, pch =
paste(c(1:8)), cex = 0.8)

Additional Rank Aggregation Using "Kendall" Distance
KenArabid <- repRankAggreg(optArabid, distance = “Kendall”)
print(KenArabid)
plot(KenArabid)

	 70

APPENDIX B

ADDITIONAL R OUTPUT FROM CHAPTER VI

Example 1 print() Output

The overall optimal method with number of clusters is:
 som-8

The optimal list is:
 som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9 kmeans-8 pam-6
 hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7 fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6
 som-3 diana-9 agnes-6 som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9 som-4
 clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4 sota-7 diana-7 diana-5
 kmeans-6 agnes-2 som-5 fanny-3 kmeans-2 kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4
 sota-2 diana-3 diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6 clara-4
 fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4 pam-4 model-3 model-7 model-8
 model-9 model-6 model-5 model-4

 Algorithm: CE
 Distance: Spearman
 Score: 239.4503

Example 1 summary() Output

Clustering Methods:
 agnes clara diana fanny hierarchical kmeans model pam som sota

Cluster sizes:
 2 3 4 5 6 7 8 9

Validation Measures:
 2 3 4 5 6 7 8 9

agnes APN 0.0478 0.1288 0.1755 0.1689 0.1516 0.0927 0.1095 0.1562
 AD 3.2430 2.6814 2.2571 2.0642 1.8732 1.6962 1.5925 1.5290
 ADM 0.4283 1.0953 0.8070 0.6196 0.5867 0.5475 0.5286 0.5463
 FOM 1.0658 0.8678 0.7451 0.6823 0.6371 0.5949 0.5388 0.5029
 Connectivity 5.3270 14.2528 20.7520 27.0726 30.6194 30.6194 36.1615 40.6222
 Dunn 0.1291 0.0788 0.0857 0.0899 0.0899 0.1203 0.1419 0.1467
 Silhouette 0.5133 0.4195 0.3700 0.3343 0.3233 0.3808 0.3655 0.3582
 BHI 0.2781 0.2783 0.2732 0.2543 0.2515 0.2602 0.2450 0.2236
 BSI 0.7950 0.5293 0.3389 0.3178 0.2848 0.2657 0.2287 0.1947
clara APN 0.1099 0.2199 0.2798 0.3108 0.3061 0.1269 0.1240 0.1518
 AD 2.9902 2.5945 2.3069 2.1053 1.9024 1.5114 1.3948 1.3075
 ADM 0.4907 0.9201 0.9264 1.0816 1.0271 0.4210 0.3399 0.3635
 FOM 1.0103 0.8251 0.6923 0.6671 0.5239 0.4930 0.4557 0.4384
 Connectivity 18.7028 27.9651 44.8234 35.5159 26.1238 33.8361 47.3369 52.3262
 Dunn 0.0287 0.0597 0.0660 0.0761 0.0857 0.0671 0.1127 0.0882
 Silhouette 0.4257 0.3489 0.3304 0.3636 0.3836 0.4146 0.3997 0.3892
 BHI 0.2808 0.2760 0.2778 0.2786 0.2798 0.2795 0.2649 0.2675
 BSI 0.4948 0.3701 0.2736 0.2322 0.1931 0.1720 0.1517 0.1384
diana APN 0.0634 0.1158 0.1024 0.1861 0.2274 0.2034 0.1225 0.1286
 AD 2.9133 2.5593 2.0303 1.9870 1.9122 1.7617 1.5439 1.4777
 ADM 0.3136 0.4888 0.3180 0.6023 0.6932 0.5596 0.4428 0.4055
 FOM 0.9774 0.8403 0.6816 0.6435 0.6081 0.5620 0.5136 0.4844
 Connectivity 18.7552 25.1187 38.1242 38.8143 45.1349 53.2302 53.2302 58.8917

