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ABSTRACT 

OPTCLUSTER: AN R PACKAGE FOR DETERMINING THE OPTIMAL 
CLUSTERING ALGORITHM AND OPTIMAL NUMBER OF CLUSTERS 

 
Michael N. Sekula 

 
April 9, 2015 

 
Determining the best clustering algorithm and ideal number of clusters for a 

particular dataset is a fundamental difficulty in unsupervised clustering analysis.  In 

biological research, data generated from Next Generation Sequencing technology and 

microarray gene expression data are becoming more and more common, so new tools and 

resources are needed to group such high dimensional data using clustering analysis. 

Different clustering algorithms can group data very differently.  Therefore, there is a need 

to determine the best groupings in a given dataset using the most suitable clustering 

algorithm for that data.  This paper presents the R package optCluster as an efficient way 

for users to evaluate up to ten clustering algorithms, ultimately determining the optimal 

algorithm and optimal number of clusters for a given set of data.  The selected clustering 

algorithms are evaluated by as many as nine validation measures classified as 

“biological”, “internal”, or “stability”, and the final result is obtained through a weighted 

rank aggregation algorithm based on the calculated validation scores.  Two examples 

using this package are presented, one with a microarray dataset and the other with an 

RNA-Seq dataset.  These two examples highlight the capabilities the optCluster package 

and demonstrate its usefulness as a tool in cluster analysis.  
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CHAPTER I 

INTRODUCTION 

 Research dealing with high dimensional data, such as microarray gene expression 

data, data generated from Next Generation Sequencing (NGS) technology, and mass 

spectrometry data, are commonplace in biomedical sciences.  Just to summarize them in 

an unsupervised manner, cluster analysis plays an important role.  The unsupervised 

technique of clustering organizes data by assigning similar observations together into the 

same group when “little” or “no” other information is known about the data.  For 

example, not only do biologists need to expose underlying structures inside large 

microarray datasets, but they also need to do so in an optimal way that will create groups 

of genes with similar biological functions.  However, the number of choices for 

clustering algorithms is vast and different algorithms can provide different results on the 

same data.  Choosing the optimal clustering algorithm along with the optimal cluster size 

(number of clusters) for a given dataset becomes an overwhelming task.  For this paper, 

the terms “cluster size” and “number of clusters” will be considered synonymous and will 

be used interchangeably. 

 The process of clustering can essentially be broken down into three steps: pre-

processing, cluster analysis, and cluster validation (Handl et al., 2005).  The first step, 

pre-processing, deals with transforming the dataset to improve the likelihood that similar 

observations will be grouped together.  In the second step of the clustering process, 

parameters and clustering techniques are chosen and then applied to the data.  Cluster 
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validation, the third step, evaluates the performance of the selected clustering algorithms.  

This clustering process is cyclic and can repeat itself many times as different choices in 

any of the steps will result in different conclusions. 

Cluster validation has become an increasingly important step in determining the 

most appropriate clustering algorithm given a dataset, especially when working with high 

dimensional data such as microarray data or NGS data.  Validation measures serve as 

guidance to choosing the appropriate clustering algorithm for a dataset by providing 

performance evaluations based on some particular criteria such as compactness, 

separation, or biological homogeneity.  Internal validation and external validation are the 

two major classes of cluster validation measures (Handl et al., 2005).  The main 

difference between these two categories is whether or not the measurement utilizes 

additional information outside of the data in its validation technique.  In many cases, 

there is “little” to “no” information known about the data so internal validation is the only 

option.  

Handl et al. (2005) recommends using multiple validation measures to compare 

clustering algorithms while in the process of determining the “best” clustering algorithm.  

The inherent problem with using multiple validation measures is that an algorithm that 

performs well with one measure may perform poorly with another.  When a researcher is 

comparing a large number of clustering algorithms and using multiple validation 

measures, the results become muddled and determining the optimal clustering algorithm 

visually from a plot (based on the validation scores for different number of clusters) 

becomes unclear.   
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 There has been some recent research in the literature dealing with cluster analysis. 

Several of these works attempted to identify the types of clustering methods and 

validation measures that perform the best in a given situation.  In 2006, Thalamuthu et al. 

compared six clustering algorithms commonly used for microarray analysis.  For both 

simulated and real data, it was determined that tight clustering (Tseng & Wong, 2005) 

and model-based clustering (Fraley & Raftery, 2002) were the top performing algorithms, 

while SOM (Kohonen, 2001) and hierarchical clustering (Anderberg, 1973; Sneath & 

Sokal, 1973) had the worst performances.  Rendón et al. (2011) used the clustering 

algorithms K-means (Hartigan & Wong, 1979) and Bisecting K-means (Theodoridis & 

Koutroumbas, 2006) to compare internal and external validation measures.  The purpose 

of this study was to determine which type of validation measure was better at correctly 

identifying the true number of clusters within a dataset.  Using thirteen different datasets, 

internal validation indices were concluded to be more accurate.  An extensive study was 

performed by Arbelaitz et al. (2013) to assess the performance of thirty unique validation 

measures.  While it was determined that there was not a single validation measure that 

outperformed the rest in every situation, the silhouette index (Rousseeuw, 1987) was 

noted as a high performer for many of situations evaluated.  

Many of the recent clustering algorithms found in the literature have been 

developed for use in the cluster analysis of high dimensional data.  Using a proposed 

Poisson dissimilarity matrix, Witten (2011) introduced a hierarchical algorithm for 

clustering RNA-Seq data.  Other algorithms have been presented as improvements to the 

K-means algorithm in order to increase its performance when clustering genes and gene 

expression data (Wu, 2008; Lam & Tsang, 2012; Nazeer et al., 2013).  Mavridis et al. 
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proposed a partitioning-based clustering algorithm called PFClust (Parameter Free 

Clustering) in 2013.  This unique algorithm clusters data and determines an ideal number 

of clusters without requiring the user to specify any parameters.  In 2014, Si et al. 

described several clustering algorithms based on probability models for RNA-Seq data.  

These new algorithms were able to provide better clustering results than the commonly 

used methods of hierarchical clustering, K-means, and SOM for both simulated and real 

data. 

R Packages 

 A popular statistical resource for researchers in the field of biomedical sciences is 

the open source R software environment (R Core Team, 2014).  Because this software is 

open sourced, new packages extending the statistical capabilities of R are developed and 

become readily accessible to all users through repositories such as the Comprehensive R 

Archive Network (CRAN) and Bioconductor (Gentleman et al., 2004).  A variety of R 

packages providing tools for cluster analysis can be found at these repositories.  Many of 

these packages offer functions that calculate cluster validation measures, with some 

popular examples including clValid (Brock et al., 2011), clv (Nieweglowski, 2013), 

cclust (Dimitriadou 2014), clusterSim (Walesiak & Dudek, 2014), and fpc (Hennig, 

2015).  The RankAggreg package (Pihur et al., 2009) can take ranked lists of clustering 

algorithms and combine them into an overall optimal list with the “best” clustering 

algorithm placed in the first position.  The package NbClust (Charrad et al., 2014) 

provides two clustering algorithms and thirty cluster validation measures to determine the 

relevant number of clusters in a dataset.  The “best” choice for number of clusters is 

determined by a majority rule.  The COMMUNAL package (Chen et al., 2015) 
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determines the optimal k number of clusters and then creates a best clustering assignment 

based on overlap between clustering results for up to fourteen different clustering 

algorithms.   

It is evident that there are numerous cluster analysis R packages, however this 

paper will focus on two specific packages, clValid and RankAggreg, while presenting a 

new package called optCluster.  The clValid package offers nine different cluster 

validation measures and can create ranked lists of clustering algorithms based on the 

calculated validation scores for each validation measure chosen.  Using these lists, the 

RankAggreg package is able to perform weighted rank aggregation and obtain an 

optimal ranked list of clustering algorithms such that the first clustering algorithm in this 

list is the “best” clustering algorithm for that specific dataset across all the cluster 

validation measures and all the different cluster sizes that the user has selected.  

Capitalizing on how well these two packages work together, the optCluster package 

determines an optimal clustering algorithm and optimal number of clusters for a given 

dataset by combining functions from both the clValid and RankAggreg packages into 

one single, easy to use function.  

 The R package clValid was developed to provide researchers with a useful 

resource for cluster validation.  This package offers nine different validation measures, 

classified as “biological”, “internal”, or “stability”, and ten different clustering algorithms 

for use in cluster analysis.  The user may select the type (or types) of validation measures 

to use, define the number (or range of numbers) of clusters to create, and select any 

number of clustering algorithms to evaluate in a single function call.  For a given dataset, 

the clValid( ) function calculates the validation measure scores for each selected 
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clustering algorithm with each desired cluster size.  This function provides an output of 

the optimal cluster algorithm and optimal number of clusters for each validation measure.  

These optimal choices are determined by maximizing or minimizing the validation scores 

of multiple clustering algorithms, with multiple cluster sizes, for each of the given 

validation methods.  

Clustering algorithms can be placed in a list of ranks according to their 

performances given a particular validation measure.  When using multiple validation 

measures, there are multiple ranked lists.  However, given one dataset, it is desirable to 

have a unique answer with one optimized list.  A weighted rank aggregation method was 

proposed by Pihur et al. (2007) as a way to achieve a unique list, given a dataset, using a 

stochastic optimization technique.  The idea is that the ranked lists from multiple 

validation measures can be combined and analyzed with a Monte Carlo cross-entropy 

approach (Pihur et al., 2007) and an overall optimal ranked list is produced that is as 

similar as possible to the ordered lists created by each validation measure.  From this 

optimal list, the “best” clustering algorithm for a specific dataset can then be obtained. 

 An R package called RankAggreg was developed by Pihur et al. (2009) to 

provide users with the Monte Carlo cross-entropy method for combining ordered lists.  A 

second stochastic optimization method, the Genetic algorithm (Goldberg, 1989), was also 

included in this package as another option for rank aggregation.  A matrix of ordered 

rows (clustering algorithms) as well as a matrix of weights (validation measure scores) 

can be input into the function RankAggreg( ) for evaluation, and an optimal ordered list 

of clustering algorithms is provided in the output.   
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 Both the clValid and RankAggreg packages address different challenges in 

cluster analysis.  While these two packages are independent from another, they can be 

used in conjunction to obtain an optimal clustering algorithm and optimal number of 

clusters for a given dataset.  The clValid( ) function is able to calculate validation scores 

for multiple clustering algorithms and the getRanksWeights( ) function (also available in 

the package clValid) can create a matrix of clustering algorithm ranks and a matrix of 

validation score weights.  The matrices of ranks and weights can then be entered into the 

RankAggreg( ) function to obtain an optimal list of algorithms based on the chosen 

weighted rank aggregation method.  Since these two individual packages work so well 

with each other, it seems logical to combine them in some way, ultimately minimizing 

the amount of code needed to run the entire process of finding a “best” clustering 

algorithm and also the optimal number of cluster size for clustering a particular dataset. 

 This work introduces an R package called optCluster that determines the optimal 

clustering algorithm and optimal cluster size for a given dataset.  In this package, the 

function optCluster( ) utilizes the capabilities of the functions clValid( ), 

getRanksWeights( ), and RankAggreg( ) to obtain an optimal result.  Figure 1 displays 

two side-by-side flowcharts describing different procedures an R user would have go 

through in order to obtain the optimal clustering algorithm and optimal number of 

clusters.  In these flowcharts, ellipses indicate internal processes and rectangles denote 

output that the user can obtain.  The procedure on the left uses the functions from the 

clValid and RankAggreg packages, while the procedure on the right simply uses the 

optCluster( ) function.  From this figure, we see that the user only has to enter the dataset 

and arguments from the clValid( ) and RankAggreg( ) functions into the optCluster( ) 
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function directly and the rest of the procedure is carried out internally.  Therefore, the 

number of steps one needs to take in order to obtain the final result is reduced with this 

new function.  

The optCluster package is able to cluster and obtain the optimal clustering 

algorithm and optimal cluster size for any microarray, RNA-Seq, or protein expression 

data.  To the best of the our knowledge, an R package that combines cluster validation 

measures, including biological validation, with weighted rank aggregation to determine 

these optimal results is currently not available. 
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Figure 1:  Two flowcharts comparing procedures for determining an optimal clustering 
algorithm and optimal number of clusters.  The chart on the left explains the procedure 
using both the clValid and RankAggreg packages.  The chart on the right explains the 
procedure using only the optCluster package. 	
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CHAPTER II 

CLUSTERING ALGORITHMS 

 The package optCluster provides a total of ten popular clustering algorithm 

options that are obtained through the package clValid.  The clValid package itself 

contains a function for the SOTA algorithm (Dopazo & Carazo, 1997; Herrero et al., 

2001) and utilizes other R packages for the remaining nine algorithms.  The model-based 

algorithm is included the mclust package (Fraley et al., 2014), and the self-organizing 

maps (SOM) algorithm is available through the kohonen package (Wehrens & Buydens, 

2007).  The remaining algorithms are provided by either the cluster package (Maechler et 

al., 2015) or the stats package in the base distribution of R (R Core Team, 2014).   

These ten algorithms represent a wide range of clustering methods but are by no 

means an exhaustive list.  In the optCluster( ) function, the ten available clustering 

algorithms are: “hierarchical”, “agnes”, “diana”, “kmeans”, “pam”, “clara”, “fanny”, 

“model”, “som”, and “sota”.  A description for each clustering algorithm is provided in 

this chapter. 

Agglomerative Hierarchical Clustering 

Hierarchical methods create a cluster hierarchy and are usually illustrated by 

dendrograms.  The desired number of clusters does not need to be set in advance since a 

dendrogram can be sliced at a particular height in order to generate a specified number of 

clusters.  The agglomerative hierarchical algorithms, such as the “hierarchical” and 

“agnes” options in the optCluster( ) function, begin with each observation in a separate 
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individual cluster and merge the two closest clusters together to form a larger one.  This 

process of merging the two closest clusters together continues until all of the observations 

are combined into a single cluster.  

There are various options to determine the distance between clusters in 

agglomerative hierarchical clustering algorithms.  The four options considered in the 

optCluster( ) function are: average method, complete linkage method, single linkage 

method, and Ward’s method.  The average method uses the average pairwise distance 

between two clusters to determine how close the clusters are to each other.  This 

algorithm is known as the unweighted pair group method with arithmetic mean or 

UPGMA (Sneath & Sokal, 1973).  The complete linkage method evaluates the 

observations that are the farthest away from each other, for each pair of clusters, and 

merges the clusters that have the smallest maximum pairwise distance (Anderberg, 1973).  

The single linkage method evaluates the observations that are nearest to each other, for 

each pair of clusters, and combines the clusters that have the smallest minimum pairwise 

distance (Anderberg, 1973).  Ward’s method (Ward, 1963) evaluates the within-cluster 

variance of merged clusters and combines the two clusters that produce the smallest 

increase in the total within-cluster variance.   

