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ABSTRACT 

A STUDY OF THE TOTAL COLORING OF GRAPHS 

Maxfield Edwin Leidner 

December 13, 2012 

The area of total coloring is a more recent and less studied area than vertex 

and edge coloring, but recently, some attention has been given to the Total Coloring 

Conjecture, which states that each graph's total chromatic number XT is no greater 

than its maximum degree plus two. In this dissertation, it is proved that the 

conjecture is satisfied by those planar graphs in which no vertex of degree 5 or 6 

1ies on more than three 3-cycles. The total independence number aT is found for 

some families of graphs, and a relationship between that parameter and the size 

of a graph's minimum maximal matching is discussed. For colorings with natural 

numbers, the total chromatic sum ET is introduced, as is total strength (jT of a 

graph. Tools are developed for proving that a total coloring has minimum sum, 

and this sum is found for some graphs including paths, cycles, complete graphs, 

complete bipartite graphs, full binary trees, and some hypercubes. A family of 

graphs is found for which no optimal total coloring maximizes the smallest color 

class. Lastly, the relationship between a graph's total chromatic number and its 

total strength is explored, and some graphs are found that require more than their 

total chromatic number of colors to obtain a minimum sum. 
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INTRODUCTION 

0.1 Traditional Notation and Definitions 

A graph is a set containing a set of vertices V (G) and a set of edges E( G), 

where each edge represents a connection, or adjacency, between a pair of vertices. 

Vertices u and v are adjacent if and only if uv is in E(G). The neighbors of v are 

all the vertices adjacent to v. The endvertices of an edge uv are u and v. Two 

edges are incident if they share an endvertex. An edge is incident to a vertex if 

that vertex is an endvertex of the edge. 

All graphs considered in this thesis are finite and simple, meaning the num­

ber of vertices is finite, no edge connects a vertex to itself, and there is at most 

one edge connecting every pair of vertices. The degree of a vertex v E V (G) is 

the number of edges in E( G) incident to v. This is denoted by degG (v) or simply 

deg(v) if it is obvious what graph is being examined. The maximum degree ~(G) 

is the highest degree among all vertices in the graph, and the minimum degree 

deg( G) is the lowest. A leaf is a vertex of degree 1., and a pendant edge is an edge 

having one leaf endvertex. 

A walk is a sequence of vertices in V (G) such that each vertex is adjacent to 

the next one in the sequence. A path is a walk in which vertices are never repeated. 

A graph will be called Pn if it is nothing more than a path with n vertices and 

n - 1 edges. A cycle is a walk beginning and ending at the same vertex, in which 

no other vertices are repeated. A graph will be called en, or the n-cycle, if it is 
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nothing more than a cycle with n vertices and n edges. The length of a walk is 

one less than the length of its vertex sequence. 

The distance dist( u, v) between two vertices u and v in V (G) is the length 

of the shortest path in G that includes both u and v. If no such path exists, then 

dist( u, v) = 00. The graph G is connected if dist( u, v) is finite for every pair of 

vertices in V ( G). Every graph considered in this thesis is a connected graph. 

For every graph G, we say that a graph H is a subgraph of G if and only 

if V(H) ~ V(G) and E(H) ~ E(G). A tree is a connected graph containing no 

cycle as a subgraph. The star on n vertices, denoted by Sn, is a tree that includes 

a vertex v, with the property that every other vertex in V(Sn) is adjacent to v. 

A binary tree is a tree with a special vertex r, called the root, and the property 

that (1) every vertex except r is adjacent to one vertex called its "parent" and (2) 

every vertex is the parent of zero, one, or two "child" vertices. The full binary 

tree of height n, denoted by Bn , is a binary tree in which every vertex v has two 

children if dist( v, r) < n and no children if dist( v, r) = n. 

A subset of vertices A ~ V (G) is an independent set of G if no two vertices 

in A are adjacent. A subset of edges B ~ E( G) is a matching in G if no two edges 

in B are incident. A subset of elements T ~ V(G) u E(G) is a total independent 

set if no two vertices in T are adjacent, no two edges in T are incident, and no 

edge in T has an endvertex in T. 

The complete graph on n vertices, denoted by K n , is a graph with n vertices 

in which every vertex is a neighbor of every other vertex. The complete bipartite 

graph Km,n is a graph whose vertices can be partitioned into two independent sets 

1'v1 and N, where every vertex in M is adjacent to every vertex in N. 

The hypercube of dimension n ~ 0, also called the n-cube and denoted by Qn, 

is a graph in which there are 2n vertices, each corresponding to a distinct n-tuple 

in Z2' and in which two vertices are adjacent if and only if their corresponding 
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n-tuples differ in exactly one position. The hypercube Qn has n2n- 1 edges. 

A total coloring ¢ of G is a mapping ¢ : V (G) u E( G) --+ X from the vertices 

and edges to some set of colors X. A total coloring is proper if (1) adjacent vertices 

have different colors, (2) incident edges have different colors, and (3) every edge 

has a color that is different from each of its endvertices. Every total coloring in 

this thesis is assumed to be proper. 

For each coloring ¢ of G, cr( ¢) denotes the total number of different colors 

that are assigned to elements by ¢. A total-k-coloring ¢ of G is a proper total 

coloring such that (J ( ¢) = k (the coloring only uses k colors). The total chromatic 

number XT (G) of a graph G is the smallest number k for which G has a total-k­

coloring. 

A color class is a set of all elements in a graph that are assigned the same 

color. For each coloring ¢ of a graph G and for each color c, the notation ¢c will 

denote the number of elements in G that ¢ assigns the color c. For example, ¢blue 

is equal to the number of elements in the blue color class, and ¢1 is the number 

of elements with "color 1", when colors are enumerated. If colors are enumerated, 

¢a will denote the number of elements that are assigned the color (J ( ¢ ). 

0.2 New Notation and Definitions 

The set of all total colorings of G is denoted by <I> (G). For each total coloring 

¢ E<I> (G) and each element x E V (G) u E( G), the color of x in ¢ is denoted by 

¢(x). For each total coloring ¢ E <I>(G) and each vertex v E V(G), the function 

¢1 (v) denotes the set of colors that ¢ assigns to v and its incident edges, and the 

function ¢2( v) denotes the set of colors that ¢ assigns to v, its incident edges, and 

its neighbors. A partial total coloring ¢ is one whose domain is a proper subset 

of V(G) u E(G). Very frequently in Chapter 1, we will work on a partial total 
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coloring, gradually assigning, erasing, and reassigning colors until each element is 

assigned a color. 

Two elements in V (G) u E( G) are called dependent if they are either adja­

cent or incident. Therefore, a dependent pair of elements cannot be contained in 

the same total independent set. A subset of elements A ~ V(G) u E(G) is called 

dependent if its elements are pairwise dependent. 

0.3 Application Areas of Total Coloring 

Match Scheduling. Suppose we are planning a martial arts tournament, 

but want to control the way players spend their time when they are not involved 

in a match. Knowing that the players are prone to aggression, we want to avoid 

letting two matched players leave the arena at the same time, to avoid an incident. 

We can't afford to hire a security guard to watch every player, but they are safe 

as long as they stay in the arena; so we want to keep the players in the arena even 

when they are not involved in a match. However, regulations insist that the players 

be allowed some time to leave the arena to have a meal, visit the souvenir shop, 

get some fresh air, et cetera. In light of this, the planners must give each player 

a rest period, one particular hour in which they are allowed to leave the arena. 

As in a traditional scheduling situation, we can represent players with vertices 

and represent matches with edges, and we can color the edges to represent the 

time period in which each match occurs. Additionally, we can color each vertex 

to represent that player's rest period. This amounts to a total coloring of the 

tournament graph. We must be sure that (1) no pair of incident edges receive the 

same color, because no player can be in two matches at once, (2) no vertex can be 

incident to an edge with the same color as the vertex, because no player should 

have a match during his rest period, and (3) no two adjacent vertices should have 
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the same color, because no two matched players should be allowed to wander off at 

the same time. Thus, the total coloring must be proper. Then, if we want to know 

the minimum duration of the tournament, we need only find the total chromatic 

number of this graph. 

Network Task Efficiency. Suppose we have a network of computers, 

servers, facilities, or any group of stations, which can be called nodes, and these 

nodes are connected to other nodes in the network via physical conductors such 

as wires or pipelines. A time comes when every facility and every connection 

must undergo a certain task, such as an update, maintenance, or test to measure 

its quality or security. Whenever this task is performed on a particular node or 

connection, that object must be shut down and remain offline until the task is 

finished. Each task takes the same amount of time, regardless of the node or 

connection. The administration wishes to get these tasks completed as soon as 

possible, while adhering to the following rules: (1) No two adjacent nodes can 

be offline at the same time. (2) When a node is operational, at most one of its 

connections can be offline at any given time. (3) VlThen a node is offline, all of its 

connections are required to remain operational to support the network as a whole. 

The problem is to schedule the tasks for all these nodes and connections so that 

the process takes the least amount of time. The solution is to represent nodes with 

vertices and connections with edges, and properly total-color the graph using the 

fewest colors, where each color represents the interval of time in which an element 

will be offline as it undergoes the required task. 

Art. Of course, one might be trying to color a graph in order to actually 

make something colorful. A sculptor, painter, or lightshow artist who is trying 

to produce something with colored dots could decide it is aesthetically pleasing 

or interesting to keep same-colors apart in a way that corresponds to a proper 

coloring. In the realm of vertex coloring, many ideas have been introduced for 
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additional rules governing color class size or adjacent color pairs, some of which 

have visual appeal. For example, the harmonious coloring, in which every pair of 

colors is used on at most one pair of adjacent vertices [10]; or the complete coloring, 

in which every pair of colors is used on at least one pair of adjacent vertices [9]; or 

the equitable coloring, in which color class sizes cannot differ by more than one [17]. 

If the artist wishes to color the lines connecting the dots as well, so that no part of 

their structure is left uncolored, then a total coloring is necessary. More involved 

total colorings that have a harmonious, complete, or equitable nature could be 

adapted for the realm of total coloring, but some basic questions remain open, 

such as how many colors are required, and how many elements of the structure 

can be painted a certain color. In any case, an artist interested in having these 

questions answered for their purposes could learn about what is and is not possible 

by studying the total coloring of graphs. 
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CHAPTER 1 

PLANAR GRAPHS AND THE TOTAL COLORING CONJECTURE 

1.1 History of the Total Chromatic Number 

One easy lower bound for the total chromatic number of a graph G is 

~(G) + 1, because a vertex with degree ~(G) needs a color and a unique color for 

everyone of its incident edges. Graphs with the property XT = ~+ 1 are called Class 

1. Some graphs, such as cycles of length n ¢ 0 (mod 3) and complete bipartite 

graphs of the form Kn,n, require ~ + 2 colors [291. However, no graph has yet 

been found with total chromatic number more than ~ + 2. This observation lead 

Vizing [26, 27], and independently, Mehdi Behzad [3], to posit the Total Coloring 

Conjecture: 

(1.1 ) 

for any graph G, where ~(G) is the maximum degree of G. 

This Conjecture has been confirmed for many families of graphs. Different 

graphs require different proofs depending on their maximum degree. For graphs 

with ~ ::;; 3, the conjecture was proven by Rosenfeld [22], and for graphs with ~ = 4 

and 5, it was proved by Kostochka [14, 13]. Borodin [4] proved it for planar graphs 

with ~ ~ 9, and later for planar graphs with ~ = 8, as explained in [11]. Sanders 

and Zhao [23] proved it for planar graphs with ~ = 7. 

But when graph theorists look at planar graphs with ~ = 6, they seem to 

hit a brick wall. The procedure used for the ~ = 4 and 5 cases were increasingly 
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complex, and the discharging technique used for the .6. = 7 case does not seem 

powerful enough to extend to all planar .6. = 6 graphs. 

As Sanders and Zhao put it in the paper [23] in which they first prove the 

.6. = 7 case: "[It] will only increase in difficulty, as [the .6. = 6] class of graphs in­

cludes large graphs almost every vertex of which has degree equal to the maximum 

degree of the graph" . To demonstrate the truth of this, let 10 be the graph of the 

icosahedron, and then, for every k ~ 0, define h+l as a copy of h , with a new 

vertex inserted in the middle of every edge, plus an edge connecting every new 

vertex to every other new vertex with which it shares a face. (See Figure 1.1 for an 

illustration of I I) ' Every graph in the family {hlk E N} is planar, has maximum 

degree 6, and has minimum degree 5. As k -+ 00 , the number of vertices in h 

increases without bound, while vertices of degree 5 remain at twelve in number , 

and grow arbitrarily distant from one another. 

FIGURE 1.1: A total-7-coloring of the graph h . 
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Those who attempt the ~ = 6 problem inevitably narrow their quarry to 

an even more restrictive set of graphs. For example, it was proved in [25] that 

planar, ~ = 6 graphs in which no two triangles share an edge satisfy XT S 8, and in 

[24] it was proved that planar, ~ = 6 graphs containing no 4-cycles satisfy XT = 7. 

These authors used the discharging technique, which was used to solve the ~ = 7 

case and was also used in [2] to solve the Four-color Theorem. This technique 

was first officially used in 1904 by Wernicke to prove that every planar graph with 

minimum degree 5 must have an edge with one endvertex of degree 5 and the 

other with degree 5 or 6 [21]. It can be very effect i ve in proving the existence of 

graphical configurations which seem impossible to locate in arbitrary graphs, but 

must logically exist somewhere. 

We will now use this technique to prove the Total Coloring Conjecture for 

another family of planar, ~ = 6 graphs, as it is done in [16]. First, we will choose 

an arbitrarily counterexample K of smallest size. Then, in the lemmas to follow, 

it will be shown that some graphical configurations cannot exist in K. Finally, a 

discharging argument will show that one of those configurations must exist in K, 

or else K cannot exist. 

1.2 A Larger Family of ~ = 6 Graphs that Satisfy the Conjecture 

For a planar embedding of a graph G, let F( G) be the set of all faces. For 

any face f E F(G), define its degree deg(f) to be the length of a walk around its 

boundary. 

For each natural number n, define an n-vertex to be a vertex of degree 

n. Analogous notation will be used for faces and the term triangle may be used 

for a 3-face. An edge connecting an nl-vertex to an n2-vertex will be called an 

(nl' n2 )-edge, and a face with degree n will be called a (aI, a2, ... , an )-face if a walk 
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around its boundary elicits an aI-vertex, an a2-vertex, and so on, in that order. 

If a number is raised to a plus or minus sign, it weakens the constraints of the 

element in question. An n+ -vertex can refer to any vertex of degree n or more, a 

(nl' n2 )-edge can refer to any edge that connects an nl-vertex to a vertex of degree 

n2 or less, and an (al,a~,a3)-triangle refers to a 3-face surrounded by a vertex of 

degree aI, a vertex of degree a2 or more, and a vertex of degree a3' 

For each pair of natural numbers nand k, let v'k be the number of n-vertices 

in G that lie on k distinct 3-cycles in G, and let v~;+ be the number of n-vertices 

that lie on k or more distinct 3-cycles. 

Theorem 1. A planar graph G satisfies XT (G) s L\ (G) + 2 as long as 

(1.2) 

1.3 Supporting Lemmas for Theorem 1 

Define r to be the set of all possible counterexamples to this theorem. In 

other words, r is the family of all planar graphs that satisfy (1.2) but not (1.1). 

Since it is known that planar graphs with L\ ~ 7 satisfy (1.1), as do all graphs with 

L\ s 5, it must be that every graph in r has L\ = 6. Let K be a graph in r with a 

minimum number of edges. Choose a particular planar embedding for K so that 

F(K) is defined. 

Since K does not satisfy (1.1), we know XT(K) ~ 9. Note, however, that 

every proper subgraph H of K will have the property XT (H) s 8. A proper 

subgraph is the result of deleting elements, so H must have fewer edges than K, 

and this implies it cannot be in r. But a subgraph of a planar graph must be 

planar, and will still satisfy (1.2) because the removal of edges cannot increase the 

left side of that inequality. Therefore, the exclusion of H from r must imply that 

H satisfies (1.1). Therefore, XT(H) s L\(H) + 2 s L\(K) + 2 = 8. 
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There are some configurations that K cannot have in its structure. For 

example, a leaf v cannot exist in K. If it did, then we could total-8-color the 

sub graph K - v, apply those colors to their corresponding elements of K, give the 

edge to va color from Ns (the colors 1 through 8) that doesn't conflict with nearby 

colors, and then give v a color that doesn't conlict with either its neighbor or their 

shared edge. This produces a total-8-coloring of K, which is impossible. 

Graph theorists call a configuration "reducible" if its existence in a minimum 

counterexample would lead to a reduction of its chromatic number, thereby showing 

that the graph is not really a counterexample. The following set of lemmas will 

address some other reducible configurations. 

Lemma 1. K does not contain a vertex of degree ;2 or less. 

Proof. Suppose it does. We have seen that a I-vertex cannot be in K, so assume 

instead that some 2-vertex v exists, with neighbors labeled u and w. Total-8-color 

K - VU, and create a partial total coloring ¢ that assigns those colors to that 

sub graph in K, leaving vertex v and both of its incident edge(s) uncolored. Let ¢ 

assign uv a color from Ns " ¢I (u). Then assign uw a color from Ns " ¢I ( w) " ¢( uv) 

and assign v a color from Ns " ¢2 (v) to complete the coloring. Now K is total-8-

colored, which is impossible. D 

Lemma 2. K does not contain a (3,5-)-edge. 

Proof. Suppose it does. Let y be the 3-vertex and let z be its neighbor of degree 

5 or less. Total-8-color the subgraph K - yz and create a partial total coloring ¢ 

that assigns those colors to that subgraph in K, leaving y and yz uncolored. Let 

¢ assign yz a color from Ns" ¢I(y)" ¢I(Z), then give y a color from Ns" ¢2(y) to 

complete the coloring. Now K is total-8-colored, which is impossible. D 
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u u 
w w -- w 

v v 

FIGURE 1.2: A (3, 6, 6)-triangle, a (4, 4, 6)-triangie, and a (4,S-,S-)-triangle. 

Lemma 3. K does not contain a (3,6, 6)-triangle. 

Proof. Suppose it does. Let u be the 3-vertex, let v and w be the two 6-vertices, 

and let u' be the third neighbor of u. Total-8-color the subgraph K - u and 

create a partial total coloring ¢ that assigns those colors to that subgraph in K, 

leaving u and its incident edges uncolored. If there is a color from Ns that is 

in neither ¢I (v), ¢I ( w), nor ¢I (u'), reassign vw that color in ¢. In every case, 

(¢I (v) U ¢I (w)) " ¢I (u') results in a non-empty set. Define 1 to be a color from 

that set, and without loss of generality, 1 E ¢I(V). Give uu' color 1, then give 

uw a color from Ns" {I}" ¢I(W), give uv a color from Ns" ¢(uw) ,,¢I(V), and 

finally give vertex u a color from Ns " ¢2 (u) to complete the coloring. Now K is 

total-8-colored, which is impossible. D 

Lemma 4. K does not contain a (4,4, 6)-triangle. 

Proof. Suppose it does. Let u be the 6-vertex and let v and w be the two 4-vertices, 

as shown in the middle of Figure 1.2. Total-8-color the subgraph K -wv and create 

a partial total coloring ¢ that assigns those colors to that sub graph in K, leaving 

v and vw uncolored. Let ¢ assign v a color from Ns " ¢2 ( v). If ¢I ( w) U ¢I ( v) "* N s, 

we could assign vw a color that's not in the union to complete the total-8-coloring. 

Assume, instead, that ¢I (w) U ¢I (v) = Ns. Each set in this union has four 

colors, so none can be shared. Let n be a color in the set Ns " ¢I (u). Color n 

is in either ¢I (w) or ¢I (v), but not both, so without loss of generality, assume 
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n E ¢1 ( W ). Assign vw the same color as uv, then reassign uv color n. Now K is 

total-8-colored, which is impossible. D 

Lemma 5. K does not contain a (4, 5-, 5-)-triangle. 

Proof. Suppose it does. Let u be the 4-vertex, and let v and w be its neighbors on 

the triangle, as shown on the right in Figure 1.2. Total-8-color the subgraph K -uv 

and create a partial total coloring ¢ that assigns those colors to that subgraph in 

K, leaving u and uv uncolored. Let ¢ assign u a color from Ns " ¢2 ( u), then define 

colors ¢( vw) = 1 and ¢( uw) = 2. If some color in Ng is absent from ¢1 (u) U ¢1 (v), 

the total-8-coloring can be finished by assigning uv that color. 

Assume ¢l(U) u ¢l(V) = Ns. This implies either 1 ~ ¢l(U) or 2 ~ ¢l(V). 

Suppose both are true: Define ¢l(U) = {2,3,4,5}; then {6, 7,8} ~ ¢l(V). If ¢l(W) 

lacks a color from {6, 7, 8}, we could reassign uw that color and give uv color 2 to 

finish the coloring. Otherwise, reassign vw a color from {3, 4, 5} " ¢1 (v) " ¢1 (w), 

then assign uv color 1 to finish the coloring. 

Assume that either 1 E ¢1 (u) or 2 E ¢1 (v) (but not both). Suppose 1 E ¢1 (u) 

but 2 ~ ¢l(V): Define ¢l(U) = {1,2,3,4}; then {5,6, 7,8} ~ ¢l(V). If ¢l(W) lacks a 

color from {5, 6, 7, 8}, we could reassign uw that color and give uv color 2 to finish 

the coloring. Otherwise, erase the colors of vw, uw, and u, give uv the color of 

v, reassign v a color from Ns " ¢2 (v), and give u a color from Ns " ¢2 (u). Since 

¢(uv) E ¢l(W), we can give uw a color from Ns ,,¢l(U) ,,¢l(W) and then give vw 

a color from Ns " ¢1 ( v) " ¢1 ( w) to finish the coloring. 