	 71

 Dunn 0.0315 0.0358 0.0492 0.0577 0.0646 0.0648 0.0813 0.0828
 Silhouette 0.4601 0.3705 0.3538 0.3378 0.3316 0.2766 0.3453 0.3174
 BHI 0.2767 0.2665 0.2648 0.2598 0.2446 0.2459 0.2564 0.2791
 BSI 0.5891 0.5111 0.3444 0.2909 0.2774 0.2502 0.2229 0.2005
fanny APN 0.0691 0.1031 0.1515 0.1818 0.1001 0.0708 0.1582 0.1678
 AD 2.8999 2.3775 2.1079 1.9018 1.6229 1.4741 1.5446 1.5071
 ADM 0.2984 0.3278 0.4259 0.3996 0.2481 0.1894 0.3774 0.3636
 FOM 0.9891 0.8161 0.7244 0.6610 0.5554 0.5151 0.5305 0.5249
 Connectivity 19.8925 32.7579 42.7421 42.7992 55.6552 43.3813 60.8806 66.1210
 Dunn 0.0401 0.0430 0.0623 0.0700 0.0632 0.0816 0.0514 0.0514
 Silhouette 0.4332 0.3401 0.2877 0.2765 0.3624 0.3501 0.3082 0.2123
 BHI 0.2795 0.2754 0.2812 0.2764 0.2847 0.2867 0.2896 0.3117
 BSI 0.4955 0.3359 0.2481 0.1924 0.1652 0.1530 0.1440 0.1319
hierarchical APN 0.0478 0.1288 0.1755 0.1689 0.1516 0.0927 0.1095 0.1562
 AD 3.2430 2.6814 2.2571 2.0642 1.8732 1.6962 1.5925 1.5290
 ADM 0.4283 1.0953 0.8070 0.6196 0.5867 0.5475 0.5286 0.5463
 FOM 1.0658 0.8678 0.7451 0.6823 0.6371 0.5949 0.5388 0.5029
 Connectivity 5.3270 14.2528 20.7520 27.0726 30.6194 30.6194 36.1615 40.6222
 Dunn 0.1291 0.0788 0.0857 0.0899 0.0899 0.1203 0.1419 0.1467
 Silhouette 0.5133 0.4195 0.3700 0.3343 0.3233 0.3808 0.3655 0.3582
 BHI 0.2781 0.2783 0.2732 0.2543 0.2515 0.2602 0.2450 0.2236
 BSI 0.7950 0.5293 0.3389 0.3178 0.2848 0.2657 0.2287 0.1947
kmeans APN 0.0603 0.0726 0.3146 0.2485 0.2470 0.1595 0.2183 0.1589
 AD 2.9001 2.2923 2.2529 1.9978 1.8389 1.6236 1.5344 1.3898
 ADM 0.3196 0.3101 1.0621 0.7151 0.6700 0.5213 0.5967 0.5253
 FOM 0.9745 0.7548 0.7114 0.6528 0.6074 0.5458 0.4983 0.4686
 Connectivity 13.2548 17.6651 37.3980 43.2655 50.6095 39.5567 40.3567 45.2631
 Dunn 0.0464 0.0873 0.0777 0.0815 0.0703 0.0998 0.1286 0.1148
 Silhouette 0.4571 0.4182 0.3615 0.3367 0.3207 0.3931 0.3780 0.4261
 BHI 0.2784 0.2776 0.2755 0.2561 0.2564 0.2606 0.2520 0.2569
 BSI 0.5775 0.3760 0.2856 0.2526 0.2148 0.2024 0.1704 0.1620
model APN 0.1991 0.3388 0.4337 0.5815 0.3472 0.3291 0.3225 0.4630
 AD 3.6550 3.0524 3.7695 3.3632 2.8363 2.5435 2.5471 2.5032
 ADM 1.6991 1.2080 1.8851 2.1598 1.1909 1.0524 1.1315 1.4743
