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ABSTRACT 

CHARACTERIZATION OF DNA-BINDING PROTEINS AS CLINICALLY 
RELEV ANT BIOMARKERS OF BREAST CANCER BEHAVIOR 

Traci L. Kruer 

November 17,2011 

While investigating estrogen response element (ERE) binding properties of ERa 

in de-identified human breast cancer extracts, additional proteins were observed that 

recognized ERE sequences (ERE-BP). In order to unravel the apparent role of these 

proteins, our goal was to compare properties of these novel ERE-BP with those of ERa, 

determine their identity and evaluate their clinical relevance in breast cancer behavior. 

ERE-BP were present in various tissue types including breast, ovarian, uterine and colon 

cancers and normal tissues. These proteins were present in both cytoplasm and nuclei 

although higher binding activities were detected in nuclear extracts. ERE-BP did not 

supershift with numerous anti-ERa or ER~ antibodies recognizing different ER epitopes 

suggesting that they are not fragments of either ERa or ER~. ERE-BP competed with 

rhERa for binding to the VitA2-ERE yet overall exhibited significantly different 

sequence specificity compared to that of human ERa. The ERE-BP we observed in breast 

cancer extracts were not specific for ERE sequences. To further support this conclusion, 

various estrogens had no effect on the ERE-binding of these proteins in contrast to 

rhERa. Furthermore, ERE-BP activities were not correlated with levels of expression of 
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in either ERu- or ERE-mediated transcription. An immune-based method was established 

for purifying ERE-BP from tissue extracts and proteins were identified by mass 

spectrometry. Ku70 (XRCC6) and Ku80 (XRCC5) were determined to be the most likely 

candidates for the identity of ERE-BP. Supershift assays confirmed that ERE-BP/ERE 

complexes observed by EMSA were specifically recognized by antibodies to the 

Ku70/Ku80 heterodimer (Ku). Western blotting with Ku70/Ku80 antibodies confirmed 

their presence in breast cancer extracts. Increased Ku DNA-binding activities in cytosols 

of breast biopsies correlated with higher grade tumors, positive lymph node status and 

decreased patient survival. Also increased Ku DNA-binding activities in cancers from 

patients receiving adjuvant chemotherapy correlated with decreased survival, suggesting 

Ku DNA-binding activities may be used to predict response to treatment. Collectively, 

our results suggest that Ku DNA-binding activities in cytosols prepared from carcinoma 

biopsies are useful biomarkers for assessing breast cancer recurrence and response to 

therapy. 

v 



TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGMENTS ................................................................................................. iii 
ABSTRACT ....................................................................................................................... iv 
LIST OF TABLES ........................................................................................................... viii 
LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

I. INTRODUCTION and PRELIMINARY RESULTS 

Introduction .............................................................................................................. 1 

Breast Cancer Overview .......................................................................................... l 

Estrogen Receptor Biology ...................................................................................... 9 

Molecular Pathogenesis of Breast Cancer ............................................................ .1 0 

Preliminary Results ................................................................................................ 20 

Hypothesis and Specific Aims ............................................................................... 27 

II. CHARACTERIZATION AND DISTRIBUTION OF CANDIDATE ESTROGEN 
RESPONSE ELEMENT BINDING PROTEINS IN HUMAN BREAST 
CARCINOMA .......................................................................................................... 29 

Introduction ............................................................................................................ 29 

Methods and Materials ........................................................................................... 31 

Results and Discussion .......................................................................................... 3 7 

Summary and Conclusions .................................................................................... 60 

III. PURIFICATION AND IDENIFICATION OF DNA-BINDING PROTEINS BY 
IMMUNO-BASED METHODS AND MASS SPECTROMETRY ........................ 63 

VI 



Introduction ............................................................................................................ 63 

Methods and Materials ........................................................................................... 64 

Results and Discussion .......................................................................................... 69 

Summary and Conclusions .................................................................................... 90 

IV. CLINICAL UTILITY OF THE DNA-BINDING PROTEIN KU AS A 
BIOMARKER OF BREAST CARCINOMA BEHAVIOR ..................................... 94 

Introduction ............................................................................................................ 94 

Methods and Materials ........................................................................................... 96 

Results and Discussion ........................................................................................ 1 0 1 

Summary and Conclusions .................................................................................. 128 

REFERENCES ................................................................................................................ 130 

APPENDIX ...................................................................................................................... 153 

CURRICULUM VITAE .................................................................................................. 156 

Vll 



LIST OF TABLES 
TABLE 

1. Representative genes known to contain ERE sequences that were evaluated in 

micro array analyses of LCM-procured human breast carcinoma cells ................. 59 

2. Correlation of cytosolic ERE-BP levels with candidate genes containing ERE 

sequences known to be expressed in breast carcinoma cells ................................. 61 

3. List of proteins in the final purified sample that were identified by mass 

spectrometry ........................................................................................................... 7 6 

4. Characteristics of the overall patient population with associated clinical data ..... 99 

5. Association of cytosolic Ku DNA-binding activities with various patient 

characteristics ....................................................................................................... 1 05 

6. Influence of Ku DNA-binding activity in frozen breast cytosols from breast 

carcinomas for predicting the disease-free and overall survival of patients ....... .111 

7. Comparison of clinical parameters between the two prognostic groups in a subset 

of patients receiving adjuvant chemotherapy only ............................................. .124 

8. List of DNA sequences ........................................................................................ 153 

9. List of abbreviations ............................................................................................ 154 

Vlll 



LIST OF FIGURES 

FIGURE 

1. Steps in the homologous recombination pathway ................................................. 14 

2. Steps in the nonhomologous end joining pathway ................................................ 16 

3. Structural features of Ku70 (A) and Ku80 (B) ...................................................... 18 

4. Distribution of ERE-binding proteins in breast cancer cytosols ............................ 22 

5. Correlation ofERE-BP binding activity with ER and PR status ........................... 24 

6. Effect of enzymatic digestion on ERE-BP ............................................................ .25 

7. Overall survival probabilities of breast cancer patients as a function of ERE-BP 

status ...................................................................................................................... 26 

8. Labeling of ERE sequences with e2p]dATP ......................................................... 34 

9. Method for estimating ERE-binding protein activities in breast cancer biopsies 

using [32P]VitA2-ERE ........................................................................................... 36 

10. ERE-binding proteins from extracts of human tissue reference specimens and 

animal tissues associated with VitA2-ERE (A) and pS2-ERE (B) ........................ 38 

11. ERE-binding proteins from extracts of frozen human tissue specimens associated 

with VitA2-ERE ..................................................................................................... 39 

12. Comparison ofERE-BP activities in cytosolic and nuclear extracts .................... .42 

13. Influence of hERa antibodies recognizing different sequence domains on the 

cytosolic ERE-BP assessed by super-shift assay .................................................. .43 

IX 



14. Influence of hERP antibodies recogmzmg different sequence domains on 

cytosolic ERE-BP assessed by super-shift assay .................................................. .44 

15. Supershift assay using antibodies to known ERE-binding proteins ..................... .45 

16. Competition of rhERa recognition of VitA2-ERE by ERE-BP in human breast 

cancer extracts ........................................................................................................ 47 

17. ERE-BP binding to a variety of hormone response element sequences ................ 49 

18. Competition of VitA2-ERE recognition by ERE-BP using various unlabeled 

response element sequences ................................................................................... 51 

19. Specificity ofERE-BP binding to VitA2-ERE ...................................................... 52 

20. Representative ERE titration ofrhERa (A) and ERE-BP (B) in the presence of 

1 /lM diethylstilbestrol ........................................................................................... 55 

21. Titration of rhERa with increasing concentrations of e2PJVitA2-ERE in the 

presence of various therapeutic estrogens .............................................................. 56 

22. Titration of an ERE-BP preparation from a breast cancer reference specimen with 

increasing concentrations of e2PJVitA2-ERE in the presence of various 

therapeutic estrogens .............................................................................................. 57 

23. Method for purification of candidate ERE-BP ...................................................... 66 

24. Removal of high abundant proteins from nuclear extracts of a uterine cancer 

reference powder .................................................................................................... 70 

25. Influence of various biotinylated DNA sequences on the "pull-down" of candidate 

ERE-BP from nuclear extracts ............................................................................... 72 

26. Purification ofERE-BP for analysis by mass spectrometry .................................. 74 

x 



27. Determination of molecular weight of ERE-BP in reference specimens of human 

breast and uterine carcinomas ................................................................................ 80 

28. Western blot analyses of proteins eluted during the purification of ERE-BP with 

NeutrAvidin beads ................................................................................................. 81 

29. Recognition ofERE-BP by an antibody detecting heterodimers of Ku70/Ku80 .. 83 

30. Influence of antibodies to double strand breaks repair proteins on candidate ERE-

binding proteins ..................................................................................................... 85 

31. Influence of various antibodies to Ku70/Ku80 on ERE-BP in frozen cytosols from 

breast cancer ........................................................................................................... 8 7 

32. Comparison ofKu DNA-binding activities and protein levels .............................. 89 

33. Correlation ofKu DNA-binding activities and protein levels ............................... 91 

34. REMARK diagram describing the patient population used to investigate the 

clinical relevance of Ku ......................................................................................... 98 

35. Reproducibility of EMS A measurement ofKu DNA-binding activities ............ .l02 

36. Inter-relationships of cytosolic Ku DNA-binding activities in breast cancers and 

various patient characteristics .............................................................................. 103 

37. Disease-free and overall survival probabilities of the study population as a 

function of known prognostic indicators ............................................................. 1 07 

38. Disease-free and overall survival probabilities of the study population as a 

function of ER and PR status of the breast carcinomas ...................................... .l 08 

39. Disease-free and overall survival probabilities as a function of Ku DNA-binding 

activity in breast carcinomas ................................................................................ 109 

Xl 



40. Disease-free and overall survival probabilities as a function of Ku70 and Ku80 

protein levels ........................................................................................................ 112 

41. Disease-free and overall survival probabilities as a function of XRCC5 (Ku80) or 

XRCC6 (Ku70) gene expression levels in breast carcinomas ............................ .114 

42. Disease-free and overall survival probabilities as a function of both Ku DNA-

binding activity and ERiPR status of breast carcinomas .................................... .116 

43. Disease-free and overall survival probabilities as a function of both Ku DNA-

binding activity and nodal status of breast carcinomas ....................................... 120 

44. Disease-free and overall survival probabilities as a function of Ku DNA-binding 

activity in cytosols of breast cancers from a sub-population of patients receiving 

no adjuvant therapy .............................................................................................. 121 

45. Disease-free and overall survival probabilities as a function of Ku DNA-binding 

activity in cytosols of breast cancers from a sub-population of patients receiving 

adjuvant chemotherapy ........................................................................................ 122 

XlI 



CHAPTER I 

INTRODUCTION AND PRELIMINARY RESULTS 

Breast Cancer Overview 

Carcinoma of the breast cancer is the most common cancer affecting women in 

the United States with over 200,000 new cases estimated in 2010 and more than 39,000 

deaths [1]. It is the second most common cause of cancer death in women, and the main 

cause of death in women ages 40 to 59, although the incidence has been decreasing by 

1.8% per year from 1999-2007 [1;2]. Current risk estimates suggest that a woman who 

lives to the age of90 has a 1 in 8 chance of developing breast cancer [3]. 

Breast cancer etiology and risk/actors 

The most common risk factors for developing breast cancer are age, benign breast 

disease, young age of menarche, late age of first live birth, a first-degree relative with 

breast cancer and race [1 ;4;5]. Additional risk factors include excessive estrogen 

exposure, radiation exposure, environmental toxins, smoking, diet, obesity and exercise 

[3 ;5-9]. The effects of these are not fully understood. 

Breast cancers may be divided into sporadic and hereditary cases. Only 13% of 

women with breast cancer report a family history in a first-degree relative [4]. 

Approximately 3% of all breast cancers and 25% of those classified as hereditary cancers 
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can be attributed to mutations in the genes BRCAI and BRCA2 [3]. Both of these genes 

act as tumor suppressors and are involved in DNA repair and cell cycle control [3]. A key 

function for BRCAI and BRCA2 is to prevent genomic instability from progressing after 

DNA damage occurs [10]. BRCAI and BRCA2 are highly penetrant and have a large 

effect on risk but are rare. Approximately 10% of hereditary breast cancers are attributed 

to mutations in other known genes [11]. These genes include CHEK2, p53, PTEN and 

ATM [3;12;13]. CHEK2 gene encodes a cell cycle checkpoint kinase protein and 

functions to repair DNA damage by activating BRCAI [14]. The p53 gene encodes a 

well studied transcription factor that is involved in the G I checkpoint of the cell cycle 

and mutations in this gene increase the risk of genomic instability in the cell [13]. 

Furthermore, the PTEN gene encodes a protein tyrosine phosphatase whose inactivation 

results in elevated Akt activity and abnormal growth regulation [15-17]. Lastly, the ATM 

gene encodes a protein kinase that phosphorylates BRCAI in response to DNA damage 

[13]. These genes are moderately penetrant and their combined effects are not fully 

understood. 

Sporadic breast carcinomas comprise the majority of all breast cancer cases. For 

sporadic breast cancer, the major risk factors are related to estrogen exposure [3]. 

Hormone replacement therapy increases the risk of developing breast cancer [18], and 

combined hormonal therapy with estrogen and progestins may further increase breast 

cancer risk [19]. The majority of sporadic breast cancers occur in post-menopausal 

women and more than 60% of the lesions over-express the estrogen receptor [3 ;20]. 

Many studies have examined the mechanisms by which estrogens influence 

differentiation and proliferation of cells that may result in aberrant signaling through 
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estrogen-dependent pathways, thought to be a major mechanism for hormone receptor 

positive breast cancers [20-24]. However, additional mechanisms playa role in sporadic 

cancers as a significant number of breast carcinomas are ER negative [25;26]. Clearly, 

breast cancer is a complex disease determined by environmental and genetic components. 

Prognostic and predictive factors of breast cancer 

The 5-year survival rates for women with breast cancer vary from 98% for 

patients with localized disease at diagnosis to 23% for patients with distant disease at 

diagnosis [1]. Several major indicators are used at the time of diagnosis to determine 

prognosis of a breast cancer patient and are integrated into the American Joint Committee 

on Cancer (AJCC) staging system [27]. These prognostic indicators provide information 

on clinical outcome independent of therapy and are related to cancer growth, invasion 

and metastatic potential [28]. The major prognostic factors of breast cancer are invasive 

carcinoma, distant metastases, axillary lymph node metastases, tumor size, locally 

advanced disease and inflammatory carcinoma [3]. The most significant of these factors 

in the absence of distant metastases is lymph node status [3;29]. For node negative 

patients, the lO-year disease-free survival rate is 70% to 80% [3]. For patients with up to 

three positive nodes, the 10-year survival rate drops to 35% to 40% [3]. This rate drops to 

10% to 15% for breast cancer patients with more than 10 positive nodes. The second 

most important prognostic factor is tumor size [3]. The 5-year survival rate for a woman 

with a carcinoma less than 1 cm in diameter is approximately 92.6%; however the 5-year 

survival rate for a woman with a carcinoma greater than 5 cm in diameter drops to 62.9% 

[30]. 
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These major prognostic factors are integrated into the AlCC staging system [27] 

and are divided into stages O-IV. Stage 0 consists of ductal carcinoma (DCIS) in situ or 

lobular carcinoma in situ (LCIS). These have not invaded beyond the basement 

membrane and have not yet metastasized [3;27]. The 5-year survival rate of patients with 

these carcinomas is 92% [3]. Stage I carcinomas are locally invasive tumors less than 2 

cm in diameter without nodal involvement [3;27]. The 5-year survival rate is 87% [3]. 

Stage II carcinomas are invasive tumors less than 5 cm in diameter with up to three 

positive lymph nodes or invasive tumors greater than 5 cm in diameter without nodal 

involvement. The 5-year survival rate of patients with these cancers is 75% [3]. Stage III 

breast carcinomas consist of invasive tumors less than 5 cm in diameter with at least 4 

positive axillary lymph nodes as well as invasive tumors greater than 5 cm in diameter 

with positive lymph nodes, invasive tumors with 10 or more positive lymph nodes, 

invasive tumors with involvement of the internal mammary lymph nodes, skin, or chest 

wall and inflammatory cancer [3]. The 5-year survival rate for these cancers is 46% [3]. 

Stage IV breast cancers are invasive tumors of any size with the presence of distant 

metastases. The 5-year survival rate for patients with these cancers is only 13% [3]. 

There are also several minor factors that provide useful clinical information 

regarding prognosis. These include histologic subtypes (e.g. ductal, tubular, mucinous, 

medullary, lobular, papillary and cribiform), tumor grade, lymphovascular invasion, 

proliferation rate and DNA content [3; 12; 13]. Tumor grade is a measure of tumor 

differentiation that takes into account tubule formation, nuclear pleomorphism and 

mitotic counts [31]. The 10-year survival rates are 85%, 60% and 15% for well­

differentiated (grade I), moderately differentiated (grade II) and poorly differentiated 
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(grade III) tumors, respectively [3]. Observation of tumor cells within the lymphatics or 

capillaries (lymphovascular invasion) is associated with increased lymph node 

involvement and poorer prognosis [3]. Proliferation rate can be measured by flow 

cytometry (S-phase fraction), thymidine labeling index or immunohistochemical 

detection of cellular proteins (e.g., cyclins, Ki-67) [3]. High proliferation rates are 

associated with a poorer prognosis [32]. The DNA content of a cell is also correlated with 

prognosis while aneuploid tumors are indicative of poor prognosis [3;33;34]. 

Certain molecular factors in breast carcinoma biopsies are used to predict the 

liklihood of a patient responding to a specific treatment. The three most commonly used 

predictive factors are the estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) status [3;35]. ER and PR are members of the 

nuclear hormone receptor superfamily and function as ligand dependent transcription 

factors [36]. It is reported that 60-70% of breast cancers express ER [12;20;35]. 

Furthermore, patients with tumors that over-express ER and/or PR are most likely to 

respond to endocrine therapy [20;24-26;35;37]. Many studies report that 80% of patients 

with tumors that are ER+/PR+ respond to endocrine therapy [3]. Approximately forty 

percent of patients with tumors that are positive for one of these receptors respond to 

endocrine therapy, whereas only 10% ofER-/PR- tumors respond [3;12;25;26]. 

Originally ER and PR were measured a ligand binding assay (LBA) that was 

developed into an FDA-approved assay [23;38-40]. In this assay, ligand (17~-estradiol 

for ER, progestin (R5020) for PR) labeled with either [12sIodine] or eH-tritium] is 

incubated with cytosols prepared from tissue biopsies under conditions allowing the 

ligand to bind to the receptor. Free steroid is separated by addition of dextran-coated 
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charcoal and removed by centrifugation. The amount of receptor-bound labeled steroid 

hormone in the supernatant is then measured using a scintillation counter [23;38-40]. The 

results are used to create a Scatchard plot [41]. From this plot, the concentration of the 

receptor protein in the cytosol is determined and generally expressed as femtomoles of 

receptor per mg protein (fmol/mg protein). The cutoff value approved by the FDA for ER 

or PR positivity using this assay is 2: 10 fmol/mg protein [35]. Importantly, a Kd value 

estimating the affinity of the ligand for the receptor protein is also derived. 

Beginning in the 1980's, ER and PR levels were also quantified by enzyme 

immunoassay (EIA). This is an antibody based method that also requires the use of 

cytosols from fresh tissues [42]. In this assay, cytosols are incubated with a monoclonal 

antibody attached to a polystyrene bead. The protein/antibody-bead complex is separated 

by centrifugation, resuspended and incubated with a secondary antibody conjugated to 

the enzyme horseradish peroxidase. A colorimetric substrate is added and converted to 

yield a color change that can be measured by spectrophotometry and the values are 

plotted on a standard curve for quantification [42-44]. The cutoff approved by the FDA 

for ER and PR positivity using this assay is 2: 15 fmol/mg protein [35]. The advantage of 

both LBA and EIA is that the receptors are measured quantitatively [20;45]. The LBA is 

the only procedure that determines the affinity of the receptor for its ligand, usually 

expressed as the Kd value. However, both assays require fresh-frozen specimens and a 

considerable amount of tissue. 

Currently, the predominate assay used for clinical measurement of ER and PR 

levels is immunohistochemistry (IHC) [35]. IHC is also an antibody based assay and can 

be performed on either frozen or formalin-fixed, paraffin-embedded (FFPE) tissue 
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sections mounted on glass slides [46;47]. Sections are incubated with monoclonal 

antibodies followed by incubation with a secondary antibody conjugated to the enzyme 

horseradish peroxidase. A colorimetric substrate is then added which is converted to a 

colored product that is detected by microscopy and the amount of ER or PR protein can 

be semi-quantified based on the number of positive cells and the intensity of staining. 

The advantage of IHC over EIA or LBA is that it can be performed on a variety of 

specimens and requires very little tissue. The disadvantage of IHC is assay variability and 

lack of standardization [48-50]. 

