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ABSTRACT 

Supervisory control and data acquisition (SCADA) systems are networked 

control systems used in many critical infrastructure areas such as power water 

and transportation. Many of these systems continue to use legacy field devices 

that lack cyber security features. The field device security preprocessor is a 

bump-in-the-wire security solution of legacy field devices. This thesis describes 

the design and analysis of a dual Bloom filter structure for use in a field device 

security preprocessor. A dual Bloom filter is a variant of the traditional Bloom 

filter, that performs role based access checks in O(1) time. It is shown this 

structure, which can produce false authentications is shown to be acceptable for 

this security use thought analysis and penetration testing.  Analysis and testing 

shows that in spite of false positives this structure can provide the required level 

of security, while maintaining the required level of performance on low cost 

hardware.  
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1. INTRODUCTION  

This thesis describes the design, development and testing of a field device 

security preprocessor for role based access control and challenge response using 

dual Bloom filters. The development of this device comes out of a need 

previously found and described by Hieb and Graham [1] in their research at the 

University of Louisville in the intelligent systems research lab (ISRL).  

1.1. Background and Motivation 

Supervisory control and data acquisition (SCADA) systems are at the heart of 

the critical infrastructure that includes the power grid and water treatment 

facilities. For a variety of reasons industrial control systems (ICS) have depended 

on “security by obscurity,” however, in recent years these systems have become 

increasingly vulnerable to cyber security attacks. The Stuxnet virus discovered in 

June 2010 [2] is an excellent recent example of the thread to ICS. Vendors, 

operators, and the government are now aware of the need to protect ICS from 

cyber based attacks [3]. It has become obvious that this method of security is no 

longer enough. Protecting these systems has fallen to traditional network 
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security techniques such as firewalls and intrusion detection systems (IDS), 

however, ICS have differences from traditional networks that require uniquely 

tailored solutions, protecting field devices is an example of this. 

Protection at the field device level is necessary to ensure that these systems 

are not compromised or damaged, while operability and performance is 

maintained. Upgrading these systems directly to include the necessary security 

features such as access control, authentication, and integrity is not an option for 

most of the devices. SCADA field devices have long lifetimes typically measured 

in decades, these older devices do not have the processing power or memory to 

efficiently implement these security enhancements. Also due to the large number 

of different field devices, implementation of such security onto all of these legacy 

devices would be an unfeasible task.    

1.2. Designing For Security, Designing for Feasibility  

When thinking about a solution for security of these legacy SCADA field 

devices it is important to consider the feasibility in terms of cost and 

performance design requirements. Designing a system that has low cost typically 

means the hardware will be low performance as well; this means it is important 

to implement software that is efficient, minimal and secure. A solution that 

creates a large amount of overhead and time delay may cause performance 

issues in these critical systems, and any practical security solution must provide 

security enhancements within the time constraints of these systems.  
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 Hieb and Graham[1] have recently proposed a field device security pre-

processor (FD-SPP) using a microkernel based security architecture [4] and built 

on low cost commercially available hardware running. The effectiveness of the 

FD-SPP will eventually be measured using verification test, but current work is 

focused on a functional prototype implemented on low cost hardware. Selection 

of an operating system will play role in verification, without a verified operating 

system software running on the FD-SPP cannot be verified.  

It is obvious that typical operating systems such as Linux or Windows, 

which contains several million lines of code are too large to be completely 

verified. Exploits in these operating systems are often found by attackers and 

require updates to patch these exploits. It is important to select an operating 

system that does require this frequent updating and has a kernel that can be 

trusted as bug free. For this reason, further discussed in Chapter 4, a micro-

kernel based operating system called OKL4 was selected to serve as the 

operating system for this project. 

Another important consideration in the design of the FD-SPP is a low foot-

print in terms of overhead and performance impact on the ICS. Role based 

access control and authentication have been indicated by prior research as 

necessary security enhancements to SCADA devices[5]. The implementation of 

these is often costly in terms of computation time. Using a low foot print micro-

kernel will help keep computation costs down, but it is important to implement 

these security features as efficiently as possible. Previous work at the University 
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of Louisville by Brad Luyster worked to implement role based access control on a 

low footprint microkernel[6], this work aims to create an alternative method of 

role based access control with a low enough foot print to be implemented in 

SCADA systems.  In order to achieve this, this thesis explores a variation on 

Bloom Filters (discussed in Chapter 2) to efficiently implement role based access 

control (RBAC) and make decisions on when to challenge ICS messages. This 

data structure also reduces the amount of space required by the RBAC lookup 

table. This data structure performs lookups in a time independent of the number 

of entries of the table allowing quick lookups for any number of entries. The low 

foot print created by this data structure in terms of storage allows it to be easily 

implemented on low cost hardware.  

1.3. Organization  

The second chapter of this Thesis provides a literature review and 

description of the data structure that is at the heart of the security feature 

implementation of this project, the Bloom filter. Chapter three describes the 

design of the security features for the FD-SPP using a Bloom filter as well as the 

required modifications needed to a SCADA communication protocol for these 

features to be utilized. The fourth chapter describes the implementation of a 

prototype field device security preprocessor (FD-SPP) for the purposes of initial 

evaluation of the dual Bloom filter structure. The fifth chapter describes the 
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testing of the FD-SPP in a simple SCADA network. Conclusions and directions for 

future work are presented in the sixth and final chapter.  
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2. INTRODUCTION TO BLOOM FILTERS 

 A Bloom filter is a probabilistic data structure proposed by Burton 

H. Bloom in 1970. In the original paper[7], he proposed an alternative hash-

coding technique which traded of a small amount of allowable error for a 

performance increase in both time and space. This hash-coding technique is now 

known as a Bloom Filter and is commonly used in a wide variety of applications.  

A Bloom filter is used to determine whether or not a particular item is a 

member of a given set. When the Bloom filter is queried with respect to a given 

member, the Bloom filter always returns true if the member of the set, however 

if the queried value is not a member of the set, the Bloom filter will not always 

return false. The rate at which the Bloom filter returns true for elements not in 

the set is known as the false positive rate of the structure. A theoretical Bloom 

Filter does not have any false negatives.  
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2.1.  Properties of Bloom Filters 

The basic structure of a Bloom filter consists of a bit array of length m. All of 

the bits of this array are initially set to 0, which represents an empty Bloom filter. 

In order to add an item to the Bloom filter, the item is passed through k hash 

functions, each producing a different value, ak (         ), which 

represents one of the 1-m bits of the Bloom filter such that a1 ≠ a2 ≠ … ≠ ak-1 ≠ 

ak. The bit corresponding to each of these values is then set to 1. To check an 

entry, the entry is passed through the same k hash functions to produce a list of 

bit addresses. Each of the bit addresses are then checked in the filter’s bit array; 

if all addresses have a 1, then the entry is said to be a member of the set 

represented by the Bloom filter [7]. Because different items may have bit 

address collisions false positives are possible, but unlikely, when an item not in 

the set has a hash address that has been set to 1 by adding multiple members to 

the filter. Because given entries are selected based on whether the addresses 

deemed by each of the hash functions given the particular entry are set to 1.  

The time of the insertion is depends only on the k hash functions and is 

independent of both the size in bits of the filter, m, and the number of elements 

inserted, n. The insertion takes      time for each item [7].  

Shown in Figure 2.1.1 are two elements A and B being added to the Bloom 

filter. 
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FIGURE 2.1.1 - Adding elements A and B to a Bloom Filter 

To be added to the Bloom filter, the elements A and B are each passed 

through five hash functions (k=5) to produce five bit address in the Bloom filter. 

These bit values are then all set to 1. Additional items are inserted into the 

Bloom filter in the same way. Given a filter, checking if A and B are member is 

done similar to insertion; the values are passed once again through the hash 

functions to produce five bit address which are each checked in the filter; if 

every bit address is equal to 1, then the item is said to be in the set represented 

by the Bloom filter. The time of a membership check is also only dependent on 

the k hash functions and is independent of both the size in bits of the filter, m, 

and the number of elements stored in the filter, n. The membership check also 

takes      time [7]. Figure 2.1.2 shows the checking of two new elements, C 

and D are in the filter. Neither C nor D is a member of the set that is represented 

by the filter BF. D is determined not to be in the set, but C is a false positive.  
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FIGURE 2.1.2 - Determining if C and D are in the set 

 

In order to check if each of these values are in the filter, they are each 

passed through the five hash functions to generate corresponding bit addresses 

for C and D. When checking D, it is apparent that D is not a member of the set 

because not all the bit addresses contain 1’s. According ti the filter, C is a 

member of the set because all the values from its hash functions are 1. Since C 

was not added to the set and it is not a true member of the set, this is a false 

positive. That Bloom filters have false positive rates is one of their limitations.   

Since each of the hash functions should produce the address bits 

uniformly, the odds of any particular entry being a false positive is a function of 

the number of bits that are set to 1 and the size of the Bloom filter. After a given 

number of entries “n” have been added to the Bloom filter, the probability that a 

particular bit address is still 0 is give in equation 2.1.1.  

 
   (  

 

 
)
 

       
(2.1.1) 
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Using the probability of each bit being set to 1, the false positive rate of 

the Bloom filter can be calculated. Using this probability, an estimate of the 

number of entries that are set to 1 can be calculated using equation 2.1.2. 

 

                                 (2.1.2) 

 

This is important because it shows that the probability of an entry being falsely 

accepted is exponentially related to the number of bits set to 1’s over the total 

number of bits, m. Since each bit is distinct, the probability of the bit at the 

second bit address being a 1 is slightly less than the probability the bit at the first 

bit address was since there is one less 1 and one less bit to select. The 

probability the bit at the first address is a 1 can be calculated using equation 

2.1.3. 

 
     

       

 
      

(2.1.3) 

 

The probability the bit at the second address is a 1 assuming the first address 

contains a 1 is calculated using equation 2.1.4. 

 
     

           

   
 

(2.1.4) 
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This trend continues for additional bit addresses for all of the k hash functions 

and the probability of the ith address containing a 1 assuming all the addresses 1 

through i-1 contain a 1 can be calculated using equation 2.1.5. 

 

 
     

               

       
 

(2.1.5) 

 

For a given filter the false positive rate of the filter can be calculated as simply 

the product of all the probabilities of each of the bit addresses defined by the k 

hash functions. The formula to calculate the false positive rate (pb) for any given 

Bloom filter is shown in equation 2.1.6. 

 
      ∏

           

   

   

   

 ∏

((  (  
 
 )

 

)   )

   

   

   

 

(2.1.6) 

 

For very large values of m such that m >> k, which is the case for Bloom filters 

which desire a low false positive rate, this equation can be shown to have a 

much simpler form as shown in equation 2.1.7. 
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(2.1.7) 

 

2.2. The Random Filter 

Implementing a Bloom filter presents some specific challenges. 

Theoretically, a Bloom filter creates a data structure which will encodes a data 

set into a small data structure, set membership can be checked very quickly, but 

requires sacrificing a small amount of allowable error but when it comes to 

implementation. The properties of the Bloom filter discussed in section 2.1 are 

theoretical. The problem with implementation is with the hash functions; 

specifically identifying hash functions that produce k uniformly distributed distinct 

values from k hash functions [8]. In fact, most implementations of Bloom filters 

are not true Bloom filters, but a very similar data structure called a Random Filter 

[8]. 

A random filter is an adaption of the original Bloom filter proposed in 1998 

by Wang, Yang and Tseug [8]. Unlike the Bloom filter, the random filter has hash 

functions that are completely independent of each other and are a permitted to 

produce the same output with any given key. Thus, in order to add an item to a 

random filter, the item will be passed through k hash functions, each producing a 

value ak such that            [8]. This produces a different false positive rate 

than the original Bloom filter, but is much easier to implement. All the other 
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properties of the random filter are the same as the Bloom filter. Like the Bloom 

filter, the false positive rate of the random filter is related to the number of bits 

set to 1 in the random filter. After n entries into the random filter, the probability 

that a particular bit is still sit to 0 is given in equation 2.2.1. 