 FOM 1.1267 0.8286 0.9952 1.0347 0.8042 0.7910 0.7901 0.6456
 Connectivity 23.7373 121.6671 89.2726 111.0246 96.4258 126.3575 132.8135 159.5603
 Dunn 0.0240 0.0304 0.0232 0.0332 0.0231 0.0342 0.0387 0.0273
 Silhouette 0.3291 0.2131 -0.0106 0.0902 0.0694 0.0388 -0.0004 -0.0205
 BHI 0.2844 0.2729 0.2978 0.2708 0.3094 0.3265 0.3457 0.3277
 BSI 0.7013 0.4334 0.3673 0.3093 0.2510 0.2109 0.2154 0.1681
pam APN 0.1318 0.2376 0.3658 0.3029 0.0486 0.1240 0.1037 0.2063
 AD 3.0382 2.5993 2.4492 2.0840 1.5272 1.4906 1.3517 1.3614
 ADM 0.6372 0.9733 1.3172 1.0164 0.1401 0.3927 0.2760 0.5385
 FOM 1.0092 0.8391 0.7663 0.6490 0.5158 0.4934 0.4632 0.4370
 Connectivity 18.7917 27.9651 30.9302 44.9671 32.9667 41.8925 45.4353 47.1845
 Dunn 0.0391 0.0597 0.0510 0.0761 0.0816 0.0627 0.0845 0.0882
 Silhouette 0.4271 0.3489 0.3563 0.3530 0.4152 0.4117 0.4120 0.3817
 BHI 0.2820 0.2760 0.2828 0.2784 0.2765 0.2749 0.2627 0.2608
 BSI 0.5083 0.3677 0.2737 0.2467 0.1995 0.1659 0.1513 0.1358
som APN 0.0738 0.0627 0.1243 0.2399 0.1086 0.0424 0.0991 0.1802
 AD 2.9271 2.2836 2.0304 1.9441 1.5940 1.3853 1.3445 1.3432
 ADM 0.4203 0.2599 0.3698 0.6864 0.3242 0.1296 0.2713 0.4551
 FOM 0.9847 0.7532 0.6956 0.6419 0.5285 0.4760 0.4535 0.4329
 Connectivity 13.2548 16.3000 37.2611 43.0948 40.1087 32.3194 35.8984 53.4611
 Dunn 0.0464 0.0854 0.0554 0.0756 0.0514 0.0996 0.1425 0.1255
 Silhouette 0.4571 0.4185 0.3536 0.3261 0.3907 0.4175 0.4183 0.3761
 BHI 0.2784 0.2773 0.2711 0.2701 0.2771 0.2774 0.2631 0.2676
 BSI 0.5763 0.3780 0.2939 0.2287 0.1952 0.1536 0.1483 0.1339
sota APN 0.0716 0.0830 0.3035 0.3466 0.2340 0.2319 0.1631 0.1690
 AD 2.9037 2.4119 2.3832 2.2777 1.9553 1.7958 1.5234 1.4429
 ADM 0.2866 0.2714 1.0898 1.1415 0.8108 0.8395 0.5103 0.4693
 FOM 0.9872 0.8133 0.6958 0.6511 0.6315 0.5673 0.5018 0.4767
 Connectivity 22.7690 30.1794 32.6333 41.8321 47.7548 47.7548 55.4425 58.6238
 Dunn 0.0351 0.0446 0.0459 0.0459 0.0509 0.0509 0.0768 0.0768
 Silhouette 0.4395 0.3682 0.3169 0.2887 0.3236 0.3514 0.3577 0.3617
 BHI 0.2795 0.2796 0.2831 0.2741 0.2793 0.2784 0.2710 0.2791
 BSI 0.5096 0.4386 0.2966 0.2620 0.2525 0.2249 0.1741 0.1485

