
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2006

Service oriented architecture for real time data fusion. Service oriented architecture for real time data fusion.

Derek Ray Massey
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Massey, Derek Ray, "Service oriented architecture for real time data fusion." (2006). Electronic Theses and
Dissertations. Paper 913.
https://doi.org/10.18297/etd/913

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143834009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/913
mailto:thinkir@louisville.edu

Service Oriented Architecture for Real Time Data Fusion

By

Derek Ray Massey
B.S. University of Louisville, 2004

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed Engineering School

in Partial Fulfillment of the Requirements
for the Professional Degree of

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science
University of Louisville

May 2006

Copyright 2006 by Derek Ray Massey

All Rights Reserved

Service Oriented Architecture for Real Time Data Fusion

By

Derek Ray Massey
B.S., University of Louisville, 2004

A Thesis Approved on

May 2006

By the following Thesis Committee:

Dr. Rammohan K. Ragade, CECS Dept. Thesis Director

Dr. Dar Jen Chang, CECS Dept.

Dr. Suraj M. Alexander, IE Dept.

 ii

Dedication

I dedicate this project and my accomplishments to everyone who has been in

support of me. I dedicate this to all my family and friends. To Billy and Annine Massey

wh<p are the best parents anyone could ask for. And most of all to God who leads me in

the iright direction.

III

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Rammohan K. Ragade who was my thesis

director. He has continued to push and motivate me throughout my college career. I

wOl .. ld also like to acknowledge my academic counselor Brenda Hart for being there for

me from the start of my academic career until the end. I would also like to recognize Dr.

Suraj M. Alexander on my committee whom also served as my mentor coming into

college. No matter how busy he was, he never was too busy to talk to me. Also on my

committee Dr. Dar Jen Chang who has continued to be one of my favorite professors at

Speed Engineering School. Lastly I would like to acknowledge Brian Carter for giving

me direction in this project.

IV

ABSTRACT

This project will provide a service-oriented architecture to handle sensor data in

real time as the information comes Ill. There are two types of sensors we're

implementing into our project, mobile sensors and stationary sensors. These sensors

attach unto motes to gather data about temperature, light and acoustics. The fusion part

of the topic is taking both types of sensors, bringing the data together and storing the data

in a SQL Database. This project will focus on the gathering, storing and preprocessing of

the data. The data from the sensors is stored every three minutes using the BULK

INSERT command. We found that storing the data every three minutes is about the most

efficient for our implementation.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

TABLE OF CONTENTS .. 6

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

CHAPTER I INTRODUCTION .. 11

1.2 Introduction to Architecture .. 12

1.3 Our Project in a Logical Sense .. 14

1.4 Physical Hardware Components ... 15

CHAPTER II LITERATURE REVIEW ... 17

2.2 The University of Rochester Project.. ... 19

2.2.1 University of Rochester's Architecture ... 20

2.2.2 University of Rochester's Data Fusion .. 22

2.2.3 Applications for the University of Rochester .. 23

2.2.4 Summary of the University of Rochester's Work 25

2.3 TIMC Laboratory Project ... 26

2.3.1 Architecture of the TIMC Project.. .. 27

2.3.2 Data Fusion of the TIMC Project.. ... 30

2.3.3 Conclusion of the TIMC Project.. .. 31

2.4 The Mississippi State Project.. .. 32

2.4.1 Mississippi State's Architecture .. 33

6

2.4.2 Conclusion of the Mississippi State Project.. ... 36

CHAPTER III IMPLEMENTATION .. 37

3.1 Requirements .. 37

3.2 Architecture ... 39

3.3 Implementation: Gathering Process ... 44

3.4 Implementation: Storing Process ... 46

3.4.2 Implementation: Storing Complexity ... 49

3.5 Implementation: Preprocessing Process .. 51

3.6 Unit Testing .. 54

3.7 Integration ... 55

3.8 Compiled Program .. 58

3.9 Summary ... 60

CHAPTER IV RESULTS .. 61

4.1 Introduction ... 61

4.2 Space and Time Results .. 63

4.3 Temperature Results ... 64

4.4 Light Results ... 66

4.5 Acoustic Results .. 68

CHAPTER V CONCLUSIONS AND FUTURE RESEARCH 70

5.1 Future Works for Improvement .. 70

5.2 Overall Project Outcome ... 72

REFERENCES ... 73

APPENDIX I. VB.NET Flow Chart ... 75

7

VITA ... 76

8

LIST OF TABLES

Table 2.1 - Project Comparisons Chart .. 18

Table 4.2.1 - Space and Time ... 63

Table 4.3.1 - Temperature .. 64

Table 4.4.1 - Light. ... 66

Table 4.5.1 - Acoustic .. 68

9

LIST OF FIGURES

Figure 1 - Node Traversal .. 16

Figure 2.2.1 - University of Rochester Architecture .. 21

Figure 2.3.1 - TIMC Architecture .. 28

Figure 2.3.2 - Alert Triggering Procedures .. 30

Figure 2.4.1 - Mississippi State Architecture ... 35

Figure 3.2.1 -Wireless Network ... 39

Figure 3.2.2 - MTS 300/310 ... 40

Figure 3.2.3 - Network Drawing .. 41

Figure 3.2.4 - Sensor Network Topology ... 43

Figure 3.3.1 - Sensortext Data .. 44

Figure 3.4.1 - Sensordata Database Table .. 47

Figure 3.5.1 - Reducedata Database Table ... 53

Figure 3.7 - VB.NET Flowchart.. ... 57

Figure 3.8 - VB.NET Program ... 59

Figure 4.3.2 - Temperature Reading Chart .. 65

Figure 4.4.2 - Light Reading Chart .. 67

Figure 4.5.2 - Acoustic Reading Chart.. ... 69

10

CHAPTER I

INTRODUCTION

The project involves providing a service-oriented architecture to handle sensor data in

real time as the information comes in. The data fusion part of the project addresses many

sensor platforms that use different protocols such as Surge Reliable, Zigbee, Sensornet,

ect. It also addresses different types of sensors such as mobile sensors and stationary

sensors. Data fusion is a method designed to compute data from multiple sensors and to

use the redundancy to improve the quality of the information produced in terms of the

quality of the monitored data and alarm management. The data fusion part of the topic is

taking both types of sensors and bringing them together in a data warehouse. Then an

analysis of some performance issues of this architecture will be conducted. The real

purpose of this project is irrelevant to the measurements themselves that provide an

accurate estimation of the environment, but to the timely fashion of how the information

is gathered, stored and preprocessed. The goal of the architecture is to maximize

efficiency of these operations.