Diana 

 Diana is a hierarchical clustering algorithm that is divisive rather than 

agglomerative thus all the observations start in one large cluster (Kaufman & Rousseeuw, 

1990).  In each step, the largest cluster is first identified.  Here, the largest cluster is the 

one with the largest diameter as determined by the maximum distance between any two 

points inside it.  Within this largest cluster, the observation that has the greatest average 
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distance from all of the other members inside the cluster (as computed by a distance 

function) is chosen to form a new group.  Observations in the original cluster are then 

moved into this new cluster if they are deemed “closer” to this group than to the original 

one, as determined by average distance.  The dividing process stops once all of the 

members “closer” to the new group have been moved, and as a result, two smaller 

clusters are created.  The process of selecting the largest cluster and dividing it repeats 

until each observation is in its own cluster.    

K-means 

 K-means is an iterative clustering algorithm requiring a fixed number of clusters 

before it begins (Hartigan & Wong, 1979).  An initial set of cluster centers, or centroids, 

is established and each observation is grouped to the cluster with the closest center.  Once 

all observations have been allocated to a cluster, the cluster centers are recalculated and 

the process of assigning observations to a cluster repeats.  This process continues until 

there are no new assignments, achieving a minimization of the total within-class sum of 

squares.  

PAM 

 Partitioning around medoids (PAM) is a clustering algorithm that works in a very 

similar way to the K-means clustering algorithm (Kaufman & Rousseeuw, 1990).  A set 

cluster size is determined and an initial set of cluster centers is established before this 

clustering technique begins.  Unlike K-means, these centers are medoids (not centroids) 

and are always observations from the dataset.  Once each observation is assigned to the 

closest medoid cluster, new medoids are chosen in order to minimize a sum of 
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dissimilarities and reassignment of observations to the nearest medoid occurs.  This 

process repeats until there are no new assignments.  

Clara 

 Clara (Kaufman & Rousseeuw, 1990) is an extension of PAM and is a time-

efficient algorithm for clustering large datasets.  A number of sub-datasets are drawn as 

representatives of the larger dataset and medoids are established using PAM.  The best 

clustering is chosen from the sub-datasets and the rest of the observations in the entire 

dataset are assigned to the closest medoid.   

Fanny 

 Fanny is a fuzzy clustering algorithm that uses probability to determine the cluster 

allocation of the observations (Kaufman & Rousseeuw, 1990).  Rather than having each 

observation defined to a single cluster, this method allows observations to have some 

degree of association to each cluster.  Once the number of desired clusters is determined, 

probability vectors are created.  These vectors denote the partial membership an 

observation has to each of the clusters.  Each observation is sorted into the group with the 

highest probability, creating hard clusters.   

Model-based Algorithm 

 The model-based algorithm of clustering assumes that the observations come 

from a finite mixture of normal distributions and each component of that mixture 

corresponds to a different cluster (Fraley & Raftery, 2002).  Under this assumption, a 

Gaussian mixture model is fit to the data.  Estimates for the mixture components and 

assignment of the observations to those clusters are obtained using maximum likelihood 
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in the expectation maximization (EM) algorithm (Dempster et al., 1977; McLachlan & 

Krishnan, 1997). 

SOM 

 Self-organizing maps (SOM) is a clustering algorithm that is based on biological 

neural networks (Kohonen, 2001).  Initially, a two-dimensional grid of units is 

established, each with its own randomly generated weight vector.  These weight vectors 

adjust according to predetermined rules during an iterative unsupervised learning process.  

During each step of this process, a random observation is selected from the data and the 

distance between that observation and all of the weight vectors is computed to determine 

the closest vector.  A best matching unit is determined and the weight vectors of all the 

units are adjusted as defined by the preset rules.  This process continues until the weight 

vectors are no longer changing, at which point the observations are assigned to the closest 

unit. 

SOTA 

 Self-organizing tree algorithm (SOTA) is a divisive clustering algorithm that has 

properties similar to both hierarchical and SOM techniques (Dopazo & Carazo, 1997; 

Herrero et al., 2001).  This method maps a complex input space to a more simple output 

much like SOM, but instead of mapping a two-dimensional grid, SOTA creates a binary 

tree resembling those created by hierarchical methods.  Starting with a root node with 

two cells (clusters), a training cycle occurs in order to sort the observations into the two 

clusters.  Two new cells are formed from the cluster with the most variable population 

and the process is repeated.  The divisive process can be stopped at any step based on a 

variety of different criteria or it can proceed until a complete dendrogram is created.  
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CHAPTER III 

VALIDATION MEASURES 

A high performing clustering algorithm is one that groups the data in such a way 

that it retains some internal quality control of the clusters.  These groups, or clusters, 

should be stable and statistically meaningful.  Additionally, as in the case of dealing with 

microarray data and data generated from Next Generation Sequencing technology, the 

groupings should also be biologically relevant.  Validation measures are the quantities 

that measure the above-mentioned qualities of clustering algorithms and provide scores to 

help determine the validities of clustering algorithms for specific data.  Various measures 

for cluster validation have been introduced in the literature, but the focus of this chapter 

will be on describing nine measures that can be utilized in the optCluster package.  

These measures are directly sourced from the clValid package, which classifies them into 

three groups: “biological”, “internal”, and “stability”.   

Datta and Datta (2006) proposed two types of biological validation measures to 

help provide some guidance in choosing a clustering technique for microarray data.  

These measures can also be used for any other molecular expression data as well.  The 

biological homogeneity index (BHI) and biological stability index (BSI), both evaluate 

the performance of an algorithm to produce biologically similar clusters.   

Internal validation measures provide guidelines on the statistical properties of 

clusters.  Connectivity is a useful internal validation technique, measuring the extent at 

which neighboring observations are clustered together (Handl et al., 2005).  In 1987, 
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Rousseeuw introduced the silhouette width validation measure, which mathematically 

combines how close the different clusters are to each other (inter-cluster separation) with 

how large or small the intra-cluster variances are (compactness).  The third internal 

validation measure included in the clValid package, the Dunn index (Dunn, 1974), also 

evaluates the compactness and separation of the clusters. 

Several other validation measures, called stability measures, have been proposed 

to address validation of clustering techniques for microarray data.  Unlike the internal 

validation techniques, these measures evaluate whether the cluster assignments remain 

stable even if the data is reduced somewhat.  Yeung et al. (2001) proposed the figure of 

merit technique (FOM), and in 2003, Datta and Datta presented the three other stability 

measurements available in the clValid package: average proportion of non-overlap, 

average distance, and average distance between means. 

Biological Homogeneity Index (BHI) 

 The biological homogeneity index (Datta & Datta, 2006) has the range [0,1] and 

is a biological validation measure evaluating how biologically similar defined clusters 

are.  A microarray dataset will have M number of rows (genes) and T number of columns 

(e.g. time points).  Here we define 𝒜 = {A1, …, AF} with F functional classes, which are 

not necessarily disjoint, such that A(i) is the functional class that contains gene i.  In this 

definition, there is the possibility that i is contained in more than one functional class.  

A(ℓ𝓁) is defined in a similar manner as the functional class that contains gene ℓ𝓁.  An 

indicator function is assigned such that I(A(i) = A(ℓ𝓁)) takes the value of 1 when A(i) and 

A(ℓ𝓁) match and 0 otherwise.  In the case of multiple memberships to functional classes, 

any single match is adequate.  Given the biological class set of 𝒜 and the statistical 
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clustering partition of K number clusters obtained from a clustering algorithm P’ = {C1, 

…, CK}, BHI can be defined as 

𝐵𝐻𝐼 𝑃!,𝒜 =    !
!

!
!! !!!!

!
!!! 𝐼 𝐴 𝑖 = 𝐴 ℓ𝓁!!ℓ𝓁∈!! , 

where 𝛼! = 𝑛(𝐶! ∩   𝐴) is the number of annotated genes within the cluster 𝐶!.  Genes 

belonging to the same functional classes should ideally be placed in the same statistical 

cluster, so more biologically homogeneous clusters correspond to larger BHI values. 

Biological Stability Index (BSI) 

 The second biological validation measurement is the biological stability index 

(Datta & Datta, 2006), which measures the reliability an algorithm has of clustering 

similar biologically functioning genes together.  After removing the observations from 

column r in the data, the cluster assignments of genes with similar functionality from the 

reduced dataset are compared to the cluster assignments from the full dataset.  Using 

previously defined terms from BHI, the definition for BSI is 

𝐵𝑆𝐼 𝑃!,𝒜 =    !
!

!
! !! ! !! !! !

!
!!!

! !!,!∩!ℓ𝓁,!

! !!,!!!ℓ𝓁∈!!
!
!!! , 

where 𝐶!,! is the original cluster, based on the full set of data, containing observation i, 

and 𝐶ℓ𝓁,! is the cluster containing observation ℓ𝓁 when column r is removed.  Just like 

BHI, the value for BSI has the range of [0,1] and stable clusters of similarly functioning 

genes have larger values. 

Connectivity 

For this internal validation measure let 𝑛∗!(!) be the 𝑗th nearest neighbor of 

observation i such that  𝑦!,!∗!(!)is 0 if i and 𝑛∗!(!)are in the same cluster, otherwise it is 1/𝑗.  
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The connectivity (Handl et al., 2005) for M observations into K clusters for a specific 

clustering partition P’= {C1, …, CK} is defined as 

𝐶𝑜𝑛𝑛 𝑃′ =    𝑦!,!∗!(!)
!
!!!

!
!!!   , 

where the parameter G determines the number of neighbors contributing to the 

connectivity measure.  The connectivity, with a value ranging between zero and ∞, 

should be minimized. 

Silhouette Width 

 The average of all of the observation’s silhouette values defines a second type of 

internal validation measure called silhouette width (Rousseeuw, 1987).  For an 

observation i, the silhouette value has a range of [-1,1] and is a measurement of the 

degree of confidence in that specific observation’s cluster assignment.  This value is 

defined as 

𝑆𝑖𝑙 𝑖 =    !!
∗!!!

!"#(!!
∗,!!)

 , 

where 𝑐! is the average distance between observation i and the remaining observations in 

the same cluster and 𝑐!∗ is the average distance between the observations in the “nearest 

neighboring cluster” and observation i.  Defining 𝐶! as the cluster that contains the 

observation i, and 𝐶! as the “nearest neighboring cluster” to i, the equations for 𝑐! and 𝑐!∗ 

are as follows 

𝑐! =   
1

(𝑛(𝐶!)) 𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁 ,
ℓ𝓁∈!!

      𝑐!∗ =    min
!!∈!!\!!

𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁
𝑛(𝐶!) ,

ℓ𝓁∈!!
   

where the cardinality of a cluster C is n(C) and the distance (Euclidean, Manhattan, etc.) 

between observations i and ℓ𝓁 is represented by 𝑑𝑖𝑠𝑡 𝑖, ℓ𝓁 .   Silhouette values near 1 mean 
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that the observation is clustered well, while values near -1 mean the observation is poorly 

clustered.  Therefore, silhouette width should be maximized. 

Dunn Index 

 The Dunn index (Dunn, 1974) is an internal validation measure indicating a ratio 

of the minimum distance between observations in different clusters and the maximum 

cluster diameter.  With 𝐶ℓ𝓁  defined as cluster that contains the observation ℓ𝓁, this ratio is 

calculated by the equation 

𝐷𝑢𝑛𝑛 𝑃! =   
!"#!!,!ℓ𝓁  ∈!!,  !!!!ℓ𝓁       !"#!  ∈!!,ℓ𝓁∈!ℓ𝓁   !"#$(!,ℓ𝓁)

!"#!!∈!! !"#$(!!)
, 

where 𝑑𝑖𝑎𝑚 𝐶!  is the maximum distance between any two points inside cluster 𝐶!. 

With a value between zero and ∞, the Dunn index should be maximized. 

Figure of Merit (FOM) 

 The figure of merit (Yeung et al., 2001) is a stability validation measurement 

based on the remaining samples when a single column is removed.  FOM can be defined 

for column r, which is removed from T total columns, as 

𝐹𝑂𝑀 𝑟,𝑃′ =    !
!

𝑑𝑖𝑠𝑡 𝑦!,! ,𝑦!!(!)!∈!!(!)
!
!!!  , 

where 𝑦!,! is the value of the ith observation in the rth column and 𝑦!!(!)is the center 

(average) of the cluster 𝐶!(𝑟).  There is a tendency for FOM to decrease as the number of 

clusters increases, so an adjustment of !
!!!

 is multiplied to the measurement.  The final 

value is determined by calculating the mean of all of the FOM values from the removed 

columns.  The FOM values can range between zero and ∞ and a better performing 

clustering algorithm is indicated by smaller values. 
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Average Proportion of Non-Overlap (APN) 

 The average proportion of non-overlap measure (Datta & Datta, 2003) determines 

the average proportion of observations placed in different clusters, as compared to the full 

data clustering, when a single column of data is removed.  Defining 𝐶!,! as the original 

cluster, based on the full set of data, containing observation i, and 𝐶!,! as the new cluster 

containing observation i when column r is removed, the APN measure can be computed 

as 

𝐴𝑃𝑁 𝑃! =    !
!"

1−   ! !!,!∩!!,!

! !!,!
.!

!!!
!
!!!

  

The APN measure can range from 0 to 1, with highly stable results having values close to 

zero. 

Average Distance (AD) 

 The average distance (Datta & Datta, 2003) stability validation measure calculates 

the average distance between the observations in clusters formed with the full dataset and 

the observations in clusters formed with data with a single column removed.  AD can be 

defined as 

𝐴𝐷 𝑃! =    !
!"

!
! !!,! ! !!,!

𝑑𝑖𝑠𝑡(𝑖, ℓ𝓁)!∈!!,!,ℓ𝓁∈!!,! .!
!!!

!
!!!

 . 

The AD measure can range between zero and ∞ and should be minimized. 

Average Distance Between Means (ADM) 

 The average distance between means (Datta & Datta, 2003) stability validation 

measure computes the average distance between the centers of clusters for observations 

put into the same cluster based on the full data and the data with a single column 

removed.  Let 𝑦!!,! be the mean of the observations in the cluster based on the full dataset 
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containing observation i and let 𝑦!!,! be the mean of the observations in the cluster 

containing observation i with column r removed.  ADM is defined as 

𝐴𝐷𝑀 𝑃! =    !
!"

𝑑𝑖𝑠𝑡(!
!!!

!
!!! 𝑦!!,!, 𝑦!!,!). 