Assume, finally, that 1 ~ ¢l(U) and 2 E ¢l(V). Define ¢l(U) = {2,6, 7,8}; 

then {3,4,5} ~ ¢l(V). If ¢l(W) lacks a color from {6, 7,8}, we could reassign vw 

that color and give uv color 1 to finish the coloring;. Otherwise, give uv the color 

of u, erase the color from uw, reassign u a color from Ns " ¢2 (u), and give uw a 

color from {3, 4, 5} " ¢( u) " ¢1 ( w) to finish the coloring. Now K is total-8-colored, 

which is impossible. D 
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w 
u v 

x w 
x 

FIGURE 1.3: A 4-face with two 3-vertices, a 5-face with two 3-vertices, and a 6-face with 

three 3-vertices. 

Lemma 6. K does not contain a 4-face that has two or more 3-vertices on its 

boundary. 

Proof. Suppose it does. Let u and w be the two 3-vertices on the boundary of the 

4-face. By Lemma 2, u and w cannot be adjacent, and every other vertex on the 

boundary must be a 6-vertex. Label the vertices on the boundary of that (3,6,3,6)­

face as shown on the left in Figure 1.3. Let u' and w' denote the respective 

neighbors of u and w that are not on the boundary of the 4-face. Total-8-color the 

subgraph K - vw and create a partial total coloring; ¢ that assigns those colors to 

that subgraph in K, leaving w, xw, and vw uncolored. 

Suppose ¢l(X) *' ¢l(V). If ¢(ww') E ¢l(X), give vw a color from Ns ,¢l(V)' 

¢(ww'), then give wx a color from Ns ' ¢l(X) ,¢(vw). If ¢(ww') E ¢l(V) ,¢l(X), 

give xw a color from Ns ' ¢1 (x) , ¢( ww'), then give vw a color from Ns ' ¢1 (v) , 

¢(vw). If ¢(ww') is in neither ¢l(X) nor ¢l(y), give xw a color from ¢l(V) ,¢l(X), 

and give vw a color from ¢1 (x) , ¢1 (v). After every case, we can give w a color 

from Ns ' ¢2 ( w) to finish the coloring. 

Assume ¢1 (x) = ¢1 (v). Remove the color of u. Reassign wx color ¢( ux), 

reassign ux a color from Ns ' ¢1 (x) , ¢1 (uu'), give vw a color from Ns ' ¢1 (v) , 

¢1 (ww'), give w a color from Ns ' ¢2 (w), and then give u a color from Ns ' ¢2 (u) 

to finish the coloring. Now K is total-8-colored, which is impossible. 0 
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Lemma 7. K does not contain a 5-face that has two or more 3-vertices on its 

boundary. 

Proof. Suppose it does. Let u and v be two 3-vertices on the boundary of the 5-face. 

By Lemma 2, u and v cannot be adjacent, and every other vertex on the boundary 

must be a 6-vertex. Label the vertices on the boundary of that (3,6,3,6, 6)-face as 

shown in the middle of Figure 1.3. Let u' and v' denote the respective neighbors 

of u and v that are not on the boundary of the 5-face. Total-8-color the subgraph 

K - u - v and create a partial total coloring ¢ that assigns those colors to that 

subgraph in K, leaving u, v, and their incident edges uncolored. 

Suppose either ¢l(y) *- ¢l(V') or ¢l(X) *- ¢l(U'); without loss of generality, 

assume the first statement is true. Give ux a color from Ns " ¢l (x), then give uu' 

a color from Ns " ¢l(X) " ¢(ux), give uw a color from Ns " ¢l(U) " ¢l(W), and 

give u a color from Ns" ¢2(U). Since I¢l(y) u ¢l(v')lz 7, we can then give vw a 

color from (¢l(y) U¢l(V'))" ¢l(W). Now either ¢l(V') or ¢l(y) includes ¢(vw). If 

¢(vw) ~ ¢l(y), give vy a color from Ns" ¢l(y)" ¢(vw), then give vv' a color from 

Ns " ¢l (v') " ¢l (v); otherwise, give vv' a color from Ns " ¢l (v') " ¢( vw), then give 

vy a color from Ns " ¢l (y) " ¢l (v). Give v a color from Ns " ¢2 (v) to finish the 

total-8-coloring. 

Assume, instead, that ¢l(y) = ¢l(V') and ~~l(X) = ¢l(U'). Then suppose 

either ¢l (w) $. ¢l (x) or ¢l (w) $. ¢1 (y); without loss of generality, assume the first 

statement is true. Define 1 to be a color from ¢1 (w) " ¢1 (x). Give ux color 1 and 

give uu' a color from Ns ,,¢l(U') " {I}. Give vy a color from Ns ,,¢l(y), give vv' 

a color from Ns " ¢1 (v') " ¢( vy), give vw a color from Ns " ¢l (w) " ¢l (v), and 

give v a color from Ns" ¢2(V). Now l¢l(W) u ¢l(u)1 ~ 7, so give uw a color from 

Ns " ¢l (u) " ¢l (w), and give u a color from Ns " ¢2 (ll) to finish the total-8-coloring. 

N ow assume all five colors in ¢l ( w) exist in both ¢l (x) and ¢l (y). Each of 

those sets can have only one color not in ¢l ( W ), so their union A = ¢l (x) U ¢l (y ) 
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has at most seven colors. Define 1 to be a color from Ng "A. Give uu' and vv' 

color 1, and reassign xy color 1. Give uw a color from Ns ,,¢l(W) " {I}, and give 

vw a color from Ns " ¢1 (w) " {1} " ¢( uw). Give ux a color from Ns " ¢1 (u) " ¢1 (x), 

give vy a color from Ns" ¢l(V) ,,¢l(y), give u a color from Ns" ¢2(u), and give v 

a color from Ns " ¢2 (v) to finish the coloring. Now K is total-8-colored, which is 

impossible. D 

Lemma 8. K does not contain a 6-face that has three or more 3-vertices on its 

boundary. 

Proof. Suppose it does. Let u, w, and y be three 3-vertices on the boundary of the 

6-face. By Lemma 2, no pair of those vertices can be adjacent, and every other 

vertex on the boundary must be a 6-vertex. Label the vertices on the boundary 

of that (3,6,3,6,3, 6)-face as shown on the right in Figure 1.3. Let u', w', and 

y' denote the respective neighbors of u, w, and y that are not on the boundary 

of the 6-face. Total-8-color the subgraph K - u - to - Y and create a partial total 

coloring ¢ that assigns those colors to that sub graph in K, leaving u, w, y, and 

their incident edges uncolored. Give uz a color from ¢1 (u') " ¢1 (z), give vw a 

color from ¢l(W') " ¢l(V), and give xy a color from ¢l(y') ,,¢l(X). For each 

edge ab E {uv,wx,yz}, give ab a color from Ns" ¢l(a) ,,¢l(b). For each edge 

ab E {uu',ww',yy'}, give ab a color from Ns ,,¢l(a) ,,¢l(b). For each vertex 

b E {u, w, y}, give b a color from Ns " ¢2 (b). This completes the total-8-coloring of 

K, which is impossible. 0 

u v 

w x 

FIG URE 1.4: A pair of (4,5, 6)-triangles that share a common (5,6)-edge. 
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Lemma 9. K does not contain a pair of (4,5, 6)-triangles that share a common 

(5,6)-edge. 

Proof. Suppose it does. Label the 5-vertex v, the 6-vertex w, and the two 4-vertices 

u and x, as shown on the left in Figure 1.4. Let u' and u" be the other neighbors of 

u, and let v' and v" be the other neighbors of v. Total-8-color the subgraph K -uv 

and create a partial total coloring ¢ that assigns those colors to that subgraph 

in K, leaving u and uv uncolored. Then give u a color from Ns " ¢2 (u). Define 

¢( vw) = 1 and ¢( uw) = 2. If ¢1 (u) U ¢1 (v) is missing a color from N s, we could 

give that color to uv to finish the total-8-coloring. 

Assume ¢1 (u) U ¢1 (v) = Ns. Given the cardinalities of those sets, there is a 

unique color m such that m E ¢1 (u) n ¢1 (v). Consider the possible values of m. 

Case 1: m > 2. Define ¢l(U) = {2,3,4,5}; this implies {6, 7,8} ~ ¢l(V). If ¢l(W) 

lacks a color from {6, 7, 8}, we could reassign uw that color and give uv color 2 

to finish the coloring. Or, if ¢l(W) lacks a color from {3,4,5}" {m}, we could 

reassign vw that color and give uv color 1 to finish the coloring. 

Assume otherwise: ¢1 ( w) = Ns " {m}. If m = ¢( u), reassign uw color m. 

Then, if u has no neighbor of color 1, reassign u color 1 and give uv color 2; 

otherwise, reassign vw color 2, give uv color 1, and then reassign u a color from 

Ns " ¢2 (u). Either way finishes the total-8-coloring. 

Assume, instead, that m * ¢( u). Give uv color ¢( u). If u has a neighbor 

of color 2, then it can be reassigned a color from Ns " ¢2(U); otherwise, change 

its color to 2, reassign uw color 1, and reassign vw color 2; this completes the 

total-8-coloring. 

Case 2: m = 2. Define ¢l(U) = {2,3,4,5}; this implies {6, 7,8} ~ ¢l(v). If 

¢( v) = 2, we could give uv color ¢( u) and reassign u a color from Ns " ¢2 (u) to 

complete the coloring; if ¢(v) * 2 but a color from {3,4,5} isn't in ¢l(W), we could 
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reassign vw the missing color, then give uv color 1 to complete the coloring. 

Assume neither is true: 4>(v) *-, and {3,4,5} ~ 4>1(W). Give uv color 4>(u). 

If u has a neighbor of color 2, reassign it a color from Ns " 4>2 (u); otherwise, 

reassign uw a color from {6, 7,8} " 4>1 (w) and reassign u color 2; this completes 

the total-8-coloring. 

Case 3: m = 1. Define 4>1(U) = {1,2,3,4}; this implies {5,6, 7,8} ~ 4>1(V). If 

4>1(W) lacks a color from {5,6, 7,8}, we could reassign uw that color and give uv 

color 2 to finish the coloring. 

Assume otherwise: {5,6, 7,8} ~ 4>1(W). Now 4>1(W) contains either 3 or 

4, but not both; without loss of generality, let 4 be the one contained: 4>1 (w) = 

Ns "{3} .. The color of u is either 1, 3, or 4. If 4>( w) = 4, we could reassign vw 

color 3, give uv color 1, and reassign u a new color to finish the coloring. 

Assume that 4>( w) *- 4; without loss of generality we will define 4>( w) = 7 

and 4>(v) = 8. Now, if color n E {5,6} does not appear on a neighbor of u, give uv 

the color 4>( u), reassign u color n, and if 4>( uv) = 1, reassign vw color 3; this would 

finish the coloring. 

Assume that colors 5 and 6 both appear on neighbors of u. If 4>( u) = 1, give 

uv color 8, erase the colors on u and uw and reassign v a color from Ns " 4>2 (v), 

erase the color of uw and give both u and vw some color from {I, 2} " 4>( v), and 

then give uw a color from {I, 2} " 4>( u). If, instead, 4>( u) = 3, give uv color 8, erase 

the colors on u and uw and reassign v a color from Ns " 4>2 (v), then give u and 

vw a color from {2,3} " 4>( v), and if that color is 2, reassign uw color 2. In both 

cases, the total-8-coloring is finished. 

Assume that 4>( u) = 4. If a color from {I, 2, 3} does not appear on a neighbor 

of v, we could assign v that color and change 4>( vw) to 3 if necessary, then give uv 

color 8 to finish the coloring. 

Finally, assume that colors 1, 2, and 3 all appear on neighbors of v. Remove 
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the colors on u, uv, v, vx, and x. Reassign vw a color from {I, 3} that is already a 

color of a neighbor of v. Let j be a color from {I, 2, 3} that isn't used on a neighbor 

of v. If j E cp1 (x), give v color j; otherwise, give vx color j. Give x a color from 

Ns "cp2(X). If cp(v) = j, give vx a color from Ns "cp1(V) "cp1(X); otherwise, give v 

a color from Ns " cp2 ( v). Give u a color from Ns " cp2 ( U ), and give uv a color from 

Ns " cp1 (u) " cp1 (v). Now K is total-8-colored, which is impossible. D 

u x u 

w y 

FIGURE 1.5: A (4,S,6)-triangle sharing an edge with a (3,6,S-,6)-face. On the left, the 

(S,6)-edge is shared; on the right, the (4,6)-edge is shared. 

Lemma 10. K does not contain a (4,5, 6)-triangle that shares an edge with a 

(3,6,5-,6) -face. 

Proof. Suppose it does. Label the 4-vertex, 5-vertex, and 6-vertex of the triangle 

u, v, and w, respectively; label the 3-vertex y, and label the 6-vertex on the 4-face 

x. Total-8-color the subgraph K - uv and create a partial total coloring cp that 

assigns those colors to that subgraph in K, leaving u and uv uncolored. Then 

give u a color from Ns "cp2(U). Define cp(vw) = 1 and cp(uw) = 2. Following the 

proof of Lemma 9 until the last paragraph begins, we see that K can be total-

8-colored in every situation except the following: cp(v) = 8, cp(w) = 7, cp(u) = 4, 

cp1(V) = {1,5,6, 7,8}, cp1(W) = Ns" {3}, cp1(U) = {1,2,3,4}, v has neighbors of color 

1, 2, and 3, and u has neighbors of color 5 and 6. We will assume all this to be 

true. As shown in Figure 1.5, either a (5, 6)-edge or a (4, 6)-edge is shared by the 

two faces. 
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Case 1: The faces share a (5,6)-edge. Remove the colors on u and y. If color 1, 

2, or 3 isn't used on a neighbor of w, reassign w that color (and reassign vw color 

3 if ¢( w) = 1), then reassign uw color 7, reassign u color 2, give uv color 4, and 

give y a color from Ns ,,¢2(y) to finish the coloring;. 

Assume the colors 1, 2, and 3 appear on neighbors of w. If a color n E {l, 3} 

isn't in ¢1(y), reassign 'uw color ¢(wy), reassign wy color n (and reassign vw color 

3 if n = 1), reassign u color 2, give uv color 4 (then switch the colors of uv and v 

if ¢( uw) = 4), and give y a color from Ns " ¢2 (y) to finish the coloring. 

Assume 1,3 E ¢1 (y). Edge wy cannot be either of those, implying these 

colors are used on the other two edges incident to y. Switch the colors on wand 

wy; now ¢(wy) = 7. Reassign u color 7, reassign uv color 4 (then switch the 

colors of uv and v if ¢(uw) = 4), and give y a color from Ns ,,¢2(y). Now K is 

total-8-colored, which is impossible. 

Case 2: The faces share a (4,6)-edge. Remove the color of y. If ¢(ux) ~ ¢1(y), 

reassign uw color ¢( wy) (then switch the colors of v and u if ¢( wy) = 4), reassign 

wy color ¢( ux), reassign vw a color from {1, 3} " ¢( ux), give uv color 2, and give 

y a color from Ns " ¢2 (y) to finish the coloring. 

Assume ¢(ux) E ¢1(y). Make sure ¢(xy) =1= 2 by assigning it a color from 

Ns " ¢1 (x) " {2}. Now switch the colors on uw and wy, reassign u a color from 

{4,8} " ¢(uw), reassign v a color from {4,8}" ¢(u), give uv color 2, and give y 

a color from Ns " ¢2 (y) to finish the coloring, Now K is total-8-colored, which is 

impossible. D 
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1.4 Discharging 

These lemmas give us a lot of information about the structure of K, such 

as what sort of configurations to expect, and this will be used to control the 

distribution of charges that are placed on the graph and then redistributed. For 

example, they allow us to make the following important remark: 

Two special vertices of K cannot lie on the same face. (1.3) 

The reason for this is easily explained. By definition, a special vertex cannot 

lie on a 5+-face, and by Lemma 3, it cannot lie on a triangle. Therefore, every face 

incident to a special vertex is a 4-face. Observing Lemma 6, no 4-face can have 

more than one special vertex on its boundary. Therefore, no pair of special vertices 

can lie on the boundary of a single face. 

N ow we are ready to present a proof of Theorem 1. 

Proof. Give each vertex and face in K a charge equal to its degree minus 4, and 

add up the total charge: 

L (deg(v)-4)+ L (deg(v)-4) 
VEV(G) fEF(K) 

= L deg( v) + L deg(J) - 41V(K)I- 4IF(K)I· 
VEV(K) fEF(K) 

Applying the Handshaking Lemma to the first two terms and Euler's formula to 

the second two terms, we see that the total charge is equal to -8: 

2IE(K)1 + 2IE(K)I- 4(2 + IE(K)I) = -8. (1.4) 

Define a "special" vertex to be a 3-vertex that does not lie on the boundary 

of a 5+ -face. Now we devise a set of rules for redistributing charge among the 

elements of K so that the charge on every element becomes positive while the 

total charge is preserved. The rules for discharging are: 
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Rule 1: Each 5+-face gives a charge of 1 to each 3··vertex on its boundary. 

Rule 2: Each 5-vertex gives 1/3 charge to every incident triangle. 

Rule 3: Each 6-vertex gives 1/3 charge to every adjacent special vertex. 

Rule 4 (a-c): 

(a) Each 6-vertex gives 2/3 charge to every incident (4, 5, 6)-triangle. 

(b) Each 6-vertex gives 1/2 charge to every incident (4,6, 6)-triangle. 

(c) Each 6-vertex gives 1/3 charge to every incident (5+,5+, 6)-triangle. 

* 
\1 

1 "3 

+-1 

Rule 1 Rule 2 Rule 3 

Rule 4a Rule 4b Rule 4c 

FIGURE 1.6: A visual description of the Discharging Rules. 

N ow we calculate the resulting charge on each type of element in K. 

• A triangle originally receives a charge of -1. Due to Lemmas 3, 4, and 5, 

it must be either a (4,5+, 6)-triangle or a (ei+, 5+,5+ )-triangle. A (4,5,6)­

triangle receives 1/3 charge from the 5-vertex and 2/3 charge from the 6-

vertex. A (4,6, 6)-triangle receives 1/2 charge from each of the 6-vertices. 

A (5+,5+,5+ )-triangle receives 1/3 charge from each of its boundary vertices. 

In each case, the resulting charge is O. 
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• A 4-face originally receives zero charge. The discharging rules do not take 

charge away from it, so it remains zero. 

• A 5-face originally receives a charge of 1. By Rule 1, it loses 1 charge for 

every 3-vertex on its boundary. By Lemma 7, there can be no more than one 

of those. Since the 5-face can only lose 1 charge this way, it ends up with a 

charge of 0 or 1. 

• A 6-face originally receives a charge of 2. By Rule 1, it loses 1 charge for 

every 3-vertex on its boundary. By Lemma 8, there can be no more than two 

of those. Therefore, the greatest charge a 6-face can lose is 2, so the resulting 

charge is at least o. 

• A 7+ -face f originally receives a charge of deg(f) - 4. By Lemma 2, no more 

than l de
g
2
(f) J 3-vertices can lie on its boundary. The face gives a charge of 

1 to each of these, so the resulting charge is at least deg (f) - 4 - l deg(f)/2 J = 

r deg(f)/21 - 4 ~ O. 

• Neither a 1- or 2-vertex cannot appear in K, by Lemma 1. 

• A 3-vertex originally receives a charge of -1. Unless it is special, it receives 1 

charge from at least one incident 5+-face by Rule 1. If it is special, it receives 

1/3 charge from each of its three neighbor 6-vertices by Rule 3. In either case, 

the result is nonnegative. 

• A 4-vertex originally receives zero charge. The discharging rules do not take 

charge away from it, so it stays zero. 

• A 5-vertex originally receives a charge of 1. By Rule 2, it loses 1/3 charge 

to each incident triangle. Therefore, if it has no more than three incident 

triangles, the resulting charge is nonnegative. There are at most v~ 5-vertices 
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with four incident triangles, each of which ends up with a charge of _1/3, and 

there are at most vf 5-vertices with five incident triangles (which is the 

maximum), each of which ends up with a charge of _2/3. Therefore, the total 

charge on all 5-vertices is at least -{1/3}vt - (2/3}vf . 

• A 7+ -vertex cannot appear in K, because ~(K) ~ 6 . 

• A 6-vertex v originally receives a charge of 2. We will consider several cases, 

based on the number of triangles incident to v. 

If v has no incident triangles, it loses nothing to Rule 4, but will still lose 1/3 

charge to each special neighbor by Rule 3. The resulting charge on v will be 

at least 2 - 6{1/3) = 2 - 2 = o. 

If v has only one incident triangle, it loses up to 2/3 charge to that triangle 

by Rule 4. Vertices on a triangle cannot be special, so v has at most 4 special 

neighbors. Its resulting charge will be at least 2 - 2/3 - 4{1/3} = o. 

If v has two incident triangles, it loses up to 2/3 charge to each of them by 

Rule 4. If those triangles share an edge, then three neighbors of v lie on those 

triangles, and at most two of the others can be special, by (1.3). If they do 

not share an edge, then four neighbors of v lie on those triangles, leaving 

only two neighbors which are potentially special. Since v has at most two 

special neighbors and loses 1/3 charge to each by Rule 3, its resulting charge 

is at least 2 - 2(2/3} - 2 {1/3} = 2 - 2 = O. 