The HER2 gene encodes a transmembrane glycoprotein with intrinsic tyrosine 

kinase activity [51]. This protein belongs to the epidermal growth factor receptor (EGFR) 

family of receptors and is involved in the signal transduction pathways controlling cell 

growth and differentiation [52]. Amplification of the HER2 gene has been correlated with 

both shorter disease-free and overall survival in breast cancer [53]. Tumors that over­

express HER2 are less likely to respond to certain chemotherapies than tumors with 

normal HER2 levels [54]. However, these tumors are more likely to respond to therapies 

that target HER2 itself (e.g. trastuzumab) [55]. HER2 may be measured by IHC, PCR or 

fluorescence in situ hybridization (FISH) [12;13]. 

Treatment of breast cancer 

Surgical removal of the tumor is the standard initial treatment for primary breast 

cancers with no evidence of distant metastases. This therapeutic approach may be breast­

conserving or involve surgical removal of the entire breast [56]. Surgery may then be 

followed with adjuvant radiation therapy, chemotherapy, endocrine therapy (e.g. 
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tamoxifen) or targeted therapy (e.g. trastuzumab) depending on the size of the tumor, 

lymph node involvement, presence of ER, PR and HER2 and other risk factors for 

recurrence. 

Endocrine therapy 

Due to the estrogen-dependent nature of many breast cancers, endocrine therapies 

have been developed to prevent tumors from responding to stimulation by endogenous 

estrogens. In the 1950's, ovarian ablation was the standard therapy for women with breast 

cancer. This therapy was most effective in women with ER+ and/or PR+ tumors [57]. In 

the early 1970's, it was reported that ER+ tumors were more likely to respond to 

endocrine ablation than ER- tumors [58]. Several studies reported that approximately 

60% of patients with ER+ tumors responded to endocrine therapy, while only 8% of 

patients with ER- tumors responded to the same therapy [59;60]. These observations led 

to the development of tamoxifen for the treatment of breast cancer [61-64]. Currently, 

tamoxifen is the most commonly used endocrine therapy for breast cancers that are ER 

and/or PR positive. Fifty to eighty percent of these tumors respond to tamoxifen, while 

only 5-10% of ER-/PR-tumors respond [65-68]. Tamoxifen is a selective estrogen 

receptor modulator (SERM) and acts as an inhibitor of growth and proliferation of breast 

cancer cells by competitive antagonism of ER [69]. Another SERM, raloxifene, is used 

for reduction in risk of invasive breast cancer in postmenopausal women [70]. Another 

class of endocrine therapy for treatment of breast cancer is composed of aromatase 

inhibitors (e.g. anastrozole, letrozole, exemestane). Aromatase inhibitors work by 
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inhibiting aromatase, the enzyme which converts androgenic precursors into estrogens 

[67;71]. 

Estrogen Receptor Biology 

ER is a member of the nuclear hormone receptor superfamily and acts as a ligand­

dependent transcription factor [72]. Two ER isoforms, ERa and ERP, mediate estrogen 

actions in target tissues [73]. The structure of these ER proteins can be divided into six 

functional domains. The N-terminal AlB domain contains a transactivation function (AF) 

which promotes the transcriptional activation of target genes [74;75]. The C region 

contains the DNA-binding domain, which is responsible for ERE recognition and 

dimerization [75;76]. ER binds to the ERE through two type II zinc fingers formed by the 

coordination of a zinc atom with four cysteine residues [75-78]. The D region joins the 

DNA-binding and ligand-binding domains and is referred to as the hinge region [74;75]. 

This region allows the receptor to bend and alter conformation and also contains a 

putative nuclear localization sequence [75;79;80]. The E region contains the ligand­

binding domain and is responsible for hormone binding and activation of transcription 

[74;75]. The C-terminal F domain modifies the interaction of ER with coregulators and 

plays a role in the response to agonist and antagonist ligands [81-83]. 

The DNA-binding domains of ERa and ERP share 97% homology; however the 

ligand-binding domains share only 59% homology [84;85]. Although both isoforms are 

expressed in breast tissue, currently the biological and clinical roles of ERP are being 

evaluated [84;86]. A clinical application of ERP has not yet been accepted for the 
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management of breast cancer, although its expression has reported to be associated with 

better survival in breast cancer patients treated with adjuvant tamoxifen [86;87]. 

In the classical pathway of estrogen action, ER alters the expression of target 

genes by binding to regions upstream of general promoters known as estrogen response 

elements (ERE). This mechanism affects the expression of genes involved in cell growth, 

proliferation and differentiation [74;88]. Some examples of target genes containing ERE 

sequences are progesterone receptor, lactoferrin, pS2, cathepsin D and BRCAI [88]. 

When 1713-estradiol (E2) or another estrogenic ligand binds to ER, it induces a 

conformational change in the receptor protein leading to dimerization and binding to an 

ERE sequence [75;89]. The consensus ERE is a 13 bp palindromic inverted repeat with 

the sequence 5'-GGTCAnnnTGACC-3'; however ERa can also bind to imperfect ERE 

sequences [88;90;91]. The ERE was first discovered in the 5'-flanking regions of 

Xenopus laevis estrogen controlled vitellogenin genes [88;92]. After ERE binding, a 

protein complex is formed as either coactivator (e.g. SRC-l, TIFl, TIF2, TFIIB) or 

corepressor proteins (e.g. NCoR, SMRT, SHP, REA) bind to the dimer, culminating in 

either recruitment of general transcription factors to promote transcription of the adjacent 

gene or histone deacetylases to negatively effect ER-mediated transcription [93-96]. 

Molecular Pathogenesis of Breast Cancer 

The progression of breast cancer is a multistep process that involves a series of 

genetic changes leading to the conversion of normal cells into carcinoma cells [97]. In 

order for normal cells to become cancerous, they must acquire basic traits that include 

sustaining proliferative signaling, insensitivity to growth suppressors, evasion of 
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apoptosis, replicative immortality, sustained angiogenesis and tissue invasion [97]. 

Genomic instability IS a major underlying cause of normal cells acquiring these 

premalignant traits. Genomic instability refers to an increased rate of alterations in the 

genome throughout the life cycle of a cell [98]. Normal cells minimize the risk of these 

alterations through high-fidelity DNA replication, accurate chromosome segregation 

during mitosis, cell cycle checkpoints and repair of DNA damage [99]. Maintenance of 

genomic integrity following DNA damage is crucial for tumor suppression. This is 

especially important in breast tissue because of the extensive differentiation, proliferation 

and apoptosis that occurs during development in utero, puberty, monthly pre-menopausal 

cycles and pregnancy [100-102]. 

DNA damage and repair 

DNA damage may be caused by endogenous factors (e.g. oxidative damage, 

errors of replication) or environmental factors (e.g mutagenic chemical exposure, food 

contaminants, ionizing radiation) [100;103;104]. Among the most dangerous forms of 

DNA damage are double strand breaks (DSBs). DSBs occur when both strands of the 

DNA double helix are broken simultaneously. This allows the DNA ends to dissociate 

making repair difficult and permitting recombination with improper sites in the genome 

[105]. As a result, chromosomal aberrations may occur that increase the rate of cancer 

development. Therefore, defects in DNA-damage repair pathways are potential initiating 

events of carcinogenesis [105-107]. 

Repair of DSBs occurs through at least two mechanisms: homologous 

recombination and nonhomologous end joining [108]. During homologous 
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recombination, the DNA strand with the DSB uses an undamaged DNA strand with 

which it shares extensive sequence homology as a template [105-108]. Homologous 

recombination is generally an accurate mechanism of repair if the template used for 

repair is identical to the original DNA sequence [107; 1 08]. Homologous recombination is 

mediated through the RAD52 group of proteins that is composed of RAD50, RAD51, 

RAD52, RAD54, RAD55, RAD57, MREll and NBSI [107-110]. Homologous 

recombination proceeds by recognition and resection of the DSB ends to form 3'-OH 

single-stranded tails, strand invasion and exchange with a homologous DNA duplex and 

resolution of recombination intermediates [108; 111]. 

The first step of homologous recombination involves degradation of the 5'-end of 

the DNA strand to produce 3'-OH single-stranded tails that are able to invade a 

homologous DNA duplex [108] (Figure 1). The complex of proteins responsible for this 

series of reactions is composed of MREll, RAD50 and NBSI (known as the MR(X)N 

complex) [109]. In the next step of homologous recombination, one strand of 

homologous DNA duplex is displaced by the invasive strand, resulting in the formation 

of a heteroduplex DNA known as aD-loop [108;111]. To achieve this, replication 

protein A (RP A) first binds to the 3'-OH single-stranded tails, which causes RAD51 

filament formation to occur. This filament is a complex of RAD51, RAD52, RAD54, 

RAD55 and RAD57 and performs both the search for a homologous sequence and strand 

exchange [108;109]. The resulting D-loop is formed when DNA synthesis of the 3'-end 

of the invading strand is primed by the template duplex DNA [111]. The last step of 

homologous recombination is resolution of the D-loop intermediate. This occurs by one 

of three different pathways: synthesis dependent strand annealing (SDSA), double 
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Holliday junction (dHJ) or BIR (break induced replication) [109]. In SDSA, the D-loop is 

dissolved after DNA synthesis allowing the invading strand to anneal to the second end 

of the DSB [lOS]. In dHJ, pathway a double Holliday junction is formed when the second 

end of the DSB is occupied by either DNA annealing or a second strand invasion [108]. 

BIR occurs when only a single DSB end exists causing the D-loop to become a 

replication fork [109]. The breast cancer susceptibility genes, BRCA 1 and BRCA2, also 

function in HR. BRCAI is an E3 ligase that promotes RADSI recruitment and has a 

potential regulatory role in resection of the DSB ends [109; 112]. BRCA2 is involved in 

RADSI filament formation [109]. By interacting with both RADSI and single-stranded 

DNA, BRCA2 mediates the binding ofRADSI to damaged DNA [113]. 

Nonhomologous end joining (NHEJ) ligates two DSBs without the need for 

extensive sequence homology between the two ends [lOS]. This results in NHEJ being 

inherently error prone with the potential result of loss of nuc1eotides [114]. NHEJ 

proceeds by detection of the DSB, protection of the DNA ends, removal of damage and 

DNA ligation [114]. The major proteins involved in this pathway are Ku70, KuSO, DNA­

dependent protein kinase (DNA-PK), Artemis, XRCC4, ligase IV and XLF/Cernunnos 

[114-116]. The first step in NHEJ is recognition of the DSB by the Ku protein complex, 

which is composed of a heterodimer of Ku70 and KuSO (Figure 2) [103;114;l1S;117]. 

Ku70 and KuSO make up the DNA-binding subunits of DNA-PK. After binding to the 

DNA ends, Ku translocates to internal positions of the DNA molecule making the ends 

accessible to the catalytic subunit of DNA-PK (DNA-PKcs) [l1S-120]. DNA-PKcs is a 

460-kDa serine/threonine kinase that is part of the phosphotidylinositol-3-kinase family 

[114;117;121]. Then the two DNA ends are tethered together by a synaptic complex 

13 



A 
11 1 11 1111 

__ O MR(X)N 
B 

IDJOOIIII 

c 

Jo r ---.l 0 = 
• RPA 

0 

~. TIT ••• 
E 

m!1 1 TIT 
III 

I II 1 1 111111111 

F -m!1 1 

/ 
I I I I I I 

G 

1111111 1 1111 1 1 

Figure 1. Steps in the homologous recombination pathway. (A) Damage in the form of a 

DSB occurs in the DNA. (B) The first step of homologous recombination is binding of 

the MR(X)N complex to the DSB. (C) Degradation of the 5'-end of the DNA strand 

occurs to produce 3'-OR single-stranded tails that are able to invade a homologous DNA 

(d) Replication protein A (RPA) binds to the 3'-OR single-stranded tails, which causes 

RAD51 filament formation to occur (E). (F) The resulting D-Ioop is formed when DNA 

synthesis of the 3'-end of the invading strand is primed by the template duplex DNA (G) 

The last step of homologous recombination is resolution of the D-Ioop intermediate and 

repair of the DNA. Adapted from [108]. 
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formed by two DNA-PK molecules [122]. Subsequently, the kinase activity of DNA­

PKcs is activated causing an autophosphorylation across the DSB as well as 

phosphorylation of other proteins involved in NHEJ [114;123-127]. This allows other 

NHEJ proteins to bind to the DNA ends [124;128]. The next step in NHEJ is processing 

of the DNA ends by nucleases such as Artemis. Artemis is a 5'~ 3' exonuclease that also 

exhibits endonuclease activity in the presence of DNA containing double-stranded 

DNA/single-stranded transitions [129;130]. Artemis also possesses the ability to remove 

3'-phosphoglycolate groups from DNA ends [131]. 

The final step in NHEJ is ligation of the DNA ends by the DNA ligase 

IV /XRCC4 complex. XRCC4 acts a scaffolding protein that is required for DNA ligase 

IV activity [132-134]. DNA ligase IV ligates the DNA ends, even if the sequences are 

incompatible [135]. XLF associates with Ku and XRCC4 and increases the ability of 

DNA ligase IV to achieve this [136]. The recruitment ofDNA-PKcs, XRCC4 and XLF is 

dependent on Ku [137-139]. 

Structure and function of Ku 

Ku was originally identified as an autoantigen present in the sera of a patient with 

scleroderma polymyositis overlap syndrome [140]. It has also been identified in patients 

with other autoimmune diseases such as systemic lupus erythematosus, scleroderma, 

myositis and Sjogren's syndrome [141]. Ku is an abundant protein (~400,000 molecules 

per cell) that is primarily nuclear [103;142]. Ku has also been found in the cytosols of 

monkey and human cells [143;144]. The Ku protein is composed of two subunits with 

molecular weights of approximately 70 and 80 kDa, referred to Ku70 and Ku80. Ku70 is 
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Figure 2. Steps in the nonhomologous end joining pathway. (A) Damage in the form of a 

DSB occurs in the DNA. (B) The first step in NHEJ is recognition of the DSB by the Ku 

protein complex, which is composed of a heterodimer of Ku70 and Ku80. (C) Ku 

translocates to internal positions of the DNA molecule making the ends accessible to 

DNA-PKcs. (D) Two DNA ends are tethered together by a synaptic complex formed by 

two DNA-PK molecules. (E) The kinase activity of DNA-PKcs is activated causing an 

autophosphorylation across the DSB. (F) This allows other NHEJ proteins to bind to the 

DNA ends such as Artemis, the DNA ligase IVIXRCC4 complex and XLF. (G) The final 

step in NHEJ is ligation of the DNA ends. Adapted from [114]. 
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also known as XRCC6 and Ku80 is also known as Ku86 and XRCC5. 

Ku70 and Ku80 are similar in structure but share only 14% sequence alignment 

[145]. Each contains a von Willebrand A domain (vWa), a central Ku core domain and a 

carboxy-terminal region [142] (Figure 3). The vWa domain is involved in protein-protein 

interactions and Ku70 and Ku80 heterodimerization. The Ku core domain is a ~-barrel 

domain that binds to the sugar-phosphate backbone of DNA [146]. The N-and C-terminal 

regions of Ku70 and Ku80 are unique in each protein. In addition, the N-terminal region 

of Ku70 is an acidic domain that contains a DNA-PKcs phosphorylation site [123]. The 

C-terminal region of Ku70 contains a SAP (SAF-A/B, Acinus and PIAS) domain which 

is related to a helix-extension-helix fold and is proposed to be a DNA-binding domain 

[147;148]. The C-terminal region of Ku80 is longer than Ku70 and forms a flexible arm 

possibly involved in protein-protein interactions [149; 150]. This region also contains a 

DNA-PKcs binding site and phosphorylation site [151;152]. Furthermore, Ku70 contains 

a nuclear localization sequence (NLS) at amino acids 539-556 and Ku80 contains a NLS 

at amino acids 561-569 [153;154]. 

The heterodimer of Ku70 and Ku80 forms an asymmetric ring that encircles 

dsDNA [145]. The channel formed by this ring contains positively charged residues that 

are responsible for the interaction between the protein and the sugar-phosphate DNA 

backbone. This structure allows Ku to bind DNA with high affinity and without the need 

for sequence specificity [142]. It is reported that this structure allows Ku to move inward 

along the DNA strand making the DNA ends accessible to DNA-PKcs [120]. 

The main function of Ku is in NHEJ as described above; however it also functions 

in V(D)J recombination, telomere maintenance, apoptosis and regulation of transcription 
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Figure 3. Structural features of Ku70 (A) and Ku80 (B). Each protein contains a von 

Willebrand A domain (vWa), a central Ku core domain and a carboxy-terminal region 

(CT). The N-and C-terminal regions of Ku70 and Ku80 are unique in each protein. For 

example, the C-terminal region of Ku70 contains a SAP (SAF-AlB, Acinus and PIAS) 

domain which is related to a helix-extension-helix fold and is proposed to be a DNA­

binding domain. In addition, the C-terminal region of Ku80 contains a DNA-PKcs 

binding site. Ku70 contains a nuclear localization sequence (NLS) at amino acids 539-

556 and Ku80 contains a NLS at amino acids 561-569 [114;142;154]. 
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[142;146;155]. In V(D)J recombination, different V, D, and J genes segments are joined 

together in various combinations generating diversity in immunoglobulins and T-cell 

receptors. During recombination, a hairpin structure with blunt double-stranded ends is 

formed. Ku is recruited to this structure to repair the double-stranded ends in a manner 

similar to NHEJ [142;156;157]. 

Telomeres are G-rich DNA sequences located in the ends of chromosomes of 

eukaryotes that function to prevent chromosome fusion and protect the chromosome from 

deterioration. Ku binds to telomeric sequences during telomere repair and helps prevent 

end-to-end DNA fusion through association with telomerase reverse transcriptase [158-

160]; however the exact mechanism for this is unclear. In S. cerevisiae, Ku localizes 

telomeres to the nuclear membrane and is part of the complex that is required for 

transcriptionally silent chromatin [161;162]. S. cerevisiae deficient for Ku have telomeres 

shorter in length than wild type strains [163]. Loss of one Ku80 allele in human cells 

results in shorter telomere length and increased genomic instability [142]. 

Cytosolic Ku70 has been shown to be involved in apoptosis through its 

association with Bax. Bax is a member of the Bcl-2 family of pro-apoptotic proteins that 

regulate apoptosis through control of the integrity of mitochondria. Ku70 binds Bax 

preventing its localization to the mitochondria thereby inhibiting apoptosis [144]. This 

activity is mediated by a region in the carboxy terminus of Ku70 and does not require 

heterodimerization with Ku80. Upon apoptotic stress, Bax dissociates from Ku70, 

undergoing a conformational change followed by translocation to mitochondria and 

subsequence apoptosis [144; 164]. 
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Ku also appears to be involved in the regulation of transcription of certain genes. 

Some reports suggest that Ku binds in a sequence-specific manner to the promoters of 

heat shock proteins, glucose-regulated peptide 78 and glucose-regulated peptide 94, and 

regulates the transcription of these genes [165-167]. However, these studies used linear 

DNA, raising the possibility of the DNA ends playing a role in sequence binding. 

Because of the ring like structure of Ku, sequence specific binding in vivo would most 

likely occur through the formation of unusual DNA structures, although binding could 

also occur through the carboxy-terminal SAP domain of Ku70 [148;165;168]. Other 

reports have shown that Ku is involved in transcriptional regulation without sequence 

specific binding. For example, Ku associates with RNA polymerase II elongation sites 

through protein-protein interactions between Ku80 and transcription-elongation proteins. 

However the mechanism by which Ku regulates transcription is unclear [169]. 

Preliminary Results 

Hormone Receptor Laboratory TumorMarker Database and biorepository: 

The studies outlined in this dissertation utilized de-identified human tissue 

specimens and associated clinical data available in the IRB-approved Hormone Receptor 

Laboratory (HRL) Biorepository and Tumor Marker Database. Tissue specimens were 

collected and typically processed within an hour following surgery using stringent 

protocols to ensure the integrity of specimens for genomic and proteomic analyses 

[20;24]. Remaining tissue was stored at -80°C from over 5,000 breast, ovarian, uterine 

and colon cancers, of which specimens were selected for these studies. The HRL 

Biorepository and Tumor Marker Database contain associated de-identified tumor 
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marker/clinical outcome that includes up to 15 years of clinical follow-up. Available 

clinicopathological data include tumor-based properties (e.g., pathology, grade, stage, 

size and tumor marker status), patient-related characteristics (e.g., age, race, menopausal 

status, family history, nodal status) and clinical follow-up (e.g, treatment regimen, 

disease-free and overall survival). As a state and federally licensed clinical laboratory, the 

HRL performed biochemical assays measuring the protein levels of ER and PR for 

~22,000 human tissue specimens, most of which were breast cancers. Quantitative ER 

and PR expression (fmol/mg cytosol protein) data were generated using two different 

FDA-approved clinical assays described earlier: ligand binding assay (LBA) and enzyme 

immunoassay (EIA, Abbott Technologies). 

