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ABSTRACT 

EXPRESSION OF GENES FOR PEPTIDE/PROTEIN HORMONES AND THEIR 

COGNATE RECEPTORS IN BREAST CARCINOMAS AS BIOMARKERS 

PREDICTING RISK OF RECURRENCE 

Michael W. Daniels 

May 14, 2016 

Certain hormones and/or receptors influencing normal cellular pathways 

were detected in breast cancers.  The hypothesis is that gene subsets predict risk 

of breast carcinoma recurrence in patients with primary disease. Gene expression 

of 55 hormones and 73 receptors were determined by microarray with LCM-

procured carcinoma cells of 247 de-identified biopsies. Univariate and multivariate 

Cox regressions were determined using expression levels of each 

hormone/receptor gene, individually or as a pair. Significant genes derived for each 

subset were analyzed to predict risk of cancer recurrence with 1000 LASSO 

training/test sets. A 14-gene molecular signature was identified for predicting 

clinical outcome without regard to estrogen or progestin receptor status of 

biopsies. A three-gene signature was derived for ER+ cancers while a 9-gene 

signature was deciphered for ER- cancers. Molecular signatures derived were 

compared with results in public databases. Collectively, results suggest gene 

subsets in primary breast cancer have been identified that predict recurrence. 
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CHAPTER I 

 INTRODUCTION 

 The Surveillance, Epidemiology, and End Results (SEER) program 

estimated 231,840 new breast cancer cases and 40,290 deaths in the United 

States in 2015 ("Surveilance, Epidemiology, and End Results Program,"). Self-

examination to clinical examination to mammogram is a typical route to detect 

breast cancer. When an area of the breast is identified as suspicious, a biopsy may 

be taken to help classify a tumor as malignant. If the tumor is diagnosed as 

carcinoma, then the pathologist will evaluate the lesion by stage and type. Stage 

is based on several factors such as size of the cancer, number of lymph nodes 

involved and signs of local invasion of the breast and metastasis to other organs 

(Greenspan, Gardner, & Shoback, 1997). Some types of breast cancer may be 

characterized as in situ versus invasive, ductal versus lobular and sex-hormone 

receptor status (Fleisher, Dnistrian, Sturgeon, Lamerz, & Wittliff, 2002; J. Wittliff, 

Pasic, & Bland, 1998). Classification of stage and grade as well as nodal status 

contributes significantly to determining the prognosis and treatment of the disease.   

An important consideration for assessing breast cancer prognosis and 

treatment was provided by the discovery that estrogen (ER) and progestin
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receptor (PR) proteins were clinically useful biomarkers (Fisher et al., 1983; Fisher 

et al., 1981; Fleisher et al., 2002; Hammond et al., 2010; James, 1984; J. Wittliff 

et al., 1998). Briefly, the presence of significant levels of ER and PR in a breast 

cancer biopsy was correlated with better prognosis than patients with lesion 

lacking ER and PR proteins. In addition, the presence of ER and PR in a breast 

cancer tissue biopsy was strongly associated with the patient’s response to 

Tamoxifen, an antiestrogen-like drug that binds to ER (Fisher et al., 1983; Fisher 

et al., 1981). Receptor status is now used as a combination of ER and PR with the 

addition of epidermal growth factor receptor-2 (HER-2/neu) protein, which is 

involved in growth regulation of cancer cells given their presence in the cell 

(Fleisher et al., 2002; Hammond et al., 2010).  

Common treatments for breast cancers with elevated levels of ER and PR 

are the antiestrogen-like drugs (e.g., Tamoxifen, Evista/Raloxifene and 

Fareston/Toremifene), which are termed SERMs (Selective Estrogen Receptor 

Modulators) ("Raloxifene Hydrochloride," ; "Tamoxifen Citrate," ; "Toremifene,"). 

Aromatase Inhibitors such as Arimidex (Anastrozole) and Femara (Letrozole), 

which block the production of estrogens from androgenic precursors produced by 

the adrenal glands, are used as hormone therapies for post-menopausal patients 

(Hong & Chen, 2011). HER/2 oncoprotein serves as a biomarker for treating a 

patient with the drug Trastuzumab (Herceptin) which attaches itself to the HER-

2/neu protein that is present in the surface membranes of certain breast carcinoma 

cells. For decades the Hormone Receptor Laboratory, which holds both CLIA and 

Commonwealth of Kentucky licenses as a Clinical Laboratory, has determined the 
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levels of these biomarkers in thousands of breast cancer tissue biopsies for 

management of patients.   

One area of research that is likely to improve the survival rates of women 

diagnosed with breast cancer is personalized or precision medicine. Due to the 

clinical and molecular heterogeneity of breast cancer, identifying genes and gene 

products involved in driving the progression of the disease may provide 

opportunities to design and synthesize new drugs for these new molecular targets. 

In addition, knowledge of their expression in relationship to risk of breast cancer 

recurrence provides additional information regarding a patient’s prognosis. Thus 

research in these areas of genomics and proteomics hold promise for developing 

a larger arsenal of personalized treatment options for breast cancer patients. 

Expression patterns of sets of genes that accurately predict the clinical behavior 

of cancers are called molecular signatures. Many genomics based signatures have 

been shown effective in predicting clinical outcomes such as progression free 

survival, which measures the length of time a patient lives without the appearance 

of a metastasis of the disease. (Gingras, Desmedt, Ignatiadis, & Sotiriou, 2015; J. 

Wittliff et al., 2002). A number of gene expression profiles (i.e., molecular 

signatures) have been developed and commercialized.  

It is widely documented that numerous peptide/protein hormones such as 

insulin act as growth factors impacting carcinoma cell growth and may play a role 

in carbohydrate metabolism during differentiation and growth of the lesion (Chen 

et al., 2002; Falzon & Du, 2000). Each of the hydrophilic peptide/protein hormones 

circulate freely in the blood and bring about their particular physiological actions in 
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normal target cells by associating with high affinity with their cognate receptor 

proteins which are located on cell surfaces (Norman & Litwack, 1997; Pierce, 

1982). Thus this diverse family of hormones which influences a wide variety of 

normal cellular pathways in the many organs composing the endocrine system 

when bound to their cognate receptor proteins provides a fertile and unchartered 

area to explore in breast cancer. The overarching goal of this study is to determine 

the relationships of the expression of the genes for each of the peptide/protein 

hormones and that of their cognate receptors with clinical outcomes of breast 

cancer patients. Our hypothesis is that expression profiles of subsets of these 

genes may be used to predict risk of breast carcinoma recurrence in patients with 

primary disease.   

To the best of our knowledge, no study has analyzed collectively the gene 

expression patterns of all of the peptide/protein hormones and their cognate 

receptors in relationship to their association with breast cancer behavior. The 

association of a peptide/protein hormone with its cognate receptor results in the 

release of signaling molecules (second messengers) inside the cell to trigger a 

variety of physiological changes ("Journal of receptor and signal transduction 

research," 1995).  

Peptide/protein hormones are produced and secreted by organs of the 

endocrine system throughout our bodies affecting adjacent cells (paracrine action) 

and cells located in distant organs (endocrine action).  For example, insulin and 

glucagon are produced by the pancreas and secreted into the bloodstream where 

they influence a variety of other organs to control blood sugar levels. Surprisingly, 
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breast carcinoma cells have been found to overexpress some of these hormone 

and receptor genes (Chen et al., 2002; Falzon & Du, 2000). From a variety of 

previous reports addressing relationships of hormones and cancer, and my co-

mentor’s years of experience investigating endocrine mechanisms of breast 

cancer, the following questions were developed. Do certain breast carcinomas 

express elevated levels of mRNA for genes of peptide/protein hormones and their 

cognate receptors? Are the gene expression levels related to clinical outcomes of 

the patients? Can one discern gene expression profiles (i.e., molecular signatures) 

that may be useful clinically in predicting risk of breast cancer recurrence?  