 
   (  

 

 
)
  

 
(2.2.1) 

 

Since each of the hash functions produces a value that is independent and also 

uniformly distributed from 0 to m-1, the false positive rate of a random filter can 

be calculated using equation 2.2.2.  

 
    (  (  

 

 
)
  

)
 

 [8] 
(2.2.2) 

 

Besides being easier to implement, the random filter has another advantage over 

the Bloom filter: its false positive rate is less than that of the Bloom filter. 

Assuming                :  

 
    (  (  

 

 
)
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      (  (  
 

 
)
 

)
 

   

 

Proof, derived by [8] is given in Appendix A 

(2.2.3) 
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This being shown, it is obvious that the random Filter is the better choice 

for implementation. Numerical implementations of these two filters also show 

that the random filter offers a slightly lower false positive rate than the Bloom 

filter [8]. More important than having a lower false positive rate is the ability to 

build it using independent hash functions. In computing literature, the random 

filter is often referred to as a Bloom filter and the false positive rates shown for 

Bloom filters are often those of the random filter. In order to adhere to common 

practice, the random filter will be referred to a Bloom filter for the remainder of 

this document, and all references to a Bloom filter unless specified can be 

assumed to be implemented as a random filter and not as originally proposed by 

Bloom in 1970.  

2.3. Parameter Selection for building a Bloom Filter 

The Bloom filter sacrifices a small false positive rate in exchange for both 

a small time and space constraint. For example, no matter how many elements 

are added to a Bloom filter it always stays the same size, and no matter how 

many elements are added to the filter both insertions and membership checks 

will always take the same amount of time. However, if too many items are added 

to the Bloom filter, its false positive rate will increase and eventually become 

100%. So even though the space required for a Bloom filter is usually small 

relative to the actual data stored in it, it is important to make the Bloom filter 

large enough so that once all the elements are added the false positive rate is 
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sufficiently low. In order to achieve this, the optimal values for m and k can be 

found given a desired false positive rate and the number of elements n that will 

be inserted into the set. As with most optimization problems, the location of the 

optimal values are found using a first derivative; however, the derivative of the 

false positive formula for the Bloom filter is one that is not particularly easy to 

solve. For this reason, an approximation of the false positive rate formula can be 

used. 

 
   (  (  

 

 
)
  

)
 

 (   
   

 )
 

      [9] 
(2.3.1) 

 

The properties of Bloom filters are well known and taking the derivative with 

respect to k and solving for k gives the well-known relationship between the 

optimal k and m and n. 

   
       

 
  [9] (2.3.2) 

 

This equation can be plugged into the approximated false positive rate and 

solved for m, which allows for the size of the Bloom filter to be determined given 

a particular number of entries and false positive rate. However, this value like 

the value for k cannot be used exactly because they most both be natural 

numbers.  
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(2.3.3) 

 

This value in turn can be plugged back in to the optimal k equation so that the 

optimal number of hash functions can be found. This value as well must be 

turned into an natural number since it is not possible to have a non-natural 

number of hash functions. These formulas can still give a good estimate around 

the values for m and k, and then natural values can be checked into the false 

positive rate formula to find the one that produces the lowest rate. It is also 

important to note that the false positive rate returned by this function as well is 

merely an approximation. The actual false positive rate of the Bloom Filter 

requires the knowing the exact percentage of bits that are set to 1 to the size of 

the filter, which can only be found by building the Bloom filter. Different data 

sets will produce different number of 1’s due to different collisions among the 

hash functions even for the same number of entries [10], but all of these rates 

will be fairly close (at least same order of magnitude) to the approximated false 

positive rate. Figures 2.3.1 and 2.3.2 show a comparison of false positive rates 

and percent difference from the theoretical false positive rate for two different 

data sets of size n=100, to several different Bloom filters. All Bloom filters use 

the same number of hash functions k=4. These two figures show that adding 

different values or using different hash functions each produce different false 

positive rates. More discussion on these differing false positive rates can be 

found in section 4.7. 
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FIGURE 2.3.1 Comparison of False Positive Rate for two different data sets 

  

 

FIGURE 2.3.2 Comparison of Percent Difference from Theoretical False Positive 

Rate for two different data sets 
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2.4. Applications of Bloom Filters 

Bloom filters are used in a large variety of applications, from networking 

applications like packet routing, to spell checkers, to helping with safe browsing.  

Spell checking is one of the most classic and historic use of a Bloom filter and 

were even used in early UNIX systems [11]. In these early computing systems, 

space was a scarce resource and using a Bloom filter allowed for a very compact 

data structure. Unlike most data structures, Bloom filters often can be stored in 

smaller spaces than the list could be. For example, a Bloom filter-based spell 

checker can store its dictionary in a much smaller space than the dictionary itself. 

An example Bloom filter was created for over 80,000 words, which took up over 

680kb of disk space. Creating a bloom filter with a false positive rate of      

     % only takes around 520kb of space [12]. Similar to the spell checkers, 

Bloom filters have been proposed to store unsuitable passwords in security 

systems [11]. Basically the same concept that was used for spell checkers could 

be used to reject weak passwords [13]; add all the weak passwords to a Bloom 

filter, then when the user selects a password, it can be quickly rejected if it is in 

the weak password filter. Additionally, a false positive here and there really does 

not matter in this application since it will merely require the user to select a 

different password. This means a large dataset can be highly compressed using a 

Bloom Filter-based approach for this application. Also, the speed of a Bloom filter 

for any large dataset will mostly likely be faster than any look up for these large 

dictionaries.  
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More recently, networking applications have begun to use Bloom filters for 

a wide variety of topics. These applications include collaborating in overlay and 

peer-to-peer networks, resource routing, packet routing, measurement, and 

more [11]. Many network uses of Bloom filters involve the reduction of network 

traffic. For example, assume User A wants to send a large number of files to 

User B, but User B already has some of these files. Since sending all the files 

would waste network traffic, Bloom filters can be used to determine which files 

to send. Both user A and user B create Bloom filters for their file list, and user B 

sends their Bloom filter to user A. user A can then easily find the intersection of 

the two Bloom filters by performing a bitwise AND. Entries that are not in this 

new intersection filter are the files that need to be sent to User B. Because the 

Bloom filter may have false positives, not all the files in the original list may be 

sent. However, if this setting is used a distributed peer to peer system where the 

user is getting files from multiple agents to increase download time, the 

redundancy of the multiple users should allow for all the files to be transferred in 

most cases [11].  

Google Chrome also uses Bloom filters in its safe surf features. According 

to Google®, Chrome downloads a list of sites that have been known to contain 

malware or are known to engage in phishing.  

“To save space and to avoid giving out URLs to malware and phishing 

websites, the lists contain enough information in most cases to verify that if 

a site is phishing or malware, but does not contain enough information to 
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definitively say if the site phishing or malware. If the URL of the site you're 

on matches anything in the list, your browser will contact Google’s servers 

for more information to make a decision. Your browser sends information 

that does not let Google uniquely determine what site you are visiting (for 

the technically savvy, the first 32 bits of a SHA-256 hash of the URL is sent). 

If your computer then decides that you’re visiting a risky site, it can warn 

you about it.” – Google Chrome Help [14]  

 

Looking into the source of the chromium.org project [15], which is used 

for both the Google Chrome web browser and the Chromium OS, reveals the use 

of Bloom filters for the client side safe search check. In order to perform a site 

check, the requested URL is stripped down to its base and checked into a Bloom 

filter which contains a list of all the known URL’s which are associated with 

malware and phishing sites. If the checked site is in the Bloom filter, then a hash 

is sent to Google’s safe browsing service to verify that the site is indeed a known 

malicious site and not a false positive [14], [15].  The use of a Bloom filter 

serves multiple purposes for the Google Chrome safe search. For one, it is much 

smaller and faster than any type of lookup table that Google could provide with 

Chrome. Secondly, it allows checks to be performed client side, without 

distributing Google’s list of malicious URLs since there is no way to get the 

elements of the set back out of a Bloom filter. The speed at which the Bloom 

filter can make checks also makes these checks unnoticed to the user since 
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network queries are only needed when a malicious site is visited or the 

occasional false positive. Avoiding these network queries improves the speed for 

the general user as well as reducing the load on Google’s servers. This novel 

application of Bloom filter’s shows how useful these data structures can be in 

situations where a small false positive rate can be traded-off for space and time. 

2.5. A Bloom Filter for Role Based Access Control 

Role based access control (RBAC) makes extensive use of sets, and set 

membership checks. Bloom filters can be used to implement a role based access 

control efficiently. An implementation of role based access was previously 

created by Tripuitara and Carbunar that used a modified Bloom filter known as a 

cascading Bloom filter as the primary role based access control mechanism [16].  

To use a Bloom filter for RBAC, a list of the entire set of <role, operation> 

pairs must first be added to the Bloom filter. Adding a <role, operation> pair to 

a Bloom filter is the same as adding any other data object to the Bloom filter. 

The role and operation are combined into a single byte array, which is then 

passed through the ‘k’-hash functions. The bits in the Bloom filter indicated by 

the hashes are set to “1” and the <role, operation> pair is inserted in the Bloom 

filter. Checks are done in the same way as a traditional Bloom filter check, using 

the same hash functions to identify bit locations check the bits for 1s in the filter. 

Using a Bloom Filter for access control has its draw backs due to the false 
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positive rate property of the Bloom filter however it will be argued in this paper 

that the tradeoff for their speed can be worth the cost.  

2.6. Variations and Extensions of Bloom Filters 

The structure of the Bloom filter allows new data to be added but 

disallows the removal of any items because removal could create false negatives. 

If all of the 1’s associated with any of the entries into the Bloom filter were 

removed, collisions that it shared with other entries could be removed as well, 

which creates false negatives for those entries. One of the simplest extensions of 

the Bloom filter, known as the counting Bloom filter[9], allows for data to be 

removed from the filter.  The difference between a Bloom filter and a counting 

Bloom filter is when an entry is added, each hash function output corresponds to 

a counter instead of a single bit. Each of the counters at the positions selected 

by the hash functions is incremented during an insert, and decremented during a 

removal [9]. Also, though this certainly helps the false negative problem, it does 

not completely eliminate it, since these counters must have a finite maximum 

and will eventually become full. For example, if a counting Bloom filter has 

counters that go from 0-3, once a counter has four entries, the value of the 

counter will be 3. When three of the values are removed, the fourth will become 

a false negative. However, if the counter is large enough, it is unlikely that this 

will occur, and for some applications this low false negative rate may be 

acceptable.  
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Several expansions on the counting Bloom filter have been made to use 

Bloom filters with streaming data. Generally these streaming data counting 

Bloom filters decrement the counters periodically or based special functions to 

prevent the counting Bloom filter from filling and only show recent or specific 

trends in the data. One such expansion called the time-decaying Bloom filter 

uses counters that delay exponentially, which can be used to detect items that 

occur frequently in the data stream [17]. 
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3. A DUAL BLOOM FILTER STRUCTURE FOR EFFICIENT IMPLEMENTATION OF 

ROLE BASED ACCESS CONTROL AND CHALLENGE RESPONSE FOR A FIELD 

DEVICE SECURITY PRE-PROCESSOR 

3.1. The Need for a SCADA Field Device Security Pre-Processor 

Industrial control systems have a number of known security vulnerabilities, 

and a large number of legacy control systems may no security in some places at 

the control system level. Some recent incidents such as the 2006 hacker attack 

on a water treatment plant Harrisburg, PA [4] has highlighted the significance of 

the cyber threat created by the lack of security in some of the most critical 

systems to the nation [4]. Legacy devices are one of the most significant of 

these vulnerabilities. Due to the long life times and high replacement cost of 

these legacy devices it is desirable to create a bolt-on appliance that can add 

security to these legacy devices with minimal cost and performance impact. 
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3.2.  Access Control and Challenge Response in SCADA networks 

 The Implementation of a Security Pre-processer for SCADA security 

requires a protocol that allows for the implementation of such security. Modbus 

is an open and simple protocol commonly used in SCADA networks and 

commonly found being used by legacy field devices [18]. Modbus, by default 

does not offer any type of mechanisms for role based access control or for 

challenge response.  