11

1.2 Introduction to Architecture

Providing an efficient architecture for real time data fusion is useful for a complex

environment when many factors depend on the backbone of having a good infrastructure.

For this project the environment consists of the sensors being dispersed throughout the

atmosphere gathering inputs from the environment. The end result of the project is

running the reports and getting a sense of the project through visualization (graphs,

measurements).

A good architecture is needed to assist that there be a smooth transaction between

gathering the inputs and dispersing the outputs. A good architecture is needed for any

type of environment that is driven from data. Intensive care units in the medical industry

use these practices to diagnose and treat many types of disease in a timely fashion.

" ... Most of the studies are seeking to reduce the number of false alarms (those with no

clinical significance) by using multiparametric approaches: most of the time it is the

simultaneous variation of several parameters that is characteristic of an event. .. "

(Chambrin, 2001).

Cases were an efficient architecture is needed crosses over into many domains. Suppose

someone needs heart surgery in the next 48 hours, there needs to be a good architecture in

that the problem can be diagnosed correctly, located and a solution can be concluded in a

timely fashion. If there is a problem on any end of handling the information from inputs

to output then the patient is at risk. Or suppose our sensor network was setup up to detect

12

a certain phenomena in a chemical making process in that all the variables that are

needed were being collected and handled by our architecture. If there are problems with

the timing of getting the information and displaying the results we could miss the

phenomena that the whole network was set up to detect. This is why issues with the real

time architecture cannot be overlooked.

13

1.3 Our Project in a Logical Sense

The project will be accomplished using the following tools: a base sensor, stationary

sensors (motes), mobile sensors (robot dogs), Windows 2003 server based distributed

network using alchemist, crossbow's software for the sensors, SQL Server 2003, Java,

ASP.NET and Visual Basic.NET. A general explanation of how the project will work is

that the sensors will make data and send it out to a text file located on the server. On the

server will be running a VB.NET program that will provide all the queries and necessary

instructions for our program. The program takes the text file and dumps the lines of the

text file into a SQL database. From there we shrink the size of the table by taking

unnecessary information out and storing the data into a new table. Lastly there is an

ASP.NET webpage that :allows filtering through the data.

14

1.4 Physical Hardware Components

Generally the sensors communicate through wireless technology. The base sensor is the

sensor that is attached via serial cable to the server and all other sensors communicate

with the base sensor through wireless technology. There are a few different types of

sensors. One that this project will be using is an uncoordinated mobile node which is a

sensor whose mobility or direction is not directed for any specific sensing activity.

Instead, it is a node that independently observes a cross section of the field along its own

path. "The limited observation of a node can be greatly extended via information

exchange among collaborating nodes coming across each other (Wang). Figure 1 shows

two nodes traversing through an atmosphere. Nodel's sensor and travel direction is

colored in yellow. Node2's sensor and travel direction is colored in green. At the point

where they both cover the same area in the atmosphere is colored in red.

15

Figure 1

Node Traversal

This project being a service-oriented architecture for real time sensor data fusion will

cover analysis of time and space in data collection. It will also do analysis on the raw

encoded measurements (temperature, light and acoustics) from the sensors. The overall

goal of this project is to maximize efficiency of real-time operations. We plan to

accomplish this using our chosen methods and tools.

16

CHAPTER II

LITERATURE REVIEW

There have been many projects and research in sensor data fusion. The University of

Rochester, TIMC and scholars at Mississippi State have similar projects as ours but

they're all different in they're own respect (Carvalho, 2002). The University of

Rochester project focuses on adaptation, a Unified Modeling Language and resource

management, while the TIMC laboratory uses a CAN network for multichannel sound

acquisition (Virone, 2003). Lastly the scholars at Mississippi State focus on an

Intelligent Intrusion Detection System (Siraj, 2004). None of the projects read address

different types of sensor networks (PNP, Zigbee, eCL). The goal of our project

(SNITTER) is to accommodate heterogeneous types of sensor networks (Carter and

Ragade, 2005).

This section will review the following projects from:

• The University of Rochester

• TIMC laboratory

• Mississippi State University

A project comparison table is given in table 2.1.

17

Table 2.1

Project Comparisons Chart

Comparisons

High
Level Low Level Network ,

School PNP Uncertainties Reliability Adaptation Fusion Fusion Protocol

Surge
SNITTER yes No yes yes yes no Reliable

University of
Rochester no Yes yes yes yes yes PHMS

TIMC yes No yes no yes yes CAN

Mississippi
State no Yes yes yes no no IIDS

18

2.2 The University of Rochester Project

At the University of Rochester, scholars have used a general approach for data fusion

architecture along with adaptation, UML (Unified Modeling Language) and resource

management. The architecture they developed is like our architecture such that it can run

on a network-based dynamic distributed system or conventional stand alone systems.

Their main focus was to develop a data fusion model that would include adaptation being

able to change the sensors depending on conditions in the environment (Carvalho, 2002).

They felt that" ... as the state of the system being monitored and available resources

change, the general data fusion framework should change dynamically based on the

current environment and available resources in the system ... " (Carvalho, 2002).

The reason for their project is that they felt none of the frameworks before dealt with the

uncertainties of the system. Sensor measurements have problems with noise which is the

electrical interference amongst circuit parts and the environmental factors. Also sensors

are prone to errors. Sensor data can also suffer from incompleteness. Incompleteness

happens when there aren't enough sensors to develop enough detailed data for a complete

view of the world. This then turns into the reliability of a sensor or the amount of

confidence with the data being output from the sensor. These are all issues that the

scholars felt had not been addressed before.

19

2.2.1 University of Rochester's Architecture

Carvalho et al develop their architecture which is based on their belief that a network

based system needs all of its components to deal with dynamic changes in the availability

of resources and changes in the environment. Their network based system is broken

down into three parts: network, middleware and applications. They feel the system

should adapt to availability of sensors and also to the changes in the measurements.