If v has three incident triangles and no special neighbors, then it only loses 

up to 2/3 charge to each incident triangle, so its remaining charge is at least 

2-3(2/3} = o. Alternatively, suppose v has at least one special neighbor. This 

implies at least two of the three triangles share an edge. 

24 



p p 

qtJyu 
r?t 

qtJyu 
rVt 

s s 

FIGURE 1.7: Two configurations in which a 6-vertex has three incident triangles and 

one special neighbor. 

Case 1: One incident triangle shares no edge with the others, and v has 

only one neighbor that does not lie on a triangle incident to v, as shown on 

the left in Figure 1. 7. Let p be the special vertex; then, by (1.3) and Lemma 

10, neither vqr nor vtu is a (4,5, 6)-triangle. Vertex v will give 1/3 charge to 

p, up to 1/2 charge to each of vqr and vtu, and up to 2/3 charge to vst. The 

resulting charge on v is at least 2 - 1/3 - 2 (1/2) - 2/3 = O. 

Case 2: Every incident triangle shares an edge with another, and v has 

two neighbors that do not lie on a triangle incident to v, as shown on the 

right in Figure 1. 7. Let p be the special vertex. Then, by (1. 3) and Lemma 

10, vqr cannot be a (4,5, 6)-triangle, and it gets at most 1/2 charge from v. 

If deg(q) = 4, then deg(r) = 6, so vrs must get at most 1/2 charge as well. If 

deg(r) = 4, then vrs and vst cannot both be (4,5,6)-triangles, by Lemma 

9. If deg(q), deg(r) ~ 5, then v gives only 1/3 charge to vqr. In every case, v 

does not give more than 5/3 charge to its triangles, so the resulting charge on 

v is at least 2 - 1/3 - 5/3 = O. 

If v has four incident triangles and a special neighbor p, the incident triangles 

nearest p cannot be (4,5, 6)-triangles, by (1.3) and Lemma 10. They will each 

receive at most 1/2 charge from v. The other triangles may receive up to 2/3 

charge each, leaving v with at charge of at least 2 - 1/3 - 2 (1/2 + 2/3) = _2/3. If 

no special neighbor is present, v can lose up to 2/3 charge to each triangle, 
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leaving it with a charge of at least 2 - 4(2/3) = _2/3. A 6-vertex that lies on 

four distinct 3-cycles can potentially have four incident triangles, so the total 

amount of charge on all such vertices will be at least _(2/3)vt. 

If v has five incident triangles, then every neighbor lies on a triangle and 

cannot be special. It cannot be adjacent to three incident (4,5,6)-triangles 

in a row, as this would imply the existence of the configuration banned by 

Lemma 9. Therefore, at most four incident faces are (4,5,6)-triangles. If 

there are four, then the third in the sequence cannot be one, and in fact 

must be a (5,5,6)-triangle, so after discharging, v is left with a charge of 

2 - 4(2/3) - 1/3) = -1. If fewer than four triangles incident to v are (4,5,6), 

then it is still left with at least 2-3(2/3) -2{1/2) = -1 charge. A 6-vertex that 

lies on five distinct 3-cycles could lie on up to five incident triangles, so the 

total amount of charge on all such vertices will be at least -v~. 

If v has six incident triangles, then at most four of them are (4,5,6)-triangles, 

because Lemma 9 prevents three from occuring in a sequence around v. If 

there are exactly four, then the other two triangles must be (5,5,6), so after 

discharging, v is left with a charge of 2 - 4(2/3) - 2{1/3) = _4/3. If v has two or 

fewer incident (4,5,6)-triangles, then it is left with at least 2-2(2/3) -4{1/2) = 

_4/3 charge. Suppose, instead, that v has three incident (4,5,6)-triangles. To 

avoid the configurations banned by Lemmas 4 and 9, v must have exactly two 

neighbors of degree 4, diametrically opposite one another. One of those lies on 

two (4,5,6)-triangles with v, and the other must lie on a (4,5,6)-triangle and 

a (4,6,6)-triangle with v. Having determined what sort of triangles surround 

v, it must be left with a charge of exactly 2 - 3(2/3) - 2{1/3) - 1/2 = _7/6. A 

6-vertex that lies on six or more distinct 3-cycles can potentially lie on up to 

six incident triangles, so the total amount of charge on all such vertices will 

be at least _(4/3)vf. 
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1.5 Conclusion 

After the discharging, almost every type of element has nonnegative charge. 

The only ones that may have negative charge are the 5+ -vertices that lie on more 

than three 3-cycles. But we have a lower bound on the total charge these vertices 

can have collectively: 

(1.5) 

Since K satisfies (1.2), the quantity being multiplied by _1/3 in (3) is less than 

24, which means the total charge is greater than -8. Since that contradicts (1.4), 

we conclude that K is not a possible graph. As K was chosen arbitrarily to be 

one with a minimal number of edges in f, no such graph is possible, so f must 

be empty. Then there is no counterexample to the Theorem, and the proof is 

complete. D 

1.6 The Problem with Ttiangles 

An easy corollary can be derived from Theorem 1. It is essentially a weaker, 

but more accessible, version: 

Corollary to Theorem 1. If G is a planar graph wherein no vertex 

of degree 5+ lies on more than three distinct 3-cycles, then XT (G) ~ 

~(G) + 2. 

Proof. The given information indicates that vi = vf = vt = vg = vf = 0, 

so equation (1.2) is satisfied, so by Theorem 1, XT ( G) ~ ~(G) + 2. 0 

It makes sense to try to modify this theorem, or its corollary, to pertain to 

triangles instead of 3-cycles. Such a modification would have several advantages 
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over Theorem 1. First, it would be easier to visualize. Second, the result would 

apply to a larger family of graphs, because it would apply to graphs in which 

vertices are part of few triangles but many 3-cycles. But the statement of the 

theorem for triangles is slightly complicated by the choice that exists for planar 

embeddings of the graph. Triangles are elements of a particular embedding, not 

elements of an abstract collection of vertices and edges. The modified theorem 

would have to apply to either graphs for which some planar embedding has a 

limited number of triangles adjacent to every high-degree vertex, or graphs for 

which every planar embedding has this property. Let's consider both ways that 

such a modification of this corollary might be stated: 

Conjecture 1: Suppose G is a planar graph, and some planar embed­

ding of G has the property that no 5+ -vertex is incident to more than 

three triangles. Then XT(G)::; ~(G) + 2. 

Conjecture 2: Suppose G is a planar graph, and every planar embed­

ding of G has the property that no 5+ -vertex is incident to more than 

three triangles. Then XT ( G) ::; ~(G) + 2. 

To prove either one of these in the same way that Theorem 1 was proven, we 

could choose a minimum counterexample K, find a set of reducible configurations 

for K, and then use discharging to prove that one of those configurations must 

exist in K. In every lemma used in that proof to explain why a configuration was 

reducible, elements were deleted from K to obtain a proper subgraph that was 

total-8-colorable because it satisfied (1.2). But in a proof adapted for Conjecture 

1 or 2, a major problem arises when we try to delete elements: Triangles can 

be created. The deletion of a single vertex or edge can potentially produce a 

subgraph that no longer satisfies the conditions of the conjecture, so we would 

have no guarantee that such a subgraph would be total-8-colorable. 
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FIGURE 1.8: K, a minimum counterexample to Conjecture 1 (or 2), might satisfy the con­

ditions for that Conjecture and still contain a configuration to one shown above. However , this 

could imply that a subgraph of K might not satisfy the same conditions. 

For example, suppose we chose a graph K as a minimum counterexample to 

Conjecture 1. We cannot exclude the possibility that K contains the configuration 

on the left in Figure 1.8, which can be embedded into the plane as shown so that the 

central 6-vertex is only incident to three triangles. The proof of Lemma 1 depends 

on the deletion of a leaf producing a subgraph for which "some planar embedding 

has the property that no 5+-vertex is incident to more than three triangles." But 

the subgraph produced by the deletion of v's leaf neighbor will not satisfy that 

property, as it leaves v incident to four triangles no matter what planar embedding 

is considered. Lemma 1 fails to prove that the I-vertex is reducible, so the proof 

cannot work the same way. 

Suppose , instead, that we were trying to prove the less powerful Conjecture 

2, and that we chose K as a minimum counterexample. This time, we can assume 

the aforementioned configuration is not in K , because it can be embedded with 

the leaf in the 4-cycle so that v is incident to too many triangles. However , K 

could contain the configuration on the right in the same figure , in which, for every 

planar embedding, no vertex is incident to more than 3 triangles. The proof of 

Lemma 2 (as well as most of the other lemmas) depends on the deletion of an 
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edge, producing a subgraph for which "every planar embedding has the property 

that no 5+ -vertex is incident to more than three triangles." But if a subgraph were 

produced by the deletion of the red (3,5)-edge, that subgraph could be redrawn 

in such a way that the configuration inside the blue 3-cycle is embedded in face 

Z instead, and that turns the blue 3-cycle into a triangle. In that embedding, 

two of the vertices around that triangle are incident to too many triangles, so the 

conjecture's condition is not satisfied by that subgraph. Lemma 2, as well as some 

other lemmas, will fail, so the proof cannot work the same way. 
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CHAPTER 2 

TOTAL INDEPENDENT SETS AND THE TOTAL 
INDEPENDENCE NUMBER 

2.1 Independence for all Elements 

The application of independence to both vertices and edges of a graph is as 

old as total coloring. Let's recall that a total independent set is a set of elements 

in G, none of which are incident or adjacent. All independent sets and matchings 

count as total independent sets, but only a total independent set can include 

both vertices and edges. When we total-color a graph, a total independent set 

could constitute all elements of a single color, so essentially, a total coloring is a 

partitioning of VuE into total independent sets. 

The cardinality of the largest possible total independent set in a graph G 

is called the total independence numberof G, or aT (G), to keep it consistent with 

the notation for total chromatic number. A maximum total independent set in G 

must have size aT (G). This parameter is also useful because it is an upper bound 

on the number of elements in G that can share a color. In this respect, it gives us 

a lower bound on the total chromatic number of G, because the number of colored 

elements cannot be more than the number of colors times the number of elements 

that can be assigned the same color: 

T(G) > IV( G)I + IE( G)I 
X - aT(G) . (2.1) 
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FIGURE 2. 1: Three graphs, all paths on seven vertices, in which a maximum independent set , 

a maximum matching, and a maximum total independent set are demonstrated . 

In Figure 2. 1, maximum independent sets of each type (vertex, edge, and 

total) are shown in the path P7 to demonstrate the differences between the con-

cepts. We could reason that this path could not contain more than 5 elements in a 

total independent set, and that the total independence number of P7 is 5. Similar 

reasoning could find the total independence number in general for all paths: We 

could part it ion the elements of the path Pn = VIV2 .. . Vn into subsets each containing 

last subset might include fewer than 3 elements. Since there are 2n -1 elements in 

total, including edges, there would be r 2~-1 1 such sets. Every set Hi is dependent , 

because the elements in each set are close enough that they cannot share colors. 

Then every total independent set T of Pn can have at most one element in each set 

Hi, so aT (pn ) ~ r 2~-1 1 · This is also a lower bound, because T can be chosen using 

the first element of each set Hi without a conflict. Then aT (Pn ) = r 2~-1 1 . The 

following theorem, which pertains to the total independence number of a path, 

tells us a little bit more about these total independent sets. 
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Theorem 2. For each n ~ 2, if P n is the path from VI to Vn, and aT = aT(pn ), 

then aT = r 2n
3
-I 1 and: 

• If n = 1 (mod 3), then a total independent set of size aT in Pn must include 

• If n = 2 (mod 3), then a total independent set of size aT in Pn does not need 

to include either VnVn-I nor Vn. 

• If n = 0 (mod 3), then a total independent set of size aT in Pn need not 

include Vn , but must include either that or Vn Vn-I. 

Proof. When n = 2, the graph is just a pair of adjacent vertices, only one of which 

can be in a total independent set. Since the choice of the element does not matter, 

the set can include only VI and leave both VI v2 and V2 unchosen. Also, r 2n3-
I l = 

r ~ 1 = 1. This is all consistent with the theorem. 

The theorem for all n > 2 is proved by induction on n. Suppose it is true 

for n = k, and consider a total independent set T within the path Pk +1 . Depending 

on the modularity of k, choose the appropriate case below. 

Case 1: k = 1 (mod 3). If T includes aT(pk } elements in the subset P k , that 

amounts to a total independent set of maximum size in that subset, so by the 

theorem, it must include Vk; then neither Vk+l nor VkVk+l can be in T, so ITI = 

aT (Pk ). Otherwise - if T includes fewer than aT (Pk ) elements in the subset P k -

it is possible that either Vk+l or VkVk+l might be in T, but not both, so the total 

number of elements in T must be less than aT (Pk ) + 1. Either way, the greatest ITI 

can be is aT(pk }, so aT(Pk+d = aT(pk } = r2k3-11 =: r (k-I)+~k-l)+ll = 2 (k;l) + r~ 1 
= 2 (k;l ) + r ~ 1 = r (k-l)+~k-l)+31 = r 2(k+

3
1)-11· This satisfies the first part of the 

theorem. We can also see that it is possible to avoid including Vk+l and VkVk+l by 

keeping elements the entire total independent set inside the subset Pk , and this 
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satisfies the second part of the theorem for n = k -+- 1. Therefore, the theorem is 

true when n = k + 1. 

Case 2: k == 2 (mod 3). Then by the theorem, it is possible for T to include 

aT(pk ) elements in the subset H in such a way that neither Vk nor VkVk-1 is chosen. 

Do this, then add either VkVk+1 or Vk+1 to T, to make ITI = aT(pk ) + 1. T cannot 

be made larger than this, since only aT (Pk) elements can be in the subset, and 

only one can be in {Vk+1' VkVk+1}. Therefore, aT (Pk +1 ) = aT (Pk ) + 1 = r 2k3-
11 + 1 = 

r (k-2)+~k-2)+31 + 1 = 2 ( k;2) + r ~ 1 + 1 = 2 ( k;2) + r ~ 1 = r (k-2)+~k-2)+51 = r 2(k+;)-11· 

This satisfies the first part of the theorem. Also observe that either Vk+1 or VkVk+1 

must be in a total independent set of this size, and it does not matter which, and 

this satisfies the second part of the theorem for n = k + 1. Therefore, the theorem 

is true when n = k + 1. 

Case 3: k == 0 (mod 3). If T includes aT(pk ) elements in the subset Pk, then by 

the theorem, it must include either Vk or VkVk-1; this prevents VkVk+1 from being in 

T, but it is possible to choose the set so that Vk is not in T, and this allows T to 

include Vk+1, so that ITI = aT(pk ) + 1. Otherwise - if T includes fewer than aT(pk ) 

elements in the subset Pk - then the most it can have is aT (Pk ) - 1 elements from 

that subset and one from {Vk' VkVk+d. Among these choices, the greatest ITI can 

be is aT (H) + 1 = r 2k3-
11 + 1 = 2 U) + r -311 + 1 = 2 (~) + r ~ 1 = r 2k3+1 1 = r 2(k+31)-ll 

This satisfies the first part of the theorem. Also observe that the only way ITI can 

reach this size is if it includes Vk+ 1, and this satisfies the second part of the theorem 

for n = k + 1. Therefore, the theorem is true when n = k + 1. o 

2.2 Total Independence Number of Other Common Graphs 

In this section the value of aT will be found for some other common graphs, 

including cycles, complete graphs, and complete bipartite graphs. 
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Theorem 3. For each integer n ~ 3, aT ( en) = l2; J . 

Proof. Denote the set of all vertices and edges as X = V ( en) u E ( en). Label the 

vertices VI, V2, ... , Vn , so that VI is adj acent to Vn , and Vk is adj acent to Vk-I for 

every integer k from 2 to n. 

Suppose T c X is a total independent set in en. Each vertex in T corre-

sponds to two edges (the ones incident to it) that cannot be in T, and no two 

vertices can correspond to the same edge in this way, because no edge has two 

endvertices in T. Each edge in T corresponds to two vertices (its endvertices) that 

cannot be in T, and no two edges can correspond to the same vertex in this way, 

because no vertex has two incident edges in T. Therefore, for every element in T, 

there are at least two elements in X " T, so IX" TI ~ 21TI. Then 

IXI = ITI + IX " TI ~ ITI + 21TI = 31TI, 

IXI ~ITI. 
3 

With this upper bound on the size of a total independent set, and the fact that 

IXI = 2n, we can see that aT (en) :::; 2;. The total independence number of en is 

an integer, so this is the same as saying aT (en) :::; l2; J. To prove equality, it is 

sufficient to show that a set T exists of this size in en- In each case below, a total 

independent set is created of size l2; J. Since we have shown this to be an upper 

bound, this must be the total independence number. 
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FIGURE 2.2: Choice of a maximum total independent set in en, depending on n (mod 3). 

Case 1: n = 1 (mod 3). 

Let T = {vk,vk+lvk+2 1 1 ~ k < nand k = 2 (mod 3) }. 

Then vertices in T are mutually non-adjacent, edges in T are mutually non-

incident, and no vertex in T is an endvertex of an edge in T. The number of 

elements in T is twice the number of integers k satisfying these conditions (which 

is n-I) so l2n J = In-l + n-I + ~ J = n-I + n-I +0 = 2(n-l ) = ITI 
3 ' 3 333 33 3 . 

Case 2: n = 2 (mod 3). 

Let T = {vd U {Vk , Vk+IVk+2 11 ~ k < nand k = 0 (mod 3)}. 

Then vertices in T are mutually non-adjacent, edges in T are mutually non-

incident , and no vertex in T is an endvertex of an edge in T. The number of 

elements in T is one plus twice the number of integers k satisfying these conditions 

(which is n32
) , so l2; J = l n32 + n32 + ~ J = 2 (n32

) + 1 = ITI· 

Case 3: n = 0 (mod 3). 

Let T = { Vk ' Vk+IVk+2 11 ~ k < nand k = 1 (mod 3)}. 

Then vertices in T are mutually non-adjacent, edges In T are mutually non-

incident, and no vertex in T is an endvertex of an edge in T. The number of 

elements in T is twice the number of integers k satisfying these conditions (which 

is ~) , so l2; J = l ~+~ J = 2 ( ~ ) = ITI· o 
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Theorem 4. For each integer n ~ 1, aT(Kn) = r~l. 

Proof. Suppose T is a total independent set in Kn. Only one vertex of Kn can be 

in T, because all the vertices are adjacent. If there are no vertices in T, then T 

can only include edges, so its size is equal to the size of the largest matching in 

Kn, and that is v(Kn}, which is easily calculated to be In/2J. If T does include a 

vertex u, then the only other elements possible for T are edges that don't have U 

as an endvertex: Namely, the edges of Kn -U, which is the same as the graph Kn-1 . 

Then the size of T will be one (the vertex) plus the size of the largest matching in 

K n - 1 , and this is equal to 1 + l (n-l)/2 J = l (n+l)/2 J = r n/21· Whether or not T contains 

a vertex, its maximum size is equal to l n/2 J. 0 

Theorem 5. For every pair of integers m, n ~ 1, QT(Km,n) = max{m, n}. 

Proof. Let M and N be the two independent vertex sets of Km,n, such that IMI = m 

and INI = n. Suppose T is a total independent set in Km,n' Either Tn N or Tn M 

must be empty, because the inclusion of a vertex from each set would leave T with 

a pair of adjacent vertices, which is impossible. If Tn N = 0, then T can only 

include vertices in M and edges that have an endvertex in M. Then T contains at 

most one element for each vertex M: either the vertex itself, or an edge incident 

to it: ITI S; m. Similarly, if Tn M = 0, then ITI S; n. Therefore, ITI S; max{ m, n}, 

so aT s; max{ m, n}. A total independent set equal to this number can be made by 

selecting all vertices in the larger of the two sets, so aT = max{ m, n}. D 
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Theorem 6. For each integer n ~ 3, aT(Sn) = n. 

Proof. Let T be a total independent set in the star. All elements are either adjacent 

or incident to the central vertex, so if that is in T, then nothing else can be, and 

ITI = 1. If T does not include the central vertex, then it contains at most one 

element for each leaf: either the leaf itself, or the edge to it from the central 

vertex. Thus, ITI ~ n. It is possible to make ITI = n by selecting all leaves, so the 

total independence number is n. D 

2.3 Total Independence Number of Full Binary Trees 

The family of trees is count ably infinite, and to construct a formula for 

total independence number as a function of any given tree would involve too many 

parameters. However, if some restriction is made that greatly reduces the complex­

ity of the trees in question and reduces the number of parameters to around, say, 

one, then it becomes more practical to make a formula for the total independence 

number. For example, restricting the maximum distance to 2 yields the family of 

stars, for which the total independence number was found in the previous section. 

There are easily an infinitude of other families of trees whose members are 

the range of a function of a single integer, for example "five paths of length n 

meeting at a common endpoint," or "n paths of length five meeting at a common 

endpoint," etc. Many of these may be worthy of study at some point. However, 

the only other family of trees which will be studied in this chapter are the full 

binary trees, which are graphs that are useful in computer algorithms for searching 

and sorting, and for representing various heirarchies and tournaments. 
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Theorem 7. For each integer n ~ 1, if Bn is the full binary tree of height n having 

root vertex v, then: 

• If n == 1 (mod 3), then aT(Bn) = 2aT(Bn_d, and a total independent set of 

this size does not need to include either v nor its incident edges. 