	 72

Optimal Scores:

 Score Method Clusters
APN 0.0424 som 7
AD 1.3075 clara 9
ADM 0.1296 som 7
FOM 0.4329 som 9
Connectivity 5.3270 agnes 2
Dunn 0.1467 agnes 9
Silhouette 0.5133 agnes 2
BHI 0.3457 model 8
BSI 0.7950 agnes 2

The overall optimal method with number of clusters is:
 som-8

The optimal list is:
 som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9 kmeans-8 pam-6
 hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7 fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6
 som-3 diana-9 agnes-6 som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9 som-4
 clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4 sota-7 diana-7 diana-5
 kmeans-6 agnes-2 som-5 fanny-3 kmeans-2 kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4
 sota-2 diana-3 diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6 clara-4
 fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4 pam-4 model-3 model-7 model-8
 model-9 model-6 model-5 model-4

 Algorithm: CE
 Distance: Spearman
 Score: 239.4503

Example 2 summary() Output

Clustering Methods:
 clara fanny hierarchical kmeans model pam som sota

Cluster sizes:
 2 3 4

Validation Measures:
 2 3 4

clara APN 0.0014 0.0142 0.1094
 AD 0.0001 0.0001 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0002 0.0002 0.0002
 Connectivity 64.1647 384.4389 1208.9567
 Dunn 0.0032 0.0002 0.0000
 Silhouette 0.9737 0.8397 0.5169
 BHI 0.2419 0.2422 0.2270
 BSI 0.9692 0.7526 0.4600
fanny APN 0.0223 0.0404 0.0599
 AD 0.0001 0.0001 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0003 0.0003 0.0003
 Connectivity 693.1877 1173.5206 1794.4837
 Dunn 0.0000 0.0000 0.0000
 Silhouette 0.6012 0.4711 0.4267
 BHI 0.1796 0.1853 0.1878
 BSI 0.5889 0.4115 0.3166
hierarchical APN 0.0000 0.0000 0.0001
 AD 0.0002 0.0002 0.0002
 ADM 0.0000 0.0000 0.0000
 FOM 0.0002 0.0002 0.0002
 Connectivity 2.9290 5.8579 10.0159
 Dunn 0.9107 1.1082 0.5169
 Silhouette 0.9971 0.9963 0.9930
 BHI 0.1681 0.1681 0.3341

	 73

 BSI 1.0000 1.0000 0.9992
kmeans APN 0.0003 0.0005 0.0004
 AD 0.0002 0.0002 0.0002
 ADM 0.0000 0.0000 0.0000
 FOM 0.0002 0.0002 0.0002
 Connectivity 5.8579 15.9651 16.1857
 Dunn 0.5659 0.0371 0.0488
 Silhouette 0.9968 0.9897 0.9846
 BHI 0.0841 0.2434 0.2643
 BSI 0.9994 0.9952 0.9925
model APN 0.0312 0.0651 0.1131
 AD 0.0001 0.0001 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0003 0.0003 0.0003
 Connectivity 1657.6734 2302.0004 4087.6429
 Dunn 0.0001 0.0000 0.0000
 Silhouette 0.7136 0.1614 0.1382
 BHI 0.1826 0.1863 0.1907
 BSI 0.6407 0.4935 0.3627
pam APN 0.0254 0.0380 0.0480
 AD 0.0001 0.0001 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0003 0.0002 0.0002
 Connectivity 583.8889 716.2687 1247.1345
 Dunn 0.0001 0.0001 0.0000
 Silhouette 0.7186 0.6522 0.5671
 BHI 0.1847 0.2190 0.2140
 BSI 0.6320 0.5594 0.4248
som APN 0.0002 0.0016 0.0020
 AD 0.0002 0.0002 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0002 0.0002 0.0002
 Connectivity 15.9623 61.1980 90.6306
 Dunn 0.0618 0.0039 0.0031
 Silhouette 0.9927 0.9729 0.9564
 BHI 0.2219 0.2939 0.1956
 BSI 0.9977 0.9860 0.9513
sota APN 0.0131 0.0148 0.0150
 AD 0.0001 0.0001 0.0001
 ADM 0.0000 0.0000 0.0000
 FOM 0.0003 0.0002 0.0002
 Connectivity 418.9956 505.1250 515.1933
 Dunn 0.0001 0.0002 0.0002
 Silhouette 0.8057 0.7831 0.7869
 BHI 0.1920 0.2241 0.2527
 BSI 0.7089 0.6860 0.6846
Optimal Scores:

