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ABSTRACT 

ENHANCED CRYPTOGRAPHIC APPROACHES 

FOR SCADA NETWORK SECURITY 

Waleed H. EISaid 

07-02-2010 

Due to the overwhelming increase in open source code, off-the-shelf software 

packages, third party and vendor codes, along with the ease of getting information about 

hacking network security systems and attacking the well known holes in security 

systems, the problem of having a secure network system is much more difficult than 

before this boom in technology and information broadcast. What makes the problem even 

worse is trying to secure a network for real time control, such as a network using 

supervisory control and data acquisition (SCADA) systems, because now the problem has 

two faces: securing the real time control system and at the same time keeping the 

response time of the system in the acceptable range for the transactions' level of service. 

There is a strong trend to chose security frameworks that have been popular in the 

e-commerce sites of the web, particularly because they proven to be very mature and 

secure for more than one and half decades. Examples include the transport level security 

(TLS) and its predecessor secured socket layer (SSL) framework that is based on the very 

popular public key cryptography and key distribution algorithms, such as Rivest, Shamir 

and Adleman (RSA), elliptic curve cryptography (ECC), and Diffie-Hellman. 
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Despite the fact that these algorithms proved to be very powerful against most 

types of attacks, they are not tailored to secure SCADA networks, and consequently 

cause a significant degradation in the performance time of real time transactions. 

This dissertation offers two novel encryption algorithms for securing a SCADA 

network, the N-Secrecy and the Security Spectrum algorithms. N-Secrecy gave very good 

results when compared with the SSL; with N-Secrecy performance time in the range of 

one thousandth of the SSL. The Security Spectrum approach moved the encryption 

methodology from using numerical representations into using a physical representation 

based on modeling the conditions of the two communicating parties with a system of 

non-linear polynomials and then using computer algebra techniques. Both approaches 

have the potential to significantly enhance the security of commercial SCADA 

installations. 
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CHAPTER I 

INTRODUCTION 

The objective of this chapter is to present an introduction to the supervisory control 

and data acquisition (SCADA) network systems, and to the enhanced cryptographic 

approaches for SCADA network security, which is the subject of this dissertation. The 

introduction includes an overview of the usage of cryptography in securing SCADA 

networks and the objective and organization of the whole dissertation. 

1.1 Cryptography for securing SCADA networks 

SCADA is broadly used in many industries that require real time control systems such as, 

water management, traffic signals, electric power, oil pipelines, and manufacturing 

systems. The most famous and commercially available cryptographic approach that is 

adopted by many SCADA systems is the secured socket layer / transport level security 

(SSUTLS) framework. Following is a brief discussion on what SSLlTLS is and what its 

advantages and disadvantages are when used with SCADA systems. The SSUTLS 

framework involves establishing a mutual trust between each one of the communicating 

parties prior to initiating the communication. There are a few common public key 

cryptographic algorithms that can be used in order for each party to authenticate the other 

in the so-called SSL handshaking [27]. Below are brief details on some of those common 

cryptographic algorithms. Together with those public key cryptographic algorithms, the 

SSL also uses symmetric encryption algorithms like the DES, or triple-DES, and a 

message digest algorithm to validate the data integrity. 
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1.1.1 RSA 

The RSA algorithm works such that the first party uses two very large prime 

numbers that are a few hundred digits, p and q, multiply them and send the product to the 

other party or parties to serve as the public key k. The other party uses k to encode the 

message and sends the encoded message to the first party, which then uses its private 

numbers p and q to decode it. Hence, the idea is to use a one way function where k can be 

obtained from p and q relatively easily but the inverse is not true [28]. 

1.1.2 Diffie-Helman (Exponential Key Agreement) 

This algorithm depends on the choice of one prime number p and an integer g less 

than p. Those two numbers will serve as the public keys. The first party will have a 

private number of its own, a, computes ga mod p and sends the result to the other party 

which in tum will have a private number of its own, b, so it will compute (ga mod p)b 

which is equal to gab mod p. Now the other party will compute gb mod p and sends it to 

the first party which will compute (gb mod p t which is equal to gab mod p again. After 

this transfer and computation of numbers, both parties will have the same number which 

is gab mod p. This number then serves as the shared key between the two parties. Like the 

RSA Diffie-Helman algorithm depends on a one way function depending on the 

complexity of the discrete logarithm problem [29]. Elliptic curve cryptography (ECC) is 

similar to Diffie-Helman algorithm in that it depends on the discrete logarithm problem 

as well [30]. 

1.1.3 Using SSL/TLS as the authentication framework in SCADA communication 
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The real value of applying SSUTLS in SCADA is that it is a well tested 

framework that is commonly used throughout the internet, and is much less expensive 

compared to adopting a new technology tailored to the SCADA networks. 

The disadvantages on the other hand, are the facts that SSUTLS IS a very 

performance consuming framework because of the use of the non inverse functions that 

are not needed at all in the SCADA systems because the communication will be between 

two SCADA units that actually know each other, not like the communicating parties over 

the internet. 

1.2 Dissertation organization 

This dissertation is divided into SIX chapters and two appendices. The second 

chapter gives a literature review on the SCADA network systems, the importance of 

securing those systems, a comparison between SCADA and IT systems, the SCADA 

attack topologies, available solutions, and the authentication role in securing SCADA 

systems. Chapter III then establishes the core of this dissertation which is a novel 

cryptographic framework for securing SCADA networks in a manner that is less 

computationally expensive than using the secured socket layer (SSL). The chapter starts 

with a preliminary version of the algorithm called Double Secrecy, and then discusses a 

variety of possible attacks, presenting solutions by extending the algorithm. Afterwards, 

the algorithm is extended to the N-Secrecy to offer flexibility administering the piece of 

information being transferred back and forth through the SCADA networks by defining 

the number of secrets required according to the vitality of this information, and then the 

whole authentication idea is extended to the idea of authorization to give the N-Secrecy 

another dimension. Chapter III then presents another version of the N-Secrecy algorithm 
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that is tailored to the test bed available using the Chemical Engineering Department 

distillation column, and concludes with brief comparisons between the multiple secrecy 

frameworks and a few authentication frameworks. 

Chapter IV presents the testing methodology and the testing results of the Double 

Secrecy and the N-Secrecy algorithms. The chapter starts with detailing some 

information about the way the code is designed and the way it is tested and compared to 

the baseline, which consists of three versions of the SSL, depending on whether the 

encryption algorithm used is the Rivest, Shamir and Adleman (RSA), Diffie-Helman, or 

elliptic curve. The data presented in this chapter covers the following variables: the 

length of the secret being transferred in the message; the way the inner encryption inside 

the double secrecy is implemented whether it is DES or Triple-DES, and the three ways 

of implementing the SSL. Chapter IV then switches the gear to presenting the 

experimental results of the N-Secrecy, fixing the inner encryption algorithm used to the 

Triple-DES and varying two variables; the length of the secret being transferred in the 

message, and the number of secrets used. Chapter V commences with presenting a 

different type of problem that is the key distribution problem, and how current algorithms 

like Diffie-Helman deal with that problem, and propose a new algorithm using computer 

algebra techniques. First, a brief discussion of the new algorithm is presented, then 

issues are found and discussed and afterwards solutions are offered to those issues, and 

finally, the new algorithm named the Security Spectrum is presented in section 5.3. The 

new algorithm is then presented using the notions of the SCADA distillation column test 

bed offered by the Chemical Engineering Department. Chapter VI provides conclusions 

and directions for future research. All the references that are used in throughout the 
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dissertation are gIVen In the References. Appendix A contains the code created to 

implement the N-secrecy and the security spectrum algorithm together with the code for 

the RTU, MTU, and the SSL. Appendix B covers some mathematical concepts used 

mainly in chapter V like Grabner bases, ideals, varieties, and polynomial ring theory. 
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CHAPTER II 

Literature Review 

This chapter presents a literature review on the subject of securing SCADA 

networks. The emphasis is on the authentication problem, which involves how two units, 

typically the RTU and the MTU, authenticate each other prior to establishing 

communications. The literature survey presented includes the following topics: (1) an 

introduction to the SCADA architectural differences and typical usages of SCADA 

systems; (2) discussion of the importance of securing SCADA networks; (3) discussion 

of SCADA attack topology vulnerabilities; (4) proposed and available commercial 

solutions; (5) SCADA and IT systems; (6) SCADA in relation to cryptography and 

authentication; (7) an overview of current research; and (8) discussion of a SCADA test 

bed developed at the University of Louisville. 

2.1 Introduction, SCADA architectural differences and typical usages 

SCADA systems were developed due to the need to control and monitor real-time 

processes, like those in oil pipelines, chemical and physical plants, and so forth. These 

systems replace human monitoring and promote monitoring at the level of the whole 

system and also facilitate remote control from a central location called a master terminal 

unit (MTU) [20]. SCADA systems were designed originally to be reliable and easy to use 

with very little concern about communication security. The functions of SCADA systems 

processes usually require on the order of seconds or tens of seconds to complete. 

SCADA architectures can be configured using any of the following communication 
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options [20]: point-to-point, where there is a link between each RTU and the master unit; 

series communication, where each RTU is connected to the closest RTU in its 

neighborhood and so forth until one of the RTUs links directly to the master unit; series-

star communication, where a certain RTU simulates a hub in its neighborhood and all the 

remote units in that neighborhood links to it; multi-drop communication architecture, 

where there is like a message bus from the master unit and each remote unit subscribes, 

and connects itself to that bus [31]. Connections to remote devices can be made over dial 

up, Ethernet LANs, leased lines, or SCADA radios. Some of the operations conducted in 

SCADA systems can be processed asynchronously like pulling values in a background 

job to be used in generating reports later, and some of the operations need to be 

conducted in real-time like some control transactions for aviation systems. Following is a 

figure showing a typical example of SCADA communication links according to the 

technical report of the American gas association (AGA) published in 2006 [20]. 

,------~--~--------------

Control Center 

"rnlll tlld 
PrOCf'~-=-or 

Publio Switched Telephone Network 

~-m---- --~1,,-------,,-f 

Mrldt"l :'::>11:1111)11 

-~ 
Control Center 

Remote Acce.ss 

WAN Card 

Oialull Modem 

Leased lines 

Public Switched Telephone Network 

( cOl"lrl~(,hQn to 
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Remote Site 
Devices 

Figure 2.1: A typical SCADA system network (adapted from AGA [20]) 

2.2 Importance of securing SCADA networks 
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The US Department of Energy states that automated control has helped to 

improve the productivity and reliability of energy systems by improving the performance 

of the real time transactions and decreasing the backup time [1]. The vulnerability of 

SCADA networks to cyber attacks has increased remarkably, since early SCADA designs 

did not consider the security risks that arose due to the switch from private and tailor

made software, operating systems and telecommunication networks to more general and 

open source software, and increasing the use of Internet connected networks [1]. The 

National Research Council has identified the security of SCADA systems as one of the 

fourteen most important initiatives in making the nation safer [2]. 

The Committee of Science and Technology for Countering Terrorism, of the 

National Research Council declared the vulnerability of the power grid's control systems 

to cyber attack as a significant challenge in protecting the electric power grid [2]. 

According to the committee, the special problem that should be reviewed in securing the 

SCADA systems is the way data is transmitted between control points in the SCADA 

network. Encryption techniques, enhanced firewalls, and cyber intrusion-detection 

technologies should be used to improve security and reduce the potential for hacking and 

disruption [2] and [5]. Existing surveillance technologies that were developed for defense 

and intelligence applications should be investigated for their usefulness in defending 

against terrorist attacks [2], [5], and [6]. 

The National Institute of Standards and Technology (NIST) defined a strategy 

named defense-in-depth, to protect industrial control systems (ICS), to which SCADA 

systems belong. This strategy stated that a typical ICS should begin developing security 

policies, procedures, and educational material that apply specifically to ICS, and that ICS 
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security policies and procedures should be based on the Homeland Security Advisory 

System Threat Level, deploying increasingly heightened security postures as the Threat 

Level increases. According to the NIST, security should be addressed throughout the life 

cycle of the rcs from architecture to procurement to installation, to maintenance, to 

decommissioning, and network topology should be implemented for the rcs having 

multiple layers, with the most critical communications occurring in the most secure and 

reliable layer. Also NrST recommended that a logical separation between the corporate 

and rcs networks should be provided [16]. 

NrST further recommended that a demilitarized zone (DMZ), which is the area 

between two firewalls, network architecture should be employed to prevent direct traffic 

between the corporate and ICS networks. Critical components on the other hand, should 

not have a single point of failure. Critical systems should be designed for fault tolerance 

to avoid catastrophic events and in addition, systems should be designed to fail securely. 

Unused Internet protocols (IPs), ports and services on rcs devices should be disabled 

after testing so that not to compromise ICS operation. A role-based access control should 

be implemented, that is to make the ICS networks, devices, and services' physical access 

as well as user privileges restricted to only those required to perform specific jobs [16]. 

According to NrST, ICS networks should have a different authentication paradigm 

and credentials than those of the corporate networks. Finally, security controls such as 

anti-virus software and intruder detection systems (IDS) should be implemented to 

prevent and detect the introduction and accumulation of malicious software to the rcs. 

Security techniques such as encryption of rcs communications and data storage should 

be applied. In addition, human monitoring and administration should be there all the time. 
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2.3 SCADA attack topology vulnerabilities 

Existing SCADA protocols were designed to use a rather simple error detection 

paradigm like the use of cyclic redundancy codes (CRC), parity checks or similar 

technology. The sender of the message will calculate the CRC and append it to the 

message. The receiving device, on the other side, will calculate the eRC for the message 

and compare it to the value received with the message. If a bit was flipped during 

transmission, the CRC indicates a transmission error. Another common characteristic for 

SCADA protocols is the fact that they were not designed with built in authentication or 

validation services, assuming a level of implicit trust. For example, when a message is 

received by an RTU, the source of the message is checked, and if that source is known, 

the request is enacted. Furthermore, DNP3 is becoming the standard protocol in the 

electric distribution world, and DNP is an open standard, with published information 

regarding message structure and vulnerabilities appearing on the Internet. 

The ways critical infrastructure can be attacked can be categorized to the 

following three modes. The attack can be the classical physical destruction attack to a 

critical control or data center; it can come through the communication wires, or through a 

compromised trusted party in the network [21]. Most of the currently reported incidents 

have an internal origin. Lack of authentication and mixed roles usually result in granting 

non-competent users access to critical functionality. On the other hand, the human 

machine interface (HMI) helps facilitate attacks by allowing interactions with the system 

from a higher level without the need to understand the underlying process. This kind of 

visibility, along with the fact that SCADA protocols have no authentication does much of 

the work of the attacker. On the other hand, the huge amount of available information 
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published on SCADA infrastructure components allows an attacker to discover new 

vulnerabilities at a lower level. 

Another important fact regarding electric distribution SCADA systems is that they 

are geographically dispersed. Some of the SCADA infrastructure components, such as 

RTUs or programmable logic controls (PLCs) are usually located in remote locations, 

physically dispersed from the central unit, and gaining physical access to the facilities 

that house these remote devices is usually trivial. Although these units are physically 

remote to the central unit, they are connected to the SCADA system (and potentially to 

other corporate networks) logically, offering an attacker a point of entry to an apparently 

isolated network. On the other hand, connections to remote devices can be made over dial 

up, leased lines, or SCADA radios. Each of these communication methods can be 

compromised. For example, SCADA radio is a strong signal, typically one watt. At that 

power, the signal can travel more than ten miles providing a significant opportunity for an 

adversary to break in without being detected [3]. One final pOint to mention is that 

SCADA systems are evolving towards commercial platforms and open protocols (PCs, 

TCP/IP, etc.) as time passes which adds the traditional vulnerabilities of these 

technologies, like worms, viruses and other malwares on top of vulnerabilities particular 

to the SCADA environment [8]. 