• Ifn == 2 (mod 3), then aT(Bn) = 2aT(Bn_d+1, and a total independent set of 

this size need not include v, but must include either that or an edge incident 

to v. 

• If n == 0 (mod 3), then aT(Bn) = 2aT(Bn_d + 1, and a total independent set 

of this size must include v. 

Proof. The theorem will be proved by induction on n. It is not difficult to see 

that aT(Bo) = 1 and aT(Bd = 2. So, if n = 1, the theorem is true because 

aT(Bn) = 2aT(Bn_1 ), and a total independence set of size aT(Bd = 2 can be 

chosen that only includes the two leaves in B 1 . 

Suppose the theorem is true for n = k. Consider the graph B k +1, and let 

v be its root vertex. Observe that the two neighbors of v, which will be called 

Vc and VH, are the root vertices of two mutually disjoint Bk subgraphs of Bk+1, 

which we can call G and H, respectively. The theorem gives us some information 

about the largest total independent set that can exist in B k , which will help us 

find the largest possible total independent set T within Bk+l. Depending on the 

modularity of k, choose the appropriate case below. 

Case 1: k == 2 (mod 3). Suppose T contains aT(Bk) elements from each of G 

and H. Then, by the theorem for n = k, either Vc or one of its incident edges 

(other than vvc) must be in T, and either VH or one of its incident edges (other 

than VVH) must also be in T. Therefore, neither VVc or VVH may be selected. It is 

possible to have selected independent elements in the subgraphs such that neither 
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VG nor VH was selected, and if this is done, it is possible for v to be in T, which 

makes ITI = 2aT (Bk) + 1. 

Suppose, instead, that T contains fewer than aT(Bk) elements from at 

least one of the subgraphs G or H. Since there can be only one element from 

{v, VVG, VVH} in T, we have ITI < aT(Bk) + aT(Bk) + 1, so ITI ~ 2aT(Bk)' 

It follows that the upper bound for ITI is 2aT (Bk) + 1, and this number 

can be obtained if and only if VET. This satisfies the result of the theorem for 

n = k + 1 == 0 (mod 3). 

Case 2: k == 0 (mod 3). Suppose T contains aT(Bk) elements from each of G and 

H. Then, by the theorem for n = k, both VG and VH must be in T. This implies 

that no element from {v,VVG,VVH} can be in T, so ITI = 2aT (Bk)' 

Suppose, instead, that T contains fewer than aT(Bk) elements from at 

least one of the subgraphs G or H. Since there can be only one element from 

{v,VVG,VVH} in T, we have ITI < aT(Bk) +aT(Bk) + 1, so ITI ~ 2aT(Bk)' 

Either way, the upper bound for ITI is 2aT (Bk)' This number can be 

obtained by choosing aT(Bk) elements from each of G and H and none from 

{v, VVG, VVH}. This satisfies the result of the theorem for n = k + 1 == 1 (mod 3). 

Case 3: k == 1 (mod 3). Suppose T contains aT(Bk) elements from each of G and 

H. By the theorem for n = k, this can be done so that T contains neither VG nor 

VH and none of the edges incident to those in G or H. Then T can also include 

one additional element from {v, VVG, VVH}. If none of those three are in T, we have 

ITI = 2aT(Bk); but if one is included, then ITI = 2aT (Bk) + 1. 

Suppose, instead, that T contains fewer than aT (Bk ) elements from at 

least one of the subgraphs G or H. Since there can be only one element from 

{v, VVG, VVH} in T, we have ITI < aT(Bk) + aT(Bk) + 1, so ITI ~ 2aT(Bk)' 

It follows that the upper bound for ITI is 2aT (Bk) + 1. A set T of this 
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size can be constructed using aT(Ek) elements from each set G and H, plus one 

element from {v, VVG, VVH}, which does not have to be v. This satisfies the result 

of the theorem for n = k + 1 =: 2 (mod 3). D 

With Theorem 7 established, we have a recurrence relation for aT (En) : 

if n =: 1( mod 3), 

otherwise. 

Taking the first few values, starting with aT (Eo), we obtain the sequence 

1, 2, 5, 11, 22, 45, 91, etc. Now a closed formula will be found for aT(En). Define 

For n =: 1 (mod 3), an = 2an-1 = 2(2an_2 + 1) = 4(2an-2 + 1) + 2 = 8an-3 + 6; 

solving for the homogeneous part, we obtain the general solution 

Using the initial conditions a1 = 2 and a4 = 22, we get the system: 

{

2 = 2,\ + c 

27 = 16.\ + c 

10 -6 
with the solutions .\ = 7' c = -;:;-. 

This yields the particular solution an = 17° 2n - ~ = l1~ 2n J. 

For n =: 2 (mod 3), an = 2an-1 + 1 = 2(2an-2) + 1 = 4(2an-2 + 1) + 1 = 8an-2 + 5; 

solving for the homogeneous part, we obtain the same general solution, and using 

a2 = 5 and a5 = 45, we get the system: 

{

5 = 4,\ + c 

45 = 32.\ + c 

. . 10-5 
WIth the solutIOns .\ = 7' c = -;:;-. 

This yields the particular solution an = I~2n - ~ = l \02n J. 
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For n == 0 (mod 3), an = 2an-l + 1 = 2(2an_2 + 1) + 1 = 4(2an-2) + 3 = San-2 + 3; 

solving for the homogeneous part, we obtain the same general solution, and using 

ao = 1 and a3 = 11, we get the system: 

{

I = A + C 10 -3 
with the solutions ,\ = -;:;-' C = 7' 

11 = SA + C 

This yields the particular solution an = \02n - ~ = l'~ 2n J. 
Therefore, an = aT (Bn) = ll~ 2n J for each n ~ O. 

2.4 Total Independence and Edge Domination 

An interesting relationship exists between total independent sets and edge 

dominating sets, which enables us to calculate aT based on other parameters of the 

graph: The edges in a maximum total independent set correspond to a minimum 

independent edge dominating set (a minimum maximal matching). This was first 

discovered by Yannakakis and Gavril [2S], and their result is paraphrased here. 

Theorem 8. (M. Yannakakis and F. Gavril, 1980) 

For every graph G with n vertices, total independence number aT, and independent 

edge domination number ,;, 

Proof. Let G be a graph with n vertices. Let 1'v1 be a minimum independent edge 

dominating set in G; this will have cardinality,;. Let W be the set of vertices 

that are not endvertices of an edge in M. W must be an independent set, because 

the adjacency of a pair of vertices in W would imply that the edge connecting 

them is neither in M nor incident to an edge in M, and that would contradict the 

definition of M. Then T = M u W must be a total independent set. 
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Since every vertex is either in W or is an endvertex of an edge in M, the 

number of vertices n is equal to IWI + 21MI. Then: 

o? (G) ;::: ITI = IMI + IWI = IMI + (n - 21M!) = n -IMI = n - ,{ 

. < T + ' 
··n_ a 'i' 

Now suppose T' is total independent set in G such that IT'I = aT(G). For 

every vertex v E V (G) that is not in T' and is not an end vertex of an edge in T', 

v must have a neighbor u in T' (otherwise T' + v would constitute a larger total 

independent set, which is impossible); remove u from T' and add the edge uv to 

T' instead. Repeat this process until every vertex in V (G) is either an element of 

T' or is an endvertex of an edge in T'. 

Let M' and W' be the edges and vertices of T', respectively. Note that 

every edge e E E (G) must have at least one endvertex that is not in T', which 

means it must be the endvertex of an edge in T', which means it is an endvertex 

of an edge in M' (and might even be in !'vI'). This makes M' an edge dominating 

set in G, and implies IM'I ;::: ,{. 

Using the same argument as before, the number of vertices n must be equal 

to IW'I + 21M'!, so: 

aT (G) = IT'I = IM'I + IW'I = IM'I + (n - 21!'vf'!) = n -IM'I ::; n - ,{ 

:. n ;::: aT + ,{. With this and the earlier result, we obtain n = aT + ,{. D 

An alternative proof is given by Zhang, Zhang, and Li in [30]. Using similar 

arguments, one can see that a maximum total independent set can be derived from 

a minimum independendent edge dominating set, and vice versa. This is important 

because results already exist for minimum independent edge dominating sets. It is 

useful in some cases to point out that a minimum independent edge dominating set 

is the same thing as a minimum maximal matching, as observed by Forcade in [6]. 
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It is also worth noting that every minimum independendent edge dominating set is 

also a minimum edge dominating set, because for every graph H, the independent 

edge domination number ,~(H) is equal to the edge domination number ,'(H): 

Proof. Create a graph G whose vertices correspond to the edges in H, where 

an edge between two vertices in G if and only if those vertices correspond to 

incident edges in H. Then H is line graph of H. Then an independent edge 

dominating set in H corresponds to an independent vertex dominating set in G, 

so ,;(H) = 'i(G). One property of line graphs is that they are claw-free, and 

Allen and Laskar proved that ,i, the independent vertex domination number, is 

equal to " the vertex domination number, for all claw-free graphs [1]. Therefore, 

'i(G) = ,(G). A minimum vertex dominating set in G has size equal to ,(G), and 

such a set corresponds to a minimum edge dominating set in H, so ,(G) = ,'(H). 

Therefore, ,~(H) = ,'(H). D 

Then, as a Corollary to Theorem 8, aT(G) = n(G) -,'(G) for every graph 

G. We can use this information to find the total independence number of a graph if 

its edge domination number is known. For example, Mojdeh and Sadeghi proved 

that ,'(P3 x Pk ) = k in [20], and the number of vertices in this graph is 3k, so 

a T (P3 x Pk ) = 3k - k = 2k. 

This also speaks to the difficulty of finding maximum total independent 

sets in graphs from certain families. We have seen that the problem of finding 

a maximum total independent set is equivalent to the problem of finding a mini­

mum independent edge dominating set, because we can derive one from the other. 

Therefore, if it is easy to find a maximum total independent set, then it must be 

equally easy to find a minimum independent edge dominating set, which is also a 

minimum edge dominating set. Conversely, if it is difficult to find a minimum edge 

dominating set, then it must be just as hard to find a maximum total independent 

44 



set. 

For example, Yannakakis and Gavril showed in [28] that the edge dominat­

ing set problem is NP-complete for the general families of planar and bipartite 

graphs with 6. = 3. (This implies it is at least as hard for those with 6. > 3, and 

for non-planar, non-bipartite graphs.) Therefore, the maximum total independent 

set problem for those families must also be NP-complete. 

On the other hand, those authors provided in the same paper a proof that 

the edge dominating set problem can be solved in linear time for trees. (This, they 

said, was an improvement over an earlier proof by Mitchell and Hedetniemi in [18].) 

If a minimum edge dominating set can be converted into a minimum independent 

edge dominating set in linear time, we can quickly convert it into a minimum total 

independent set, so the total independent set problem for trees would be solvable 

in a time frame of the same order. 

2.5 Total Independence Number of Hypercubes 

Theorem 9. For each integer n ~ 3, aT(Qn) ~ U) 2n. 

Proof. If n = 3, this is the 3-cube Q3, and each vertex corresponds to a coordinate 

in Z~, which will be its label. Let T be a total independent set in Q3 containing 

the vertices (0,0,0) and (1,1,1), as well as the edge from (1,0,0) to (1,1,0), the edge 

from (0,0,1) to (1,0,1), and the edge from (0,1,0) to (0,1,1). (These choices are 

illustrated on the left side of Figure 2.3.) Then T has cardinality 5, so aT(Qk) ~ 5. 

As (~) 23 = 5, this satisfies the result of the theorem for n = 3. 
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FIGURE 2.3: On the left, the 3-cube Q3 . On the right, the 4-cube Q4' In each, a maximum 

total independent set is labeled in red . 

If n > 3, the theorem is proved by induction on n. Suppose the theorem 

is true for n = k. Give each vertex in Qk+1 a label corresponding to its binary 

coordinate in k + 1 dimensions. Observe that Qk+1 contains two disjoint subgraphs 

isomorphic to Qk - one called A, induced by all vertices with a 0 in the (k + l)th 

position, and another called B , induced by all vertices with a 1 in the (k + l)th 

position. As A is isomorphic to Qk , the induction hypothesis states that A contains 

a total independent set of size at least ( ~ ) 2k. Choose a set T of this size from the 

elements of A in Q k+ 1. 

Now define the automorphism r on the vertices of Qk+l: For each vertex 

v E Qk+1 , r(v) is the vertex in Qk+1 whose coordinate is the same in every position 

except 1 and k + 1, where it is different. This is clearly a one-to-one mapping. 

Let the set R include r ( v ) for every vertex vET. Every vertex vET is in A , so 

the value of the position of r (v ) in (k + 1) th dimension must be 1, therefore every 

vertex in R is in Qk+1 "A. Two vertices u , v E R cannot be adjacent, because if they 

are, then they must differ in only one dimension, and that imples vertices r- 1 (u ) 

and r-1 (v ) differ in only one dimension (the same dimension) , which is impossible. 

Therefore, R is an independent set . 

For every edge uv E T , add the edge r(u)r(v) to R. This adds a unique 

edge to R for every edge in T , so now Rand T include an equal number of vertices 

and include an equal numb r of edges. No two edges in T share an endvertex, 
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therefore no two edges in R can share an endvertex, so the edges in R constitute 

a matching. Also, no edge in R can have an endvertex v E R, because that would 

imply r-1 (v) is in T and also an endvertex of an edge in T, which is impossible. 

Therefore, R is a total independent set. 

A vertex U E R cannot be adjacent to a vertex vET because that would 

imply r-1 (u) E T differs from v in only the 1st dimension, so those vertices are 

adjacent, which is impossible. Therefore, the vertices in T and R together consitute 

an independent set. Every edge in T has its endvertices in A, and every edge in 

R has its endvertices in Qk+l " A, so the edges in T and R together constitute a 

matching. Finally, no endvertex of an edge in T can be in R, and no endvertex of an 

edge in R can be in T, so TuR must be a total independent set in Qk+l. (See Figure 

2.3 for an illustration of this set in Q4.) It has size equal to 21TI = 2 (~) 2k = (~) 2k+l, 

which makes this a lower bound for o:T(Qk+d, which implies that the theorem is 

true for n = k + 1. o 

Theorem 9 is not entirely satisfying because it only provides a lower bound 

for o:T(Qn). By considering work that has been done in the field of maximal 

matchings, we can find an upper bound for it, but only for some values of n. In 

the 1970s, Forcade looked at the minimum maximal matchings of hypercubes and 

came up with several interesting results [ 6]. Using m( G) to denote the size of a 

minimum maximal matching of a graph G, he found: 

The size m of the minimum maximal matching is equal to the independent 

edge domination number ,I, and the number of vertices in the n-cube is 2n , so we 

can use Forcade's result and Theorem 8 to produce an upper bound on the size of 

a total independent set in Qn. 
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Dimension Forcade's Number of Result of Result of 
n result Vertices Theorem 8 Theorem 9 

3 ,: 2 3 8 aT ~ 5 aT 2 5 

4 ,: 2 6 16 aT ~ 10 aT 210 

5 ,; 212 32 aT ~ 20 aT 2 20 

6 ,; 2 23 64 aT ~ 41 aT 240 

7 ,; 2 45 128 aT ~ 83 aT 2 80 

TABLE 2.1: A comparison of some results for the hypercubes Q3 through Q7' 

Table 2.1 establishes the total independence number of the hypercube for 

dimensions 3, 4, and 5. For higher dimensions, this is not as clear, because the 

upper bound for aT is greater than the lower bound found in Theorem 9. This 

opens up the possibility that, for high enough values of n, a total independent set 

in Qn can exist with size greater than (~) 2n. 

Observe that the proof of Theorem 9 involves setting up a total independent 

set T in Qn of size 0) 2n. Every vertex of Qn is either in T or is an endvertex of 

an edge in T, so the edges in T constitute a maximal matching M. These edges 

make up 3 out of every 5 elements in T, so jMj = (n 2n. If M is smallest among 

all maximal matchings in Qn, then ,: = j1\;1j, and it follows from Theorem 8 that 

aT(Qn) = 2n -jA1j = (~) 2n, and the bound expressed in Theorem 9 is sharp. But 

if a maximal matching smaller than 1\;1 can be found, then ,:(Qn) < jMj, and 

aT (Qn) > 2n -jMj = (~) 2n, so the total independence number would exceed that 

lower bound. 

In the case of dimension n = 6, Havel and Krivanel proved in [8] that a 

maximal matching in Qn must have size at least 24, which means (1) Forcade's 

lower bound on m( Qn) is not sharp for some values of n > 5, and (2) with the 

result of Theorems 8 and 9, this implies aT (Q6) = 40. 
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In [6], Forcade found another way to construct a maximal matching in Qn. 

For small values of n, his constructions are larger than the maximal matching M in 

Qn found by Theorem 9, but Forcade shows that the size of his maximal matching 

approaches (~) 2n as n approaches infinity. Therefore, some n must exist for which 

,: (Qn) < (~) 2n. In particular, when n = 48, his matching uses about 667 billion 

edges less than !'vI does (although, for n = 47, his matching uses about 69 billion 

more). We can see, then, that Theorem 9 is definitely not sharp for n ~ 48. It may 

not even be sharp for dimensions as low as n = 7, because m( Q7) is still unknown. 
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CHAPTER 3 

TOTAL CHROMATIC SUM 

3.1 History of the Chromatic Sum 

Instead of trying to keep a small number of color classes, suppose our goal is 

to make specific color classes as large as possible, or to collect as many large color 

classes as possible. This is a vague demand without a well-defined goal or function 

to optimize, so let us define this demand in a very specific way: Define the weight 

of an element to be a function of its color; there are many options for this function, 

but the simplest non-trivial choice is a linear one: Color 1 has weight 1, color 2 

has weight 2, color n has weight n, etc. Then define the weight of a coloring to be 

the sum of the weights of all its colored elements. Given a graph, we want to find 

a coloring that minimizes this weight. 

This weighting system can be applied to a vertex, edge, or total coloring. 

In this section, some of the results for vertex and edge colorings will be discussed. 

2 2 

1 ------1 1 -------<. 2 
1 

4 3 

FIGURE 3.1: A graph shown twice, with two different colorings. The coloring on the left has 

weight 11 , and the coloring on the right has weight 9. 
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Suppose we want to color the vertices of the graph in Figure 3.1 in a way 

that minimizes the weight of the coloring. A naIve approach would be to assign 

color 1 to as many vertices as possible (a maximum independent set, perhaps), 

then give color 2 to as many uncolored elements as possible, and so on, until all 

elements are colored. A simple greedy algorithm designed to make these color class 

selections one at a time will not necessarily produce a coloring of minimum weight, 

because the choice we make for each color class - not just the size - affects the 

potential choices for the higher color classes. For example, in Figure 3.1, the graph 

shown has independence number 2, but we can choose the first color class in two 

ways. If the first color class is chosen as shown on the left, then the remaining 

vertices form a triangle, so the coloring must use three additional colors and have 

weight at least 1 + 1 + 2 + 3 + 4 = 11. But if the first color class is chosen as shown 

on the right, then a coloring can be made with three colors, which has weight 

1 + 1 + 2 + 2 + 3 = 9. 

The smallest possible weight that a coloring of a graph G can have is called 

its chromatic sum, and this is denoted ~ (G). A coloring is optimal if it has 

weight equal to ~(G). This idea was introduced by Kubicka in 1989 [15], and 

since then much more work has been done with calculating the total chromatic 

sums of graphs, generating algorithms to find total chromatic sums and optimal 

colorings, and calculating the complexity of finding total chromatic sums of graphs 

in certain families. In [5], Erdos, Kubicka, and Schwenk examined cases in which 

the minimum number of colors necessary to make an optimal coloring of G was 

larger than X(G). This graph parameter, the minimum number of colors necessary 

for an optimal coloring, was called the strength of G, and denoted by 0"( G) [12]. 

(Note that this is different from the parameter of the same name that applies 

to directed graphs). In [5], it is shown that even trees can have arbitrarily high 

strength, even though their chromatic number is 2. 
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1 __ - _w_- ___ - ___ 2 1 __ - _w_- ___ - ___ 1 

FIGURE 3.2: A graph shown twice, with different colorings. The coloring on the left has 

weight 12, and uses only X = 2 colors. The coloring on the right has weight I:: = 11 , but uses 3 

colors. 

An example of a tree with high strength is given in Figure 3.2. This tree 

has chromatic number 2, but if it is colored with that many colors, as shown on 

the left, then the coloring has weight 12. If a third color is allowed, a coloring can 

be made with weight 11 , so the chromatic sum of the graph is at most 11 . Since 

this weight is impossible to obtain with two colors, the strength of the graph must 

be at least 3, but that is greater than the chromatic number. 

Naturally, mathematicians have applied all of these color-sum concepts to 

edge coloring as well. Of particular interest is the edge chromatic sum of a graph, 

its edge strength (J' , and the question of whether or not X' = (J'. In 1997, Mitchem, 

Morriss, and Schmeichel showed in [19] that every graph has a proper edge coloring 

with minimum sum that uses only t::. or t::. + 1 colors. This implies that the only 

way for a graph to have X' < (J' is to have both X' = t::. and (J' = t::. + 1. In [7] , 

Giaro gave an example of a graph with this property, shown in Figure 3.3. On the 

left , G is edge colored with t::. (G) = X' (G) = 5 colors. If only five colors are used, 

the weight of the coloring must be at least 45. If we introduce a sixth color, and 

change the colors of the edges whose color labels are circled, we obtain a coloring 

with weight 43, so the edge chromatic sum of G is at most 43. Since this weight 

is impossible to obtain with five colors, the edge strength of the graph must be at 

least 6. 
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3 3 

FIGURE 3.3: Giaro's example of a graph with D. = 5, X' = 5, and (J" ~ 6. 