Much like the AD measure, ADM values can range between zero and ∞, with smaller 

values representing better performing algorithms.  
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CHAPTER IV 

RANK AGGREGATION 

 A ranked list of clustering algorithms can be generated based on the performance 

of those algorithms for a specific validation measure.  If multiple validation measures are 

used in cluster analysis, multiple lists are created.  The problem of rank aggregation is 

faced when trying to combine these multiple ranked lists together in some way to form a 

single list that best represents the original rankings.  Many rank aggregation techniques 

have been developed and used in various applications ranging from building meta-search 

engines on the Web (Dwork et al., 2001) to combining microarray experiment results 

(DeConde et al., 2006).  For rank aggregation of cluster validation measures, the 

stochastic optimization method of the cross-entropy Monte Carlo algorithm (Pihur et al., 

2007) was proposed.  This algorithm and the Genetic algorithm (Goldberg, 1989) are 

included in the RankAggreg package and are available as rank aggregation methods in 

the optCluster package.  These two aggregation techniques are explained in more detail 

in this chapter along with the two distance functions that can be utilized with these 

techniques, the weighted Spearman’s footrule distance and the weighted Kendall’s tau 

distance (Pihur et al., 2007, 2009). 

Objective Functions 

In a mathematical context, ranked aggregation can be explained in a fairly 

straightforward manner.  Suppose there are m number of ranked lists (𝑉!,…    ,𝑉!) of 
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length 𝑘, such that each 𝑉! is associated with a weight 𝜇!.  We obtain a definition of an 

objective function for a proposed list 𝛽 as 

Φ 𝛽 =    𝜇!𝑑𝑖𝑠𝑡 𝛽,𝑉!

!

!!!

  , 

where 𝑑𝑖𝑠𝑡 𝛽,𝑉!  represents a distance function.   The goal is to find a list 𝛽∗ that will 

minimize the total distance between all of the 𝑉!’s and 𝛽∗.  There are many options 

available to measure the distances, but careful selection of an option is warranted since 

final results depend on the choice of distance measure.  Two different methods used for 

distance measures in rank aggregation are included in RankAggreg package: weighted 

Spearman’s footrule distance and weighted Kendall’s tau distance.  Pihur et al. (2007, 

2009) introduced these weighted methods as modifications to two popular methods, 

Spearman’s footrule distance and Kendall’s tau distance (Fagin et al., 2003), in order to 

stabilize the aggregation algorithms while using a discrete ranking system. 

 Suppose for an ordered list 𝑉! there are Si(1), …, Si(k) scores associated with it.  

These scores are normalized in order to spread the corresponding values for each list over 

the interval [0,1], avoiding a strong influence from disproportionally large or small 

values.  In this notation the scores are ordered with Si(1) being the best and Si(k) being the 

worst.  Depending on the context, Si(1) may either be the maximum or minimum score.  

Let 𝑅!!(𝑗) denote the rank of j in list 𝑉!, again with 1 being the best rank all the way to a 

rank k.  If the rank of j does not fall within the top k ranks, the value of 𝑅!!(𝑗) will equal 

k + 1.  With these definitions, weighted Spearman’s footrule distance is defined as 

𝑊𝑆 𝛽,𝑉! =    𝑆 𝑅! 𝑗   − 𝑆 𝑅!! 𝑗    × 𝑅! 𝑗 −   𝑅!!(𝑗)!∈!!∪! . 
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The weight of 𝑆 𝑅! 𝑗 − 𝑆 𝑅!! 𝑗     adjusts this distance by the score differences 

between the ranks of j in lists 𝛽 and Vi . 

 The weighted Kendall’s tau distance compares pairs of elements (j and ℓ𝓁) from 

the union of the two lists.  This algorithm is defined as 

𝑊𝐾 𝛽,𝑉! =    𝑆 𝑅!! 𝑗 − 𝑆 𝑅!! ℓ𝓁 ×  𝐾!,ℓ𝓁
!

!,ℓ𝓁∈!!∪! . 

Here 𝐾!,ℓ𝓁
!  can take three possible values 0, 1, or p.  If the rank of j is greater than the rank 

of ℓ𝓁 (or vice versa) for both lists 𝑉! and 𝛽, 𝐾!,ℓ𝓁
!   is 0.  If j is ranked higher than ℓ𝓁 for one 

list but ℓ𝓁 is ranked higher than j on the other list, 𝐾!,ℓ𝓁
!  is 1.  When neither j nor ℓ𝓁 appear in 

either list, 𝐾!,ℓ𝓁
!  takes the value of p, which can be specified within the range [0,1].  The 

adjustment for the weighted Kendall’s tau distance 𝑆 𝑅!! 𝑗 − 𝑆 𝑅!! ℓ𝓁  is the 

difference in scores for j and  ℓ𝓁 within list Vi. 

Cross-Entropy Monte Carlo Algorithm 

 Originally developed by Rubinstein (1997) to compute probabilities of rare 

events, the cross-entropy Monte Carlo algorithm was later proposed by Pihur et al. (2007) 

as a method for weighted rank aggregation of lists composed of cluster validation 

measures.  Here, a ranked list can be represented in terms of an n x k matrix where all 

entries are either 0 or 1.  The dimensions of this matrix are defined as n, the total number 

of unique elements (clustering algorithms) in all the ordered lists being combined, and k, 

typically the length of the combined ordered lists.  It is important to note that the value of 

k can also be made smaller if one desires.  The constraints of this matrix are that the 

columns sum up to 1 and the rows sum up to at most 1.  Thus, each column variable 

follows a multinomial distribution.  Reading from left to right, the position of the 1’s in 
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each column of this matrix determines the ordering in the ranked list (Lin & Ding, 2009).  

This approach is available in the package RankAggreg and can be briefly summarized in 

the following four steps: 

1. Initialization:  An initial matrix of parameters is established such that each of the 

n elements (clustering algorithms) has an equal chance of being selected in each 

of the k positions of the ranked list.  

2. Sampling:  A random sample is selected from the most recently generated matrix 

of parameters.  The corresponding optimal lists are determined and objective 

functions values are calculated. 

3. Updating:  The parameter matrix is updated based on the current sample and the 

objective function values so that the next sample group will have smaller 

objective function values. 

4. Convergence:  The sequence of sampling and updating will repeat until the 

optimal list remains the same for a selected number of iterations. 

Genetic Algorithm 

 Genetic algorithms (Goldberg, 1989) were developed as a natural selection type 

solution to problems involving many possible solutions.  The idea is that the “fittest” 

solution survives after many generations of the algorithm, just like the concept of natural 

selection in evolution.  The Genetic algorithm in the RankAggreg package follows the 

five steps below: 

1. Initialization:  An initial population of solutions is created as randomly generated 

ordered lists, each of the same length, k.  The number of lists generated is based 
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on a predetermined population size, with larger sizes having a better chance of 

containing the “best” solution at some point. 

2. Selection:  Each list is evaluated for fitness by the selected objective function.  

Using the objective function scores as weights, a weighted random sampling 

technique is employed to select the lists that will create a new population. 

3. Crossover:  From a specified crossover probability, the selected lists in the new 

population perform a one-point crossover.  This means a list will swap the 

elements that are ranked lower than a given point (as determined by the crossover 

probability) with the elements from another list that are also ranked lowered than 

that same point.  

4. Mutation:  To create lists in the new population that are drastically different from 

the current ones, one or more elements from any of the lists are randomly changed 

or rather, mutated.  A mutation probability is pre-determined before the algorithm 

begins, which affects the frequency at which the mutations occur. 

5. Convergence:  The newly created population replaces the previous population and 

the sequence of the selection, crossover, and mutation steps will repeat until a list 

remains the optimal one for a selected number of successive iterations. 
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CHAPTER V 

OPTCLUSTER PACKAGE 

  When a minimal amount of information is know about a particular dataset, which 

is much the case in high dimensional data, cluster analysis becomes a vital technique for 

examining the data.  A variety of R packages have been developed as tools to help 

researchers with cluster analysis and the issues associated with it.  There are some 

packages that offer clustering algorithm functions (e.g. cluster, kohonen, and mclust), 

while some packages provide functions to calculate validation measures (e.g. cclust, 

clusterSim, clv, and fpc).  Performing a thorough process of determining the optimal 

number of clusters and finding the “best” clustering algorithm for a given dataset often 

requires the use of more than one R package.   

Writing and running code for multiple functions in multiple packages may be a 

minor inconvenience, but it can become a tedious task prone to error especially if using 

the same functions and code over and over for a variety of different sets of data.  An 

efficient way to streamline the cluster analysis process is to unite multiple functions from 

different packages together into one overlapping function in a single package.  This 

chapter introduces the package optCluster, which joins together functions from the 

packages clValid and RankAggreg in order to determine the optimal clustering 

algorithm and optimal number of clusters for a given dataset.   

The core function available in the optCluster package is called optCluster( ).  As 

we saw from Figure 1 in Chapter I, this function completely eliminates the need for the 
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user to extract the necessary information provided by the clValid( ) function and input it 

into the RankAggreg( ) function for additional analysis.  Essentially, the user only needs 

to enter a dataset, along with a few additional arguments (e.g. cluster size range, 

clustering algorithms, validation measure types, and rank aggregation method), and the 

optimal clustering algorithm and optimal number of clusters will be determined.  Since 

the use of functions from the clValid and RankAggreg packages are required, both 

packages must be installed in the user’s R library in order to run the optCluster( ) 

function.  All of the R code used in this function, as well as all of the code for the entire 

optCluster package, can be found in Appendix A. 

 A total of ten clustering algorithms, coming from various R packages, are 

available for cluster analysis through the optCluster( ) function argument clMethods.  The 

stats package contains the algorithms of “hierarchical” and “kmeans”.  The algorithms of 

“agnes”, “clara”, “diana”, “fanny”, and “pam” are available in the cluster package.  The 

algorithm "model" is available through the package mclust, “som” is provided through 

the package kohonen, and “sota” is in the clValid package.  Details for all of these 

clustering algorithms were described in Chapter II.  It should be noted that clMethods is 

the same argument that the clValid( ) function uses for selecting clustering algorithms.  In 

the clValid package, arguments and output use the term “methods” to denote clustering 

algorithms.  To remain consistent with this terminology, the optCluster( ) function also 

refers to clustering algorithms as “methods” in arguments and output.   

All ten algorithms are included as default in the optCluster( ) function so that 

every available option is being considered in the evaluation.  The user, however, may 

select any number of algorithms as desired.  The package cluster is required to run the 
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optCluster( ) function because it is automatically loaded when the clValid package is 

loaded.  The packages mclust and kohonen are suggested packages and will only be 

needed if the user chooses to evaluate the “som” and “model” algorithms respectively. 

For each cluster size entered, validation measures are calculated for all of the 

selected clustering algorithms.  The function clValid( ) is called by optCluster( ) to 

perform these validation measure calculations.  Using the argument validation, the user 

has the option of choosing nine validation measures, described in Chapter III, based on 

three categories: “biological” (BHI and BSI), “internal” (connectivity, Dunn index, and 

silhouette width), and “stability” (FOM, APN, AD, and ADM).  While “stability” is the 

default option as defined by clValid( ), the function optCluster( ) uses the default of both 

“internal” and “stability” to include more validation measures in determining the optimal 

clustering algorithm.   

While it would be most efficient to also include the biological validation measures 

(Datta & Datta, 2006) in the default analysis, there are additional packages that would 

need to be required.  If “biological” is chosen as a type of validation measure, the 

packages Biobase (Gentleman et al., 2004), GO.db (Carlson, 2015a), and annotate 

(Gentleman, 2014) will need to be installed and loaded from Bioconductor (Gentleman et 

al., 2004).  The user would also need to provide an appropriate annotation argument of 

either the name of a Bioconductor package that maps genes to Gene Ontology (GO) 

categories or a list of functional classes and the observations that belong to each one.  

Since the annotation argument depends on the data and may not even be available for a 

particular dataset, the “biological” type of validation measures is not included in the 

default for the validation argument in the optCluster( ) function. 
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Once validation measures are calculated for all combinations of number of 

clusters and clustering algorithms, lists are compiled for each validation measure ranking 

the algorithms according to their performance.  These lists are created within the 

optCluster( ) function by calling the getRanksWeights( ) function from the package 

clValid.  In many cases, the top-performing algorithm for one measure is different from 

the top-performing algorithm in another.  This makes determining the optimal clustering 

algorithm with a visual inspection of the lists nearly impossible.  To overcome this 

challenge, the optCluster( ) function calls the RankAggreg( ) function (from the package 

RankAggreg) to combine all of the lists into one overall “top” list.   

The methods of a cross-entropy Monte Carlo algorithm and a Genetic algorithm 

are available as options for rank aggregation with the RankAggreg( ) function, using 

either the weighted Spearman’s footrule distance or the weighted Kendall’s tau distance.  

Chapter IV described the methods for both distance measures and both rank aggregation 

algorithms in detail.  The user may select either aggregation method along with either 

distance measure in the optCluster( ) function using the rankMethod and distance 

arguments respectively.  Since the Genetic algorithm may require many iterations to 

converge and the weighted Kendall’s tau distance calculations are time intensive, the 

default weighted rank aggregation arguments are the cross-entropy Monte Carlo 

algorithm and the weighted Spearman’s footrule distance. 

 The function optCluster( ) will output the “best” clustering algorithm along with 

the corresponding optimal number of clusters after an overall “top” list has been decided.  

An object of S4 class “optCluster” is returned by this function, which has several options 

for viewing results.  The top.method( ) statement will return only the name of the optimal 
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clustering algorithm and the optimal number of clusters.  The print( ) statement returns 

the same output as top.method( ) along with the optimal ranked list and the minimum 

objective score calculated by the selected rank aggregation algorithm.  The summary( ) 

statement displays a table of all of the calculated validation measures, the optimal 

clustering algorithm and number of clusters for each individual validation measure, and 

all of the previous information provided in the print( ) statement.    

The “optCluster” class object also allows access to the internal objects that were 

created by clValid( ) and RankAggreg( ) functions while the optCluster( ) function was 

running.  With the cl.valid( ) method, the user can obtain an S4 object of class “clValid” 

to extract and even plot the clustering results and validation measure scores for each 

measure.  The rank.aggreg( ) method allows the user to obtain an S3 object of class 

“raggr” to get the overall top list of clustering algorithms.  A visual representation of the 

rank aggregation results can also be viewed using the plot( ) function.  These two 

methods for the “optCluster” class acquire all of the information provided by the 

functions clValid( ) and RankAggreg( ), so there is no need to run either of the functions 

independently of the optCluster( ) function. 