To begin to answer these questions we took a step-wise global approach 

using the gene expression levels of 22,000 genes that had been determined by 

microarray of RNA isolated from LCM-procured breast carcinoma cells (Figure 1 

Flow Diagram). Determination of which peptide/protein hormones and their 

cognate receptors may be playing a role in the clinical behavior of breast cancers 

required surveying research literature describing the diverse family of endocrine 

regulators as will be described in Chapter II. Due to the complicated nature of 

analyzing multiple genes and various breast cancer subtypes, the statistical 

analyses were performed in a stepwise manner as outlined in the flow diagram in 

Figure 1. Each of the following Chapters (II, III and IV) describes the manner in 

which the investigations were conducted, the results in the comprehensive 

databases that were employed and the statistical methods used for the analyses 

to identify interrelationships. These relationships are the essence of our hypothesis 

that expression profiles of subsets of genes for peptide/protein hormones and their 
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cognate receptors may be used to predict risk of breast carcinoma recurrence in 

patients with primary disease.  

In Chapter II, we evaluate univariate association of each of the identified 

hormone and receptors with breast cancer progression and overall survival. The 

univariate analyses in Chapter II will be extended to associations by ER/PR status. 

In a similar fashion ER/PR will be evaluated in Chapters III and IV. Multivariate 

analyses performed on hormone and receptor gene pairs in Chapter III explore an 

exhaustive evaluation of the relationships between hormones and their cognate 

receptors. Also in Chapter III, regularization techniques are employed to analyses 

all 142 genes at one time. In Chapter IV, a meta-analysis was performed with 

public databases to compare our results with a few highly referenced databases. 

Molecular signatures close out our analyses in Chapter IV as described in the Flow 

Diagram (Figure 1). The Flow Diagram is a recipe of approaches to develop 

molecular signatures of clinical relevance in the future for the Hormone Receptor 

Laboratory.  
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Figure 1. Flow Diagram of Approaches and Analyses used to Decipher Clinically 

Relevant Molecular Signatures 
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CHAPTER II 

UNIVARIATE ANALYSES 

The microarray, protein biomarker and clinical follow-up databases used for 

analyses described in these investigations were established by my Co-mentor, Dr. 

Wittliff and collaborators almost two decades ago. (Sarah A Andres et al., 2015; 

Andres, Brock, & Wittliff, 2013; Andres, Edwards, & Wittliff, 2012; Andres & Wittliff, 

2011, 2012; Kerr II & Wittliff, 2011; Kidd et al., 2010; Kruer, Cummins, Powell, & 

Wittliff, 2013; Ma et al., 2003; Tecimer et al., 2000; J. Wittliff et al., 1998; J. L. 

Wittliff, 2010) Briefly, intact frozen tissue sections of de-identified human breast 

carcinoma tissue biopsies as well as those that were processed for a sophisticated 

technique called Laser Capture Microdissection (LCM) for the microarray analyses 

allowed collection of specific cell types in a non-destructive manner. (Andres & 

Wittliff, 2011, 2012) The results collected from microarray of LCM-procured cells 

are truly unique in that only the expressions of carcinoma cell genes were 

determined. This database was complemented by results in other comprehensive 

databases that contained quantitative results of protein biomarker levels (ER, PR 

and HER-2) that are used routinely in clinical management of breast cancer, qPCR 

validated expression levels of almost 100 genes as well as extensive results on 

the features of the carcinoma biopsy and numerous patient parameters including 

clinical outcomes.
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Methods and Materials 

Microarray Database  

Using an IRB-approved biorepository and associated databases composed 

of tissue specimens previously collected by Dr. Wittliff’s laboratory (CLIA and 

Commonwealth of Kentucky licensed) at the University of Louisville for clinical 

assays of estrogen (ER) and progestin receptors (PR), de-identified tissue 

specimens of primary breast cancers obtained from 1988 - 1996 were examined 

using REMARK criteria (McShane et al., 2006) as described in previous studies. 

(Sarah A Andres et al., 2015; Andres et al., 2013; Andres & Wittliff, 2011; Kerr II & 

Wittliff, 2011; Kruer et al., 2013) Patients were treated with the standard of care at 

the time of diagnosis. Tissue-based properties (e.g., pathology, grade, size, and 

tumor marker expression) and patient-related characteristics (e.g., age, race, 

smoking status, menopausal status, stage, and nodal status) were utilized to 

determine relationships between gene expression and clinical parameters. 

Microarray analyses were performed on LCM procured carcinoma cells from 247 

breast cancer tissue biopsies as described. (Ma et al., 2003; J. L. Wittliff, 2010) 

Figure 2 describes the characteristics of the patient analyzed in the microarray 

database. 
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Patient Characteristics n 

Median Age (range) 

 59 years (21-89.5) 247 

Median Observation Time (range) 

 65 months (3-155) 247 

Race 

 White 211 

 Black 34 

 Other 2 

Histology 

 Invasive ductal carcinoma 193 

 Lobular carcinoma 15 

 Medullary carcinoma 8 

 Other/Unknown 31 

Median Tumor Size (range) 

 27 mm (3-100) 218 

Stage 

 0 3 

 1 60 

 2A 85 

 2B 55 

 3A 22 

 3B 13 

 4 4 

 Unknown 5 

Grade 

 1 14 

 2 70 

 3 94 

 4 1 

 Unknown 68 

Estrogen Receptor Status 

 Negative 98 

 Positive 151 

Lymph Node Status 

 Negative 125 

 Positive 102 

 Unknown 20 

Recurrence Status 

 Yes 98 

 No 146 

 Never disease-free 3 

 

Table 1. Summary of Patient Characteristics in Microarray Database 
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Gene Expression Analyses  

Levels of mRNA expression were analyzed by microarray and qPCR 

according to the protocols described in publications of previous investigators with 

Dr. Wittliff after isolation and the quality of RNA was evaluated with Agilent RNA 

6000 Nano Kits and the BioanalyzerTM Instrument (Agilent Technologies, Palo Alto, 

CA) (Sarah A Andres et al., 2015; Andres et al., 2013; Andres & Wittliff, 2011, 

2012; Kerr II & Wittliff, 2011). Relative gene expression levels were determined 

from qPCR with the ΔΔCt method using ACTB for normalization and Universal 

Human Reference RNA (Stratagene, La Jolla, CA) as the calibrator. 

Preliminary Gene Selection 

An exhaustive inquiry of prevalent literature revealed 63 peptide/protein 

hormones and 82 cognate receptor proteins as shown in the second box of Figure 

1 flow diagram. (Greenspan et al., 1997; Norman & Litwack, 1997) There are a 

number of peptide/protein hormones that have been reported to associate with 

multiple receptor proteins. For example, somatostatin (SST) is known to bind with 

five receptor isoforms – somatostatin receptor 1 (SSTR1), somatostatin receptor 2 

(SSTR2), somatostatin receptor 3 (SSTR3), somatostatin receptor 4 (SSTR4) and 

somatostatin receptor 5 (SSTR5). (Hoyer et al., 1995) Similarly, receptors may pair 

with more than a single peptide/protein hormone. For instance, Spier and de Lecea 

(2000) demonstrated that another hormone, cortistatin (CORT), was also 

recognized by each of the five somatostatin receptors described above. Among 

the extensive repository of expression levels for ~22,000 genes in our microarray 

results of LCM-procured carcinoma cells, those genes for 61 hormones and 81 
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receptors were identified as candidates for analyses. The 247 tissue biopsies from 

patients with primary invasive ductal carcinoma served as the principal study 

population. 