3.2 Total Colorings with Optimal Sum 

Now this concept will be applied to total coloring. For every graph G, define 

the function sum : ~ (G ) --+ N to return the weight of a coloring ¢ of G: 

sum(¢) = L ¢(x ). 
xeV(G)uE(G) 

The total chromatic sum L;T (G) of a graph G is defined as the smallest value of 

sum(¢) among all colorings ¢ E ~ (G ) : 

L;T (G) = min sum(¢). 
¢eiJ> (G) 

As in other coloring methods, we will call a total coloring ¢ of G optimal if 

sum(¢) = L;T (G). For each total coloring ¢, define CT (¢ ) to be the number of 

colors used in ¢; then the total strength of G can be defined as the smallest value 

of CT (¢ ) among all optimal total colorings ¢ of G, and this is denoted CTT (G): 

The primary purpose of this chapter will be to calculate L;T (G) and CTT (G) 

for some simple families of graphs. But first, a few general ob ervations should be 
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made about the color classes that must appear in an optimal total coloring ¢ of G. 

First, ¢ cannot assign color 2 to more elements than color 1: ¢l ~ ¢2. Otherwise, 

we could permute the colors 1 and 2 in ¢ to produce a coloring with an even 

smaller sum. In general, if i < j, then ¢ cannot assign color j to more elements 

than color i, so i < j implies ¢i ~ ¢j. Second, every color class in ¢ must constitute 

a total independent set, therefore its size is bounded from above by aT(G). In 

other words, ¢i S aT for every color i. We can combine these observations into the 

following inequalities: 

(3.1 ) 

These inequalites are necessary, but not sufficient, for a coloring to be op­

timal. In the next section, some conditions will be developed to guarantee that a 

coloring is optimal. 

3.3 Sufficiency Conditions for Optimality 

For each graph G, and for each (k, m) E N x N, we will say that "G has 

property Rk,m" if ¢k S m in every total coloring ¢ of G. 

Theorem 10. Let G be a graph with aT = aT (G) and XT = XT (G). If G has 

the property Rp for every p E {(k1 ,md,(k2,m2), ... ,(kz ,mz )} (with ki < ki+l and 

mi ~ mi+l for every i < z), and if G has a coloring ¢ such that ¢n = aT for all 

n < kl' ¢n = mi whenever k i S n < k i +1 for an integer i E [1, z - 1], and ¢n = m z 

whenever kz s n < (J ( ¢ ), then ¢ is optimal. 

Proof. Suppose G has the stated properties and ¢ satisfies the given conditions. 

By the definition of the total chromatic parameter, (J(¢) ~ XT must be true. Now 

it will be shown that (J (¢) = XT : Suppose (J (¢) > XT . Then a total coloring 'IjJ 
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exists such that (J ( 1/J) = XT < (J ( ¢ ). In each coloring, the sum of all color classes is 

equal to IV u EI: 

a(¢) a(~) 

L ¢n = IV + EI = L 1jJn 
n=l n=l 

a(~) a(~) 

L ¢n < L 1/Jn· 
n=l n=l 

For this to be true, there must be some color c ~ (J( 1/J) such that ¢c < 1/Jc. 

Color c cannot be less than kl because that would imply 1/Jc > ¢c = aT, which 

is impossible. Color c cannot be in an interval p = [ki' ki+ d for which G has the 

property Hp, because that would imply 1/Jc > ¢c = mi, and Rp makes this impossible. 

As c ~ (J ( 1/J) < (J ( ¢ ), color c can only be in the interval [kz, (J ( ¢ )), but that implies 

1/Jc > ¢c = mz , which is impossible. Thus ¢c < 1/Jc is impossible for every value of c, 

no such 1/J can exist. The contradiction implies (J(¢) = XT . 

Now suppose 1/J is a coloring of G with sum(1/J) < sum(¢). Given this 

freedom, we can and will choose 1/J so that it is optimal. The sums are different, so 

¢d *- 1/Jd for some integer d; let d be the least integer for which ¢d *- 1/Jd. If d < (J( ¢), 

then there is an integer i E [1, z] such that ¢d = mi and d ~ ki' and R(ki,mi) states 

that 1/Jki ~ mi, so 1/Jd ~ 1/Jki ~ mi = ¢i; therefore, 1/Jd < ¢d. The same is true if 

d 

1/Jd = IV u EI- L 1/Jn - L 1/Jn ~ IV u EI- L 1fJn = L ¢n - L ¢n = ¢d. 
n<d n>d n<d n=l n<d 

So 1/Jd < ¢d in every case. Then: 
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sum( 1/J) - sum( ¢) = L n1/Jn - L n¢n 
n n 

n<d n>d 

=O+d(1/Jd-¢d) + Ln(1/Jn-¢n) 
n>d 

2 d(1/Jd - ¢d) + (d + 1) L(1/Jn - ¢n) 
n>d 

2 d(1/Jd - ¢d) + (d + 1) (L(1/Jn - ¢n) - (1/Jd - ¢d) - L(1/Jn - ¢n)) 
n n<d 

sum(1/J) > sum(¢). 

This contradicts the definition of 1/J as a coloring with sum less than ¢, so no such 

coloring exists; therefore, ¢ is optimal. D 

Theorem 10 can be used to prove the optimality of some very simple total 

colorings for paths, cycles, and complete graphs, and this will be shown in the 

next section. However, for these graphs, this theorem is much too general, because 

most of these graphs have no restrictions of the form R(k,m), and some only have 

one. The following corollaries are provided for simple cases like these. 

First Corollary to Theorem 10. If a graph G has a coloring ¢ such that 

¢n = aT (G) for every color n < 0"( ¢), then ¢ is optimal. 

Proof. Putting the restriction ¢l ~ aT into the language of the restriction set 

of Theorem 10, G has the property Rp for every p E {(kl' ml)} where kl = 1 and 

ml = aT. In this set of restrictions, Z = 1, so the given coloring ¢ has the properties 
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¢n = aT for all n < kl (an empty set), ¢n = mi whenever ki ~ n < ki+ 1 for an integer 

i E [1, z-l] (an empty set), and ¢n = m z whenever kz ~ n < O"(¢) - which is precisely 

the information we have about ¢. Then, by Theorem 10, ¢ is optimal. 0 

Second Corollary to Theorem 10. Let G be a graph. If some k, mEN 

exist such that every coloring 1/J of G has the property 1/Jk ~ m, and if G has a 

coloring ¢ such that ¢n = aT(G) for all n < k and ¢n = m whenever k ~ n < O"(¢), 

then ¢ is optimal. 

Proof. Putting the restrictions ¢l ~ aT and ¢k ~ m into the language of the re­

striction set of Theorem 10, G has the property Rp for every p E {( 1, aT), (k, m)}. 

In this set of restrictions, Z = 2, so the given coloring ¢ has the properties ¢n = aT 

for all n < kl (an empty set), ¢n = mi = aT whenever ki ~ n < ki+l for an integer 

i E [1, Z -1] (corresponding to all n < k), and ¢n = m z = m whenever kz ~ n < O"(¢) 

(corresponding to all integers n that are at least k but less than 0" (¢)). This is 

precisely the information we have about ¢, so by Theorem 10, ¢ is optimal. D 

We can already quantify the color classes of a coloring ¢, but doing so by 

stating the values of each quantity ¢l, ¢2, et cetera, can be cumbersome. These 

quantities make up a sequence, so it should not be alien to write the color classes of 

¢ in a vector form (¢l, ¢2, ¢3, ... , ¢a). This will be called the color class sequence of 

¢. With this notation, we could restate the First Corollary to Theorem 10 to say "¢ 

is an optimal coloring of G if it has the color class sequence (aT (G), ... , aT (G), p). 

This notation will be used in the proof of the next theorem. 
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Theorem 11. Let G be a graph with total chromatic number XT and the property 

that, for some integer m ~ aT (G), 

for every coloring 'IjJ of G and for every color c ~ xT . If an integer k > 1 and a 

coloring ¢ exists such that ¢n = aT (G) for all colors n from 1 to k - 1, ¢n = m for 

all colors n from k + 1 to XT, and ¢n = 0 for all n > XT, then ¢ is optimal. 

Proof. Suppose G is a graph satisfying this condition and ¢ is a coloring of G with 

the stated properties. Set up the sequence {vn } such that Vc = ¢c for every color 

c. Let 'IjJ be a coloring that is different from ¢. 

Define the operation push( v, c) to change the sequence {vn } in the following 

way: push( v, c) reduces Vc by one and increases Vc+l by one. This operation has 

several important properties: First, it cannot change the sum L Vn = IV u EI 
n 

. Second, the sum L nVn begins equal to sum( ¢), and each instance of push 
n 

increases that sum by one. 

Using the following algorithm, we can change {vn } to match the color class 

sequence of 'IjJ with a repeated application of push( v, c): 

1. Set the variable c to 1. 

2. If Vc > 'ljJc, repeat push(v, c) until Vc = 'ljJc. 

3. Increase c by 1; if Vc > 0, return to step 2. 

Observe that, whenever step 2 begins, Vc is greater than or equal to 'ljJc for 

every value of c. When c < k, this is because Vc begins at aT and the algorithm 

can't decrease it before this step (and 'ljJc ~ aT). If c ~ k, it is because at this point 

in the algorithm, Vn = 'ljJn for every n < c and Vn = ¢n for every n > c, so: 
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Vc = IV u EI - L Vn - L Vn 
n<c n>c 

n<c n>c 

n2!c n=c+l 
xT 

= 1/Jc + L 1/Jn - L m 
n>c n=c+l 

The algorithm will repeat step 2 until Vc = 't/Jc, at which point it moves to 

a higher color, and Vc will not be altered again. It is a consequence of 3.1 that 1/J 

cannot use more than IV u EI colors, so Vc will become 0 by the time c = IV u EI, 

and step 2 can only repeat itself a finite number of times, so c will continue to 

increase and the algorithm will eventually terminate. At that time, we will have 

Vc = 1/Jc for every color c. 

Note that, because cp "* 1/J, the push operation must have been used at least 

once. Then sum( 1/J) = L n1/Jn = L nVn = sum( cp) + (the number of times push was 
n n 

used), so sum(1/J) > sum(cp). Incidentally, this proves that an optimal coloring of 

G must have the same color class sequence as cp. D 

The lemmas of this section could also be used in coloring contexts other 

than total coloring, such as vertex or edge coloring, and the same results can be 

obtained if every mention of total coloring, total independence number, and total 

chromatic number is replaced with the analogous term appropriate to the context. 
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3.4 Total Chromatic Sum of Some Common Graphs 

Theorem 12. For each integer n > 1, it is true that (JT (Pn ) = 3 and 

{ 

4n-2 ifn =2 (mod 3), 
L;T (Pn ) = 

4n - 3 otherwise. 

Proof. Let n be an integer greater than 1. It is easy to see that XT (Pn ) = 3, and 

we already have aT = aT (Pn ) = r 2n3-I 1 (Theorem 2). Label the vertices of Pn as 

VI, V2, etc., to Vn · Construct the total coloring cP so that VI has color 1, VI V2 has 

color 2, V2 has color 3, and for every integer i E [2, n), ViVi+1 gets the color in 

1 2 3 1 2 3 1 2 3 • • • • • 
1 2 3 1 2 3 1 2 3 1 2 

• • • • • • 
1 2 3 1 2 3 1 2 3 1 2 3 1 • • • • • • • 

FIGURE 3.4: A demonstration of ¢ on paths of three modularities. 

Figure 3.4 demonstrates the coloring 'l/J on paths of various lengths. Color 

1 is always used exactly r 2~- 11 t imes, so cPI = aT and (J ( cP ) = 3. However, color 2 

is used r 2~-2 1 t imes , and color 3 is used r 2n3-
3 1 times, so cPI and cP2 will vary with 

the modularity of n: 

Case 1: n = 0 (mod 3); then 2n = 0 (mod 3), so cP2 = r2n
3-
21 = r2; - ~ 1 = r2; - ~ 1 

= r 2~-1 1 = aT , and cP3 = r 2n3-
31 = 2; - 1 = r 2; - ~ 1- 1 = r 2~-1 1- 1 = aT - 1. Then 

sum( cP ) = aT + 2aT + 3( aT - 1) = 6 (2; ) - 3 = 4n - 3. 
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Case 2: n = 2 (mod 3) ; then 2n = 1 (mod 3) , so ¢2 = r 2~-2 1 = r2n3-11 = aT, and 

¢3 = r2n3-31 = r2n3-11 = aT. Then sum(¢ ) = aT + 2aT + 3aT = 6 en
3-

1
) = 4n - 2. 

Case 3: n = 1 (mod 3) ; then 2n = 2 (mod 3) , so ¢2 = r 2~-2 1 = r2n3-I 1-1 = aT -1. 

Then sum(¢ ) = aT + 2(aT -1 ) + 3(aT -1 ) = 6 r2n;1 1- 5 = 6e~-2 + r ~ l) -5 = 

4n - 4 + 6 (1) - 5 = 4n - 3. This path has only one total independent set of size aT, 

Given the color class sequences found , we can use the First Corollary to 

Theorem 10 to show that ¢ is optimal in cases 1 and 2. In case 3, ¢ is optimal 

by the Second Corollary, using the condition ¢2 :::; aT - 1. Then ¢ is optimal in all 

cases of n > 1. Three colors are both necessary and sufficient to obtain an optimal 

coloring in each case, so (7T (Pn ) = 3. 

Theorem 13. For each integer n ~ 3, it is true that (7T (Cn) = XT (Cn) and 

4n if n = 0 (mod 3), 

ET (Cn) = 4n+4 ifn = 1 (mod 3), 

4n+2 ifn=2 (mod 3). 

o 

Proof. Let Cn be the cycle on n ~ 3 vertices. We already have aT = aT (Cn) = r2n/31 

(Theorem 3). Label the vertices of the cycle Vo, VI, V2, etc., so that Vn = Vo. Now 

continue with one of three cases, depending on the modularity of n: 

3 1 

1 

2 1 

2 

1 

3 

1 

4 

3 

2 

FIGURE 3.5: A demonstration of ¢, as described below, on cycles of three modularities. 
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Case 1: n == 0 (mod 3); Yap shows in [29] that this is the only case in which 

XT(Cn) = 3. Construct the total coloring ¢ so that Vo has color 1, VOVI has color 

2, and for every integer i E [2,n), Vi gets the color in {l,2,3}" {Vi-I,Vi-IVi} and 

ViVi+1 gets the color in {1,2,3}" {Vi-IVi,Vi}' Since the number of elements, 2n, is 

divisible by 3, each of the 3 colors is assigned to exactly 2; = aT elements. Then 

sum ( ¢) = aT + 2aT + 3a3 = 6 ( 2;) = 4n. This coloring is optimal by Theorem 9, 

and uses the minimum number of colors, so (JT(Cn) = XT(Cn) = 3. 

Case 2: n == 1 (mod 3); in this case, XT(Cn ) = 4. Construct ¢ so that 

¢ ((vo, VOVI, ... , V3, V3V4)) = (1,2,3,4,1,2,3,4), and for every integer i E [4, n), Vi gets 

the color in {l, 2, 3} " {Vi-I, Vi-I Vi} and ViVi+1 gets the color in {I, 2, 3} " {Vi-I Vi, Vi}' 

In this way, Color 1 is assigned to Vo, V2, and 2~-8 other elements, so ¢I = 

2 + 2~-2 - ~ = 2~-2 = l2n/3 J = aT. Similarly, ¢2 = ¢3 = aT, but color 4 is only assigned 

to two elements. Then sum( ¢) = aT + 2aT + 3aT + 4(2) = 6 ( 2n3-2) + 8 = 4n + 4. 

This coloring is optimal by Theorem 9, and uses the minimum number of colors, 

Case 3: n == 2 (mod 3); m this case, XT(Cn ) = 4. Construct ¢ so that 

¢ ((vo, VOVI, VI, VI V2)) = (1,2,3,4), and for every integer i E [2, n), Vi gets the color 

in {l,2,3}" {Vi-I,Vi-IVi} and ViVi+1 gets the color in {1,2,3}" {Vi-IVi,Vi}. In this 

way, Color 1 is assigned to Vo and 2n3-4 other elements, so ¢I = 1 + 2~-1 - ~ = 

2n3-I = l2n/3J = aT. Similarly, ¢2 = ¢3 = aT, but color 4 is only assigned to one 

element. Then sum(¢) = aT + 2aT + 3aT + 4(1) = 6 (2~-1) + 4 = 4n + 2. This 

coloring is optimal by Theorem 9, and uses the minimum number of colors, so 

Theorem 14. For each integer n ~ 1, it is true that (JT(Kn) = XT(Kn), and 

n(n+I)2 
4 

n(n+l)(n+2) 
4 
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if n is even, and XT(Kn} = n if n is odd, and he presents a way to color Kn in 

each case to demonstrate this. The total colorings he produces also happen to be 

optimal, if the colors are replaced by the first XT (Kn) natural numbers. First, 

note that the number of elements in Kn is 

n + (n) = n + n(n -I} = 2n + n
2 

- n = n(n + I}. 
2 2 2 2 2 

Case 1: n is odd. Construct a total coloring ¢ of Kn that uses only XT(Kn} = n 

colors. Each color class up to n must have size aT(Kn} = n;l, because otherwise 

the number of elements colored would be less than n ( n; 1 
), and that would not 

color all elements. Therefore, ¢i = aT for each color i ~ n, and ¢ is optimal by the 

First Corollary to Theorem 10. This implies aT(Kn} = n = XT(Kn}, and I;T(Kn} 

= sum(¢} = aT +2aT + ... +naT = (n;l)(n(~+l»). 

Case 2: n is even. Construct a total coloring ¢ of Kn that uses only XT(Kn} = n+1 

colors. Each color class up to n + 1 must have size crT(Kn} = ~, because otherwise 

the number of elements colored would be less than (n + I) (~ ), and that would not 

color all elements. Therefore, ¢i = aT for each color i ~ n + 1, and ¢ is optimal by 

the First Corollary to Theorem 10. This implies aT(Kn} = n + 1 = XT(Kn}, and 

I;T(Kn} = sum(¢} = aT +2aT + ... +(n+1}aT = (~)«n+1)~n+2»). D 

Theorem 15. For each pair of integers m, n ~ 1, it zs true that aT(Km,n} = 

ifm = n, 

otherwise, 

where j = r n~m 1 and p = 2n - j (n - m). 
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Proof Let Km,n be a complete bipartite graph. Partition its vertices into the 

independent sets M and N, such that V(Km,n) = M u Nand IMI ::; INI. Let 

m = 11\41 and n = INI. Then aT = aT(Km,n) = n, by Theorem 5. Yap shows in [29J 

that XT(Km,n) = n + 2 if m = n; otherwise it is n + 1. 

Case 1: m = n. Then XT(Kn,n) = n+2. Construct a total coloring ¢ of Kn,n that 

uses only n + 2 colors. Each color class must have size aT = n, because otherwise 

the number of elements colored would be less than the number of elements in the 

graph, which is 2n + n2 = n(n + 2). Therefore, ¢i = crT for each color i::; n + 2, and 

¢ is optimal by the First Corollary to Theorem 10. This implies (JT(Kn,n) = n + 2 

= XT(Kn,n), and "L7(Kn,n) = sum(¢) = aT +2aT + ... +(n+2)aT = n(n+2)2(n+3»). 

Case 2: m < n. Then XT(Km,n) = n + 1. Denote the vertices in M as VI, V2, etc., 

up to V m . For each positive integer i ::; m, let Li be the subset of elements that 

includes Vi and all edges incident to Vi in Km,n' Now let 1/J be an arbitrary coloring 

of Km,n' Every vertex in M has degree n, so for each positive integer i ::; m, there 

have to be n + 1 elements in the set Li. No two elements in Li can have the same 

color, so for each color c::; n + 1, there are at most c elements in Li with color less 

than or equal to c, and likewise at least n + 1- c elements in Li with a color greater 

than c. Furthermore, there are m mutually disjoint subsets Li in Km,n, so in total, 

for each color c::; n + 1 = XT(Km,n), there are at least m(n + 1- c) elements in Km,n 

that are assigned a color greater than c: 

L 1/Jk 2 m(xT - c), 
k>c 

for every total coloring 1/J of Km,n and every color c::; XT. This is the exact property 

specified by Theorem 11, so if we can find a total coloring of Km,n that satisfies 

the other conditions in that theorem, we can claim that it is optimal. Create the 

coloring ¢ using the procedure below. 

1. Denote the vertices in N as Uo, UI, etc., up to Un-I' Let t = n - m. 
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2. For each color c ~ 1, assign color c to every vertex Uh E N such that h E 

[( C - 1 )t, ct - 1]. The last color assigned this way is 4>( un) = r nit 1 ~ 2. 

3. For every color c E [1,4>( un) -1], assign color c to UctVI and assign color 4>( un) 

to UOVI. 

4. For every integer h E [0, n - 1], in increasing order, if uh VI is not yet colored, 

give it the least color not yet assigned to an edge incident to VI' 

5. Assign every vertex in M color n + 1. 

6. Run the next step for every integer i from ° to n - 1: 

7. Let c be the color of edge UiVI' For every j E [2,m], let k = i + j -1 (mod n) 

and assign UkVj color c. 

We must now check to be sure that 4> is a proper total-coloring. 

• Every pair of adjacent vertices will involve one from N, which has color at 

most 4>( un) < n, and one from M, which has color n + 1. Therefore, the 

coloring is proper with respect to vertices. 