Almost all of the arguments from the clValid( ) and RankAggreg( ) functions can 

be entered by the user directly into the optCluster( ) function and passed to the 

appropriate function.  The arguments of method and verbose are used by both of these 

functions, and therefore have been divided into separate input arguments for the 

optCluster( ) function.  The method argument is divided into hierMethod to specify the 

agglomerative method used in the hierarchical clustering algorithms (either “ward”, 

“single”, “complete”, or “average”) and rankMethod to specify the rank aggregation 
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method as either cross-entropy Monte Carlo (“CE”) or Genetic algorithm (“GA”).  The 

default for hierMethod is “average”, the UPGMA algorithm, and the default for 

rankMethod is the “CE” method.  To account for the commonality of the verbose 

argument, clVerbose is used for displaying output on the cluster validation progress in the 

clValid( ) function, while rankVerbose is used for displaying output at each iteration of 

the RankAggreg( ) function.  To avoid superfluous output and increase performance 

speed, both clVerbose and rankVerbose are set to FALSE as default. 

 The optCluster package also offers a second function called repRankAggreg( ) 

that can repeat weighted rank aggregation once the optCluster( ) has produced an initial 

result.  Since cluster validation scores are often the same as long as the same clustering 

algorithms and validation measures are desired, it is redundant to repeat these 

calculations again with the optCluster( ) function.  For small datasets this may be a minor 

inconvenience, but calculating validation scores for high dimensional data can be very 

time consuming.  Therefore, it would be beneficial to only have to run cluster validation 

once.   

A user can simply input an “optCluster” class object into the repRankAggreg( ) 

function and weighted rank aggregation using the same rank aggregation method and 

distance measure chosen in the original optCluster( ) function will be performed.  A new 

rank aggregation method can be selected using the rankMethod argument and a new 

distance measure can be chosen using the distance argument.  Just like the optCluster( ) 

function, the rankVerbose argument will determine whether or not output is displayed for 

each iteration of rank aggregation.  All other arguments for the RankAggreg( ) can also be 

passed through the repRankAggreg( ) function.  



	
   33 

 
 
 
 
 

CHAPTER VI 

EXAMPLES 

In this chapter, we provide the detailed steps that are needed to run cluster 

analysis using the proposed optCluster package on two different types of biological data.  

These two examples were selected specifically for this paper because they represent 

common methods of gene expression profiling in biomedical research.  The first dataset 

is microarray gene expression data from Bhattacherjee et al. (2007) and the second 

dataset is RNA-Seq data from Di et al. (2011), generated from Next Generation 

Sequencing technology.  Both are arranged in the typical clustering format for gene 

expression where the genes are rows and the samples are columns.  Depending on an 

individual dataset it may be advantageous to cluster either the genes or the samples, but 

for these two examples we will focus on clustering only the genes.  

To begin cluster analysis with the optCluster package, it must first be loaded into 

R with the library( ) function, library(optCluster).  Upon loading the optCluster 

package, three other packages will be automatically loaded:  clValid, cluster, and 

RankAggreg.  Once the function optCluster( ) begins running, it will load the packages 

kohonen and mclust if the clustering algorithms of “som” and “model” are selected 

respectively.  If “biological” is entered as a validation type, three additional packages 

needed for biological validation will also be loaded once the function optCluster( ) begins 

running: Biobase, GO.db, and annotate.  Figure 2 displays a flowchart of this package 

loading process.	
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Figure 2:  A flowchart describing when additional R packages are loaded by the 
optCluster package.  The user input of library(optCluster) will load the clValid, cluster, 
and RankAggreg packages.  Other packages will be loaded depending on the user inputs 
for the clMethods and validation arguments in the optCluster( ) function. 
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Example 1: Microarray Data Analysis 

This dataset comes from the Bhattacherjee et al. (2007) microarray experiment 

evaluating gene expressions of mesenchymal cells in mice.  It is available in the package 

clValid, which is automatically loaded with the optCluster package.  Two lineages of 

mesenchymal cells important in the development of the orofacial region were compared: 

neural crest and mesoderm-derived.  In the analysis, the expressions of genes and 

Expressed sequence tags (ESTs) that were different between the two cell lineages by at 

least 1.5 fold (either in an increase or decrease) were considered to be significantly 

different.  A total of 147 genes and ESTs were determined to be significantly different 

and are represented as the rows in this data.  Three samples were taken from both the 

neural crest and mesoderm-derived cells, for a total of six columns in the dataset.  The 

data( ) function allows us to load this data from the clValid package, and some initial 

manipulation is needed to gather only the necessary information from the original dataset.  

> data(mouse) 
> ex1 <- mouse[, c("M1", "M2", "M3", "NC1", "NC2", "NC3")] 
> rownames(ex1) <- mouse$ID 
	
  

Both Brock et al. (2011) and Pihur et al. (2009) have evaluated this data in a 

limited context as examples of cluster analysis using weighted rank aggregation.  In the 

Brock et al. analysis, three algorithms (“hierarchical”, “kmeans”, and “pam”) were 

evaluated over the range of four to six clusters using the “internal” and “stability” types 

of validation measures available in the package clValid.  After applying rank aggregation 

using the cross-entropy Monte Carlo algorithm with weighted Spearman’s footrule 

distance from the RankAggreg package, PAM with six clusters was determined the best 

clustering algorithm over this range.  The Pihur et al. rank aggregation analysis only used 

the first 100 genes of the dataset and only evaluated clustering algorithms for five clusters 



	
   36 

to obtain the optimal clustering algorithm, rather than using a range of cluster sizes.  All 

ten of the clustering algorithms available in the clValid package were evaluated ("agnes", 

"clara", "diana", "fanny", "hierarchical", "kmeans", "model", "pam", "som", and "sota") 

using the “internal” and “stability” validation measures.  Both rank aggregation methods 

concluded SOM was the best clustering algorithm for five clusters using weighted 

Spearman’s footrule distance and K-means was the optimal algorithm for five clusters 

using weighted Kendall’s tau distance. 

To determine the optimal clustering algorithm and optimal number of clusters 

using the optCluster package, an extensive cluster analysis is performed for this 

microarray dataset.  All ten of the clustering algorithms available in the optCluster( ) 

function are evaluated.  As default for the agglomerative hierarchical clustering 

algorithms, “hierarchical” and “agnes”, the agglomerative method is set to “average” 

(Unweighted Pair Group Method with Arithmetic Mean or UPGMA).  All three types of 

validation measures are chosen for a total of nine different validation measures and the 

package moe430a.db (Carlson, 2015b) is set as the biological annotation.  The cross-

entropy Monte Carlo algorithm (“CE”) is selected for rank aggregation methods using the 

method of weighted Spearman’s footrule (“Spearman”) for distance measures.  The 

maximum number of aggregation iterations is set to 1500.  

While testing the optCluster( ) function with this dataset, we found that the 

RankAggreg( ) function often chooses the optimal number of clusters to be the upper 

bound of the given range of cluster sizes.  Because of this, the appropriate range of 

cluster sizes to be considered for this example was determined by looking for a situation 

where the upper bound was not chosen as the optimal number of clusters.  We first 



	
   37 

started with an initial cluster size range of two to four and ran the optCluster( ) function 

using the above-mentioned arguments.  If the upper bound of the range was chosen as the 

optimal cluster size, we increased the upper bound by one and ran the optCluster( ) 

function again.  This process continued until the optimal number of clusters was not 

equal to the upper bound of the range.  For this dataset, the range of cluster sizes being 

considered is from two to nine.  This range is represented in the second argument in the 

optCluster( ) function. 

> optMouse <- optCluster(ex1, 2:9, clMethods = “all”, validation = “all”, seed  
+ = 123, annotation ="moe430a.db", maxIter = 1500) 
> top.method(optMouse) 
[1] "som-8" 
	
  
 The time needed to run the optCluster( ) function for this analysis was 6.10 hours 

using 16 GB of RAM on the University of Louisville’s Cardinal Research Cluster (CRC).  

To view the results of the analysis, the top.method( ) statement is used.  From this simple 

output, we see that SOM with eight clusters is the optimal clustering algorithm for the 

data.  Appendix B contains the results produced by the output from the print( ) and 

summary( ) methods, which are much more detailed compared to the top.method( ) 

statement but also very similar to the rest of the analysis provided in this section.   

An object of class “clValid” is created using the method cl.valid( ), allowing the 

utilization of all of the methods available for that S4 class.  The optimal values for each 

validation measure, over the cluster size range from two to nine, are obtained with the 

“clValid” class method optimalScores( ).  These values represent the optimal rank 

aggregated score for each validation measure and are listed under the score column in the 

output table. 
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> valMouse <- cl.valid(optMouse) 
> optimalScores(valMouse) 
                 Score Method Clusters 
APN          0.0424388    som        7 
AD           1.3075210  clara        9 
ADM          0.1296167    som        7 
FOM          0.4328808    som        9 
Connectivity 5.3269841  agnes        2 
Dunn         0.1467466  agnes        9 
Silhouette   0.5132739  agnes        2 
BHI          0.3457009  model        8 
BSI          0.7949653  agnes        2 
 
 The results shown above highlight the complexity of selecting a “best” clustering 

algorithm.  The optimal values from the nine validation measures come from six different 

combinations of clustering algorithms and cluster sizes.  Agnes with two clusters is the 

best algorithm for three measures (connectivity, silhouette width, and BSI), SOM with 

seven clusters is the optimal algorithm for APN and ADM, and the four remaining 

algorithms (Clara with nine clusters, SOM with nine clusters, Agnes with nine clusters, 

and model-based with eight clusters) are only the top choice for one measure. 

 A graphical representation of the validation measures can be produced using the 

“clValid” class method plot( ).  The plots of all the validation measures can be seen in 

Figure 3.  The clustering algorithms, with the exception of the model-based clustering 

algorithm, follow the same decreasing trend across the number of clusters for the 

biological stability index, average distance, and figure of merit measures.  These 

algorithms (excluding the model-based algorithm) also have a similar increasing trend 

across the number of clusters in connectivity.  There is much more variation between the 

validation scores in the biological homogeneity index, Dunn index, and average 

proportion of non-overlap measures.  From these plots, it is difficult to visually determine 

one overall best clustering algorithm. 
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 An object of class “raggr” can be created, using the rank.aggreg( ) method for the 

“optCluster” class object, in order to gather additional results dealing with the weighted 

rank aggregation of this data.  With this object, an overall optimal list can be acquired 

along with the minimum objective score from the selected rank aggregation method and 

distance measure. 

> aggMouse <- rank.aggreg(optMouse) 
> aggMouse 
The optimal list is:  
        som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9  
        kmeans-8 pam-6 hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7  
        fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6 som-3 diana-9 agnes-6 
        som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9  
        som-4 clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4  
        sota-7 diana-7 diana-5 kmeans-6 agnes-2 som-5 fanny-3 kmeans-2 
        kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4 sota-2 diana-3  
        diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6  
        clara-4 fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4 
        pam-4 model-3 model-7 model-8 model-9 model-6 model-5 model-4 
 
  Algorithm:   CE 
  Distance:    Spearman 
  Score:       239.4503  
 

Looking at the optimal list, the top three clustering algorithms are SOM with eight 

clusters, SOM with seven clusters, and Clara with eight clusters.  Agnes with two clusters 

may have been the top performer for three validation measures but it ranks 45th in the 

final list because of its poor performance in the five other measures.  Final rank 

aggregation correctly identified that fact.  The model-based clustering algorithm is an 

overall poor choice for this dataset as it occupies eight of the ten lowest ranked algorithm 

spots in the list.   

A visual representation of the weighted rank aggregation results can be displayed 

using the plot( ) function on the “raggr” class object.  There are three plots produced (see 

Figure 4) providing information on the convergence properties of the rank aggregation 

method and the final ranking analysis.  After 1048 iterations, convergence was achieved 
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with a minimum objective score of 239.45 from the cross-entropy Monte Carlo algorithm 

with weighted Spearman’s footrule distance. The final sampling distribution has a very 

high concentration centered very close to the minimum objective score. 

All R code used for this cluster analysis can be found in Appendix A.  The 

repRankAggreg( ) function, in the optCluster package, was run twenty times using the 

same set of arguments but different seeds to look at the consistency of the optimal 

clustering algorithm and cluster size result from rank aggregation.  SOM with eight 

clusters was determined the optimal clustering algorithm all twenty out of twenty times. 

Using the repRankAggreg( ) function, the rank aggregation analysis took an average of 

6.02 hours using 16 GB of RAM on the CRC.  This function is slightly more time 

efficient than running the optCluster( ) function over again for this dataset, with a 

difference of 0.08 hours (about 5 minutes).  

The combinations of the cross-entropy Monte Carlo algorithm with weighted 

Kendall’s tau distance and the Genetic algorithm with both types of distance measures 

were also considered as weighted rank aggregation options for this dataset analysis.  

However when running the repRankAggreg( ) function, these methods did not converge 

within the long queue wall-time of 168 hours on the Cardinal Research Cluster (CRC), 

using 16 GB of RAM.  For this reason, the results from these methods could not be 

obtained and, therefore, are not included in this paper. 
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Figure 3: Plots of all nine validation measures for Example 1.  The BHI, BSI, Dunn 
index, and silhouette width measures should be maximized.  The AD, ADM, APN, 
Connectivity, and FOM measures should be minimized. 
  