 The basic structure of a Modbus message includes the address of the 

device the packet is intended for, a function code to tell the device what to do, a 

series of data bytes, and error detection bytes which are determined used cyclic 

redundancy check (CRC) algorithms [19].   

ADDRESS FUNCTION CODE DATA  CRC  

FIGURE 3.2.1 - Typical elements of a Modbus message 

 

Function codes are predefined and specified in the Modbus protocol [19].  

Typical function codes include read and write coils and read and write registers.  

A sample Modbus exchange is shown in FIGURE 3.2.2.  
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MTU RTU

Modbus Command

Modbus Response

 

FIGURE 3.2.2 - Standard Modbus exchange 

 

In order to allow for Modbus to support role based access control and 

challenge response a couple of small additions have to be made to the Modbus 

Protocol[4], [5]. The modified Modbus protocol will be referred to Extended-

Modbus when differentiation between it and the original protocol is necessary. 

The first required extension to Modbus is to add the concept of a user, and a 

user’s secret. This user needs to authenticate (initially and periodically) when 

communicating with the Remote Terminal Unit (RTU) or legacy field device. In 

order to support users the extended Modbus protocol includes a new function 

code, Request Connection, which includes a user ID in the data field to establish 

a connection, and allows the access control system to know which user is logging 

in. To verify that the user is the user specified in the login request an additional 

packet must be added. Extended-Modbus has a second new function code, 

Challenge. The HMI side of the system replies to this Extended-Modbus packet 

with a third new packet type with a new function code, Response. Keeping in 
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tradition with typical Modbus protocol standards the request connection packet 

will be returned to the MTU upon a successful connection.  

MTU RTU

Request Connection

Challenge

Response

Request Connection

 

FIGURE 3.2.3 - Extended Modbus Connection Request 

 

3.2.1. Details of the Extended Modbus Function Codes 

Modbus has a large number of unused function codes which allowed the 

protocol to be expanded very simply. Shown in Table TABLE 3.2.1 are the 

function codes for the new commands that were added to the protocol. 

TABLE 3.2.1 Extended Modbus Function Codes 

Function Code Description 

40 Connection Request 

41 Challenge 

42 Challenge Response 
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The connection request packet was added as function code 40. This 

packet is responsible for sending the user id to the field device. Each user will 

have a unique user id which is used by the field device to identify them and look 

up their role and their secret. A connection request packet is always challenged 

by the field device. The successful completion of this challenge means that the 

user has successfully logged in and all packets that are challenged will be 

checked with that user’s secret for the duration of the users session. The issue of 

a new login request automatically ends the previous user’s session. Multiple 

users accessing the device at the same time is not supported at this time. 

 

Byte 1 2 3 4-5 

Data ADDRESS 40 USER ID CRC 

FIGURE 3.2.4 - Packet Structure for Connection Request 

 

The challenge packet is sent from the field device when a packet needs to 

be challenged or a user is logging in. This packet contains four 4 bytes of 

cryptographic nonce to be used as part of the hash for the response packet. 

Byte 1 2 3-6 7-8 

Data ADDRESS 41 NONCE CRC 
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FIGURE 3.2.5 - Packet Structure for Challenge Packet 

 

The challenge response packet is sent from the MTU/HMI as a response 

to receiving a challenge from the field device. This packet contains a hash of the 

original packet, the cryptographic nonce from the challenge, and the user’s 

secret. Construction of this packet is explained more later in Chapter IV.  

3.3. Dual Bloom Filters for Modbus Role Based Access Control (RBAC) 

The role based access control in this project is similar to the one 

mentioned previously in Section 2.5 in the fact that it uses a Bloom filter for 

access control by hashing <role, operation> pairs but the Bloom filter 

implementation and use is quite different. The RBAC for this project not only 

determines whether the packet is allowed, i.e. a user performing an allowed 

operation, but also determines whether that packet is critical and therefore 

requires a challenge to support integrity and authenticity. In order to achieve this 

extra feature the RBAC system uses dual Bloom filters. The Bloom filters have 

the exact same number of bits and use the exact same hash functions. When an 

entry is to be checked in the RBAC it only has to be passed through the k hash 

functions and then it can be checked in both the Bloom filters. The cost of using 

two Bloom filters instead of one in terms of computation time is nominal and 

results in an access check in O(k). The cost of using the two Bloom filters in 
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space is double the cost of use a single Bloom filter since the Bloom filters will 

each take up m bits.  

Both of the Bloom filters contain <role, operation> pairs, where each 

operation is a Modbus packet. The first Bloom filter contains all the allowable 

<role, operation> pairs and is responsible for determining if the packet should 

be allowed or rejected.  The second Bloom filter determines whether the packet 

should be challenged. This second filter could contain either all the packets that 

need to be challenged or all the packets that do not, a comparison of these 

techniques can be found in section 3.5. For now assume the challenge Bloom 

filter contains all the entries that are challenged. In this case the following table 

illustrates, whether to allow the packet, challenge the packet, or reject the 

packet.   

TABLE 3.3.1 – Dual Bloom Filter RBAC 

Access Bloom Filter  Challenge Bloom Filter  

Yes Yes Challenge 

Yes No Allow 

No Yes Reject 

No No Reject 

 

Operations that are allowed are performed immediately after the packet is 

received; challenged operations are performed only after a successful challenge 
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response is received. Operations that are rejected are ignored without are type 

of response. Since the access Bloom filter contains all the packets that can be 

accepted (Set A), and the challenge Bloom filter contains all the packets that can 

be accepted and must be challenged (Set C) if the packet is not in the access 

Bloom filter it will not be in the challenge Bloom filter. 

                      (3.3.1) 

 

Figure 3.3.1 shows how the dual Bloom filter RBAC is used to process 

Modbus messages, and determine whether to challenge, allow, or reject each 

packet.  
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Bloom Filter Check Loop

Check Access Bloom Filter

Check Requires Challenge Bloom Filter

Get Bit Position From Hash

[index less than K] 

Set ret to Challenge Required

Return Packet Not Valid

[no] 

set ret to Allow Packet Passthrough

[no] 

Increment Index

Return ret

Hash <Role, Operation> using Hash k

[yes] 

 

FIGURE 3.3.1 - Dual Bloom Filter RBAC Check 

 

3.4. Creation and Analysis of an Example Dual Bloom Filter 

The first step to creating a Bloom filter is determining the number of bits 

required m, and the number of hash functions required k.  These two numbers 

can be based on the estimated number of objects that will be added to the 

bloom filter and a desired false positive rate. From the properties of the Bloom 

filters these two values can be easily calculated using the well-known formulas 
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described in section 2.2 using the estimated number of entries that will be 

added, n, and the desired false positive rate, p. For this example, let n = 100, 

and p = .01. Using the following formula an optimal value for m can be derived. 

 
   

      

      
  

          

      
        

(3.4.1) 

 

In order to make the code simpler and more efficient, a integer that is a power 

of 2 should be selected. This allows for x bits to be selected for each hash 

function where m = 2x, and makes having uniform bit selection from the hash 

functions easier to achieve. For this example let m = 1024, this is the power of 

two above the m necessary for the false positive rate and will offer a lower false 

positive rate then the desired p of .01, while letting m = 512, the next closest 

power, would have a false positive rate of greater than .01 when 100 entries 

were added. Now that m is selected and optimal k can be selected using m and n 

as follows. 

 
  

       

 
 

          

   
        

(3.4.2) 

 

The optimal value of k is 7.0979, but it is not possible to have only a part of a 

hash function or select part of a bit, therefore an integer value must be selected 

for k. Since 7.0979 is between 7 or 8, we can test both of these to see which one 

is likely to have a lower false positive rate using our value of “m” and “n”. 
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(3.4.3) 

 

The value of k should be selected as 7 since this produces a lower false positive 

rate, also using less hash functions will improve the speed of both Bloom filter 

entry additions, and access checks. 

 Now that the parameters have been selected entries can be added, to the 

dual Bloom filter structure. The following <role, operation> pairs were added to 

the dual Bloom filters.  The first number is the role id, second is the hex data 

that represents the operation to be performed. The last value is a yes or no 

representing whether the packet should be challenged and therefore added to 

both filters. 

TABLE 3.4.1 Example <Role, Modbus Packet> Entries 

Role Operation Needs Challenge 

1 01020000000C780F No 

2 01020000000C780F No 
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1 010F0000000401003E96 Yes 

1 010F000000040101FF56 Yes 

1 010F000000040102BF57 Yes 

1 010F0000000401037E97 Yes 

1 010F0000000401043F55 Yes 

1 010F000000040105FE95 Yes 

1 010F000000040106BE94 Yes 

1 010F0000000401077F54 Yes 

1 010F0000000401083F50 Yes 

1 010F000000040109FE90 Yes 

1 010F00000004010ABE91 Yes 

1 010F00000004010B7F51 Yes 

1 010F00000004010C3E93 Yes 

1 010F00000004010DFF53 Yes 

1 010F00000004010EBF52 Yes 

1 010F00000004010F7E92 Yes 

 

After creating a Bloom filter is it’s possible to more accurately determine its false 

positive rate. We have added 18 entries therefore n = 18. Using the previously 

derived equations for p given m, n, and k, the false positive rate of the Bloom 

filter can be shown as: 
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(3.4.4) 

 

However this is merely the theoretical false positive rate of the approximation of 

the Bloom filter after 18 entries. Once we have actually created the Bloom filter 

the number of ones in the Bloom filter can be used to calculate the actual false 

positive rate of this specific Bloom filter. This is done by counting the number of 

bits in this Bloom filter that have been set to 1. This Bloom Filter is shown in the 

following byte array of hex values: 

{ 0xc0, 0x41, 0x00, 0x04, 0x20, 0x00, 0x20, 0x28, 0x28, 0x04, 0x80, 0x14, 0x00, 0x01, 0x00, 

0x00, 0x00, 0x00, 0x92, 0x08, 0x0a, 0x80, 0x00, 0x20, 0x04, 0x08, 0x02, 0x44, 0x22, 0x08, 

0x08, 0x04, 0x00, 0x08, 0x05, 0x04, 0x00, 0x80, 0x08, 0x04, 0x04, 0x04, 0x00, 0x20, 0x00, 

0x01, 0x81, 0x40, 0x02, 0x00, 0x04, 0x10, 0x20, 0x00, 0x20, 0x00, 0x10, 0x00, 0x40, 0x08, 

0x12, 0x00, 0x29, 0x18, 0x00, 0x08, 0x0b, 0x01, 0x00, 0x00, 0x01, 0x20, 0x00, 0x20, 0x00, 

0x11, 0x00, 0x20, 0x88, 0x00, 0x00, 0x04, 0x00, 0x00, 0x24, 0x60, 0x08, 0x06, 0x40, 0x00, 

0x09, 0x08, 0x0a, 0x04, 0x20, 0x0c, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x52, 0x00, 0x08, 

0x01, 0x4a, 0x00, 0x01, 0x00, 0x08, 0x48, 0x00, 0x10, 0x00, 0x00, 0x80, 0x00, 0x42, 0x06, 

0x00, 0x04, 0x41, 0x04, 0x01, 0x00, 0x04, 0x00 } 

 

This Bloom filter of 1024 bits has 119 bits set to the value of 1. Therefore, the 

probability of any single bit being a 1 is simply 119/1024.  