Below is a visual blueprint of their architecture combining the physical network layer, the

middleware layer and lastly an application layer (Carvalho, 2002).

20

Figure 2.2.1

University of Rochester Architecture

1-' "

I Application

Dat.a I
I Data Fusionl

I I
I

Middlew are 1
I
I
I

I I Decision
I I'vlodule

QoS
I

Network, middleware, and application

As one can see in figure 2.2.1 the sensor nodes represent the network layer; in this paper

they call the nodes service suppliers or data sources and they call the application layer

service consumers. The middleware's job is connecting the sensors to the application

over the network. The application contains two parts, a data fusion model and a decision

module. The application sends requirements to the middleware and the middleware

sends sensor data to the application.

21

2.2.2 University of Rochester's Data Fusion

The data fusion part of their project can be divided into three main types of fusion: data

oriented, task oriented (variable) and a mixture of both. The difference between data and

variable is that data is a measurement of the environment that is generated by a sensor.

Variable is determined by analyzing the data or feature extraction. The variable

determination can be answered by using data mining techniques such as a data analysis

algorithm or a neural network (Kantardzic, 2003). Determining these three levels of data

fusion is based on whether the fusion is before data analysis (raw data), after (variable) or

both. This is also referred to as high level and low level data fusion respectively.

Carvalho et aI's architecture is dynamic enough so that applications can have only low

level data fusion if that is desired, high level data fusion or both as appropriate (Carvalho,

2002).

22

2.2.3 Applications for the University of Rochester

Further, Carvalho et al present their data fusion architecture by mapping to different

applications in various domains. In military applications they can achieve both levels of

fusion to detect biological agents used in war. In one application soldiers can carry

reliable sensors that advise them when a biological agent is deployed in the environment.

In another application the same soldier can have another sensor that detects as before and

also detect modifications in the soldier's body. A neural network can be used on the

input to determine if an infection resulting from a biological agent has occurred.

Another domain of applications for their data fusion architecture is in robot navigation.

One can imagine a simple application in that sensors evaluate the environment and give

feedback to the robot to which path he should try and take. The robot can take account

many types of different variables: robot position, distance from the objects around the

robot and types of surrounding surfaces. It can then take these variables, fuse them and

make a navigational decision.

Another domain of applications for their data fusion architecture could be found in home

security systems. These systems could have many different types of sensors such as:

sound, video cameras, ultrasound, temperature, smoke, vibration or infra-red. These

different sensors can work together to detect intruders, fires and other problems. The

data fusion architecture of their project could perform low-level data fusion for redundant

data from some sensors while algorithms run to extract variables for other data. For

23

instance if the vibration sensor detects a broken window and the motion sensor detects a

person it can be concluded that there is an intruder.

24

2.2.4 Summary of the University of Rochester's Work

The project with scholars from the University of Rochester has a project similar to ours

that focuses on dynamic modification of their system according to different states of the

environment. Their future goals are to develop a communication between the

middleware layer and the application to allow them to achieve the quality of service of

the whole system when there is more than one application running. Their project still

does not address different sensor networks being able to work together.

25

2.3 TIMe Laboratory Project

A separate project in the TIMC laboratory for the remote monitoring of elderly patient's

health status a system based on multichannel sound acquisition has been used. The goal

of the team was to eliminate video taping of elderly patients because of privacy issues

(Virone,2003). So instead, they turned to a CAN network (Controller Area Network)

linked to volumetric, physiological and environment sensors. A CAN network is a serial

bus system that comprises the data link layer of the network that makes hardware capable

of sending and requesting of messages (Nilsson, 2001). The multichannel sound system

will allow them to detect if a person is in distress.

The reason for their project was looking at the increasing number of people over the age

of 60. According to their statistics by 2030 the percentage of people over the age of 60 is

expected to be twenty percent. There are around 23 million people who serve as

caregivers to the elderly which is proof that there is a need for new techniques to provide

social and healthcare services. These services should be technologically up to date such

that caregivers are advised of problems as quickly as possible. This in turn has formed a

new type of residential care called Health Smart Homes (HSH). One of the main goals of

their project was replacing video cameras with a system of multichannel sound

acquisition. The multichannel sound acquisition performs an analysis of a real time

sound environment of the home to detect abnormal noises such as helps or moans

(Virone,2003).

26

2.3.1 Architecture of the TIMe Project

The physical environment of the architecture is a 30m squared apartment that consists of

two rooms and a kitchen. It also contains a technical area for the development of

technologies to ensure the security and quality of life for its patients. The physical

environment uses smart sensors like volumetric, audio, physiologic and environmental

sensors linked to a master PC using the CAN protocol spoke of earlier. There are to be

eight microphones which are linked to a slave PC which compromises all the audio

sensors. These sound sensors monitor the patient's position and sound activity within the

environment. A blueprint of the physical environment chosen by them is in Figure 2.3.1.

27

Figure 2.3.1

TIMe Architecture

e ~ - •

• I

l:(0 he] ri

I
• ~ • III

.. • • S !~

o Fall Sensor .. Microphones

• Moving Sensor

One element that's found in their architecture is that each sensor delivers its information

at its own rate. The rate at which a sensor delivers messages is usually constant. When a

patient tries to bring about or affect the readings on a sensor, the time lapse between two

messages can be long which makes it easy to detect an abnormal event. This is called a

28

Producer-Consumer model because both the producer (sensor) and the consumer (patient)

use data at their own rates. The CAN network aids this process by providing a common

protocol between the sensors, actuators and the computer (Virone, 2003).

Another element in their architecture is called Information Diffusion. This is where each

data frame constituting a message from a sensor is endowed with a bit identifier. This

lets you know which sensor is sending the information. All the nodes connected receive

the message and can decide to handle it based on its identifier. Enabling the system to

share information among all the sensors is also called distributed intelligence.

Furthermore distributed intelligence allows for "Plug and Play" capabilities being able to

add or remove sensors in an easy manner (Virone, 2003). Our SNITTER project that we

are currently working on allows Plug and Play capabilities (Carter, 2006).