2.4 Proposed and available commercial solutions 

2.4.1 Proposed solution on the process level 

Most of the literature published on SCADA security addresses the issue from the 

process perspective and a very few consider the issue from the technical perspective. Less 

detailed articles and white papers have been published to educate company executives 
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about SCADA systems, such as "SCADA Security-Advice for CEOs" [11], that 

summarizes some of the issues of which company executive should be aware. Examples 

include separating the SCADA network from the Internet and the corporate network. This 

separation is critical to risk management in modem SCADA systems. Network 

architecture weaknesses can significantly increase the risk from Internet and other 

sources of intrusion. 

One major issue to be handled is confidentiality. SCADA systems were not 

designed with security specifications, so there is no standard protocol having built in 

authentication. If lower level protocols do not provide this confidentiality then SCADA 

transactions are communicated with no authentication, meaning that intercepted 

communications may be easily read. Authentication is another very important issue to 

keep in mind. Many SCADA systems give little regard to security, often lacking the 

memory and bandwidth for sophisticated password or authentication systems. As a result, 

there is often no mechanism to identify, authenticate or authorize a system user. Due to its 

nature, SCADA systems are mostly stateless, like those of banking ATM machines, 

lacking a session structure which, when combined with the lack of authentication, allow 

the injection of malicious requests or replies into the system without any prior knowledge 

of what has gone on before. The "SCADA Security-Advice for CEOs" article also gives a 

brief on where the threat is [11]. Following are some examples of threat sources: (1) 

insider attack from employees or ex-employees; (2) organized crime driven by financial 

incentive to penetrate SCADA systems; (3) mistakes made as a result of lack of training, 

or an oversight; (4) terrorists, and (5) generic Internet threats such as worms, Trojan 

horses and viruses that infect systems on the Internet can also affect SCADA systems 
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when they use the same software and protocols. Many of the intrusions may not be the 

result of a deliberate attack. SCADA systems may be infected merely because there will 

always be hackers and virus writers challenged and fascinated with technology. 

2.4.2 Proposed solution on the technical level, available commercial solutions 

Most of the SCADA solutions that are commercially available now have recently 

incorporated some authentication techniques, such as the SEL-3332 Intelligent Server, 

relays, remote I/O modules, and the SEL-2411 programmable automation controller, 

which uses the following to manage cyber security [7]: Encrypt Ethernet-based 

engineering access and SCADA protocols with SSLlTLS; Protect VPN access with IPsec 

link security; and Manage access via user accounts. 

2.5 SCADA and IT systems 

There are two kinds of operating systems in industrial control systems. One of 

them uses Windows or UNIX, each of which has role-based security to authorize the user 

and direct him to the right information according to his role. The second one is the 

control processor software itself that actually retrieves and sorts the data and sends 

commands with no means of authentication or authorization [23]. 

There are several differences between SCADA systems and regular IT systems 

making securing the SCADA systems a much harder job than securing the regular IT 

systems. A typical workstation or network will run an operation until it is finished. The 

real time control system on the other hand will prioritize all the operations in its queue 

and will process them accordingly. Whenever a new operation enters the queue, the 

prioritization is repeated, meaning that each time a higher priority transaction appears in 

the queue it will stop what it is doing. Another important difference is that IT systems 
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upgrade the hardware regularly with no problems. SCADA field devices on the other 

hand, often use inexpensive, low cost microprocessors. Some electrical devices in the 

industry are still using the 8088 processor introduced in 1978, despite the fact that only 

the 486 and later processors can use the encrypted authentication schemes with no 

unacceptable delays [23]. 

2.6 SCADA in relation to cryptography and authentication 

The Government Computer News (GCN) published in January, 2005 on its web 

site that a SCADA encryption appliance is soon to be commercially available. This 

product, called Datacryptor, was designed to be installed between the remote device and 

the management console, and it was supposed to support both Modbus and DNP 

protocols. The Datacryptor was to use the advanced encryption standard algorithm to 

encrypt on-going messages and authenticate the administrators as well via a password 

and a security token. It is well conceived that encryption would add latency on the 

performance of regular SCADA; the GCN though, said that the Datacryptor would keep 

this latency less than 20% and this should be acceptable [22]. The Datacryptor is now 

available commercially. 

All of the previous discussion points toward authentication as an important partial 

solution of current SCADA security problems. The Pacific Northwest National 

Laboratory (PNNL) adopted a project for designing and developing a novel SCADA 

communications authenticator technology, funded by the U.S. Navy. The idea behind the 

new protocol, called Secure SCADA Communications Protocol (SSCP), was to wrap the 

original SCADA communication traffic with a unique identifier and an authenticator [9]. 

The SSCP then uses the authenticator to authenticate the unique identifier in the 
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wrapper to validate the communication, and consequently detect various attack scenarios, 

including man in the middle, injected traffic, or message replay. The SSCP is to be 

available as an embedded software solution running on the SCADA master or 

input/output server. The authenticator technology directly supports the Roadmap to 

Secure Control Systems in the Energy Sector [12], with milestone targeting widespread 

implementation of methods for secure communication between remote-access devices 

and control centers. 

In terms of the Department of Defense (DOD) technology readiness level 

definitions [13], SSCP has currently achieved level seven (i.e., system prototype 

demonstration in an operational environment). The goal for this project is to move the 

SSCP toward technology readiness (level eight), where the technology has been proven to 

work in its final form and under expected conditions. Comprehensive testing will be 

performed to confirm that the technology will fulfill its technical objectives when 

deployed under a variety of expected conditions in the field. The goal is to facilitate 

earlier industry adoption of a novel security technology that is well suited for securing 

control systems used by energy infrastructures [14]. 

Donald Wallace [15] stated that the open nature of the Internet requires careful 

consideration of data security measures when implementing Internet-based SCADA 

systems. Processes, procedures, and tools must be put in place to address availability, 

integrity, confidentiality, and protection against unauthorized users. Regarding 

availability, system up time must be maintained at the highest levels through use of 

redundant servers, so that there is no single point of failure. Firewall protection must be 

provided in the Gateway and servers along with automated monitoring to detect DNS 

15 



attacks. Regarding integrity, the system must ensure that the data is not modified or 

corrupted through the use of encrypted data signatures. 

As for confidentiality, the system must ensure restricted access to data through 

use of encryption, and to the system by employing authentication frameworks such as 

SSL. Regarding protection against unauthorized users, it is realized that multi-layered 

password protection must be provided at all levels in the system. In other words there 

should be no single sign on (SSO) in SCADA systems. 

Much of the literature, discussing the need for SCADA authentication, mentions 

SSUTLS as an off-the-shelf solution [3, 7]. Concerns using the SSUTLS as a well 

developed Internet technology in authenticating private network systems like the SCADA 

arise, as why would public keys be used in a private network and getting the extra 

overhead of using an intensively computing irreversible function to encrypt data. SCADA 

systems were designed primarily to enhance communication between control systems and 

security should not come with the price of sacrificing the performance. 

2.7 Overview of Current Research 

One of the very interesting initiatives on which research is currently being 

conducted is the SCADA Honey Net Project conducted by Cisco Systems, Inc [9], which 

is about building honey pots for Industrial Networks. The goal of this project is to 

determine the feasibility of building a software-based framework to simulate a variety of 

industrial networks such as SCADA architecture. There are several uses for this project: 

(1) gathering data on attacker methodologies and tools, so that data mining can be done 

later on this data to gain infonnation on attacker trends; (2) testing a live protocol 

implementation; and (3) developing research countenneasures, such as device hardening, 
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stack obfuscation, and reducing application information [9]. 

Aside from simulating the real SCADA systems, the other important objective of 

the honey net project is to conduct research and eventually block all cyber attacks on 

SCADA systems, the group in the SCADA Safe project proposed a new protocol for link 

encryption and integrity checking of SCADA messages passed over slow serial lines [10]. 

They have also started an implementation project for that protocol, and they named it the 

SCADA Safe project. That serial SCADA protection protocol (SSPP) is for 

cryptographically protecting existing serial-based SCADA communications. A device 

that speaks SSPP is known as a SCADA cryptographic module (SCM). A SCADA 

message received from a SCADA master or remote unit on SCM plain text port will be 

protected and sent out to the SCM cipher text port as an SSPP message. An SSPP 

message received on a SCM cipher text port will be verified, decrypted, and sent out to 

the SCM plaintext port. SCM devices are deployed between SCADA devices and 

communications links modems. The key point here is that these devices must assure is 

data integrity, that is the commands and responses are not forged or altered during 

transmission. 

2.8 Test Bed configuration 

This section gives a brief discussion on the test bed that is going to be used for 

testing the suggested cryptographic frameworks. First, the test bed that is available in the 

Department of Chemical Engineering is presented and then a brief look at real SCADA 

controlled network systems is presented. 

The test bed consists of an operating 14 foot, 50 liter, 6 -tray distillation column. 

Data collection as well as distillation process control are carried out using actual SCADA 
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hardware and software. The system consists of the distillation column, two temperature 

sensors, five flow sensors, two level sensors, and five flow control valves as shown in 

figure 2.2 below. The distillation column separates a 20% molar solution of methanol and 

water into a distillate with concentration high in methanol (tops product) and a residue, 

which is mainly water (bottoms product). 

The distillation process, from start up to shut down is monitored and controlled by a 

computer-based SCADA control system, specifically iFIX software from GE-Fanuc [25]. 

A digital to analog and analog to digital terminator panel links the sensors and actuators 

to the computer serial port. The distillation column is a MIMO (multiple input-multiple 

outputs) process with nine variables that can be controlled: distillate accumulator and re

boiler levels, top and bottom temperatures, and distillate, reflux, bottoms, feed and steam 

flows. There are nine proportional integral derivative (PID) controllers for these 

variables. PID controller tuning parameters and controller set points can be changed. 

The time required from start-up to achieve stable operation takes about 3 hours. The 

system can be monitored throughout operation and changes can be made to set points 

during this time before reaching the desired operating state. Remote monitoring and 

control allows a control engineer or operator to use the University's LAN as a control 

network and monitor and control the distillation column from a nearby office. 

Remote monitoring and control are to be achieved using the HTTP protocol and a 

Tomcat web server on the computer connected directly to distillation column sensors and 

valves controllers. A computer on the LAN can then connect to the distillation column 

control page that provides an HMI interface, pull data values from the server and update 

the values of control variables by sending them from the client back to the server. 
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The entire system can be viewed as a SCADA system where the iFIX software on 

the lab PC collects data from the sensors, makes local control calculations, and sends 

control signals to column hardware. The laboratory PC also serves as an RTU for 

multiple MTUs and the University LAN provides the network connection between the 

RTU and MTUs [24]. 

Interaction between the iFIX software and the tomcat web server is to be achieved 

through two files, INPUTDAT and OUTPUT.DAT Process variables are placed in 

OUTPUTDA T by iFIX and iFIX reads the value of certain control variables from 

INPUT.DAT. 

2.8.1 How this testing bed differs from actual SCADA-controlled distillation column 

used in industry, 

This test bed environment differs from commercial chemical manufacturing 

environments. However, the remote monitoring and control are similar. According to the 

research done, the following categories of different SCADA-controlled distillation 

columns, have been found 
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Figure 2.2 Distillation Column and physical SCADA architecture adapted from [24]. 

1. Plant is monitored and controlled with some SCADA software, like the iFIX used 

in the above mentioned test bed. However, in our test bed there are digital to 

analog and analog to digital terminator panels to link the sensors and actuators to 

the computer via serial ports. Whereas, in those actual SCADA controlled 

distillation columns, plant data is collected via a hub of TRIO (Taylor Remote 

I/O) and sent back to the controller over a high-speed data highway. Custom 

graphics and information pages provide the user interface to the system. They 

might contain information module system (IMS) nodes to archive all plant data. 

They might also have Ole for Process Control (OPCs), to provide connectivity to 

third party software packages for web based plant-monitoring, simulation and 

reporting, see figure 2.3 below. 
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2. Some chemical plants have multiple processes units that are connected to a 

specialized hardware interface. Each specialized interface is then connected to a 

central PLC that works as a mediator (hub) and proxy to SCADA software on a 

central server connected to a LAN of HMI interface workstations, see figure 2.4 

below. 

REBOILE 

REFLUX 
TANK 

FIELD ~I(,\.-\'LS 

:'UR.\l~ .-\..\D 
REPORTS 

Figure 2.3 Typical SCADA controlled distillation column adapted from [18] 
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CHAPTER III 

Enhancing SCADA security using multiple levels of secrecy 

3.1 Introduction 

As mentioned In the literature, SCADA systems were designed primarily to 

handle the data control and acquisition in an interactive mode. Performance was the 

main issue in designing SCADA systems, and security was completely neglected because 

all the operations were being conducted in a private network, where security is irrelevant. 

Now, being operated in many private networks connected together using public open 

networks, the security becomes a crucial issue. Many techniques have been adopted 

especially for SCADA, as well as tailoring the proven good techniques such as TLS/SSL. 

These techniques however, were either very heavy and performance consuming, or not 

secure enough to certain kinds of attacks. 

Hence, the problem can be summarized as how to develop a well-secured 

framework for SCADA. This framework should be constrained to the SCADA protocol, 

typically the DNP3. This framework should be very light in terms of computational 

complexity, so as not to sacrifice the performance on behalf of security. This framework 

should stand against all kinds of attacks. Finally, this framework should vary the level of 

security according to the level of threat. 

3.2 First Round: Double Secrecy 

The idea is to keep two private keys, two secrets, and a hash table at each unit as 

follows: 
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1. The general-purpose private key (GPK) between the MTU and all the RTUs that 

the MTU communicates, 

2. A specific private key (SPK) between the MTU and each RTU, 

3. Two secrets between the MTU and each RTU, or each pair of sender-receiver 

(SSEC 1 and SSEC2), and 

4. A hash table containing Key-Value pairs list that corresponds to a list of SSEC 1-

(SPK, SSEC2), i.e. Key is SSEC1, and value is (SPK, SSEC2). 

To send a message from the MTU to the RTU or vice versa, the following authentication 

scenario happens (figure 3.1), 

1. The header of the message will be the secret shared between the sender and 

the receiver (SSECl) encrypted using the GPK, 

2. The message body will contain the actual message encrypted using the SPK, 

3. The footer of the message will be SSEC2, 

4. The message will be sent to the receiver, 

5. The receiver will decrypt the header using the GPK, 

6. The receiver will use its own hash table to look up the decrypted message 

header, 

7. If the hash-table lookup process results in Null, this will mean an 

authentication failure. Since, this means that the encrypted header was not SSECI 

at the first place, 

8. If the hash-table lookup process succeeds, this will mean that the header is 

SSEC1, which is then used to get the SPK, and SSEC2, 

9. The SPK will then be used to decrypt the footer of the message, 
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10. If the value of the decryption equals SSEC2, then the message IS 

authenticated, and 

11 . SPK will then be used to decrypt the message. 
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Figure 3.1: Double Secrecy authentication framework 

3.3 Second Round: Will it stand against various kinds of attacks? 

The objecti ve of this section is to determine whether the double secrecy 

authentication pattern for protocol security can avert the denial of service (DOS) attacks. 

Apparently, the pattern is working fine for all other kinds of attacks like the spoofing, and 

man in the middle attack, since it depends on the hash table the two secrets and two 

private keys which makes the pattern secure in case of message interception and the 

spoofing. DOS attack happens when false messages are sent to the terminal unit, which 

has no problem in identifying that those are false messages because of the authentication 
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technique used, but the problem happens when those false messages are sent to the 

terminal unit in such a high frequency that the unit spends so much time processing the 

authentication technique before it figures out that they are false, and eventually the unit 

becomes overwhelmed and denies the service to real messages. 

The classic solution to this problem is to use some kind of a proxy to block out 

the IP address causing those false messages. Now the real problem comes with using the 

Spoofing-DOS attack, that is when some intruder gets inside the system of a real 

terminal, and sends false messages, because at this time the IP blocking will simply block 

the real terminal that is being spoofed, and whenever the spoofing ends and the spoofed 

terminal tries to send real messages it discovers that the messages cannot be delivered 

because the IP is blocked. 