 
   

   

    
                

(3.4.5) 
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since the number of bits in the second Bloom filter is known as well, the non-

challenged false positive rate can be calculated as well. The non-challenged false 

positive rate is the odds of an attacker performing an operation that should be 

restricted without knowing the authentication secret. In order for a value not to 

be challenged it must be in the first Bloom filter but not in the second Bloom 

filter. Since all the bits in the second Bloom filter are also one in the first Bloom 

filter the only way for the entry not to be challenged is for the entry to require at 

least one of the bits that are only in the first Bloom filter. For this example the 

second bloom filter has 106 bits set to 1. This means that there are 13 bits not 

shared between the Bloom filters. Therefore the non-challenged false positive 

rate can be calculated as: 

 
  (

  

    
) (

   

    
)

 

              
(3.4.6) 

 

As mentioned previously, the second filter could be designed to store the entries 

that do not need to be challenged as opposed to the entries that do need to be 

challenged. In this design, in order for an entry not to be challenged it must be 

in the second Bloom filter. If a value is in the second Bloom filter then it will also 

be in the first Bloom filter since all the ones in the second Bloom filter will be set 

in the first Bloom filter. Therefore this value can be calculated in the same way 

that the false positive rate for the original Bloom filter was. The theoretical value 

can be calculated using the false positive formula, using n=2 since there were 
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two entries that were not challenged:     
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(3.4.7) 

 

Also since this Bloom filter was actually created the number of ones can be 

counted and the actual false positive rate can be calculated.  

 
  (

  

    
)
 

               
(3.4.8) 

 

For this example the second Bloom filter used for challenge response has a much 

lower false positive rate than the first and therefore should be used if this data is 

used in an actual system. 

3.5. Comparison of the Two Challenge Response Implementations 

In the example above there was a difference in the two false positive rates of 

several orders of magnitude. This section will discuss and prove whether or not 

this is true for all data sets or if there is a cut off where the other implementation 

produces a smaller false positive rate. Start by expanding the formula to include 

an additional variable c; this will represent the number of entries that need to be 

challenged. In the second example above, operations that were in the Access 
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Bloom filter but were not in the challenge response Bloom filter were challenged.  

In this case, the false positive rate of non-challenged packets is the false positive 

rate of the challenge response Bloom Filter.  This Bloom filter will have n - c 

entries therefore: 

 
       (    

 
 

      
)
 

 
(3.5.1) 

 

For this example the value of k will be assumed to be the optimal value based on 

the access Bloom filter therefore: 

 
  

       

 
 

(3.5.2) 

 

This allows the formula for p to be written as 

 
       (   

    
 )

      
 

 
(3.5.3) 

 

The second Bloom filter strategy for deciding challenges, the first one 

implemented in the prior example, involves both Bloom filters. The first Bloom 

filter of containing n entries and the second Bloom filter containing c entries. In 

order for a non-challenged false positive to occur at least one bit must be in the 

first Bloom filter that is not in the second Bloom filter. In order to calculate this it 
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is necessary to determine the number of bits that are one in the first Bloom filter 

that are not in the second Bloom filter.   

First assume that c identical entries have been added to both Bloom filters. This 

means there are n - c entries to add to the first Bloom filter. The theoretical 

number of ones that is added to this filter when c entries already exist will be the 

number of ones in one filter but not in the other. The number of ones after n 

entries will be equal to: 

 
         (    

  
 ) 

(3.5.4) 

 

And after c entries it will be: 

 
         (    

  
 ) 

(3.5.5) 

 

Therefore formula 3.5.6 will calculate the number of ones not shared by the 

Bloom filters 
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(3.5.6) 
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Using this, the false positive rate of non-challenged entries can be calculated by 

using the optimal value of k using the following formula:  
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(3.5.7) 

 

This formula uses the theoretical false positive rate for a bloom filter using k-1 

hash functions and size m, with n entries, multiplied by the difference in the 

number of ones calculated previously over m. 

To simplify the comparison of the two formulas the value of m that is based on n 

and the desired false positive rate can be used.  This leaves the two formulas: 

Non-Challenges Stored in Bloom Filter 

 
    (   

    
 )

 
     
     

 
(3.5.8) 

 

Challenges Stored in Bloom Filter 

     (     
    

 ) (3.5.9) 
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From these two formulas it can be noted that the false positive rate is dependent 

on the ratio between c and n, let this ratio be equal to r. 

Non-Challenges Stored in Bloom Filter 

 
            

 
     
        

 
           

       
(3.5.10) 

 

Challenges Stored in Bloom Filter 

              ) (3.5.11) 

 

These two equations will always intersect minimally at r=0 and r=1, which 

produce false positive rates of p and 0 respectively. For a realistic example, p will 

be selected to be very small, p << 1, so as p gets smaller and smaller the false 

positive rates of the non-challenge method decreases exponentially while the 

challenge Bloom filter only decreases linearly. This means that the non-challenge 

Bloom filter will have a smaller false positive rate for any small value of p. Figure 

3.5.1 is a plot showing that when p = .001, the non-challenge Bloom filter 

method produces a lower false positive rate for all r values. 
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FIGURE 3.5.1 Comparison of false positive rates of Challenge and Non-Challenge 

Implementations with p = .001 



 
 

44 
 

 

FIGURE 3.5.2 Comparison of false positive rates of Challenge and Non-Challenge 

Implementations with r = .75 

 

Shown in figure 3.5.2 is a comparison of the non-challenged false positive 

rates for the two implementation methods for a ratio between challenged 

operations and total operations of .75.  From here it can be seen that as the 

false positive rate of the access Bloom filter decreases the filter containing non-

challenged operations decreases very rapidly, while the filter containing 

challenged operations only decreases linearly and is much greater than the non-

challenged method. 
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Therefore if we select the non-challenge method for the second Bloom 

filter the false positive rate, which is the odds of a potential attack packet making 

it through the Bloom filter, is equal to  

 
            

 
     
        

 
           

       
(3.6.10) 

 

where p is the desired false positive rate selected when creating the access 

Bloom filter and r is the ratio of challenged entries to all entries entered into the 

Bloom filter. 

Now that the second filter contains <role, operation> pairs not to 

challenge, instead of pairs to challenge, the flow of the method that determines 

whether to allow, reject, or challenge an operation must be changed slightly. The 

following table, similar to the one shown previously 3.4.1 shows what to do 

when a pair is in or is not in each of the Bloom filters. Since the second filter still 

determines whether or not to challenge an operation, it is still listed as the 

challenge Bloom filter. 
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TABLE 3.5.1 Updated RBAC Responses 

Access Bloom Filter  Challenge Bloom Filter  

Yes Yes Allow 

Yes No Challenge 

No Yes Reject 

No No Reject 

 

Once again it is not possible for an operation to be in the Challenge Bloom filter 

and not the Access one, since the Challenge Bloom filter contains a set of 

elements that is a subset of the ones in the Access filter. This change to the 

table forces the implementation to change slightly as well. The flow diagram for 

implementation of the updated RBAC policy is shown below.  
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Bloom Filter Check Loop

Check Access Bloom Filter

Check Requires Challenge Bloom Filter

Get Bit Position From Hash

[index less than K] 

Set ret to Allow Packet Passthrough

Return Packet Not Valid

[no] 

Set ret to Challenge

[no] 

Increment Index

Return ret

Hash <Role, Operation> using Hash k

[yes] 

 

FIGURE 3.5.3 Updated Flow Diagram for RBAC check 

In the next chapter the implementation and testing of this RBAC and challenge 

response policy for SCADA security will be discussed. 
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4. IMPLEMENTATION OF THE FIELD DEVICE SECURITY PRE-PROCESSOR FOR 

SCADA USING DUAL BLOOM FILTERS FOR ACCESS CONTROL 

4.1. The Field Device Security Pre-Processor 

The field device security preprocessor is a device being developed at the 

University of Louisville for the National Institute for Hometown Security (NIHS). 

It expands upon previously developed technologies developed at the University 

of Louisville for hardening legacy remote terminal units against cyber-attacks for 

HIHS [1], [4], [20]. The device will act as an add-on to existing legacy remote 

terminal units and can be added to existing industrial control systems with 

minimal hardware and software changes. Adding the field device security 

preprocessor (FD-SPP) to an existing unit such as a legacy remote terminal unit 

is performed by disconnecting the existing network connection from the remote 

terminal unit and connecting it instead to the master side of the field device, and 

then creating a connection between the remote terminal unit(RTU) and the slave 

side of the field device. This way the all the traffic that normally would be 
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received by the RTU is now received instead by the FD-SPP. The FD-SPP adds 

support for new security features such as authentication, and role based access 

control to the existing terminal units, however the FD-SPP requires the master 

side of the system to support this mechanism as well. This can be done via a 

software upgrade on the HMI/MTU or with another hardware device similar to 

the FD-SPP. 

Master Terminal UnitMaster Terminal Unit

Legacy Field DeviceLegacy Field Device

Process 
Equipment

Communication 
Network

Hardware or 
software 
support for
FD-SPP

FD-SPP

 

FIGURE 4.1.1 Placement of the FD-SPP in a simple SCADA system 

 

Traditional industrial control systems or SCADA systems, do not provide 

any authentication or authorization[5], the FD-SPP will add these features to 

existing control systems. As described in the previous chapter these techniques 

will be implemented using the dual Bloom filter access control, which challenge 

response, and the extended Modbus protocol.  

4.2. The Microkernel Architecture for the FD-SPP 

The microkernel architecture described by Hieb and Graham [1], [4] 

isolates software components into isolated address spaces, separating 
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networking device drivers, security enforcing software components, and field 

equipment interfaces and drivers.  The microkernel enforces these isolations as 

well as provides limited communication channels between particular modules. 

The module containing the networking device drivers and the module containing 

the field device drivers or resources should be completely isolated from each 

other.  These two modules should only communicate to the security modules 

creating a barrier between the input and output of the security device[1]. This 

barrier prevents attackers from leveraging an error in the communication driver 

to affect the field device [4]. The operating system possesses a critical role in 

security enforcement; a microkernel is used by the architecture to minimize the 

amount of code in the trusted computing base.  The microkernel provides only 

the minimum necessary operations including memory abstraction (an address 

space), an execution abstraction (threads), and inter process communication 

(IPC) [1]. The microkernel must provide strong assurance that interaction 

between two address spaces is not possible, and that IPC is limited to specified 

threads only. [1]  

The FD-SPP uses this microkernel based architecture to insure security 

and reliability, in order to achieve this architecture the OKL4 microkernel was 

selected.  OKL4 is a member of the L4 family of operating systems. The L4 

operating systems are second generation microkernel operating systems. OKL4 

like all L4 kernels only provides the most basic essentials required for an 

operating system[21] and leaves the remainder of the design up to the 
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developers. Another L4 operating system seL4 has been formally verified[22]. 

This means that there is a machine checked mathematical proof that the 

implementation in code of seL4 matches the code specifications. It also means 

that seL4 code is proven to be free from common programming errors such as 

buffer overflows and null pointer accesses[22]. Although this doesn’t imply 

security, it is a starting point for building secure software. Additionally this allows 

the software above the kernel to be verified since the kernel is verified. OKL4 is 

in the same family of operating systems as seL4, the verified distribution of L4, it 

should be therefore a small step to make a port from the OKL4 to the verified 

kernel. 

OKL4 allows the division of software above the kernel layer into cells. 