Detection of ERE-BP in breast cancer tumor extracts 

While investigating DNA-binding properties of ERa in breast cancer cytosols, we 

discovered non-ERa proteins that recognized ERE sequences [170-172]. To determine 

the distribution of these ERE-binding proteins (ERE-BP), cytosols were prepared as 

previously described [20;37;168] from various breast cancer biopsies and analyzed by 

electrophoretic mobility shift assay (EMSA) using a e2P]labeled Xenopus laevis 

vitellogenin A2 (VitA2) ERE, which contains a perfect palindrome sequence [88;173]. 

Four types of expression profiles of the ERE-BP were detected with band migration 

distances appearing lower than that of recombinant human ERa (rhERa) which served as 

a control ERE-binding protein (Figure 4). 

The most common profile (63% of samples) consisted of a single band on an 

EMSA gel migrating below that of rhERa. A few cytosols exhibited a band migrating 
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Figure 4. Distribution of ERE-binding proteins in breast cancer cytosols. Cytosols were 

prepared as previously described [20;38;39; 174] from various breast cancer biopsies and 

analyzed by electrophoretic mobility shift assay (EMSA) using a e2P]labeled Xenopus 

laevis vitellogenin A2 (VitA2) ERE (Lanes 2-14). Recombinant human ERa (rhERa) 

served as a control ERE-binding protein (Lane 1). Equal amounts of protein (13 )lg) were 

loaded in each lane. 
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lower than the major ERE-BP band (4% of the samples examined) while a significant 

number of EMS A profiles contained both bands (24%). Nine percent of the samples were 

negative for ERE-BP. To detennine if the presence of the ERE-BP is related to ER or PR, 

levels were correlated with the ER and PR status of the tumor (Figure 5). The DNA­

binding levels of ERE-BP present in breast cancer cytosols were detennined by scanning 

each lane of the EMSA gels and using Optiquant ™ software for quantification. Patients 

were grouped according to ER and PR status and data were analyzed by box and whisker 

plots followed by a Kruskal-Wallis test. No correlation was found between ERE-BP level 

and ERJPR status suggesting these proteins are unrelated to the nuclear sex honnone 

receptor proteins. 

To confinn that the observed complex fonned is a DNA-protein complex, protein 

extracts were treated with pepsin, trypsin and RNaseA prior to ERE-binding reactions 

and analyzed by EMSA (Figure 6). Treatment with 1 00 ~g/ml pepsin at 37°e eliminated 

binding of ERE-BP to the ERE. Treatment with 100 ~g/ml pepsin at 4°e resulted in a 

smaller ERE-BP fragment. Treatment with 100 ~g/ml trypsin at both 4°e and 37°e 

eliminated binding of the ERE-BP to the ERE. Treatment with 1 00 ~g/ml RNase A had 

no effect on complex fonnation at either 4°e or 60oe. Addition of 0.01 % SDS to the 

reaction mixture and boiling also eliminated binding. These results confinn that the 

complex observed is indeed a DNA/protein complex. 

To detennine if these ERE-BP have prognostic significance for patients with 

breast carcinoma, Kaplan-Meier survival analyses were perfonned (Figure 7). Patients 

were divided into ERE-BP negative or ERE-BP positive groups and overall survival 

probabilities were examined [172]. At 100 months of follow-up, patients with tumors 
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Figure 5. Correlation of ERE-BP binding activity with ER and PR status. The DNA-

binding levels of ERE-BP present in breast cancer cytosols was determined by scanning 

each lane of the EMSA gels and using Optiquant™ software for quantification, expressed 

as 10glO % binding/J..lg protein. Patients were grouped according to ER and PR status and 

data were analyzed by box and whisker plots followed by a Kruskal-Wallis test. 
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Figure 6. Effect of enzymatic digestion on ERE-BP. Cytosols containing ERE-BP were 

treated with either 100 Ilg/ml pepsin, 100 Ilg/ml trypsin, 100 Ilg/ml RNase A at the 

temperatures indicated, boiling at 95°C for 5 minutes or 0.01 % SDS prior to the binding 

reaction and analyzed by EMSA. The untreated control cytosol (C) is also shown. 
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Figure 7. Overall survival probabilities of breast cancer patients as a function ofERE-BP 

status. Kaplan-Meier analyses were used to determine the influence of ERE-BP status 

(either positive or negative) on overall (OS) survival. P values were determined using a 

log-rank test. 
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that were ERE-BP negative had survival probabilities of 90%, while patients with tumors 

that were ERE-BP positive had survival probabilities of only 68%, suggesting that these 

proteins may be prognostic markers for breast cancer. 

Hypothesis and Specific Aims 

The overall goal of these investigations is to characterize and identify these novel 

proteins that were first detected by their recognition of ERE sequences and confirm their 

clinical relevance in a larger patient population as a result of our initial detection of the 

proteins in human breast cancers. 

The hypothesis for these investigations is that the ERE-binding protein identified 

in human breast cancer biopsies functions independently of estrogen receptor signaling 

and their DNA-binding activity correlates with breast cancer prognosis. This hypothesis 

will be examined in the following Specific Aims: 

Specific Aim I - To determine the biological characteristics of the novel ERE-BP (e.g. 

sequence specificity, effect ofER ligands, tissue distribution, cellular localization). 

Specific Aim II - To purify the ERE-BP using immunobased methods and identify their 

sequences by mass spectrometry. 

Specific Aim III - To correlate ERE-BP expression and activities with properties of the 

breast carcinoma (e.g. pathology, stage, nodal status), patient characteristics (e.g., family 
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history, age, race), and clinical outcome (disease-free and overall survival) to determine 

clinical relevance of ERE-BP status for prediction of a patient's prognosis and the 

clinical behavior of the breast carcinoma. 
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CHAPTER II 

CHARACTERIZATION AND DISTRIBUTION OF CANDIDATE ESTROGEN 

RESPONSE ELEMENT BINDING PROTEINS IN HUMAN BREAST 

CARCINOMA 

Introduction 

The focus of the studies described in this Chapter is to investigate the distribution 

and biochemical properties of the newly discovered ERE-binding proteins [172]. 

Preliminary studies in our laboratory suggested these ERE-binding proteins (ERE-BP) in 

cytosols were associated with breast cancer behavior and characteristics prompted this 

series of experiments. Our initial results revealed four types of expression profiles of 

ERE-BP on EMSA with band migration distances greater than that of recombinant 

human ERa (rhERa) and DNA-binding activities of ERE-BP were not correlated with 

levels of either ER or PR in extracts from breast cancer specimens, although patients with 

breast cancers that were ERE-BP negative exhibited decreased overall survival. 

Known ERE-binding proteins 

A number of proteins other than the estrogen receptor have been reported to bind 

to ERE sequences. Orphan receptors such as the estrogen related receptors (ERR) bind to 

the ERE and affects estrogen signaling either positively or negatively [175;176]. ERRa 
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binds to the ERE sequence in the human lactoferrin gene promoter and constitutively 

activates transcription [177]. ERRa also competes with ERa for binding to consensus 

ERE sequences and either acts as a constitutive activator or as an active repressor of 

ERE-regulated transcription in a cell type-dependent manner [178]. These results suggest 

the need for evaluation methods capable of characterizing more subtle aspects of ERE­

protein interactions in any given tissue sample. Another orphan receptor, COUP-TF, also 

has been shown to bind to ERE sequences and inhibit estradiol induced gene expression 

[179-181 ]. 

In addition to the estrogen-related and orphan receptors, other proteins have been 

reported to compete with ERa for ERE binding [182-186]. In New World primate cells, 

ERE-binding proteins were discovered that compete with human estrogen receptor for 

binding to the consensus ERE [183]. These endogenous ERE-BP were able to block 

ERE-mediated transcription in marmoset B-Iymphoblastoid B95-8 and owl monkey 

kidney cells. Chen et al. determined that the protein responsible for this activity was 

similar to the hnRNP C-like or hnRNP-D subfamily of heterogeneous nuclear 

ribonucleproteins and that its overexpression results in estrogen unresponsiveness in 

primates [183;184;186]. More recently, Chen et al. showed that overexpression of these 

ERE-binding proteins in MCF -7 cells resulted in dysregulation of normal interactions 

between ERa and the ERE [185] and that estradiol and tamoxifen could restore the 

normal interaction [186]. 

Another ERE-binding protein has been identified in cytosols of rat uteri that may 

influence ER binding [187]. Expression of this protein was detected in both estrogen 

responsive and nonresponsive tissues and injection with 17~-estradiol repressed the ERE-
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BP levels by 40-50%. UV crosslinking experiments revealed that the molecular weight of 

the protein to be 48 kDa, however the identity of the protein was never discovered. 

The purpose of this investigation was to characterize proteins observed in breast 

tumor extracts that bind to ERE sequences in order to determine their role in breast 

cancer behavior. The goal was to determine if these proteins share properties with ERa, 

ERP or with other known ERE-binding proteins discussed above. 

Methods and Materials 

Preparation o/human recombinant estrogen receptor-a (rhERa) protein 

The yeast strain BJ3505 was transformed with an hERa expression plasmid YEpE12 and 

hERa is expressed as an ubiquitin fusion under the control of CUP 1 promoter [188;189]. 

Yeast cells were grown III complete (-Trp) medium and monitored 

spectrophotometricallyat a wavelength of 595 nm. When the OD595 reached 0.6, rhERa 

expression was induced by addition of CUS04 to a final concentration of 1 00 ~M. After 

harvesting and washing with water, yeast pellets were extracted in 40 mM Tris buffer 

with 1.5 mM EDTA, 10% glycerol, 10 mM Na2M004, 10 ~M monothioglycerol and 1 

mM PMSF. Yeast cells were disintegrated with glass beads in a Vortex Genie® in 5 

intervals of 30 seconds each, with 30 seconds intervals cooling on ice. Debris was 

removed from the preparation by centrifugation at 100,000 x g for 30 minutes at 4°C. The 

supernatant containing rhERa was recovered for immediate assay or stored at -80°C for 

future use as a reference representing a well characterized ERE-binding protein. 
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Cytosol preparation 

Cytosols were prepared from de-identified human breast cancer tissue specimens in 40 

mM Tris-HCI, pH 7.4, containing 1.5 mM EDTA, 10% glycerol, 10 mM Na2Mo04, 1 

mM PMSF and 10 ~M monothioglycerol, and homogenized with a Polytron PT-I0-35. 

Homogenate was separated into pellet and cytosol by centrifugation at 105,000 x g for 30 

minutes at 4DC, using a Beckman LE-80K ultracentrifuge [20;38;39;60;174]. Protein 

concentration of each cytosol was determined by the Bradford procedure [190]. Cytosols 

were stored at -80DC for future use. 

Nuclear extract preparation 

Tissue sections were prepared in a nuclease and protease-free environment using a Leica 

cryostat/frozen microtome [191]. For preparation of nuclear extracts, ten 30 ~m frozen 

tissue sections were placed into pre-chilled 1.5 mL microcentrifuge tubes and 

immediately stored on dry ice. Sections were transferred to a chilled Duall homogenizer 

and homogenized in 10 mM HEPES buffer, pH 7.9, containing 10 mM KCI, 0.1 mM 

EDTA,1 mM DTT, 0.5 mM PMSF with aprotinin, leupeptin and pepstatin A (0.01 ~g/~l 

each). Lysates were centrifuged at 4°C at 15,000 x g for 3 minutes. The nuclear pellet was 

resuspended in 20 mM HEPES, pH 7.9 containing 0.4 M NaCl, 1 mM EDTA, 10% 

glycerol, 1 mM DTT, 0.5 mM PMSF with aprotinin, leupeptin and pepstatin A (0.01 

~g/~l each). The resuspended pellets were mixed at 4°C for 2 hours and centrifuged at 

4°C, 15,000 x g for 5 minutes [192;193]. 
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Labeling of ERE sequences 

For labeling with e2p]dATP, 30 J!M synthetic double-stranded ERE sequences 

(Integrated DNA Technologies) were incubated with Klenow DNA buffer (Promega), 5% 

~-mercaptoethanol (Sigma), 750 J!M dCTP, dGTP, and dTTP (Promega), 1.25 J!M 

[a32P]dATP (Perkin Elmer) and 5 units DNA Polymerase I Large (Klenow) fragment 

(Promega) at 37°C for 30 minutes, followed by a gravity-flow separation through a NICK 

column (Amersham). The sample was eluted with 3 ml TE buffer (10 mM Tris-HCl, pH 

8.0, containing 1 mM EDT A) and collected into fractions (-100 J!l each). Radioactivity 

was measured by a scintillation counter and fractions were also run on a 4% 

polyacrylamide gel to confirm the presence and separation of labeled ERE from 

unreacted e2p]dATP [188;194]. Representative results are shown in Figure 8. 

Electrophoretic mobility shift and supershift assays 

Protein extracts were incubated with 50 ng non-specific DNA, poly (dl-dC) (Amersham), 

10 mM KCl, 1% glycerol and e2P]-labeled ERE sequences in 40 mM Tris-HCl buffer, 

pH 8.0, containing 500 J!M PMSF and 10 J!M monothioglycerol overnight at 4°C. In ERE 

competition experiments, a 125-fold molar excess of unlabeled ERE was added to each 

reaction and incubated for 30 minutes before addition of e2p]ERE [195]. Sequences used 

are shown in Table 8 (See Appendix). For supershift assays, extracts were incubated with 

various antibodies for 30 minutes before addition of e2p]ERE. Reactions were separated 

by 5% polyacrylamide gel electrophoresis. The gel was pre-run for 30 minutes at 150 V 

at 4°C in 0.5X TBE buffer (1.0 M Tris-HCl, pH 8.6, containing 831 mM boric acid, 10 
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Figure 8. Labeling of ERE sequences with C2p]dATP. (A) Example of a profile of 

C2P]VitA2 ERE sequence separated from unreacted C2p]dATP using a Nick column. The 

sharp peak at fractions 3-5 indicate the labeled ERE and the second, broad peak 

represents the free C2P]dA TP. Here fraction #4 is the most active and ideal for use in 

EMSA experiments. (B) NICK column fractions were subjected to electrophoresis on a 

4% polyacrylamide gel. The slower moving bands (Lanes 3-5) represent labeled 

C2p]VitA2-ERE, while the faster migrating bands (Lanes 7-15) represent free C2p]dATP. 
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mM EDT A). Samples were then loaded, followed by electrophoresis at 300 V for 5 

minutes, and then 180 V for 4 hours. Subsequently, gels were dried and exposed to 

phosphor screens (Perkin Elmer) overnight. The bands representing e2p]ERE-protein 

complexes and free e2p]ERE were visualized and quantified using a Cyclone Storage 

Phosphor System with OptiQuant® software (Perkin Elmer). 

A method of estimating the DNA binding activity levels of ERE-BP in breast 

cancer biopsies was developed by measuring the band intensity of the ERE-BP/ERE 

complexes or free e2p]ERE in each lane from the EMSA using OptiQuant® software. 

The value of band intensities (representing the amount of e2P]Vita2-ERE ) are reported 

as Digital Light Units (DLU)lllg protein and normalized to the total DLU of the lane in 

order to compare between samples. A representative band quantification experiment is 

shown in Figure 9. 

ERE titrations of ERE-binding proteins 

EMSAs were performed as described above with varying amounts of e2p]VitA2-ERE 

and a constant 51lg of total protein. The reactions were incubated with either ethanol 

(ETOH) or 1 IlM diethylstilbesterol (DES), 4-hydroxytamoxifen (Tmx), 17~-estradiol 

(E2) or raloxifene (Rlx) for 30 minutes before the addition of e2p]Vita2-ERE. Gels were 

scanned and bands quantified using OptiQuant® software as previously described. A 

standard curve plotting fmoles of ERE versus DLU was used to determine the amount of 

ERE bound by protein. Data were modeled using one-site binding kinetics with 

GraphPad Prism® software. 
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Figure 9. Method for estimating ERE-binding protein activities in breast cancer biopsies 

using e2p]VitA2-ERE. A representative profile of an EMSA gel is visualized using the 

Cyclone Phosphoimager and the total DLU representing total e2p]VitA2-ERE 

radioactivity in a single lane of the EMSA gel is measured in A. After outlining each lane 

as shown in A, the DLU for each band (ERE-BP or rhERu) are determined by integrating 

the area under the curve using Optiquant™ software (B). 
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Results and Discussion 

Distribution of ERE-binding proteins in various tissues 

To assess the tissue specificity of ERE-binding proteins, extracts of several 

human tissue reference powders prepared from breast cancer, fibroid, uterus and 

myometrium were analyzed by EMSA after incubation with ERE sequences for the 

vitellogenin gene (VitA2) and the pS2 gene. These reference powders were prepared 

previously as standards for assessment of estrogen and progestin receptor activities used 

in clinical trials for human breast cancer [25;26]. Cytosols from reference powders of 

breast cancer, uterus and fibroids exhibited prominent bands suggesting high 

concentrations of the ERE-binding proteins recognizing these two e2PJERE sequences 

(Figure 10). The myometrial cytosol only displayed a very low quantity of these proteins 

when the same amount of total protein was examined by EMSA. Each of the ERE-BP 

migrated to a position on EMSA gels lower than that of rhERu. Cytosols prepared from 

frozen ovarian, colon and endometrial carcinomas as well as normal uteri were also 

analyzed for the presence of ERE-BP (Figure 11). Cytosols from these tissues exhibited 

prominent bands suggesting high concentrations of the ERE-binding proteins recognizing 

e2PJVitA2-ERE sequences, indicating that the ERE-BP are ubiquitous proteins present in 

a variety of tissues. 

To examine species specificity of the ERE-binding proteins, extracts from uteri of 

rat, calf, and ververt monkey (Cercopithecus aethiops) also were analyzed by EMSA 

with the e2PJERE sequences for the VitA2 and pS2 genes (Figure 10). rhERu was used 

as a control on the EMSA gels to show that ERE-binding proteins migrated below the 
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Figure 10. ERE-binding proteins from extracts of human tissue reference specimens and 

animal tissues associated with VitA2-ERE (A) and pS2-ERE (B). To assess tissue 

specificity, extracts of human tissue specimens prepared from a pooled preparation of 

either de-identified breast cancer (Lane 1), fibroids (Lane 2), uteri (Lane 3) and 

myometria (Lane 4) were analyzed by EMSA with C2PJERE sequences for the VitA2 and 

pS2 genes. To evaluate species specificity of ERE-BP, uteri of rat (Lane 5), calf (Lane 6) 

and ververt monkey (Cercopithecus aethiops) (Lane 7) were also analyzed. rhERa served 

as a control (Lane 8). Total protein in a quantity of 17 ug was added in each lane. 
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Figure 11. ERE-binding proteins from extracts of frozen human tissue specimens 

associated with VitA2-ERE. Cytosols of human tissue specimens prepared from either 

de-identified ovarian carcinoma (A), endometrial carcinoma (B), normal uteri (C) and 

colon carcinoma (D) were analyzed by EMSA with e2PJERE sequences for the VitA2 

genes. rhERa served as a control as indicated. Total protein in a quantity of 25 ug was 

added in each lane. 
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band position representative of the estrogen receptor protein. It was noted that rhERa 

recognized e2p]VitA2 ERE with a higher apparent affinity than that of pS2 ERE. 

Neither cytosol from rat or calf uteri exhibited significant quantities of ERE-binding 

proteins, although ververt monkey uterine extracts expressed high levels of two distinct 

ERE-binding protein species migrating below rhERa (Figure 10). 

As mentioned previously, other investigators have identified proteins recognizing 

the ERE sequence in New World primate B95-8 and owl monkey kidney cells [182;183]. 

Further characterization by these investigators revealed these proteins belong to the 

hnRNP family. This suggests the proteins identified in our investigations that are 

expressed in ververt monkey tissue may also be members of this family, which prompted 

our use of supershift assays using antibodies against these proteins as described below. 

Cellular distribution of ERE-BP 

To determine the cellular distribution of ERE-BP, levels were compared between 

cytosolic and nuclear extracts by EMSA. Extracts from various human tissue reference 

samples were prepared as described above and equal amounts of total protein were used 

in each of the EMSA reactions. We evaluated a variety of fresh frozen and lyophilized 

breast and uterine preparations that had been composed to serve as reference specimens 

for quality assurance surveys of ER and PR [25;26]. Results of these human tissue 

reference specimens are shown in Figure 12A. The DNA-binding activities of the ERE­

BP varied in both the cytosolic and nuclear extracts in each tissue sample analyzed. 

Generally the nuclear extracts exhibited a higher DNA-binding activity of the ERE-BP 

than those in cytosolic extracts. We also evaluated ERE-BP in de-identified frozen breast 
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cancer biopsies. As shown in Figure 12B, the nuclear extracts of three different breast 

carcinomas contained significantly higher ERE-BP levels than those of cytosolic extracts 

of these representative specimens. 