1 1 1
1 1

1
1

1
0.
22

0.
26

0.
30

0.
34

Biological validation

Number of Clusters

B
H
I

2 2 2 2 2 2
2 2

3
3 3 3

3 3
3

34 4 4 4
4 4 4

4

5 5 5
5 5

5
5

5

6 6 6
6 6 6

6 6

7
7

7

7

7
7

7
7

8 8 8 8 8 8
8 8

9 9 9 9 9 9
9 9

0 0 0
0 0 0 0

0

2 3 4 5 6 7 8 9

1

1

1 1 1 1 1 10.
2

0.
4

0.
6

0.
8

Biological validation

Number of Clusters

B
S
I 2

2
2 2 2 2 2 2

3
3

3
3 3 3 3 3

4

4
4

4 4 4 4 4

5

5

5 5 5 5 5 5

6

6
6 6 6 6 6 6

7

7
7

7
7 7 7

7

8

8
8 8

8 8 8 8

9

9
9

9 9 9 9 9

0
0

0 0 0 0
0 0

2 3 4 5 6 7 8 9

1

1 1 1 1

1

1 1

0.
02

0.
06

0.
10

0.
14

Internal validation

Number of Clusters

D
un
n

2

2 2
2

2
2

2

2

3 3
3

3 3 3
3 3

4 4
4 4 4

4

4 4

5

5 5 5 5

5

5 5

6

6
6 6

6

6

6
6

7 7 7
7

7
7 7

7
8

8
8

8 8
8

8 8

9

9

9
9

9

9

9
9

0
0 0 0 0 0

0 0

2 3 4 5 6 7 8 9

1

1
1

1 1
1 1 1

0.
0

0.
2

0.
4

Internal validation

Number of Clusters

S
ilh
ou
et
te

2
2 2 2 2 2 2 2

3

3 3 3 3
3

3 3

4

4
4 4

4 4
4

4

5

5
5

5 5
5 5 5

6
6

6 6 6
6 6

6

7

7

7

7 7 7
7 7

8
8 8 8

8 8 8 8
9

9
9 9

9 9 9
9

0
0

0 0 0 0 0 0

2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1

0
50

10
0

15
0

Internal validation

Number of Clusters

C
on
ne
ct
iv
ity

2 2
2 2 2 2

2 2

3 3
3 3 3 3 3 3

4
4 4 4

4
4

4 4

5 5 5 5 5 5 5 5

6 6
6 6 6

6 6 6
7

7

7
7

7

7 7

7

8 8 8
8

8 8 8 8

9 9
9 9 9 9 9

9

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

1

1

1
1

1
1 1 11.
5

2.
5

3.
5

Stability validation

Number of Clusters

A
D

2
2

2
2

2
2 2 2

3
3

3 3 3 3
3 3

4

4
4

4
4 4 4 4

5

5

5
5

5
5 5 5

6

6 6
6 6

6 6 6

7

7

7

7

7
7 7 7

8

8 8
8

8 8 8 8

9

9
9 9

9
9 9 9

0

0 0 0
0 0

0 0

2 3 4 5 6 7 8 9

1

1
1

1 1 1 1 10.
5

1.
0

1.
5

2.
0

Stability validation

Number of Clusters

A
D
M

2

2 2
2 2

2 2 23
3

3
3 3 3 3 34 4 4 4

4 4
4 45

5
5

5 5 5 5 5
6 6

6

6 6
6 6 6

7

7

7
7

7
7 7

7

8

8

8
8

8
8 8

89
9 9

9

9
9

9
9

0 0

0 0
0 0

0 0

2 3 4 5 6 7 8 9

1
1

1 1 1
1 1

1

0.
1

0.
3

0.
5

Stability validation

Number of Clusters

A
P
N

2

2
2 2 2

2 2 2
3

3 3
3

3 3
3 3

4 4
4 4

4 4
4 4

5
5

5 5 5
5 5

5

6 6

6
6 6

6
6

6
7

7

7

7

7 7 7

7

8

8

8
8

8
8 8

8

9 9
9

9

9
9

9
9

0 0

0
0

0 0
0 0

2 3 4 5 6 7 8 9

1

1

1
1 1 1

1 10.
5

0.
7

0.
9

1.
1

Stability validation

Number of Clusters

FO
M

2

2

2 2

2 2 2 2

3

3

3 3 3
3

3 3

4

4
4

4
4 4 4 4

5

5

5
5 5 5

5 5

6

6 6
6 6

6
6 6

7

7

7 7

7 7 7

7

8

8
8

8

8 8 8 8

9

9
9

9
9

9 9 9

0

0

0 0 0
0

0 0

2 3 4 5 6 7 8 9

 

 

1
2
3
4
5
6
7
8
9
0

agnes
clara
diana
fanny
hierarchical
kmeans
model
pam
som
sota



	
   42 

 

Figure 4: Visual representation of the “CE” rank aggregation results for Example 1 using 
the “Spearman” distance.  The top left plot shows the minimum values of the objective 
function as the number of iterations increases.  The top right plot is a histogram of the 
objective function scores at the last iteration.  The bottom plot shows the individual ranks 
from the data (in grey), the final solution (in red), and average ranking (in black). 
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Example 2: RNA-Seq Data Analysis 

This second set of data from Di et al. (2011) is an RNA-Sequencing analysis of 

Arabidopsis thaliana, a plant widely used in genetic and molecular biology research.  In 

this study, plants were infected with either a bacteria (ΔhrcC mutant of Pseudomonas 

syringae pathovar tomato DC3000) or a mock inoculation (10 mM MgCl2) in order to 

study the defense response of the plants.  Three independent samples were used for each 

infection type in this experiment, for a total of six columns in the dataset.  The 26,222 

rows of data correspond to different genes, and each individual cell of the matrix contains 

the counts of the RNA-Seq reads that are mapped to a reference database of known 

genes.  This dataset is available in R through the package NBPSeq (Di et al., 2015). 

Because the obtained dataset consists of plain read counts, Di et al. (2011) normalized the 

data with respect to library size (column totals) and so we will do the same for our 

analysis.    

> library(NBPSeq) 
> data(arab) 
> ex2 <- t(arab)/colSums(arab) 
> ex2 <- t(ex2) 
 

To use the optCluster package on this dataset, a cluster analysis using eight out 

of the ten available clustering algorithms is performed.  Due to the wall-time of 168 hours 

on the Cardinal Research Cluster (CRC), two clustering algorithms, Agnes and Diana, 

were removed from the analysis.  Using 32 GB of RAM on the CRC, these two 

algorithms had the longest times of calculating validation measures.  Table 1 contains the 

average times for all ten of the clustering algorithms to calculate the nine validation 

measures available in the clValid package using only a cluster size of both two, rather 

than a range of cluster sizes.   
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Algorithm Time (Hours) 
Clara 0.63 
SOTA 1.06 
SOM 1.13 
PAM 1.13 
Kmeans 1.23 
Hierarchical 1.24 
Fanny 2.00 
Model 11.31 
Agnes 83.04 
Diana 92.97 

 
Table 1: Average calculation times for all nine validation measures with a cluster size of 
two for Example 2, using 32 GB of RAM. 
 

For only a cluster size of two, Agnes took on average 83.04 hours to compute 

validation measures, and Diana took an average of 92.97 hours for the same calculations.  

In comparison, out of the eight algorithms used in this analysis, the model-based 

algorithm had the longest calculation time for two clusters, with an average time of 11.31 

hours.  The complete analysis (both cluster validation and rank aggregation) using the 

eight other clustering algorithms took 85.33 hours using 32 GB of RAM on the CRC. 

For the remaining arguments in the optCluster( ) function, UPGMA is used as the 

“hierarchical” clustering algorithm, with the agglomerative method set to the default of 

“average”.  All nine cluster validation measures are selected and the package 

org.At.tair.db (Carlson, 2015c) is designated as the biological annotation.  The rank 

aggregation method is set as the cross-entropy Monte Carlo algorithm (“CE”) with 

distance measures calculated by weighted Spearman’s footrule distance (“Spearman”).  

Just like Example 1, the cluster size range was determined by looking for a 

situation where the optimal number of clusters was not equal to the upper bound of the 

given range of cluster sizes for the arguments mentioned above.  The optCluster( ) 
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function was initially run with a cluster size range of two to four and the upper bound 

was not chosen.  Therefore, the range of two to four clusters is used in this analysis.   

> optArabid <- optCluster(ex2[,], 2:4, clMethods = c("clara", “fanny”,  
+ "hierarchical", "kmeans", "model", "pam", "som", "sota"), validation = “all”,  
+ seed = 123, annotation = "org.At.tair.db", maxitems = nrow(ex2[,])) 
> print(optArabid) 
 
The overall optimal method with number of clusters is:  
  hierarchical-3  
 
The optimal list is:  
        hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 hierarchical-4    
        hierarchical-2 som-3 clara-3 clara-2 sota-3 pam-4 sota-2 kmeans-3 som-2  
        pam-3 pam-2 fanny-2 fanny-3 model-2 fanny-4 clara-4 model-3 model-4 
         
  Algorithm:   CE 
  Distance:    Spearman 
  Score:       55.13205 
 

From the print( ) method, the optimal clustering algorithm is obtained, which is 

UPGMA (hierarchical) with three clusters.  The optimal list of relative performances of 

all the clustering algorithms considered from the weighted rank aggregation is also 

displayed using this method.  The cross-entropy Monte Carlo algorithm using the 

weighted Spearman’s footrule distance reported the minimum objective score of 

55.13205.  Figure 5 shows a visual display of the aggregation results.  Convergence to the 

optimal list was achieved after 186 iterations and most of the mass in the final Monte 

Carlo sampling distribution is slightly right of the minimum objective score.   

The top performing clustering algorithm and optimal validation score for each 

validation measure can be acquired using the optimalScores( ) function on a created 

“clValid” class object.  Looking at the optimal scores below, the hierarchical algorithm 

(UPGMA) seems like an appropriate clustering algorithm for this range of cluster sizes.   

UPGMA with three clusters is the optimal choice for four validation measures (APN, 

ADM, Dunn index, and BSI), UPGMA with two clusters is the top choice for two 
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different validation measures (connectivity, silhouette width), and UPGMA with four 

clusters in the “best” algorithm with BHI.  Appendix B has the full list of validation 

scores obtained from the summary( ) method for an object of “optCluster” class.   

> valArabid <- cl.valid(optArabid) 
> optimalScores(valArabid) 
                    Score       Method Clusters 
APN          0.000000e+00 hierarchical        3 
AD           9.715409e-05          pam        4 
ADM          0.000000e+00 hierarchical        3 
FOM          1.533618e-04       kmeans        4 
Connectivity 2.928968e+00 hierarchical        2 
Dunn         1.108241e+00 hierarchical        3 
Silhouette   9.971414e-01 hierarchical        2 
BHI          3.340580e-01 hierarchical        4 
BSI          9.999677e-01 hierarchical        3 
 

The graphs of the validation scores in Figure 6 also seem to support the idea that 

the hierarchical algorithm is a suitable choice as a clustering algorithm for this cluster 

size range.  The hierarchical algorithm (UPGMA) clearly outperforms the other 

algorithms across all three numbers of clusters for the Dunn index and the average 

distance between means measures.  This algorithm also appears to be the among the top 

performing algorithms, if not the top performing algorithm, for all three values of cluster 

sizes for the biological stability index, silhouette width, connectivity, and average 

proportion of non-overlap measures.  However, looking at the average distance (AD) 

validation measure, UPGMA is not the best but rather the worst performing algorithm 

across all three numbers of clusters.  Hence, concluding just by visual inspection of the 

figures may not be suitable while optimizing in terms of a large number of validation 

measures. 

To look at the consistency of the optimal clustering algorithm and cluster size 

choice, using the cross-entropy Monte Carlo algorithm with the weighted Spearman’s 

footrule distance, the function repRankAggreg( ), in the optCluster package, was used to 
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repeat rank aggregation for a large number of seeds (twenty).  Since this dataset is so big, 

calculating all of the validation measures for all of the clustering algorithms is very time-

consuming.  The repRankAggreg( ) function was used to repeat only the rank aggregation 

analysis and took, on average, only 13.83 seconds to complete using 16 GB of RAM on 

the CRC.  For all twenty times this dataset was run using the same arguments but 

different seeds, UPGMA with three clusters was the optimal choice.  However, using 

weighted Kendall’s tau as the rank aggregation distance in the repRankAggreg( ) function 

does change the results. 

> KenArabid <- repRankAggreg(optArabid, distance = “Kendall”) 
> print(KenArabid) 
 
The overall optimal method with number of clusters is:  
        kmeans-4  
 
The optimal list is:  
        kmeans-4 hierarchical-3 kmeans-2 hierarchical-4 hierarchical-2 som-4  
        som-3 clara-2 kmeans-3 som-2 sota-4 sota-3 fanny-2 pam-4 clara-3  
        fanny-4 fanny-3 pam-2 sota-2 model-2 clara-4 pam-3 model-4 model-3 
 
  Algorithm:   CE 
  Distance:    Kendall 
  Score:       19.56713 
 

The repRankAggreg( ) function took an average of 8.36 hours to complete this 

analysis using 16 GB of RAM on the CRC.  For this changed distance measure, K-means 

with four clusters is chosen as the optimal algorithm, while hierarchical (UPGMA) with 

three clusters is ranked 2nd in the optimal list.  By connecting the results with the 

validation measure plots in Figure 6, K-means with four clusters seems to fall within the 

upper quartile of rankings (top six clustering algorithms) for many of the validation 

measures.  This algorithm’s performance also seems to rank either slightly higher or 

lower than UPGMA with three clusters for several of these measures.  Therefore, it is not 

surprising that these two algorithms were switched in the optimal lists produced by rank 
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aggregation when different distance measures were used for the cross-entropy Monte 

Carlo algorithm.  Figure 7 displays the visual results from the rank aggregation using 

Kendall’s tau distance.  Convergence was achieved after 192 iterations with a minimum 

score of 19.56713, and similar to the weighted Spearman’s footrule distance plot, the 

mass of the final sampling distribution is slightly right of the minimum objective score. 

Changing the distance measure for the cross-entropy Monte Carlo algorithm did 

change both the optimal clustering algorithm and the optimal number of clusters.  For this 

range of cluster sizes, UPGMA with three clusters was chosen with the weighted 

Spearman’s footrule distance while K-means with four clusters was selected using the 

weighted Kendall’s tau distance.  From these results, we can see that the rank aggregation 

using weighted Kendall’s tau distance chose the upper bound of the cluster size range as 

the optimal number of clusters, just as we had mentioned previously.  This choice of 

cluster size makes it difficult to determine whether or not four clusters is an optimal 

number of clusters for the dataset.  Since this chapter’s intent is to demonstrate the 

capabilities of the optCluster package, our analysis stops here.  However, further 

investigation into the optimal number of clusters, by extending the range of cluster sizes 

for this dataset, would be required if one were to choose rank aggregation using the 

weighted Kendall’s tau distance for cluster analysis. 

The Genetic algorithm was also used for rank aggregation is this analysis, and 

produced the same results as the cross-entropy Monte Carlo algorithm for the weighted 

Spearman’s footrule distance (UPGMA with 3 clusters) but the optimal clustering 

algorithm and cluster size was SOM with four clusters when the weighted Kendall’s tau 

distance was used.  For the sake of brevity, visual representations of the aggregation 
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using “Spearman” and “Kendall” distance measures are displayed in Figure 8 and Figure 

9 respectively, and the print( ) method outputs are provided in Appendix B.  Table 2 lists 

the average amount of time required to run the repRankAggreg( ) function for all methods 

of weighted rank aggregation for Example 2.  It is interesting that although the cross-

entropy Monte Carlo algorithm takes, on average, less time when using the weighted 

Spearman’s footrule distance compared to the Genetic algorithm, when the weighed 

Kendall’s tau distance is used, the Genetic algorithm, on average, is actually more time-

efficient. 

Method	
   Distance	
   Time	
  (Minutes)	
  
“CE”	
   “Spearman”	
   0.23	
  
“GA”	
   “Spearman”	
   0.75	
  
“CE”	
   “Kendall”	
   501.60	
  
“GA”	
   “Kendall”	
   97.53	
  

 
Table 2: Average weighted rank aggregation calculation times for Example 2, using 16 
GB of RAM. 
 