These cells each have their own virtual memory and are segregated from the 

other cells [21]. A buffer overflow in cell A cannot affect cell B. Communication 

between the cells is provided via IPC in the kernel layer. Additionally, like all 

microkernels, device driver level code is in the user application layer. This means 

that cells can have access to the hardware. However to prevent this from being a 

security issue only one cell can have write access to any given register. Cells can 

however share read access to a register [20]. All memory operations including 

access to hardware registers are performed using a virtual memory system 

provided by the OKL4 microkernel, the system calls required to access this virtual 

memory system were developed by Brad Luyster [20]. 
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4.3. The OKL4 Cell Structure used for the FD-SPP 

The FD-SPP software components are broken up into three cells: master 

Modbus communication cell, packet filtering security cell, and the slave Modbus 

communication cell. Each cell has its own responsibilities, and its own memory 

space. This design allows communication handling code and security code to be 

run in completely separate memory spaces, and creates a separation between 

the code communicating with the master and slave devices. Shown below is the 

model of the OKL4 cells for the FD-SPP. 

Master Modbus
Communication

Cell

Packet Filtering 
Security Cell

Slave Modbus
Communication

Cell

OKL4

 

FIGURE 4.3.1 OKL4 cells for the FD-SPP 

The master Modbus communication cell is responsible for receiving and 

sending data to the Modbus master which in this case is the virtual Modbus serial 

device. This cell has a driver for one of the UARTs on the device, which allows it 

to communicate over RS-232 with the master. The master then scans the data 

received by the UART until it finds a valid Modbus packet. This packet is then 

sent to the packet filtering security cell via IPC. Since the master Modbus 

communication cell only sends valid packets to the packet filtering security cell, 

the packet filtering security cell is protected from attacks using invalid packets. 
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The packet filtering security cell can also send packets to the master Modbus 

communication cell which is responsible for forwarding these packets to the 

master. 

The slave Modbus communication cell has very similar operations with the 

master Modbus communication cell. Additionally the code for the two cells is 

almost identical. The slave Modbus communication cell sends and receives data 

via RS-232 with the slave (RTU). When it receives data it automatically forwards 

the data to the security cell which then passes it through to the master. 

Therefore there is no filtering of data for packets being transferred from the 

slave to the master. Additionally the slave Modbus communication cell will get 

packets from the packet filtering security cell which it will be responsible for 

transmitting to the RTU.  

The packet filtering security cell has several functions. Its most simple 

function is forwarding packets from the slave to the master. When the cell 

receives and IPC call from the slave it simply forwards this IPC call to the master. 

The primary task of the security cell is extracting the added security pieces out of 

the extended Modbus packets, and only sending packets that are verified to the 

Slave. This involves several tasks: creating and managing user connections, 

creating and validating challenge response packets, and performing role based 

access control for each packet and each user as defined in the previous chapter. 
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The OKL4 software was divided into three cells, which all have their own 

memory space which they can read/write and none of the other cells can access. 

In order for these cells to send data to each other they use IPC calls, provided by 

the microkernel. All IPC communication channels must be defined at compile 

time and cannot be changed during run time. This means that if there are no IPC 

communications channels defined between to cells they cannot directly 

communicate [20]. Shown below is the layout of the three cells as was shown 

previously, however now the threads and IPC calls of the system have been 

added. 

 

OKL4
Modbus Security 

Filter
Read Master Serial

Write Master Serial

Write Slave Serial

Read Slave SerialPass-through Filter

 

FIGURE 4.3.2 Cell Communication Flow 

The most important concept is that the master communication cell and 

slave communication cell do not have any communication between them. This 

means that in order for a packet to be sent to the RTU it must be passed 

through two layers of IPC and two layers of validation checks. Do to the nature 

of OKL4 a bug in one of these layers cannot exploit the next layer this makes it 

very difficult for an attack packet to propagate through the OKL4 security device. 
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4.4. Software Design of OKL4 Cells 

The slave Modbus communication cell and the master Modbus 

communication cell share much of the same source code and are almost 

identical. They both perform the operation of reading and writing to an RS-232 

communication port. The STUART (Standard UART) is used for the master 

communications, and the BTUART (Bluetooth UART) is used for the slave 

communications. The BTUART although it is capable of being used as a 

Bluetooth device port is being used in the same way the STUART is as a 

standard RS-232 communications port [23]. Both the master and slave 

communication cells are broken up into two threads; One thread for polling the 

UART and forming Modbus packets to send to the filtering cell and a second for 

writing packets to the UART as they are received from the filtering cell. Shown 

below is the flow diagram for the read data from UART thread. 
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Wait for Clock Ready IPC

Get Packet From UART

Setup UART

Send Packet to Filter

 

FIGURE 4.4.1 UART read flow chart 

The first block on the diagram is a wait for the clocks to be set up for the 

UART. This is because only one cell is allowed write access to enable the clocks 

for the UART. The master communications cell sets up the UART clocks for itself 

and the slave communication cell. Once the thread is notified that the clocks are 

set up, it sets up its initialization parameters for the UART such as baud rate and 

flow control. After this it begins the process of gathering data from the UART and 

sending it to the filter cell. Each communication cell begins filling a buffer with 

data and waiting for the 3.5 character times between bytes, which represents 

the end of packet in the Modbus standard [24]. Once this 3.5 character times 

occurs the communication cell performs a Modbus CRC check on the packet. If 

the CRC check matches the packet CRC then this packet is valid and therefore 

sent to the filter, otherwise the beginning and ending point of the packet are 

marked in the buffer and the communication cell waits for the next packet. The 
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communication cell additionally uses a circular buffer, in other words if the end 

of the buffer has been reached the bytes are added to the beginning of the 

buffer. The diagram below shows what the buffer looks like after the first packet 

is read in. 

 

FIGURE 4.4.2 Communication Cell Circular Buffer 

When the second packet is read in its data is placed after the first packet. 

The same CRC check is performed on this next packet to see if it is a valid 

Modbus packet. If so the packet is sent to the filtering cell. Whenever a valid 

packet is found and passed to the filtering cell, the buffer is cleared. This 

prevents unnecessary CRC checks with invalid data. The diagram below shows 

where the second packet is placed in the buffer. 

 

FIGURE 4.4.3 Master Cell second Modbus placement in circular buffer 
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If the data in the second packet is invalid, the two packets are looked at 

as a single packet. If this reconstructed packet is valid then it is passed on to the 

filtering cell. The diagram below shows the reconstructed packet. 

 

FIGURE 4.4.4 Modbus message reconstruction 

If this packet is not valid then the process continues for the third packet. 

First the packet is checked by itself. If this fails it is checked in combination with 

the second packet. If this fails all three packets are combined and checked. This 

process is continued with a fourth, fifth or sixth packet. If a seventh packet is 

received the first packet is dropped so the system will never remember more 

than six packets. This packet reconstruction is necessary to guarantee valid 

Modbus packets are sent to the filtering cell from the communication cell.  

Due to overhead created by the operating system there was no way to 

guarantee that the 3.5 character was enough to signify the end of a packet as in 

the Modbus. The 3.5 character times were used to segment groups of bytes 

received by the RS-232 port. These groups were then checked to see if they 

contained a complete Modbus packet with valid checksum. Using a wired 

connection a small number of packets were split in two and needed this 
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reconstruction. When the communication was switched to wireless serial the 

packets were often split into 2 and sometimes more pieces, it was during the 

testing over the wireless lines it became apparent a mechanism was needed to 

reconstruct these packets to recreate the robustness that is required by SCADA 

systems.  

The write data to UART thread is the same for both the Master and Slave 

with the only exception being they are writing to different UARTs. The Diagram 

below shows the flow of the write data to UART thread. 

Wait for IPC

Write buffer to UART

Read IPC to Buffer

 

FIGURE 4.4.5 Flow in the UART write thread 

The operations of this thread are fairly simple. Wait for a message from 

the filter then write that data to the UART.  

Like the communication cells, which have two threads each the filtering 

cell also has two threads one for managing traffic from the slave to the master 

and one for managing traffic from the master to the slave. The first thread that 
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manages traffic from the slave to the master is very simple. All it does is wait for 

packets from the slave cell then forward them to the Master cell. This thread is 

mostly needed to create isolation between the Master and Slave communication 

cells. 

The thread that filters data from the master cell to the slave cell is much 

more complex. This cell is responsible for setting up communications with a user, 

performing role based access control, and validating packets via challenge 

response. This section will provide an overview of these operations but more 

details can be found in chapter 3.  

Like all the threads in this system the general idea for this thread is wait 

for packet, perform operation, wait for next packet. So first the system waits for 

a packet from the Master cell. After receiving the packet, the packet is checked 

to see if a challenge or connection request is required before allowing this packet 

to pass through. If a connection request is required the filtering cell sends a 

connection request back to the master cell which forwards the packet to the 

master (HMI). Likewise, if a challenge is required, a challenge is sent to the 

master cell which forwards the packet to the Master (MHI). Otherwise the packet 

is rejected entirely or allowed through to the slave cell which forwards the packet 

to the slave device. The diagram below shows the summary view of the flow of 

the filtering cell.  



 
 

61 
 

ReceivePacket Check CRC
Challenge Response

Check Requires Challenge

[CRC is Valid] 

Wait For Packet
Send Packet to Slave

Send Connection RequestReject Packet

[Challenge Required] 

[Allow Packet Passthrough] 

[Connection Not Established] 

[Packet Not Authenticated] 

[Packet Authenticated] 

[Response Packet Function Code Incorrect] 

 

FIGURE 4.4.6 Flow of a packet through the filtering cell 

The check requires challenge function plays a vital role in determining 

what happens to each packet. Show in figure 4.4.7 is a diagram that shows how 

the outcome of for each packet is formed. 

Save RTU Address Check Connection Request Save User Id
Return Connection Required

Return Challenge Required

[yes] 
[User Id Invalid] 

Check Connection Status

Check if Administator

[connected] [yes] 

Check Bloom Filter Entries

Return Bloom Filter Result

 

FIGURE 4.4.7 Modbus packet determination flow 



 
 

62 
 

The diagrams both show a very high level view of the operations of the 

filtering cell, to see more details see the challenge response and role based 

access control section below that specifies the detailed implementation of each 

of these functions. 

4.5. Implementation of the Dual Bloom Filters for RBAC 

 As described in chapter 3, dual Bloom filters were created for the role 

based access control for the field device security preprocessor, in order to create 

the optimal Bloom filter, it must be known previously how much data, or in this 

case how many packets are going to be stored in the Bloom filter. In order to do 

this for an existing system the packets can simply be watched. A listener with a 

similar architecture to the FD-SPP can instead of filtering packets output them to 

a program that simple records them. It must also be known which user must be 

allowed to perform each operation. In order to find all the packets and create the 

Bloom filter in a simple easy to use way the following program was created. The 

recording system works as follows, first a system user is created, as well as a 

role for that system user. Then the user begins using the existing SCADA system 

as they would normally, the program listens to the packets used by the user and 

saves them. It can also be specified whether the operations or some of the 

operations require a challenge. After all the operations for one role, the next user 

can perform all of their operations, and the system can record those. After all the 

operations that the system should perform are recorded along with the users 
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that can perform all those operations the dual Bloom filters containing those 

operations can be created. Shown below is a screenshot of the recording 

software capable of creating the dual Bloom filters for an existing SCADA system.  

 

FIGURE 4.5.1 Bloom Filter Creation Software Screenshot 

The Bloom filters created from this software can simply be placed into the 

field device security preprocessor, which will then use them for RBAC control. In 

this system all the packets must be known before the system is implemented, 

creating the Bloom filters before implementation and creating no method for 

updating them prevents an attacker from changing the role based access control 

policies. Future versions of the FD-SPP may allow for updating but this will not 

be done through a network update. The Bloom filters could be kept in removable 

flash memory, which can be physically swapped out in order to update the RBAC 
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policy. In the current implementation however, the Bloom filters are hard coded 

and updated at compile time.  