Using Double-Secrecy, the key point is that there are two testes for the message to 

be authenticated: first the header of the message should be a key in the receiver terminal 

hash-table after being decrypted by the GPK, and secondly, the footer should be the 

SSEC2 (from the hash-table) after being decrypted by the SPK. The loss of the 

processing time comes because the receiving unit will wait to receive the whole message 

and then start processing the first test to know it is a false message, or a potentially 

authenticated message. Hence, a kind of inspector component is needed to take the first 

packet of the header when it is received and do some pattern matching to check if this 

packet is promising to be a part of some key in the hash-table or not. That way, false 

messages will be discovered from the very first packet, and whenever, a message header 

is a promising one, it will be forwarded to the terminal to proceed with the two testes 

(figure 3.2). 
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However, three problems arise: (1) sometimes one packet is not enough to block 

most of the false messages and keep them from over loading the terminal; (2) the 

inspector component itself can get loaded and the same problem of loading and getting 

out of service happens with the component, which will then lead to DOS state of the 

whole unit; and (3) a major problem is that encryption/decryption functions need not be 

linear, in fact almost all of them are not, in a sense that "F (pq) ,.=F (p) F (q)", which 

means that even if the message is not false this does not mean that the decryption of the 

first packet of the header will be the first packet of the decrypted header. 

Those problems can be addressed like this: (1) more than one packet can be used 

according to the configuration of the terminal to decide whether the message is false and 

the sender should be blocked or not; (2) a vector of inspectors can be used with some sort 

of a master inspector component that acts like a load balancer to prevent the inspector 

component from getting over-loaded, in a sense that whenever some inspector component 

becomes almost loaded, the master inspector will create another inspector component 

from the pool of available inspectors, and put it in service. If it happens that all the 

inspectors in the pool are in service, the master will simply block this IP until an 

inspector becomes free, but this will be for a very short period of time comparing with 

the IP blocking technique; and (3) to solve the linearity problem, the key should be 

reconstructed in the hash-table so that instead of being SSECI, it can be the result of 

concatenating SSECI (first packet) with SSECI (rest of the packet). 

3.4 Third Round: N-Secrecy Authentication Framework 

The objective of this round is to make the level of security on the SCADA 

systems protocols vary on demand, that is initializing it on level L and increasing to L2 in 
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case of sending more vital messages, or detecting an increase of the threat level, and 

fUl1her increase it, say to level LlO, in case of being under severe attack. Previous 

sections introduced a novel framework for authenticating the communication between 

two parties depending on two secrets, and two private keys. 
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Figure 3.2: Modified Double Secrecy authentication framework implementing the inspector technique 

The idea here is to generalize the double secrecy authentication framework to use 

N+ 1 secrets instead of two. The exact algorithm is as follows: 

1. The header of the message contains the secret shared between sender and the receiver 

(SSECO) encrypted using the GPK, 

2. The footer of the message contains n secrets, where n>O, 

3. The message body contains the actual message encrypted using the SPKn, 

4. The message is sent to the receiver, 

5. The receiver decrypts the header using the GPK, 

6. The receiver uses its own hash table to look up the decrypted message header, 
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7. If the hash-table lookup process results in Null, this would mean an authentication 

failure, 

8. If the hash-table lookup process succeeds, this will mean that the header is SSECI, 

which is then used as a key in the hash-table to give a vector of pairs (SPKi, SSECi); 

i=1..n, 

9. The length of those secrets is known for both the sender and the receiver, 

10. An iteration is being done to read the SSECi length number of bytes of the footer, 

decrypt them using SPKi, and compare it to the SSECi, 

11. If the comparison succeeds, then the index i is incremented, to read the next one, 

12. If comparison fails at any stage, then the sender is not authenticated, 

13. SPKn is then used to decrypt the message. 

3.5 Final Round: N-Secrecy Authentication/Authorization Framework 

Since authentication only is not enough to undergo vital procedures that messages 

might have, like unlocking dams or cutting circuits, another level of security, which is the 

authorization, is introduced. Authorization checks with other administration master units 

to verify if this master unit is authorized to request such procedures. This authorization 

workflow should again be dependent on the level of importance of that operation. Hence, 

in this round, both of those frameworks are mixed up together to make the level of 

authentication more generic depending on N secrets instead of two as well as making this 

variation declarative, and dependent on the operation. 

Each terminal unit will be organized in such a way that, there is a master 

component, and a vector of operation components, those operation components will be 

categorized in a hierarchical manner. For every node, there will be corresponding 
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authentication and authorization attributes, and for every child node, the attributes will be 

accumulated from the ancestor; the authentication attribute required to unlock a dam, for 

example, will be an aggregation of the perform, unlock, and dam nodes' authentication 

attributes. Those attributes will contain the multiplicity N of the N-Secrecy authentication 

algorithm, mentioned above, and the authorization workflow required (figure 3.3). 
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Figure 3.3: Message operation hierarchy example 

Hence, the key point here is that there are n+ 1 tests for a message to be 

authenticated. Now the overall scenario will be that the first secret, which is SSECO, will 

contain some information about the type of operation, so that the master component in 

the terminal unit will forward the message to the right operator component that will have 

the n-multiplicity to be used so far. The more secrets are read, through the n-Secrecy 

framework, and testes are passed, the more information the operator component knows 

about the kind of operation the sender needs, and accordingly forwards to the right node 
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beneath it, and then we have a new n-multiplicity. That way the level of authentication is 

dynamic and depends on the level of importance of some particular operation. 

3.6 Binding the multiple Secrecy algorithms with real SCADA 

This section concerns with the application of the multiple secrecy algorithms with 

real SCADA systems. In section 2.8, a brief description of the SCADA test bed that is 

available in the laboratory of the Department of Chemical Engineering was presented. 

Now, the Double Secrecy algorithm is rewritten below from the perspective of this test 

bed. 

3.6.1 Double secrecy algorithm using the test bed 

Two wrapper software components will be developed and attached to each party, 

the MTU and the iFIX Pc. The wrapper will work as a fa<;ade to the receiver and a 

mediator to the sender. 

The following is the double secrecy algorithm using the above mentioned test bed, 

see figure 3.4 below, 

1. The INPUT.DAT is sent as a message from the sender, 

2. The sender Wrapper component gets the message, 

3. The header of the message, which can be the time-stamp, contains the secret 

shared between sender and receiver (SSECl) encrypted using the GPK, 

4. The message body contains the actual message, which is INPUT.DAT, encrypted 

using the SPK, 

5. The footer of the message, which can be the number of characters contained in the 

INPUT.DAT input file, contains SSEC2, 
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6. The message is sent to the receiver, which is the iFIX Wrapper component on the 

lab PC, 

7. The receiver wrapper decrypts the header using the GPK, 

8. The receiver wrapper uses its own hash table to look up the message header. 

9. If the hash table lookup process results in Null, this would mean an authentication 

failure. Since, this means that the encrypted script was not SSEC1 in the first 

place, 

10. If the hash-table lookup process succeeds, this will mean that the header is SSEC1, 

which is then used to get the SPK, and SSEC2, 

11. The SPK is then used to decrypt the footer of the message, 

12. If the value of the decryption equals the SSEC2, then the message is authenticated, 

13. SPK is then used to decrypt the message, and get the INPUT.DAT input file, 

14. The input file is then used to run the distillation column process, and the output file 

OUTPUT.DAT is generated, 

15. Now the whole process is repeated to encrypt the OUTPUT.DAT and send it to the 

MTU and MTU uses the same way to authenticate it at the other side. 
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Figure 3.4 Double secrecy framework using distillation column testing bed 

3.7 Multiple Secrecy algorithms and Other Authentication Frameworks 

This section gives brief comparisons between the double secrecy and N-secrecy in 

general and the other authentication frameworks like SSL, digital signatures, and 

challenge response. 

3.7.1 Multiple Secrecy and SSL 

The double secrecy depends on two levels of the security, which makes it secure, 

and the N-secrecy depends on N secrets, which increases the level of security even more 

and makes it on demand. From the discussions in 3.2 and 3.4, it is clear that the double 

secrecy and the N-secrecy in general, do not use public key cryptography, like SSL, 

because using one-way mappings to encrypt data requires high intensive computation, 

which would degrade the performance significantly. Hence, the Double and N-secrecy 

have better petformance than the SSL and very secure at the same time. 

3.7.2 Multiple Secrecy and Digital Signatures 
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Like the public key encryption, the digital signature framework uses a public 

key and a private key. In this authentication framework there is a hash digest, which 

consists of a timestamp and the message to be sent or a part of it. The sender then uses 

its own private key to encrypt the digest, and sends the message together with the 

encrypted digest to the receiver. The receiver uses the public key to decrypt the digest, 

and calculates the digest in its own using the timestamp and the unencrypted received 

message, and compares the two digests together to decide the authenticity of the sender 

[33]. Compared with the digital signatures framework, the double and the N-secrecy are 

more secure because they depend on the validation of at least two secrets and not just 

one, and the message itself is encrypted, which is not the case in digital signatures, 

where the plain message is sent unencrypted. The multiple secrecy frameworks are also 

lighter than the digital signatures framework since it does not use public key encryption. 

3.7.3 Multiple Secrecy and Challenge Response 

The challenge response framework is used when one of the two communicating 

units need to verify that the other is authentic prior to sending a vital control message or 

on a periodical manner. In this framework the two units share a secret, and when one of 

the units try to verify the identity of the other it sends a challenge consisting of a random 

number. The receiver then adds the secret to the received random number, calculates the 

hash digest and sends it back to the sender as the response. The sender then compares the 

challenge and the response to decide the authenticity of the receiver [33]. Comparing the 

double and the N-secrecy with this framework, they are still more secure because the 

security depends on more than two secrets and not just one. They are also lighter because 

the challenge response depends on the digital signature, which in tum depends on the public 

key encryption. 
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CHAPTER IV 

Prototype Implementation and Experimental Results 

In the previous chapter, a new authentication approach was presented. This approach 

has multiple levels of security, which can vary depending on the level of threat, from 

Double Secrecy to N-Secrecy. This chapter presents a prototype implementation of both 

Double Secrecy and N-Secrecy algorithms with the experimental results compared to the 

SSL results as the opponent authentication framework. 

4.1 Test bed configuration and Testing Methodology 

Testing has been conducted in the Intelligent Systems Research Laboratory (ISRL) at 

the University of Louisville. Two machines within the SCADA test-bed have been used 

to simulate the MTU and the RTU. A PC running Windows XP operating system with 

2.79 GHz Intel® Pentium® D processor having 2GB RAM was used as an MTU and a 

similar configuration PC was used as the RTD. 

Four code packages were implemented, debugged and tested. They are summarized 

below, with complete listing in Appendix A. 

1. A baseline control which is a pure socket connection simulating the DNP3 

communication protocol between the two units for a transfer of a simple text file, 

2. An implementation of the SSL framework using RSAlIBMx509 and Diffie-Helman 

as the authentication algorithms, 

3. An implementation of the double secrecy algorithm using DES as the encryption 

algorithm, 
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4. An implementation of the double / N-Secrecy algorithms using the Triple-DES as the 

encryption algorithm. 

A component diagram representing the architecture of the prototype is presented in 

figure 4.1 below. A class called Unit is coded to present the internal authentication 

functionality of a unit and is then wrapped in two classes, the RTU and the MTU classes, 

where the DNP3 communication protocol functionality is implemented. The visitor 

design pattern is used so that according to the parameters passed from the RTU to the 

MTU or vice versa, the Unit object can use the SSL authentication visitor, the Double 

Secrecy authentication visitor, the N-Secrecy authentication visitor or no security at all. 

Each authentication visitor has its own package where specific implementation 

classes exist to implement the internal functionality of each type of authentication. 

SSL authentication vis ito 

I 
I 
I ______________________ J 

OS authentication visito US authentication visito 

Figure 4.1: Prototype implementation component diagram 

4.2 Double Secrecy and N-Secrecy, Prototype Implementation 

The following sub sections describe the four scenarios of the testing, the one with no 

security at all, the one with double secrecy, the one with N secrecy, and the one with SSL 

authentication. 
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4.2.1 No security implementation 
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Figure 4.2: No security implementation sequence diagram 

Following is the explanation of the no security implementation represented In the 

sequence diagram above. 

1. RTU application class runs first, 

2. MTU application class runs, and creates an instance of the Unit class, 

3. MTU then calls uniLprepareMsgO which actually does nothing here in the no security 

package, 

4. After the connection happens between the MTU and the RTU, MTU sends the prepared 

message to the RTU, 

5. After, RTU receives the message from the MTU, RTU calls unit.setMsgO 

4.2.2 Double Secrecy implementation 
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Figure 4,3 : Double Secrecy implementation sequence diagram 

Following is the explanation of the double secrecy implementation represented In the 

sequence diagram above. 

1. RTU application class runs first , 

2. MTU application class runs , and creates an instance of the Unit class, 

3. Unit then calls assignKeysAndSecretsO method inside its constructor which creates an 

instance of the StringEncrypter class, 

4. MTU then calls unit.prepareMsgO which in tum calls the encrypt method of Unit which 

calls the stringEncrypter.encrypt, with the first secret ssec 1 and the general key GPK to 

construct the header of the message, 

5. The footer is constructed as the encryption of the second secret ssec2 with the SPK as the 

encryption key, 

6. Finally, the body of the message is constructed as the encryption of the message itself 

with the SPK as the encryption key, 

37 



7. After the connection between the MTU and the RTU IS established, MTU sends the 

prepared message to the RTU, 

8. After, RTU receives the message from the MTU, RTU calls unit.setMsgO, 

9. The RTU afterwards calls the unit.authenticateMsgO method to authenticate the message, 

10. The Unit instance decrypts the encrypted header with the GPK, using the 

StringEncrypter decryptO method, to construct the header of the original message, 

11. The footer is is being constructed as the decryption of the encrypted footer with the SPK 

as the decryption key, and the message content as the decryption of the encrypted body 

using the SPK as the encryption key. 

4.2.3 N-Secrecy implementation 
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Figure 4.4: N Secrecy implementation sequence diagram 

Following is the explanation of the N secrecy implementation represented in the sequence 

diagram above. 

1. RTU application class runs first, 
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2. MTU application class runs, and creates an instance of the Unit class, passing the security 

level, i.e. the number of secrets required, 

3. Unit then calls assignKeysAndSecretsO method inside its constructor which creates an 

instance of the StringEncrypter class, and sets the hash table containing the pairs (SPKi, 

SSECi); i=l .. n, 

4. MTU then calls unit.prepareMsgO which in tum calls the encrypt method of Unit which 

calls the stringEncrypter.encrypt, with the first secret ssec[O] and the general key 

encKey[O] to construct the header of the message, 

5. The footer is constructed as the concatenated string composed of the encryption of the 

secret ssec[i] using the key encKey[i] for all i< the given securityLevel, 

6. Finally, the body of the message is constructed as the encryption of the message itself 

with the last key in the array encKey[securityLevel-1], 

7. After the connection between the MTU and the RTU is established, MTU sends the 

prepared message to the RTU, 

8. After, RTU receives the message from the MTU, RTU calls unit.setMsgO, 

9. The RTU afterwards calls the unit.authenticateMsgO method to authenticate the message, 

10. The Unit instance decrypts the encrypted header with encKey[O], using the 

StringEncrypter decryptO method, to construct the header of the original message, 

11. The footer is being constructed inside a loop using the previous step key to decrypt the 

current step, 

12. Finally, the message content is constructed as the decryption of the encrypted body using 

the final key in the loop. 

4.3 Experimental Results for Double Secrecy 
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Experiments were performed to measure the performance between the Double 

Secrecy, SSL, and the control. A small 4B text file on the MTU machine represents the 

information to be transferred to the RTU machine. Regular generated triple-DES key 

sizes; 24B were used as the GPK and SPK in the Double Secrecy implementation. 

Secret files ranging from lOB to lKB were used for SSECI and SSEC2. Results are 

divided into the following categories: DNP3 messaging with no security implemented; 

DNP3 with TLS/SSL implemented using Diffie-Hellman as the public key exchange 

algorithm; and DNP3 with TLS/SSL implemented using RSA as the public key exchange 

algorithm in table 4-1 and DNP3 with Double Secrecy implemented using DES on a set 

of secret files and DNP3 with Double Secrecy implemented using Triple-DES on the 

same set of secret files in table 4-2. Results shown in those tables present the averages of 

ten different readings. All times were measured in milliseconds. 