These results consistently reveal a higher abundance of these ERE-binding 

proteins in the cell nucleus than in the cytoplasm. Chen et al. also reported finding ERE­

binding proteins belonging to the hnRNP family in nuclear extracts [182] while Gray and 

Gorski reported finding ERE-binding proteins in cytosols [187]. Identification of the 

ERE-BP we have observed is necessary to determine whether these proteins are the same 

as those previously reported or if they represent new candidate biomarkers of breast 

cancer behavior. 

Lack of recognition of ERE-BP by antibodies against ERa and ERfJ 

Super-shift assays were performed to determine if ERE-BP contain epitopes 

recognized by antibodies prepared against various regions of the human ERa protein 

(e.g., AER 320/C-terminus, AER314/a.a. 125-165, ID51N-terminus, 5Dll1a.a. 302-553) 

or ER~ (e.g. MAI-310/a.a. 247-261, PAI-311/a.a. 55-70, PAI-313/a.a. 467-485). The 

epitope for AER611 is unknown. As shown in Figure 13, rhERa exhibited a supershift 

when reacted with each antibody, verifying its identity; however, ERE-BP did not 

supershift in the presence of anti-ERa antibodies recognizing different ERa epitopes. 

Reaction of rhER~ with antibodies recognizing epitopes of the various regions in the 

receptor protein brought about supershifts with most of the reagents. The basis for the 

lack of recognition of Ab-15 is unknown; however, rhER~ apparently recognized 
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Figure 12. Comparison of ERE-BP activities III cytosolic and nuclear extracts. To 

determine the cellular distribution ofERE-BP, activities were compared between those of 

cytosolic and nuclear extracts using e2p]VitA2-ERE and EMSA. Extracts from various 

lyophilized human tissue reference samples were prepared as cytosol (C) and nuclear 

extracts (N) as described in Materials and Methods. Equal amounts of total protein (25 

Jlg) were used in each of the EMSA reactions. The de-identified preparations examined 

were either breast carcinoma (pairs 1, 4 and 7) or uterine tissues (pairs 2, 3, 5 and 6) as 
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Figure 13. Influence of hERa antibodies recognizing different sequence domains on the 

cytosolic ERE-BP assessed by super-shift assay. Recombinant hERa (A) and cytosol 

from a human breast cancer reference specimen containing ERE-BP (B) were incubated 

with hERa specific antibodies AER 314, 320, 611 , IDS and SD11 (NeoMarkers/Thermo 

Fisher) recognizing epitopes in various domains of ERa (e.g. , AER 320/C-terminus, 

AER314/a.a. 12S-16S, IDS/ N-terminus, SDII/a.a. 302-SS3) and with ERa. pAb 

(PanVeraiLife Technologies). 
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Figure 14. Influence of hER!) antibodies recognizing different sequence domains on 

cytosolic ERE-BP assessed by super-shift assay. Recombinant hER!) (PanveraiLife 

Technologies) and cytosol from a human breast cancer reference specimen were 

incubated with hER!) specific antibodies Ab-15 (Neomarkers/Thermo Fisher), MA 1-31 0, 

PAl-310, PAl-311 and PAI-313 (Affinity Bioreagents/Thermo Fisher) recognizing 

epitopes in various domains of hER!) (e.g. PA1-3l1/a.a. 55-70, MAl-3l0/a.a. 247-261 , 

PAl-3l0/a.a. 467-485, PAl-313/a.a. 467-485). 
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Lane 1 2 3 4 5 6 

Figure 15. Supershift assay using antibodies to known ERE-binding proteins. Supershift 

assays were performed on cytosols from a breast cancer reference specimen with 

antibodies to known ERE-binding proteins. Lane 1 shows the ERE-BP control. Lane 2: 

hnRNP D (GenWay), Lane 3: hnRNP DL (GenWay), Lane 4: hnRNP ClIC2 (Santa 

Cruz), Lane 5: ERRa (R&D Systems), Lane 6: COUP-TFI (R&D Systems). 
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PAI-310 which may block binding of the receptor to e2p]ERE (Figure 14). Figure 14 

also shows that ERE-BP did not supershift in the presence of anti-ERp antibodies. 

Supershijt assay using antibodies to known ERE-binding proteins 

To evaluate whether ERE-BP were recognized by antibodies to other known 

ERE-BP, supershift assays were performed using antibodies prepared against hnRNP D, 

hnRNP DL, hnRNP CIfC2, ERRa and COUP-TFI (Figure 15). No supershifts were 

observed when breast cancer cytosols were incubated with antibodies to either hnRNP D, 

hnRNP DL, hnRNP ClIC2, ERRa or COUP-TFI (Figure 15), suggesting that the 

proteins of interest are not related to members of the hnRNP family or to COUP-TF. 

These results suggest that the ERE-binding proteins we have identified are not 

among the more commonly known ERE-binding proteins. However, supershift assays are 

not definitive for protein recognition due to the nature of the non-denaturing conditions 

of EMSA. The native conformation of a protein may leave certain epitopes inaccessible, 

thereby preventing antibody recognition. Therefore, more definitive results are needed to 

determine and confirm the identity of these ERE-BP. 

ERE-BP and ERa. compete for ERE binding 

To ascertain if ERE-BP influence ERE recognition by rhERa, competition 

experiments were performed by incubating increasing quantities of cytosol from both an 

ERE-BP positive and an ERE-BP negative tissue, with constant concentrations of rhERa 

and VitA2-ERE (Figure 16A). Band intensities of both the ERE-BP and rhERa protein­

DNA complexes were determined by scanning the gel lanes and integrating the areas 
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Figure 16. Competition ofrhERa recognition ofVitA2-ERE by ERE-BP in human breast 

cancer extracts. Competition experiments were performed by incubating increasing 

quantities of cytosol from either an ERE-BP positive (Lanes 1-7) or negative extract 

(Lanes 9-15), holding the concentrations of rhERa and e2p]VitA2-ERE constant (A). 

Lanes 1 and 15 contained extract only. Lane 8 contained only rhERa. The protein 

concentration of rhERa in ~g/reaction was plotted against ERE-binding expressed as a 

percent of the rhERa control (B, . ). The binding isotherm for the ERE-BP was plotted 

similarly (B, 0). 
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under the curves for each band, usmg Optiquant@ software. Protein concentration 

(~g/reaction) was plotted against ERE-binding as percent of control for either rhERa or 

ERE-BP, showing an expected sigmoidal dose-response curve (Figure 16B). An ERE-BP 

positive reference cytosol inhibited hERa binding to VitA2-ERE in a concentration­

dependent manner with simultaneous appearance of the novel ERE-BP. These results 

confirm that the observed suppression of rhERa binding to ERE results from the presence 

of ERE-binding proteins, indicated by lack of competition by an ERE-BP negative 

extract (Figure 16A). 

Other studies have reported that an ERE-binding protein can compete with the 

estrogen receptor for binding to ERE sequences. Kraus et al. reported that ERRa 

competes with ERa for binding to ERE sequences in MCF-7 breast cancer cells [196]. 

However, ERRa binding to the ERE alone was not sufficient to mediate transcription. 

Burbach et al. reported that COUP-TFI competes with ERa for binding to the ERE and 

this was sufficient to repress transcription of the oxytocin gene in P19 embryonal 

carcinoma cells [179]. Furthermore, Chen et al. reported that the ERE-BP discovered in 

New World primate cells that appear to be related to hnRNPs can also compete with ERa 

for binding to the ERE and disrupt the ERIERE interaction [182]. Competition results 

correlated with the amount ofERE-BP present in the extract. 

Sequence binding specificity of ERE-BP 

To determine if the sequence binding specificity ofERE-BP were similar to ERa, 

EMSA assays were performed by incubating a human breast cancer cytosol with various 
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Figure 17. ERE-BP binding to a variety of hormone response element sequences. EMSA 

assays were performed by incubating a breast cancer cytosol with various e2PJlabeled 

sequences. The HRE sequences tested include those forVitA2 , jun, h-fos, pS2, cathepsin 

D, prolactin and PR form BEREs, as well as the progesterone response element (PRE), 

the glucocorticoid response element (GRE) and two scrambled polynucleotide sequences. 

Lane 1 contains the e2PJVitA2-ERE only without extract present in the reaction. 
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e2P]labeled sequences (Figure 17). Those tested include ERE sequences in the VitA2, 

jun, h-fos, pS2, cathepsin D, prolactin and PR form B genes, as well as the progesterone 

response element (PRE), the glucocorticoid response element (GRE) and two scrambled 

sequences. Although the ERE-BP appeared to exhibit different affinities for the wide 

variety of sequences, the proteins exhibited binding to each sequence tested, including the 

scrambled sequences. This suggests that the ERE-BP do not bind specifically to ERE 

sequences and thus may be general DNA binding proteins that may not recognize a 

specific nucleotide sequence. 

To further explore the DNA binding of ERE-BP, competition experiments were 

performed with unlabeled response element sequences for the VitA2 and pS2 genes as 

well as with unlabeled thyroid hormone response element (TRE) and a mutant VitA2 

(VitA2-mut) sequences (Figure 18). The TRE sequence used was a palindrome (TREpal). 

Presence of the ERE-BP band after addition of the unlabeled competitor indicates that the 

protein does not bind to that sequence as tightly as to e2p]VitA2. Upon addition of 125-

fold molar excess of unlabeled VitA2, pS2 and VitA2-mut sequences, a decrease in the 

amount of ERE-BP was observed. However, there was no decrease observed with the 

addition of TREpal, indicating that the ERE-BP did not recognize this sequence. When 

the same experiment was performed with the rhERa control, a decrease in the amount of 

ERa was observed with the addition of unlabelled VitA2, pS2 and TRE, but not with 

VitA2-mut sequences. These data indicate that ERE-BP and ERa exhibit distinct DNA 

binding specificities. 

Several additional sequences were tested by incubating e2p]VitA2-ERE and a 

breast cancer reference powder cytosolic extract in the presence of 125-fold molar excess 
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Figure 18. Competition of VitA2-ERE recognition by ERE-BP using various unlabeled 

response element sequences. rhERa (lanes 1-5), a breast carcinoma extract (lanes 6-10) 

and an extract of a breast cancer reference specimen (lanes 11-15) were incubated 

individually with C2p]VitA2-ERE and 125-fold molar excess of unlabeled sequences 

VitA2, pS2, TRE and a mutant VitA2 (VitA2-mut), then analyzed by EMSA. Presence of 

the ERE-BP band after addition of the unlabeled competitor indicates that the protein 

does not bind to that sequence as tightly as to C2p]VitA2-ERE. 
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Figure 19. Specificity of ERE-BP binding to VitA2-ERE. Competition analyses were 

performed using 1 ng of e2p]VitA2-ERE and 15 ug of cytosolic protein from a breast 

cancer reference specimen that was incubated in the presence of 125-fold molar excess of 

unlabeled competitor (various response element sequences indicated). The extent of 

competition is expressed as percent of the control, which was measured is in the absence 

of an unlabeled polynucleotide sequence. 
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of several unlabeled competitor DNA sequences (Figure 19). Results show that the pS2, 

PR-isoform B and rat prolactin ERE sequences competed to the greatest extent with 

VitA2. The VitA2 and VitA2-mut sequences only inhibited binding by 50-60%. The 

TFIID sequence also showed only 50-60% inhibition of binding. The BCL2 ERE, 

TREpal and OCT -1 and 2 sequences showed little or no competition in the presence of 

e2p]VitA2-ERE. OCT-l and 2 are both transcription factors that are members of the 

POU domain family and bind to sequences unrelated to EREs [197;198]. These results 

also suggest that the ERE-BP we are investigating appear to have different affinities for 

various sequences, but do not recognize specifically ERE sequences and as such they 

appear to be general DNA binding proteins with broad specificity. 

Earlier, Gray and Gorski reported that the ERE-BP observed III rat uterine 

cytosols also were inhibited by VitA2 and mutant VitA2 ERE sequences by 50-60%, 

which is similar to our results [187]. In their experiments OCT-l sequences inhibited 

binding by approximately 10%. This is similar to data observed in this study with breast 

cancer ERE-BP. However, they showed that the TFIID sequence inhibited binding by 80-

90%, while we only observed 50-60% inhibition of binding by the ERE-BP in breast 

cancer cytosol. Chen et al. reported that the ERE-BP they identified in New World 

primate cells was inhibited by 100% in the presence of a consensus ERE sequence [182]. 

In this experiment the TREpal sequence did not inhibit binding, which is similar to our 

results from this study. 

There are many classes of DNA-binding proteins (e.g., transcription factors, 

polymerases, nucleases, DNA repair proteins and histone proteins) beyond those that 

recognize ERE sequences specifically. Furthermore, several classes of proteins recognize 
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particular elements of DNA structure other than the nucleotide sequence (e.g., single or 

double-strand breaks). Novel DNA-binding proteins identified in this work may belong to 

one of these classes of proteins and subsequent studies described in Chapter III will 

address this. 

ERE titrations in the presence of therapeutic estrogens 

Both Chen et al. [186] and Gray and Gorski [187] reported that 17~-estradiol 

represses ERE-BP binding to the ERE. Chen et al. showed that 1 ~M estradiol restored 

the association of ERa with the ERE sequence in MCF-7 cells. They also reported that 

tamoxifen was able to mimic this response at a concentration of 10 nM. Gray and Gorski 

showed that ERE-BP binding to the ERE decreased in rat uterine cytosols with a single 

1.0 ~g dose of estradiol [187]. For these reasons, we performed ERE titrations in the 

presence of various estrogens to determine the influence on ERE-binding affinities. 

ERE titrations of rhERa and ERE-BP were performed independently in the 

presence of ethanol or 1 ~M DES, 4-hydroxytamoxifen, 17~-estradiol or raloxifene, as 

shown in Figure 20. As discussed previously, tamoxifen is a SERM that is recognized by 

the ER ligand binding domain and enhances its DNA-binding activity and 4-

hydroxytamoxifen is the active metabolite of tamoxifen [60;82]. DES is a synthetic 

estrogen receptor agonist with extremely high affinity for the ligand binding domain that 

also enhances the ERE-binding activity of the estrogen receptor. Addition of DES, 4-

hydroxytamoxifen, 17~-estradiol or raloxifene resulted in a significant increase in ERE­

binding by rhERa compared to the ethanol control (Figure 21). The Kd of rhERa binding 

to the ERE in the presence of 17~-estradiol was 6.1 X 10-10 M. This is similar to 
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Figure 20. Representative ERE titration of rhERa (A) and ERE-BP (B) in the presence of 

1 11M diethylstilbestrol. EMSAs were performed as described in Materials and Methods 

with varying amounts of e2p]VitA2-ERE. rhERa was incubated with 1 11M 

diethylstilbesterol (DES) for 30 minutes before the addition of 0.2-14 ng ERE. Cytosol (5 

I1g total protein) from a breast cancer reference specimen containing ERE-BP was 

incubated with 1 11M diethylstilbesterol (DES) for 30 minutes before the addition of 0,5-

37 ng ERE. Gels were scanned and bands quantified using OptiQuant@ software as 

described in Materials and Methods. 
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Figure 21. Titration of rhERa with increasing concentrations of e2PJVitA2-ERE in the 

presence of various therapeutic estrogens. Data were modeled using one-site binding 

kinetics with GraphPad Prism®. Addition of DES C+), 4-hydroxytamoxifen C.), 17~-

estradiol C-) or raloxifene COY) resulted in a significant increase in ERE-binding 

compared to that of the ethanol control C.). Means and SD of results from triplicate 

experiments are plotted. 
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Figure 22. Titration of an ERE-BP preparation from a breast cancer reference specimen 

with increasing concentrations of e2p]VitA2-ERE in the presence of various therapeutic 

estrogens. Data were modeled using one-site binding kinetics with GraphPad Prism®. 

Addition of DES (+), 4-hydroxytamoxifen (.),17~-estradiol (_) or raloxifene ( .... ) did 

not cause a significant increase in ERE-binding compared to that of the ethanol control 

( .). Means and SD of results from triplicate experiments are plotted. 
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published results of 9.2 X 10-10 M [199]. In the presence of 1 /lm of either DES, 4-

hydroxytamoxifen, 17~-estradiol or raloxifene, the ERE binding capacity of the ERE-BP 

was not statistically different compared to that of the ethanol control (p=0.99) (Figure 

22). The Kd for ERE-BP binding to the ERE in the control was 2.4 X 10-8 M. In studies 

by Gray and Gorski, ERE-BP bound to the ERE with an apparent Kd of 1.2 X 10-9 M 

[187]. This is slightly lower than our results. These results suggest that the DNA binding 

activity of the ERE-BP is not affected by these estrogenic compounds, indicating a lack 

of a sex steroid ligand binding domain. 

Correlation of ERE-BP binding activity and estrogen responsive genes 

IfERE-BP are binding to the ERE and competing with ERa in vivo, it is expected 

that either up-regulation or down-regulation of estrogen responsive genes would occur. 

To determine whether ERE-BP binding activities are correlated with expression of 

estrogen-responsive genes, ERE-BP levels measured by EMSA in cytosols from 124 

primary breast carcinoma specimens were compared to expression levels of 16 genes 

containing ERE sequences. Microarray data were obtained from previous studies from 

our laboratory in collaboration with Arcturus Applied Genomics. The data were derived 

from the use of populations of breast carcinoma cells procured by laser capture 

microdissection (LCM) from 247 primary breast cancer specimens [191;200]. Total RNA 

was extracted from LCM-procured cells followed by two rounds of amplification and 

hybridization to custom microarray chips (Agilent Technologies) containing ~22,000 

genes. Cy5/Cy3 ratios were determined using Universal RNA (Stratagene) as a reference. 
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Table 1. Representative genes known to contain ERE sequences that were evaluated in 

micro array analyses of LCM-procured human breast carcinoma cells. 

Gene Symbol Gene Name 

BCL2 B-cell CLL/lymphoma 2 

BRCAI Breast cancer 1, early onset 

C3 Complement component 3 

CTSD Cathepsin D 

COX7RP Cytochrome c oxidase subunit VIla-related protein 

ESR2 Estrogen receptor beta 

TRIM25 Tripartite motif-containing 25/ estrogen responsive finger protein 

LTF Lactoferrin 

PGR Progestrone receptor 

TFFI Trefoil factor l/pS2 

CAXIl Carbonic anhydrase 12 

RERG RAS-like, estrogen-regulated growth inhibitor 

CD34 CD34 antigen 

EDGI Endothelial differentiation sphingolipid GPCR 1 

NQOI NAD(P)H dehydrogenase quinone 1 
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A list of human genes reported to contain ERE sequences that were analyzed is 

shown in Table 1. Genes containing ERE sequences were selected from published reports 

[88;201;202]. Pearson correlations were performed to determine if an association exists 

between the expression level of an individual gene and the level of ERE-BP binding 

activity; however, no significant correlations were identified (Table 2). The population of 

specimens was then divided into two groups, those exhibiting low ERE-BP binding 

exhibited activities and those with high ERE-BP binding activities as determined by the 

median ERE-BP binding activity. A t-test was then used to determine if there was a 

significant difference in the expression levels of each gene between the two groups of 

carcinoma specimens. No significant differences were observed between the groups for 

any of the genes analyzed (Table 2). These results suggest that the expression ofERE-BP 

is not correlated with the transcription of these estrogen responsive genes. This confirms 

other results described in this Chapter indicating these unidentified DNA-binding 

proteins are not involved ERE-mediated transcription. 

Summary and Conclusions 

While investigating ERE-binding properties of ERa in de-identified human breast 

cancer extracts, proteins with different migration properties that also bind to ERE 

sequences were observed. In order to unravel the apparent role of these proteins in breast 

cancer, we initiated characterization studies. Recognition properties of ERE-BP were 

evaluated by electrophoretic mobility shift (EMSA) with the ERE sequence e2p]VitA2. 

ERE-BP were present in a variety of tissues types including breast, ovarian, uterine and 

colon cancers and normal tissues indicating that the proteins are ubiquitous. These 
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Table 2. Correlation of cytosolic ERE-BP levels with candidate genes containing ERE 

sequences known to be expressed in breast carcinoma cells. 