Univariate Cox Regression  

Univariate Cox regression was performed on each of the 142 gene 

candidates using their relative expression levels as described in the third step of 

the flow diagram (Figure 1). Both Progression Free Survival (PFS) and Over-All 

Survival (OS) were analyzed as clinical outcomes for each gene. Univariate Cox 

models employed relative gene expression values as a single covariate (i.e., SST) 

and investigated the extent to which expression levels of a single gene in the cohort 

predicted the risk of recurrence of breast cancer (PFS) or succumbing to that 

disease (OS). 

The general formula for the hazard function of a Cox proportional hazard 

model is as follows: ℎ(𝑡) = ℎ0(𝑡) exp (𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝). (Bradburn, Clark, 

Love, & Altman, 2003) The hazard function (ℎ(𝑡)) is time dependent, which 

changes over time along with the baseline hazard (ℎ0(𝑡)). The baseline hazard 

measures the risk when all covariates (𝑥1, 𝑥2 … 𝑥𝑝) are equal to 0. Although the 

baseline hazard may change over time, one of the assumptions for Cox models is 

that the hazard for different subsets of the population will be proportional to the 

baseline hazard at all times. The beta coefficients (𝛽1,𝛽2 …𝛽𝑝), which link the 

covariates to the hazard at time t, are determined by maximizing the partial 

likelihood function associated with the model. Covariates are variables such as 
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relative gene expression values for each of the hormones or their receptors. 

Univariate Cox regressions have a single beta coefficient calculated for a single 

covariate as shown here:  ℎ(𝑡) = ℎ0(𝑡) exp (𝛽1𝑥1). 

Hazard ratios (HR) were derived from univariate Cox regression models by 

the exponentiation of 𝛽1 and calculated for each of the 142 candidate genes. A 

hazard ratio for these models compares hazards (or risks for the clinical outcome 

being measured) at two different levels of gene expression. (Klein & 

Moeschberger, 2003) Since relative gene expression values are continuous 

covariates, the HR compares the hazard at any relative gene expression value to 

the hazard at a one unit level increase in relative gene expression. 

𝐻𝑅 = 
ℎ0(𝑡) exp (𝛽1(𝑥1 + 1))

ℎ0(𝑡) exp (𝛽1𝑥1)
= exp (𝛽1) 

An HR of greater than one represents an increase in risk, whereas a value of less 

than one represents a decrease in risk. An HR equal to one represents no 

difference in risk.  

  Each of the statistical computations was performed with R version 3.2.3. 

The commands coxph and cox.zph in the R package survival (Therneau, 2013) 

were used to calculate all univariate and multivariate Cox regressions and to 

validate the assumption of proportionality in significant genes. Cox regression p-

values were adjusted for multiple comparisons using the Benjamini & Hochberg 

method (Benjamini & Hochberg, 1995) with 0.30 “discovery” cutoff. Relative gene 

expression levels determined with LCM- procured carcinoma cells from 247 

patients were divided into groups expressing values that were above and below 
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the median for each gene candidate. These two groups of results were analyzed 

in Kaplan-Meier (KM) plots using the commands plot and survfit. The survdiff 

command performed a log-rank test comparing survival times between the two 

groups. 

Influence of Estrogen Receptor (ER) and Progestin Receptor (PR) Status on Gene 

Expression Levels 

Measurements of the protein biomarkers, ER and PR, have significant 

importance in predicting clinical outcomes of breast cancer patients such as risk 

of recurrence and over-all survival. (Fisher et al., 1987; Fisher et al., 1983; Fisher 

et al., 1981; Fleisher et al., 2002; Hammond et al., 2010; J. Wittliff et al., 1998) For 

example, patients with breast cancers exhibiting both ER and PR are reported to 

have a better prognosis and are candidates for anti-hormone therapy compared to 

those with ER and PR negative breast cancers. (Fisher et al., 1987; Fisher et al., 

2001; Fisher et al., 1981) This is thought to be due in part, to the observation that 

ER, when complexed with its native ligand, estradiol-17 B or an estrogen mimic 

(e.g., Tamoxifen), stimulates the production of PR. (Cormier, Wolf, & Jordan, 1989) 

Comprehensive clinical trials of breast cancer patients treated with Tamoxifen, 

such as those of the NSABP support this conclusion. (Fisher et al., 1987; Fisher 

et al., 1983; Fisher et al., 1981) 

 Patients were categorized into the breast cancer subsets based on the ER 

and PR protein status of the tissue biopsy. Patients were also stratified according 

to carcinoma cells exhibiting one of the four combinations of the two protein 

biomarkers, either ER+/PR+, ER+/PR-, ER-/PR+ or ER-/PR-. Univariate Cox 



15 
 

regression was first performed for patients with cancers stratified by each protein 

status, ER+, ER-, PR+ and PR-. Then patients were evaluated according to one 

of the four possible combinations of ER and PR (e.g., ER+/PR+, ER+/PR-, ER-

/PR+ or ER-/PR-) exhibited by their carcinoma cells with each of the 142 gene 

candidates. Kaplan-Meier plots were constructed for each gene using the various 

subsets of ER and PR. Box plots were constructed according to receptor status for 

each of the 142 candidate genes using the R command boxplot. The boxplots 

displayed the relative gene expression in the LCM-procured carcinoma cells for 

patients bifurcated by ER and PR status. The null hypotheses that the two groups 

come from identical populations was tested using the R command wilcox.test. The 

R command employed an unpaired independent two-sample Mann-Whitley-

Wilcoxon test by comparing ER+ to ER- groups and PR+ to PR- groups of breast 

cancers.  

Results 

Univariate Cox Regression of PFS and OS without Regard to ER and PR Status 

From univariate Cox regression for PFS, expression levels of fifteen genes 

for peptide/protein hormones and nineteen receptors showed significance at the 

adjusted p-value of <0.30 (Table 2). Noteworthy among the findings, the 

expression of POMC, whose mRNA transcript is quite large containing the 

sequences for a number of hormones, exhibited the highest statistical significance. 

(Lee et al., 2006) POMC had a HR of 1.72, which can be interpreted as patients 

with breast carcinomas expressing this gene at one unit higher have a 72% 

increase in risk of recurrence of metastatic breast cancer. The results obtained for 
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SST and SSTR1 are of particular interest because they are a hormone-cognate 

receptor pair, which appeared among the top five genes for univariate Cox 

regression for PFS. 

From univariate Cox regression for OS, expression levels of seven genes 

for peptide/protein hormones and ten receptor genes showed significance at the 

adjusted p-value of <0.30 (Table 3). Interestingly, expression of POMC gene 

related to breast cancer OS mirrored the highest statistical significance observed 

when PFS was calculated. All seventeen significant genes related to OS exhibited 

significant relationships with PFS. Also, the hormone-receptor pair POMC and 

MC5R exhibited statistical significance individually for univariate Cox regression 

for OS. 