• In step 7, edge UiVI has color c, and the only other edges that get color c in 

the algorithm are those that receive it in step 7. Here we can observe that 

no two edges with color c meet at a common vertex, because values of j and 

k are unique as j increases from 2 to m. Therefore, the coloring is proper 

with respect to edges. 

• There are no (n + 1 )-colored edges, so no vertex-edge conflicts occur with 

that color. For colors c E [4>( un) + 1, n], there are no c-colored vertices, so 

no vertex-edge conflicts occur with that color. Color 4>( un) only appears on 

edges incident to the first m - 1 vertices of N, and that color does not appear 
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on vertices of N until index Un/tl-l) t ~ n-t = m, so no vertex-edge conflicts 

occur with color ¢>( un). 

• For a color c < ¢>( Un), observe that no c-colored edge can have an endvertex 

Uh E N with h E [ct - t, ct - 1]. (Edge UctV1 gets color c in step 3, but that 

index is outside this interval. Color c is also assigned to edge UkVj for certain 

values of j and k in step 7, but k starts at ct + 1 and increases from there. 

Since k is computed modulo n, it is reduced by n when j is high enough, 

but in that event, k is at most ct + m - 1 - n = ct - t - 1.) Fortunately, the 

only c-colored vertices in N are those whose index lies inside the interval 

[ct - t, ct - 1], so no vertex-edge conflicts occur with this color. 

Let j = ¢>un - 1. This coloring assigns every color in [1, j - 1] to t vertices 

and m edges, for a total of n elements, so ¢>k = n = aT for all colors k < j. It assigns 

every color in [j + 1, n + 1] to exactly m elements, so ¢>k = m for all colors in [j, XT]. 

And it uses only n + 1 colors, so ¢>k = 0 for all i > XT. By Theorem 11, ¢> is optimal. 

j-1 n+1 
= sum(¢» = L kn + j¢>j + L km 

k=1 k=j+1 

( 
j (j - 1) ) . A. ( ( n + 1)( n + 2) j (j + 1) ) 

= n 2 + J'Pj + m 2 - 2 

_ (j).A. (n+l) (j(j-l)) (2j) -n +J'P"+m -m -m -
2 J 2 2 2 

= (n - m)(~) + j(¢>j _ m) + m(n; 1), 
where j = f_n-l 

n-m 

and ¢>j = (n + m + nm) - n(j -1) - m(n + 1- j) 

= 2n - j (n - m). 
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3.5 Total Chromatic Sum of Some Hypercubes 

Theorem 16. If Qn is the hypercube of dimension n and if aT(Qn) = 5 x 2n-3 , 

Proof. Label each vertex according to its binary coordinate in n dimensions, as it 

was done in Chapter 2. Let A be the set of all vertices whose coordinate contains 

an even number of 1 'so A must be independent, because every pair of adjacent 

vertices in Qn differs in exactly one dimension, which makes the number of 1 's in 

their coordinates differ by 1, and thus have opposite parity. There should be an 

equal number of vertices whose coordinate contains an odd number of 1 's, so A is 

Denote the vertices in A arbitrarily as VI, V2, etc., up to V m , where m = IAI. 

For each positive integer i ~ m, let Li be the subset of elements that includes Vi 

and all edges incident to Vi in Qn. Now let 1jJ be an arbitrary coloring of Qn. Every 

vertex in A has degree n, so for each positive integer i ~ m, there have to be n + 1 

elements in the set L i . No two elements in Li can have the same color, so for each 

color c ~ n + 1, there are at most c elements in Li with color less than or equal 

to c, and likewise at least n + 1 - c elements in Li with a color greater than c. 

Furthermore, there are m = IAI mutually disjoint subsets Li in Qn, so in total, for 

each color c ~ n + 1 = XT(Qn), there are at least m(n + 1- c) elements in Qn that 

are assigned a color greater than c: 

L 1jJk ~ m(xT - c), 
k>c 

for every total coloring 1jJ of Q n' and for every color c ~ XT ( Q n). This is the exact 

property specified by Theorem 11, so if we can find a total coloring of Qn that 
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satisfies the other conditions in that theorem, we can claim that it is optimal. 

Create the coloring cP using the algorithm below. 

(1,1,1, .. . ) 

(1,0,0, ... ) 

(1,0,1, ... ) 

(0 ,1,1, .. . ) 

(0,1,0, ... ) 

(0 ,0,1, .. . ) 

FIGURE 3.6: The total-4-coloring of a 3-cube subgraph of Qn , given in step 1 of t he algorithm. 

(Red = 1, Blue = 2, Green = 3, and Purple = 4.) 

1. Have cP assign colors 1 (red) , 2 (blue) , 3 (green), and 4 (purple) to the 20 

elements shown in Figure 3.6, where in each coordinate, the entry equals 0 

in every dimension greater than 3. 

2. Set the variable d = 4. 

3. Define the automorphism r d on Qn so that for each vertex v E Qn, r d( v ) is 

the vertex in Qn whose coordinate is the same in all dimensions except 1 

and d, where it is different . Let C be the set of all vertices already colored 

at this moment ; then every vertex in C is equal to 0 in every dimension d. 

To each vertex v E C , assign the vertex r d ( v ) the same color as v . To each 

edge uv whose endvert ices are in C , assign the edge rd (u) rd (v ) the same 

color as uv. (Justification for why this produces a proper coloring follows 

the same logic as the proof of Theorem 9, in which I explain why a union 

of a total independent set and its image via this automorphism retains its 

independence. ) 

4. If d < n, increase d by 1 and return to the last step. Otherwise, proceed. 
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5. Now all vertices and all edges that span dimensions 1, 2, and 3 have been 

given a color in {1, 2, 3, 4}. For every other edge whose spanning dimension 

is d ~ 4, assign it the color d + 1. Now, every color class d ~ 4 is a set of 

independent edges with size 2n - 1 (the total number of edges divided by the 

number of dimensions). 

The algorithm produces a proper total coloring ¢. In the first step, the first 

4 colors were each assigned to 5 elements, and the number of elements having these 

colors doubled in every instance of step 3. That step is repeated n - 3 times, so 

for every color c :::; 4, ¢c = 5 (2n-3 ) = aT (Qn). For every color c > 4, c was assigned 

only to 2n- 1 edges in step 5, so ¢c = 2n- 1 = IAI = m. Therefore, by Theorem 11, ¢ 

is an optimal coloring of Qn. It uses n + 1 colors, so (JT(Qn) = n + 1 = XT(Qn). 

Also, 

4 n+l 

~T(Qn) = sum(¢) = L daT(Qn) + L dm 
d=l d=5 

4 n+l 

= L d(5 x 2n-3
) + L d2n- 1 

d=l d=5 

4 n+l 

= L d(5 x 2n-3 
- 2n- 1

) + L d2n- 1 

d=l d=l 

= 2n-3 ± d (5 _ 4) + (n + 1) (n + 2) (2n-1 ) 
d=l 2 

D 
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3.6 Total Chromatic Sum of Full Binary Trees 

For each kEN, define the following: 

• Let Bk be the full binary tree of height k, and let r(Bk) denote its root 

vertex. 

• The graph Bk - r(Bk) has two components, each of which is is isomorphic 

to Bk- I . For each neighbor u of r(Bk), let Bk(U) denote the component of 

Bk - r(Bk) having root u. 

• Define the function Wk : N3 -+ N as follows: Given the ordered 3-tuple 

possible sum of a total coloring of Bk in which r(Bk) gets color CI and its 

incident edges get the colors C2 and C3: 

Theorem 17. The following is true for each n E N: 

3. If n is odd, every optimal coloring of Bn must assign its root the color 3. 

Proof. For each height k;::>: 1, 'L7(Bk ) is just the lowest possible value of Wk. In the 

case of WI, given each possible coloration of r(Bd and its incident edges, we can 

determine the lowest possible colors for the neighbors of v, and add these colors 

together to determine the sum. Each row of Table 3.1 lists an element or interval of 

its domain, N3, and taking those to be the colors of 1'( Bd and its incident edges, 

a function value of WI (or a lower bound for it) is generated. From the result, 

we can see that WI has a minimum of 9, so L;T(BI) = 9. Note, also, that the 
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total coloring of Bl can only have sum 9 if v has color 3. Figure 3.7 illustrates an 

optimal total-3-coloring of B l , so (JT(Bd = 3 = !::.(Bd + 1 = XT (Bl ) . The theorem 

is true for n = 1. 

For k> 1, we calculate Wk ( Cl, C2, C3 ) in three steps: (1) we find the lowest 

sum 81 among all colorings of Bk- l in which r (Bk-d does not have colors Cl or C2 

and its incident edges do not have the color C2; (2) we find the lowest sum 82 among 

all colorings of Bk- 1 in which r (Bk- l ) does not have colors Cl or C3 and its incident 

edges do not have the color C3; and then (3) we calculate Cl +C2+C3+81 +82 . Steps 

(1) and (2) can be done by using the table of values for Wk - 1 . 

Cl = C2 = C3 = Least po sible Least possible WI ( Cl , C2, C3 ) 

¢(v) ¢(vu ) ¢(vw ) ¢(u) ¢(w) 
1 2 3 3 2 11 

1 2 or 3 4 5 - ¢(vu) 2 12 

1 2+ 5+ ~ 5 - ¢(vu )) 2 13+ 

2 1 3 3 1 10 
2 1or3 4 4 - ¢(vu ) 1 11 

2 P 5+ ~ 4 - ¢(vu)) 1 12+ 

3 1 2 2 1 9 

3 1 or 2 4 3 - ¢(vu ) 1 11 

3 1+ 5+ ~ 3 - ¢(vu )) 1 12+ 

4 1 2 2 1 10 

4 1 or 2 3 3 - ¢(vu ) 1 11 

4 1+ 5+ ~ 3 - ¢(vu )) 2 13+ 

5+ 1+ 2+ ~ 3 - ¢(vu )) 1 11+ 

TABLE 3.1: A table of values and lower bounds for WI using a graph Bl having root vertex 

v and the edges vu and vw. 

3 

2 1 

FIGURE 3.7: A total-3-coloring of BI with sum 9. 
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Function values and lower bounds for W2 and W3 were found using this 

method, and are shown in Tables 3.2 and 3.3, respectively. From those tables we 

see that W2 has a minimum of 27, so "J:7(B2 ) = 27, and W3 has a minimum of 61, 

so "L7(B3) = 61. The table shows that this optimal sum of B3 is only possible ifthe 

root has color 3. Figures 3.8 and 3.9 illustrate optimal total-4-colorings of B2 and 

B3, so (JT (B2 ) = 4 = XT (B2 ) and (JT (B3) = 4 = XT (B3). Therefore, the theorem is 

true for n = 2 and n = 3. 

Cl = C2 = C3 = Least possible Least possible W2(Cl ,C2,C3 ) 
¢ (v ) ¢ (vu ) ¢ (vw ) sum of B2(U) sum of B2(W) 

1 2 3 11 10 27 

1 2 or 3 4 13 - ¢ (vu ) 9 27 

1 2+ 5+ ~ 13-¢(vu) 9 28+ 

2 1 3 or 4 11 13 - ¢ (vw ) 27 

2 3 4 10 9 28 

2 1+ 5+ ~ 12 - ¢( vu )) 9 28+ 

3 1 2 11 11 28 

3 1 4 11 10 29 

3 2 4 11 10 30 

3 1+ 5+ ~ 12 - ¢ (vu ) 10 30+ 

4 1 or 2 2or3 11 11 29+ 

4 lor2 5+ 11 9 30+ 

4 3+ 5+ ~ 14-¢(vu)) 9 32+ 

5+ 1 2+ 11 ~ 13- ¢ (vw ) 30+ 

5+ 2+ 3+ ~ 13 - ¢ (vu) ~ 13- ¢ (vw ) 31+ 

TABLE 3.2: A table of values and lower bounds for W 2 using a graph B2 having root vertex 

v and the edges vu and vw . 

1 

FIGURE 3.8: A total-4-coloring of B2 with sum 27. 
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Cl = C2 = C3 = Least possible Least possible W3 ( Cl , C2, C3 ) 

¢ (v) ¢ (vu) ¢(vw ) sum of B3 {U) sum of B3 {W) 

1 2 3 29 27 62 
1 2 4 29 27 63 
1 3 4 27 27 62 
1 2+ 5+ ~ 30 - ¢ (vu ) 27 63+ 

2 1 3 30 27 63 
2 3 4 27 27 63 
2 p 4+ 30 27 64+ 

2 3+ 5+ 27 27 64+ 

3 1 2 28 27 61 

3 1 4 28 27 63 
3 2 4 27 27 63 
3 1+ 5+ ~ 29 - ¢(vu ) 27 64+ 

4 1 2 28 27 62 
4 1 or 2 3 29 - ¢ (vu ) 27 63 
4 p 5+ ~ 29 - ¢ (vu) ) 27 65+ 
5+ 1 2+ 28 27 63+ 
5+ 2+ 3+ 27 27 64+ 

TABLE 3.3: A table of values and lower bounds for W3 using a graph B3 having root vertex 

v and the edges vu and vw. 

3 

2 1 

FIGURE 3.9: A total-4-coloring of B3 with sum 61. 
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Function values for Wk do not begin to show a recursive pattern until k ~ 4. 

The following proposition will be used to control function values of Wk for these 

values. Though it has some advantages over Theorem 17, it is cumbersome, and 

is inaccurate for values of k less than 4. To simplify notation, define the sequence 

{ad so that ak = r:7(Bk) for every non-negative integer k. 

Proposition: For each k ~ 4, the following statements are true: 

• The function values / lower bounds. of Wk are as shown in Table 3.4, as a 

function of ak-l. 

• If k is even, then ak = 2ak-l + 9 and: 

1. A coloring ¢ of Bk exists such that the root is assigned color 1, the root's 

incident edges are assigned colors 3 and 4, sum( ¢) = ak, and 0"( ¢) = 4; 

2. A coloring 1jJ of Bk exists such that the root is assigned color 2, the 

root's incident edges are assigned colors 3 and 4, sum( 1jJ) = ak + 1, and 

0"(1jJ) =4. 

• If k is odd, then ak = 2ak-l + 7 and: 

1. Every coloring of Bk with sum ak assigns the root the color 3; 

2. A coloring ¢ of Bk exists such that the root is assigned color 3, the root's 

incident edges are assigned colors 1 and 2, sum( ¢) = ak, and 0"( ¢) = 4; 

3. A coloring 1jJ of Bk exists such that the root is assigned color 4, the 

root's incident edges are assigned colors 1 and 2, sum( 1jJ) = ak + 1, and 

0"(1jJ) =4. 
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Cl = C2 = C3 = W k (</J( V)) </J( VU)) </J( VW)) Wk(</J( V), </J( vu), </J( VW)) 

</J(V) </J( VU) </J( vw) when k ~ 4 is even when k > 4 is odd 

1 2 3 2ak-l + 9 2ak-l + 8 
1 2 4 2ak-l + 9 2ak-l + 9 
1 2 5+ 2ak-l + 10+ 2ak-l + 10+ 
1 3 4 2ak-l + 9 2ak-l + 8 
1 3 5+ 2ak-l + 10+ 2ak-l + 9+ 
1 4+ 5+ 2ak-l + 10+ 2ak-l + 10+ 

2 1 3 2ak-l + 9 2ak-l + 8 
2 1 4 2ak-l + 9 2ak-l + 9 
2 1 5+ 2ak-l + 10+ 2ak-l + 10+ 

2 3 4 2ak-l + 10 2ak-l + 9 
2 3 5+ 2ak-l + 11 + 2ak-l + 10+ 
2 4+ 5+ 2ak-l + 11+ 2ak-l + 11+ 

3 1 2 2ak-l + 9 2ak-l + 7 
3 1 4 2ak-l + 11 2ak-l + 9 
3 1 5+ 2ak-l + 12+ 2ak-l + 10+ 
3 2 4 2ak-l + 11 2ak-l + 9 
3 2 5+ 2ak-l + 12+ 2ak-l + 10+ 
3 4+ 5+ 2ak-l + 14+ 2ak-l + 12+ 

4 1 2 2ak-l + 10 2ak-l + 8 
4 1 3 2ak-l + 12 2ak-l + 9 
4 1 5+ 2ak-l + 12+ 2ak-l + 11 + 
4 2 3 2ak-l + 12 2ak-l + 9 
4 2 5+ 2ak-l + 12+ 2ak-l + 11 + 
4 3 5+ 2ak-l + 14+ 2ak-l + 12+ 
4 5+ 6+ 2ak-l + 15+ 2ak-l + 15+ 
5+ 1 2 2ak-l + 11 + 2ak-l + 9+ 
5+ 1 3 2ak-l + 12+ 2ak-l + 10+ 
5+ 1 4+ 2ak-l + 12+ 2ak-l + 11 + 
5+ 2 3 2ak-l + 12+ 2ak-l + 10+ 
5+ 2 4+ 2ak-l + 12+ 2ak-l + 11+ 
5+ 3 4+ 2ak-l + 13+ 2ak-l + 12+ 
5+ 4+ 6+ 2ak-l + 15+ 2ak-l + 15+ 

TABLE 3.4: A table of values and lower bounds for W k , with k ~ 4, using a graph Bk having 

root vertex v and the edges vu and vw. 
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This Proposition will be proved using induction on k. 

In the base case, k = 4. In Table 3.5 , function values for W4 are created 

the same way Tables 3.2 and 3.3 were created, except that in each row, beside the 

sum given for each B3 subtree, it also includes a set of colors for that subtree's 

root and incident edges < Cl, C2, C3 > that will bring about such a sum. Also, the 

function value or lower bound for W4 is expressed in terms of ak-l. 

The values and lower bounds for Wk match those in Table 3.4 where k is 

even. The lowest possible sum for a total coloring of B4 is 131 = 2a3 + 9, so this 

is the value of a4. A total-4-coloring ¢ of B4 exists in which the root has color 

1 and its incident edges have colors 3 and 4, and sum(¢ ) = ak , and a(¢ ) = 4, as 

demonstrated in Figure 3.10. And a total-4-coloring 'ljJ of B4 exists in which the 

root has color 2 and its incident edges have colors 3 and 4, and sum( 'ljJ ) = ak+ 1, and 

a( 'ljJ ) = 4, which is the same as ¢ except for the color of the root vertex. Therefore, 

the Proposition is true for k = 4. 

1 

1212121212121212 

FIGURE 3.10: A total-4-coloring of B4 with sum 131. 
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< Cl, C2, C3 >= Least sum Least sum 

¢( (v, vu, vw)) on B4( u) on B4(W) W4(¢(v), ¢(vu), ¢(vw)) 
<1,2,3> 63: < 3, 1,4 > 62: < 4, 1,2 > 6 + 2a3 + 3 = 2a3 + 9 

<1,2,4> 63: < 3, 1,4 > 61: < 3, 1,2 > 7 + 2a3 + 2 = 2a3 + 9 

< 1,2,5+ > 63: < 3, 1,4 > 61: < 3, 1,2 > 8+ + 2a3 + 2 = 2a3 + 10+ 

<1,3,4> 62: < 4, 1,2 > 61: < 3, 1,2 > 8 + 2a3 + 1 = 2a3 + 9 

< 1,3,5+ > 62: < 4, 1,2 > 61: < 3, 1,2 > 9+ + 2a3 + 1 = 2a3 + 10+ 

<1,4+,5+> 61: < 3, 1,2 > 61: < 3, 1,2 > 10+ + 2a3 = 2a3 + 10+ 

<2,1,3> 63: < 3,2,4 > 62: < 4, 1,2 > 6 + 2a3 + 3 = 2a3 + 9 

<2,1,4> 63: < 3,2,4 > 61: < 3, 1,2 > 7 + 2a3 + 2 = 2a3 + 9 

<2,1,5+> 63: < 3,2,4 > 61: <3,1,2> 8+ + 2a3 + 2 = 2a3 + 10+ 

< 2,3,4 > 62: < 4, 1, 2 > 61: < 3, 1,2 > 9 + 2a3 + 1 = 2a3 + 10 

< 2,3,5+ > 62: <4,1,2> 61: < 3, 1,2 > 10+ + 2a3 + 1 = 2a3 + 11+ 

< 2,4+,5+ > 61: < 3, 1,2 > 61: <3,1,2> 11+ + 2a3 = 2a3 + 11+ 

<3,1,2> 63: < 2,3,4 > 62: <1,3,4> 6 + 2a3 + 3 = 2a3 + 9 

<3,1,4> 63: < 2,3,4 > 62: <1,2,3> 8 + 2a3 + 3 = 2a3 + 11 

<3,1,5+> 63: < 2,3,4 > 62: < 1,2,3 > 9+ + 2a3 + 3 = 2a3 + 12+ 

< 3,2,4 > 62: < 1,3,4 > 62: <1,2,3> 9 + 2a3 + 2 = 2a3 + 11 

< 3,2,5+ > 62: < 1,3,4 > 62: <1,2,3> 10+ + 2a3 + 2 = 2a3 + 12+ 

< 3,4+,5+ > 62: <1,2,3> 62: < 1,2,3 > 12+ + 2a3 + 2 = 2a3 + 14+ 

<4,1,2> 63: < 3,2,4 > 62: < 1,3,4 > 7 + 2a3 + 3 = 2a3 + 10 

<4,1,3> 63: < 3,2,4 > 63: < 1,2,4 > 8 + 2a3 + 4 = 2a3 + 12 

<4,1,5+> 63: < 3,2,4 > 61: <3,1,2> 10+ + 2a3 + 2 = 2a3 + 12+ 

< 4,2,3 > 62: <1,3,4> 63: <1,2,4> 9 + 2a3 + 3 = 2a3 + 12 

< 4,2,5+ > 62: < 1,3,4 > 61: < 3, 1, 2 > 11+ + 2a3 + 1 = 2a3 + 12+ 

< 4,3,5+ > 63: < 1,2,4 > 61: < 3, 1, 2 > 12+ + 2a3 + 2 = 2a3 + 14+ 

< 4,5+,6+ > 61: < 3, 1,2 > 61: < 3, 1,2 > 15+ + 2a3 = 2a3 + 15+ 

<5+,1,2> 63: < 2,3,4 > 62: < 1,3,4 > 8+ + 2a3 + 3 = 2a3 + 11+ 

<5+,1,3> 63: < 2,3,4 > 62: < 4, 1,2 > 9+ + 2a3 + 3 = 2a3 + 12+ 

< 5+,1,4+ > 63: < 2,3,4 > 61: < 3, 1,2 > 10+ + 2a3 + 2 = 2a3 + 12+ 

< 5+,2,3 > 62: <1,3,4> 62: <4,1,2> 10+ + 2a3 + 2 = 2a3 + 12+ 

< 5+,2,4+ > 62: <1,3,4> 61: <3,1,2> 11+ + 2a3 + 1 = 2a3 + 12+ 

< 5+,3,4+ > 62: <4,1,2> 61: < 3, 1, 2 > 12+ + 2a3 + 1 = 2a3 + 13+ 

<5+,4+,6+> 61: < 3, 1,2 > 61: < 3, 1, 2 > 15+ + 2a3 = 2a3 + 15+ 

TABLE 3.5: A table of values of Wk in the basis case (k = 4), using a graph Bk having root v 

and the edges vu and vw. The number 61 is always replaced with ak-l = a3 so that the resulting 

function value / lower bound of Wk appears in the same form as it does in Table 3.4. 
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Now for the induction step. Suppose k > 4 and the Proposition is true for 

all integers less than k. 