Table (4.1): Average and standard deviation of DNP3 messaging total time from MTU to RTU with no 

security implemented, and with SSL implemented 

Security framework implemented on DNP3 Average Standard deviation 

No security (control) 23.1 4.77 

SSL (Diffie-Hellman) 2497.6 90.5 

SSL (RSA) 2663 120.3 
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Table (4.2): Average and standard deviation of DNP3 messaging total time from MTU to RTU with 

different combinations of double secrecy 

Security framework implemented on DNP3 Secret file length* Average 

10 50.2 

20 53.4 

30 63.3 

Double Secrecy** implemented using DES 40 59.7 

50 5l.5 

100 56.9 

500 550.5 

1000 643.4 

10 45.1 

20 53.7 

30 45.5 

40 73.3 

Double Secrecy implemented using Triple-DES 50 58.3 

100 65.8 

500 573.5 

1000 632.3 

*AlI files' SIzes are measured In bytes 

**This is the message preparation plus the message authentication time 

As shown in the table 4.1 the average of total messaging time in TLS/SSL was 2497.6 

milliseconds usmg Diffie-Hellman as the public key exchange algorithm and 2663 

milliseconds usmg RSA as the public key exchange algorithm, the average of the 

messaging time in double secrecy, as shown in table 4.2, using DES lies in the average of 

50 milliseconds when secrets are shorter than or equal to 100 bytes, and in the average of 

500 milliseconds when secrets are larger than or equal to 500 bytes, which is a very large 
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size for a secret file. On the other hand, the double secrecy algorithm implemented using 

Triple-DES encryption showed very similar results, which shows a dramatic 

improvement of the double secrecy over the TLS/SSL even with large secret files and 

Triple-DES encryption. 

It should be noted that the messaging time mentioned above with regards to the 

TLS/SSL implementation is only the negotiation/authentication time. There is also the 

certificates issuance time, which was not investigated here. This is typically a one-time 

event. However, the major problem with the TLS/SSL is the need for a third party to 

issue the certificates and the cipher codes. This third party involvement is not a part of 

the double secrecy algorithm, where everything can be initiated and administered in

house. 

In summary, a simulation of the SCADA systems has been implemented using 

distributed machines switching messages over the DNP3 protocol. The messaging has 

been done using no security at all, using TLS, and using the double secrecy for 

authentication on small and larger secrets over using the DES and Triple-DES as the 

encryption algorithms. The results showed that Double Secrecy using DES or Triple-DES 

gives a response time within the service level limits of almost all process system SCADA 

installations, and that this response time is significantly better than that using the 

TLS/SSL as a method for authentication. 

4.4 N-Secrecy, Experimental Results 

Results of N-Secrecy implemented using Triple-DES on large secrets (lOObytes) are 

shown in Table 4.3, using three, four, and five secrets respectively. In those results ten 
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readings were taken and the averages and standard deviations were computed. All times 

were measured in milliseconds. 

Table (4.3): Average and standard deviation ofDNP3 messaging total time from MTU to RTU 

with N-Secrecy implemented using Triple-DES on large secret files using N=3, 4, 5, and 6 

Number of secrets used for N Secrecy Average 

N",3 530.5 

N",4 760.2 

N=5 945.6 

N",6 1020.4 

As shown in table 4.3 the average of total messaging time in N-secrecy using Triple

DES with large three secrets was 530.5 milliseconds, the average using four large secrets 

was 760.2 milliseconds, the average using five large secrets was 945.6 milliseconds, and 

finally the average using six large secrets was 1020.4 which still shows a dramatic 

improvement over the TLS/SSL even with large secret files and Triple-DES encryption, 

and multiple secrets corresponding to the state of the attack. 

It should also be noted that this total time is the message preparation time plus the 

message authentication time. Since SCADA operations are known upfront for both units, 

the total time can be further improved by preparing a large portion of the message at the 

start up of both units. 

In summary, a simulation of the SCADA systems has been implemented usmg 

distributed machines exchanging messages over DNP3 protocol. The messaging has been 

done using N-secrecy with three, four and five large secrets, over triple DES encryption 

and compared with the results obtained from the TLS. Results showed that increasing the 

number of secrets did not affect the total messaging time. 
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CHAPTER V 

Computer Algebra techniques for Enhancing SCADA security 

5.1 Introduction 

When two parties, typically two units or an RTU with MTU, try to authenticate 

each other prior to sending any vital information, or committing any vital transaction at 

the other side, they must share a secret. In a computation, this secret is a string of binary 

characters. The power of the secret/key combination, and how difficult it is to break, is 

the most important measure of the power of the security system implemented in the 

communication between those two parties. The problem is how to share the secret 

information. Should it be done through a secured line of communication, but how can this 

communication line be judged to be secure enough, and how can a successful 

authentication process be conducted on it? 

This problem of key exchange has two common solutions: 1.) the Diffie-Hellman 

algorithm that depends on the difficulty of computing the discrete logarithm problem and 

is equivalent to the integer factorization problem, and 2.) the RSA algorithm that depends 

on the difficulty of factoring large prime numbers. Recently, elliptic curve public 

cryptography was developed [32]. All of these commonly used algorithms depend on the 

complexity of some problems in the theory of numbers. In this chapter, new algorithms 

are presented to model the real setting of the two communicating units, and the 

communication line in between, using polynomial ring theory with the Grobner bases 

algorithm to complete the solution. 
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First, the Security Spectrum algorithm is discussed, and then a detailed example is 

presented. A comparison between this algorithm and Diffie-Helman algorithm concludes 

the chapter. 

5.2 Solution overview 

The cornerstone In the solution is to build a logical bridge between the two 

parties. This bridge will be referred to as the security spectrum of the two parties. The 

security spectrum between any two parties is unique to these parties. It changes if anyone 

of the intrinsic or boundary conditions of either one of the two parties or the line of 

communication between them changes. Each one of the two parties generates its secrets 

individually and on a periodical manner. The way the authentication happens is by 

checking the correlation between the secret and the spectrum. This means that the two 

secrets generated on the two parties need not be the same but they should be correlated to 

the same spectrum. There will be a level for this correlation, so that each piece of 

transaction will have a threshold for the level of correlation accepted. 

5.2.1 Issues 

There are several issues that must be addressed. A first key issue is to find a way 

to model the intrinsic, boundary, and communication conditions for the two 

communicating parties, to build up the spectrum, then find a way for party A to generate 

a random secret correlated with that spectrum. The user must find a computationally 

reasonable way to encode that secret. In operation, the user must decode the secret at 

party B in a one-one corresponding encoding/decoding fashion, and finally make party B 

decide for certain if the secret is correlated to the spectrum between that party, and party 

A, that is to find a unique solution for the decidability problem. 
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5.2.2. Solutions 

First addressing the conditions representation, each condition can be thought of as 

a non linear function of some physical variables, model these physical variables as 

symbols, and model the whole condition as a non-linear polynomial of these symbols, 

which will then be the variables of that polynomial. Then the whole condition can be 

represented geometrically as the variety object in the space KID where K is the field in 

which the ground values of the variables belong to, typically the field of real numbers, 

and m is the space dimension. Modeling all the conditions that way, as a system of non

linear polynomials, corresponding to a set of varieties in the space KID makes the area of 

intersection of these varieties resembles the ideal generated by all these polynomials. 

That way we can generate our spectrum as the ideal generated by the system of non

linear polynomials representing the physical conditions of communication between the 

two parties. (An overview of ideals is included in Appendix B). 

Now addressing the issue of the correlation, this can be found in the answer of the 

question "does this secret, represented as a new polynomial, rely in the ideal generated by 

the conditions' polynomials or not?" To generate a new secret at either party that is 

correlated to the spectrum, a polynomial that is a linear combination of the conditions' 

polynomials, and clearly there are an infinite number of these combinations, will be 

correlated to the spectrum for sure. Finally, for the other party to decide if the sent 

polynomial, representing the secret, is authenticated or not, that is to say if it is correlated 

to the spectrum or not, it is the same as to say that the polynomial belongs to the ideal 

generated by the spectrum of conditions' polynomials. 
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This is equivalent geometrically to decide if some geometrical variety belongs to 

the intersection area between a group of varieties or not. This previously mentioned 

problem is called the uniform word problem, and the problem is that the solution to this 

problem is not unique. Therefore another approach is needed, and for this research the 

Grobner Basis is used to resolve the non-uniqueness problem. 

5.3 Security Spectrum Algorithm 

Before stating the security spectrum algorithm, it is worth noting that this 

algorithm, like all the key distribution algorithms, runs as an offline operation. Following 

is the detailed algorithm for the Security Spectrum approach: 

1. Intrinsic conditions of each of the two parties are gathered, 

2. Physical conditions of the communication between the two parties are gathered, 

3. A modeling of all these conditions is done to generate a group of polynomials 

describing the whole system of communication, 

4. The security spectrum of the two parties is constructed as the Grabner basis of this 

system of polynomials, 

5. Party A generates a linear combination of the polynomials constructing the spectrum, 

to be the secret, this secret 

6. The secret gets encoded, and sent to party B, 

7. Party B decodes the secret, 

8. Party B, runs the uniform word problem algorithm, to decide uniquely if the secret 

sent is correlated with the spectrum or not, which is an answer to the authentication 

problem, 
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9. Party B, runs the correlation level algorithm to determine the level of correlation, and 

decide if this level of correlation authorizes party A, or not. An answer to the 

authorization problem. 

5.4 Using the Security Spectrum algorithm in a SCADA application 

As done in chapter III, this section concerns with the application of the Security 

Spectrum algorithm with real SCADA systems. The simplified version of the test bed 

available using the Chemical Engineering Department distillation column is considered 

as an emulator for a real SCADA systems. 

First the intrinsic conditions of each of the MTU and the iFIX, basically all the 

control loops and all the relevant equations are gathered. For these controls case, these 

will be the processing blocks, which will generate a system of polynomials describing the 

whole system of communication. Next the security spectrum of the two parties is 

constructed using the Grobner basis of this system of polynomials. Afterwards, party A, 

MTU wrapper generates a linear combination of the polynomials constructing the 

spectrum, to be the header of the message, the INPUT.DAT input file is encoded using 

this header and put as the body of the message. The message then gets sent to party B, the 

iFIX. On the other side, party B wrapper, runs the uniform word problem algorithm, to 

decide uniquely if the header of the sent message, the secret, is correlated with the 

spectrum or not, an answer to the authentication problem. Party B wrapper, runs the 

correlation level algorithm to determine the level of correlation, and decide if this level of 

correlation authorizes party A, or not, an answer to the authorization problem. If the 

message is authenticated the body is decrypted using the header, and the input file is then 

used to run the distillation column process, and the output file OUTPUT.DA T is 
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generated. Now the whole process is repeated to encrypt the OUTPUT.DAT and send it 

to the MTU. MTU will use the same way to authenticate it at the other side. This is all 

shown in a block diagram form in Figure 5.1. 

5.5 Example 

The following simplified example uses a control model system to demonstrate the 

approach. Let's take as an example, one of the distillation column control blocks called 

PID block, which is intended to maintain balance in a closed loop by changing the 

controlled analog input variable in response to deviations from a user defined set point. 

5.5.1 Collecting the intrinsic and boundary conditions 

The PID block itself has two typical flows, the PID block's feedback tag 

illustrated below in Figure 5.2, and a specific cascade control with Master/Slave PID 

blocks Figure 5.3. In addition we have the steady state PID block algorithm equation. 

Figure 5.1 Security Spectrum framework using distillation column testing bed 
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Figure 5.2 PID block's feedback tag 
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Figure 5.3 cascade control 
with Master/Slave PID blocks 

5.5.2 Modeling the conditions in polynomial format 

Here are the Representation rules, 

1. Each block is a symbol, 

a. Xo for PID block, 

b. Xl for Analog Input block, 

c. X2 for Analog Output block, 
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d. X3 for Feedback tag, 

e. X4 for Analog Input block II, 

f. Xs for Slave PID block, 

g. X6 for Master PID block, 

h. X7 for Flow transmitter, 

1. X8 for the control valve, 

J. X9 for the boiler. 

2. The flow from one node X to another Y is represented by the monomial XY, 

3. The flows from node X to another Y, and then from node Z to C, is given by the 

polynomial XY + Zc. 

Following the above-mentioned rules, we have the following polynomials, 

For Fig5.2, 

l. P1=XjXo+ XOX2+ X2X3+ X3XI, 

2. P2=XIXO+ XOX2+ X2X3+ X3X4+ X4XO, 

For Fig5.3, 

1. P3=X7XI+ XIXS+ X5X2+ X2X8+ X9X4+ X4X6, 

2. P4=X7XI+ X\Xs+ X5X6+ XSX2+ X2x8+ X9X4+ X4X6, 

Buchberger's algorithm for computing Grobner Bases was implemented, see 

appendix A for code listings. The idea behind Buchberger's algorithm is simply to order 

the polynomials of the whole system using a given term order, and then construct a type 

of polynomials designated as the s-polynomials. An s-polynomial is constructed from two 

polynomials by removing the leading terms of both of them using the least common 

multiple term for their leading terms, and then subtracting one from the other. 
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Afterwards, the resultant polynomial is checked for the existence in the ideal by running 

the Euclidean di vision algorithm. If the s-polynomial is not in the ideal, it is added to the 

system of polynomials and another couple of polynomials is chosen to compute the new 

s-polynomial, and so forth until all the polynomials in the system prove to be in the ideal. 

5.5.3 Algorithm Snapshot 

Having modeled the control blocks in polynomials format, below are the full steps 

of the algorithm. 

1. The polynomials should be ordered in the right term order in order to compute 

Grobner basis for them. Assuming that XO>Xl>X2> .. 'Xn and so forth, the original 

system of polynomials is: 

2. Running the Grobner bases code, the following system of polynomials IS 

obtained, 
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Ps= -XOX1X7 - XOXZXS - XOX4X9 + XZX3XS + X3X4XS, 

P9= -XOX1X7 - XOXZXS + XOX4XS -XOX4X6 - XOX4X9 - XOXSX6 + X3X4XS, 

PIO= -XSX6 

3. Now assume that the MTU needs to send the transaction 'abc' to the RTD. The 

MTU will construct a message composed of a message header and a body, where 

the body of the message will be the transaction content, 

4. The header of the message will be the secret. This secret will be any linear 

combination of the ten polynomials above representing the ideal, or the security 

spectrum, 

5. Let the header be: 10 Ps -1.5 P IO + Ps ::: 

-XOX1X7 - XOXZX8 - xox4(10 +X9)+ lOx1x3 + XZX3XS - x3x4(10 +xs)- 1.5XSX6 

6. The message is sent to the RTU, 

7. RTU runs the uniform word problem code, see Appendix A, to resolve the 

decidability of the existence of the header in the spectrum, 

8. The uniform word problem code gives an affirmative response and the MTU is 

authentIcated, 

9. The message body is extracted. 

5.5.4 Analysis of the security spectrum algorithm example snapshot 

Noting how large the above system of hypothetical non-linear polynomials is, and 

knowing the fact that in reality we may have hundreds of those non-linear 

polynomials modeled using more sophisticated models, it is extremely unlikely that 

an intruder can spoof the RTU or the receiver in general. So the confidence that no 

unauthorized person or machine can send a false message is very high. 
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The real problem is with the man-in-middle attack since an intruder cutting In the 

middle and getting the message will simply get the message in the message body, 

which can be an important information. The solution to this problem is to use the 

security spectrum only to generate the secretes) and use the double secrecy or the N

secrecy in general to do the whole authentication framework. In other words, use the 

N-secrecy as the authentication framework and the security spectrum as the secret 

generator and authorization framework. In this case the security spectrum algorithm 

can be run on an offline basis to generate the secrets and the keys needed in the N

secrecy and transfer those keys and secrets via ROM device into the SCADA units as 

part of the administration of the system, and then those keys and secrets can be used 

on an online basis to secure the transactions. Multiple channels can also be used to 

resolve the key distribution problem, by generating the keys and secrets and emailing 

them to the other administrators of the distributed SCADA system, and then using the 

N-secrecy authentication framework. All the steps of the above example use the 

security spectrum as the key generator algorithm and the double secrecy as the 

authentication framework, as shown in Figure 5.4. 