Univariate Cox Regression of PFS and OS According to ER Status 

Using gene expression levels from 146 ER+ breast cancer carcinomas, 

univariate Cox regression determined that two peptide/protein hormones, SST and 

renin (REN), exhibited significant mRNA expression levels related to PFS and one 

receptor (SSTR2) was related to OS (Table 4). SST reappeared as significant for 

predicting PFS as it did for predicting PFS without regards to hormone receptor 

status. SSTR2, a cognate receptor for SST, exhibited significance for OS and will 

reappear in our molecular signature for ER+ breast cancers. Also showing 

significance for PFS is REN, which is normally produced in the kidneys when 

intrarenal blood pressure drops. The inhibition of REN has been demonstrated to 

mitigate angiogenesis, the production of new blood vessels. (Rodrigues-Ferreira 

& Nahmias, 2015). Cancer cells need more blood supply to provide them with the 
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nutrients to grow faster. The HR of REN is 2.93 meaning that cancers with higher 

levels of expression of REN are more likely to have a shorter time to progression. 
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Gene Symbol β HR 95% CI (HR) adj. p 

POMC 0.54 1.72 (1.37,2.15) <0.001 

CALCR 0.44 1.56 (1.21,2.01) 0.03 

SST 0.55 1.73 (1.27,2.35) 0.03 

IGF1R.clone -0.17 0.84 (0.76,0.94) 0.05 

SSTR1 0.65 1.91 (1.28,2.84) 0.05 

TMSB15A 0.14 1.16 (1.05,1.27) 0.07 

PPY 0.93 2.55 (1.32,4.92) 0.10 

CRH 0.55 1.73 (1.18,2.54) 0.10 

SSTR3 0.97 2.64 (1.28,5.46) 0.13 

REN 0.61 1.85 (1.16,2.93) 0.13 

TMSB10 0.4 1.49 (1.1,2.02) 0.13 

ACVR2B 0.35 1.42 (1.08,1.86) 0.14 

ACVR2A 0.29 1.34 (1.06,1.7) 0.16 

PRL 0.32 1.38 (1.06,1.79) 0.16 

VIPR1 -0.26 0.77 (0.62,0.96) 0.18 

NPY1R -0.16 0.85 (0.74,0.98) 0.21 

SCT 0.58 1.79 (1.08,2.97) 0.21 

NPY6R -0.99 0.37 (0.15,0.9) 0.22 

INSR.AL365454 -0.25 0.78 (0.61,0.99) 0.23 

ACVR1 -0.27 0.76 (0.58,1) 0.23 

ACVR1B 0.25 1.29 (1.01,1.65) 0.23 

RLN1 -0.21 0.81 (0.66,0.99) 0.23 

RXFP3 1.2 3.32 (1.07,10.27) 0.23 

MC5R 0.6 1.83 (1.02,3.29) 0.23 

GHR 0.4 1.5 (1.02,2.2) 0.23 

AVPR2 0.75 2.11 (1.04,4.28) 0.23 

PTH -1.28 0.28 (0.08,0.98) 0.23 

EDN1 0.37 1.45 (1.03,2.05) 0.23 

GHSR -1.07 0.34 (0.13,0.94) 0.23 

RLN2 -0.13 0.88 (0.77,1) 0.23 

AGTRAP -0.31 0.73 (0.53,1.01) 0.27 

VIPR2 -0.1 0.91 (0.82,1) 0.27 

AVPR1A 0.88 2.41 (0.95,6.11) 0.28 

GAL 0.11 1.12 (0.99,1.26) 0.30 

     

Table 2. Summary of Genes with Expression Levels Associated with PFS. As described 
in Methods and Materials, expression levels of the 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 
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Gene Symbol β HR 95% CI (HR) adj. p 

POMC 0.52 1.68 (1.34,2.1) <0.001 

CALCR 0.45 1.57 (1.19,2.08) 0.08 

TMSB15A 0.18 1.19 (1.07,1.33) 0.08 

IGF1R.clone -0.17 0.85 (0.75,0.96) 0.16 

SSTR3 1.1 3.01 (1.34,6.76) 0.16 

SCT 0.79 2.21 (1.27,3.83) 0.16 

NPY6R -1.36 0.26 (0.09,0.71) 0.16 

TMSB10 0.45 1.57 (1.12,2.2) 0.16 

ACVR2A 0.35 1.42 (1.08,1.86) 0.19 

PPY 0.87 2.38 (1.15,4.93) 0.26 

PTH -1.77 0.17 (0.04,0.77) 0.26 

NPY1R -0.2 0.82 (0.69,0.97) 0.26 

MC5R 0.72 2.06 (1.07,3.97) 0.28 

VIPR1 -0.27 0.76 (0.59,0.98) 0.28 

VIPR2 -0.13 0.88 (0.78,0.99) 0.28 

EDN1 0.44 1.56 (1.05,2.3) 0.28 

GHSR -1.34 0.26 (0.08,0.87) 0.28 

     

Table 3. Summary of Genes with Expression Levels Associated with OS. As described in 
Methods and Materials, expression levels of the 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 

 

Using gene expression levels from 101 ER- breast cancer carcinomas, 

univariate Cox regression determined that mRNA levels of four genes for 

peptide/protein hormones and two receptor genes were correlated with a 

significant for predicting PFS and four genes for peptide/protein hormones 

predicted OS (Table 5). The gene expression levels of POMC were significant for 

predicting PFS and OS for ER- cancers similarly to our observation for predicting 

PFS and OS without regard to receptor status. CALCR, POMC, GH1 and PRL 

were significant for PFS and will reappear in our molecular signature for ER- 

cancers. Growth hormone (GH1) is typically produced in the pituitary gland 
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regulated by GHRH and SST from the hypothalamus. Models with SST and GHRH 

could be performed in future studies to see if the cancer cells may be controlling 

levels of GH1 by autocrine means. 

Univariate Cox Regression of PFS and OS according to PR status 

Using gene expression levels from 151 PR+ breast cancer carcinomas, 

univariate Cox regression determined that one peptide/protein hormone, thymosin 

β10 (TMSB10), exhibited significance for predicting PFS and three peptide/protein 

hormones, CALCA, TMSB10 and POMC, were significant for predicting OS (Table 

6). TMSB10 was first discovered in the thymus but is made throughout the body. 

TMSB10 has been shown to be overexpressed in lung and pancreatic cancer and 

even targeted for therapy. (Alldinger et al., 2005; Langevin, Kratzke, & Kelsey, 

2015) Are the mechanisms that cause TMSB10 to be overexpressed in lung and 

pancreatic cancers somehow related to breast cancers that exhibit high levels of 

PR but not necessarily ER? Interestingly, POMC is significant for OS but not PFS 

in a sex hormone positive (PR+) subtype. Could early deaths from patients who 

are ER- but PR+ be driving the significance for POMC?  
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A. PFS ER+     

Gene Symbol β HR 95% CI (HR) adj. p 

SST 0.73 2.08 (1.28,3.39) 0.23 

REN 1.08 2.93 (1.47,5.85) 0.23 

     

B. OS ER+     

Gene Symbol β HR 95% CI (HR) adj. p 

SSTR2 0.28 1.32 (1.11,1.57) 0.27 

     

Table 4. Summary of Genes with Expression Levels Correlating either with PFS (A) or 
OS (B) for 146 ER+ Breast Carcinomas. As described in Methods and Materials, 
expression levels of 142 candidate genes were determined using LCM-procured cells 
from 247 breast cancer biopsies. 