Case 1: k is even. 

By the induction hypothesis, the Proposition is true for k - 1, which implies 

Table 3.4 correctly lists the function values and lower bounds of Wk - 1 , and also 

ak-l = 2ak-2 + 7. In Table 3.6, function values or lower bounds for Wk are created 

using the odd column of Table 3.4 as a reference. 

The results for W k match those in Table 3.4 where k is even. The Table 

shows that the lowest possible sum for a total coloring of Bk is 2ak-l + 9, so this is 

the value of ak. Let v = r(Bk) and let vu, vw E E(Bk). 

A total-4-coloring ¢ of Bk exists in which ¢( v) = I, ¢( {vu, vw}) = {3, 4}, and 

sum( ¢) = ak, which can be created in this way: Let ¢( < v, vu, vw » =< 1,3,4 >. 

The Proposition for k - 1 states that we may give Bk (u) a total-4-coloring where 

its root color is 4 and the edges of that subtree incident to the root are 1 and 2, for 

a total sum of ak-l + 1; color Bd u) this way in ¢. The Proposition also states that 

we may give Bk ( w) a total-4-coloring where its root color is 3 and the edges of 

that subtree incident to the root are 1 and 2, for a total sum of ak-l; color Bd w) 

this way in ¢. Then O"(¢) = 4, and sum(¢) = 1 +3+4+2ak-l + 1 = 2ak-l +9 = ak. 

Lastly, a total-4-coloring 1jJ of B k exists in which ¢( v) = 1, ¢ ( { vu, vw}) = 

{3, 4}, and sum(1jJ) = ak + 1: It can be created by copying ¢ and changing the root 

color 1jJ(v) to 2. Thus 0"(1jJ) = 4 and sum(1jJ) = sum(¢) -1 + 2 = ak + l. 

Therefore, the Proposition is true for this value of k. 
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< Cl, C2, C3 >= Bk (u) lowest Bk(W) lowest 

4>( (v, vu, vw)) sum: 2ak-2+ ... sum: 2ak-2+ ... Wk( 4>( v), 4>( vu), 4>( vw)) 

<1,2,3> 9: < 3, 1,4 > 8: < 4, 1,2 > 6 + 4ak-l + 17 = 2ak-l + 9 

<1,2,4> 9: <3,1,4> 7: < 3,1,2 > 7 + 4ak-l + 16 = 2ak-l + 9 

< 1,2,5+ > 9: <3,1,4> 7: <3,1,2> 8+ + 4ak-l + 16 = 2ak-l + 10+ 

< 1,3,4> 8: < 4, 1,2 > 7: <3,1,2> 8 + 4ak-l + 15 = 2ak-l + 9 

< 1,3,5+ > 8: < 4, 1,2 > 7: < 3, 1,2 > 9+ + 4ak-l + 15 = 2ak-l + 10+ 

<1,4+,5+> 7: < 3, 1,2 > 7: <3,1,2> 10+ + 4ak-l + 14 = 2ak-l + 10+ 

<2,1,3> 9: < 3,2,4 > 8: < 4, 1,2 > 6+ 4ak_l+ 17 = 2ak-l +9 

<2,1,4> 9: < 3,2,4 > 7: <3,1,2> 7+ 4ak_l+ 16 = 2ak-l + 9 

< 2,1,5+ > 9: < 3,2,4 > 7: <3,1,2> 8+ + 4ak-l + 16 = 2ak-l + 10+ 

< 2,3,4 > 8: < 4, 1,2 > 7: < 3, 1,2 > 9 + 4ak-l + 15 = 2ak-l + 10 

< 2,3,5+ > 8: < 4, 1,2 > 7: < 3, 1,2 > 10+ + 4ak-l + 15 = 2ak-l + 11+ 

< 2,4+,5+ > 7: < 3,1,2 > 7: < 3, 1,2 > 11+ + 4ak-l + 14 = 2ak-l + 11+ 

<3,1,2> 9: < 2,3,4 > 8: < 1,3,4 > 6 + 4ak-l + 17 = 2ak-l + 9 

<3,1,4> 9: < 2,3,4 > 8: <1,2,3> 8 + 4ak-l + 17 = 2ak-l + 11 

<3,1,5+> 9: < 2,3,4 > 8: < 1,2,3 > 9+ +4ak-l + 17 = 2ak-l + 12+ 

< 3,2,4 > 8: <1,3,4.> 8: < 1,2,3 > 9+ 4ak_l+ 16 = 2ak-l + 11 

< 3,2,5+ > 8: < 1,3,4 > 8: <1,2,3> 10+ + 4ak-l + 16 = 2ak-l + 12+ 

< 3,4+,5+ > 8: <1,2,3> 8: < 1,2,3 > 12+ + 4ak-l + 16 = 2ak-l + 14+ 

<4,1,2> 9: < 3,2,4 > 8: < 1,3,4 > 7 + 4ak-l + 17 = 2ak-l + 10 

<4,1,3> 9: < 3,2,4 > 9: <1,2,4> 8 + 4ak-l + 18 = 2ak-l + 12 

< 4, 1,5+ > 9: < 3,2,4 > 7: <3,1,2> 10+ + 4ak-l + 16 = 2ak-l + 12+ 

< 4,2,3 > 8: <1,3,4> 9: < 1,2,4> 9 + 4ak-l + 17 = 2ak-l + 12 

< 4,2,5+ > 8: < 1,3,4 > 7: <3,1,2> 11+ + 4ak-l + 15 = 2ak-l + 12+ 

< 4,3,5+ > 9: <1,2,4> 7: <3,1,2> 12+ + 4ak-l + 16 = 2ak-l + 14+ 

< 4,5+,6+ > 7: < 3, 1, 2 > 7: < 3,1,2 > 15+ + 4ak-l + 14 = 2ak-l + 15+ 

<5+,1,2> 9: < 2,3,4 > 8: <1,3,4> 8+ + 4ak-l + 17 = 2ak-l + 11+ 

<5+,1,3> 9: < 2,3,4 > 8: < 4, 1,2 > 9+ + 4ak-l + 17 = 2ak-l + 12+ 

<5+,1,4+> 9: < 2,3,4 > 7: <3,1,2> 10+ + 4ak-l + 16 = 2ak-l + 12+ 

< 5+,2,3 > 8: <1,3,4> 8: <4,1,2> 10+ + 4ak-l + 16 = 2ak-l + 12+ 

<5+,2,4+> 8: < 1,3,4 > 7: <3,1,2> 11+ + 4ak-l + 15 = 2ak-l + 12+ 

<5+,3,4+> 8: < 4, 1,2 > 7: < 3, 1, 2 > 12+ + 4ak-l + 15 = 2ak-l + 13+ 

< 5+,4+,6+ > 7: < 3, 1, 2 > 7: < 3, 1, 2 > 15+ + 4ak-l + 14 = 2ak-l + 15+ 

TABLE 3.6: Evidence for Table 3.4 when k > 4 is even, using a graph Bk having root vertex 

v and the edges vu and vw. The relationship ak-I = 2ak-2 + 7 allows us to express the sum in 

terms of ak-I. 
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< Cl, C2, C3 >= Bk (u) lowest Bk (w) lowest 

4>( (v, vu, vw}) sum: 2ak-2+'" sum: 2ak-2+'" Wd 4>( v), 4>( vu), 4>( vw)) 

<1,2,3> 11: < 3, 1,4 > 9: <2,1,4> 6 + 4ak-l + 20 = 2ak-l + 8 

<1,2,4> 11: < 3, 1,4 > 9: < 3, 1,2 > 7 + 4ak-l + 20 = 2ak-l + 9 

< 1,2,5+ > 11: <3,1,4> 9: <3,1,2> 8+ + 4ak-l + 20 = 2ak-l + 10+ 

<1,3,4> 9: <2,1,4> 9: < 3, 1,2 > 8 + 4ak-l + 18 = 2ak-l + 8 

< 1,3,5+ > 9: < 2, 1,4 > 9: < 3,1,2 > 9+ + 4ak-l + 18 = 2ak-l + 9+ 

< 1,4,5+ > 9: < 3, 1,2 > 9: < 3,1,2 > 1()+ + 4ak-l + 18 = 2ak-l + 10+ 

<2,1,3> 11: <3,2,4> 9: <1,2,4> 6 + 4ak-l + 20 = 2ak-l + 8 

<2,1,4> 11: <3,2,4> 9: < 3, 1,2 > 7 + 4ak-l + 20 = 2ak-l + 9 

<2,1,5+> 11: < 3,2,4 > 9: < 3, 1,2 > 8+ + 4ak-l + 20 = 2ak-l + 10+ 

< 2,3,4 > 9: <1,2,4> 9: < 3, 1,2 > 9 + 4ak-l + 18 = 2ak-l + 9 

< 2,3,5+ > 9: <1,2,4> 9: < 3, 1,2 > 10+ + 4ak-l + 18 = 2ak-l + 10+ 

< 2,4+,5+ > 9: <1,2,3> 9: < 3, 1,2 > 11+ + 4ak-l + 18 = 2ak-l + 11 + 

<3,1,2> 10: < 2,3,4 > 9: <1,2,3> 6+ 4ak-l+ 19 = 2ak-l + 7 

< 3, 1,4 > 10: < 2,3,4 > 9: <1,2,3> 8+ 4ak-l+ 19 = 2ak-l + 9 

<3,1,5+> 10: < 2,3,4 > 9: <1,2,3> 9+ + 4ak-l + 19 = 2ak-l + 10+ 

< 3,2,4 > 9: <1,3,4> 9: <1,2,3> 9 + 4ak-l + 18 = 2ak-l + 9 

< 3,2,5+ > 9: < 1,3,4 > 9: <1,2,3> 1()+ + 4ak-l + 18 = 2ak-l + 1()+ 

< 3,4+,5+ > 9: <1,2,3> 9: < 1,2,3 > 12+ + 4ak-l + 18 = 2ak-l + 12+ 

<4,1,2> 10: < 2,3,4 > 9: < 1,3,4 > 7 + 4ak-l + 19 = 2ak-l + 8 

< 4, 1,3 > 10: < 2,3,4 > 9: <1,2,4> 8 + 4ak-l + 19 = 2ak-l + 9 

<4,1,5+> 10: <2,3,4> 9: < 3, 1,2 > 10+ + 4ak-l + 19 = 2ak-l + 11+ 

< 4,2,3 > 9: < 1,3,4> 9: <1,2,4> 9 + 4ak-l + 18 = 2ak-l + 9 

< 4,2,5+ > 9: <1,3,4> 9: <3,1,2> 11++ 4ak_l+ 18 = 2ak-l + 11+ 

< 4,3,5+ > 9: <1,2,4> 9: <3,1,2> 12+ + 4ak-l + 18 = 2ak-l + 12+ 

< 4,5+,6+ > 9: < 3, 1, 2 > 9: < 3, 1,2 > 15+ + 4ak-l + 18 = 2ak-l + 15+ 

<5+,1,2> 10: < 2,3,4 > 9: < 1,3,4 > 8+ + 4ak-l + 19 = 2ak-l + 9+ 

<5+,1,3> 10: < 2,3,4 > 9: <1,2,4> 9+ + 4ak-l + 19 = 2ak-l + 1()+ 

< 5+, 1,4+ > 10: < 2,3,4 > 9: <3,1,2> 1()+ + 4ak-l + 19 = 2ak-l + 11+ 

< 5+,2,3 > 9: < 1,3,4> 9: <1,2,4> 1()+ + 4ak-l + 18 = 2ak-l + 10+ 

<5+,2,4+> 9: <1,3,4> 9: <3,1,2> 11+ + 4ak-l + 18 = 2ak-l + 11+ 

< 5+,3,4+ > 9: <1,2,4> 9: <3,1,2> 12+ + 4ak-l + 18 = 2ak-l + 12+ 

<5+,4+,6+> 9: < 3, 1,2 > 9: < 3,1,2 > 15+ + 4ak-l + 18 = 2ak-l + 15+ 

TABLE 3.7: Evidence for Table 3.4 when k > 4 is odd, using a graph Bk having root vertex 

v and the edges vu and vw. The relationship ak-I = 2ak-2 + 9 allows us to express the sum in 

terms of an-I. 

80 



Case 2: n is odd. 

By the induction hypothesis, the Proposition is true for k -1, which implies 

Table 3.4 correctly lists the function values and lower bounds of Wk - 1 , and also 

ak-l = 2ak-2 + 9. In Table 3.6, function values or lower bounds for Wk are created 

using the even column of Table 3.4 as a reference. 

The results for Wk match those in Table 3.4 where k is odd. The Table 

shows that the lowest possible sum for a total coloring of Bk is 2ak-l + 7, so this 

is the value of ak. Furthermore, this sum can only be obtained if the root of Bk is 

assigned color 3. Let v = r(Bk) and let vu,vw E E(Bk)' 

A total-4-coloring cp of Bk exists in which cp( v) = 3, cp( {vu, vw}) = {I, 2}, and 

sum( cp) = ak, which can be created in this way: Let cp( < v, vu, vw » =< 3,1,2 >. 

The Proposition for k - 1 states that we may give Bk (u) a total-4-coloring where 

its root color is 2 and the edges of that subtree incident to the root are 3 and 4, for 

a total sum of ak-l + 1; color Bd u) this way in cp. The Proposition also states that 

we may give Bk (w) a total-4-coloring where its root color is 1 and the edges of 

that subtree incident to the root are 3 and 4, for a total sum of ak-l; color Bk (w) 

this way in cp. Then cr(cp) = 4, and suin(cp) = 3 + 1 + 2 + 2ak-l + 1 = 2ak-l + 7 = ak. 

Lastly, a total-4-coloring 1jJ of Bk exists in which cp( v) = 4, cp( {vu, vw}) = 

{I, 2}, and sum ( 1jJ) = ak + 1: It can be created by copying cp and changing the root 

color 1jJ(v) to 4. Thus cr(1jJ) = 4 and sum(1jJ) = sum(cp) - 3 + 4 = ak + 1. 

Therefore, the Proposition is true for both even and odd values of k ~ 4. 

Then, for each k ~ 4, a total-4-coloring of Bk exists with sum "2.:7(Bk) = ak, which 

implies crT(Bk) = XT(Bk)' This was proven earlier for 1::; k::; 3, so the first part of 

the theorem must be true for every natural number. 

The Proposition also implies that for each k ~ 4, the quantity r7(Bk ) has 
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the value ak described by the recurrence relation 

if k is even, 

if k is odd, 

We can see that ao = 'L7(Bo) = 1 and that this recurrence relation holds for 1 S k s 3 

as well as k 2 4: al = 2(1) + 7 = 9, a2 = 2(9) + 9 = 27, and a3 = 2(27) + 7 = 61. Thus 

we can obtain a closed formula for 'L7(Bk). 

For even k 2 2, ak = 2ak-1 + 9 = 2(2ak-2 + 7) + 9 = 4ak-2 + 23; solving for the 

homogeneous part, we obtain the general solution 

Using the initial conditions ao = 1 and a2 = 27, we get the system: 

{

1 = ).. + c 

27 = 4)" + c 

. h h l· \ 26 - 23 WIt t e so utlOns /\ = -, c = -
3 3 

This yields the particular solution ak = 2362k - 2
3
3. 

For odd k 2 3, ak = 2ak-1 + 7 = 2(2ak-2 + 9) + 7 = 4ak-2 + 25; solving for 

the homogeneous part, we obtain the same general solution. Using the initial 

conditions al = 9 and a3 = 61, we get the system: 

{

9 = 2)" + c 

61 = 8)" + c 

. h h l· ).. 26 -25 WIt t e so utlOns = 3' c = -3-· 

This yields the particular solution ak = 2362k - 23
5

• Therefore, for each k 2 1, 

26 k 24 (-l)k 
ak=-2 --+--

3 3 3 

z:7(Bk) = ~(26 x 2k - 24 + (_l)k). 
3 

Therefore, the second part of the theorem is true for every natural number. 

The third part of the theorem is directly implied by the Proposition and by the 

observations made in the k = 3 case. o 
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3.7 When No Optimal Total Coloring Maximizes (Pt 

It is not surprising that the sequences for the total chromatic sum and total 

independence number of full binary trees would increase by a little more than 

a factor of two at every step, because at every step the graph is being cloned 

and joined to its copy via a new vertex. But it seems strange that the sequence 

{~T(Bn)} would jump at every even value of n, while Theorem 7 shows that 

the sequence {aT (Bn)} jumps whenever n is 0 or 2 modulo 3. This disparity 

suggests that the total chromatic sum does not, in some sense, take advantage of 

the increasing total independence number. It turns out that, in the case of B 3 , 

and for each full binary tree of height equal to 3 (mod 6), no optimal total coloring 

can have a maximized first color class: 

Theorem 18. For each n == 3 (mod 6), if ¢ is an optimal total coloring of B n , 

then (Pt < aT (Bn). 

Proof. Let n E N be a number s.t. n == 3 (mod 6). Let ¢ be an optimal total coloring 

of Bn, and let r be the root of Bn. Since n is odd and ¢ is optimal, Theorem 17 

dictates that ¢(r) = 3. However, n == 0 (mod 3), so Theorem 7 dictates that every 

total independent set of maximum size in Bn must include r. Since r has color 3, 

it is not in the first color class, so the first color class does not have maximum size. 

Therefore, ¢1 < aT(Bn). D 
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CHAPTER 4 

THE T-STRENGTH OF GRAPHS 

4.1 Total Strength vs. Total Chromatic Number 

In the previous chapter, an allusion was made to a strange coloring sum 

phenomenon present in some graphs: that is, a graph's strength can be more than 

its chromatic number, and a graph's edge strength can be more than its edge 

chromatic number. Here, the phenomenon will be studied for total colorings, and 

it will be given a name. We will say that a graph G is T-strong if (}T (G) > XT (G). 

Theorems '12 to 16 in Chapter 3 addressed the total chromatic sum of some 

common graphs as well as the total strength of those graphs. Those families of 

graphs, including paths, cycles, complete graphs, complete bipartite graphs, full 

binary trees, and hypercubes up to dimension 6, have something in common: Their 

total strength is equal to their total chromatic number; therefore, none of those 

graphs are T-strong. It is also true that stars are not T-strong, which follows from 

the next theorem. 

4.2 Trees of Maximum Distance Four or Less 

Theorem 19. There is no T -strong tree with maximum distance less than 5. 

Proof. Suppose the theorem is false, and let G be a T-strong tree having maximum 

distance 4 or less. With this property, the graph G has a central vertex s such that 
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dist(v, s) ~ 2 for every vertex v E V(G). Every edge incident to s will be called an 

inner edge, and every non-leaf neighbor of s will be called a hub; see Figure 4.1 for 

an example of this labeling. 

FIGURE 4.1: An example of a tree with maximum distance less than 5. 

We now expand the definition of the distance metric dist for any pair of 

elements in the tree G as follows. (It is tedious, but not difficult, to show that 

this is a true metric in any tree; the proof is omitted.) For any pair of elements 

x, Y E V(G)uE(G), the distance dist(x, y) depends on whether x and yare vertices, 

edges, or one of each. 

• If x, Y E V (G), then distance is defined as normal. 

• If X,y E E(G), let x = ab and let y = cd; then 

dist(x,y) = max{dist(a,b),dist(a,d),dist(b,c),dist(b,d)}-1. 

• If x E V(G) and y E E(G), let y = cd; then 

1 
dist(x,y) = max{dist(x,c),dist(x,d)} - 2' 
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Let ~ = ~ (G). Trees are Class 1 graphs, so XT (G) = ~ + 1. Since G is 

T-strong, every optimal total coloring of G must require at least XT + 1 = ~ + 2 

colors. Define <Popt C <p( G) to be the set of all optimal colorings of G. 