Another element of their architecture is the roles of the master and slave PC's. The only

task of the slave PC is to serve as the single sound gathering machine. The slave machine

is actually hooked up to 8 different microphones, 8 signal conditioning boards and a data

acquisition board. All of this together handles the incoming sound. The master PC is in

charge of receiving data from the CAN neltwork protocol. It connected with a PCI

CAN/2 board linked to a software application. The software application is capable of

receiving incoming messages from all the other sensors and saves them into a database

file or XML (Virone, 2003).

29

2.3.2 Data Fusion of the TIMe Project

Alert triggering procedures are made from two types: short and long-term alerts. Short

term alerts are instantaneously triggered and long term alerts are obtained after an

analysis period. Short term alerts happen when there has been a reception from the

environment or the sound system. Long term alerts extract disease scenarios from a

database that has been built based on all possible combinations of alerts. Figure 2.3.2

shows how this part works (Virone, 2003).

Figure 2.3.2

Alert Triggering Procedures

Recordillg in10 a da1abare

30

2.3.3 Conclusion of the TIMC Project

The Health Smart Home application is part of a new wave of technology brought on by

sensor networks and data fusion. Their application presents a communication between

the home health monitoring system and sound systems to increase the data processing of

sharing information to correctly alert caregivers. This application is a lot like ours in that

it supports Plug and Play. One issue that it still doesn't cover is networks beyond Plug

and Play (Virone, 2003).

31

2.4 The Mississippi State Project

In the Intrusion Detection Sensor Data Fusion project that Ambareen Siraj et al at

Mississippi State University have come together to develop a secure multi-sensor system

for intrusion detection. They felt there was a need for more secured systems in this area

in order to achieve trustworthiness. In the past, most intrusion detection systems employ

multiple sensors to maximize their trustworthiness. The scholars at Mississippi State

came up with what they called a Decision Engine for an Intelligent Intrusion Detection

System (lIDS). The system fuses information from different intrusion detection sensors

using a form of artificial intelligence. This method is accomplished using Fuzzy logic,

Fuzzy Cognitive Maps (FCMs), fuzzy rule-bases for causal knowledge acquisition and

the causal knowledge reasoning process (Siraj, 2004).

The project from Mississippi State can be thought of in a different way than our project.

The sensors used for this project (anomaly detection sensors and misuse sensors) are

generally software coded modular sensors. The sensors used for our project are actual

circuit board sensors. The reason we included this project to briefly talk about was that

even though the physical part of both projects differ, some of the logic and concepts of

gathering, storing and pre-processing remain similar.

32

2.4.1 Mississippi State's Architecture

The Intelligent Intrusion Detection System (nDS) is characterized by a few unique

features. One key feature is that it has a distributed and network based modular

architecture to monitor activities across a network. Another feature is that it can detect

anomaly and misuse situations. An anomaly situation is where it detects deviations from

normal behavior conditions. Misuse detection is where it has found a known pattern of

attack (Siraj, 2004). S Udupa Ratish at the University of Louisville accomplished misuse

detection with USE Case Modeling. His Use Case Modeling introduced policies that

would send you to different system sltates to detect misuse (Ratish, 2005). Another

feature of the lIDS is that it is intelligent accomplished by employing artificial

intelligence techniques for anomaly detection and alert fusion from the different types of

sensors. Lastly the lIDS is equipped with a graphical presentation tool to monitor

security status and the nDS is adaptive to changing network or user behaviors (Siraj,

2004).

Even though the sensors are software: based, the architecture of the system is very similar.

The two types of software sensors they use are anomaly detection and misuse sensors.

These sensors perform an audit of the network traffic monitoring the network and

applications. The information passed from these two types of sensors are fused then

stored in a database.

33

The next part of the system, Machine Learning Component, performs data mining

techniques to the data. In this component the system uses Fuzzy Cognitive Maps which

is a form of data mining to extract fuzzy association rules and fuzzy frequent episodes.

In fuzzy logic there's no defined system. If you take two inputs from a source that are

the same there maybe be different outcomes, this is the basis behind fuzzy logic. In this

case Fuzzy Cognitive Maps are made up of nodes and directions to other nodes. Each

node is a state and each direction edge sends you to another state in the Intrusion

Detection system (Siraj, 2004).

The output of the data mining techniques is then sent to the core component or server

where the decision engine decides what to do with the information. Here it can check its

file repository for information on how it should handle its input and decide whether it

needs to alert. A diagram of the architecture is shown in Figure 2.4.1 (Siraj, 2004).

34

Background
Untt

Network Traffic
Auoitoata 1

Figure 2.4.1

Mississippi State Architecture

Network Traffic I N erwork Traffic
Aucltt Data 2 ... Auditoata (m)

MaChine Leamingl Compent
(Mining fum as Be/elation rules
and fuzzvfrequent episodes)

r~. Intrusion Detection

1~ll Modules

O!her IY~ .
MathOds ~/! >--

j' I MOdUlej. FOlie J Decision Engine ~ _ Security A.QministralQr
!. N Repositorv _______ ---1

L. ~ t._ .. , _.t_ ... w._._ .•. _ .•.
I

Server Communication Module
~~-~-I~~-.-.. '~~-.-._~~._I_.-' .. - _._*_~_.~»_~~._}

Clients Hosts and Net.'lork Devices (rouler, ect.)

35

2.4.2 Conclusion of the Mississippi State Project

The Intrusion Detection project seemed to work fine. It was tested on a test set of data

that the Mississippi Scholars provided which can only be so accurate considering that it

was only tested for attacks that have happened or that it was supposed to find. It will

only be interesting to see if it can detect and alert on situations that previously haven't

happened. Yet this project is very different from ours the gathering storing and pre

processing is similar. It shows that some parts of our project can be applied to any

domain (Siraj, 2004).

36

3.1 Requirements

CI-IAPTER III

IMPLEMENTATION

In gathering information about this project we have to do research on existing projects

like the ones talked about earlier in this paper. There is a lot of work that is similar to

what we are trying to accomplish. Most of the work has features that we are not

interested in while other works have features that we want to add. This part of the project

consists of gathering, storing and preprocessing data; our group has requirements that

pertain to these three concepts.