 Score Method Clusters
APN 0.0000 hierarchical 3
AD 0.0001 pam 4
ADM 0.0000 hierarchical 3
FOM 0.0002 kmeans 4
Connectivity 2.9290 hierarchical 2
Dunn 1.1082 hierarchical 3
Silhouette 0.9971 hierarchical 2
BHI 0.3341 hierarchical 4
BSI 1.0000 hierarchical 3

The overall optimal method with number of clusters is:
 hierarchical-3

The optimal list is:
 hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 hierarchical-4 hierarchical-2 som-3 clara-3
 clara-2 sota-3 pam-4 sota-2 kmeans-3 som-2 pam-3 pam-2 fanny-2 fanny-3 model-2 fanny-4 clara-4
 model-3 model-4

	 74

 Algorithm: CE
 Distance: Spearman
 Score: 55.13205

Example 2 print() Output for “GA” and “Spearman” Rank Aggregation

> GAarabid <- repRankAggreg(optArabid, rankMethod = “GA”, maxIter = 200000)
> print(GAarabid)

The overall optimal method with number of clusters is:
 hierarchical-3

The optimal list is:
 hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 sota-3 som-3 hierarchical-2 sota-2
 hierarchical-4 pam-4 fanny-3 fanny-4 clara-3 clara-2 kmeans-3 som-2 pam-3 fanny-2 pam-2
 model-2 model-3 clara-4 model-4

 Algorithm: GA
 Distance: Spearman
 Score: 54.36216

Example 2 print() Output for “GA” and “Kendall” Rank Aggregation

> GAKarabid <- repRankAggreg(optArabid, rankMethod = “GA”, distance = “Kendall”, maxIter = 200000)
> print(GAKarabid)

The overall optimal method with number of clusters is:
 som-4

The optimal list is:
 som-4 sota-4 sota-3 clara-2 kmeans-4 som-3 kmeans-3 som-2 hierarchical-3 hierarchical-2
 clara-3 pam-4 hierarchical-4 kmeans-2 fanny-4 fanny-3 pam-3 clara-4 fanny-2 sota-2 pam-2
 model-2 model-4 model-3

 Algorithm: GA
 Distance: Kendall
 Score: 17.07676

	 75

CURRICULUM VITAE

Michael N. Sekula
1132 Goss Ave., Louisville, KY 40217

586-662-0256
mnseku01@louisville.edu

EDUCATION

Bachelor of Arts in Secondary Education May 2010
Saginaw Valley State University, University Center, MI
Major: Mathematics Minor: Physics
Summa Cum Laude

Master of Science in Biostatistics May 2015
University of Louisville, Louisville, KY

TEACHING EXPERIENCE

Master Educator Nov. 2014 – Present
Visitor Experience Educator Sept. 2013 – Nov. 2014
Kentucky Science Center, Louisville, KY

Science Teacher Aug. 2010 – June 2013
Pleasure Ridge Park High School, Louisville, KY

	
Math Tutor Aug. 2008 – Dec. 2009
Math Resource Center, University Center, MI

HONORS
 ETS Recognition of Excellence for Mathematics: Content Knowledge 2010

Outstanding Senior in Mathematics Education 2010

ADDITIONAL ACTIVITIES

Assistant Coach, Pleasure Ridge Park High School Bowling Team 2010 - 2012
Member, Saginaw Valley State University’s Chapter of Alpha Phi Omega 2009 - 2010
Volunteer, Camp Quality of Michigan 2008 - 2009

COMPUTING EXPERIENCE

Statistical Software: SAS, R
 Document Markup: LaTeX
 Scripting: Bash

	OptCluster : an R package for determining the optimal clustering algorithm and optimal number of clusters.
	Recommended Citation

	Microsoft Word - Sekula Thesis 2015 Edits.docx