Appendix A contains the entire code used for the Arabidopsis thaliana RNA-Seq 

data analysis.  The package bigmemory (Kane et al., 2013) was utilized in this analysis 

to create a file-backed matrix for this dataset.  The function as.big.matrix( ) stored this 

high dimensional data on the hard drive rather than keeping it in memory, which avoided 

maxing out the memory and freezing R while running the optCluster( ) function.    
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Figure 5: Visual representation of “CE” rank aggregation results for Example 2 using the 
“Spearman” distance.  The top left plot shows the minimum values of the objective 
function as the number of iterations increases.  The top right plot is a histogram of the 
objective function scores at the last iteration.  The bottom plot shows the individual ranks 
from the data (in grey), the final solution (in red), and average ranking (in black). 
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Figure 6: Plots of all nine validation measures for Example 2.  The BHI, BSI, Dunn 
index, and silhouette width measures should be maximized.  The AD, ADM, APN, 
Connectivity, and FOM measures should be minimized. 
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Figure 7: Visual representation of “CE” rank aggregation results for Example 2 using the 
“Kendall” distance.  The top left plot shows the minimum values of the objective 
function as the number of iterations increases.  The top right plot is a histogram of the 
objective function scores at the last iteration.  The bottom plot shows the individual ranks 
from the data (in grey), the final solution (in red), and average ranking (in black). 
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Figure 8: Visual representation of “GA” rank aggregation results for Example 2 using the 
“Spearman” distance.  The top left plot shows the minimum values of the objective 
function as the number of iterations increases.  The top right plot is a histogram of the 
objective function scores at the last iteration.  The bottom plot shows the individual ranks 
from the data (in grey), the final solution (in red), and average ranking (in black). 
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Figure 9: Visual representation of “GA” rank aggregation results for Example 2 using the 
“Kendall” distance.  The top left plot shows the minimum values of the objective 
function as the number of iterations increases.  The top right plot is a histogram of the 
objective function scores at the last iteration.  The bottom plot shows the individual ranks 
from the data (in grey), the final solution (in red), and average ranking (in black). 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

 The package optCluster is introduced in this thesis as a simple and convenient 

option to add to the many cluster analysis packages already available for R.  The 

optCluster( ) function, in this package, offers the user nine validation measures 

categorized into three types, “biological”, “internal”, and “stability”, as well as ten unique 

clustering algorithms to be used in cluster analysis.  A weighted rank aggregation using 

either a cross-entropy Monte Carlo algorithm or a Genetic algorithm determines the 

optimal clustering algorithm along with the optimal number of clusters for a given 

dataset.  The optCluster package also provides easy to use methods that give the user 

access to the graphical capabilities of the clValid and RankAggreg packages.  

It is recommended that the user run the optCluster( ) function several times with 

different arguments to compare results.  This is especially important for the cluster size 

range because the rank aggregation methods may choose the upper bound of this range as 

the optimal number of clusters.  Changing the range of cluster sizes or the selections of 

clustering algorithms will often produce different results, so choices in arguments may 

need to be fine-tuned in order to discover the overall best result.  The mouse microarray 

dataset (Bhattacherjee et al., 2007) analyzed in Chapter VI provided an example of 

producing different results using different arguments.  This set of data was used as an 

example of the clValid package by Brock et al. (2011), where three clustering algorithms 

were analyzed using “internal” and “stability” validation measures over the range of four 
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to six clusters.  PAM with six clusters was chosen as the optimal clustering method using 

the cross-entropy Monte Carlo weighted rank aggregation from the RankAggreg 

package.  The same dataset was analyzed in this thesis with the optCluster( ) function, 

but ten clustering algorithms were evaluated using all three types of validation measures 

over a larger range of two to nine clusters.  Under these new conditions, SOM with eight 

clusters was chosen as the best clustering algorithm with rank aggregation using the 

cross-entropy Monte Carlo method, a different result with a different selection of 

arguments. 

It is also recommended that the user tests the consistency of the rank aggregation 

results, and the optCluster package provides the repRankAggreg( ) function as a useful 

tool to do so.  This function repeats the weighted rank aggregation using same weighted 

rank aggregation method, ranked clustering algorithm lists, and validation score lists as 

the original optCluster( ) function.  A different aggregation algorithm or type of distance 

measure for weighted rank aggregation can also be evaluated using the repRankAggreg( ) 

function, but doing so may affect the final results.  This was the case for analysis of the 

Arabidopsis thaliana RNA-Seq dataset (Di et al., 2011) in Chapter VI.  Using weighted 

Spearman’s footrule distance, the optimal clustering algorithm and number of clusters 

was determined to be UPGMA with three clusters.  By only changing the rank 

aggregation distance to weighted Kendall’s tau, the results changed and K-means with 

four clusters was chosen as the optimal algorithm and cluster size.    

Future Research 

 As more and more research is being done on cluster analysis, especially in 

microarray gene expression data and data generated from Next Generation Sequencing 
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technology, new tools and resources for analysis are becoming readily available.  The 

Comprehensive R Archive Network (CRAN) provides a whole slew of packages offering 

different clustering algorithms and validation measures for researchers to use.  

Submitting the optCluster package to CRAN is the next step following this paper, and 

there are several opportunities to develop this package into a robust cluster analysis tool 

before submission.   

Currently, there are only ten clustering algorithms and nine validation measures 

available through this package.  Extending the number of clustering algorithms available, 

including those specifically designed for RNA-Seq data like those found in the package 

MBCluster.Seq (Si, 2015), would enhance the analysis capabilities of the optCluster 

package.  There are packages available for R that offer more validation measures for 

researchers to use, such as the package NbClust (Charrad et al., 2014), which has a 

collection of 30 different measures for users choose from.  Adding more validation 

measures to the optCluster package would also be a way to increase its usefulness as a 

tool for cluster analysis.   

The optCluster package is able to analyze small subsets (less than 1000 rows) of 

high dimensional data across a small range of three or four cluster numbers in a fairly 

time-efficient manner.  While this may be sufficient in some cases, it may be more 

worthwhile to analyze the entire dataset over a large range of cluster numbers.  When the 

datasets get larger and/or the range for the number of clusters increases, the amount of 

time it takes for the optCluster( ) function to obtain a result becomes lengthy.   

Both examples in Chapter VI experienced issues with long running times while 

using the optCluster( ) function.  The computations for the Arabidopsis thaliana RNA-
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Seq dataset took over 85 hours on the Cardinal Research Cluster (CRC) to complete 

using only eight of the ten available clustering algorithms and a range of three different 

numbers of clusters.  The two excluded algorithms (Agnes and Diana) were omitted from 

the analysis because they took just too long to perform validation measures given the 

time constraints for this paper.  The weighted rank aggregation for the mouse microarray 

data using either the Genetic algorithm or the weighted Kendall’s tau distance did not 

converge after 168 hours on the CRC.  The large range of cluster sizes resulted in long 

lists to be used in the aggregation methods, and therefore, required more time to complete 

all of the computations and iterations.  With the abundance of resources available for 

high-performance and parallel computing in R, increasing the speed of the optCluster 

package would make it even more valuable for cluster analysis, especially for high 

dimensional data.  

  



	
   59 

 
 
 
 
 

REFERENCES 

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York. 
 
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., & Perona, I. (2013). An extensive 
comparative study of cluster validity indices. Pattern Recognition, 46, 243-256. 
 
Bhattacherjee, V., Mukhopadhyay, P., Singh, S., Johnson, C., Philipose, J. T., Warner, C. 
P., ... & Pisano, M. M. (2007). Neural crest and mesoderm lineage‐dependent gene 
expression in orofacial development. Differentiation, 75, 463-477. 
 
Brock, G., Pihur, V., Datta, S., & Datta, S. (2011). clValid, an R package for cluster 
validation. Journal of Statistical Software (Brock et al., March 2008). 
 
Carlson, M. (2015a). GO.db: A set of annotation maps describing the entire Gene 
Ontology. R package version 3.0.0. 
 
Carlson, M. (2015b) moe430a.db: Affymetrix Mouse Expression Set 430 annotation data 
(chip moe430a). R package version 3.0.0. 
 
Carlson, M. (2015c) org.At.tair.db: Genome wide annotation for Arabidopsis. R package 
version 3.0.0. 
 
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package 
for Determining the Relevant Number of Clusters in a Dataset. Journal of Statistical 
Software, 61:6. 
 
Chen, A., Sweeney, T.E., Gevaert, O. (2015). COMMUNAL: Robust Selection of Cluster 
Number K. R package version 1.0, URL http://CRAN.R-
project.org/package=COMMUNAL.  
 
Datta, S., & Datta, S. (2003). Comparisons and validation of statistical clustering 
techniques for microarray gene expression data. Bioinformatics, 19, 459-466. 
 
Datta, S., & Datta, S. (2006). Evaluation of clustering algorithms for gene expression 
data using a reference set of functional classes. BMC Bioinformatics, 7:397. 
 
DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., & Etzioni, R. (2006). 
Combining Results of Microarray Experiments: A Rank Aggregation Approach. 
Statistical Applications in Genetics and Molecular Biology, 5. 
 



	
   60 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from 
incomplete data via the EM algorithm. Journal of the royal statistical society. Series B 
(methodological), 1-38. 
 
Di, Y., Schafer, D. W., Cumbie, J. S., & Chang, J. H. (2011). The NBP negative binomial 
model for assessing differential gene expression from RNA-Seq. Statistical Applications 
in Genetics and Molecular Biology, 10, 1-28. 
 
Di, Y., Schafer, D. W., Cumbie, J. S., & Chang, J. H. (2015). NBPSeq: Negative 
Binomial Models for RNA-Sequencing Data. R package version 0.3.0, URL 
http://CRAN.R-project.org/package=NBPSeq. 
 
Dimitriadou, E. (2014). cclust: Convex Clustering Methods and Clustering Indexes. R 
package version 0.6-19, URL http://CRAN.R-project.org/package=cclust.  
 
Dopazo, J., & Carazo, J. M. (1997). Phylogenetic reconstruction using an unsupervised 
growing neural network that adopts the topology of a phylogenetic tree. Journal of 
molecular evolution, 44, 226-233. 
 
Dunn, J. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of 
Cybernetics, 4, 95-104. 
 
Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for 
the web. Proceedings of the 10th international conference on World Wide Web, 613-622. 
 
Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing Top k Lists. SIAM Journal on 
Discrete Mathematics, 17, 134-160. 
 
Fraley, C., & Raftery, A. (2002). Model-Based Clustering, Discriminant Analysis, and 
Density Estimation. Journal of the American Statistical Association, 97, 611-631. 
 
Fraley, C., Raftery, A., & Scrucca, L. (2014). mclust: Normal Mixture Modeling for 
Model-Based Clustering, Classification, and Density Estimation. R package version 4.4, 
URL http://CRAN.R-project.org/package=mclust. 
 
Gentleman, R. (2014). annotate: Annotation for microarrays. R package version 1.44.0 
 
Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., ... & 
Zhang, J. (2004). Bioconductor: open software development for computational biology 
and bioinformatics. Genome biology, 5(10), R80. 
 
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. 
Reading, Mass.: Addison-Wesley Pub. 
 
Handl, J., Knowles, J., & Kell, D. (2005). Computational cluster validation in post-
genomic data analysis. Bioinformatics, 21, 3201-3212. 



	
   61 

 
Hartigan, J.A., & Wong, M.A. (1979). A K-Means Clustering Algorithm. Applied 
Statistics, 28, 100-108. 
 
Hennig, C. (2015). fpc: Flexible procedures for clustering. R package version 2.1-9, URL 
http://CRAN.R-project.org/package=fpc.  
 
Herrero, J., Valencia, A., & Dopazo, J. (2001). A hierarchical unsupervised growing 
neural network for clustering gene expression patterns. Bioinformatics, 17, 126-136. 
 
Kane, M., Emerson, J., Weston, S. (2013). Scalable Strategies for Computing with 
Massive Data. Journal of Statistical Software, 55:14. 
 
Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to 
Cluster Analysis. New York: Wiley. 
 
Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer. 

Lam, Y., & Tsang, P. (2012). EXploratory K-Means: A new simple and efficient 
algorithm for gene clustering. Applied Soft Computing, 12, 1149-1157. 
 
Lin, S., & Ding, J. (2009). Integration of ranked lists via Cross Entropy Monte Carlo with 
applications to mRNA and microRNA studies. Biometrics, 65, 9-18. 
 
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2015). cluster: 
Cluster Analysis Extended Rousseeuw et al. R package version 2.0.1. URL 
http://CRAN.R-project.org/package=cluster. 

Mavridis, L., Nath, N., & Mitchell, J. (2013). PFClust: A novel parameter free clustering 
algorithm. BMC Bioinformatics, 14:213. 

McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. New York: 
Wiley. 

Nazeer, K., Sebastian, M., & Kumar, S. (2013). A novel harmony search-K means hybrid 
algorithm for clustering gene expression data. Bioinformation, 9, 84-88. 

Nieweglowski L (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1, 
URL http://CRAN.R-project.org/package=clv.  

Pihur, V., Datta, S., & Datta, S. (2007). Weighted rank aggregation of cluster validation 
measures: A Monte Carlo cross-entropy approach. Bioinformatics, 23, 1607-1615. 
 
Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank 
aggregation. BMC Bioinformatics, 10:62. 
 



	
   62 

R Core Team. (2014) R: A Language and Environment for Statistical Computing . R 
Foundation for Statistical Computing, Vienna, Austria. URL 
http://www.R-project.org. 
 
Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus External 
cluster validation indexes. International Journal of computers and communications, 5, 
27-34. 
 
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of 
cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. 
 
Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. 
European Journal of Operational Research, 99, 89-112. 
 
Si, Y. (2015). MBCluster.Seq: Model-based Clustering for RNA-seq Data. R package 
version 1.0, URL http://CRAN.R-project.org/package= MBCluster.Seq. 
 
Si, Y., Liu, P., Li, P., & Brutnell, T. (2014). Model-based clustering for RNA-seq data. 
Bioinformatics, 30, 197-205. 
 
Sneath, P., & Sokal, R. (1973). Numerical taxonomy: The principles and practice of 
numerical classification. San Francisco: W.H. Freeman. 

Tseng, G., & Wong, W. (2005). Tight Clustering: A Resampling‐Based Approach for 
Identifying Stable and Tight Patterns in Data. Biometrics, 61, 10-16. 

Thalamuthu, A., Mukhopadhyay, I., Zheng, X., & Tseng, G. (2006). Evaluation and 
comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-
2412. 

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition (3rd ed.). Amsterdam: 
Elsevier/Academic Press. 

Walesiak, M., & Dudek, A. (2014). clusterSim: Searching for Optimal Clustering 
Procedure for a Dataset. R package version 0.44-1, URL http://CRAN.R-
project.org/package= clusterSim. 

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of 
the American statistical association, 58, 236-244. 
 
Wehrens, R., & Buydens, L.M.C. (2007). Self- and Super-organising Maps in R: the 
kohonen package. Journal of Statistical Software, 21:5. 
 