GENE 10 PEARSON CORRELATION PVALUE t TEST P VALUE 

ESR1 0.03 0.72 0.43 

BCL2 -0.01 0.95 0.98 

BRCA1 0.02 0.86 0.21 

C3 0.01 0.91 0.59 

CTSD -0.12 0.17 0.16 

COX7RP (COX7A2L) -0.10 0.27 0.47 

ESR2 -0.04 0.68 0.16 

TRIM25 (ZNF147) -0.004 0.97 0.38 

LTF -0.12 0.20 0.20 

PGR -0.07 0.47 0.31 

TFF1 (pS2) -0.01 0.94 0.88 

CAXII 0.02 0.79 0.97 

RERG 0.08 0.39 0.22 

CD34 0.01 0.90 0.97 

EDG1 -0.03 0.71 0.87 

NQ01 -0.04 0.65 0.42 
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proteins are present in both the cytoplasm and nucleus although higher activities were 

detected in the nuclear extracts. Our results indicate that ERE-BP did not supershift with 

several anti-ERa or ER~ antibodies recognizing different ER epitopes suggesting that 

they are not fragments of ERa or ER~. Additionally, ERE-BP did not supershift with 

antibodies to the known ERE-binding proteins ERRa, COUP-TFl, hnRNP ClIC2, 

hnRNP D or the related hnRNP D-like. However, we demonstrated that the ERE-BP 

compete with rhERa for binding to the VitA2-ERE yet the ERE-BP exhibited 

significantly different sequence specificity compared to that of human ERa. Collectively, 

our results indicate that the ERE-BP we observed in breast cancer extracts are not 

specific for the ERE sequences and appear to be general DNA-binding proteins. To 

further support this conclusion, various estrogens had no effect on the ERE-binding of 

these proteins in contrast to rhERa. Furthermore, the ERE-BP activity levels did not 

correlate with levels of estrogen responsive genes indicating that ERE-BP do not appear 

to be involved directly in ERa- or ERE-mediated transcription. The investigations in the 

next chapter will focus on purification and identification of the ERE-BP we have 

detected. 
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CHAPTER III 

PURIFICATION AND IDENTIFICATION OF DNA-BINDING PROTEINS 

USING IMMUNO-BASED METHODS AND MASS SPECTROMETRY 

Introduction 

The purpose of this investigation was to purify and identify the candidate ERE-BP 

discovered in breast cancer biopsies. Results from Chapter II indicated that ERE-BP were 

present in a variety of tissues types including breast, ovarian, uterine and colon cancers 

indicating that the protein is ubiquitous. These proteins were also present in both the 

cytoplasm and nucleus although it was observed to be present at higher concentrations in 

the nucleus. These proteins do not share sequence homology with either estrogen receptor 

isoform a or ~, or to the known ERE-binding proteins ERRa, COUP-TFl, hnRNP 

CI/C2, hnRNP D or the related hnRNP D-like. Although the ERE-BP competed with 

rhERa for binding to the VitA2-ERE, these proteins exhibited significantly different 

sequence specificity compared to that of human ERa. Our results suggested that the 

observed ERE-BP do not specifically recognize the ERE and appear to be DNA-binding 

proteins with broad specificity. 

To further support our hypothesis, the presence of various estrogens had little 

effect on the ERE-binding of these proteins in contrast to the properties of rhERa. 

Furthermore, the ERE-BP activity levels in breast carcinomas did not correlate with 
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levels of estrogen responsive genes indicating that ERE-BP in breast carcmoma 

preparations are not influencing ERa-mediated transcription. The investigations of this 

chapter focus on purification and identification of the observed ERE-BP using immuno­

based methods and mass spectrometry. Additional immuno-based methods such as 

western blots and supershift assays were used for confirmation of the mass spectrometry 

results. 

Methods and Materials 

Preparation of nuclear extracts 

Reference powders of human breast and uterine carcinomas were homogenized using a 

Polytron PT 10-35 in 10 mM HEPES buffer, pH 7.9 containing 10 mM KCI, 0.1 mM 

EDTA, 1 mM DTT, 0.5 mM PMSF, and 0.01 ~g/~l aprotinin, leupeptin and pepstatin A. 

Lysates were centrifuged at 4°C at 15,000 x g for 10 minutes. The nuclear pellet was 

resuspended in 20 mM HEPES buffer, pH 7.9 containing 0.4 M NaCI, 1 mM EDTA, 10% 

glycerol, 1 mM DTT, 0.5 mM PMSF, and 0.01 ~g/~l aprotinin, leupeptin and pepstatin 

A. The resuspended pellets were mixed at 4°C for 2 hours and centrifuged 4°C, 15,000 x 

g for 10 minutes. Nuclear extracts were concentrated and desalted with Amicon Ultra 

YM-1O columns (Millipore). To enrich the extracts for ERE-BP, the twelve most 

abundant plasma proteins were depleted using a Seppro™ MIXED12 Kit (GenWay 

Biotech) according to the manufacturer's protocol [203]. 
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Purification of ERE-BP 

Depleted nuclear extracts (800 Jlg of total protein) were incubated overnight at 4°C with 

300 pmol of either a biotinylated or unlabeled ERE sequence in 20 mM HEPES buffer, 

pH 7.9 containing 800 ng of poly (dI-dC) (Amersham), 10 mM KCI and 1% glycerol. 

Sequences used are shown in Table 8 (See Appendix). Candidate ERE-BPIERE 

complexes were then incubated with 300 JlI of NeutrAvidin agarose beads (Pierce) for 4 

hours at 4°C with constant rotation. These beads were chosen over streptavidin beads 

because they exhibit lower non-specific binding. Beads were washed three times in 20 

mM HEPES pH 7.9 containing 10 mM KCI and 1 % glycerol and three times in 20 mM 

HEPES buffer, pH 7.9 containing 0.2 M KCl. Bound proteins were eluted in 20 mM 

HEPES buffer, pH 7.9 containing 1.0 M KCl. Elution and wash fractions were desalted 

and concentrated with Amicon Ultra YM-I0 columns (Millipore). Four separate 

experiments were performed using the same protocol and fractions were pooled to insure 

sufficient total protein for detection by mass spectrometery. A flow diagram showing the 

method of purification is shown in Figure 23. 

Mass spectrometry 

Fractions containing the candidate proteins eluted from the imunobeads were analyzed by 

tandem liquid chromatography and mass spectrometry (2D-LC-MSIMS) [204]. Spectra 

were obtained with an L TQ ion trap mass spectrometer (Thermo Fisher Scientific). 

Scaffold software (version Scaffold_3_00_08, Proteome Software) was used to analyze 

the results from 2D-LC-MS/MS for protein identifications. Protein identifications were 
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Figure 23. Method for purification of candidate ERE-BP. Nuclear extracts were 

concentrated and desalted with Amicon Ultra YM-IO columns. The twelve most 

abundant plasma proteins were depleted using a Seppro™ MIXED12 Kit (GenWay 

Biotech). Depleted nuclear extracts (800 Ilg of total protein) were incubated overnight at 

4°C with either 300 pmol of a biotinylated or unlabeled ERE sequence in 20 mM HEPES 

buffer pH 7.9 containing 800 ng of poly (dI-dC) (Amersham), 10 mM KCI and 1% 

glycerol. Candidate ERE-BPIERE complexes were then incubated with 300 III of 

NeutrAvidin agarose beads (Pierce) for 4 hours at 4°C with constant rotation. Beads were 

washed three times in 20 mM HEPES buffer, pH 7.9 containing 10 mM KCl and 1% 

glycerol and three times in 20 mM HEPES buffer, pH 7.9 containing 0.2 M KCl. Bound 

proteins were eluted in 20 mM HEPES pH 7.9 containing 1.0 M KCl. Elution and wash 

fractions were desalted and concentrated with Amicon Ultra YM-IO columns (Millipore). 

All fractions were analyzed by EMSA and elutions were analyzed by mass spectrometry. 
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accepted at a probability of greater than 99.9% that contained at least two identified 

peptides. Peptide identifications were accepted at a probability of greater than 95.0%. 

UV crosslinking 

Reactions with protein extracts and e2p]VitA2-ERE were prepared as described above 

for EMSAs and UV crosslinked on ice at 1500 J/cm2 for 30 minutes. Samples were 

separated on an 8% SDS-P AGE gel, dried, exposed to phosphor screens overnight and 

analyzed with OptiQuant@ software. Migration of each e2P]ERE-protein complex band 

was measured with OptiQuant@ software and molecular weights of detected bands were 

extrapolated using protein molecular weight standards (EZ-RunTM Pre-Stained Rec 

Protein Ladder, ThermoFisher). 

Western blot analysis 

Proteins were separated by 10% SDS-PAGE and transferred to a nitrocellulose 

membrane (Bio-Rad). Membranes were blocked with 5% nonfat dry milk overnight. The 

primary antibodies utilized in these experiments were Ku70 (D35, polyclonal, Cell 

Signaling), Ku70 (Ab-4, monoclonal, Thermo Fisher Scientific), Ku80 (Ab-2, 

monoclonal, Thermo Fisher Scientific), Ku80 (C48E7, monoclonal, Cell Signaling) and 

~-actin (polyclonal, Cell Signaling). All primary antibodies were used at a 1 :2000 

dilution. The secondary antibodies used were HRP-goat anti-rabbit and HRP-goat anti­

mouse (ZymediLife Technologies). Secondary antibodies were used at a dilution of 

1 :5000. Blots were visualized with Immobilon Western Chemiluminescent HRP substrate 

(Millipore) using the protocols supplied by the manufacturer. 
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Supershijt assay 

Protein extracts were incubated with 50 ng non-specific DNA, poly (dI-dC) (Amersham), 

10 mM KCI, 1 % glycerol and e2P]labeled ERE sequences in 40 mM Tris-HCI buffer, pH 

8.0, containing 500 JlM PMSF and 10 JlM monothioglycerol overnight at 4°C. Antibodies 

were added to the reaction and incubated for 30 minutes before addition of e2p]ERE. The 

antibodies used included hnRNP D (polyclonal, GenWay Biotech), hnRNP D (T-IO, 

polyclonal, Santa Cruz), hnRNP DL (polyclonal, GenWay Biotech), hnRNP ClIC2 (4F4, 

monoclonal, Santa Cruz), ERRa (monoclonal, R&D Systems), COUP-TFI (monoclonal, 

R&D Systems), Ku70/Ku80 (3F247, monoclonal Santa Cruz), Ku70/80 (Ab-3, 

monoclonal, Thermo Fisher Scientific), Ku80 (Ab-2, monoclonal, Thermo Fisher 

Scientific), Ku80 (C48E7, monoclonal, Cell Signaling), phospho-ATM (D6H9, 

monoclonal, Cell Signaling), phospho-BRCAI (Ser 1524, polyclonal, Cell Signaling), 

DNA-PK (polyclonal, Cell Signaling), Mrell (31H4, monoclonal, Cell Signaling), 

phospho-p95lNBS 1 (Ser343, polyclonal, Cell Signaling), Rad50 (polyclonal, Cell 

Signaling), Rad52 (polyclonal, Cell Signaling), XLF (polyclonal, Cell Signaling). Normal 

mouse and rabbit IgG (Santa Cruz) were used as controls. 

Reactions were separated by 5% polyacrylamide gel electrophoresis. The gel was 

pre-run for 30 minutes at 150 V at 4°C in 0.5x TBE buffer (1 M Tris-HCI, pH 8.6, 

containing 831 mM boric acid, 10 mM EDT A). Samples were then loaded, followed by 

electrophoresis at 300 V for 5 minutes, and then 180 V for 4 hours. Subsequently, gels 

were dried and exposed to phosphor screens (Perkin Elmer) overnight. The bands 

recognizing e2P]ERE-protein complexes and free e2p]ERE were visualized and 
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quantified using a Cyclone Storage Phosphor System ™ with OptiQuant® software 

(Perkin Elmer) as described in Chapter II. 

Results and Discussion 

Removal of high abundant proteins from nuclear extracts 

To determine the identity of the ERE-BP present in breast cancer extracts, a 

method of purification was established. In order to enrich the extracts for candidate ERE­

BP, the twelve most abundant plasma proteins were depleted from the samples. These 

include serum albumin, IgG, fibrinogen, transferring, IgA, IgM, HDL, haptoglobin, aI­

antitrypsin, aI-acid glycoprotein and a2-macroglobulin. Removing these proteins has 

been shown to increase yield for protein detection assays [203;205]. Nuclear extracts 

made from a uterine cancer reference powder (NE) and a separate preparation of the same 

NE that was depleted of the high abundant proteins (NE-HAP) as described in Materials 

and Methods were analyzed by EMSA, which showed that the ERE-BP were present in a 

higher concentration in the plasma protein depleted samples (Figure 24A). The untreated 

NE, the NE depleted of high abundant proteins (NE-HAP) and the fractions eluted from 

the immunobead that contained the high abundant proteins (HAP) were analyzed by 10% 

SDS-PAGE. The proteins on the gel were stained with SYPRO™ Ruby protein stain 

(Figure 24B). Results demonstrate that the majority of the high abundant proteins were 

removed from the nuclear extract and there was enrichment for the ERE-BP in the 

resulting preparation. 
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Figure 24. Removal of high abundant proteins from nuclear extracts of a uterine cancer 

reference powder. (A) A representative nuclear extract made from a uterine cancer 

reference powder (NE) and a separate preparation of the same NE that was depleted of 

the high abundant proteins (NE-HAP) as described in Materials and Methods were 

analyzed by EMSA. Equal amounts of protein were added in each lane. (B) The untreated 

NE, the NE depleted of high abundant proteins (NE-HAP) and the fractions eluted from 

the immunobead that contained the high abundant proteins (HAP) were analyzed by 10% 

SDS-PAGE. The proteins on the gel were stained with SYPRO™ Ruby protein stain and 

EZ-Run ™ pre-stained Rec protein ladder (Thermo-Fisher) was used as molecular weight 

markers. 
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Influence of various biotinylated DNA sequences on the "pull-down" of candidate ERE­

BP from nuclear extracts 

To determine the optimal DNA sequences that could be used for purification of 

ERE-BP and which could be used as negative controls, candidate ERE-BP were purified 

from nuclear extracts using NeutrA vi din beads and various biotinylated DNA sequences. 

VitA2, a hairpin VitA2, pS2 and PR form b ERE sequences were tested. After the pull­

down reaction, the proteins eluted from these sequences were analyzed by EMSA (Figure 

3). Each of these sequences was able to pull-down ERE-BP from nuclear extracts. Our 

previous results showed that a palindromic TRE sequence showed the least amount of 

competition in the presence of VitA2-ERE (Figure 19, Chapter II), therefore both a 

palindromic and direct repeat TRE oligonucleotide were tested as negative controls. 

EMSA analysis shows that both of these sequences were also able to pull down ERE-BP 

from nuclear extracts, therefore are unsuitable as negative controls (Figure 25). Using 

EMSA we previously illustrated that the ERE-BP also bound to multiple DNA 

oligonucleotides that did not contain ERE sequences (Figure 17, Chapter II). The results 

shown in Figure 25 confirm our previous data suggesting the ERE-BP may be general 

DNA-binding proteins and are not specifically recognizing the ERE sequences. 

Purification of ERE-BP for analysis by mass spectrometry 

In order to determine the identity of these proteins by mass spectrometry, 

candidate ERE-BP were purified from nuclear extracts prepared from a uterine cancer 

reference powder using the VitA2-ERE as described above. A uterine cancer reference 

powder was chosen over breast in order to ensure the highest concentration ofERE-BP 
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Figure 25. Influence of various biotinylated DNA sequences on the "pull-down" of 

candidate ERE-BP from nuclear extracts. ERE-BP were purified from nuclear extracts 

using NeutrA vidin beads and biotinylated DNA sequences as described in Materials and 

Methods. Sequences were evaluated for ERE-BP recognition and analyzed by EMSA to 

determine which may be useful for purification. VitA2, a hairpin VitA2 (VitA2 HP), pS2, 

PR form b (PR) ERE sequences were tested, as well as both a palindromic (TREpal) and 

direct repeat TRE (TRE DR) sequence. A nuclear extract prepared from a uterine cancer 

reference specimen is shown as a control (NE). 
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possible in the starting material, as illustrated by comparing EMSA profiles from 

different extracts. High abundant proteins were depleted from these nuclear extracts 

which were then incubated with either a biotinylated or unlabeled VitA2-ERE, followed 

by incubation with NeutrAvidin agarose beads. Without DNA biotinylation, the 

NeutrAvidin agarose beads do not exhibit specific binding to the protein-DNA complex, 

allowing only proteins non-specifically bound to the beads to be pulled down. Therefore, 

unbiotinylated VitA2-ERE was used as a negative control. Fractions from each 

purification step were analyzed by EMSA and results are shown in Figure 26A. 

Nuclear extracts exhibiting the presence of ERE-BP in the starting material is 

shown in Lane 1. Lane 2 showed the increased amounts of ERE-BP in nuclear extracts 

after removal of the high abundant proteins. These results confirm previous results that 

removal of the high abundant proteins enriches for the ERE-BP. Proteins which were not 

bound to the ERE-NeutrAvidin bead complex (flow-through) are shown in Lanes 3 

(control) and 4 (biotinylated VitA2). The fractions resulting from the wash steps are 

shown in Lanes 5 (control) and 6 (biotinylated VitA2). Proteins that were eluted from the 

ERE-NeutrA vidin bead complex are shown in Lanes 7 (control) and 8 (biotinylated 

VitA2). ERE-BP were eluted from the biotinylated VitA2-ERE but not the control 

unlabeled ERE. The control and experimental elution fractions were separated by SDS­

PAGE electrophoresis and the gels were stained with SYPRO™ Ruby protein stain to 

determine the number and relative amount of protein bands present (Figure 26B). The 

control elution did not contain as many proteins as the labeled VitA2 elution and there 
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Figure 26. Purification ofERE-BP for analysis by mass spectrometry. (A) Fractions from 

each step of the purification process were analyzed by EMSA. Nuclear extract from a 

uterine cancer reference powder showing the presence of ERE-BP in the starting material 

is shown in Lane 1. Lane 2 shows the increased amounts of ERE-BP in nuclear extracts 

after removal of the high abundant proteins. Proteins which were not bound to the ERE-

NeutrAvidin bead complex (flow-through) are shown in Lanes 3 (control) and 4 (VitA2-

ERE). The fractions resulting from the wash steps are shown in Lanes 5 (control) and 6 

(VitA2-ERE). Proteins identified as ERE-BP that were eluted from the ERE-NeutrAvidin 

bead complex are shown in Lanes 7 (control) and 8 (VitA2-ERE). (B) A SYPRO™ Ruby 

protein stain was reacted with proteins in the control and experimental elutions to 

determine the number and amount of proteins present. 

74 



appeared to be a sufficient amount of the purified proteins to be analyzed by mass 

spectrometry . 

Identification of candidate ERE-BP by mass spectrometry 

Proteins eluted from the control VitA2-ERE and the biotinylated VitA2, the 

hairpin VitA2 and the BCL2 ERE were analyzed by mass spectrometry in three separate 

experiments as described in Methods and Materials. Table 3 shows a list of the proteins 

identified. Scaffold software was used to analyze the protein identifications and the 

spectral count for each protein is shown. The spectral count is the count given to an 

identified peptide spectra. Scaffold normalizes these counts across samples by taking the 

average and then multiplying by the average divided by the individual sample's sum. 

Although twenty seven proteins were identified using this approach [204], only 8 

were identified that were present in at least one labeled ERE elution and not the control: 

pyruvate kinase isozymes MI/M2 isoform M2 (PKM2), X-ray repair cross­

complementing protein 5 (XRCC5/Ku80), X-ray repair cross-complementing protein 6 

(XRCC6/Ku70), heterogeneous nuclear ribonucleoprotein D-like (HNRPDL), a-actinin 4 

(ACTN4), high mobility group protein Bl (HMGBl), periostin isoform 1 (POSTN) and 

protein disulfide isomerase A3 (PDIA3). 

PKM2 is a pyruvate kinase that catalyzes the transfer of a phosphoryl group from 

phosphoenolpyruvate to ADP during glycolysis, generating ATP and pyruvate [206]. 

PKM2 also interacts with the DNA-binding domain of the transcription factor Oct-4 to 

regulate transcription [207]. Ku70 and Ku80 form a heterodimer and make up the DNA­

binding subunits of DNA-dependent protein kinase (DNA-PK), which is involved DNA 
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Table 3. List of proteins in the final purified sample that were identified by mass 

spectrometry. 