For gathering data the primary focus is doing it in an efficient process. The gathering

process should be done as quickly as possible for other procedures later. In the plug and

play network the gathering process should be simple no matter how many sensor devices

are attached to our sensor network. In that case it can be said that one goal in the

gathering data process is to make a way of gathering data so that a large number of

sensors wouldn't make a difference or slow the process.

For storing data we want to achieve an efficient process. We also want to store the data

as quickly as possible for preprocessing the data in our next step. The data to be stored is

37

to be done in a SQL database. It is to be stored in the SQL database in a manner that it

will be easy to query in a GUI at a later time.

Lastly for preprocessing the data we are going to use some data mining techniques. This

part of the project doesn't focus on this too much, since data mining techniques would

have a big effect on sensor coverage. But for the most part we want to reduce the

features that are of no use to us.

38

3.2 Architecture

We use wireless sensors as a part of our physical architecture. The wireless sensors have

to be assembled from pieces. First we take the motes which are cable of the mesh

networking firmware and assemble those first. These motes come built in with wireless

technology for networking. First we find the mote labeled as Base_###_O, this is the

mote that connects to our server through a RS-232 straight-through serial cable. All other

motes connect to our network by communicating directly with the base mote wirelessly

as shown in Figure 3.2.1 (Crossbow, 2004).

Figure 3.2.1

VVireless Network

In order to make these motes cable of gathering sensor data we must attach a sensor

board to it. The sensor boards attach to the motes through a 19 pin connector residing on

both the mote and sensor boards. Figure 3.2.2 is a picture of a MTS 300/310 sensor

board shown below (Crossbow, 2004).

39

Figure 3.2.2

MTS 300/310

After connecting the base sensor to the serial port on our server, we now have the

backbone to our plug and play network. As shown in Figure 3.2.3 the stationary and

mobile sensors communicate with the base sensor which is connected to our server

through a serial cable.

40

Figure 3.2.3

Network Drawing

STATIONARY
SENSORS BASE

SERVER

D D -------- SENSOR D ----== LJ--
MOBILE ~/
SENSORS~ ~
O-----------O~

The next step in setting up our sensor network is to configure the serial port using the

serial forwarder GUI that carne with the motes. It is prominent that the serial port speed

be set to 57600. This is the speed that best suites our sensor network (Crossbow, 2004).

Our sensor network is consistent no matter the number of sensors that can become

attached. All sensors in our Plug and Play network connect wirelessly with the base

sensor. You can think of the base sensor serving as a router or gateway. All of the other

sensors, mobile and stationary, can be thought of as workstations that must communicate

directly to the gateway to get out. The Surge GUI provides us with a graphical display to

show our sensor network. From here we can see how many sensors are connected to our

base station dedicated by their respective node numbers. We also can see each nodes

41

quality, yield and prediction. Figure 3.2.4 is a topology of a sensor network connected to

a server.

42

Figure 3.2.4

Sensor Network Topology

, J .. " \> f a " " u: "
l

,
~

i 't

" 11 -I ~

v ".
~ 1

I
r

II

" ,1)

11 I ,2
"

1.1 ! , .' ,'- I 15

43

3.3 Implementation: Gathering Process

After configuring the serial port for the right line speed we're now able to run the Surge

GUI for the implementation of our gathering data process. The Surge GUI is the program

that actually starts the sensors on the motes to recording data which outputs to the

command prompt. The Surge GUI has a feature that allows one to output the data real-

time onto a text file. This can be invoked at the command prompt as follows where

sensorstest is the text file that it outputs the data to.

Surge 125 > sensorstest

The text file sensorstesUxt can be found in the same directory as the executable for Surge

125. An example of the pound sign delimited text file is shown in Figure 3.3.1 where the

first column represents the node number (Crossbow, 2004).

Figure 3.3.1

Sensortext Data

0# I #09120/2005 05: 12: 1 .I
PM#1127250731682# 1844# 126#0.5422993492407809#41 #0#0#390#0#0#0.0#0#0#0.0#0#0#0.0#0#0#0.0#
0#0#0.0#102#83#53#107#0#0#

2# I #09120/2005 05: 12: 14
PM# 1127250734698#500#0#2.0#29#0#0#423#0#0#0.0#0#0#0.0#0#0#0.0#0#0#0.0#0#0#0.0# 136#244# 14
#204#255#255#

44

One good feature for gathering data in our plug and play sensor network is that a new

sensor node can be powered on at any time. A new sensor node can connect at anytime

with it's output being seen in the text file without stopping and restarting the Surge 125

executable.

45

3.4 Implementation: Storing Proc{~ss

The storing process of the data is the next step in our project. Our main goal for storing

data is efficiency. We want to find the best way to store the data without taking up a

whole lot of space. We want to store it in a way that it can be queried and viewed easily.

Most of all we want the process to be fast.

Our options for initial data storage are pretty open but we want to keep it a simple

process as well. In order to convert the data from the text file to a table in a SQL

database we first have to dump the whole text file to a table in SQL. The database table

at this time is no special entity but merely a column for column clone of the text file.

In the text file of the sensor data most of the columns have no interest to us, most of these

columns are for doing specific tasks with the devices themselves. Our primary interest is

the node number, date, time, temperature, light and acoustics. Here is the complete

header column list for the text file.

node Number#Message Count#String Date#Time#interval#parent#Message Rate#Sequence
Number#hopcount#mAm#Batt#id O#hopount O#quality O#id I #hopount I #quality 1 #id 2#hopount
2#quality 2#id 3#hopount 3#quality 3#id 4#hopount 4#quality 4#Temp#Light#Acoustic

On the SQL side of things the initial super table (sensordata) we created for converting

from the text file: column for column to the database is made of 32 float columns and one

datetime column. The structure of the table is shown in Figure 3.4.1.