5.6 Security Spectrum and Diffie-Hellman 

The whole difference between the security spectrum and Diffie-Hellman 

algorithms is the fact that the latter depends on the theory of numbers, the modulo ring 

theorem and the complexity of the discrete logarithm problem as mentioned in section 

1.1.2, whereas, the security spectrum depends on the real context of the problem of 

communication between the two parties, and the complexity of resolving the uniform 

word problem as mentioned in appendix B. Diffie-Hellman, IS also known to be 
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vulnerable to the man in middle attack, because an intruder can simply intercept a party's 

public value and sends a different one to the other party. That way, the intruder can 

decrypt all the messages sent between the two parties and even more, can send his own 

fake messages. An intruder intercepting any messages from two communicating parties 

over the security spectrum framework, on the other hand, will not benefit at all from that 

piece of information neither by understanding nor by using it to later deceive one of the 

two parties because it depends on the context of the problem not on a known 

mathematical problem. 

A further note is that the security spectrum can strengthen by wrapping the whole 

framework by the N-Secrecy framework. That is to use the N-Secrecy to encode/decode 

the secret polynomial that is being sent between the two parties. 
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CHAPTER VI 

Conclusions and Future Directions 

In the introduction of this dissertation an argument was presented on whether it is 

better to use well known security technologies and frameworks like the SSUTLS or to 

use tailored frameworks to secure the SCADA systems. 

The argument was that the well-known frameworks are more mature and less 

expensive but on the other hand they can cost a lot on the performance side. Hence, the 

objective of this dissertation is to find new cryptographic approaches that have the same 

security level offered by those well-known security frameworks, particularly the SSL, 

without compromising the performance. Two trials were done in this dissertation to 

achieve the above-mentioned goal, named the N-Secrecy and the security spectrum. The 

concluding remarks regarding the two frameworks are presented below. 

6.1 Conclusions 

6.1.1 N-Secrecy 

In chapter three the idea of the multiple levels of secrecy was first introduced. The 

double secrecy algorithm was presented and clearly it depends on symmetric (private 

key) encryption using two secrets and two keys to encrypt and decrypt those secrets, 

which means that there is no use at all for the trapdoor one way mapping that the public 

key encryption algorithms like the RSA, ECC, and Diffie-Helman depend upon. This 

means that the double secrecy should be better than the SSL in terms of performance. As 

for the security, later sections in the same chapter discussed the strength of the double 
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secrecy against the Spoofing-DOS attack, where an inspector component was added to 

the framework to take the first packet of the message header and do some pattern 

matching to check if it is a promising packet to be a part of some key in the hash-table or 

not. Afterwards, the level of secrecy was extended from two to a general number N 

depending on the level of secrecy desired based maybe on the level of confidentiality or 

vitality the message has. 

Chapter IV presented the experimental results of the double secrecy USIng a 

number of secrets ranging from lObytes to one KB. Results showed that the double 

secrecy took in the range of one thousandth of the SSL running time in most of the 

secrets used. Also, the N-secrecy experimental results represented in the same chapter 

showed that using a large secret files and Triple-DES as the symmetric encryption 

algorithm still cost much less than the SSL even when the level of secrets was increased 

to 6. 

6.1.2 Security Spectrum 

Chapter V presented another new security framework called the security spectrum 

which tried to construct a physically meaningful bridge between the two communicating 

parties rather than depending on meaningless complex mathematical problems like the 

problem of discrete logarithm in the case of Diffie-Helman and the non inverse mapping 

prime numbers problem in case of the RSA. The complexity of the problem here depends 

on building a logical bridge composed of polynomials representing physical conditions of 

the two communicating parties ancIJor the communicating network. 

An example was represented in the chapter to present the whole idea. The 

example however, used a trivial way of modeling the conditions into polynomials. Next 
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section In this chapter presents a novel mathematical modeling technique for control 

systems. Work on this modeling technique can be completed in a future research work. 

6.2 Directions for Future Research 

6.2.1 Modeling 

This section focuses on presenting a novel mathematical model for control 

systems using context free grammars and non-deterministic finite automata. 

A typical control system consists of flows of control blocks, and flows from 

control blocks to each others. These flows can happen in sequence, or they can happen in 

parallel. A typical control system also contains some processing, and valves for multiple 

branches. 

6.2.1.1 Modeling using context free grammars 

A map from a control system to a grammar, can be built such that, a non trivial 

block is considered a non terminal block, each final operation is considered a terminal 

block, each flow from a block to another is considered a production rule, and finally, each 

valve is considered an "or" operation in the corresponding production rule. 

Using this map, a control system can be considered a federation of many 

grammars generating a language of transactions based on the different production rules 

relevant to the different flow control blocks. Each branch on the syntax tree generated by 

a given grammar can be modeled as a monomial of the block terms. Summing up all the 

branches using the "+" operator, a polynomial representing this block can be generated 

for that given grammar for that given block. A system of polynomials can then be 

generated for all the blocks in the system. 
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In the next two sections the ground group and ring will be constructed based on 

the syntax tree representing the control system grammar transactions. Once this ground 

ring has been constructed the corresponding polynomial ring can then be used to build up 

the model. 

6.2.1.2 Modeling using context free grammars, Group and Ring construction 

To sum up, given a forest of transactions trees like the one in figure 6.1 below, we 

have the following, 

• Consider the set of all symbols representing the nodes in the forest, 

• The direct flow from a node X to a node Y is represented as a monomial XY, 

• The different branches are to be represented as an addition, like XY + XZ, 

• The feedback from a child node to a parent node depending on a condition and the 

number of iterations is to be represented as a non-linear monomial multiplied by the 

condition. 

Considering all the above mentioned points that set of symbol nodes can be 

considered a ring under the ordinary addition and multiplication of the ring of real 

numbers. 

Figure 6.1 Transactions forest 
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From figure 6.1 above the following system of non-linear polynomials can be 

modeled: 

ABE + ABF + ACG + ADH ... (1) 

ZI2J2 + IKL + IKM ... (2), 

assuming we can only have two repetitions in that path. Now the rest of the algorithm can 

be completed the normal way by getting Grobner basis for the above system of non-linear 

polynomials. 

6.2.2 Computations complexity enhancement 

Grobner bases and uniform word problem algorithms are essential parts of the 

security spectrum algorithm and should perform in an acceptable manner in order for the 

whole framework to work in the proper service level. The algorithms used for both of 

those problems are the classic Buchberger and uniform word decidability problem 

algorithms, which are both NP-complete [34]. Future researchers should try to enhance 

those two algorithms, or they may be able to find another way that is not as constructive 

as the classic algorithms, but performs better. 

6.2.3 Testing 

All the results presented in the dissertation obtained from emulating the SCADA 

and DNP3 as described in section 4.1. One of the strongest candidates for future research 

is to test the approaches presented in this dissertation in real SCADA systems such as the 

University of Louisville test bed. 
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APPENDIX A 
Code 

Class KeyGenerator 
1* This class uses the crypto java package class KeyGenerator to generate a DES or triple 
DES keys and write them into files*1 
import javax.crypto. *; 
public class KeyGenrator 
{ 

private static final String GPK_FILE_NAME="gpk"; 
private static final String SPK_FILE_NAME="spk"; 
public static void main(String[] args) 
{ 

KeyGenrator kG=new KeyGenratorO; 
kG.genKeyO; 

1* This function generates the keys and calls writeKeyFileO to write the generated key 
into a file*1 

void genKeyO 
{ 

try { 
II Generate a DES key 
KeyGenerator keyGen = KeyGenerator.getlnstance("DES "); 
SecretKey gpk = keyGen.generateKeyO; 
writeKeyFile(gpk,GPK_FILE_NAME); 
SecretKey spk = keyGen.generateKeyO; 
writeKeyFile(spk,SPK_FILE_NAME); 

} catch Uava.security.NoSuchAlgorithmException e) 
{ 
e. printStackTraceO; 

1* This function encodes the generated key into bytes and write them into the given file 
name*/ 
void writeKeyFile(SecretKey key,String fileName) 

{ 
byte [] keylnBytes=key.getEncodedO; 
try{ 
OutputStreamWriter oSW=new OutputStreamWriter(new 

Fi leOutputStream(fileN arne»; 
oSW.write(new String(keyInBytes»; 
oSW.closeO; 
} 
catch (IOException e){ 

e.printStackTraceO; 
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Class StringEncrypter 
1* This class does the real job of encryption and decryption of passed message strings. It 
is to be used by the Unit class */ 
import java.io.UnsupportedEncodingException; 
import java.security.InvalidKeyException; 
import java.security.NoSuchAlgorithmException; 
import java.security.spec.KeySpec; 
import javax.crypto.Cipher; 
import javax.crypto.NoSuchPaddingException; 
import javax.crypto.SecretKey; 
import javax.crypto.SecretKeyFactory; 
import javax.crypto.spec.DESKeySpec; 
import javax.crypto.spec.DESedeKeySpec; 
import sun.misc.BASE64Decoder; 
import sun.misc.BASE64Encoder; 
public class StringEncrypter 
{ 

public static final String DESEDE_ENCRYPTION_SCHEME = "DESede"; 
public static final String DES_ENCRYPTION_SCHEME = "DES"; 
public static final String DEFAULT_ENCRYPTION_KEY = "This is a fairly 

long phrase used to encrypt"; 
private KeySpec 
private SecretKeyFactory 
pri vate Cipher 
pri vate static final String 

"UTF8"; 

keySpec; 
keyFactory; 

cipher; 
UNICODE_FORMAT 

public StringEncrypter( String encryptionScheme ) throws EncryptionException 
{ 

this( encryptionScheme, DEFAULT_ENCRYPTION_KEY); 

= 

/* The constructor takes the encryption scheme which is either DES or triple DES 
together with the encryption key, converts the key into bytes, constructs the keySpec, 
constructs the key factory and the cipher to be used in the encryption/decryption */ 
public StringEncrypter( String encryptionScheme, String encryptionKey ) 

null" ); 

); 

throws EncryptionException 

if ( encryptionKey == null ) 
throw new IllegalArgumentException( "encryption key was 

if ( encryptionKey.trimO.lengthO < 24 ) 

try 
{ 

throw new IllegalArgumentException( 
"encryption key was less than 24 characters" 
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byte[] keyAsBytes = encryptionKey.getBytes( 
UNICODE_FORMAT ); 

if ( encryptionScheme.equals( 
DESEDE_ENCR YPTION_SCHEME) ) 

{ 
keySpec = new DESedeKeySpec( keyAsBytes ); 

else if ( encryptionScheme.equals( 
DES_ENCRYPTION_SCHEME) ) 

{ 
keySpec = new DESKeySpec( keyAsBytes); 

else 
{ 

throw new IllegalArgumentException( "Encryption scheme 
not supported: " 

+ 
encryption Scheme ); 

keyFactory = SecretKeyFactory.getlnstance( encryptionS cherne ); 
Cipher = Cipher.getInstance( encryptionS cherne ); 

{ 

} 

catch (InvalidKeyException e) 
{ 

throw new EncryptionException( e ); 

catch (UnsupportedEncodingException e) 
{ 

throw new EncryptionException( e ); 

catch (NoSuchAlgorithmException e) 
{ 

throw new EncryptionException( e ); 

catch (NoSuchPaddingException e) 
{ 

throw new EncryptionException( e ); 

public StringEncrypter( String encryptionScheme, byte[] keyAsBytes ) 
throws EncryptionException 

System. out. println("key AsB ytes.length: "+key AsBytes.length); 
if ( keyAsBytes == null ) 

throw new IllegalArgumentException( "encryption key was null" ); 
flif (keyAsBytes.length < 24 ) 
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II 
II 

try 
{ 

throw new IllegalArgumentException( 
"encryption key was less than 24 characters" ); 

Ilbyte[] keyAsBytes = encryptionKey.getBytes( UNICODE_FORMAT); 

if ( encryptionScheme.equals( DESEDE_ENCR YPTION_SCHEME) ) 
{ 

keySpec = new DESedeKeySpec( keyAsBytes ); 
} 
else if (encryptionScheme.equals( DES_ENCRYPTION_SCHEME)) 
{ 

keySpec = new DESKeySpec( keyAsBytes); 

else 
{ 

throw new IllegalArgumentException( "Encryption scheme not supported: 
" 

encryption Scheme ); 
} 
keyFactory = SecretKeyFactory.getInstance( encryptionScheme ); 
cipher = Cipher.getInstance( encryptionScheme ); 

catch (InvalidKeyException e) 
{ 

throw new EncryptionException( e); 

catch (NoSuchAlgorithmException e) 
{ 

throw new EncryptionException( e ); 

catch (NoSuchPaddingException e) 
{ 

throw new EncryptionException( e ); 

+ 

1* This method uses the key factory to generate the secret using the given keyspec, 
initializes the cipher, and finally uses the base64encooder to encode the cipher text *1 
public String encrypt( String unencryptedString ) throws EncryptionException 

{ 
if ( unencryptedString == null II unencryptedString.trimO.lengthO == 0 ) 

throw new IllegalArgumentException( 
"unencrypted string was null or empty" ); 

try 

69 



SecretKey key = keyFactory.generateSecret( keySpec ); 
cipher.init( Cipher.ENCRYPT_MODE, key); 
byte[] cleartext = unencryptedString.getBytes( 

UNICODE_FORMAT ); 
byte[] ciphertext = cipher.doFinal( cleartext ); 
BASE64Encoder base64encoder = new BASE64EncoderO; 
return base64encoder.encode( ciphertext ); 

catch (Exception e) 
{ 

throw new EncryptionException( e ); 

/* This method uses the base64decoder to decode the given encrypted string*/ 
public String decrypt( String encryptedString ) throws EncryptionException 

{ 
if ( encryptedString == null II encryptedString.trimO.lengthO <= 0 ) 

throw new IllegalArgumentException( "encrypted string 
was null or empty" ); 

try 
{ 

SecretKey key = keyFactory.generateSecret( keySpec ); 
cipher.init( Cipher.DECRYPT_MODE, key); 
BASE64Decoder base64decoder = new BASE64DecoderO; 
byte[] cleartext = base64decoder.decodeBuffer( encryptedString ); 
byte[] ciphertext = cipher.doFinal( cleartext ); 
return bytes2String( ciphertext ); 

catch (Exception e) 
{ 

throw new EncryptionException( e ); 

/* This is a simple converter function from an array of bytes into a string*/ 
private static String bytes2String( byte[] bytes) 

{ 
StringBuffer stringBuffer = new StringBufferO; 
for (int i = 0; i < bytes.length; i++) 
{ 

stringBuffer.append( (char) bytes[i] ); 

return stringBuffer.toStringO; 

public static class EncryptionException extends Exception 
{ 
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public EncryptionException( Throwable t ) 
{ 

super( t ); 

Class KeyDisplayer 
/* This class is only for displaying the generated keys */ 
import javajo.BufferedlnputStream; 
import javajo.FileInputStream; 
import javajo.IOException; 
import java.io.InputStreamReader; 
public class KeyDisplayer 
{ 

private static final String GPK_FILE_NAME="gpk"; 
private static final String SPK_FILE_NAME="spk"; 
public static void main(String[] args) 
{ 

KeyDisplayer kD=new KeyDisplayerO; 
kD.display(GPK_FILE_NAME); 
kD.display(SPK_FILE_NAME); 

void display(String fileName) 
{ 

System.out.println("\n"+fileName); 
try{ 
BufferedlnputStream bIS=new BufferedlnputStream(new 

FilelnputStream(fileName)); 
int byteRead=bIS.readO; 
do 
{ 

printB yteAsBitsString( (byte )byteRead); 
} 
while «byteRead=bIS.readO)!=-l); 

catch (IOException e){ e. printStackTraceO;} 

void printByteAsBitsString(byte byteRead) 
{ 

for (int i=0;i<8;i++) 
if «byteRead & (2Aj)) > 0) 