Witten, D. (2011). Classification and clustering of sequencing data using a Poisson 
model. The Annals of Applied Statistics, 5, 2493-2518. 
 



	
   63 

Wu, F. (2008). Genetic weighted k-means algorithm for clustering large-scale gene 
expression data. BMC Bioinformatics, 9, S12-S12. 
 
Yeung, K., Haynor, D., & Ruzzo, W. (2001). Validating clustering for gene expression 
data. Bioinformatics, 17, 309-318. 
  



	
   64 

 
 
 
 
 

APPENDIX A 

 R CODE 
 

optCluster Package Code 
 
########### optCluster Class Definitions ############# 
 
## Change raggr to S4 class 
setOldClass("raggr") 
setClass("optCluster",representation(clVal ="clValid", 
                                   optMethod ="character", 
                                   rankAgg="raggr")) 

########### optCluster Function ########### 
 
## Determine optimal clustering method 
optCluster <- function(obj, nClust, clMethods = "all", validation = 
c("internal", "stability"), hierMethod = "average", clVerbose = FALSE,  
 rankMethod = "CE", rankVerbose= FALSE,...) { 
  
 if("all" %in% clMethods) { 
 clMethods <- c("agnes", "clara", "diana", "fanny", "hierarchical", "kmeans", 
"model", "pam", "som", "sota") 
    } 
    
   if("all" %in% validation) { 
 validation = c("internal", "stability", "biological") 
    }    
   
 addArgs <- list(...) 
 ## 'verbose' and 'method' are both used in clValid and RankAggreg 
 if(exists(c("verbose"), where = addArgs)){ 
  stop("must specify 'verbose' as 'clVerbose' or 'rankVerbose'") 
 } 
 if(exists(c("method"), where = addArgs)){ 
  stop("must specify 'method' as 'hierMethod' or 'rankMethod'") 
 } 
  
 ## Sort arguments to clValid or RankAggreg 
 RankAggreg.names <- c(names(formals(RankAggreg)),"p") 
 RankAggreg.args <- addArgs[names(addArgs) %in% RankAggreg.names] 
 if(length(RankAggreg.args) > 0){ 
  clValid.args <- addArgs[-which(names(addArgs) %in% RankAggreg.names)] 
 } else{ 
  clValid.args <- addArgs  
 } 
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 ## Obtain validation measures for clustering results, cluster ranks and weights 
 clusters <- do.call('clValid',c(list(obj, nClust, clMethods, validation, method 
= hierMethod, verbose = clVerbose),  
    clValid.args)) 
 cluster.order <- getRanksWeights(clusters)  
  
 if(exists(c("k"), where = RankAggreg.args)){ 
  nList <- RankAggreg.args$k 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == "k")] 
 } else { 
  nList <- ncol(cluster.order$ranks) 
 } 
  
 if(exists(c("weights"), where = RankAggreg.args)){ 
  rank.weight <- RankAggreg.args$weights 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == 
"weights")] 
 } else { 
  rank.weight <- cluster.order$weights 
 } 
  
 ## Perform weighted rank aggregation   
 optimal.list <- do.call('RankAggreg', c(list(x = cluster.order$ranks, k = 
nList, weights = rank.weight,  
 method = rankMethod, verbose = rankVerbose), RankAggreg.args)) 
 
 ## Create 'optCluster' class object 
 new("optCluster", rankAgg = optimal.list, clVal = clusters, optMethod = 
optimal.list$top.list[1]) 
  
} 
 
########## repRankAggreg Function ########## 
 
## Repeat weighted rank aggregation on "optCluster" object 
repRankAggreg <- function(optObj, rankMethod = "same", distance = "same", 
rankVerbose = FALSE, ... ){ 
  
 RankAggreg.args <- list(...) 
  
 clusters <- cl.valid(optObj) 
 rankAgg <- rank.aggreg(optObj)  
 cluster.order <- getRanksWeights(clusters) 
 method <- match.arg(rankMethod, c("same", "CE", "GA")) 
 distance <- match.arg(distance, c("same", "Spearman", "Kendall")) 
  
 if(method == "same") { 
  method <- rankAgg$method  
 }  
  
 if(distance == "same") { 
  distance <- rankAgg$distance  
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 }  
  
 if(exists(c("method"), where = RankAggreg.args)){ 
  message(" The argument 'method' has been changed to 'rankMethod' ") 
  rankMethod <- RankAggreg.args$method 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == 
"method")]  
 }    
  
  
 if(exists(c("verbose"), where = RankAggreg.args)){ 
  message(" The argument 'verbose' has been changed to 'rankVerbose' ") 
  rankVerbose <- RankAggreg.args$verbose 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == 
"verbose")]  
 }   }   
   
 if(exists(c("k"), where = RankAggreg.args)){ 
  nList <- RankAggreg.args$k 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == "k")] 
 } else { 
  nList <- ncol(cluster.order$ranks) 
 } 
  
 if(exists(c("weights"), where = RankAggreg.args)){ 
  rank.weight <- RankAggreg.args$weights 
  RankAggreg.args <- RankAggreg.args[-which(names(RankAggreg.args) == 
"weights")] 
 } else { 
  rank.weight <- cluster.order$weights 
 } 
  
 ## Perform weighted rank aggregation   
 optimal.list <- do.call('RankAggreg', c(list(x = cluster.order$ranks, k = 
nList, weights = rank.weight,  
 method = method, distance = distance, verbose = rankVerbose), RankAggreg.args)) 
  
 ## Create 'optCluster' class object 
 new("optCluster", rankAgg = optimal.list, clVal = clusters, optMethod = 
optimal.list$top.list[1]) 
} 

########### optCluster Methods ########### 
 
########### Create Accessor Functions ########## 
 
## cl.valid accessor 
setGeneric("cl.valid", function(object, ...) standardGeneric("cl.valid")) 
setMethod("cl.valid",signature(object="optCluster"), 
          function(object) return(object@clVal)) 
 
## rank.aggreg accessor 
setGeneric("rank.aggreg", function(object, ...) standardGeneric("rank.aggreg")) 
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setMethod("rank.aggreg",signature(object="optCluster"), 
          function(object) return(object@rankAgg)) 
 
## top.method accessor 
setGeneric("top.method", function(object, ...) standardGeneric("top.method")) 
setMethod("top.method",signature(object="optCluster"), 
          function(object) return(object@optMethod)) 
 
########### Print, Show, and Summary Methods ########## 
 
setMethod("print","optCluster", 
          function(x) { 
            cat("\nThe overall optimal method with number of clusters is: \n\t   
", top.method(x), "\n\n") 
            print(rank.aggreg(x)) 
          }) 
 
setMethod("show","optCluster", 
          function(object) { 
            cat("\nThe overall optimal method with number of clusters is: \n\t   
", top.method(object), "\n\n") 
            print(rank.aggreg(object)) 
          }) 
 
setMethod("summary","optCluster", 
          function(object) { 
            cat(summary(cl.valid(object)), "\nThe overall optimal method with 
number of clusters is: \n\t   ",  
            top.method(object), "\n\n") 
            print(rank.aggreg(object)) 
          }) 

Example 1 Analysis Code 

library(optCluster) 
 
## load mouse data from clValid 
data(mouse) 
ex1 <- mouse[, c("M1", "M2", "M3", "NC1", "NC2", "NC3")] 
rownames(ex1) <- mouse$ID 

## Run optCluster Function and Record Time 
start.time <- Sys.time() 
optMouse <-optCluster(ex1, 2:9, clMethods = “all”, validation = “all”, seed = 
123, annotation = "moe430a.db", maxIter = 1500) 
end.time <- Sys.time() 
time.taken <- end.time - start.time 
time.taken 
 
## Results 
top.method(optMouse) 
print(optMouse) 
summary(optMouse) 
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## Validation Scores 
valMouse <- cl.valid(optMouse) 
optimalScores(valMouse) 
 
## Validation Plots 
par(mfrow = c(5,2)) 
plot(valMouse, measure = c("BHI", "BSI"), legend = FALSE) 
plot(valMouse, measure = c("Dunn", "Silhouette", "Connectivity"), legend = 
FALSE) 
plot(valMouse, measure = c("AD", "ADM", "APN", "FOM"), legend = FALSE) 
plot(nClusters(valMouse), measures(valMouse, "AD")[, , 1], type = "n", axes = 
F, xlab = " ", ylab = " ") 
legend("center", clusterMethods(valMouse), col = 1:10, lty = 1:10, pch = 
paste(c(1:9,0)), cex = 0.8) 
 
## Aggregation Results 
aggMouse <- rank.aggreg(optMouse) 
aggMouse 
aggMouse$num.it 
plot(aggMouse) 
which(aggMouse$top.list == "agnes-2") 
 
Example 2 Analysis Code 

library(NBPSeq) 
data(arab) 
ex2 <- t(arab)/colSums(arab) 
ex2 <- t(ex2) 
## Create File-backed Matrix 
ex2 <- as.big.matrix(ex2, backingfile = "arab.big.txt", backingpath = 
"/scratch/home/mnseku01") 
 
## Run optCluster Function and Record Time 
start.time <- Sys.time() 
optArabid <- optCluster(ex2[,], 2:4, clMethods = c("clara", "fanny",  
  "hierarchical", "kmeans", "model", "pam", "som", "sota"), validation =  
  "all", seed = 123, annotation = "org.At.tair.db", maxitems = nrow(ex2[,])) 
print(optArabid) 
end.time <- Sys.time() 
time.taken <- end.time - start.time 
time.taken 
 
save.image("arabTest24.Rdata") 
 
## Plot of Aggregation 
aggArabid <- rank.aggreg(optArabid) 
plot(aggArabid) 
aggArabid$num.it 
 
## Validation Scores 
valArabid <- cl.valid(optArabid) 
optimalScores(valArabid) 
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## Results 
summary(optArabid) 
 
## Validation Plots 
par(mfrow = c(5,2)) 
plot(valArabid, measure = c("BHI", "BSI"), legend = FALSE) 
plot(valArabid, measure = c("Dunn", "Silhouette", "Connectivity"), legend = 
FALSE) 
plot(valArabid, measure = c("AD", "ADM", "APN", "FOM"), legend = FALSE) 
plot(nClusters(valArabid), measures(valArabid, "AD")[, , 1], type = "n", axes = 
F, xlab = " ", ylab = " ") 
legend("center", clusterMethods(valArabid), col = 1:8, lty = 1:8, pch = 
paste(c(1:8)), cex = 0.8) 
 
## Additional Rank Aggregation Using "Kendall" Distance 
KenArabid <- repRankAggreg(optArabid, distance = “Kendall”) 
print(KenArabid) 
plot(KenArabid) 
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APPENDIX B 

ADDITIONAL R OUTPUT FROM CHAPTER VI 
 
Example 1 print( ) Output 
 
The overall optimal method with number of clusters is:  
        som-8  
 
The optimal list is:  
        som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9 kmeans-8 pam-6  
        hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7 fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6  
        som-3 diana-9 agnes-6 som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9 som-4  
        clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4 sota-7 diana-7 diana-5  
        kmeans-6 agnes-2 som-5 fanny-3 kmeans-2 kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4  
        sota-2 diana-3 diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6 clara-4  
        fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4 pam-4 model-3 model-7 model-8  
        model-9 model-6 model-5 model-4 
 
  Algorithm:   CE 
  Distance:    Spearman 
  Score:       239.4503  
 
Example 1 summary( ) Output 
 
Clustering Methods: 
 agnes clara diana fanny hierarchical kmeans model pam som sota  
 
Cluster sizes: 
 2 3 4 5 6 7 8 9  
 
Validation Measures: 
                                  2        3        4        5        6        7        8        9 
                                                                                                   