Define the function h : <Popt -+ Z to return the number of elements that are 

assigned a color (~+ 2) or higher in an optimal coloring 'ljJ: 

h('ljJ) = L 'ljJk. 
k~Ll+2 

Find the smallest value of h among all colorings in <Popt , and define <Pfew S <Popt to 

be the set of optimal colorings that minimize h within <Popt ' 

Define the function 9 : <P few -+ Z to return greatest distance between sand 

an element of color (~+ 2) or more: 

g('ljJ) = max {dist(x, s) : 'ljJ(x) 2 (~+ 2)}. 
xEV(G)uE(G) 

Find the greatest value of 9 among all colorings in <P few, and define <P far S <P few 

to be the set of colorings that maximize g: 

Now choose a coloring ¢ E <P far' For any vertex v and any total coloring ¢, 

we define function ¢* (v) to be the set of colors that ¢ assigns to v and its incident 

edges, and define the function ¢** (v) to be the set of colors that ¢ assigns to v, 

its incident edges and its adjacent vertices. 

To derive a contradiction, our goal is to find a total coloring 'ljJ *- ¢ which 

has one of the following properties: 

• 'ljJ is lighter than ¢, which means sum( 'ljJ) < S'l.lm( ¢), contradicting the asser-

• 'ljJ is sparser than ¢, which means sum( 1/)) = sum( ¢) but h( 'ljJ) < h( ¢), con-

tradicting the assertion ¢ E <P few, or 
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• 1jJ is weaker than ¢, which means sum( 1jJ) = sum( ¢) and h( 1jJ) = h( ¢), but 

g(1jJ) > g(¢), contradicting the assertion ¢ E <PfaT. 

Choose an element x E V( G)uE( G) such that ¢(x) ~ (~+2) and dist(x, s) = 

g(1jJ). No matter what type of element x is, we will obtain a contradiction. 

Case 1: x = s. Let A be the set of all elements incident or adjacent to x. If a 

color k :::; ~ + 1 exists such that k is assigned to only one element in A, then switch 

the colors on x and that element to create a weaker coloring 1jJ. Assume, instead, 

that the color of every element in A is assigned to at least two elements in A. 

Since deg(x) :::;~, we have IAI :::; 2~, so there are at most ~ colors assigned to the 

elements in A. Then we can reduce the color of x to a color in {I, ... , ~ + I} " ¢* * (x) 

to create a lighter coloring 1jJ. 

Case 2: x is an inner edge sr. Choose a color k E {I, ... , ~ + I} ,,¢*(s). If k 

is assigned to r or a pendant edge incident to r, switch the colors on x and this 

k-colored element to create a weaker coloring 1jJ. Otherwise, k ~ ¢* (r), so reduce 

the color of x to k to create a lighter coloring 1jJ. 

Case 3: x is a pendant edge rv, from a hub r to a leaf v. Choose a color 

k E {l, ... , ~ + I}" ¢*(r). If k *- ¢(v), we can reduce the color of rv to k to create 

a lighter coloring 1jJ. Assume, instead, that k = ¢( v). If k > 2, we can reduce the 

color of v to a color in {I, 2} " ¢( r) to create a lighter coloring 1jJ. Otherwise, k :::; 2, 

so reduce the color of rv to k and reassign va color in {I, 2, 3}" {k, ¢(r)} to create 

a coloring 1jJ which is lighter becase sum(1jJ) - sum(¢) = (change in v's color) + 

(change in vr's color) :::; 3 - k + k - (~+ 2) = 1- ~ < o. 

Case 4: x is a leaf. Reduce its color to one in {I, 2, 3} " ¢* (x) to create a lighter 

coloring 1jJ. 

Case 5: x is a hub of degree 4 or higher. If x has a leaf neighbor v whose color is 

greater than 2, then we can reassign that leaf a color in {l, 2} ,,¢(xv} to create a 
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lighter coloring 1/J. If x has two leaf neighbors with color 2, then one of them, has 

an incident edge with color greater than 2, and we can reduce that leaf's color to 

1 to create a lighter coloring 1/J. Assume, then, that every leaf adjacent to x has a 

color in {I, 2}, and at most one has color 2. 

If deg(x) ;?: 5, then x has at least four incident pendant edges. Those edges 

must be assigned different colors, so at least two of them must be assigned a color 

greater than 2; let k be a color that is assigned to a pendant edge incident to x, 

greater than 2, and not equal to ¢( s). Switch the colors on x and that k-colored 

edge to create a weaker coloring 1/J. 

Assume, instead, that deg(x) = 4. Then x has three leaf neighbors; let C be 

the set of three colors assigned to the pendant edges incident to x. If ¢( s) ~ ¢* (x), 

then choose a color k E ¢*(x) " {1,2,¢(xs)} and switch the colors on x and the 

k-colored pendant edge to create a weaker coloring 1/J. Assume, instead, that 

¢(s) E ¢*(x). 

If 2 ~ ¢* (x), choose a pendant edge xv such that ¢( v) = 1 and ¢( xv) > 2, 

and then reduce xv's color to 2 to create a lighter coloring 1/J. If 1 ~ ¢*(x), then 

among x's three pendant edges, one (xu) will have a color greater than 3; reduce its 

color to I, and reassign u color 2, to create a lighter coloring 1/J. Assume, instead, 

that 1,2 E ¢*(x). Then ¢**(x) only includes I, 2, ¢(s), ¢(x), and one other color 

k. Reassign x a color in {3,4,5}" {k,¢(s)} to create a lighter coloring 1/J. 

Case 6: x is a hub of degree 3; then x has two adjacent leaves, u and v. 

Suppose ¢(xs) > 2. If ¢({u,xu,xv,v}) *" {1,2}, then sum of the colors 

on those elements must be at least 7, so we can reassign the elements u, xu, xv, 

and v the colors I, 2, 1, and 2, respectively, to create a lighter coloring 1/J. If 

¢({u,xu,xv,v}) = {1,2} and {¢(xs),¢(s)} *" {3,4}, then x can be reassigned a 

color in {3, 4} " {¢( sx), ¢( s)} to create a lighter coloring 1/J. If ¢( {u, xu, xv, v}) = 

{I, 2} and {¢( xs), ¢( s)} = {3, 4}, then reassign x color 2, reassign v color 3, and 
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reassign xu a color in {3, 4} " ¢( xs) to create a new coloring 'ljJ. Then sum ('ljJ) -

sum{¢) = (change in x's color) + (change in v's color) + (change in xu's color) 

~ 2 - (~ + 2) + 3 - 2 + 4 - 2 = 3 - ~ ~ 0; if this difference is less than zero, then 'ljJ 

is a lighter coloring; otherwise, the difference is zero but there are fewer elements 

with a color greater than ~ + 1 in 'ljJ, so it is a sparser coloring. 

Assume otherwise: ¢(xs) ~ 2. Then an edge e E {xu, xv} must have color 

at least 3. If ¢( e) > 3, reassign e color 3 to create a lighter coloring 'ljJ. Otherwise, 

¢(e) = 3. Without loss of generality, let e = xu. If ¢(u) > 1, then we can reduce 

its color to 1 to create a lighter coloring 'ljJ. If ¢(v) ~ {I, 2}, then we can reduce its 

color to one in {1, 2} " ¢( xv) to create a lighter coloring 'ljJ. Assume, instead, that 

¢(u) = 1 and ¢(v) E {1,2}. If ¢(xv) ~ {1,2} then ¢{:rv} 24, so we can reassign it a 

color k E {I, 2} " ¢ ( x s), and reassign v a color in {I, 2} " k to create a new coloring 

'ljJ, which is lighter because sum{'ljJ) - sum{¢) = (change in xv's color) + (change 

in v's color) ~ k - 4 + {3 - k} -1 = -2. Assume, instead, that ¢(xv) E {I, 2}; then 

¢*(x) " ¢(x) = {1,2,3}. If ¢(s) *" 4, reassign x color 4 to create a lighter coloring 

'ljJ; otherwise, ¢( s) = 4, so reassign x color 3 and reassign xu color 4 to create a 

lighter coloring 'ljJ. 

Case 7: x is a hub of degree 2. Denote its one leaf neighbor v. Since ¢( v) *" ¢( xv), 

the sum ¢(v) + ¢(xv) + ¢(x) is at least 3 + (~+ 2) 2 ~ + 5. Reassign x a color 

kl E {1,2,3}" {¢{s),¢{xs)}, then reassign xv a color k2 E {1,2,3}" {k1,¢{xs)}, 

then reassign v a color from {1, 2, 3} " {k1, k2} to create a coloring 'ljJ which is 

lighter because sum{'ljJ} -sum{¢) = (change in x's color) + (change in xv's color) 

+ (change in v's color) ~ kl - (~+ 2) + k2 - ¢{xv} + {6 - kl - k2} - ¢{v} = 4 - ~­

¢(xv) - ¢(v) < O. 

In every case, either a lighter, sparser, or weaker coloring is found, which 

contradicts the definition of ¢. The assumption must be false, which makes the 

theorem true. o 
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Using a similar technique, it is also possible to prove that a caterpillar 

cannot be T-strong. The following conjecture is offered as a possible subject of 

further study. 

Conjecture: No tree is T-strong. 

4.3 The Smallest T-Strong Graph 

Theorem 20. The grid graph G = P2 x P3 is T -strong. 

Proof. This graph can just as easily be defined as the cycle C6 plus an edge con­

necting two vertices of distance 3. Denote the vertices of the cycle Va, VI, etc., up 

to V5, and let VOV3 be the extra edge. We can see very quickly that G has total chro­

matic number at least 4, because G contains the 4-cycle VOVI V2V3 as a subgraph, 

which cannot be total-3-colored. Then XT (G) = 4, because a total-4-coloring of G 

is possible, as shown on the left in Figure 4.2. From this coloring it is implied that 

the total independence number is at least 4, because four elements have color 1. 

It is impossible for G to have five elements of the same color, because that would 

imply three of those elements lie on one of the two 4-cycle subgraphs of G, and 

this would contradict aT(C4 ) = 2. Therefore, aT(G) = 4. 

Define 1/J to be a total coloring with mInImUm sum among all total-4-

colorings of G. Then 1/J must satisfy 3.1. 

Observe that every total independent set T that includes an element in 

{vo, V3, VOV3} must have size 3 or less: If T includes VOV3, then in addition to that, 

it can only include up to one element from {VI, V2, VI V2} and up to one element 

from {V4' V5, V4Vs} , so ITI ~ 3. If T includes Va, then it can only include up to 

one other element from {VIV2,V2,V2V3} and one from {V3V4,V4,V4V5}, so ITI ~ 3. A 

symmetric argument shows that if T includes V3, then ITI ~ 3. 

From this observation, we can conclude 1/J2 < 4. Otherwise, both the first 
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and second color classes in 'Ij; have size 4, and therefore cannot include elements 

from { va, V3, VaV3 } . So each of these elements has a color greater than 2. Their 

mutual proximity implies that they all must have different colors in 'Ij;, so one of 

them must have color 5. But this contradicts the selection of 'Ij; . 

The restriction 'lj;2 ~ 3 implies 'lj;n ~ 3 for all n > 2, so: 

sum('Ij; ) = L n'lj;n 
n 

~ 4 + (2) 3 + L n¢n 
n~3 

~ 4 + 6 + (3) 3 + 4 L ¢n 
n~4 

~4+6+9+4(3) 

~31. 

1 3 2 1 3 1 2 4 1 2 

Va Va 

4 4 4 3 3 3 
V3 V3 

2 1 3 2 1 2 1 5 2 1 

FIGURE 4.2: The grid graph P2 x P3 total-colored in two ways. 

As 'Ij; was minimum among all total-4-colorings, every total coloring of G 

that uses only 4 colors must have sum at least 31. However, ~7 (G) ~ 30, because 

a total-5-coloring with sum 30 is possible, as shown on the right in Figure 4.2. As 

we have seen, this sum is impossible to obtain using only 4 colors, so every optimal 

total coloring ¢ must have (J (¢) > 4. Thus the total strength of G, (JT (G) , is at 

least 5. This is more than its total chromatic number , therefore, Gis T-strong. 0 

91 



An exhaustive yet brief analysis of the graphs on five or fewer vertices shows 

that there is no T-strong graph with order less than six. In fact, g x P3 is the only 

T-strong graph on fewer than nine vertices. This was confirmed by a C++ program 

that was written to scan all possible graphs and to look at every possible total 

coloring of each graph, to obtain the total chromatic number, the total chromatic 

sum, and whether or not an optimal coloring exists with the minimum number of 

colors. 

It seems appropriate to check larger grid graphs to see if they are T-strong 

as well, and this is a good subject for further study. However, every grid graph of 

the form P2 x Pn with n 2 4 can be shown to have an optimal total-xT -coloring, 

and is therefore not T-strong. (The only known proof for this is lengthy, and the 

result is not very significant, so it is omitted.) 

4.4 Infinite Families of T-Strong Graphs 

For a graph G, let an element be called a minority of G if it cannot be 

included in a maximum total independent set of G. Let a set of elements D be 

called dependent in G if every total independent set in G includes at most one 

element that is in D. An example of a dependent set might be a clique of vertices, 

or an edge and its endvertices, or all the edges incident to some vertex. 

Theorem 21. Let G be a graph with total chromatic number XT and total inde­

pendence number aT. Then G is T -strong if there is an integer k > 0 such that: 

(1) G contains a dependent set M of (xT - k + 1) minorities, and 

(2) ¢k < aT implies ¢ is not an optimal coloring of G. 

Proof. Let k> 0 be an integer such that conditions (1) and (2) are satisfied for a 

graph G. Suppose ¢ is an optimal coloring of G. Then (2) implies that ¢k = aT. 

The first k color classes are therefore total independent sets of maximum size, so 
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no minority can be in one of these color classes. Therefore, every minority has a 

color greater than k. By (1), M is a dependent set of minorities, so every element 

in M has a different color greater than k; this guarantees that M includes some 

element with color (k+1)+IMI-1 = k+XT -k+1 = XT +1. Then (J(¢) > XT. As ¢ 

was an arbitrary optimal coloring, this is true for all optimal colorings, therefore, 

(JT (G) > XT (G), so G is T-strong. o 

Several infinite families of T-strong graphs exist, which, like P2 x P3 , consist 

of a cycle plus one or more chords. 

Theorem 22. For each n,p E N, if C3n contains a pair of vertices u and v such 

that distc3n (u, v) = 3p, then C3n + uv is T -strong. 

Proof. Let n, PEN. The greatest distance between any pair of vertices in C3n is 

l3; J, so if 3p is greater than this, no pair of vertices exists in C3n with distance 3p, 

and the theorem is satisfied by default. Assume that 3p ~ l3; J; then p ~ n/2. 

Label the vertices of a 3-cycle C3n as follows: V = {VO,VI, ... ,V3n-l} and 

E = {VOVI, VI V2, ... , V3n-2V3n-l, V3n-1 vo}. Choose a pair of vertices with distance 3p; 

without loss of generality, we can say that one of these is Vo, and the other is V3p. 

Let G = C3n + VOV3p. 

Create the total coloring ¢ of G in this way: Give the subgraph G - VOV3p 

a total-3-coloring by giving every third element in the list (VO,VOVI,VI,VIV2, ... ) a 

color from 1, 2, or 3. Let ¢( VOV3p) = 4. Permute the colors in ¢ so that ¢( vo) = 

¢(V3p) = 3, then reassign Vo color 5. The cycle includes 2(3n)=6n elements, so 

sum(¢) = (1 +2+3)(6n/3) +4+ (5-3) = 12n+6; therefore the total chromatic sum 

~7( G) must be at most 12n + 6. Color 1 can be used on 6n/3 = 2n elements in this 

way, so the total independence number aT (G) must be at least 2n. 

Note that XT (G) ~ ~ (G) + 1 = 4. A total-4-coloring 1f of G exists, which 

implies XT (G) = 4: Give the elements Vo, VOVI, VI, and VI V2 the colors 1, 3, 2, and 
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4, respectively. Then, continue along that path, giving elements the colors 1, 2, 

3, repeating, until finally V3p is given color 3. Give the elements V3pV3p+l, V3p+l, 

and V3p+lV3p+2 the colors 1, 2, and 4, respectively. Then, continue along that path, 

giving elements the colors 3, 2, 1, repeating, until finally V3n-l is given color 2. 

Finish this by assigning 1T( VOV3p) = 4. 

Suppose T is a total independent set in G such that VOV3p E T. Then 

the only other elements T can include are those along the paths VIV2 ... V3p-l and 

V3p+lV3p+2 ... V3n-l. The former is a path on 3p - 1 vertices, which can contain at 

most r2(3P;1)-11 = r6P3-31 = 2p - 1 independent elements, by Theorem 2. The 

1 . h 3 3 1 . h· h . r2(3n-3P-l)-11 atter IS a pat on n - p - vertIces, w IC can contam at most 3 

= r 6n-~p-31 = 2n - 2p - 1 independent elements. Therefore, T contains at most 

1 + (2p - 1) + (2n - 2p -1) = 2n -1 elements, so it does not have maximum size; 

this implies VOV3p is a minority. 

Suppose T is a total independent set in G such that Vo E T. Then T can 

contain either V3p-lV3p, V3pV3p+l' or neither. In each case, T can contain at most 

2n - 1 elements: 

Case 1: V3p-IV3p, V3pV3p+l ~ T. Besides Vo, the only other elements T can include 

are those along the paths VIV2 ... V3p-l and V3p+lV3p+2 ... V3n-l, although neither VI nor 

V3n-l may be in T. The former is a path on 3p -1 = 2 (mod 3) vertices, which can 

include at most 2p - 1 independent non-vo elements, by Theorem 2. The latter is 

a path on 3n - 3p - 1 = 2 (mod 3) vertices, which can include at most 2n - 2p - 1 

non-v3n-l elements. Therefore, ITI :s; 1 + (2p - 1) + (2n - 2p - 1) = 2n - 1. 

Case 2: V3p-l E T and V3p+l ~ T. Besides this edge and Vo, the only other 

elements T can include are those along the paths VIV2 ... V3p-2 and V3p+lV3p+2 ... V3n-l, 

although neither VI nor V3n-l may be in T. The former is a path on 3p-2 = 1 (mod 

3) vertices,' which can include at most r 2(3P;2)-11 = r 6P
3-

51 = 2p - 1 independent 
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elements ~ but it can only include that many if it includes VI, by Theorem 2, and 

this is impossible. Therefore, it can include at most 2p ~ 2 independent elements. 

The latter is a path on 3n ~ 3p ~ 1 = 2 (mod 3) vertices, which can contain at most 

2n ~ 2p - 1 non-V3n-1 elements. Therefore, ITI ::; 2 + (2p - 2) + (2n - 2p -1) = 2n-1. 

Case 3: V3p-1 ~ T and V3p+1 E T. By the same argument used in case 2, ITI ::; 2n-1. 

Since Vo E T implies ITI < aT(G) in every case, Vo must be a minority. The 

vertex V3p is indistinguishable from Vo in G, so it is a minority as well. 

Define k = 2; then .fl.1 = {vo, V3p, VOV3p} is a dependent set of minorities, 

where IMI = 3 = XT - k + 1. Let 1jJ be a total coloring of G having minimum sum 

among all total colorings with 1jJk < aT. Then 1jJ2 < aT implies 1jJ is not optimal: 

sum( 1jJ) = 1jJ1 + 21jJ2 + 31jJ3 + L i1jJi 
i~4 

~ -31jJ1 - 21jJ2 -1jJ3 + 4( 6n + 1) 

~ -3aT - 2(aT -1) - (aT -1) + 4(6n + 1) 

~ -6(2n) +3+24n+4 

~ 12n + 7 

Therefore, by Theorem 21 (using k = 2), G is T-strong. D 

Similar arguments will show that the following graphs, each written below 

as a cycle plus two chords, are T-strong. In every case, p, q, r E N, p + q + r < n, and 
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An example of a graph from each of these families is shown in Figure 4.3. 

Every graph in each family has total chromatic number 4, but requires five colors 

for an optimal coloring. 

Va Va 

Va Va 

FIGURE 4.3: Four T-strong graphs. 
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CONCLUSIONS AND FUTURE WORK 

I believe that the Total Coloring Conjecture is satisfied by planar graphs, 

and that one day the ~ = 6 problem will be solved. However, my search for 

reducible configurations convinced me that using the same technique will not be 

enough to do this without using a new technique to prove that larger configurations 

are reducible. While I am highly motivated to solve this problem, I expect it will 

remain unsolved for some time. 

While the total independence number is important in optimizing total chro­

matic sums, I think its relationship with the edge domination number makes fur­

ther exploration of the parameter somewhat redundant. However, it may be worth 

the time to explore the lower total independence number (the size of the smallest 

maximal total independent set) and to see if it has any connection to other pa­

rameters. After reading Forcade's work, I have developed a peripheral interest in 

the minimum maximal matching problem, and one of my first future projects will 

be to work on finding this parameter for hypercubes of dimension higher than six. 

As if the determination of XT and aT weren't already hard enough - not 

to mention abstract - the optimization of a total coloring's sum is a fascinating 

puzzle. So, too, is the question of which graphs require more colors than necessary 

to get an optimal sum. When and if I continue down this road, I would like to 

find more sufficiency conditions for optimality, more sufficiency conditions for T­

strength, and other graphs that satisfy the property mentioned in Theorem 18. I'd 

also like to know if there exist graphs for which (JT - XT > 1, or if this can be made 

arbitrarily large. 
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