System.ollt.print(" 1 "); 
else 

System.ollt.print("O"); 
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Class Unit (with no security) 
/* This is the main visitor class that is to be called from the MTU and the RTU to handle 
all the functions of different authentication algorithms - that version of the Unit class 
doesn't have any authentication implementation though */ 
import java.io. *; 
import java.util.ArrayList; 
import java.util.Hashtable; 
import nsecrec y. S tringEncrypter .Encrypti onException; 
public class Unit 
{ 

pri vate FilelnputStream filelnputStream; 
private String inMsg, outMsg; 
public Unit(String fileName) 
{ 

try 
{ 

fileInputStream=new FilelnputStream(fileN arne); 

} 

catch(Exception e) 
{ 

e. printStackTraceO; 

String getMsgO 
{ 

return outMsg; 

void setMsg(String msg) 
{ 

inMsg=msg; 
} 
void prepareMsgO 
{ 

InputStreamReader isr=new InputStreamReader(filelnputStream); 
char []cbuf = new char[lOO]; 
try 
{ 

int len=isr.read(cbuf); 
outMsg=String.copyVa]ueOf( cbuf,O,len); 
System. out. println("content of file:" +outMsg); 

catch (Exception e) 
{ 

e.printStackTraceO; 
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Class MTU (with no security) 
1* This class represents the master terminal unit with DNP3 protocol*1 
package noSecurity; 
import java.io.BufferedWriter; 
import java.io.ByteArraylnputStream; 
import java.io.File; 
import java.io.IOException; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
import java.net.Socket; 
import j a va. net. U nknownHostExcepti on; 
public class MTU 
{ 

public static int port; 
public static int ERROR; 
public static String server; 
public static Socket socket = null; 
public static ByteArraylnputStream input; 
public static PrintWriter output; 
public static final int MAX_FRAG_SIZE = 300; I/Eventually, change to 2048 
public static byte[] MTUfragment = new byte[MAX_FRAG_SIZE]; II DNP 

Fragment octets to be sent to RTU 
public static byte[] fragFromRTU = new byte[MAX_FRAG_SIZE]; II DNP 

Fragment octets for response from RTU. 
public static int offset; 
public static int length; 
public static int byteToBeSent; 
public static StreamTokenizer tokenizer; 
public static int last; 
public static boolean fileWrite_waiCstate = false; 
public static long lastModifiedTime; 
public static long newModifiedTime; 
public static long currentTime; 
public static File clientlnputFile = new File ("INPUT.dat"); 
public static boolean IsUnsolicitedMsgReceived = false; 
public static int contentValuel; 
public static int content Value2; 
public static int contentValue3; 
public static PrintWriter fileContents; 
public static File outputFile; 
public static long firstS tamp; 
public static long secondStamp; 
public static long timeDifference; 
public static long totalTimeDifference; 
public static String fileName = "OUTPUT.dat" ; 
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public static BufferedWriter out; 
static Unit mtuUnit; 
public static void main(String[] args) 
{ 

long time 1 =S ystem.currentTimeMillisO; 
System.out.println("MTU Timel:"+timel); 
server ="10.202.2.67" ; II for socket connections 
port=2000; 
II use the unit object to do the message preparation 
mtuUnit=new Unit("INPUT.DAT"); 
mtuUnit.prepareMsgO; 
connectO; II connect to the RTU 
prepareToSendO; 
sendArrayO; II Send the message array 

1* Initiates a socket connection with the server IPlPort*1 
public static void connectO 
{ 

try { 
socket = new Socket(server, port); 
S ystem.out. println("Port:" +port); 
System.out.println("Connected with RTU II + 

socket.getInetAddressO + 
":" + socket.getPortO + "\n"); 

catch (UnknownHostException e) { 
S ystem.out.printIn( e); 
} 

catch (IOException e) { 
System.out.println( e); 
} 

1* Stacks a message fragment into a byte array and transmits it into the server*1 
public static void prepareToSendO 
{ 

} 

try { 
int offset = 0; 
int length = mtuUnit.getMsgO.lengthO; 
MTUfragment=mtuUnit.getMsgO.getBytesO; 
input = new ByteArrayInputStream(MTUfragment, offset, length); 
II get input array and transmit it to server 
byteToBeSent = input.readO; 
output = new PrintWriter(socket.getOutputStreamO,true); 

catch (IOException e) { 
System. out. println( e); 
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} 
} 
private static void sendArrayO { 

while(true) { 
II stop if end-of-array 
output.println(byteToBeSent); 
if(byteToBeSent == -1) break; 
byteToBeSent = input.readO; 

Class RTU (with no security) 
1* This is the class representing the remote terminal unit with DNP3 implemented*1 
package noSecurity; 
import java.io.BufferedWriter; 
import j ava.io.B yteArra y InputStream; 
import java.io.File; 
import java.io.FilelnputStream; 
import j a va.io .Fi Ie W ri ter; 
import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
import java.net.ServerSocket; 
import java.net.Socket; 
import java.net.SocketException; 
import java.net.SocketTimeoutException; 
public class RTU 
{ 

public static int port; 
public static ServerSocket servecsocket; 
public static Socket socket; 
public static StreamTokenizer tokenizer; 
public static final int MAX_FRAG_SIZE = 10000; I/Eventually, change to 2048 
public static byte[] fragFromMTU = new byte [MAX_FRAG_SIZE] ; 
II Fragment received from MTU 
public static byte[] responseFrag = new byte[MAX_FRAG_SIZE]; 
I/Fragment to send to MTU 
public static File newfile; 
public static FilelnputStream outputFile; 
public static BufferedWriter out; 
public static ByteArraylnputStream ACKtoMTU; 
public static PrintWriter outputAsACK; 
public static String message; 
public static int byteACK; 
public static String fileName; 
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public static int contentValue; 
public static PrintWriter fileContents; 
public static PrintWriter unsolicitedOutput; 
public static boolean keepListening = true; 
public static FileWriter newWriteFile; 
static Unit rtuUnit; 
static int len==O; 
public static void main(String[] args) 
{ 

II The port to listen at for a socket connection 
port=2000; 
rtuUnit==new Unit("OUTPUT.DAT"); 
try { 

getSocketO; II Sit and listen for any message from MTU 

catch (Exception e) 
{ 

S ystem.out. printIn(" Socket Problems "); 
System.out. printIn( e); 

recei veMTUfragO; 
long time2==System.currentTimeMillisO; 
System.out.println("RTU time :"+time2); 
rtuUnit.setMsg(new String(fragFromMTU,O,len)); 

II Wait and respond to socket connections 
public static void getSocketO 
{ 

try { 
servecsocket = new ServerSocket(port); 
System.out. println("port:" +port); 
System.out.printin("RTU waiting for request on port" + 

servecsocket.getLocalPortO + " ..... "); 
socket == servecsocket.acceptO; 
System.out.println("New connection accepted from: "+ 

socket.getInetAddressO + ": II + socket.getPortO); 
} 
catch (IOException e) { 
System.out.println("Socket Error"); 
System. out. println( e); 
} 

II Recei ve the message fragment from MTU 
public static void receiveMTUfragO II Get the information sent by MTU 
{ 

int byteToBeSent=O; 
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initializeArrayO; IICreate an empty fragment to receive MTU octets 
prepareStream(); IIStart reading token stream sent by MTU 

public static void initializeArrayO IIInitialize the fragment array 
{ 

for (int i = 0; i <fragFromMTU.length; i++) fragFromMTU[iJ = OxO; 
l/initialize array 

} 

MTU 

public static void prepareStreamO IIGet info from the stream sent by MTU 
{ 

try { 
tokenizer = new StreamTokenizer( 
new InputStreamReader( socket. getInputStreamO)); 
if (tokenizer.nextTokenO == tokenizer.TT_NUMBER) { 
fillArrayO; I/Fill the entire fragment array with the info sent by 

} 
else { 

System.out.println("Nothing to read from MTU in the 
socket.\n "); 

seconds, so"); 

} 

c1eanUpO; 
getSocketO; 

catch (SocketTimeoutException e) { 
System.out.println("\nNo MTU request received in last five 

try { 
socket.setSoTimeout(O); 

catch (SocketException e2){ 
System.out.println("Socket Timedout Here"); 
System.out.println(e2); 

catch (SocketException e) { 
System.out.println(,,\n"+ e); 
System.out.println("Client has closed the connection. RTU will 

create new socket. "); 
startAgainO; 

catch (IOException e) { 
System. out. println( e); 
} 

public static void startAgainO { 
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} 

keepListening = false; 
IISystem.out.printIn("\n Will clean up and start listening again" ); 
cleanUpO; 
try { 

getSocketO; II Sit and listen for any message from MTU 

catch (Exception e) 
{ 

System.out.println("Socket Problems"); 
System.out.println( e); 

while (true) 
{ 

receiveMTUfragO; II Get the information sent by MTU 
} Ilend while-loop 

public static void fillArrayO 
IIPopulate the fragment array with info from MTU 

{ 

create. 

len = 0; 
int tokenType=O; 

while (tokenizer.nval !=-1) 
{ 

try { 
fragPromMTU[len] = (byte)tokenizer.nval; 
if (len == 55) { 

llLet's get the contents of the file MTU wants us to 

contentValue = (int)tokenizer.nval; 
} 

tokenType=tokenizer.nextTokenO; 
len++; 

catch (IOException e) II Error reading in nextTokenO 
{ 

System.out.println(e); II Output the error 
System.exit(1); II End the program 

public static void cleanUpO IIClose the sockets, etc. or reset variables 
{ 

try { 
servecsocket.closeO; 
socket.closeO; 
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System.out.println("RTU is closing the socket now 
============================="); 

System.out.println(""); 
} 
catch (IOException e) { 

System.out.println("ERROR on IOException"); 
System.out.println( e); 

Class Unit (with Double Secrecy) 
1* The visitor implementation of the unit class with the double secrecy implemented. 
There will be only two secrets here, ssec1, and ssec2, and two corresponding keys, gpk, 
and spk*1 
package nsecrecy; 
import java.io. *; 
import java. util.ArrayList; 
import java.util.Hashtable; 
import nsecrec y. S tri ngEncrypter.Encrypti onExcepti on; 
public class Unit 
{ 

private static final String GPK_FILE_NAME="gpk"; 
private static final String SPK_FILE_NAME="spk"; 
private static final String SSECl_FILE_NAME="ssec1 "; 
private static final String SSEC2_FILE_NAME="ssec2"; 
private static String gpkEncKey; 
private static String spkEncKey; 
private static String ssecl; 
pri vate static String ssec2; 
II to serve as a delimiter in the final concatenated message 
private static String endMark="I/"; 
II DES or triple DES 
private String encryptionScheme = 
StringEncrypter.DESEDE_ENCRYPTION_SCHEME; 
pri vate StringEncrypter encrypterGPK,encrypterSPK; 
pri vate FilelnputStream filelnputStream; 
private String inMsg, outMsg; 
II The hashtable containing keys and secrets as the double secrecy algorithm 
private Hashtable hTable=new HashtableO; 
public Unit(String fileName) 
{ 

assignKeysAndSecretsO; 
hTable.put(ssecl,spkEncKey+endMark+ssec2); 
try 
{ 

filelnputStream=new FilelnputStream(fileN arne); 
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catch(Exception e) 
{ 

e. printStackTraceO; 

/* Read the secrets from the secret files and the keys and initializes two 
stringEncrypter objects one for gpk and another for spk */ 
private void assignKeysAndSecretsO 
{ 

try 
{ 

InputStreamReader gpkISR=new InputStreamReader(new 
FileInputStream( GPK_FILE_N AME»; 

InputStreamReader spkISR=new InputStreamReader(new 
FileInputStream(SPK_FILE_NAME»; 

InputStreamReader ssec lISR=new InputStreamReader(new 
FileInputStream(SSEC LFILE_N AME»; 

InputStreamReader ssec2ISR=new InputStreamReader(new 
FilelnputStream(SSEC2_FILE_NAME»; 

char []cbuf = new char[lOOO]; 
int len=gpkISRread( cbuf); 
gpkEncKey=String.copy ValueOf( cbuf,O,len); 

len=spkISRread( cbuf); 
spkEncKey=String.copy ValueOf( cbuf,O,len); 
len=ssec 1 ISRread( cbuf); 
ssec l=String.copyValueOf( cbuf,O,len); 
len=ssec2ISRread( cbuf); 
ssec2=String.copy V alueOf( cbuf,O,len); 
encrypterGPK = new 

StringEncrypter( encryptionScheme,gpkEncKey ); 
encrypterSPK = new 

StringEncrypter( encryptionScheme,spkEncKey ); 
} 
catch (Exception e) 
{ 

e.printStackTraceO; 

String getMsgO 
{ 

return outMsg; 

void setMsg(String msg) 
{ 
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try { 

inMsg=msg; 

/* Prepares the message to be sent by concatenating the encrypted ssec 1 together 
with the encrypted message and the encrypted ssec2, according to the double 
secrecy algorithm */ 
void prepareMsgO 
{ 

InputStreamReader isr=new InputStreamReader(filelnputStream); 
char []cbuf = new char[lOOO]; 
try 
{ 

int len=isr.read( cbuf); 
outMsg=String.copy ValueOf( cbuf,O,len); 
System.out. println("content of file:" +outMsg); 
String header=encrypt( ssec 1 ,encrypterGPK); 
String footer=encrypt(ssec2,encrypterSPK); 
String body=encrypt( outMsg,encrypterSPK); 
outMsg=header+endMark +body+endMark + footer; 

catch (Exception e) 
{ 

e.printStackTraceO; 

/*Calling the encrypt function of the stringEncrypter object*/ 
String encrypt(String content,StringEncrypter encrypter) 
{ 

String ret="Enc Error"; 

ret= encrypter.encrypt( content); 
} 

catch (EncryptionException e) 
{ 

e.printStackTraceO; 

return ret; 

/*Calling the decrypt function of the stringEncrypter object*/ 
String decrypt(String content,StringEncrypter encrypter) 

{ 
String ret="Dec Error"; 

try { 
ret= encrypter.decrypt(content); 

catch (EncryptionException e) 
{ 
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e.printStackTraceO; 

return ret; 

/* Authenticating the message according to the double secrecy algorithm*/ 
boolean authenticateMsgO 
{ 

boolean ret=false; 
String encHeader=inMsg.substring(O,inMsg.index Of( endMark)); 
String 

temp=inMs g. substring(inMsg.index Of( endMark)+endMark.length 0); 
String encBody=temp.substring(O,temp.indexOf(endMark)); 
String 

encFooter=temp.substring(temp.indexOf(endMark)+endMark.lengthO); 
String header=decrypt( encHeader,encrypterGPK); 
if (hTable.containsKey(header)) 
{ 

System.out.println("Passed first test"); 
String listValue=(String)hTable.get(header); 
String spk=listValue.substring(O,listValue.indexOf( endMark)); 
String 

ssec2=list V alue.substring(list Value.indexOf( endMark)+endMark.lengthO); 
String footer=decrypt( encFooter,encrypterSPK); 
if (footer.equals(ssec2)) 
{ 

System.ouLprintln("Passed second test"); 
ret=true; 
String msgContent=decrypt( encBody ,encrypterSPK); 
System.ouLprintln("Authenticated and msg content 

is: "+msgContent); 

else 
System.out.println("Ah Oh"); 

return ret; 

Class MTU (with Double Secrecy) 
/* Same MTU implementation as above*/ 
package nsecrecy; 
import java.io.BufferedWriter; 
import java.io.ByteArraylnputStream; 
import java.io.File; 
import java.io.IOException; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
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import java.net.Socket; 
import java. net. UnknownHostException; 
public class MTU 
{ 

public static int port; 
public static int ERROR; 
public static String server; 
public static Socket socket = null; 
public static ByteArrayInputStream input; 
public static PrintWriter output; 
public static final int MAX_FRAG_SIZE = 300; I/Eventually, change to 2048 
public static byte[] MTUfragment = new byte[MAX_FRAG_SIZE]; II DNP 