Identified Proteins 
MW 

BCL2 Cont.l 
HP 

Cont. 2 VitA2 Cont.3 
(kDa) VitA2 

tpescadillo homolog 68 ~ [2 12 11 0 0 

Jchromodomain-helicase-
IDNA-binding protein 3 [223 1 [2 ~ ~ 0 0 
isoform 2 
itin isoform N2-A 3713 1 1 ~ 0 0 0 

chromodomain-helicase- ~23 1 ~ ~ ~ 0 0 
DNA-binding protein 5 
glycine-,glutamate-, 
hienylcyclohexylpiperidine- 104 1 1 0 0 0 0 
binding protein 
lactotransferrin isoform 2 73 3 2 0 0 0 0 
pyruvate kinase isozymes 

58 4 0 0 0 0 0 
M1/M2 isoform M2 
Identin sialophosphoprotein 

131 0 ~ 0 4 0 0 
preproprotein 
X-ray repair cross-

83 3 0 2 0 0 0 
complementing protein 5 
zinc finger protein 37 

71 0 0 ~ 7 0 0 
homolog 
histone H 1.2 ~1 1 ~ 0 0 0 0 
Heterogeneous nuclear 
Iribonucleoproteins C 1/C2 34 1 1 0 0 0 0 
isoform a 
ropomyosin alpha-1 chain 

33 0 3 0 0 0 0 
isoform 5 
Ihypothetical protein 

802 0 12 0 0 0 0 
fLOC643677 
IX-ray repair cross-

70 ~ 0 0 0 5 0 
Jcomplementing protein 6 
JPREDICTED: mucin-3A-like 123 0 0 7 ~ 0 0 
lysophosphatidylcholine 

60 0 2 0 14 0 0 
lacyltransferase 2 
/Vimentin 54 0 [2 0 0 0 0 
Iheterogeneous nuclear 

~6 ~ 0 0 0 0 0 
ibonucleoprotein D-like 

Ialpha-actinin-4 105 1 0 ~ 0 0 0 
. nterleukin enhancer-binding 

96 1 1 0 0 0 0 
factor 3 isoform d 
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Identified Proteins 
MW 

BCL2 Cont.l 
HP 

Cont.2 VitA2 Cont.3 
(kDa) VitA2 

~rythroid differentiation-
139 0 2 0 0 0 0 

elated factor I isofonn I 
splicing factor 3A subunit I 

82 0 ~ 0 0 0 0 
isofonn 2 
!high mobility group protein 

~5 I 0 0 0 0 0 
~I 
periostin isofonn I 93 I 0 0 0 0 0 
protein disulfide-isomerase 

57 I 0 0 0 0 0 k\3 precursor 
!heat shock 70 kDa protein 

70 0 0 0 0 14 ~ IA/IB 

Proteins eluted from the control VitA2-ERE sequence and the biotinylated VitA2, the 

hairpin VitA2 and BeL2 ERE were analyzed by mass spectrometry in three different 

experiments as described in Methods and Materials. Sequences of the various EREs are 

described in the Appendix. Scaffold software was used to analyze the protein 

identifications and the spectral count for each protein is shown. The spectral count is the 

count given to an identified peptide spectra. Scaffold nonnalizes these counts across 

samples by averaging them and then multiplying by the average divided by the individual 

sample's sum. 
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double strand break repair via non-homologous end-joining [114]. Polymorphisms in 

these genes are associated with increased breast cancer susceptibility [208-210]. 

HNRPDL belongs to the subfamily of heterogeneous nuclear ribonucleoproteins and is an 

RNA and DNA binding protein involved in pre-mRNA processing [211]. ACTN4 is an 

actin filament cytoskeletal protein that has recently been shown to be involved in tumor 

development and progression [212]. ACTN4 has also recently been shown to be a nuclear 

receptor coactivator that regulates ERa-mediated transcription in breast cancer cells 

[213]. In addition, HMGBI is a ubiquitous nuclear DNA-binding protein that induces 

structural changes in the DNA to facilitate in transcription [214;215] while POSTN is an 

extra-cellular matrix protein that plays a role in bone, tooth and cardiac development 

[216;217]. Increased levels of this protein are associated with breast cancer [217], 

however there is currently no evidence that periostin functions as a DNA-binding protein. 

PDIA3 is a member of the family of protein disulfide isomerases which catalyze 

formation, reduction and isomerization of disulfide bonds in proteins in the endoplasmic 

reticulum [218]. PDIA3 has also been shown to bind DNA in the nucleus and is 

associated with the nuclear matrix [219]. 

Since most of these candidate proteins have DNA-binding activity, further 

analysis was necessary to confirm which of these were components of the ERE-BP/ERE 

complex. Of these eight proteins that were not present in the control elutions, only three 

appeared in ERE elutions in more than one of the mass spectrometry experiments: Ku70, 

Ku80, and a-actinin, making these proteins the most likely potential candidates. The 

molecular weights of Ku70, Ku80, and a-actinin are 70, 83 and 105 kilodaltons (kDa), 
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respectively. Determination of the molecular weight of the ERE-BP will further narrow 

down which protein candidate to pursue. 

Determination of molecular weight of ERE-BP 

To determine the molecular weight of the ERE-BP and narrow down the potential 

protein candidates, UV crosslinking experiments were performed. Nuclear extracts from 

breast and uterine cancer reference powders as well as proteins eluted from the pS2-ERE 

described above were UV crosslinked to VitA2-ERE and separated by SDS-PAGE 

(Figure 27). Nuclear extracts contained three complexes at approximately 47, 74 and 82 

kDa (Figure 27 A). The 74 kDa band was present at significantly higher concentrations 

compared to the 47 kDa and 82 kDa bands. These molecular weights correlate with the 

weights of Ku70 and Ku80, but not with a-actinin. The 47 kDa band correlates with the 

molecular weight of hnRNP D-like. The ERE-BP/ERE complex eluted from the 

NeutrA vi din beads contained a major protein complex at approximately 72 kDa (Figure 

27B). This molecular weight appears to correlate with the weight of Ku70 (XRCC6). 

Based on these results and the fact that Ku70 and Ku80 form heterodimers during DNA­

binding, we concluded that these proteins were the most likely candidates for the identity 

of the ERE-BP. 

Western blot analyses of proteins eluted during the purification of ERE-BP with 

NeutrAvidin beads 

The presence of Ku70 and Ku80 in the fractions collected during purification of 

ERE-BP was ascertained by Western blot analyses using antibodies to Ku70 (D35, Cell 
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Figure 27. Determination of molecular weight of ERE-BP in reference specimens of 

human breast and uterine carcinomas. UV crosslinking was performed to determine the 

molecular weight of the ERE-BP as described in Materials and Methods. Nuclear extracts 

were subjected to UV light to promote crosslinking to VitA2-ERE sequences and 

separated by SDS-PAGE (A). Proteins eluted from a pS2-ERE sequence were also 

subjected to UV crosslinking to VitA2-ERE sequences and separated by SDS-PAGE (B). 
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Figure 28. Western blot analyses of proteins eluted during the purification of ERE-BP 

with NeutrAvidin beads. The presence of Ku70 and Ku80 in the fractions collected 

during purification of ERE-BP were ascertained by Western blot analyses using 

antibodies to Ku70 (D35, Cell Signaling) and Ku80 (C48E7, Cell Signaling). Flow-

through (FT), wash and elution fractions from both a control purification (C) and a 

purification using biotinylated VitA2-ERE (V) are shown. A NE from a uterine cancer 

reference powder with the high abundant proteins (NE-HAP) removed is also shown. 
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Signaling) and Ku80 (C48E7, Cell Signaling) (Figure 28). Flow-through (FT), wash and 

elution fractions from both a control purification (C) and a purification using biotinylated 

VitA2-ERE (V) are shown. A NE from a uterine cancer reference powder with the high 

abundant proteins (NE-HAP) is also shown. Both Ku70 and Ku80 were present in the 

control nuclear extract and in the flow-through fractions, but not in the wash fractions. 

Both proteins are present in the labeled ERE elution but not from the control elution. 

These results confirm those from the mass spectrometry experiments that show Ku70 and 

Ku80 were present in the fractions eluted from the immunobeads and support further that 

these proteins are the most likely candidates for the identification ofERE-BP. 

Recognition of ERE-BP by an antibody detecting heterodimers of Ku70lKu80 

To test the hypothesis that Ku70 and Ku80 are present in the ERE-BP/ERE 

complex, supershift assays were performed on nuclear extracts of reference powders, 

nuclear extracts from which the high abundant proteins were removed and rhERa with an 

antibody that recognizes the Ku70/80 heterodimer. A supershift of the ERE-BP was 

observed with an antibody to Ku70/80 in both of the nuclear extract samples but not with 

the control mouse IgG (Figure 29A). No supershift of rhERa was observed with this 

antibody or with the control IgG. 

These results indicate that this Ku70/80 antibody specifically recognizes and 

binds to the ERE-BP. To further validate that the observed ERE-BP are a Ku70/80 

heterodimer, supershift assays were performed with additional antibodies against the 

Ku70/80 heterodimer or Ku70 and Ku80 individually (Figure 29B). Nuclear extracts 
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Figure 29. Recognition ofERE-BP by an antibody detecting heterodimers of Ku70/Ku80. 

(A) Supershift assays were performed on uterine cancer reference powder nuclear 

extracts, uterine cancer reference powder nuclear extracts (Lanes 1 and 2) after removal 

of high abundant proteins (Lanes 3 and 4) and rhERa (Lanes 5 and 6) with an antibody 

that recognizes the Ku70/80 heterodimer (Lanes 2, 4, 6) (Santa Cruz). Normal mouse IgG 

was used as a negative control (Lanes 1, 3, 5). (B) Uterine cancer reference powder 

nuclear extracts were incubated with either normal mouse IgG (Lane 2), normal rabbit 

IgG (Lane 3), antibody to Ku70/80 (Santa Cruz) (Lane 4), antibody to Ku70/80 (Ab-3, 

Thermo Fisher) (Lane 5), antibody to Ku80 (ab-2, Thermo Fisher) (Lane 6) or antibody 

to Ku80 (C48E7, Cell Signaling) (Lane 7). (C) Untreated nuclear extracts (NE) were 

separated by EMSA (Lane 1) and compared with the EMSA profile of a nuclear extract 

that was treated with either an antibody recognizing heterodimers of Ku70/80 (Santa 

Cruz) (Lane 3) or with a control normal mouse IgG (Lane 2) followed by incubation with 

Protein AlG agarose beads (Santa Cruz). 
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from a uterine cancer reference powder nuclear extracts were incubated with either 

normal mouse IgG, normal rabbit IgG, an antibody to Ku70/80 (Santa Cruz), an antibody 

to Ku70/80 (Ab-3, Thermo Fisher), an antibody to Ku80 (ab-2, Thermo Fisher) or with 

an antibody to Ku80 (C48E7, Cell Signaling). A supershift of the ERE-BP was observed 

with each of these antibodies to Ku70/80 but not with the control mouse or rabbit IgG. 

Immunodepletion experiments were also performed to determine whether Ku70/80 

antibody recognizes ERE-BP. Nuclear extracts (NE) were incubated with either a control 

normal mouse IgG or with an antibody that recognizes the heterodimers of Ku70/80 

(Santa Cruz) followed by incubation with Protein A/G agarose beads (Santa Cruz). 

Nuclear extracts and immunodepleted samples were analyzed by EMSA (Figure 29C). 

ERE-BP were depleted in the samples incubated with a Ku70/80 antibody but not with 

the control IgG, supporting the hypothesis that the ERE-BP is a heterodimer of 

Ku70/Ku80. 

Influence of antibodies to double strand breaks repair proteins 

In order to verify that the ERE-BP are not related to other DNA repair proteins, 

supershift assays were performed with antibodies to various double strand break repair 

proteins including Ku70 and Ku80 separately (Figure 30). The antibodies used were 

Ku80 (C48E7), Ku70 (D35), DNA-PK, phosphor-ATM, Mrell, NBSI, Rad50, Rad52, 

XLF and phospho-BRCAI. Normal rabbit IgG was used as a negative control. In both 

breast cancer cytosols (Figure 30A) and nuclear extracts (Figure 30B) only the antibody 

to Ku80 (C48E7) showed a supershift. Although the Ku70 antibody did not cause a 

supershift, these results suggest that the observed ERE-BP are a Ku70/80 heterodimer 
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Figure 30. Influence of antibodies to double strand breaks repair proteins on candidate 

ERE-binding proteins. Cytosols (A) and nuclear extracts (B) from a representative 

reference powder of breast carcinoma were incubated independently with antibodies to 

various double strand breaks repair proteins and analyzed by supershift assays. Lane I : 

normal rabbit IgG, Lane 2: Ku80 (C48E7), Lane 3: Ku70 (D35), Lane 4: DNA-PK, Lane 

5: phosphor-ATM, Lane 6: Mrell , Lane 7: NBSl , Lane 8: Rad50, Lane 9: Rad52, Lane 

10: XLF and Lane 11 : phospho-BRCAI. Note that both cytosol and nuclear extracts 

contained Ku80. 
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and are not related to other double strand break repair proteins. A possible explanation 

for the Ku70 antibody not causing a supershift is that the epitope is not accessible under 

the non-denaturing conditions of the EMSA and is buried in the tertiary structure of the 

protein. For example, the Ku70 antibody used in these experiments recognizes the N­

terminus of the protein which forms a f3-barrel structure and is involved in KuSO 

dimerization and DNA-binding [145;220]. The KuSO antibody used in these experiments 

recognizes the C-terminus of the protein, which is flexible and known to be involved in 

protein-protein interactions but not DNA-binding [145;150]. 

Influence of various antibodies to Ku70lKu80 on ERE-BP in frozen cytosols from breast 

cancer 

The previous supershift assays were performed on freshly prepared extracts from 

various human tissue reference specimens. In order to confirm these results in breast 

cancer, supershift assays with various Ku70/S0 antibodies were performed on previously 

frozen and stored breast cancer cytosols prepared for the clinical measurement of ER and 

PR [20] (Figure 31). Two breast cancer cytosols were analyzed, one showing only the 

lower band and one with both bands. Extracts were incubated with either normal mouse 

IgG, normal rabbit IgG, an antibody to Ku70/S0 (Santa Cruz), an antibody to Ku70/S0 

(Ab-3, Thermo Fisher), an antibody to KuSO (ab-2, Thermo Fisher) or an antibody to 

KuSO (C4SE7, Cell Signaling). For the sample containing the lower band only, a 

supershift was observed with each antibody to the Ku70/S0 heterodimer and to KuSO 

alone, but not with the control mouse or rabbit IgG or the KuSO antibodies alone. These 

results suggest that the KuSO antibody doesn't recognize the lower band. It is unlikely 
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Figure 31. Influence of various antibodies to Ku70/Ku80 on ERE-BP in frozen cytosols 

from breast cancer. Supershift assays of frozen breast cancer cytosols with various 

Ku70/80 antibodies were performed. Two breast cancer cytosols were analyzed, one 

showing only the lower band (Lanes 1-7) and one with both bands (Lanes 8-14). Extracts 

were incubated as described in Materials and Methods with either normal mouse IgG 

(Lanes 2, 9), normal rabbit IgG (Lanes 3, 10), antibodies to Ku70/80 (Santa Cruz) (Lanes 

4, 11), antibodies to Ku70/80 (Ab-3, Thermo Fisher) (Lanes 5, 12), Ku80 (ab-2, Thermo 

Fisher) (Lanes 6, 13) or antibodies to Ku80 (C48E7, Cell Signaling) (Lanes 7, 14) and 

separated by supershift assays. 
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that this is due to the lower band being Ku70 alone because heterodimer formation is 

necessary for DNA binding in EMSA [221;222]. The C-terminal regions of both proteins 

and the N-terminal region of Ku70 are required for DNA end binding [220;222]. 

Heterodimer formation is required for DNA-binding of N-terminal region of Ku70; 

however the DNA-binding activity of the C-terminal is independent of heterodimer 

formation [220]. A possible explanation is that the heterodimer contains a 69-kDa Ku80 

variant rather than the full length protein. This variant has a truncated C-terminal domain 

but retains the ability to form a heterodimer with Ku70 and bind DNA [223-226]. Both 

Ku80 antibodies used in these experiments recognize the C-terminal domain of the 

protein. In contrast, for the sample containing both bands, a supershift was observed with 

each antibody to the Ku70/80 heterodimer and the Ku80 antibodies but not with the 

control mouse or rabbit IgG. Both bands of the ERE-BP complex observed in breast 

cancer cytosols are recognized by a Ku70IKu80 antibody consistent with our previous 

results. 

Comparison ofKu protein levels and DNA-binding activities measured by EMSA 

To determine if the levels of DNA-binding observed in previously frozen breast 

cancer cytosols correspond with Ku70 and Ku80 protein levels, 50 samples were 

analyzed concurrently by EMSA and Western blot. Cytosols were analyzed by EMSA 

using VitA2-ERE as described previously. Western blot analyses were performed using 

primary antibodies for Ku70 (Ab-4, Thermo Fisher Scientific), Ku80 (Ab-2, Thermo 

Fisher Scientific) and l3-actin (Cell Signaling). Representative EMSA and Western blot 
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Figure 32. Comparison of Ku DNA-binding activities and protein levels. To determine if 

the levels of DNA-binding observed in previously frozen breast cancer cytosols 

correspond with Ku70 and Ku80 protein levels, breast cancer cytosols were analyzed 

concurrently by EMSA (A) and Western blot (B). Cytosols were analyzed by EMSA 

using VitA2-ERE as described previously. rhERa was used as a control. Western blot 

analyses were performed using primary antibodies for Ku70 (Ab-4, Thermo Fisher 

Scientific), Ku80 (Ab-2, Thermo Fisher Scientific) and l3-actin (Cell Signaling). Lane 2 

contains a nuclear extract prepared from a uterine cancer reference specimen. Lanes 3-9 

contain cytosols prepared from breast cancer biopsies. 
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results are shown in Figure 32. Samples with various DNA-binding activities were 

analyzed by EMSA and compared to Ku70 and Ku80 protein levels. Ku70 protein levels 

appear to correlate with EMSA results more consistently than Ku80 protein levels. To 

quantify the bands obtained from Western blot analysis, all samples were normalized to 

the ~-actin loading control and then a nuclear extract standard. ImageJ software (NIH) 

was used to calculate the relative densities for each band. Ku70 and Ku80 protein levels 

were compared to EMSA activities by two-tailed Spearman correlations (Figure 33). A 

significant correlation was observed between DNA-binding activities and both Ku70 

(r=0.67, p<O.OOOI) and Ku80 (F0.47, p=0.0003) protein levels, the correlation with 

Ku80 is not as strong. This is most likely due to the presence of the variant 69-kDa form 

of Ku80 which would not be recognized by the antibody used for Western blotting. 

Because the DNA-binding activity is a measurement of both Ku70 and Ku80, the levels 

of these proteins measured by Western blot were added together and correlated with the 

EMSA data, which showed a higher r value than either protein alone (r=0.73, p<O.OOOI). 

The protein levels of Ku70 and Ku80 also correlate with each other (FO.58, p<O.OOOl), 

which is consistent with the crystal structure of the Ku heterodimer showing that Ku70 

and Ku80 bind to DNA in a 1: 1 ratio [145]. 

Summary & Conclusions 

The goals of this investigation were to purify and identify the candidate ERE-BP 

from tisssue extracts. A method for purifying and identifying proteins present in tissue 

extracts that bind to the ERE was established. This method used a combination of biotin 

labeled ERE sequences, NeutrAvidin beads and mass spectrometry. These techniques 
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Figure 33. Correlation of Ku DNA-binding activities and protein levels. A two-tailed 

Spearman correlation was used to detennine if Ku DNA-binding activities measured by 

EMSA are related to Ku70 and Ku80 protein levels measured by Western blot. Ku70 

alone (A), Ku80 alone (B), the addition of Ku70 and Ku80 DNA-binding activities (C) 

and Ku70 protein levels versus Ku80 protein levels (D) are shown. 
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generated a list of candidate proteins that could be tested by antibody-based methods. UV 

crosslinking experiments were performed to determine the molecular weight of these 

proteins. Based on these data, Ku70 and Ku80 were determined to be the most likely 

candidates. Western blot and supershift assays confirmed the presence of these proteins 

in breast and uterine cancers. Supershift assays also confirmed that ERE-BP/ERE 

complex observed by EMSA was specifically recognized by antibodies to the Ku70/Ku80 

heterodimer. 

These results are consistent with the data in Chapter II that suggest these proteins 

are non-specific DNA-binding proteins that are present in both the cytoplasm and the 

nucleus. After the initiation of DSBs, Ku70 and Ku80 form a heterodimer that bind to the 

free ends of DNA independent of sequence and structure [118;227-230]. The Ku 

heterodimer forms a ring around the DNA but does not make contact with the bases 

themselves [145]. Instead, Ku fits sterically to the minor and major groove [145]. 

Fluorescence anisotropy studies revealed that electrostatic interactions playa large role in 

DNA-binding and are possibly the primary mechanism for DNA recognition [231]. Ku70 

and Ku80 localize in both the cytoplasm and nucleus [143;154;232-234]. It has also been 

shown that Ku70 and Ku80 localize to the nucleus in response to cell cycle status. Ku70 

and Ku80 are localized in the cytoplasm and nucleus during late telophase and early G 1, 

but are mainly associated with metaphase chromosomes during the G2/M phase [154]. 

Additionally, they have been shown to translocate in response to stimuli such as 

irradiation and serum starvation [143;235;236]. 

In conclusion, we have identified that the ERE-BP present in breast cancer 

extracts are complexes containing the DNA repair proteins Ku70 and Ku80. Our 
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preliminary data suggested that presence of these proteins observed by EMSA was 

associated with decreased survival in breast cancer patients (Fig 7, Chapter I). Given that 

these proteins are involved in the prevention of cell death by apoptosis and are associated 

with tumorigenesis and cancer progression, it would be expected that increased DNA­

binding activity would be associated with decreased survival. The focus of the 

investigations Chapter IV will be to confirm our preliminary results in a larger population 

of breast cancer patients. 

93 



CHAPTER IV 

CLINICAL UTILITY OF THE DNA-BINDING PROTEIN KU AS A 

BIOMARKER OF BREAST CARCINOMA BEHAVIOR 

Introduction 

The studies reported in Chapter III illustrated that the identity of the ERE-binding 

proteins that we observed previously in breast cancer biopsies is the protein Ku. Our 

preliminary data suggested that breast cancer patients with tissue biopsies negative for Ku 

DNA-binding activity have higher overall survival probabilities than patients positive for 

Ku DNA-binding activity. Ku has been implicated in DNA repair, telomere maintenance 

and apoptosis and plays an important role in chromosomal integrity and cell survival 

[146]. A correlation has been shown between Ku and the development of several cancers. 