4.6. An Example Access Check in the Dual Bloom Filters 

The Bloom filters created by capturing software are checked by the FD-

SPP in order to implement its RBAC. Like described in the previous chapter this is 

done by appending the role of the currently logged in user with each Modbus 

packet received by the FD-SPP and passing it through a variety of hash 

functions. However the FD-SPP only passes the <role, operation> pair into a 

single hash function SHA-256. This 256-bit hash can be broken up into a large 

number of small hash functions. For example suppose Bloom filters of length 

1024 bits are used, for this hash functions that produce 10 bits ( log2(1024) ) are 

required. The single SHA-256 hash can be used to create twenty-five 10-bit hash 

functions. Since SHA-256 is approved by NIST[25], which list random number 

generators as recommended use for its approved hash functions[26], the bits in 

the SHA-256 hash must uncorrelated be completely independent of each 

other[27].  This means that the sub-hash functions (10-bit chunks of the original 

SHA-256 bit hash) can be seen as independent hash functions that are all 

suitable for use for implementation of a Bloom filter. This technique of splitting a 

large hash function into smaller hash functions was also used by Tripunitara and 

Carbunar [16]. In order to ensure correctness are reduce coding time an open 

source c implementation of SHA-256 created by Aaron Gifford[28] and modified 
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by Brad Luyster[20] for compatibility with OKL4 was used to generate the SHA-

256 hashes required by the FD-SPP. 

Assuming that k is selected to be seven, each hash function can be 

created from 10 bits any two bytes of the SHA-256. Figure 4.6.1 shows how 7 

hash functions are created using the first 14 bytes of the SHA-256 Algorithm. 

SHA-256

256 bit Hash

Use the hash in groups 
of two bytes in place of 

k hash functions

Set the bits at each of 
the k positions to 1 M bit bloom filter

Modbus 
Packet

Role Id

 

FIGURE 4.6.1 Using SHA-256 to Add Entries to a Bloom filter 

 

4.7. Reduction of the False Positive Rate 

In order to reduce the false positive rate it is important to understand 

what variables are related to the false positive rate of the Bloom filter. Simply 
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put, if two Bloom filters have the same number of hash functions k, and the 

same number of bits m, then the only thing that can make the false positive rate 

any different is the number of ones. But how could one reduce the number of 

ones for a given Bloom filter without reducing the amount of data stored in the 

filter. Theoretically the number of entries into the Bloom filter is based on the 

number of entries times the number of hash functions minus the number of 

collisions. If the number of collisions is increased the Bloom filter will have a 

lower false positive rate [10]. It is important to note that this does not mean 

getting hash functions which generally create more collisions it means getting 

hash functions that collide for the specific values that are added to the Bloom 

filter. The hash functions must still have uniform results for any arbitrary input 

data otherwise the bias will allow for more false positives not less [10]. 

For example, assume two entries A and B are going to be placed in to a 

Bloom filter that uses 7 hash functions. When they are added they each add 7 

bits to the Bloom filter for a total of 14 bits set. What if we had a list of hash 

functions where we could select the 7 hash functions that had the most 

collisions? First assume we can use the same number of hash functions but now 

there is one collision. This collision results in 13 bits added to the bloom filter 

instead of 14. Since this value is being taken to the k power, even adding a small 

number of collisions can have a large effect on the false positive rate. 

    

   
        

(4.7.1) 
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In this case the adding of a single collision reduced the false positive rate 

to 60% of its former value. Now for a more general case let x be the number of 

entries in the filter and c be the collision percentage that can be invoked, 

therefore (
 

 
)
 

 can be reduced to (
       

 
)
 

. This means that we can reduce the 

false positive rate by         . For example creating a collision rate of 10% 

for the known entries of the Bloom filter reduces the false positive rate by over 

50% when 7 hash functions are used. 

In the example above the challenge response Bloom filter had 7 hash 

functions, 1024 bit length and 14 bits set to one. This produces a false positive 

rate for non-challenged entries of 

 
    

  

    
                

(4.7.2) 

 

Using 74 hash functions to search for collision among the 2 entries, 7 new 

hash functions all with uniform output distributions were able to be selected that 

had 3 collisions for the 2 entries into the challenge response bloom filter. This 

reduces the number of ones from 14 to 11. This creates a collision rate of    

 

  
, which allows for a reduction in the false positive rate of 

 
  (  

 

  
)
 

         
(4.7.3) 
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This allows for over an 80% reduction in the false positive rate using the 

same number of hash functions, entries, and bit length. The new false positive 

rate for non-challenged false positives is 

 
    

  

    
                 

(4.7.4) 

 

Additionally all the hash functions used for this were based on the same 

SHA-256 hash as the previous design was therefore there is no additional cost 

for using these hash partitions as opposed to the original partitions. For example 

pairs of two bytes were taken to create each of the 7 hash functions, however 

only 10 of the 16 bits were needed. Hash functions could be created from any 10 

of these 16 bits, thus creating a number of hash functions that can be easily 

used with nominal cost. 8008 different 10-bit hash functions, with 10 unique bits 

can be selected from the 2 bytes used above to create the sub-hash functions in 

the example above. Since all of the bits of the SHA-256 hash function should be 

uncorrelated and unbiased any 10 bits can be selected to make a 10 bit hash 

function that is suitable for Bloom filters. The hash functions created from the 

SHA-256 hash should not share any bits, to ensure they are not correlated in the 

general since. If the absolute minimum false positive rate is desired, it is possible 

to check the false positive rate of all the Bloom filters that could be created from 

all the allowable combinations of hash functions. Since the design of the FD-SPP 
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requires that the entire set of <role, operation> pairs to known in advance it is 

not unfeasible for this to be done, however this would take a very long time and 

is probably not worth the effort. Figure 4.7.1 shows the probability of each 

possible number of bits being set to “1”, in a 1024 bit Bloom Filter using 7 hash 

functions after 18 entries have been added created by simulating bits being set 

in Bloom Filter 10000000 times. 

 

FIGURE 4.7.1 Probability Distribution of number of ones in the Bloom Filter 

The average number of bits set to “1” for this Bloom filter is 118.6. In 10000000 

runs of the simulation the lowest number of bits set to 1 in any Bloom filter was 

103 out of the 1024, this happened 2 times. It is possible for a Bloom filter of 

this size to have much less bits set to “1”, but the odds of this happening are 

very low since the odds of getting smaller number of bits shrinks exponentially. 

There is only around a 1% chance of getting a value of 112 or less. 112 bits set 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150

P
ro

b
a

b
il

it
y
 

Number of 1's in Bloom Filter 

Probability



 
 

70 
 

to “1” corresponds to a false positive rate of 1.87252E-07, which is the around 

two thirds of the average false positive rate for this Bloom filter of 2.7975E-07. 

For this size filter if 100 combinations of hash functions are created and tested 

there is a good chance one set will be found that will have a false positive rate of 

around two thirds of the estimated false positive rate. Searching 10000000 

combinations of hash functions is likely to produce a Bloom filter that has a false 

positive rate of one third of the estimated false positive rate. As can be seen a 

short search can reduce the false positive rate of the Bloom filter, and searching 

for a long time can produce an even larger reduction. It is up to the implementer 

to decide how much time they are willing to use searching for hash functions 

that produce Bloom filters with large number of internal collisions, and thus low 

false positive rates. 

4.8. Prototype of the Field Device Security Preprocessor 

For the purpose of lab testing, a prototype FD-SPP was constructed using the 

previously described design. The prototype was built using the Gumstix® verdex 

pro™ XM4 COM single board computer. The OKL4 software system is designed to 

run on the Marvell® PXA270 with XScale® processor which was the primary 

motivation for choosing the Gumstix® verdex pro™ XM4 COM. The XM4 has 64 

MB of RAM and 16 MB of Flash. Currently the FD-SPP doesn’t use the Flash 

memory and all code is operated in RAM, however this may change in later 

revisions. The entire system uses less than 1 MB of RAM. The system also 
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requires 2 or more serial communication ports, one to connect to the master 

device and one to talk to the slave. These can be added by connecting the 

Gumstix console-vx expansion board. Shown in figure 4.8.1 below is the Gumstix 

and the attached console-vx board that were used to create the prototype for 

the FD-SPP.  

 

FIGURE 4.8.1 Field Device Security Preprocessor Prototype 
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5. TESTING OF THE FIELD DEVICE SECURITY PRE-PROCESSOR 

This section describes testing and refinement of the prototype FD-SPP.  An 

HMI/MTU test harness and a simulation environment were constructed for 

testing purposes.  An actual legacy field device, a Sixnet mIPM RTU, was part of 

the test framework.  The mIPM supports serial communication and the Modbus 

protocol.  The mIPM has 24 IO points, and a simple HMI/MTU was built that 

could, via Modbus, read and write these “coils”.    

5.1. Java Modbus HMI Design 

For this project the Modbus HMI and MTU were integrated into a single Java 

program developed using Netbeans IDE. The software uses the RXTX[29] 

package to communicate via RS232 to the FD-SPP. The program provided typical 

Modbus features such as reading and writing coils, as well as, support for 

security. The HMI provides four toggle buttons, which when pressed send 

Modbus write coils packets to the FD-SPP. The HMI also provides a “read” button 

which sends a Modbus read coils packet to the FD-SPP. Additionally the HMI 
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provides the extended Modbus features required by the FD-SPP. The login 

request packet is sent by pressing the “login button”; this sends a login request 

packet containing the provided user id. The HMI also automatically replies to 

challenge responses using the password that is in the password field.  

The HMI also monitors responses from the FD-SPP. As with most Master-Slave 

protocols when the master sends a message there will always be a response. If 

the HMI does not receive a response to any packet it sends, it will indicate this 

by turning the box next to the words “no reply” red, and force the user to issue a 

new login request. When a valid packet is received the box next to connected 

will turn green to indicate the communication channel between the HMI and FD-

SPP is working properly. If this packet is a response to a read coils command the 

digital input indicators will show which digital inputs are on (red) and which are 

off (gray).  
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FIGURE 5.1.1 Java Modbus HMI 

 

5.2. Initial performance data  

Adding the FD-SPP increases the amount of time it takes for a packet to be sent 

from the master to the slave and from the slave to the master. A command line 

based communications timing program was created in C# to test the timing 

performance of the test SCADA network with and without the field device 

security preprocessor. The timing data below in table 5.2.1, collected by the 

program, shows the increase in time compared to the time without the security 

device in place. Two cases were tested for each, “with security” and “without 

security” implementations. The first case was reading coils. The second was 

writing coils, which included a challenge response for the “with security” 

implementation. For the purpose of this test, and the rest of the tests below, 
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write coils commands are always challenged when the FD-SPP is in place, and 

read coils commands are not challenged.    

Shown below in figure 5.2.1 is the diagram of how challenged Modbus packets 

would propagate through the system. The Timer software replaces the HMI. It 

sends a Modbus packet to either the RTU(to test without security), or the FD-

SPP(to test with security) times how long it takes to receive the Modbus 

response for the sent message, therefore how long it takes the packet to 

propagate through the system, including the challenge response cycle if 

required.  