 

 

 

A. PFS ER-     

Gene Symbol β HR 95% CI (HR) adj. p 

CALCR 0.43 1.53 (1.15,2.04) 0.16 

POMC 0.4 1.49 (1.17,1.9) 0.16 

GH1 -0.76 0.47 (0.28,0.79) 0.16 

PRL 0.58 1.79 (1.18,2.71) 0.16 

AVPR1A 1.83 6.23 (1.81,21.4) 0.16 

SCT 0.8 2.24 (1.19,4.2) 0.29 

     

B. OS ER-     

Gene Symbol β HR 95% CI (HR) adj. p 

POMC 0.37 1.45 (1.13,1.87) 0.28 

GH1 -0.84 0.43 (0.24,0.79) 0.28 

PRL 0.54 1.72 (1.15,2.56) 0.28 

SCT 0.94 2.55 (1.33,4.88) 0.28 

     

Table 5. Summary of Genes with Expression Levels Correlating either with PFS (A) or 
OS (B) for 101 ER- Breast Carcinomas. As described in Methods and Materials, 
expression levels of 142 candidate genes were determined using LCM-procured cells 
from 247 breast cancer biopsies. 
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A. PFS PR+     

Gene Symbol β HR 95% CI (HR) adj. p 

TMSB10 0.97 2.63 (1.56,4.44) 0.04 

     

B. OS PR+     

Gene Symbol β HR 95% CI (HR) adj. p 

CALCA 0.38 1.46 (1.14,1.85) 0.23 

TMSB10 0.87 2.39 (1.34,4.27) 0.23 

POMC 0.86 2.36 (1.29,4.34) 0.27 

     

Table 6. Summary of Genes with Expression Levels Associated either with PFS (A) or 
OS (B) for 151 PR+ Breast Carcinomas. As described in Methods and Materials, 
expression levels of 142 candidate genes were determined using LCM-procured cells 
from 247 breast cancer biopsies. 

 

Using gene expression levels from 96 PR- breast cancer carcinomas, 

univariate Cox regression determined that five genes for peptide/protein hormones 

and five receptor genes were significant for predicting PFS. No genes were found 

to be significant after adjusting p-values for multiple comparisons (Table 7). 

CALCR, POMC and PRL are shown to have an association with PFS for PR- 

breast cancer carcinomas and were also associated with ER- breast cancer 

carcinomas. These three genes will be common to two molecular signatures. Since 

1995, researchers have known about the ability of breast cancer cells to secrete 

active forms prolactin (PRL) possibly through autocrine mechanisms, although 

paracrine mechanisms could not be ruled out. (Ginsburg & Vonderhaar, 1995) We 

will look at the relationship between PRL and its cognate receptor PRLR in Chapter 

Three but further study could be performed on the statistical interactions of PRL 

with other hormones and receptors.  

 

 



23 
 

PFS PR-     

Gene Symbol β HR 95% CI (HR) adj. p 

CALCR 0.56 1.75 (1.3,2.37) 0.04 

POMC 0.43 1.54 (1.18,2.01) 0.11 

SST 0.71 2.03 (1.26,3.26) 0.14 

SSTR1 0.67 1.96 (1.23,3.13) 0.14 

CRH 0.62 1.86 (1.21,2.87) 0.14 

AVPR2 1.18 3.25 (1.39,7.57) 0.15 

AVPR1A 1.74 5.71 (1.51,21.57) 0.20 

ACVR1 -0.4 0.67 (0.48,0.93) 0.30 

PRL 0.42 1.52 (1.07,2.16) 0.30 

PTH -2.31 0.1 (0.01,0.71) 0.30 

     

Table 7. Summary of Genes with Expression Levels Associated with PFS for 96 PR- 
Breast Carcinomas. As described in Methods and Materials, expression levels of 142 
candidate genes were determined using LCM-procured cells from 247 breast cancer 
biopsies. 

 

Univariate Cox Regression of PFS and OS according to ER/PR status 

 Since both the status of ER and PR are considered in the clinical setting 

when assessing a patient’s risk of recurrence and selection of a therapeutic agent, 

these studies utilized the results of clinical determinations of the steroid hormone 

receptors. (Fisher et al., 1987; Fisher et al., 1983; Fisher et al., 1981; Fleisher et 

al., 2002; Hammond et al., 2010; J. Wittliff et al., 1998) The analyses described 

include the four combinations ER+/PR+, ER+/PR-, ER-/PR+ and ER-/PR- status 

of each of the breast cancer surgical biopsies submitted for ER and PR protein 

analyses. In general, a patient with a breast carcinoma determined to be ER+/PR+ 

exhibits the best prognosis compared to the patients with cancers exhibiting the 

other combinations. Best prognosis implies that the patient is expected to have a 

lower risk of breast cancer recurrence compared with patients with cancer biopsies 

exhibiting the other three combinations of ER and PR. A patient with ER-/PR- 
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breast carcinoma exhibits the worst prognosis compared to that the other patients. 

In addition, patients with ER-/PR- tumors are not candidates for hormone-receptor 

protein based therapies such as tamoxifen. (Fisher et al., 1987; Hammond et al., 

2010; Kerr II & Wittliff, 2011) 

Since our goal is to decipher molecular signature for predicting breast 

cancer outcomes, we undertook the following analyses. Using gene expression 

levels from 118 ER+/PR+ breast cancer carcinomas, univariate Cox regression 

determined that the receptor SSTR2 exhibited significance for predicting OS 

(Table 8). Using gene expression levels determined from LCM-procured of 28 

ER+/PR- breast cancer carcinomas, univariate Cox regression determined that 

one peptide/protein hormone, EPO, and two genes of receptors, CALCR and 

ACVR1B, had significance for predicting PFS (Table 9). However since this sample 

group only contained 28 patients, caution must be taken in the interpretation of 

these analyses. We noted that erythropoietin, EPO had not appeared in any of the 

gene subsets detected thus far. Furthermore CALCR has been significant for 

predicting PFS of ER+/PR-, PR-, ER- breast cancer patients and for predicting 

PFS and OS without regard to receptor status.  

The expression of ER-/PR+ protein biomarkers in a breast cancer is 

infrequently observed and since the action of ER is known to provoke the 

production of PR, its appearance is the focus of research. (Andres & Wittliff, 2012; 

Fleisher et al., 2002; J. Wittliff et al., 1998) Unfortunately, using gene expression 

levels from 33 ER-/PR+ breast cancer carcinomas, univariate Cox regression 

determined no genes of significance after adjusting p-values for multiple 
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comparisons. This may be due to a small sample size. A few significant findings 

from unadjusted p-values could have been novel in their implications. 

Breast carcinoma biopsies that lack both ER and PR protein (ER-/PR-) are 

widely known to correlate with poor prognosis of breast cancer patients and their 

lack of response to anti-hormone therapies. (Andres & Wittliff, 2012; Fleisher et 

al., 2002; J. Wittliff et al., 1998) Using gene expression levels determined by 

microarray from LCM-procured carcinoma cells of 68 ER-/PR- breast cancer 

carcinomas, univariate Cox regression determined mRNA expression levels of two 

peptide/protein hormones, POMC and PRL, significant for predicting PFS (Table 

10). The genes for PRL and POMC appear later in our molecular signature for ER- 

breast carcinomas. 

Analyses of Clinical Relevance using Kaplan-Meier Plots 

 Due to the numerous genes exhibiting significance for predicting PFS and 

OS of breast cancer for each category of receptor status, a representative sample 

of Kaplan-Meier plots has been presented. (Rich et al., 2010) Without regards to 

ER/PR status, IGF1R.clone and GAL genes showed significant differentiation for 

predicting PFS and OS between cancers that expressed the gene above the 

median versus compared to those that expressed the gene below the median. The 

median is taken as a first discriminator in this thesis, however later analyses for 

the development of manuscripts will also derive outcomes as a function of 

quartiles. TMSB10 expression was significant for predicting PFS while that of 

activin A receptor type IIA, ACVR2A, was significant for predicting OS. The risk of 

recurrence and survivorship was worse for patients whose tumors expressed 
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IGF1R.clone mRNA below the median and GAL, TMSB10 and ACVR2A mRNA 

expression levels that were above the median.  