Fragment octets to be sent to RTU 
public static byte[] fragFromRTU = new byte[MAX_FRAG_SIZE]; II DNP 

Fragment octets for response from RTU. 
public static int offset; 
public static int length; 
public static int byteToBeSent; 
public static StreamTokenizer tokenizer; 
public static int last; 
public static boolean fileWrite_waicstate = false; 
public static long lastModifiedTime; 
public static long newModifiedTime; 
public static long currentTime; 
public static File clientlnputFile = new File ("INPUT.dat"); 
public static boolean IsUnsolicitedMsgReceived = false; 
public static int contentValuel; 
public static int contentValue2; 
public static int contentValue3; 
public static Print Writer fileContents; 
public static File outputFile; 
public static long firstStamp; 
public static long secondS tamp; 
public static long timeDifference; 
public static long totalTimeDifference; 
public static String fileName = "OUTPUT.dat" ; 
public static BufferedWriter out; 
static Unit mtuUnit; 
public static void main(String[] args) 
{ 
server =" 10.202.2.67" ; 
port=2000; 
mtuUnit=new Unit("INPUTDAT"); 
mtuUnit.prepareMsgO; 
connectO; 
long time 1 =S ystem.currentTimeMilli sO; 
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II System.out.println("MTU Timel:"+timel); 
prepareToSendO; 
sendArrayO; 
long time2::::System.currentTimeMillis(); 
System.out. println("Time elapsed is: II +( time2-time 1»; 

public static void connectO 
{ 

} 

try { 
socket = new Socket(server, port); 
System.out.println("Port: II +port); 
System.out.println("Connected with RTU II + 

socket.getInetAddressO + 
":" + socket.getPortO + "\n"); 

catch (UnknownHostException e) { 
System. out. println( e); 
} 

catch (IOException e) { 
System.out. println( e); 
} 

public static void prepareToSendO 
{ 

} 

try { 
int offset = 0; 
int length = mtuUnit.getMsgO.lengthO; 
MTUfragment=mtuUnit.getMsgO.getBytesO; 
input = new ByteArraylnputStream(MTUfragment, offset, length); 
II get input array and transmit it to server 
byteToBeSent = input.readO; 
output = new PrintWriter(socket.getOutputStreamO,true); 

catch (IOException e) { 
System.out.println( e); 

private static void sendArrayO { 
while(true) { 

II stop if end-of-array 
output. println(byteToBeSent); 
if(byteToBeSent == -1) break; 
byteToBeSent = input.readO; 
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} 
Class RTU (with Double Secrecy) 
/* The same implementation of RTD as above with the exception of calling the 
Unit.authenticateO method to authenticate the other party *1 
package nsecrecy; 
import java.io.BufferedWriter; 
import java.io.ByteArraylnputStream; 
import java.io.File; 
import java.io.FilelnputStream; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
import java.net.ServerSocket; 
import java.net.Socket; 
import java.net.SocketException; 
import java.net.SocketTimeoutException; 
public class RTU 
{ 

public static int port; 

public static ServerSocket servecsocket; 
public static Socket socket; 
public static StreamTokenizer tokenizer; 
public static final int MAX_FRAG_SIZE = 10000; llEventually, change to 2048 
public static byte[] fragFromMTU = new byte[MAX_FRAG_SIZEJ; II Fragment 

recei ved from MTU 
public static byte[] responseFrag = new byte[MAX_FRAG_SIZE]; IIFragment to 

send to MTU 
public static File newfile; 
public static FileInputStream outputFile; 
public static BufferedWriter out; 
public static ByteArraylnputStream ACKtoMTU; 
public static PrintWriter outputAsACK; 
public static String message; 
public static int byteACK; 
public static String fileName; 
public static int contentValue; 
public static PrintWriter fileContents; 
public static PrintWriter unsolicitedOutput; 
public static boolean keepListening = true; 
public static FileWriter newWriteFile; 
static Unit rtuUnit; 
static int len=O; 
public static void main(String[] args) 
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port=2000; 

rtuUnit=new Unit("OUTPUT.DAT"); 
try { 

getSocketO; II Sit and listen for any message from MTU 

catch (Exception e) 
{ 

System.out.println("Socket Problems "); 
System. out. println( e); 

long time 1 =S ystem.currentTimeMillisO; 
receiveMTUfragO; 
rtuUnit.setMsg(new String(fragFromMTU,Q,len)); 

II System.out.println("RTU Timel:"+timel); 
II Authenticate the message 
if (rtuUnit.authenticateMsg()) 
{ 

else 
{ 

long time2=System.currentTimeMillisO; 
System.out.println("RTU time elapsed:"+(time2-timel)); 
System.out.println("Msg authenticated at RTU"); 

long time2=S ystem.currentTimeMillisO; 
System.out.println("RTU time elapsed:"+(time2-timel)); 
System.out.println("Msg is not authenticated"); 

public static void getSocketO 
{ 

try { 
servecsocket = new ServerSocket(port); 
S ystem.out. println("port: II +port); 
System.out.println("RTU waiting for request on port II + 

server_socket.getLocalPortO + II ••••• "); 

socket = servecsocket.acceptO; 
System.out.println("New connection accepted from: "+ 

socket.getlnetAddressO + ":" + socket.getPortO); 
} 
catch (IOException e) { 

S ystem.out. println(" Socket Error"); 
System.out. println( e); 
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public static void receiveMTUfragO II Get the information sent by MTU 
{ 

int byteToBeSent=O; 
initializeArrayO; IICreate an empty fragment to receive MTU octets 
prepareStreamO; IIStart reading token stream sent by MTU 

public static void initializeArrayO IIInitialize the fragment array 
{ 

for (int i = 0; i <fragFromMTU.length; i++) fragFromMTU[i] = OxO; 
l/initialize array 

} 
public static void prepareStreamO IIGet info from the stream sent by MTU 
{ 

socket.\n "); 

seconds SOli). , , 

try { 
tokenizer = new StreamTokenizer( 

new InputStreamReader( socket.getInputStreamO)); 
if (tokenizer.nextTokenO == tokenizer.TT_NUMBER) { 

fillArrayO; IlFill the entire fragment array with the info sent by MTU 
} 
else { 

System.out.println("Nothing to read from MTU in the 

cleanUpO; 
getSocketO; 

catch (SocketTimeoutException e) { 

} 

System.out.println("\nNo MTU request received in last five 

try { 
socket. setS 0 Timeout(O); 

catch (SocketException e2){ 
System.out.println("Socket Timedout Here"); 
System.out.println(e2); 

catch (SocketException e) { 
System.out.println("\n"+ e); 
System.out.println("Client has closed the connection. RTU will 

create new socket. "); 
startAgainO; 

} 
catch (IOException e) { 

System. out. println( e); 
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create. 

} 
public static void startAgainO { 

keepListening = false; 
IISystem.out.println("\n Will clean up and start listening again" ); 
cleanUpO; 
try { 

getSocketO; II Sit and listen for any message from MTU 
} 
catch (Exception e) 
{ 

System.out.println("Socket Problems"); 
System.out. println( e); 

while (true) 
{ 

receiveMTUfragO; II Get the information sent by MTU 
} Ilend while-loop 

} 
public static void fillArrayO IlPopulate the fragment array with info from MTU 
{ 

len = 0; 
int tokenType=O; 
while (tokenizer.nval !=-1) 
{ 

try { 
fragFromMTU[len] = (byte)tokenizer.nval; 

if (len == 55) { 

} 

IlLet's get the contents of the file MTU wants us to 

contentValue = (int)tokenizer.nval; 
} 

tokenType=tokenizer.nextTokenO; 
len++; 

catch (IOException e) II Error reading in nextTokenO 
{ 

System.out.println(e); II Output the error 
System.exit(1); II End the program 

public static void cleanUpO IIClose the sockets, etc. or reset variables 
{ 

try { 
server_socket.closeO; 
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socket.closeO; 
System.out.println("RTU is closing the socket now 

============================= "); 
System.out.println(" "); 

catch (IOException e) { 
System.out.println("ERROR on IOException"); 
System.out. println( e); 

Class Unit (with N Secrecy) 
/* This class represents the visitor implementation of the N-Secrecy authentication 
algorithm */ 
package nsecrecyUpgrade; 
import java.io. *; 
import java.util.ArrayList; 
import java. util.Hashtable; 
import nsecrecyUpgrade.StringEncrypter.EncryptionException; 
public class Unit 
{ 

liThe prefixes of the keys and the secrets' names 
private static final String ENCKEY _FlLE_NAME_PRE="enckey"; 
private static final String SSEC_FILE_NAME_PRE="ssec"; 
private String[] encKey=new String[5]; 
private String[] ssec=new String[5]; 
1* The delimiter for the concatenated string composing the message to be sent */ 
private static String endMark="//"; 
/* The number of secrets to be used as the N in the N-secrecy*/ 
private int securityLevel=2; 
private FileInputStream fileInputStream; 
private String inMsg, outMsg; 
private Hashtable hTable=new HashtableO; 
public Unit(String fileName,int securityLevel) 
{ 

this.securityLevel=securityLevel; 
setHTableO; 
try 
{ 

fileInputStream=new FilelnputStream(fileN arne); 

catch(Exception e) 
{ 

e. printStackTraceO; 
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1* filling the hashtable like the N-secrecy algorithm*1 
private void setHTableO 
{ 

if (securityLevel> 1) 
for (int i=O;i<securityLevel;i++) 

{ 
assignKeysAndSecrets(i); 
if (i>O) 

hTable.put(ssec[i-l],encKey[i]+endMark+ssec[i]); 

/* Reading the secret file and the key file with the given index and filling the 
enckey and the ssec arrays. This method is called in a loop from setHTableO*/ 

private void assignKeysAndSecrets(int ndx) 
{ 

try 
{ 

InputStreamReader keyISR=new InputStreamReader(new 
FileInputStream(ENCKEY _FILE_NAME_PRE+ndx)); 

InputStreamReader ssecISR=new InputStreamReader(new 
FileInputStream(SSEC_FILE_NAME_PRE+ndx)); 

} 

char []cbuf = new char[lOOO]; 
int len=keyISR.read(cbuf); 
encKey[ndx]=String.copyValueOf(cbuf,O,len); 
len=ssecISR.read( cbuf); 
ssec[ndx]=String.copyValueOf(cbuf,O,len); 

catch (Exception e) 
{ 

e.printStackTraceO; 

String getMsgO 
{ 

return outMsg; 

void setMsg(String msg) 
{ 

inMsg=msg; 

/* Preparing the message to be sent. It has the same logic as the one in the double 
secrecy implementation, except for setting up the footer which will be in a loop 
depending on the security level in the method setupFooterO below */ 
void prepareMsgO 
{ 
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InputStreamReader isr=new InputStreamReader(filelnputStream); 
char []cbuf = new char[lOOO]; 
try 
{ 

int len=isr.read( cbuf); 
outMsg=String.copyValueOf(cbuf,O,len); 
S ystem.out. println(" content of file:" +outMsg); 
String header=encrypt(ssec[O],encKey[O]); 
String footer=setUpFooterO; 
String body=encrypt(outMsg,encKey[securityLevel-l]); 
outMsg=header+endMark +body+endMark +footer; 

catch (Exception e) 
{ 

e.printStackTraceO; 

private String setUpFooterO 
{ 

String footer=""; 
for (int i=l;i<securityLevel;i++) 
{ 

String temp=encrypt(ssec[i],encKey[i]); 
footer=footer+temp+endMark; 

return footer; 

II Same as the one in the double secrecy 
String encrypt(String content,String key) 
{ 

String ret="Enc Error"; 
String encryptionScheme = 

StringEncrypter.DESEDE_ENCRYPTION_SCHEME; 
Stri ngEncrypter encrypter; 
System.out.println("Key:" +key); 

try { 
encrypter = new StringEncrypter(encryptionScheme,key ); 
ret= encrypter.encrypt( content); 

catch (EncryptionException e) 
{ 

e.printStackTraceO; 

return ret; 

II Same as the one in the double secrecy 
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String decrypt(String content,String key) 
{ 

String ret="Dec Error"; 
String encryption Scheme = 

StringEncrypter.DESED E_ENCR YPTION_SCHEME; 
StringEncrypter encrypter; 
try { 

encrypter = new StringEncrypter(encryptionScheme,key ); 
ret= encrypter.decrypt( content); 

catch (EncryptionException e) 
{ 

e.printStackTraceO; 

return ret; 

II Same as the one in the double secrecy except that the tests are being checked in 
a loop depending on the security level, to check if the hashtable contains the 
ssec[i] secret as a key where i is the secret/key index 

boolean authenticateMsgO 
{ 

boolean ret=true; 
String aPk=""; 
String aSsec=""; 
String encHeader=inMsg.substring(O,inMsg.index Of( endMark»; 
String 

temp=i nMs g. s ubstring(inMs g. index Of( endMark)+endMark.length 0); 
String encBody=temp.substring(O,temp.indexOf(endMark»; 
String 

encFooter=temp.substring(temp.indexOf(endMark)+endMark.lengthO); 
String header=decrypt( encHeader,encKey[O]); 
if (hTable.containsKey(header» 
{ 

System.out.println("Passed lookup test no: 1 "); 
String listValue=(String)hTable.get(header); 
aPk=list V alue.substring(O,list V alue.indexOf( endMark»; 

aSsec=list Value.substring(list Value.index Of( endMark)+endMark.lengthO); 
for(int i=O;i<securityLevel-l ;i++) 

{ 
if (i>O) 

no:"+(i+l»; 

if (hTable.containsKey(ssec[i]) 
{ 

System.out.println("Passed lookup test 

list V alue=(String)hTable.get( ssec[i]); 
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aPk=listValue.substring(O,listValue.indexOf(endMark)); 

aSsec=list Value.substring(list Value.index Of( endMark)+endMark.lengthO); 
} 
else return false; 

String 
aFooter=encF ooter. s ubstring( 0 ,encFooter. index Of( endMark»; 
encFooter=encFooter. substring( encFooter. index Of( endMark )+endMark.1 ength ()); 

if « decrypt(aFooter,aPk) ).equals(aSsec)) 
System.out.println("Passed match test no:"+(i+l)); 

else 
return false; 

String msgContent=decrypt( encBody ,aPk); 
System.out.println("Authenticated and msg content is:"+msgContent); 
return true; 

} 
Class MTU (with N Secrecy) 
1* Same as the MTU implementation for the double secrecy except for the new method 
prepareAndSend 0, which is actually preparing the message as the previous 
implementation but now we're calling with more than one security level to test out the 
functionality and time*1 
package nsecrecyUpgrade; 
import java.io.BufferedWriter; 
import java.io.ByteArraylnputStream; 
import java.io.File; 
import java.io.IOException; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
import java.net.Socket; 
import j ava.net. UnknownHostException; 
public class MTU 
{ 

public static int port; 
public static int ERROR; 
public static String server; 
public static Socket socket = null; 
public static ByteArraylnputStream input; 
public static PrintWriter output; 
public static final int MAX_FRAG_SIZE = 300; 

I/Eventually, change to 2048 
public static byte[] MTUfragment = new byte[MAX_FRAG_SIZE]; II DNP 

Fragment octets to be sent to RTU. 
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public static byte[] fragFromRTU:;: new byte[MAX_FRAG_SIZE]; II DNP 
Fragment octets for response from RTU 

public static int offset; 
public static int length; 
public static int byteToBeSent; 
public static StreamTokenizer tokenizer; 
public static int last; 
public static boolean fileWrite_waiCstate = false; 
public static long lastModifiedTime; 
public static long newModifiedTime; 
public static long currentTime; 
public static File c1ientInputFile :;: new File ("INPUT.dat"); 
public static boolean IsUnsolicitedMsgReceived = false; 
public static int contentValuel; 
public static int contentValue2; 
public static int contentValue3; 
public static PrintWriter fileContents; 
public static File outputFile; 
public static long firstS tamp; 
public static long secondStamp; 
public static long timeDifference; 
public static long totalTimeDifference; 
public static String fileName:;: "OUTPUT.dat" ; 
public static BufferedWriter out; 
static Unit mtuUnit; 
public static void main(String[] args) 
{ 

server :;:" 10.202.2.67" ; 
port:;:2000; 
connectO; 
prepareAndSend("INPUT2.DAT" ,2); 
prepareAndSend("INPUT5.DAT" ,5); 
prepareAndSend("INPUT3.DAT" ,3); 

private static void prepareAndSend(String fileName, int securityLevel) 
{ 

mtuUnit=new Unit(fileName, securityLevel); 
mtuUnit.prepareMsgO; 
long timel=System.currentTimeMillisO; 
prepareToSendO; 
sendArrayO; 
long time2=S ystem.currentTimeMillisO; 
System. out. println("Time elapsed is:" +(time2-timel)); 

public static void connectO 
{ 
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} 