46

Figure 3.4.1

Sensordata Database Table

message _count float 8 V
string_date datetime 8 V
[interval] float 8 V
parent float 8 V
message _r ate float 8 V
sequence _number float 8 V
hopcount float 8 V
mam float 8 V
batt float 8 V
idO float 8 V
hopcountO float 8 V
qualityO float 8 V
idl float 8 V
hopcountl float 8 V
qualityl float 8 V
id2 float 8 V
hopcount2 float 8 V
quality2 float 8 V
id3 float 8 V
hopcount3 float 8 V
quality3 float 8 V
id4 float 8 V
hopcount4 float 8 V
quality4 float 8 V
[temp] float 8 V
light float 8 V
unkownl float 8 V
unkown2 float 8 V
unkown3 float 8 V
unkown4 float 8 V
unkown5 float 8 V
unkown6 float 8 V

After creating the sensordata table we are ready for the initial conversion from the text

file to the database table. To accomplish this function our group did some querying

research and found a command called Bulk Insert. A Bulk Insert takes a delimited text

47

file and inserts all rows of the text file into a database table. The command works with

different types of delimiters because it allows you to select the one you're going to use.

Below is the syntax for the Bulk Insert command that is used (SQLteam.com, 2004).

"BULK INSERT sensordata FROM 'c:\thesis\sensorstesttxt' WITH

(FIELD TERMINATOR = '#')"

48

3.4.2 Implementation: Storing Complexity

One key concern about our Bulk Insert is speed. So in this matter our goal for a large

scale sensor network is to do a Bulk][nsert about every 8 to 10 seconds. The Bulk Insert

query is a fast command but we feel the need to use it often not letting too many rows of

text add up for this would tremendously slow the command down. For example, if we

had ten sensor motes that each spit out a new reading every 8 seconds, after an hour that

would be 4500 records that the Bulk Insert command would have to insert at one time.

By reducing the time to every 8 seconds between using the Bulk Insert for new text data

we cut down the number of inserts at one time to one insert per sensor and in our example

10 sensors = 10 inserts. Here is a Bulk Insert formula for our applications where N

represents the number of sensors and T is time in seconds.

Bulk insert formula: N * [Floor(T/8)] = inserts

Bulk insert every 1 minute 10 * [Floor(60/8)] = 70 inserts

Bulk insert every 1 hour 10 * (3600/8) = 4500 inserts

Bulk insert every 8 seconds 10 * (8/8) = 10 inserts

In a large scale sensor network by keeping our Bulk inserts to one every 8 seconds our

complexity stays at O(n) otherwise our complexity becomes time dependent as well.

O(n *' T) Time dependent

49

For our application and simulation we can do a Bulk Insert every three minutes

considering we only have two sensors. Three minutes is a small enough interval in our

case that the Bulk Insert command does not slow down.

50

3.5 Implementation: Preprocessing Process

After converting the data from the text file to the initial SQL table there is a need for

some preprocessing on the data. Our group decided to use a data mining technique that

Mehmed Kantardzic talks about in his book (Kantardzic, 2003). The data mining

technique we used is called feature reduction. Feature reduction is simply removing the

columns of a data set that are irrelevant or useless. The goal of feature reduction is to

deal with relevant features alone so that in the future if we choose to implement another

data mining concept such as a learning algorithm we can achieve maximum performance

with minimum measurement and processing efforts. In other words there would be less

data so that the data mining algorithm could learn faster, the model would generalize

better from data which results in a higher accuracy of a mining process. Also simpler

results would make the output of the mining process easier to understand and use

(Kantardzic, 2003).

Using feature reduction we removed columns that had no use for our project. We are

only interested in columns that contained measurements, a date with a time and a node

number. All other columns contain data for other purposes that don't have anything to do

with our requirements. So these are the column features we removed.

After using feature reduction on the initial SQL table of 32 columns we end up with a

table called reducedata that contains 7 columns. Six of the 7 columns we use from the

initial table, one column we added as a primary key to the new table. Our resulting table

51

is smaller, all of its information is relevant and easier to understand. The resulting table

from using feature reduction is shown in Figure 3.5.1 where in the diagram Fieldl =

temperature, Field2 = Light and Field3 = Acoustic.

52

Figure 3.5.1

Reducledata Database Table

[date] datetime 8 V
field! float 8 V
field2 float 8 V
field3 float 8 V
field4 float 8 V
msgid int 4

To put the data from the initial table to the reduced data table using the feature reduction

concept we used a simple query. The query is shown below.

INSERT INTO reducedata SELECT node_number, string_date, light, unkownl,

unkown2, unkown3 FROM sensordata

53

3.6 Unit Testing

To make sure that all of the major parts of the program (gathering, storing and

preprocessing) work we tested the modules individually. Testing code through modules

is also known as Unit Testing (Ellims, 2004). Our unit testing for our major three

modules (gathering, storing and preprocessing) is done in three parts.

• Test the gathering process

• Test the storing process

• Test the preprocessing process

To validate the gathering process we make sure that we have a text file of data from the

sensors. Now that a text file is visible we can validate the storing process when we

convert the data from the text file to our initial table, sensordata. Once we have our

sensordata table we can validate the preprocessing process by applying feature reduction

and having the relevant data put into the reducedata table. All of these validations

conclude our unit testing phase.

54

3.7 Integration

After implementation of the modules for gathering, storing and preprocessing its now

time to focus on integrating the three parts. The environment we are working in is Visual

Basic.NET (VB.NET). We use the Microsoft Visual Studio. NET 2003 to implement our

VB.NET program. We also created a webpage that contains VB.NET scripts running on

an ASP.NET page. Using ASP.NET allows us to be able to log onto our website and run

queries simultaneously. Although the meat of our implementation runs through the

VB.NET program, using ASP.NET gives us capabilities for the future to run many scripts

using different languages.

In our program the process ing flow from start to finish (gathering to viewing processed

data) is something that we want to keep simple. There are three parts to the integration of

our implementation.

• timedata.bat (launches surge 125 and text file)

• VB.NET Program (used for queries and all other processes)

• killstuff.bat (kills the surge.exe process)

The killstuff.bat batch program includes the Command Line Process Utility from

Beyondlogic.org. The program allows users to view and kill processes on your machine

from the command prompt (Peacock, 2005). The reason we use this utility is that the

process killing components built inside Visual Basic.NET will not stop the surge.exe

process when we need.

55

To better understand how things are put together Figure 3.7 is a Flow Chart showing the

logic steps of the program.