 For ER+ cancers, SST gene expression showed a significant differentiation 

for predicting PFS and a poor prognosis for patients whose lesions expressed the 

gene above the median. SSTR2 was significant for predicting OS with a poor 

prognosis for patients whose tumors expressed the gene above the median. For 

ER- carcinomas, expression of growth hormone, GH1, predicted both PFS and OS 

that was highly statistically significant with a poor prognosis for those whose breast 

cancers expressed GH1 below the median. 

 For PR+ cancers, glycoprotein hormone alpha polypeptide, CGA, showed 

a significant differentiation for predicting PFS while that of endothelin, EDN1, 

showed significance for predicting OS using Kaplan-Meier plots.  Patients 

expressing CGA and EDN1 above the median were correlated with a worse 

prognosis compared to patients expressing these genes at levels below the 

median. For PR- cancers, arginine vasopressin receptor 2, AVPR2, significantly 

differentiated patients above and below the median for PFS and GH1 significantly 

differentiated patients above and below the median for OS. Patients with breast 

cancers expressing CGA above the median and patients with breast cancers 

expressing GH1 below the median had a worse prognosis. 

 Examination of ER+/PR+ carcinomas revealed that CALCA significantly 

differentiated patient outcome for PFS while SSTR2 showed significance for 

predicting OS.  Patients expressing CALCA and SSTR2 above the median were 

correlated with a worse prognosis than those with gene expression levels below 
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the median. The most significant findings from the Kaplan-Meier plots were 

revealed in carcinoma cells classified as ER-/PR-, the biomarker status that is 

related to the worse prognosis among the four combinations. When ER-/PR- 

cancers were examined, GH1 expression was highly significant for predicting PFS 

and OS with those whose lesions expressed GH1 below the median having the 

highest risk of recurrence and survivorship. 

Evaluation of Influence of Steroid Hormone Receptor Status using Boxplots 

  One of the goals of this study was to determine if there were candidate 

genes whose expression was related to the expression levels of either ER or PR 

protein. Such relationships would suggest that steroid hormone action may be 

related to the expression of certain peptide/protein hormone genes and the genes 

for their receptors. Due to the magnitude of the analyses and results for the 142 

candidate genes only representative boxplots that showed the greatest statistical 

significance are displayed. Considering influence of ER, the relative gene 

expression of receptor activity modifying protein 2 (RAMP2), IGF1R, IGF1R.clone, 

angiotensin II receptor, type 1 (AGTR1) and thyrotropin-releasing hormone (TRH) 

were significantly higher levels in ER+ carcinoma cells compared to their ER- 

counterparts. The relative gene expression of ACVR2A and GAL in ER- cancers 

was significantly higher than observed in ER+ cancer cells. The relative gene 

expression of AGTR1 and IGF1R.clone in PR+ breast cancers was expressed at 

a significantly higher level than their expression levels in PR- carcinoma cells. A 

boxplot (results not shown) revealed that GH1 expression was significant for both 
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ER and PR. GH1 was overexpressed in ER- and PR- subgroups compared to ER+ 

and PR+ carcinomas.  

 

OS ER+/PR+     

Gene Symbol β HR 95% CI (HR) adj. p 

SSTR2 0.34 1.4 (1.14,1.72) 0.16 

     

Table 8. Summary of Genes with Expression Levels Associated with OS for 118 
ER+/PR+ Breast Carcinomas. As described in Methods and Materials, expression levels 
of 142 candidate genes were determined using LCM-procured cells from 247 breast 
cancer biopsies. 

 

PFS ER+/PR-     

Gene Symbol β HR 95% CI (HR) adj. p 

CALCR 1.11 3.03 (1.46,6.29) 0.15 

ACVR1B 1.16 3.2 (1.48,6.95) 0.15 

EPO 0.61 1.85 (1.25,2.74) 0.15 

     

     

Table 9. Summary of Genes with Expression Levels Associated with PFS for 28 ER+/PR- 
Breast Carcinomas. As described in Methods and Materials, expression levels of 142 
candidate genes were determined using LCM-procured cells from 247 breast cancer 
biopsies. 

 

PFS ER-/PR-     

Gene Symbol β HR 95% CI (HR) adj. p 

POMC 0.4 1.49 (1.14,1.94) 0.25 

PRL 0.63 1.88 (1.23,2.86) 0.25 

     

Table 10. Summary of Genes with Expression Levels Associated with PFS for 68 ER-
/PR- Breast Carcinomas. As described in Methods and Materials, expression levels of 
142 candidate genes were determined using LCM-procured cells from 247 breast 
cancer biopsies. 
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Figure 2 Representative Kaplan-Meier Plots Comparing Above and Below the Median 
Relative Gene Expression (1). Without regards toward receptor status, IGF1R.clone (A), 
TMSB10 (B) and GAL (C) displayed significance difference between groups for PFS, while 
IGF1R.clone (D), ACVR2A (E) and GAL (F) were significant for OS. For ER+ tumors, SST (G) 
displayed significance difference between groups for PFS, while SSTR2 (H) was 
significant for OS. For ER- tumors, GH1 (I) displayed significance difference between 
groups for PFS. 
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Figure 3. Representative Kaplan-Meier Plots Comparing Above and Below the Median 
Relative Gene Expression (2). For ER- tumors, GH1 (A) displayed significance difference 
between groups for OS. For PR+ tumors, CGA (B) displayed significance difference 
between groups for PFS, while EDN1 (C) was significant for OS. For PR- tumors, AVPR2 
(D) displayed significance difference between groups for PFS, while GH1 (E) was 
significant for OS. For ER+/PR+ tumors, CALCA (F) displayed significance difference 
between groups for PFS, while SSTR2 (G) was significant for OS. For ER-/PR- tumors, GH1 
(H) displayed significance difference between groups for both PFS and OS.  
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Figure 4. Representative Boxplots Comparing Distributions of Relative Gene Expressions 
by Receptor Status. The gene expression of RAMP2 (A), IGF1R (B), IGF1R.clone (C), 
AGTR1 (D) and TRH (E) in ER+ tumors was expressed at a significantly higher level than 
ER- tumors. The gene expression of ACVR2A (F) and GAL (G) in ER- tumors was 
expressed at a significantly higher level than ER+ tumors. The gene expression of AGTR1 
(H) and IGF1R.clone (I) in PR+ tumors was expressed at a significantly higher level than 
PR- tumors. 
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Discussion  

The use of these comprehensive, de-identified databases containing a 

variety of molecular biological results complemented by characteristics of the 

breast carcinoma and the clinical outcome of the patient have allowed the 

exploration of original questions and hypotheses related to biomarkers of clinical 

relevance in breast carcinoma management. These matchless resources 

combined with a range of statistical tests, bioinformatics tools and novel, 

sophisticated software have given me a unique opportunity to learn new 

approaches and integrate results of complex molecular assays with clinical 

outcomes. As a result, we have uncovered a gold mine of potential 

interrelationships between gene expression/ protein biomarker levels and breast 

carcinoma behavior. 

In support of our approach outlined in Figure 1 (Flow Diagram), the integrity 

of the databases mined in these investigations is based on the following facts. 