} 

try { 
socket = new Socket(server, port); 
S ystem.out. println("Port:" +port); 
System.out.println("Connected with RTU " + 

socket.getInetAddressO + 
":" + socket.getPortO + "\n"); 

} 
catch (UnknownHostException e) { 

System.out.println( e); 
} 

catch (IOException e) { 
System.out.println( e); 
} 

public static void prepareToSendO 
{ 

} 

try { 
int offset = 0; 
int length = mtuUnit.getMsgO.lengthO; 
MTUfragment=mtuUnit.getMsgO·getBytesO; 
input = new ByteArraylnputStream(MTUfragment, offset, length); 
II get input array and transmit it to server 
byteToBeSent ::;:: input.readO; 
output = new PrintWriter(socket.getOutputStreamO,true); 

catch (IOException e) { 
System.out.println( e); 

private static void sendArrayO { 
while(true) { 

II stop if end-of-array 
output. println(byteToBeSent); 
if(byteToBeSent == -1) break; 
byteToBeSent = input.readO; 

Class RTU (with N Secrecy) 
1* This is the N secrecy implementation for the RTU class. It's the same as the double 
secrecy except that that one's main function calls the recieveAndAuthenticateO method 
which actually calls the Unit.authenticateO *1 
package nsecrecyUpgrade; 
import java.io.BufferedWriter; 
import java.io.ByteArraylnputStream; 
import java.io.File; 
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import java.io.FilelnputStream; 
import java.io.FileWriter; 
import java.io.IOException; 
import j ava.io.InputStreamReader; 
import java.io.PrintWriter; 
import java.io.StreamTokenizer; 
import java.net.ServerSocket; 
import java.net.Socket; 
import java. net. S ocketExcepti on; 
import java.net.SocketTimeoutException; 
public class RTU 
{ 

public static int port; 
public static ServerSocket servecsocket; 
public static Socket socket; 
public static StreamTokenizer tokenizer; 
public static final int MAX_FRAG_SIZE = 10000; I/Eventually, change to 2048 
public static byte[] fragFromMTU = new byte[MAX_FRAG_SIZE]; II Fragment 

recei ved from MTU 
public static byte[] responseFrag = new byte[MAX_FRAG_SIZE]; IlFragment to 

send to MTU 
public static File newfile; 
public static FilelnputStream outputFile; 
public static BufferedWriter out; 
public static ByteArraylnputStream ACKtoMTU; 
public static PrintWriter outputAsACK; 
public static String message; 
public static int byteACK; 
public static String fileName; 
public static int contentValue; 
public static PrintWriter fileContents; 
public static PrintWriter unsolicitedOutput; 
public static boolean keepListening = true; 
public static FileWriter newWriteFile; 
static Unit rtuUnit; 
static int len=O; 
public static void main(String[] args) 
{ 

port=2000; 
try { 

getSocketO; II Sit and listen for any message from MTU 

catch (Exception e) 
{ 

System.out.println("Socket Problems"); 
S ystem.out. println( e); 
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} 

recieveAndAuthenticate("OUTPUT.D AT II ,2); 
recieveAndAuthenticate("OUTPUT.DAT" ,5); 
recieveAndAuthenticate("OUTPUT.DAT",3); 

private static void recieveAndAuthenticate(String fileName, int securityLevel) 
{ 

rtuUnit=new Unit(fileName,securityLevel); 
receiveMTUfragO; 
rtuUnit.setMsg(new String(fragFromMTU,O,len)); 
long time 1 =S ystem.currentTimeMillisO; 

II System.out.println("RTU Time 1: "+time 1); 
if (rtuUnit.authenticateMsgO) 
{ 

else 

long time2=System.currentTimeMillisO; 
System.out.printlnC"RTU time elapsed:"+(time2-timel)); 
System.out.println("Msg authenticated at RTU"); 

long time2=System.currentTimeMillisO; 
System.out.println("RTU time elapsed:"+Ctime2-timel)); 
System.out.println("Msg is not authenticated"); 

public static void getSocketO 
{ 

try { 
server_socket = new ServerSocket(port); 
System.out.println("port: "+port); 
System.out.printIn("RTU waiting for request on port II + 

servecsocket.getLocalPortO + II ••••• "); 

socket = servecsocket.acceptO; 
System.out.println("New connection accepted from: "+ 

socket.getlnetAddressO + ":" + socket.getPortO); 
} 
catch (IOException e) { 

S ystem.out. println(" Socket Error"); 
S ystem.out. println( e); 

public static void receiveMTUfragO II Get the information sent by MTU 
{ 

int byteToBeSent=O; 
initializeArrayO; IICreate an empty fragment to receive MTU octets 
prepareStreamO; IIStart reading token stream sent by MTU 
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public static void initializeArrayO IIInitialize the fragment array 
{ 

for (int i = 0; i <fragFromMTU.length; i++) fragFromMTU[i] == OxO; 
l/initialize array 

} 
public static void prepareStreamO IIOet info from the stream sent by MTU 
{ 

MTU 

socket.\n "); 

seconds, SOli); 
II 
II 
II 
II 
II 
II 
II 

try { 
tokenizer = new StreamTokenizer( 

new InputStreamReader(socket.getInputStreamO)); 
if (tokenizer.nextTokenO == tokenizer.TT_NUMBER) { 

fillArrayO; I/Fill the entire fragment array with the info sent by 

else { 
System.out.println("Nothing to read from MTU in the 

cleanUpO; 
getSocketO; 

catch (SocketTimeoutException e) { 
System.out.println("\nNo MTU request received in last five 

try { 
socket.setSoTimeout(O); 

catch (SocketException e2){ 
System.ouLprintln("Socket Timedout Here"); 
System.ouLprintln(e2); 

catch (SocketException e) { 
System.out.println("\n"+ e); 
System.out.println("Client has closed the connection. RTU will 

create new socket. "); 
startAgainO; 

catch (IOException e) { 
System.out.println(e); 

public static void startAgainO { 
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keepListening = false; 
cleanUpO; 
try { 

getSocketO; 
} 
catch (Exception e) 
{ 

S ystem.out. println(" Socket Problems "); 
System.out.println( e); 

while (true) 
{ 

receiveMTUfragO; II Get the information sent by MTU 
} Ilend while-loop 

public static void fillArrayO IIPopulate the fragment array with info from MTU 
{ 

create. 

len = 0; 
int tokenType=O; 

while (tokenizer. n val! =-1) 
{ 

try { 
fragFromMTU[len] = (byte)tokenizer.nval; 
if (len == 55) { 

IlLet's get the contents of the file MTU wants us to 

contentValue = (int)tokenizer.nval; 
} 

tokenType=tokenizer.nextTokenO; 
len++; 

catch (IOException e) II Error reading in nextTokenO 
{ 

System.out.println(e); II Output the error 
System.exit(I); II End the program 

public static void cleanUpO IIClose the sockets, etc. or reset variables 
{ 

try { 
servecsocket.closeO; 
socket.closeO; 
System.out.println("RTU is closing the socket now 

==============================11); 
System.out. println(" "); 
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catch (IOException e) { 
System.out.println("ERROR on IOException"); 
S ystem.out.println( e); 

Class Monomial 
package grobner; 
public class Monomial 
{ 

float cooficient; 
int []powers; 
int terrnNo; 

public Monomial(float cooficient,int [] powers, int terrnNo) 
{ 

this.cooficient=cooficient; 
this.powers=powers; 
this.termNo=termNo; 

public boolean isGreaterThan(Monomial m) 
{ 

} 

int ndx=O; 
while (ndx<terrnNo) 
{ 

Class Polynomial 
public class Polynomial 
{ 

Monomial [] monomials; 
int no=O; 
boolean isSorted=false; 
public Polynomial(Monomial [] monomials, int no) 
{ 

this.monomials=monomials; 
this.no=no; 

public MonomialleadMonomialO 
{ 

if (no>O) 
{ 
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if (!isSorted) 
{ 

sortO; 
isS orted=true; 

} 
return monomials[O]; 

return null; 

public static Polynomial sPoly( Polynomial p, Polynomial q) 
{ 
} 

pri vate void sortO 
{ 

Monomial m; 
for (int i=O;i<no-l;i++) 

for (int j=i+ 1 ;j<no;j++) 
if (monomials[j].isGreaterThan(monomials[i]» 
{ 

m=monomials[i] ; 
monomials[i]=monomials[j]; 
monomials [j]=m; 

public boolean zeroO 
{ 

return (no==O); 

Class System 
public class System 
{ 

Polynomial [] polynomials; 
int no; 
public void System(Polynomial [] polynomials, int no) 
{ 

} 

this.polynomials=polynomials; 
this.no=no; 

public void grobnerO 
{ 

Polynomial [] sPolys=new Polynomial[lO]; 
Polynomial [] polynomials2Add=new Polynomial[10]; 
int sPolysLength=O; 
int polysLength=O; 
for (int i=O;i<no;i++) 
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} 

for (int j=O;j<no;j++) 
if (i!=j) 
{ 

} 

Polynomial s=Pol ynomial.sPol y(polynomials[i] ,polynomialsU]); 
add(sPolys, s); 
sPolysLength++; 

for (int i=O;i<sPolysLength;i++) 
if (!(division(sPolys[i]).zeroO) 
{ 

} 

add(polynomials2Add, sPolys[i]); 
polysLength++; 

if (polysLength!::::::O) 
{ 

add (po 1 ynomials2Add, pol ysLength); 
grobnerO; 

private void add(Polynomial p) 
{ 

polynomials[no ]::::::p; 
no++; 

private void add(Polynomial [] polynomials, int no) 
{ 

} 

for (int i::::::O;i<no;i++) 
add(polynomials[i)); 

private void add (Polynomial [] polynomials,Polynomial p) 
{ 
} 
public Polynomial division(Polynomial p) 
{ 

} 
} 

Polynomial aRet; 
return aRet; 
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APPENDIXB 

Algebraic Geometry and Computer Algebra concepts 

This appendix covers mathematical definitions for concepts used throughout the 

dissertation. It starts with defining polynomials, ideals, and varieties, and then defines 

Grobner bases. Finally, the security spectrum algorithm is stated using the Grobner bases 

terminology. 

Polynomials 

A polynomial P(X) is defined to be a formal expression of the form: 

P(X) =amXm+ am_1Xm-1 + ... + alX I + ao 

Where the coefficients ao ... am are elements of a ring R, and X is considered to be a 

formal symbol, and sometimes called the polynomial variable. 

Two polynomials are considered to be equal if and only if the corresponding coefficients 

for each power of X are equal. 

Polynomial Ring R[X] 

The set of all polynomials with coefficients in the ring R, together with the addition + and 

the multiplication mentioned below, forms itself a ring, the polynomial ring over R, 

which is denoted by R[X]. 

Polynomial addition, is simply adding up all corresponding coefficients. 

Polynomial multiplication is applying the distributive law by multiplying each term in 

one polynomial by the other and adding up all terms. 

Ideal 

Let R be a ring, with (R, +) the underlying additive group of the ring. 
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A subset I of R is called right ideal of R if and only if, 

1. (I, +) is a subgroup of (R, +), 

2. xr belongs to I for all x in I and all r in R 

A subset I of R is called left ideal of R if and only if, 

1. (I, +) is a subgroup of (R, +), 

2. rx belongs to I for all x in I and all r in R 

A two-sided ideal is a left ideal that is also a right ideal, and is often called an ideal. 

Ideal generated by a set 

A set X is called the basis of an ideal I if and only if X is a finite subset of I such that any 

element in I can be expressed as a linear combination of elements in X. The ideal I is also 

called to be generated from the set X in this case. 

Varieties 

Let k be a closed field and let An be an affine n-space over k. The polynomials f in the 

ring k[x\, ... , xn] can be viewed as k-valued functions on An by evaluating f at the points 

in An. For each subset S of k[x\, ... , xn], define the set of zeros of S to be the set of points 

in An on which the functions in S vanish: 

Z(S)={ x belongs to An I f(x)=O for all f belongs to S}. 

A subset V of An is called an affine variety if V = Z(S) for some S. 

The ideal of a variety 

Given a subset V of An, let I(V) be the ideal of all functions vanishing on V, 

I(V)={f belongs to k[Xl, ... , Xn ] I f(x)=O for all x belongs to V}. 
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From the above definitions, of the ideal and the varieties, it looks that the ideal and 

corresponding variety can actually be used to express the same objects using the ideal 

generated by the system of non linear polynomials representing this object in algebra, and 

the variety that is the set of all points lying in this intersection area between all those 

polynomials in geometry. 

Grobner Bases 

Grobner basis is a particular kind of generating subset of an ideal I in a polynomial ring 

R[X]. It is a finite generating set for an ideal I, characterized by anyone of the following 

equivalent properties, stated relative to some monomial order, 

1. The ideal given by the leading terms of polynomials in the ideal I is itself generated 

by the leading terms of the basis G, 

2. The leading term of any polynomial in I is divisible by the leading term of some 

polynomial in the basis G, 

3. Multivariate division of any polynomial in the polynomial ring R by G gives a unique 

remainder, 

4. Multivariate division of any polynomial in the ideal I by G give O. 

The third property listed above is the one used as a criterion in the security spectrum 

algorithm below. 

Uniform word problem algorithm, 

Let f, PI,P2, .. ·pn belong to R[X], for some ring R, and let I[PI,P2, ... Pn] be the ideal 

generated by the polynomials Pl,p2, ... Pn, The uniform word problem is the decidability 

problem: 
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Does the polynomial f belong to I[Pl,P2, ... Po] or not? 

To find the solution to that problem, use the extended Euclidean algorithm and divide f 

by Pl,PZ, ... pn , and check if remainder is zero or not. The problem is that this division 

does not have a unique solution. 

To overcome this challenge, take the ideal I[Pl,PZ, ... Pn] and convert its current basis 

[PJ,Pz, ... Pn] into a Grobner basis. 

Now, the division can take place and property 3 in the definition of Grobner basis can be 

used to reach a solution. 

Security Spectrum algorithm using Grobner bases notations 

1. Gather the intrinsic conditions of each of the two parties. 

2. Gather the physical conditions of the communication between the two parties. 

3. Model all these conditions to generate a system of (non linear) polynomials, 

{Pl,PZ, ... PnL describing the whole system of communication. 

4. This set of polynomials is to be used to generate a Grabner basis for the ideal 

I[Pl,PZ, .. ·Pn] in the ring R[X1,XZ, ... Xk] where R is the set of real numbers and 

Xl ,X2, ... Xk are the modeling symbols. 

5. The security spectrum of the two parties is the Grobner basis generated above. 

6. Party A generates a linear combination of the polynomials constructing the 

spectrum, to be the secret f. 

7. Encode the secret, and send to party B. 

8. Party B decodes the secret. 

9. Party B runs the uniform word problem algorithm; divide the secret polynomial f 

by the Grabner basis representing the spectrum, and check if remainder of the 
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division is zero or not, to decide uniquely if the secret sent is correlated with the 

spectrum. 

10. Party B, runs the correlation level algorithm to determine the level of correlation 

and decides if this level of correlation authorizes party A. The correlation 

algorithm is to be run if the remainder of the Euclidean algorithm is not zero. This 

is basically a statistics function that checks out the degree of the resultant 

remainder to check out how far it is from the given threshold. 
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