56

Figure 3.7 VB.NET Flowchart

~nch timedata.ba\

"'"'
/

Time Delay

" /
Launch killstuff.bat

'" V
Time Delay I

'" 1/
CopyText Files

'" / l Fix sensorbd text tile

" / Insert Data to Base Table

"'-V
Reduce data to reduce table

"'"'
/

Delete base table data

57

3.8 Compiled Program

Here is what our VB.NET program looks like. The program has two buttons (Timer and

Resolve). The Timer button is the button that runs the flowchart found in figure 3.7.

And the Resolve: button resolves any issues with the text file if the program gives an error

message and stops. The error message happens with the SQL driver, which is trying to

insert data from the text file into the sensordata table. When the user sees the error

message they can click on continue in the error message window and then they can click

on the resolve button on our VB.NET program which will correct the issue of the error.

The resolve button will filter out unwanted syntax in the text file. Figure 3.8 is a

screenshot of the VB.NET program showing the Timer and Resolve buttons.

58

Timer

Resolve

Figure 3.8

VB.NET Program

59

3.9 Summary

After looking over the requirements, the implementation method that the group chose

covers the requirements of gathering, storing and preprocessing data. In the gathering

process being able to output data to a text file through surge.exe is a quick way of getting

data. It is also a simple way if one decided to add additional sensors while the program is

running. In the storing process, getting the data to SQL through the Bulk Insert query

command allows us to insert many lines of text from the text file into our database at one

time. Since there are so many messages being output the Bulk Insert command inserts

efficiently. In the preprocessing process being able to reduce features in the table really

saves our group a lot of space. Now that all of the unwanted features our gone it is easier

to run more data mining algorithms to increase the coverage of the sensors.

60

4.1 Introduction

CHAPTER IV

RESULTS

The project works as expected as far as gathering, storing and preprocessing the data.

We used two sensors to conduct a simulation in a bedroom of an apartment over a time

period of almost 24 hours. One sensor (Node 0) was placed on carpet floor and the other

(Node 1) was placed in the nearby window seal. We conducted our implementation into

segments throughout the 24 hour period. The segments were broke up so that we could

cover different parts of the day such as: nighttime, morning, noon and evening.

The readings coming from the sensors are in a raw form (digital encoded form). They're

not represented in a fashion at this point that a biologist or chemist could relate to. It is

possible at this point to see increases and decreases in the output of the sensors making it

easy for observers to draw observations.

Brian Carter (Carter, 2(06) has an accepted paper titled "Message Transformation

Services for Wireless Sensor Networks", at the 2006 International Conference on

Wireless Networks (ICWN'06: June 26-29, Las Vegas, USA). In this paper he talks

about transforming the encoded raw data from the sensors to a more visible format. The

reason for his research on this topic was that manufactures want consumers to buy their

extra programs to handle such conversions and transformations. So in the paper he

61

focused on a scheme for transformation of the raw data and integrating other platforms at

the message level (Carter and Ragade, 2006),

62

4.2 Space and Time Results

At the end of our simulation, it was found that our program inserted 1474 records into our

reduced database table. The total space that SQL used over that time for our sensor

database was 109mb. If our simulation hadn't been broken into segments it could as well

have been three or four hundred megabytes. Each of the two sensors in our simulation

output a message every 8 seconds for each segment. Table 4.2.1 gives a breakdown of

the space and time for the data.

Table 4.2.1

Space and Time

Sensor Data Space and Time
Node # Number of Records Space used in mb's Total Running Time min.

0 743 54.94mb 99
I 731 54.05mb 97

Totals 2 1474 109mb 196

63

4.3 Temperature Results

The temperature results at the end of our simulation were as expected. The sensor on the

carpet floor (Node 0) stayed pretty constant throughout the 24 hour day which reflects

insulation, whereas the sensor in the window seal (Node 1) had less insulation and

fluctuated with the temperature outside. When it was night time node 1 seemed to output

a cooler temperature than in the heat of the day around noon. Table 4.3.1 is an average

read of both sensors around the time that the read is matched to.

Table 4.3.1

Temperature

Sensor Data Readings Temperature (Field I)

Time Node 0 (Room) Node I (Window Seal)

3am 135 III
4am 135 109
9am 130 127
Ilam 137 169
5pm 147 151

Figure 4.3.2 is a chart where you can see more of a constant line for Node 0 and more

movement in Node 1.

64

Figure 4.3.2

Temperature Reading Chart

Temperature Reading Chart

180

160

140

CIJ ... 120 :::l -co ...
CIJ 100 Co
E
CIJ
I- 80
'tI
CIJ
'tI
0 60 0

40

20

0

3am 4am gam 11am 5pm

Time of Day

65

4.4 Light Results

The lighting results in our simulation were also as expected. At 3am in the room the only

light that was on was coming from the computer monitor. At 4am all lights were turned

off and it was pitch black. The sun rose around 7 am making the light reading higher than

it was at 3am or 4am. There was a higher light reading on Node 1 by the window seal

than inside the room. This is the result of the sun refracting its rays through the window

pane. Table 4.4.1 shows the data from the light sensors.

Table 4.4.1

Light

Sensor Data Readings Light (Field2)

Time Node 0 (Room) Node 1 (Window Seal)
3am (Lights on) 40 59
4am (Lights off) 0 0

9am 116 250

llam 186 253

5pm 102 245

Figure 4.4.2 gives a good comparison of light readings between the two nodes. As you

may notice in the diagram at 4am all lights were off.

66

1:
~ 200 ~.~~_.~~~~.~., .. w.w.,\"." .•••.

3am (Lights on) 4am (Lights off)

Figure 4.4.2

Light Reading Chart

Light Reading Chart

gam

Time of Day

67

11am

~
----~~-~

-+- Node 0 (Room)

~-:~ Node 1 (Window Sea~

5pm

4.5 Acoustic Results

The acoustic or sound results at the end of the simulation represent a quiet place. In the

results by being in the window seal, Node 1, heard less noise than being inside the room

next to the computer and an ongoing floor fan. The averages of Node output around the

following times are visible in Table 4.5.1.

Table 4.5.1

Acoustic

Sensor Data Readings Acoustics (Field3)

Time Node 0 (Room) Node I (Window Seal)

3am (Lights on) 22 2
4am (Lights off) 18 7

9am 16 4

Ilam 12 I

Spm S I

Figure 4.5.2 lets you clearly see that the outside noise was quieter than the inside noise.