agnes        APN             0.0478   0.1288   0.1755   0.1689   0.1516   0.0927   0.1095   0.1562 
             AD              3.2430   2.6814   2.2571   2.0642   1.8732   1.6962   1.5925   1.5290 
             ADM             0.4283   1.0953   0.8070   0.6196   0.5867   0.5475   0.5286   0.5463 
             FOM             1.0658   0.8678   0.7451   0.6823   0.6371   0.5949   0.5388   0.5029 
             Connectivity    5.3270  14.2528  20.7520  27.0726  30.6194  30.6194  36.1615  40.6222 
             Dunn            0.1291   0.0788   0.0857   0.0899   0.0899   0.1203   0.1419   0.1467 
             Silhouette      0.5133   0.4195   0.3700   0.3343   0.3233   0.3808   0.3655   0.3582 
             BHI             0.2781   0.2783   0.2732   0.2543   0.2515   0.2602   0.2450   0.2236 
             BSI             0.7950   0.5293   0.3389   0.3178   0.2848   0.2657   0.2287   0.1947 
clara        APN             0.1099   0.2199   0.2798   0.3108   0.3061   0.1269   0.1240   0.1518 
             AD              2.9902   2.5945   2.3069   2.1053   1.9024   1.5114   1.3948   1.3075 
             ADM             0.4907   0.9201   0.9264   1.0816   1.0271   0.4210   0.3399   0.3635 
             FOM             1.0103   0.8251   0.6923   0.6671   0.5239   0.4930   0.4557   0.4384 
             Connectivity   18.7028  27.9651  44.8234  35.5159  26.1238  33.8361  47.3369  52.3262 
             Dunn            0.0287   0.0597   0.0660   0.0761   0.0857   0.0671   0.1127   0.0882 
             Silhouette      0.4257   0.3489   0.3304   0.3636   0.3836   0.4146   0.3997   0.3892 
             BHI             0.2808   0.2760   0.2778   0.2786   0.2798   0.2795   0.2649   0.2675 
             BSI             0.4948   0.3701   0.2736   0.2322   0.1931   0.1720   0.1517   0.1384 
diana        APN             0.0634   0.1158   0.1024   0.1861   0.2274   0.2034   0.1225   0.1286 
             AD              2.9133   2.5593   2.0303   1.9870   1.9122   1.7617   1.5439   1.4777 
             ADM             0.3136   0.4888   0.3180   0.6023   0.6932   0.5596   0.4428   0.4055 
             FOM             0.9774   0.8403   0.6816   0.6435   0.6081   0.5620   0.5136   0.4844 
             Connectivity   18.7552  25.1187  38.1242  38.8143  45.1349  53.2302  53.2302  58.8917 
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             Dunn            0.0315   0.0358   0.0492   0.0577   0.0646   0.0648   0.0813   0.0828 
             Silhouette      0.4601   0.3705   0.3538   0.3378   0.3316   0.2766   0.3453   0.3174 
             BHI             0.2767   0.2665   0.2648   0.2598   0.2446   0.2459   0.2564   0.2791 
             BSI             0.5891   0.5111   0.3444   0.2909   0.2774   0.2502   0.2229   0.2005 
fanny        APN             0.0691   0.1031   0.1515   0.1818   0.1001   0.0708   0.1582   0.1678 
             AD              2.8999   2.3775   2.1079   1.9018   1.6229   1.4741   1.5446   1.5071 
             ADM             0.2984   0.3278   0.4259   0.3996   0.2481   0.1894   0.3774   0.3636 
             FOM             0.9891   0.8161   0.7244   0.6610   0.5554   0.5151   0.5305   0.5249 
             Connectivity   19.8925  32.7579  42.7421  42.7992  55.6552  43.3813  60.8806  66.1210 
             Dunn            0.0401   0.0430   0.0623   0.0700   0.0632   0.0816   0.0514   0.0514 
             Silhouette      0.4332   0.3401   0.2877   0.2765   0.3624   0.3501   0.3082   0.2123 
             BHI             0.2795   0.2754   0.2812   0.2764   0.2847   0.2867   0.2896   0.3117 
             BSI             0.4955   0.3359   0.2481   0.1924   0.1652   0.1530   0.1440   0.1319 
hierarchical APN             0.0478   0.1288   0.1755   0.1689   0.1516   0.0927   0.1095   0.1562 
             AD              3.2430   2.6814   2.2571   2.0642   1.8732   1.6962   1.5925   1.5290 
             ADM             0.4283   1.0953   0.8070   0.6196   0.5867   0.5475   0.5286   0.5463 
             FOM             1.0658   0.8678   0.7451   0.6823   0.6371   0.5949   0.5388   0.5029 
             Connectivity    5.3270  14.2528  20.7520  27.0726  30.6194  30.6194  36.1615  40.6222 
             Dunn            0.1291   0.0788   0.0857   0.0899   0.0899   0.1203   0.1419   0.1467 
             Silhouette      0.5133   0.4195   0.3700   0.3343   0.3233   0.3808   0.3655   0.3582 
             BHI             0.2781   0.2783   0.2732   0.2543   0.2515   0.2602   0.2450   0.2236 
             BSI             0.7950   0.5293   0.3389   0.3178   0.2848   0.2657   0.2287   0.1947 
kmeans       APN             0.0603   0.0726   0.3146   0.2485   0.2470   0.1595   0.2183   0.1589 
             AD              2.9001   2.2923   2.2529   1.9978   1.8389   1.6236   1.5344   1.3898 
             ADM             0.3196   0.3101   1.0621   0.7151   0.6700   0.5213   0.5967   0.5253 
             FOM             0.9745   0.7548   0.7114   0.6528   0.6074   0.5458   0.4983   0.4686 
             Connectivity   13.2548  17.6651  37.3980  43.2655  50.6095  39.5567  40.3567  45.2631 
             Dunn            0.0464   0.0873   0.0777   0.0815   0.0703   0.0998   0.1286   0.1148 
             Silhouette      0.4571   0.4182   0.3615   0.3367   0.3207   0.3931   0.3780   0.4261 
             BHI             0.2784   0.2776   0.2755   0.2561   0.2564   0.2606   0.2520   0.2569 
             BSI             0.5775   0.3760   0.2856   0.2526   0.2148   0.2024   0.1704   0.1620 
model        APN             0.1991   0.3388   0.4337   0.5815   0.3472   0.3291   0.3225   0.4630 
             AD              3.6550   3.0524   3.7695   3.3632   2.8363   2.5435   2.5471   2.5032 
             ADM             1.6991   1.2080   1.8851   2.1598   1.1909   1.0524   1.1315   1.4743 
             FOM             1.1267   0.8286   0.9952   1.0347   0.8042   0.7910   0.7901   0.6456 
             Connectivity   23.7373 121.6671  89.2726 111.0246  96.4258 126.3575 132.8135 159.5603 
             Dunn            0.0240   0.0304   0.0232   0.0332   0.0231   0.0342   0.0387   0.0273 
             Silhouette      0.3291   0.2131  -0.0106   0.0902   0.0694   0.0388  -0.0004  -0.0205 
             BHI             0.2844   0.2729   0.2978   0.2708   0.3094   0.3265   0.3457   0.3277 
             BSI             0.7013   0.4334   0.3673   0.3093   0.2510   0.2109   0.2154   0.1681 
pam          APN             0.1318   0.2376   0.3658   0.3029   0.0486   0.1240   0.1037   0.2063 
             AD              3.0382   2.5993   2.4492   2.0840   1.5272   1.4906   1.3517   1.3614 
             ADM             0.6372   0.9733   1.3172   1.0164   0.1401   0.3927   0.2760   0.5385 
             FOM             1.0092   0.8391   0.7663   0.6490   0.5158   0.4934   0.4632   0.4370 
             Connectivity   18.7917  27.9651  30.9302  44.9671  32.9667  41.8925  45.4353  47.1845 
             Dunn            0.0391   0.0597   0.0510   0.0761   0.0816   0.0627   0.0845   0.0882 
             Silhouette      0.4271   0.3489   0.3563   0.3530   0.4152   0.4117   0.4120   0.3817 
             BHI             0.2820   0.2760   0.2828   0.2784   0.2765   0.2749   0.2627   0.2608 
             BSI             0.5083   0.3677   0.2737   0.2467   0.1995   0.1659   0.1513   0.1358 
som          APN             0.0738   0.0627   0.1243   0.2399   0.1086   0.0424   0.0991   0.1802 
             AD              2.9271   2.2836   2.0304   1.9441   1.5940   1.3853   1.3445   1.3432 
             ADM             0.4203   0.2599   0.3698   0.6864   0.3242   0.1296   0.2713   0.4551 
             FOM             0.9847   0.7532   0.6956   0.6419   0.5285   0.4760   0.4535   0.4329 
             Connectivity   13.2548  16.3000  37.2611  43.0948  40.1087  32.3194  35.8984  53.4611 
             Dunn            0.0464   0.0854   0.0554   0.0756   0.0514   0.0996   0.1425   0.1255 
             Silhouette      0.4571   0.4185   0.3536   0.3261   0.3907   0.4175   0.4183   0.3761 
             BHI             0.2784   0.2773   0.2711   0.2701   0.2771   0.2774   0.2631   0.2676 
             BSI             0.5763   0.3780   0.2939   0.2287   0.1952   0.1536   0.1483   0.1339 
sota         APN             0.0716   0.0830   0.3035   0.3466   0.2340   0.2319   0.1631   0.1690 
             AD              2.9037   2.4119   2.3832   2.2777   1.9553   1.7958   1.5234   1.4429 
             ADM             0.2866   0.2714   1.0898   1.1415   0.8108   0.8395   0.5103   0.4693 
             FOM             0.9872   0.8133   0.6958   0.6511   0.6315   0.5673   0.5018   0.4767 
             Connectivity   22.7690  30.1794  32.6333  41.8321  47.7548  47.7548  55.4425  58.6238 
             Dunn            0.0351   0.0446   0.0459   0.0459   0.0509   0.0509   0.0768   0.0768 
             Silhouette      0.4395   0.3682   0.3169   0.2887   0.3236   0.3514   0.3577   0.3617 
             BHI             0.2795   0.2796   0.2831   0.2741   0.2793   0.2784   0.2710   0.2791 
             BSI             0.5096   0.4386   0.2966   0.2620   0.2525   0.2249   0.1741   0.1485 
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Optimal Scores: 
 
             Score  Method Clusters 
APN          0.0424 som    7        
AD           1.3075 clara  9        
ADM          0.1296 som    7        
FOM          0.4329 som    9        
Connectivity 5.3270 agnes  2        
Dunn         0.1467 agnes  9        
Silhouette   0.5133 agnes  2        
BHI          0.3457 model  8        
BSI          0.7950 agnes  2        
 
The overall optimal method with number of clusters is:  
        som-8  
 
The optimal list is:  
        som-8 som-7 clara-8 kmeans-9 hierarchical-9 agnes-9 agnes-8 clara-9 kmeans-8 pam-6  
        hierarchical-8 pam-9 agnes-7 pam-8 hierarchical-7 fanny-7 pam-7 kmeans-7 diana-8 sota-9 som-6  
        som-3 diana-9 agnes-6 som-9 sota-8 agnes-5 clara-7 hierarchical-6 hierarchical-5 fanny-9 som-4  
        clara-6 fanny-6 fanny-5 fanny-8 diana-4 kmeans-3 diana-6 agnes-4 sota-7 diana-7 diana-5  
        kmeans-6 agnes-2 som-5 fanny-3 kmeans-2 kmeans-5 hierarchical-2 clara-5 fanny-4 hierarchical-4  
        sota-2 diana-3 diana-2 hierarchical-3 kmeans-4 sota-3 agnes-3 som-2 pam-5 sota-6 clara-4  
        fanny-2 sota-5 pam-3 clara-3 clara-2 pam-2 model-2 sota-4 pam-4 model-3 model-7 model-8  
        model-9 model-6 model-5 model-4 
 
  Algorithm:   CE 
  Distance:    Spearman 
  Score:       239.4503  
 
Example 2 summary( ) Output 
 
Clustering Methods: 
 clara fanny hierarchical kmeans model pam som sota  
 
Cluster sizes: 
 2 3 4  
 
Validation Measures: 
                                   2         3         4 
                                                         
clara        APN              0.0014    0.0142    0.1094 
             AD               0.0001    0.0001    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0002    0.0002    0.0002 
             Connectivity    64.1647  384.4389 1208.9567 
             Dunn             0.0032    0.0002    0.0000 
             Silhouette       0.9737    0.8397    0.5169 
             BHI              0.2419    0.2422    0.2270 
             BSI              0.9692    0.7526    0.4600 
fanny        APN              0.0223    0.0404    0.0599 
             AD               0.0001    0.0001    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0003    0.0003    0.0003 
             Connectivity   693.1877 1173.5206 1794.4837 
             Dunn             0.0000    0.0000    0.0000 
             Silhouette       0.6012    0.4711    0.4267 
             BHI              0.1796    0.1853    0.1878 
             BSI              0.5889    0.4115    0.3166 
hierarchical APN              0.0000    0.0000    0.0001 
             AD               0.0002    0.0002    0.0002 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0002    0.0002    0.0002 
             Connectivity     2.9290    5.8579   10.0159 
             Dunn             0.9107    1.1082    0.5169 
             Silhouette       0.9971    0.9963    0.9930 
             BHI              0.1681    0.1681    0.3341 
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             BSI              1.0000    1.0000    0.9992 
kmeans       APN              0.0003    0.0005    0.0004 
             AD               0.0002    0.0002    0.0002 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0002    0.0002    0.0002 
             Connectivity     5.8579   15.9651   16.1857 
             Dunn             0.5659    0.0371    0.0488 
             Silhouette       0.9968    0.9897    0.9846 
             BHI              0.0841    0.2434    0.2643 
             BSI              0.9994    0.9952    0.9925 
model        APN              0.0312    0.0651    0.1131 
             AD               0.0001    0.0001    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0003    0.0003    0.0003 
             Connectivity  1657.6734 2302.0004 4087.6429 
             Dunn             0.0001    0.0000    0.0000 
             Silhouette       0.7136    0.1614    0.1382 
             BHI              0.1826    0.1863    0.1907 
             BSI              0.6407    0.4935    0.3627 
pam          APN              0.0254    0.0380    0.0480 
             AD               0.0001    0.0001    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0003    0.0002    0.0002 
             Connectivity   583.8889  716.2687 1247.1345 
             Dunn             0.0001    0.0001    0.0000 
             Silhouette       0.7186    0.6522    0.5671 
             BHI              0.1847    0.2190    0.2140 
             BSI              0.6320    0.5594    0.4248 
som          APN              0.0002    0.0016    0.0020 
             AD               0.0002    0.0002    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0002    0.0002    0.0002 
             Connectivity    15.9623   61.1980   90.6306 
             Dunn             0.0618    0.0039    0.0031 
             Silhouette       0.9927    0.9729    0.9564 
             BHI              0.2219    0.2939    0.1956 
             BSI              0.9977    0.9860    0.9513 
sota         APN              0.0131    0.0148    0.0150 
             AD               0.0001    0.0001    0.0001 
             ADM              0.0000    0.0000    0.0000 
             FOM              0.0003    0.0002    0.0002 
             Connectivity   418.9956  505.1250  515.1933 
             Dunn             0.0001    0.0002    0.0002 
             Silhouette       0.8057    0.7831    0.7869 
             BHI              0.1920    0.2241    0.2527 
             BSI              0.7089    0.6860    0.6846 
Optimal Scores: 
 
             Score  Method       Clusters 
APN          0.0000 hierarchical 3        
AD           0.0001 pam          4        
ADM          0.0000 hierarchical 3        
FOM          0.0002 kmeans       4        
Connectivity 2.9290 hierarchical 2        
Dunn         1.1082 hierarchical 3        
Silhouette   0.9971 hierarchical 2        
BHI          0.3341 hierarchical 4        
BSI          1.0000 hierarchical 3        
 
  
The overall optimal method with number of clusters is:  
        hierarchical-3  
 
The optimal list is:  
        hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 hierarchical-4 hierarchical-2 som-3 clara-3  
        clara-2 sota-3 pam-4 sota-2 kmeans-3 som-2 pam-3 pam-2 fanny-2 fanny-3 model-2 fanny-4 clara-4  
        model-3 model-4 
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  Algorithm:   CE 
  Distance:    Spearman 
  Score:       55.13205 
 
Example 2 print( ) Output for “GA” and “Spearman” Rank Aggregation 
 
> GAarabid <- repRankAggreg(optArabid, rankMethod = “GA”, maxIter = 200000) 
> print(GAarabid) 
 
The overall optimal method with number of clusters is:  
        hierarchical-3  
 
The optimal list is:  
        hierarchical-3 kmeans-4 som-4 kmeans-2 sota-4 sota-3 som-3 hierarchical-2 sota-2  
        hierarchical-4 pam-4 fanny-3 fanny-4 clara-3 clara-2 kmeans-3 som-2 pam-3 fanny-2 pam-2  
        model-2 model-3 clara-4 model-4 
 
  Algorithm:   GA 
  Distance:    Spearman 
  Score:       54.36216 
 
Example 2 print( ) Output for “GA” and “Kendall” Rank Aggregation 
 
> GAKarabid <- repRankAggreg(optArabid, rankMethod = “GA”, distance = “Kendall”, maxIter = 200000) 
> print(GAKarabid) 
 
The overall optimal method with number of clusters is: 
        som-4  
 
The optimal list is:  
        som-4 sota-4 sota-3 clara-2 kmeans-4 som-3 kmeans-3 som-2 hierarchical-3 hierarchical-2  
        clara-3 pam-4 hierarchical-4 kmeans-2 fanny-4 fanny-3 pam-3 clara-4 fanny-2 sota-2 pam-2  
        model-2 model-4 model-3 
 
  Algorithm:   GA 
  Distance:    Kendall 
  Score:       17.07676   
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