Over-expression of Ku apparently leads to tumorigenesis through hyperproliferation and 

resistance to apoptosis, while under-expression of Ku may lead to genomic instability 

[146;237]. 

Ku protein and mRNA levels have been associated with patient survival and 

proliferation in various cancers. For example, Saviozzi et al. measured XRCC5 mRNA 

levels in both normal lung and non-small cell lung tumors [238]. Their results showed a 

significant correlation between over-expression of XRCC5 and shorter patient survival 

probabilities as well as a correlation with increased tumor grade. XRCC5 expression was 
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higher in poorly differentiated tumors and over-expression correlated with more 

aggressive cancers. Ghezzi et al. also demonstrates that Ku70 gene expression correlated 

with poorly differentiated colorectal tumors [239]. In addition, Hu et al. reported that 

expression of Ku70 protein measured by IHC was significantly higher in gastric cancers 

compared to normal gastric mucosa and precancerous lesions and that over-expression of 

Ku70 was associated with shortened telomeres [240]. 

Parella et al. demonstrated that non-melanoma skin cancers exhibited a significant 

increase in both Ku70 and Ku80 protein levels measured by IHC compared to those in 

normal skin [241]. This study also measured the DNA-binding activities of Ku in basal 

cell carcinomas, squamous cell carcinomas and normal skin tissue. An increase in DNA­

binding activity was observed in both the basal and squamous cell carcinomas compared 

to the normal skin. Furthermore, over-expression of both proteins was also associated 

with an increased rate of tumor cell proliferation. Expression of Ku70 has also been 

associated with survival in cervical carcinoma. For example, Wilson et al. reported that 

patients whose tumors had low Ku70 protein expression as measured by IHC exhibited 

significantly higher survival times [242]. This correlation with overall survival was also 

seen for Ku80 although it did not reach statistical significance. 

Both Ku70 and Ku80 have been associated with breast cancer progression. Pucci 

et al. reported that DNA-binding activities of cytoplasmic Ku measured by EMSA were 

increased 2 to 10-fold in tumors compared to normal tissue [243]. They also examined 

Ku protein levels by Western blot and found a 4-18-fold increase in expression in tumor 

extracts compared to normal tissue extracts. Lagadec et al. using breast cancer cells in 

culture, showed that Ku80 associated with the TrkA tyrosine kinase receptor [244]. 
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Breast tumors expressed higher levels of TrkA compared to normal breast tissue, which 

increased cell growth and invasion [245]. Although this study did not evaluate the clinical 

significance of Ku80 itself, it was found that Ku80 was upregulated in TrkA over­

expressing cells and involved in cell invasion, indicating that Ku80 may have an 

important role in breast cancer metastasis. They also showed that Ku70 associated with 

TrkA and enhances survival of cancer cells over-expressing this protein [246]. 

The purpose of the investigations described in this Chapter was to examine the 

prognostic significance of Ku DNA-binding activity with regard to breast cancer 

recurrence and patient survival. Better understanding of the relationship between Ku 

DNA-binding activity in breast cancer biopsies and breast cancer survival will aid in 

defining the role of Ku as a potential prognostic biomarker. 

Methods and Materials 

Patient population 

This study utilized de-identified breast carcinoma specimens from 363 patients collected 

between 1989-1997 and selected from the IRB-approved Hormone Receptor Laboratory 

(HRL) Biorepository and Tumor Marker Database. De-identified human tissue specimens 

were collected from patients with primary carcinomas of the breast. Tissue specimens 

were typically processed within an hour following surgery using stringent protocols to 

ensure the integrity of specimens for genomic and proteomic analyses [20; 191]. 

Available clinicopathological data include tumor-based properties (e.g., pathology, grade, 

stage, size and tumor marker status), patient-related characteristics (e.g., age, race, 
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menopausal status, family history, nodal status) and clinical follow-up (e.g, treatment 

regimen, disease-free and overall survival). 

As a clinical laboratory, the HRL performed biochemical assays measuring the 

protein levels of ER and PR in cytosols for ~22,000 human tissue specimens with both 

ligand binding and ErA methods for quantification [20]. Breast cancer cytosols 

previously prepared and stored at -80°C were used for these investigations. A diagram 

describing the flow of breast cancer specimens and associated patients through the study 

according to the reporting recommendations for tumor marker prognostic studies 

(REMARK) is shown in Figure 34 [247]. Table 4 describes the characteristics of the 

patient population used in this investigation. The median patient age was 63 years with a 

range of21 to 89.5 years. The median observation time was 70 months and ranged from 1 

to142 months. No evidence of bias was detected in the population of patients and 

associated breast cancer specimens selected for this study. 

Cytosol preparation 

Cytosols were prepared from de-identified human breast cancer tissue specimens in 40 

mM Tris-HCI, pH 7.4, containing 1.5 mM EDTA, 10% glycerol, 10 mM Na2Mo04, 1 

mM PMSF and 10 ~M monothioglycerol, and homogenized with a Polytron PT-I0-35. 

Homogenate was separated into pellet and cytosol by centrifugation, using a Beckman 

LE-80K ultracentrifuge at 105,000 x g for 30 minutes at 4°C [20;38;39;174]. Protein 

concentration of each cytosol was determined by the Bradford procedure [190]. Cytosols 

were stored at -80°C for future use. 
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De-identified frozen breast cancer 
tissue biopsies previously used in 

clinical assays of ER & PR 

Requirements: Primary breast carcinoma, female 

~ patient, age >18, frozen cytosol in Biorepository, 
clinical records in Database 

Population: Protein extracts from 363 
breast tissue specimens 

Sub-population 1: 145 patients 
treated with surgery alone 

Entire population divided by nodal 
status and ERIPR status 

Sub-population 2: 43 patients 
treated with surgery and adjuvant 

chemotherapy 

Figure 34. REMARK diagram describing the patient population used to investigate the 

clinical relevance of Ku. The flow of patients and associated breast cancer specimens 

through the study is shown according to the reporting recommendations for tumor marker 

prognostic studies (REMARK). 
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Table 4. Characteristics of the overall patient population with associated clinical data. 

Patient Parameters 
Median Age (range) 

63 years (21-89.5) 
Median Observation time (range) 

Race 

Histology 

70 months (1-142) 

white 
black 
asian 
hispanic 

n 

363 

292 
52 

2 
1 

Invasive ductal carcinoma 136 
Invasive lobular carcinoma 30 
Other 45 

Median Tumor Size (Range) 
60 mm (1-120) 324 

Stage 

Grade 

Lymph Node Status 

o 
1 
2 
3 
4 

1 
2 
3 

negative 
positive 

Hormone Receptor Status 
ER+/PR+ 
ER+/PR­
ER-/PR+ 
ER-/PR-

Recurrence Status 
yes 
no 
never disease free 

99 

9 
92 

178 
43 
17 

35 
114 
113 

171 
137 

200 
39 
36 
88 

75 
235 
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Determination of DNA-binding activities 

Protein extracts were incubated with 50 ng non-specific DNA, poly (dI-dC) (Amersham), 

10 mM KCI, 1% glycerol and e2P]labeled VitA2-ERE sequences in 40 mM Tris-HCI 

buffer, pH 8.0, containing 500 ~M PMSF and 10 ~M monothioglycerol overnight at 4°C. 

The gel was pre-run for 30 minutes at 150 V at 4°C in 0.5X TBE buffer (1.0 M Tris-HCI, 

pH 8.6, containing 831 mM boric acid, 10 mM EDTA). Samples were then loaded, 

followed by electrophoresis at 300 V for 5 minutes, and then 180 V for 4 hours. 

Subsequently, gels were dried and exposed to phosphor screens (Perkin Elmer) overnight. 

The bands representing e2P]ERE-protein complexes and free e2p]ERE sequences were 

visualized and quantified using a Cyclone Storage Phosphor System ™ with OptiQuant@ 

software (Perkin Elmer). A method of estimating the relative DNA-binding activity levels 

of ERE-BP in breast cancer biopsies was developed by measuring the band intensity of 

the KU/ERE complexes or free e2p]ERE sequences in each lane from the EMSA in 

OptiQuant@ software (See Chapter II). The Ku DNA-binding activity is reported as 

Digital Light Units (DLU)/~g protein and normalized to the total DLU of the lane in 

order to compare between samples. 

Statisical analyses 

Graphical analyses, e.g. scatter plots, box and whisker plots, Kaplan-Meier analyses and 

linear regression were employed to evaluate various realtionships. For Kaplan-Meier 

survival curves, p values were determined with a log-rank test. Chi-square analyses and 

statistical analyses (e.g. Kruskal-Wallis, Mann-Whitney tests) were performed with Prism 

4 (GraphPad, Inc.). Cox regression analyses were performed using SPSS Statistics 18.0 
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(SPSS, Inc.). Kaplan-Meier and Cox regression analyses were performed using relative 

Ku70/80 DNA-binding activity levels as determined by EMSA. Kaplan-Meier analyses 

were also performed using Ku70 and Ku80 protein levels measured by Western blot and 

gene expression levels measured by microarray. 

Results and Discussion 

Reproducibility of EMSA measurement of Ku DNA -binding activities 

To assess the intra-assay variation, Ku DNA-binding activities in cytosols from 

ten representative breast carcinomas were measured in three experiments by EMSA using 

band intensities from two lanes on the same gel and averaged (Figure 35A). For the 

estimate of inter-assay variation, Ku DNA-binding activities of the same ten breast 

cancer specimens were measured by EMSA in three separate experiments (Figure 35B). 

Results are expressed as mean ± SEM. In general, the reproducibility of the method 

developed was satisfactory for performing investigations of the clinical utility of Ku in 

assessing breast cancer prognosis. 

Relationships of cytosolic Ku DNA-binding activities in breast cancers and various 

patient characteristics 

Ku DNA-binding activities were measured in cytosols as described using 363 

breast cancer biopsies and correlated with various clinical characteristics, including stage, 

grade, nodal status, age and race (Figure 36). Box and whisker plots of the data are 
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Figure 35. Reproducibility of EMSA measurement of Ku DNA-binding activities. To 

assess the intra-assay variation (A), Ku DNA-binding activities in cytosols from ten 

representative breast carcinomas were measured by EMSA using band intensities from 

two lanes on the same gel and averaged. For the estimate of inter-assay variation (B), Ku 

DNA-binding activities of the same ten breast cancer specimens were measured by 

EMSA in three separate experiments. Results are expressed as mean ± SEM. 
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Figure 36. Inter-relationships of cytosolic Ku DNA-binding activities in breast cancers 

and various patient characteristics. Cytosolic Ku DNA-binding activities measured by 

EMSA were correlated with stage (A), grade (B), nodal status (C), age CD) and race CE). 

Box and whisker plots of the data are shown. The boxes represent the lower quartile, 

median and upper quartile, while the whiskers indicate the sample maximum and 

minimum. For stage, grade and age, a Kruskal-Wallis test was used to determine if a 

significant difference existed between the groups. For nodal status and race, a Mann-

Whitney test was used. 
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shown. The boxes represent the first quartile, median (line within the box) and third 

quartile, while the whiskers indicate the sample maximum and minimum. For stage, 

grade and age, a Kruskal-Wallis test was used to determine if a significant difference 

exists between the groups. A Mann-Whitney test was used to examine statistical 

significance for nodal status and race. 

No significant correlation was observed between Ku DNA-binding activities and 

either patient age, race, nodal status, or stage. However a significant correlation was 

observed with cancer grade. Patients with higher grade cancers appear to exhibit higher 

Ku DNA-binding activities. These observations are consistent with the lung cancer study 

by Saviozzi et al. and the Ghezzi et al. colorectal cancer study that correlated higher Ku 

levels with poorly differentiated tumors [238;239]. 

To further examine the relationship of cytsolic Ku DNA-binding activities with 

patient characteristics, the population was divided into two groups: those with primary 

breast cancers exhibiting below median Ku activity levels and those with above median 

Ku activity levels. Chi-square analysis was performed for each parameter to determine if 

there was a difference between the two patient groups (Table 5). Results showed that the 

increased Ku DNA-binding activity was correlated with node positive cancer (p=O.029) 

as well as development of metastases (p=O.008). These results are also consistent with the 

Saviozzi et al. lung cancer study that found an association with Ku70 over-expression 

and more aggressive tumors [238]. 
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Table 5. Association of cytsolic Ku DNA-binding activities with vanous patient 

characteristics. The population was divided into two groups: those with primary breast 

cancers exhibiting below median Ku activity levels and those with above median Ku 

activity levels. Chi-square analysis was performed to determine if a difference existed 

between the two patient groups. 

Below Median Above Median 
(n=182) No. (%) (n=181) No. (%) Pvalue 

Age 0.978 
<35 4 (2) 4 (2) 

35-50 48 (26) 46 (25) 
>50 130 (71) 131 (72) 

Tumor Size 0.057 
S20mm 83 (46) 63 (35) 
>20mm 81 (44) 96 (53) 
missing 18 (10) 22 (12) 

Nodal Status 0.029 
Positive 62J34) 75 (41) 

Negative 100 (55) 72 (40) 
missing 20 (11) 34 (19) 

Grade 0.061 
I 24(13) 11 (6) 

II 53 (29) 61 (34) 
III 54 (30) 59 (16) 

missing 51 (28) 50 (28) 
Stage 0.252 

0 4 (2) 5 (3) 
I 55 (30) 36 (20) 

II 84 (46) 94 (52) 
III 20 (11) 23 (13) 
IV 7 (4) 10 (5) 

missing 12 (7) 13 (7) 
Histology 0.875 

Infiltrating Ductal 136 (75) 135 (75) 
Invasive Lobular 14 (8) 16 (9) 

Other 29.116) 26 (14) 
missing 3 (2) 4 (2) 

Hormone Receptor Status 
ER+/PR+ 100 (55) 100 (55) 0.37 
ER+/PR- 21 (12) 18(10) 
ER-/PR+ 22 (12) 14 (8) 
ER-/PR- 39 (21) 49 (27) 

Treatments 0.433 
Surgery Only 75141} 70 (39) 

Chemotherapy 28(15) 37 (20) 
Hormonal therapy 30 (16) 21 (12) 
Radiation therapy 8 (4) 12 (7) 

Combined therapies 41 (23) 41 (23) 
Development of metastasis 0.008 

Yes 29 (16) 46 (25) 
No 132(36) 103 (28) 

Never disease free 22 (6) 31 (8) 
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Significance of known prognostic indicators 

To ensure that the population of patients used in this study is representative of the 

general population of breast cancer patients, survival analysis was performed with known 

prognostic factors. Kaplan-Meier analyses were used to determine the relationship 

between survival and stage, nodal status and grade in the study population (Figure 37). 

As anticipated, higher stage, higher grade and positive nodal status were associated with 

decreased disease-free (DFS) and overall (OS) survival probabilities [3;12]. Kaplan­

Meier analyses were also used to determine the relationship between survival and ERiPR 

status of the breast carcinoma in the study population (Figure 38). Patients with either ER 

or PR negative breast carcinomas were associated decreased disease-free and overall 

survival probabilities compared to those patients with ER or PR positive cancers. As 

described previously, breast cancer patients with tumors that are ER and/or PR positive 

generally exhibit increased disease-free and overall survival [3]. These results suggest 

that this population is representative of the general population of patients with primary 

breast cancers. 

Correlation of cytosolic Ku DNA-binding activities with survival of breast cancer 

patients 

Our preliminary data described in Chapter I suggested that presence of Ku (then 

called ERE-BP) in breast cancer cytosols correlated with patient survival. To further 

evaluate this finding, Ku DNA-binding activities were measured by EMSA using 

cytosols prepared and analyzed as described previously. Kaplan-Meier analyses were 
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Figure 37. Disease-free and overall survival probabilities of the study population as a 

function of known prognostic indicators. Kaplan-Meier analyses were used to determine 

the influence of stage (A & B), nodal status (C & D) and grade (E & F) on disease-free 

(DFS) and overall (OS) survival. P values were determined using a log-rank test. 
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Figure 38. Disease-free and overall survival probabilities of the study population as a 

function of ER and PR status of the breast carcinomas. Kaplan-Meier analyses were used 

to detenrune the influence of ER status (A & B) and PR status (C & D) on disease-free 

(DFS) and overall (OS) survival. Using established criteria, a level greater than 10 

fmoVrng protein by ligand binding and 15 fmoVrng protein by enzyme immunoassay 

were used to distinguish between ERIPR positive and negative samples [35]. P values 

were determined using a log-rank test. 
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Figure 39. Disease-free and overall survival probabilities as a function of Ku DNA-

binding activity in breast carcinomas. Ku DNA-binding activities were measured by 

EMSA using cytosols prepared and analyzed as described previously. Kaplan-Meier 

analyses were used to determine the relationship of Ku DNA-binding activities with 

disease-free (DFS) (A) and overall (OS) (B). The patient population was divided into two 

groups with either Ku DNA-binding activities above or below the median value, 

regardless of ERiPR status. P values were determined using a log-rank test. 
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used to detennine the relationship of Ku DNA-binding activities with DFS and OS 

(Figure 39). The patient population was divided into two groups with either Ku DNA­

binding activities above or below the median value. Patients with increased Ku DNA­

binding activities had decreased disease-free (p=0.022) and overall survival (p=0.030) 

probabilities. DFS percentages for patients with tumors with increased Ku binding 

activities were 67% compared to 79% for patients with decreased activities (p=0.022). 

For OS percentages, patients with tumors with increased Ku binding activities were 62% 

compared to 74% for patients with decreased Ku binding activities (p=0.030). 

To analyze the relationship between survival and Ku DNA-binding activity as a 

continuous variable, univariate Cox regression analysis was perfonned for both DFS and 

OS (Table 6). The hazard ratio for DFS was 4.88 (p=0.002) while the hazard ratio for OS 

was 2.14 (p=0.192). The hazard ratio is a means of relating the Ku DNA-binding activity 

value to survival. A hazard ratio of 1 indicates that Ku DNA-binding activity has no 

effect on survival, while a value of <1 indicates that higher Ku DNA-binding activity is 

correlated with increased survival. A hazard ratio of> 1 indicates that higher Ku DNA­

binding activity is correlated with decreased survival. Thus the hazard ratios of 4.88 and 

2.14 indicate that higher Ku DNA-binding activities in tissue biopsies are associated with 

decreased survival in breast cancer patients. 

In Chapter III, we documented a correlation between Ku DNA-binding activities 

and protein levels measured by Western blot. To detennine if Ku70 and Ku80 protein 

levels also correlated with survival, Kaplan-Meier analyses were used to detennine the 

relationship of Ku protein levels with DFS and OS (Figure 40). Ku70 and Ku80 were 

measured by Western blot as described previously in a population of 50 patients. The 
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Table 6. Influence of Ku DNA-binding activity in frozen breast cytosols from breast 

carcinomas for predicting the disease-free and overall survival of patients. Univariate 

Cox regression analyses were performed as a function of Ku DNA-binding activities 

determined by EMSA as described previously. 

Hazard Ratio (95% CI) P value 

DFS 4.88 (1.78-13.36) 0.002 

OS 2.14 (0.681- 6.75) 0.192 
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Figure 40. Disease-free and overall survival probabilities as a function of Ku70 and Ku80 

protein levels. Ku70 and Ku80 protein levels were measured in previously frozen breast 

cancer cytosols by Western blot as described in Chapter III. Kaplan-Meier analyses were 

used to determine the relationship of Ku70 (A, B) and Ku80 (C, D) protein levels with 

DFS and OS. The patient population was divided into two groups with either Ku DNA-

binding activities above or below the median value in breast tissue biopsies. These 

patients had breast cancers that were both ER negative and positive. P values were 

determined using a log-rank test. 
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patient population was divided into two groups according to Ku protein levels either 

above or below the median value in breast cancers. P values were determined using a log­

rank test. The same trend of higher Ku levels associating with lower survival probabilities 

was observed for DFS, although it was not statistically significant. However, there was 

no correlation with OS. This is most likely due to the small population size and an 

expanded study is warranted in a larger group of breast cancer specimens. 

Disease-free and overall survival probabilities as a function of XRCC5 (Ku80) or 

XRCC6 (Ku70) gene expression levels were also analyzed (Figure 41). Kaplan-Meier 

analyses were performed using gene expression data from micro array analysis of LCM­

procured carcinoma cells from 247 biopsies [200;248] to determine the influence on DFS 

and OS. The patient population was divided into two groups with breast carcinomas 

exhibiting either Ku gene expression levels above or below the median value. No 

significant correlation with survival was observed for either DFS or OS. 

These data are inconsistent with the earlier clinical correlations with the DNA­

binding activities as well as the studies by Saviozzi et al. and Ghezzi et al. Both of these 

studies measured gene expression levels by qR T -PCR instead of microarray. Because of 

the broad nature of microarray analysis, qRT-PCR is a more accurate method of 

validating gene expression data [249]. Microarray results are usually validated by qRT­

PCR. 