Firstly, each of the tissue biopsies of breast cancer was collected in Pathology 

Departments of hospitals utilizing standardized protocols for specimen handling 

developed by Dr. Wittliff and then processed and stored deep frozen under 

stringent conditions established in the Hormone Receptor Laboratory. The HRL 

holds both CLIA and Commonwealth of Kentucky licenses as a clinical laboratory.  

Secondly, each of the specimens in the Biorepository and results 

accumulated in the comprehensive databases were de-identified under approval 

of the Institutional Review Board (IRB) of the University of Louisville. Next, using 

these frozen biopsy specimens, tissue sections were uniformly processed and only 
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breast carcinoma cells were Laser Capture Microdissected in a non-destructive 

fashion using protocols established by Dr. Wittliff and collaborators. (J. L. Wittliff, 

2010) The extraction and purification of RNA from LCM-procured cells as well as 

RNA amplification and microarray analyses of gene expression were performed in 

well controlled, highly reproducible assays. This is documented by acceptance of 

various publications (Andres et al., 2013; Metzler et al., 2015; J. L. Wittliff, 2010) 

as well as acceptance of patent applications filed describing molecular profiling of 

breast cancers (JLW & Arcturus patent applications).  

Lastly, microarray results of expression of certain genes were validated by 

qPCR (Andres & Wittliff, 2011, 2012; Kerr II & Wittliff, 2011) and determinations of 

ER and PR protein levels in tissue biopsies were performed with FDA-approved 

kits that gave quantitative results. My Co-mentor, Dr. Wittliff developed the radio 

ligand-binding assays which not only measured the levels of the active ER and PR 

proteins but gave affinities of the association of the sex hormone receptors for their 

ligands which were radioactively labeled. Thus the databases and statistical 

approaches that I have used to investigate expression of genes for 142 

peptide/protein hormone and their receptor proteins in breast carcinoma cells to 

derive clinically useful molecular signatures have great reliability.  

POMC was the most significant gene for univariate Cox regression without 

regard to receptor status. POMC is a 241 amino acid long polypeptide typically 

produced in the pituitary gland and is cleaved at various sites to make a number 

of other proteins including adrenocorticotropic hormone (ACTH) and β-lipotropin. 

(Kaushal & Sinha, 2015) POMC is secreted in response to corticotropin-releasing 
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hormone (CRH), a gene also significant for univariate Cox regression. ACTH is 

necessary for steroidogenesis, which converts cholesterol into steroids such as 

progesterone, estrogen and cortisol (an immunosuppressant). (Hanukoglu, 1992) 

The gene pairs POMC & MC5R, SST & SSTR1, SST & SSTR3, RLN1 & RXFP3 

and RLN2 & RXFP3 had both genes individually among the univariate significant 

genes.  

Twelve of the 34 genes significant for univariate Cox regression for PFS 

without regard to receptor status were also significant for the log-rank test derived 

for Kaplan-Meier plots. Of the twelve genes showing significance for univariate 

Cox regression and Kaplan-Meier plots, POMC, VIPR1, RLN1, ACVR2A, SST and 

CALCR will be in the 14-gene signature for predicting PFS as described in the flow 

diagram. (Figure 1) 

Nearly half the genes (67 of 142) had significantly different relative gene 

expressions for either ER+ versus ER- or PR+ versus PR- as shown by a 

representative sample of boxplots. An important question for these 67 genes is 

whether estrogen or progesterone is regulating them. The Kaplan-Meier plots 

without regards to receptor status provide some evidence for this question. Among 

the 22 significant genes for PFS or OS for Kaplan-Meier plots, thirteen are common 

to those significant for differences between ER and PR status expressed in the 

boxplots. The common genes are IGF1R.clone, AGTRAP, ACVR2A, RLN1, TRH, 

POMC, GH1, VIPR1, EDN1, GAL, GHSR, TMSB10 and TMSB15A. These genes 

are associated with the signaling pathways for estrogen or progesterone and 

require further investigation to discern the association. 
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Growth hormone (GH1), POMC and CALCR were highly significant for 

univariate Cox regression and Kaplan-Meier plots for ER- breast carcinomas and 

will be in the 9-gene signature for ER- cancers as described in the flow diagram. 

(Figure 1) Interestingly, the only gene that showed a protective effect as relative 

gene expression increases (negative beta coefficient) for PFS was GH1. GH1 is 

secreted in the pituitary gland and up regulated by growth hormone releasing 

hormone (GHRH) and down regulated by somatostatin in the hypothalamus. 

(Wagner et al., 2006) GH1 promotes insulin-like growth factor (IGF1) in the liver. 

IGF1 has been targeted in a pathway to regulate the metastasis of breast cancer. 

(Sachdev, 2008; Yang & Yee, 2012) There was no surprise to find IGF1 eventually 

show up in our 9-gene model for ER- breast cancers. Why does the increase in 

the expression of a gene, which promotes a gene in a known breast cancer 

metastasis pathway, has a protective effect against the progression of breast 

cancer?  

Clinically, cancers identified as ER-/PR- have the worst prognosis. Prolactin 

(PRL) was the most significant gene for PFS and OS for these cancers followed 

closely by GH1, POMC and CALCR, mentioned above for ER- cancers. Elevated 

circulating PRL has been shown to increase the risk of breast cancer in situ. (Tikk 

et al., 2015) PRL and prolactin receptor will appear in our 9-gene molecular 

signature for ER- breast cancers. Before modeling any molecular signatures, we 

need to evaluate how these hormones and receptors may be affecting one another 

statistically. Collectively, these results lead us to look at various models and 

statistical techniques for multivariate analyses. 
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CHAPTER III 

MULTIVARIATE ANALYSES 

The analyses described in Chapter One using gene expression levels from 

LCM-procure breast carcinoma cells were expanded with various techniques for 

multivariate analyses as described in Figure 1 flow diagram. Cox regressions were 

computed for two variable models and models with an interaction term with gene 

expression results from the candidate peptide/protein hormones and their 

receptors. Least absolute shrinkage and selection operator (LASSO) was used to 

fit a model with each of the 142 candidate genes at one time to determine the 

relationship with prediction of risk of breast cancer recurrence.  

In Chapter Two, univariate Cox regression evaluated the expression of each 

gene’s influence on a breast cancer patient’s clinical outcome. A unique aspect to 

this study is the ability to examine a peptide/protein hormone and their cognate 

receptor/s as a combination and the manner in which these pairs of gene 

expressions may play a role in predicting DFS and OS. A novelty of our study is 

that we have discovered many primary breast carcinomas exhibit elevated levels 

of expression of numerous genes for peptide/protein hormones and their receptors 

which are known to regulate physiologic pathways. There is no biochemical 

interaction between mRNAs but the proteins they eventually encode definitely 

interact. The problem with measuring mRNA is that we cannot say with certainty 
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that they will be coded into proteins. The correlation is there but the cell may have 

mutations that fail to translate the mRNA into the protein. If we wanted to ensure 

the levels of protein match the levels of mRNA then we would need to do qPCR or 

other techniques that measure proteins in the cell. (Wu & Singh, 2012) Although 

there is no biological interaction/association between each of the mRNA molecules 

of a hormone and that of its receptor, a statistical interaction may be computed.  