Virtual Serial Device
OKL4 Modbus Security

Device
RTU

Existing ModbusRTU Control
System

Modbus Command

Modbus Command

Challenge

Challenge Response

Modbus Command

Modbus Response

Modbus Response

Modbus Response

 

FIGURE 5.2.1 Modbus packet propagation 
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TABLE 5.2.1 Initial Timing Data 

 Read Coils Write Coils 

 Without Security With Security Without Security With Security 

Trails 500 500 500 500 

Minimum 116ms 144ms 127ms 257ms 

Median 119ms 163ms 129ms 281ms 

Average 119ms 165ms 129ms 278ms 

Maximum 140ms 207ms 140ms 304ms 

 

This timing data was taken using 9600 baud serial connections. A Similar FD-SPP 

implementation using alternative communication protocol was also tested at a 

later time. Data from this alternative communication showed that packets with 

challenges could propagate through the system in less than 90ms.  

5.3. Modbus compliance testing 

This set of test was written using the Unit Testing Suite built into Visual Studio. 

The Test Suite works in place of the HMI, just like the timer program. Shown in 

figure 5.3.1 is the system diagram for these tests. 
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Visual Studio 
Testing Suite

FD-SPP RTURS-232RS-232

 

FIGURE 5.3.1 Compliance testing system diagram 

 

These tests do not test security but test that the system operates as specified to 

when any given packet is encountered. Shown below is the test result output 

which was displayed by Visual Studio.  The following subsections discuss each 

individual test in more detail. 

 

FIGURE 5.3.2 Compliance Checker Output 

 

5.3.1. Test Login Success 

This test checks to make sure that the user login procedure works properly for a 

valid login. First the test sends a login request packet to the OKL4 Modbus 

security device. The test then collects data from the receive port for a small 
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amount of time. This data is then checked to make sure it is a challenge packet. 

The test then sends the proper challenge response to complete the login. Once 

again the test waits to see if the security device response. Since currently there 

is no “login complete packet” the security device should not respond to the 

challenge response. A “login complete packet” may be created for a future 

revision of this system. After the system has verified that device did not send any 

data, it sends a read coils packet to confirm the connection. If the response to 

this packet is not the “Connection Required/Requested Packet” the connection is 

deemed successful.  

5.3.2. Test Login Invalid User 

This test checks to make sure that the user login procedure works properly when 

an invalid user id is sent in the connection request. First this test sends a 

connection request with an invalid user id to the OKL4 Modbus security device. 

Since the user id is invalid the OKL4 Modbus security device responds with a 

“Connection Required/Requested” Packet. The test checks to see if the packet it 

received is a “Connection Required/Requested” Packet, if so the OKL4 Modbus 

Security Device passes this test.  

5.3.3. Test Login Invalid Password 

This test checks to make sure that the user login procedure works properly for a 

login with a valid user but incorrect password. First, the test sends a login 
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request packet to the OKL4 Modbus security device. The test then collects data 

from the receive port for a small amount of time. This data is then checked to 

make sure it is a challenge packet. The test then sends the challenge response 

formed with the incorrect password to complete the login process. Once again 

the test waits to see if the security device responds. Since currently there is no 

“login complete packet” the security device should not respond to the challenge 

response. A “login complete packet” may be created for a future revision of this 

system. After the system has verified that the device did not send any data, it 

sends a Read Coils packet to confirm the connection. If the response to this 

packet is not the “Connection Required Packet” the connection is deemed 

successful. In this case receiving the “Connection Required Packet” is a 

successful run of the test since this would imply that the login was unsuccessful.  

5.3.4. Test Packet RBAC Challenge 

This test is broken up into four separate tests. Each of the tests preforms a login 

with a particular user and then sends a packet. This test is verifying the proper 

response is returned by the RBAC. The three responses tested are: no-challenge, 

challenge, and reject. For this Test it is assumed the following permissions have 

been set up in the bloom filters. User 1 can read and write coils but challenges 

are required on writes. User 2 can read coils only, no challenges are required. 
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 The first test performs a login as user 1, and sends a read coils packet. The 

test then verifies that there is a response to this packet, and that the 

response is a valid read coils response and not a challenge request. 

 The second test performs a login as user 1, and sends a write coil packet. 

The test then verifies that the response to this packet is a challenge request. 

 The third test performs a login as user 2, and sends a read coil packet. The 

test then verifies that the there is a response to this packet, and that the 

response is a valid read coils response and not a challenge request packet. 

 The fourth test performs a login as user 2, and sends a write coil packet. The 

test then verifies that there is no response to this packet, therefore it was 

rejected.  

5.3.5. Test Challenge-Response 

This test is responsible for testing the full challenge response exchange as shown 

in figure 5.2.1. This test first performs a login as user 1 then the sends write 

packets to the RTU which causes a challenge to be made. The proper response is 

then sent to these challenges. The test then waits for the response of this 

challenge. If this response confirms that the coils have been written then the 

challenge response protocol is working properly.  This test also tests improper 

challenge responses to confirm that the proper response is required for a packet 

to propagate to the slave RTU. 
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5.3.6. Test Packet Reconstruction 

This test is responsible for testing the packet reconstruction abilities of the OKL4 

Modbus security device. This test sends packets that have been split by a small 

amount of time, to confirm that the OKL4 Modbus security device is properly 

combining them into a single valid packet. This reconstruction is necessary 

because the separation of bytes into packets is done in software by the OKL4 

Modbus security device and can often not be precise enough to separate packets 

based on the 3.5 character stop time specified in the Modbus protocol standard. 

This test uses unchallenged read commands split in to pieces and verifies that a 

read response was sent in return. The test also sends garbage packets in an 

attempt to trick the OKL4 device. The test makes sure that only consecutives 

packets pieces that combine to a single valid packet are accepted by the device. 

5.3.7. Test RBAC Suspicious Mode 

This test is responsible for making sure the system properly enters and leaves 

suspicious mode. This is performed by creating a user that can only read coils. 

The test logs in as this user, and attempts to write to a coil. Since this operation 

is not allowed by the RBAC this should cause the system to enter suspicious 

mode which cause all packets to be challenged. The test then attempts to read a 

coil. The response of this should be a challenge if not the test fails. If the 

response is a challenge the proper response is sent sending the system back into 
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normal mode. A second read packet can then be sent to verify this transition. If 

the packet is not challenged, the devices has properly reentered normal 

operating mode. Various amounts of read packets are sent after a write packet 

to confirm proper operations of the suspicious mode, and the switching between 

modes.  

5.3.8. Test Write Coils 

Unlike all of the tests above, this test requires a tester to supply input to the test. 

This test logins as a user and begin writing coils. After each write the test pops 

up a dialog asking what the current state of the RTU digital outputs are. The test 

then checks to see if which of the DO on the Sixnet RTU are active, and inputs 

this to the dialog. If the input to this dialog matches the write coils packet that 

was sent to the RTU then the write was a success. Shown below in figure 5.3.3 

is the dialog presented to the tester. 

 

FIGURE 5.3.3 Digital output dialog displayed to Tester 
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5.3.9. Test Read Coils 

This test is responsible for making sure reading coils is working properly. This 

test is very similar to the write coils test; it asks a tester what the current states 

of the digital inputs are the Sixnet RTU are and then performs a read. If these 

two values match then the coils were read properly. It then allows the user to 

change the coils and read again to further confirm the read is working correctly. 

Shown below is the dialog for the read coils test. 

 

FIGURE 5.3.4 Read coils dialog box 

 

5.4. Penetration Testing 

For the purpose of penetration testing two lab setups were conceived. The first 

of which did not have the FD-SPP, and the second did. Shown below are the two 

lab configurations. 
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FIGURE 5.4.1 Penetration testing setup with FD-SPP 

HMI
Wireless Serial 
Transmitter/

Receiver

Wireless Serial 
Transmitter/

Receiver

Wireless Serial 
Transmitter/

Receiver
RTU

Attack PC

Windows 7 PC

 

FIGURE 5.4.2 Penetration testing setup control setup 

 

The attack PC was used to monitor, and inject Modbus packets onto the wireless 

serial connection.  A number of different attacks were carried out.  The different 

attacks and the results are described in the following sections.  Table 5.4.1 

summarizes the results of the penetration testing. 
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TABLE 5.4.1 Penetration testing results. 

Attack Without 

Security 

With 

Security 

With Security and 

Signatures 

Write Coils Success Failed Failed 

Write Random Coils Success Failed Failed 

Read Coils Success Success Success 

HMI Read Attack Success Success Failed 

HMI Write Attack Success Success Failed 

DOS Attack Success Success Success 

 

 

5.4.1. Write Coils Attack 

Since there is no built in security anyone on the network can send a packet. For 

this test a simple write multiple coils command were transmitter onto the 

network. The packet sent on the network (in hex) was 010F000000040105fe95.  

For this attack the FD-SPP protected the RTU from the attack, while without the 

security the attacker was very easily able to write to the coils.  

5.4.2. Write Random Coils Repeatedly Attack 

This attack takes the previous attack one step farther. It sends randomly 

generated write coils attacks very rapidly in an attempt to get the security 

software confused, or in an incorrect state. For this attack the security piece 
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protected the RTU from the attack, while without the security the attacker was 

very easily able to write to the coils. The security piece did not allow any of the 

unauthenticated packets to go through and after the attack was able to return to 

normal operating mode and allow authenticated write coil packets to pass 

through. 

5.4.3. Theoretical Write Coils Attacks 

Since with all security it is not whether or not an attack is possible that matters, 

but a measure of how difficult the attack is to perform, this section will cover the 

theoretical attacks that could be used. This section covers writing coils but can 

apply to any packet that is a challenged packet and in the Bloom filter as such 

for a particular user. There are two mechanisms that control security, and in 

order to defeat the security the attack must exploit at least one of these 

mechanisms.  

The first of which is the challenge response. When a packet, such as a Write 

Coils packet is challenged, the attack could attempt to create the proper 

response packet. Since each challenge contains 4 bytes of nonce the user cannot 

simply apply a replay attack. If the user simply records traffic they can begin to 

accumulate challenge responses. Eventually since there are a finite number of 

nonce values the attacker will eventually be able to perform a replay attack using 

the saved nonce values. A size of four bytes means that the nonce can take the 

form of 4294967296 different bit sequences. However the attacker would not 
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need to see every bit sequence to get a single packet through, using similar 

equations to the Bloom filter ones in chapter two the average amount of packets 

an attacker would have to see before getting a successful replay can be 

calculated by solving equation 5.4.1, where m is the total number of 

combinations, and n is the average number of bit sequences it takes to see a 

single repeated sequence.  

 
 (  (  

 

 
)
 

)      
(5.4.1) 

 

Solving for n numerically using Maple with m = 4294967296, gives n = 

92682.73335. Assuming the attacker gets the best case scenario, seeing the 

same command sent continuously, they will see on average one packet they 

need approximately every 275ms it would take over 7.5 hours for the attacker to 

get a single packet they can replay. However the attacker would probably want a 

much higher number of packets to perform an actual attack. For example for the 

attacker to have a 10% chance of sending a packet and receiving a challenge 

packet they must have seen 10% of the total number of packets that are 

different. Solving equation 5.4.2 for n gives the number of packets that must be 

seen for the attacker to have a 10% chance of getting an attack to succeed.  
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Solving for n numerically with m = 4294967296, gives n = 452519969. Again 

assuming the attacker gets the best case scenario as describe previously it would 

take almost 4 years to get enough packets. Additionally, it is unlikely the same 

user will be sending the same packet over and over on any SCADA system the 

attacker would want to attack. This being showing it is highly unlikely an attacker 

would ever succeed in a replay attack on the FD-SPP.  

The second part of the challenge response the user could attempt to guess is the 

password. The password is stored in 8 bytes, which means there are 2(8*8) 

combinations of passwords. In order to check passwords the attacker would 

have to write coils and use the password on the challenge then check the coils. 