Another possible explanation for the difference observed is tissue specific 

variability in expression. Our study focuses on breast tumors while the Saviozzi and 

Ghezzi studies focused on lung and colorectal tumors. Furthermore, post-translational 

modifications may playa role in the ability of Ku binding to DNA, since Ku has been 
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Figure 41. Disease-free and overall survival probabilities as a function of XRCC5 (Ku80) 

or XRCC6 (Ku70) gene expression levels in breast carcinomas. Kaplan-Meier analyses 

were performed using gene expression data from microarray analysis of pure popUlations 

of breast carcinoma cells procured by LCM from 247 biopsies [200;248] to determine the 

relationship with DFS and os. The median value of gene expression results was used as a 

cutoff. P values were determined using a log-rank test. 
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reported to be both acetylated and phopshorylated [246;250;251]. Ku70 and Ku80 are 

targets of phosphorylation by DNA-PK and this phosphorylation apparently controls their 

localization, DNA-binding and function [251]. The C-terminal region of Ku70 is 

acetylated by CBP and PCAF, disrupting the Ku70-Bax interaction [250]. 

Correlation of Ku DNA -binding activities with survival in various sub-populations of 

patients 

Since ER and PR expression in a primary breast cancer biopsy serve as indicators 

of a patient's prognosis, we combined ERiPR status with either above or below median 

Ku DNA-binding activity to determine the relationship with DFS and OS (Figure 42). 

Survival results of patients with ER-/PR- breast carcinomas accepted as those with the 

poorest prognosis are shown in A and B. Survival results for patients with tumors that are 

either ER-/PR+ or ER+/PR- breast carcinomas are shown in C and D, while those from 

patients with the best prognosis exhibiting breast cancers that are ER+/PR+ are shown in 

E and F. The median Ku DNA-binding activity of the entire population of 363 patients 

was used as a cutoff. A level greater than 10 fmol/mg protein by ligand binding and 15 

fmol/mg protein by enzyme immunoassay were used to distinguish between either ER or 

PR positive and negative samples [35]. P values were determined using a log-rank test. 

A significant difference in DFS and OS was not observed between the patients 

with either increased or decreased Ku activities that also had ER+/PR+ breast 

carcmomas. However, breast cancer patients with tumors that are either ER-/PR-, 

ER+/PR- or ER-/PR+ and exhibit above median Ku DNA-binding activities exhibited the 
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Figure 42. Disease-free and overall survival probabilities as a function of both Ku DNA-

binding activity and ERiPR status of breast carcinomas. Ku DNA-binding activities were 

evaluated according to ERIPR status and Kaplan-Meier analyses were used to determine 

the relationship with DFS and OS. Survival results of patients with ER-IPR- breast 

carcinomas are shown in A and B. Survival results for patients with tumors that are either 

ER-IPR+ or ER+IPR- breast carcinomas are shown in C and D, while those that are 

ER+IPR+ are shown in E and F. The median Ku DNA-binding activity of carcinomas 

from the entire population of 363 patients was used as a cutoff. A level greater than 10 
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fmol/mg protein by ligand binding and 15 fmol/mg protein by enzyme immunoassay 

were used to distinguish between ER positive and negative samples [35]. P values were 

determined using a log-rank test. 
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poorest as and DFS. Breast carcinomas that do not express ER or PR as well as those 

expressing only one of these receptor proteins are generally found to be more aggressive 

and less differentiated than ER+/PR+ breast cancers [3]. Since Ku expression is increased 

in more aggressive cancers, it would be expected that Ku DNA-binding activity exhibits a 

stronger association with decreased survival in breast cancers that are ER and/or PR 

negative. These patients are also much less likely to respond to drugs such as tamoxifen 

[25;26]. 

Since nodal status is a major prognostic factor in breast cancer, we assessed the 

relationship between Ku DNA-binding activities in tissue biopsies with patient survival 

as a function of nodal status (Figure 43). Ku DNA-binding activities were combined with 

nodal status and Kaplan-Meier analysis was used to determine the relationship with DFS 

and OS. Survival results of patients with node negative breast carcinomas are shown in A 

and B, while those for node positive breast carcinomas are shown in C and D. The 

median Ku DNA-binding activity of the entire population of 363 patients was used as a 

cutoff. P values were determined using a log-rank test. Increased Ku DNA-binding 

activity was associated with decreased DFS in node positive patients (p=O.046), however 

the relationship was not statistically significant in node negative patients. This also 

supports our observation that Ku DNA-binding activity in a tissue biopsy has increased 

relevance for predicting more aggressive cancers and increased risk of recurrence. 

To confirm that these results are independent of therapy received, a subset of 

patients that received surgery alone without adjuvant therapy was analyzed by Kaplan­

Meier (Figure 44). Patients with tumors exhibiting Ku DNA-binding activities in the 
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above median group had decreased DFS (p=O.150) and OS (p=O.003) probabilities. 

Although the p value for DFS was not significant, the trend of higher Ku DNA-binding 

activities being associated with decreased survival probabilities was observed. These 

results suggest that the use of Ku-binding activity as a predictor of risk of recurrence is 

independent of therapy received by the patient. 

Because Ku is involved in DNA repair and certain chemotherapies induce DNA 

damage, we wanted to determine the clinical utility of Ku DNA-binding in a subset of 

patients receiving only adjuvant chemotherapy. Patients described in this population had 

been treated with various combinations of the DNA damaging agents doxorubicin, 

cyclophosphamide, methotrexate or 5-fluorouracil. Doxorubicin is an anthracycline that 

works by intercalating DNA, while cyclophosphamide is an alkylating agent that attaches 

an alkyl group to guanine bases in DNA. Methotrexate is an anti-folate that inhibits 

dihydrofolate reductase thereby blocking thymidine synthesis. Furthermore, 5-

fluorouracil is a pyrimidine analog that inhibits thymidylate synthase. Kaplan-Meier 

analyses were used to determine the relationship of Ku DNA-binding activities to 

disease-free and overall survival in 43 patients receiving surgery and adjuvant 

chemotherapy (Figure 45). All patients were without distant metastases at presentation. 

The median value of the Ku DNA-binding activities in cancers from the entire population 

of 363 patients was used as a cutoff. P values were determined using a log-rank test. 

Increased Ku DNA-binding activities were associated with decreased DFS (p=O.004) and 

OS (p=O.009) in a statistically significant manner. After 125 months, 97% of patients 

with breast cancers in the below median group had not developed a recurrence compared 
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Figure 43 . Disease-free and overall survival probabilities as a function of both Ku DNA-

binding activity and nodal status of breast carcinomas. Ku DNA-binding activities were 

evaluated according to nodal status and Kaplan-Meier analyses were used to determine 

the relationship with DFS and OS. Survival results of patients with node negative breast 

carcinomas are shown in A and B, while those for node positive breast carcinomas are 

shown in C and D. The median Ku DNA-binding activity of carcinomas from the entire 

population of 363 patients was used as a cutoff. P values were determined using a log-

rank test. 
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Figure 44. Disease-free and overall survival probabilities as a function of Ku DNA-

binding activity in cytosols of breast cancers regardless of ER and PR status from a sub-

population of patients receiving no adjuvant therapy. Ku DNA-binding activities were 

measured by EMSA and Kaplan-Meier analyses were used to determine the relationship 

to DFS (A) and OS (B) survival. Patients received surgery only and no adjuvant therapy. 

The median value of the Ku DNA-binding activities of carcinomas from the entire 

population of 363 patients was used as a cutoff. P values were determined using a log-

rank test. 
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Figure 45. Disease-free and overall survival probabilities as a function of Ku DNA-

binding activity in cytosols of breast cancers regardless of ER and PR status from a sub-

population of patients receiving adjuvant chemotherapy. Ku DNA-binding activities were 

measured by EMSA and Kaplan-Meier analyses were used to determine the relationship 

to DFS (A) and OS (B). Patients received surgery and adjuvant chemotherapy. The 

median value of the Ku DNA-binding activities of carcinomas from the entire population 

of 363 patients was used as a cutoff. P values were determined using a log-rank test. 
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to only 55% in the above median group. A Fisher's exact test was used to determine 

whether a difference exists between these two groups in relation to grade and nodal 

status; however no significant differences were found (Table 7). The Fisher's exact test 

was used instead of chi-square analyses due to the small population size. Additionally, no 

significant difference was found in average tumor size between groups. These data 

underscore the importance of this research since we have shown that Ku DNA-binding 

activity in a breast tumor biopsy may predict response to chemotherapy independent of 

nodal status, tumor grade or tumor size. 

Our results show that increased Ku DNA-binding activities in breast cancer 

tumors are associated with lower survival probabilities under a variety of clinical and 

tumor marker states. Several studies discussed earlier found that over-expression of Ku70 

and Ku80 is associated with tumor progression in breast, lung, colorectal, skin, gastric 

and cervical carcinomas [238-243]. Ku levels in the majority of these studies were 

measured either by IHC or qRT-PCR. Additionally, only two studies measured the DNA­

binding activities ofKu in tumor extracts [241;243]. Both studies showed that Ku DNA­

binding activities were increased in cancer tissue extracts compared to normal tissue 

extracts. Pucci et at., using breast cancer cytosolic extracts, reported Ku DNA-binding 

activities were increased 2 to 10-fold in tumors compared to those from normal tissue 

[243]. However, a limitation of this study was the small population size (n=8). 

Parella et at. showed that an increase in DNA-binding activity was observed in 

both basal and squamous cell skin carcinomas compared to normal skin. The over­

expression of both Ku proteins was also associated with an increased tumor proliferation 
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Table 7. Comparison of clinical parameters between the two prognostic groups in a 

subset of patients receiving adjuvant chemotherapy only. Grade and nodal status were 

analyzed by a Fisher's exact test. For tumor size, mean ± SEM was compared by a Mann-

Whitney test. 

Ku Below Median (n=24) Ku Above Median (n=19) p 
Grade 1 and 2 4 6 0.45 
Grade 3 and 4 15 10 
Node Negative 12 7 0.54 
Node Positive 12 11 
Tumor Size (mm) 26± 2 29± 4 0.98 
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rate. Although our investigation did not examine Ku DNA-binding activities in normal 

breast specimens, our data also suggest that higher Ku activity is associated with tumor 

progression and metastasis. We observed a significant correlation with higher tumor 

grade and lymph node positive cancers, both indicators of more aggressive breast 

cancers. 

Two of the studies discussed earlier correlated Ku expression levels with patient 

survival. Wilson et at. measured Ku70 and Ku80 protein levels by IHC in 77 cervical 

carcinoma biopsies [242]. Kaplan-Meier survival analysis showed that high Ku70 and 

Ku80 levels were associated with lower overall survival probabilities in patients 

receiving radiotherapy. The percent survival at 60 months for patients with tumors 

exhibiting high Ku70 expression compared to those with low expression was 47% and 

69%, respectively (p=0.046). The percent survival at 60 months for patients with tumors 

exhibiting high Ku80 expression compared to those with low expression was 50% and 

69%, respectively (p=0.087). Saviozzi et al. correlated Ku80 gene expression levels in 

non-small cell lung cancer biopsies with overall survival of 50 patients [238]. Kaplan­

Meier survival analysis showed that high Ku80 levels in lung lesions were associated 

with lower overall survival probabilities. The percent survival at 60 months for patients 

with lung tumors with high Ku80 expression compared to those with low expression was 

15% and 68%, respectively (p=0.04). Cox regression analysis also showed that Ku80 

over-expression was associated with poor prognosis (hazard ratio = 0.005). 

The results of both these studies with different types of carcinoma are similar to 

our results with breast cancer which showed that DFS percentages for patients with 
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tumors with high Ku binding activities compared to those with low activities were 67% 

and 79%, respectively (p=0.022). Patients with tumors with high Ku binding activities 

compared to low exhibited OS values of 62% and 74%, respectively (p=0.030). This 

work extends beyond protein expression and correlates DNA-binding activity with 

prognosis. Furthermore, our investigation has utilized a much larger patient population 

than the studies previously mentioned. 

Our results also suggested that Ku DNA-binding activity in a breast tumor biopsy 

may predict response to chemotherapy. Over-expression of DNA repair proteins in a 

tumor cell potentially may promote resistance to DNA damage induced by chemotherapy 

and radiation leading to a less effective therapeutic outcome. Several studies have 

reported that Ku70 and Ku 80 expression is related to resistance to radiotherapy. As 

discussed above, Wilson et al. measured Ku70 and Ku80 protein levels by IHC in 77 

cervical carcinoma biopsies [242]. Kaplan-Meier survival analysis indicated that high 

Ku70 and Ku80 levels were associated with lower overall survival probabilities in 

patients receiving radiotherapy. 

Beskow et al. also reported that cervical cancer patients resistant to radiotherapy 

over-express Ku70 and Ku80, as determined by IHC [252]. In addition, Komuro et al. 

reported similar results in patients with rectal carcinoma [253]. Ku70 and Ku80 protein 

levels measured by IHC significantly correlated with radiotherapy resistance while over­

expression of both proteins associated with shorter disease-free survival times in patients 

receiving radiotherapy. Lee et al. reported that high Ku70 protein expression in 

nasopharyngeal carcinoma also correlated with resistance to therapy [254]. They 

suggested that Ku70 expression predicts response to radiotherapy as well as response to 
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radiotherapy with concurrent chemotherapy in patients with this aggressive cancer. In 

breast cancer, Leifler et al. reported that low protein expression of Ku70 and Ku80 

predicted a good response to radiotherapy [255]. These results suggest that tumors with 

high levels of Ku70 and Ku80 are able to repair damaged DNA after radio- or 

chemotherapy allowing them to survive and proliferate. 

As documented in the preceding discussion, there is emerging evidence from 

studies of various types of cancer that the XRCC5 and XRCC6 genes and their protein 

products, Ku80 and Ku70 are correlated with a broad spectrum of clinical features and 

disease parameters in patients. Thus far, no common relationship has been discerned 

between Ku70/Ku80 expression and a particular clinical behavior. To our knowledge, our 

results using a short, defined DNA sequence represent the first correlation between Ku 

DNA-binding activity and response to chemotherapy in breast cancer. 

Resistance to cytotoxic therapy is likely only part of the reason that patients with 

tumors either over-expressing Ku70 and Ku80 protein levels or showing increased DNA­

binding activities have shorter survival times than patients with tumors expressing lower 

Ku levels. Our results also indicated that this trend is true in patients receiving only 

surgical resection of the primary tumor, suggesting additional mechanisms for this 

difference in survival. Since NHEJ is error-prone and has been reported to cause 

chromosomal rearrangements, an over-expression of Ku may lead to increased 

chromosomal instability and tumor progression [256;257]. This is especially important in 

breast tissue because of the extensive differentiation, proliferation and apoptosis that 

occurs during development in utero, puberty, monthly pre-menopausal cycles and 

pregnancy [100-102]. These high proliferation rates enhance the likelihood of DNA 
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breaks [241]. To complicate the possible mechanism further, Ku is also involved in 

telomere maintenance and apoptosis. Ku70 has been reported to be associated with 

telomere shortening in gastric cancer, leading to genetic instability and carcinogenesis 

[240]. Ku70 expression also appears to be related to suppression of apoptosis, an 

important mechanism in tumor suppression [258]. Over-expression of Ku70 sequesters 

the pro-apoptotic protein Bax from the mitochondria rendering it inactive [144;250]. 

These mechanistic studies provide supportive evidence for the molecular basis of the 

clinical correlations observed from our investigations of breast carcinoma. 

Summary & Conclusions 

The purpose of the investigations reported in this Chapter was to examine the 

clinical value of determining Ku DNA-binding activity in breast cancer tissue biopsies 

such as assessing risk of recurrence and overall survival as well as response to therapies. 

Better understanding of the relationship between Ku DNA-binding activity in breast 

cancer biopsies and breast cancer behavior will help define Ku as a potential prognostic 

biomarker. 

Our results demonstrated that increased Ku DNA-binding activities measured in 

cytosols of breast tumor biopsies correlated with higher grade tumors, positive lymph 

node status and disease-free and overall survival. These results were also detected in a 

subset of patients that didn't receive adjuvant therapy. Most importantly, these results 

were also observed in patients receiving adjuvant chemotherapy, suggesting that Ku 

DNA-binding activities may be used to predict response to treatment with toxic agents. 

Cox regression analysis indicated that higher Ku DNA-binding activities were associated 
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with an increased risk of breast cancer recurrence and decreased survival. Collectively, 

our results suggest that Ku DNA-binding activities in cytosols prepared from breast 

cancer biopsies may be used as potential biomarkers to improve breast cancer 

management. 
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APPENDIX 

Table 8. List of DNA sequences. 

Name Sequence Ref. 
Bel2 S'-GTCCGGTCGCCAGGACCT -3' [2S9] 
CTSD S'-GTCGATCAGCTGGGCCGGGCTGACCCCGCG-3' [260] 
GRE S'-GTCAGAGGATCTGTACAGGATGTTCT AGAT -3' [261] 
c-fos S'-AGCTTGGGCTGAGCCGGCAGCGTGACCCCGCATG-3' [262] 
Jun S'- GTCGATCCTGAAGCAGAGCATGACCTTGAACTGAAG [263] 

CAGAGCAT GACCTTGAA-3' 
OCTI S'-GTCATTTGCA T -3' [264] 
OCT2 S'-GTCGGCGTTAAAATTCATTAAAATTCAGGCC-3' [264] 
PR-b S'-GTCATGGAGGCCAAGGGCAGGAGCTGACCAGCGCCG [26S] 

CCCT-3' 
PRE S'-GTCGATCCAGAACAAACTGTTCTAGCTACG-3' [263] 
Prolactin S'-GTCTCCAGGTCACCAGCTGCTTCAGATGATC-3' [266] 
pS2 S'-GTCGATCTGCAAGGTCACGGTGGCCACCCC-3' [267] 
Scramble-l S'-GTCAGGTTTGAGGCTATATAGTGAAAGA-3' 
Scramble-2 S'-GTCTGGTCATACGAGTAAGCTGAGGATGAGCGCCG 

AAC-3' 
TFIID S'-GTCGCAGAGCATATAAGGTGAGGTAGGA-3' [187] 
TREpal S'-GTCGATCGTAAGATTCAGGTCATGACCTGA-3' [268] 
TRE-DR S'-GTCAGCTTCAGGTCACAGGAGGTCAGAGAG-3' [269] 
VitA2 S'-GTCCAAAGTCAGGTCACAGTGACCTGATC-3' [173] 
VitA2-HP S'-TTTGCGGTCCAAAGTCAGGTCACAGTGACCTGATCGT 

TTTTTTTCGATCAGGTCACTGTGACCTGACTTTGGACCG 
C-3' 

VitA2-mut S'-CAAAGTCAGGGCACAGTGTCCTGATC-3' 

IS3 



Table 9. List of abbreviations. 

aa 
AJCC 
BIR 
CI 
DC IS 
DFS 
dHJ 
DLU 
DLU 
DNA-PK 
DSB 
DTT 
E2 
EIA 
EMSA 
ER 
ERE 
ERE-BP 
ERR 
ETOH 
FDA 
FISH 
GRE 
HAP 
hnRNP 
HRE 
HRL 
HRP 
IHC 
IRB 
Kd 
LBA 
LCIS 
LCM 
LC-MS/MS 
NE 
NHEJ 
NLS 
OS 
PAGE 
PMSF 
PR 
REMARK 
rhER 

amino acid 
American Joint Committee on Cancer 
break induced replication 
confidence interval 
ductal carcinoma in situ 
disease free survival 
double Holliday junction 
digital light units 
digital light units 
dna protein kinase 
double strand break 
dithiothreitol 
17p-estradiol 
enzyme Immunoassay 
electrphoretic mobility shift assay 
estrogen receptor 
estrogen response element 
estrogen response element binding proteins 
estrogen related receptor 
ethanol 
Food and Drug Administration 
fluorescent in situ hybridization 
glucocorticoid response element 
high abundant proteins 
heterogeneous ribonucleoprotein 
hormone response element 
hormone receptor laboratory 
horseradish peroxidase 
immunohistochemistry 
institutional review board 
dissociation constant 
ligand binding assay 
lobular carcinoma in situ 
laser capture microdissection 
tandem liquid chromatography and mass spectrometry 
nuclear extract 
nonhomologous end joining 
nuclear localization signal 
overall survival 
polyacrylamide gel electrophoresis 
phenylmethanesulfonylfluoride 
progesterone receptor 
reporting recommendations for tumor marker prognostic studies 
recombinant human estrogen receptor 
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Rlx 
RPA 
SDSA 
SEM 
SERM 
Tmx 
TRE 
VitA2 
vWa 

raloxifene 
replication protein A 
synthesis dependent strand annealing 
standard error of the mean 
selective estrogen receptor modulator 
tamoxifen 
thyroid hormone response element 
vitellogenin A2 
von Wille brand 
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