The only time they were close was when no one was present in the apartment around Spm

and the floor fan was turned off.

68

E
Cl
:::i

Figure 4.5.2

Acoustic Reading Chart

Acoustic Reading Chart

o 15+---------------_T-------~~--~~_T--~~~~
~ 1-- N-o-d~ 0 (Room) -l
E -- No~e JjWindO\NSeCl~
~ 10+-----~----~---------4_T----~~~-4----~~
Q)
'0
o
o

3am (Lights
on)

4am (Lights
off)

gam

Time of Day

11am 5pm

69

CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

5.1 Future Works for Improvement

Even though we got this project to work there are some improvements that could be

applied to this implementation. One improvement could be based on the amount of space

that the data output consumes. As we found out in our simulation two sensors in 24

hours generated over 100mb's in our database. And in the manner the simulation was

conducted, the sensors didn't run continuously during that 24 hour period. For example,

instead of focusing on recording every 8 second output from a sensor in each segment,

one might be able to just grab the averages per segment and only store the average.

Another improvement that could be sought out in our implementation was how our

VB.NET program started and stopped the output from the sensors. To accomplish this

feat we kept killing and restarting the surge.exe process. It would be as efficient to

simply be able to delete the text file that surge.exe outputs to and surge.exe being able to

recreate the file on the fly but surge isn't able to do that which is a constraint.

Another improvement that Brian Carter is working on transforms the data at the message

level which in tum allows many different sensor platforms a chance to integrate with our

SNITTER PNP network. It might be able to integrate different sensor networks such as

70

Sensomet, Zigbee, surge Reliable, ecl. Also this implementation is a lighter resource

user than the surge program (Carter and Ragade, 2006).

71

5.2 Overall Project Outcome

The overall project of providing a service-oriented architecture to handle sensor data in

real time as the information comes in with a focus on implementing an efficient way of

gathering, storing and preprocessing data was a success. It was a nice project to be a part

of. The project was implemented as planed all the way from the requirements to the

results. The project could help implement many applications in different domains.

72

REFERENCES

Carter, Brian and Ragade, Rammohan K. (2006). Message Transformation Services
for Wireless Sensor Networks (MTS-WSN). University of Louisville, Speed
School of Engineering, Louisville, KY.

Carvalho, Hervaldo S. (2003). A General Data Fusion Architecture. Information Fusion,
2003. Proceedings of the Sixth International Conference. University of
Rochester. Rochester, NY. Vol. 2. pp 1465-1472.

Chambrin, Marie-Christine (2001). Alarms in the intensive care
unit: how can the number of false alarms be reduced? University of Lille. Lille,
France. Crit Care. May 23, 2001. pp 184-188.

Crossbow. (2004) Wireless Sensor Networks: Getting
Started Guide. Rev. B.

Ellims, Michael. (2004). Unit Testing in Practice. IEEE
Computer Society. http://doi.ieeecomputersociety.org/10.11 09I1SSRE.2004.44.,

Nilsson, Staffan. (2001). Controller Area Network - CAN
Information. www.algonet.se/~staffannideveloper/CAN.htm.

Peacock, Craig. (2005). Command Line Process
Viewer/Killer/Suspender for Windows NTI2000/XP.
http://www.beyondlogic.org/solutions/processutil/processutil.htm.

Ratish, S. Udupa. (2005). USE Case Model Approach to
Study and Understand Peoples oft ERP Security. Department of Computer
Engineering & Computer Science, University of Louisville. Louisville, KY.

Siraj, Ambareen. (2004). lntrusion Sensor Data Fusion in
an Intelligent Intrusion Detection System Architecture. System Sciences, 2004.
Proceedings of the 3ih Annual Hawaii International Conference on. Mississippi
State University. January 5-8, 2004. pp 279-288.

SQLteam. (2004). Using BULK INSERT to Load a Text File.
http://www.sglteam.comlitem.asp?ltemID=3207.

Virone, G. (2003). First Steps in Data Fusion between
Multichannel Audio Acquisition and an Information System for Home
Healthcare. Engineering in Medicine and Biology Society, 2003. Proceedings of

73

the 25th Annual International Conference of the IEEE. La Tronche, France. Vol. 2
pp 1364-1367

Wang, Kuang-Ching. "Collaborative Sensing Using Sensors of Uncoordinated
Mobility." Department of Electrical and Computer Engineering, Clemson
University. Clemson, Sc.

74

APPENDIX I.VB.NET Flowchart

Launch timedata,bat

'-.. 1/

Time Delay

"-. 1/
Launch killstuff,bat

'\.., l/

Time Delay I

'\ /
Copy Text Files

I

"-. /

I Fix sensorbd text file

'" 1/
Insert Data to Base Table

'\ 1/
Reduce data to reduce table

........, 1/

I
Delete base 1able data I

75

Derek Massey

5102-3 Quail Ct.

Louisville, KY 40213

VITA

My name is Derek Ray Massey. The son of Billy Massey and Annie Savage Massey. I

have one sister Deana Islas. I was born in Franklin, Kentucky on September 25th 1982.. I

attended Franklin Simpson High School from Fall 1996 to Spring 2006. During high

school I took an interest to computers, programming and hardware. Thus I decided to

come to the University of Louisville in Louisville, Kentucky. I came to the University of

Louisville on a Woodford R. Porter academic scholarship and decided to major in

Computer Engineering and Computer Science. As a freshman I became a member of the

National Society of Black Engineers. During my college career I co-oped at Louisville

Gas & Electric (LG&E) where I worked in the Project Engineering Department. There I

assisted Engineers and kept up the department web page coded in HTML. My last two

co-ops were done at Noahtek which was a IT consulting business. At Noahtek I

developed server client applications using Clarion integrated with SQL. I also designed

and implemented websites with ASP.NET integrated with SQL. As well as installing

server client networks and desktop support. In December 2004 I received my B.S. in

Computer Engineering & Computer Science and May 2006 I'm receiving my Master of

Engineering in Computer Engineering & Computer Science. I'm currently employed by

Jefferson County Public School System in their IT department.

76

	Service oriented architecture for real time data fusion.
	Recommended Citation

	tmp.1423685735.pdf.7rcdU