Without being able to see the coils this would be difficult. The other strategy 

would be to try to login as a user using the password. Since there is no 

successful login response the attack would then have to perform another 

operation to verify that the login was successful. Combined either of these 

strategies would take at least 300ms. In order to check all the passwords that 

could be used it would take 1.75*1011 years. Even if only half this time was 

needed (the time on average to find the correct password) the attacker would 

still be searching for a time much greater than their lifetime. Additionally this 

type of attack would also act as DOS on the network and be quickly detected by 

any user attempting to use the system.  
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The second system an attacker could attack is the RBAC Bloom filters. This 

attack is even more unlikely to be successful than the previous attack. This 

attack involves creating a packet that will successfully make it through the non-

challenged Bloom filter. This means the packet would be directly sent to the 

RTU. However most regular Modbus packets are unlikely to be in the non-

challenged Bloom filter and it is most likely that they are checked to make sure 

they are not in this Bloom filter. This means that a special attack packet must be 

crafted to write the coils, or be performed when a user that cannot write coils is 

logged in.  

For the attack to work using a user that cannot write coils a false positive must 

occur whenever that user writes coils, since there are only a small number of 

packets which this can occur they can all be checked to make sure none exist. 

This special packet would contain a Modbus write coils packet as the first part of 

the packet, and then data would be appended to the packet to make it in the 

Bloom filter. The proper CRC would also have to be added to the packet a valid 

Modbus packet. If the packet was able to pass through the Bloom filter and be 

sent to the RTU it would require that the RTU be checking the packets for a CRC 

match byte by byte, or an error occur splitting the write coils packet from the 

rest of the packet to create a successful write.  

This attack is more of a series of unfortunate events more than it is a planned 

Modbus attack. Also since after one failure the RBAC Bloom filters enter 
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suspicious mode, the attacker would only have one attempt before they would 

have to wait for regular traffic to reset the RBAC back to normal mode. This 

attack, like the one above, would also be detected way before the attacker could 

succeed. Since the attack needs a bit error to occur, when the attacker finally 

finds a packet that is a false positive the attack may still not be successful 

because there is a very low probability of getting the exact bit error the attacker 

needs. Without offline access to the Bloom filter, the attack will likely never know 

if they have found a false positive. Therefore the attack success rate will be 

much less than the bloom filter non-challenged false positive rate. Attack packets 

like the ones discussed here were sent at the RTU directly without the security to 

test the likelihood of a this type of bit error occurring; however in the 1000 

packets sent 0 were successful in writing the coils. Therefore it is extremely 

unlikely an attack of this kind could succeed.  

5.4.4. Read Coils Attack 

In the system that was used for testing reading coils was considered non critical. 

The challenge response was not required to read coils. Therefore once a user 

logs in the coils can be read in the same way they would be in a non-secured 

system. In order to attack this system a read coils command was transmitted by 

the attack, the attacker could then read the resulting packet. If the attacker 

wanted to be less obvious about their attacks the attacker could just wait until a 

read coils command is issued by the user then read the results. Since the data is 
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not encrypted, an attacker would be able to perform this second attack even if 

challenge response was applied on issuing the command.  Both with and without 

the FD-SPP this attack was successful.  

5.4.5. Attacks on the HMI 

In current configuration packets going from the HMI to the FD-SPP can be 

challenged; however packets going from the FD-SPP to the HMI are not 

protected. Two attacks on the HMI were performed by injecting traffic to the 

wireless serial connection to the HMI. Both these attacks work on the system 

with and without the security additions.  

5.4.6. Read Coils Attack on HMI 

In this attack the attacker waits for a read coil command to be sent from the 

HMI to the FD-SPP, once the packet is sent the attacker sends a packet to collide 

with the read coils response sent by the FD-SPP. Since the packets collide no 

valid data is received. The attacker then sends their own read coils response 

code. The HMI sees this faked packet as the real read coils response. This allows 

the attacker to make the user think different things are happening in the network 

then what really are. 
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5.4.7. Write Coils Attack on HMI 

In this attack the attacker waits for a write coil command to be sent from the 

HMI to the FD-SPP, once the packet is sent the attacker sends a packet to collide 

with the write coils packet to prevent it from getting to the FD-SPP, if this fails 

making a packet collide with the challenge will perform the same thing. The idea 

is to stop the write coils packet from ever making it to the RTU by any means 

necessary. Once the packet is stopped the attacker can then send a write coils 

response to the serial connection of the HMI. In this way the attacker can make 

the user think they are writing coils when they are not. 

5.5. Digital Signatures for Return Packets 

After penetration testing it was clear a second layer of security was needed. An 

attacker was able to trick the HMI into thinking they were the RTU. In order to 

prevent this attack a digital signature was added to each return packet sent from 

the FD-SPP to the HMI.  

5.5.1. Creation of the Digitally Signed Messages 

The digital signature is created the same way the challenge response hashes are. 

They are created by hashing the Modbus packet without the CRC, with 4 bytes of 

nonce, with the 8 byte pre-shared secret using the SHA-256 hash algorithm. 
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SHA-256 Hash

Modbus Packet Without CRC Preshared SecretNonce

8-Byte Signature

 

FIGURE 5.5.1 Return Packet Digital Signature 

 

The digital signature is then appended to the Modbus Packet without CRC. A 

Modbus CRC for this new combined packet is then appended to the end to create 

a valid Modbus Packet. Using a signature instead of a challenge-response 

reduced the overhead created by the extra message passing that is required for 

a challenge-response. This way the only time that is added to the process is the 

time it takes to sign the packet and a small increase in packet propagation 

through the network since packet sizes are increased by 8 bytes.  

 

5.5.2. Timing Data for Signed Packets 

Shown in Table 5.5.1 is the table for packet propagation times after the addition 

of the packet signing routines. 
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TABLE 5.5.1 Timing data for return message digital signatures 

 Read 

Coils 

Write 

Coils Trails 50 50 

Minimum 169ms 288ms 

Median 192ms 304ms 

Average 189ms 307ms 

Maximum 201ms 325ms 

 

Comparing this table to the original time data reveals that adding the Digital 

Signature only adds a few milliseconds. Since the difference between reading 

and writing coils is a challenge response, it can be seen that the challenge 

response adds a lot more time than the digital signature.  

5.5.3. Nonce Generation for the Signature 

Since the Nonce is typically generated by a random number generator and sent 

in the challenge, the removal of this challenge presents a problem with nonce 

generation. It is important that the nonce be different on each message sent in 

order to prevent replay attacks. Additionally this nonce cannot be sent in the 

message because then the attacker could choose what nonce to send therefore 

allowing an opportunity for a replay attack.  

The nonce therefore must be different each time it is generated and able to be 

predicted by both the sender and the receiver of the message. In order to 
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achieve this, a pseudo random number generator was created to serve the 

nonce. The 32-bit (4 bytes) pseudo random number generator was creating 

using two independent 16-bit random number generators. The first was a linear 

congruential generator with period of 53124 and the second was a linear 

feedback shift register with period 65535 [30]. Together these pseudo random 

number generators combine to create a single 32 bit pseudo random number 

generator with a period of 1160493780. Additionally the pseudo random number 

generator is reseeded by a separate random number generator which adds 

entropy from a counter on the FD-SPP during every challenge and a separate 

random on the HMI during every challenge response. Since it is highly unlikely 

that 1160493780 packets in a row will be unchallenged it is likely that entropy 

will be added before the pseudo random generator repeats, and the nonce 

values for the digital signature should be random enough to ensure a high 

amount of protection from replay attacks. 

Each time a nonce value was required to create a digital signature the last used 

nonce values are used as seeds to the generator. Since both systems know the 

old nonce values and have the same generator they will get the same new nonce 

values without have to communicate them. This allows for a shared source of 

nonce without having to communicate the nonce, and prevents replay attacks.  

In order to inject more randomness into the nonce the nonce values from the 

challenge response will also be used. When a challenge response generates new 
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random nonce both systems will set this as their old nonce to be used as a seed 

the next time they sign a packet. Two of these bytes will come from the 4 nonce 

bytes sent in the challenge and another two bytes are included in the response 

packet. This way both systems create and control the nonce. This prevents an 

attacker from being able to choose all the nonce values, and then perform replay 

attacks. With the addition of the digital signatures and the new nonce creation, 

the attacker can no longer perform either of the previously discussed HMI 

Attacks on the system. 
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6. CONCLUSION AND FUTURE WORK 

This thesis has provided the details of the design and development of a 

Bloom filter authentication module field device security preprocesser as a 

security solution for legacy SCADA field device based on the previous work of 

Hieb and Graham [1]. This device provides several missing security features to 

legacy SCADA field devices using the Modbus protocol, and could easily be 

adapted for other SCADA protocols. The field device uses a micro-kernel 

operating system called OKL4, which allows for a high level of security by 

abstracting memory and execution spaces. The security features implemented on 

the field device include role based access control and challenge response. The 

focus of this thesis has been the design, implementation, analysis of these 

security features using Bloom filters.  

6.1. Results Summary 

Although Bloom filters have false positive authentication it was shown 

through analysis as well as penetration testing that this structure is acceptable 
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for many security applications. Additionally it was shown that by increasing the 

space used to store the Bloom filter and by finding hash functions that produce 

high internal collision rates for the given data set, the false positive rate can be 

reduced to the point where it is more than or as secure as an n-bit symmetric 

encryption key.  

Through performance testing it was shown that the propagation delay 

added by inserting a field device security pre-process around 275ms which is an 

acceptable level for use in the Department of Homeland Security Water Sector. 

The dual Bloom filter structure allows for role based access checks to be 

performed at a very high speed, only costing around 18µs, lowering the 

overhead cost of the FD-SPP on the SCADA network.  

6.2. Direction for Future Work 

The future work for the field device security preprocessor can go a 

number of directions. One direction is to add support for more protocols and 

interfaces. Modbus is not the only SCADA protocol being used in industry and in 

order to protect legacy systems, the protocols that are being used by these 

systems must be supported. Also, RS-232 is not the only interface SCADA 

systems are using. Modbus even has its own protocol for communicating over 

TCP/IP. In order to support these SCADA networks, this interface must be 

supported by the FD-SPP. Additionally the FD-SPP could act as an adapter that 

changes the interface from RS-232 to Ethernet or vice versa. The cell structure 
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of FD-SPP makes adding new protocols and changing interfaces very easy; once 

cells are created they can be simply swapped in and out to create new variants 

of the FD-SPP. Preliminary testing shows that, as expected, a FD-SPP using 

TCP/IP is a lot faster than one using serial communication, and the overhead 

created by the FD-SPP is much smaller. 

The OKL4 micro-kernel operating system has a close relative known as 

seL4, which has been formally verified [22]. Future development will need to 

consider porting this software to the verified kernel. Once the software is running 

on seL4, the software itself must be verified. Possibly, in a similar manner to 

seL4 using machine assisted and machine checked formal proof [22]. Although 

verification does not guarantee that the FD-SPP is secure, it would confirm that 

the software behaves completely as specified and any exploits would be of the 

design, not software bugs. A verified version of the FD-SPP could go a long way 

to reduce the vulnerabilities of legacy systems. 

An alternative to verifying the FD-SPP software running on seL4 would be 

to implement it on a FPGA and verify the VHDL code. Verification should be 

much easier since there has been some prior research into the formal verification 

of VHDL[31]. The software only has a few simple parts and could be 

implemented on an FPGA with little difficulty. The Bloom Filter does not require 

complex software other than the SHA-256 hash. Since it is known that SHA-256 

can be implemented on a FPGA, it should be a small step to implement the dual 

Bloom filter on a FPGA. Additionally, the challenge response routine also uses 
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SHA-256 and a small state machine; these two should be possible to implement 

on a FPGA. By implementing the FD-SPP in hardware, it can be made faster than 

using the general purpose hardware, further reducing the overhead added to the 

network.  
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