Methods and Materials 

Multivariate Cox Regression 

Two types of Cox models were employed to evaluate the relationships 

between gene expression results for peptide/protein hormones and their cognate 

receptors with clinical outcomes. The first computes a two variable model 

(hormone + receptor) and the second model adds a third interaction term to the 

model. The two variable model has the form ℎ(𝑡) = ℎ0(𝑡) exp  (𝛽1𝑥1 + 𝛽2𝑥2) and 

the interaction model has the form ℎ(𝑡) = ℎ0(𝑡) exp (𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2). (Klein 

& Moeschberger, 1997) The expression of the hormone and receptor is 

represented by x1 and x2, respectively. The baseline hazard at time t is represented 

by h0(t) while the hazard at time t is represented by h(t). In a two-variable Cox 

model, the beta coefficient for the hormone reflects the weight for which the 

expression for the hormone’s gene has on the hazard function while controlling for 

the expression of the receptor gene. Likewise, the beta coefficient for the receptor 

gene expression reflects its weight on the hazard function while controlling for the 

gene expression of the hormone. These models provide the HR for cancers 

expressing a gene while accounting for the levels of the expression of its partner 
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gene. In the interaction model, if the beta coefficient for the interaction term is 

significant, then the gene expression results for the hormone and its receptor have 

a strong statistical dependence on each other. Hazard ratios for the hormone and 

receptor gene expression levels are conditioned on the level of its associated 

partner. The exponentiation of 𝛽3 represents the excess hazard from the statistical 

interaction of the gene expressions of the hormone and its cognate receptors. 

Multivariate Cox regression analyses were extended to all of the subsets of 

receptor status as discussed in Chapter Two Methods and Materials. Kaplan-Meier 

(KM) plots were constructed along with each pair with and without regards to 

ER/PR status to assess association with prediction of breast cancer recurrence. 

KM plots were constructed with four categories: above the median gene 

expression for both the hormone and receptor, below the median for both the 

hormone and receptor and the two discordant combinations.  

Least Absolute Shrinkage and Selection Operator  

With such a large number of genes (e.g., 142), stepwise selection methods 

to determine significant genes in a model are not feasible (Austin & Tu, 2004). An 

increase in the standard error of coefficients due to the multicollinearity of gene 

expression values may lead to type II errors – failure to reject a false hypothesis. 

An alternative method, Least Absolute Shrinkage and Selection Operator 

(LASSO), was used to evaluate each of the 142 candidate genes in primary breast 

carcinoma cells of 247 patients in models for DFS and OS. LASSO penalizes the 

size of β⃑  and removes genes whose coefficients are close to zero. The maximum 
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likelihood estimates β̂ are derived by maximizing the penalized Cox log partial 

likelihood with the form 𝑙(𝛽) − ∑ 𝜆|𝛽𝑗|
𝑝
𝑗=1 , where 𝑙 (𝛽) represents the standard log 

Cox log partial likelihood and λ is the shrinkage parameter. Using 10-fold cross-

validation to minimizing the mean square error determined the optimal value for λ 

(Andres et al., 2013). A larger λ corresponds to a larger penalty on the Cox log 

partial likelihood and thus removes more variables from the model alleviated the 

more predictive ability of overfitting a model. Further examination of the two clinical 

outcomes (PFS & OS) with combinations of biomarker profiles were assessed as 

well. The commands penalized and optL1 in the R package penalized were used 

to perform an optimized L1 penalty, “LASSO”, for a Cox model. (J. Goeman, 

Meijer, & Chaturvedi, 2014; J. J. Goeman, 2010) 

Results 

Multivariate Cox Regression with Interaction of PFS and OS without Regard to ER 

and PR Status of the Cancer Biopsy 

 For interaction models, the sign of the beta coefficient for the interaction 

term and its corresponding p-value are the most informative outputs from these 

types of Cox regressions. A negative beta coefficient reflects an antagonistic effect 

on the hazard, while a positive beta coefficient has a synergistic effect. For 

instance in Table 11, HCRT (orexin) and HCRTR2 (hypocretin receptor 2) 

exhibited a significant interaction term (adjusted p=0.23) for a false discovery rate 

cutoff of p<0.3 for OS with a positive beta coefficient (β=1.53) that indicates there 

is a significant increase in risk when expression levels of the two genes are 
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considered together. HRs for the main effects (i.e., hormone or receptor) of these 

Cox models are conditional HRs that depend upon the expression levels of the 

other gene in the model and are not shown for the sake of brevity. Table 1 shows 

the HR and 95% confidence interval for the HR of the interaction term and 

represents the excess risk from a synergistic effect or reductive risk from an 

antagonistic effect.  

OS     

Gene Symbol β HR 95% CI (HR) adj. p 

HCRT & HCRTR2 1.53 4.63 (1.75,12.23) 0.23 

     

     

Table 11. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with OS without Regard to Receptor Status. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 

 

Multivariate Cox Regression with Interaction of PFS and OS with Regard to ER 

and PR Status of the Cancer Biopsy 

 For ER+ cancers, two hormone-receptor pairs, INHA-ACVR2B and 

GNRH2-GNRHR, exhibited significance when associated with OS (Table 12). 

Interpretation of these interactions should be done with care. For example, inhibin 

(INHA) and activin A receptor, type IIB (ACVR2B) has an antagonistic effect on the 

overall hazard since the interaction beta coefficient (β3) is negative. Yet, the beta 

coefficients for the main effects (i.e., INHA (β1) and ACVR2B (β2)) are positive 

(β1=0.52, β2=1.00), which can be interpreted as an increase in the expression level 

of INHA or ACVR2B increases the risk of death (OS) at time t. In other words, the 
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overall hazard is a convolution of the increased risk from the levels of INHA and 

ACVR2B and the decreased risk from the statistical interaction of the two at these 

levels. INHA-ACVR2B and GNRH2-GNRHR would be candidates for further study 

to test signaling pathways for endocrine autonomy.       

OS Interaction ER+    

Gene Symbol β HR 95% CI (HR) adj. p 

INHA & ACVR2B -1.62 0.2 (0.08,0.51) 0.09 

GNRH2 & GNRHR 9.99 21907.54 (26.77,17930991) 0.20 

     

Table 12. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with OS for 146 ER+ Breast Carcinomas. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 

 

 For ER- cancers, Table 13 shows gene expression levels of five hormone-

receptor pairs exhibiting significance for interaction for OS.  The interaction term 

for HCRT-HCRTR2 was significant for ER- breast cancer and also significant for 

breast cancers without regard to receptor status. Interestingly, the hormone-

receptor pairs significant for interaction in ER+ cancers reappeared with different 

genes but from the same group. For example, INHA-ACVR2B was significant in 

ER+ breast cancers and inhibin beta C (INHBC) and activin receptor type IB 

(ACVR1B) was significant in ER- breast cancers. This is also similar for the 

hormone gonadotrophin, which expressed type II significant for ER+ cancers and 

type II significant for ER- cancers. Three out of the five pairs showing significance 

for ER- cancers typically produce their hormone in the hypothalamus and regulate 

a variety of other peptide/protein hormones. These three hormones, CRH, GNRH1 
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and HCRT, should be examined more closely with the hormones they regulate to 

verify any autocrine pathways in ER- breast cancers. 

OS Interaction ER-     

Gene Symbol β HR 95% CI (HR) adj. p 

IAPP & CALCR 3.93 50.99 (2.95,881.85) 0.20 

INHBC & ACVR1B 0.46 1.59 (1.15,2.2) 0.20 

CRH & CRHR1 -1.9 0.15 (0.04,0.53) 0.20 

GNRH1 & GNRHR 2.77 15.9 (2.29,110.59) 0.20 

HCRT & HCRTR2 1.5 4.47 (1.37,14.55) 0.30 

     

Table 13. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with OS for 101 ER- Breast Carcinomas. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 

 

 For PR+ cancers, six pairs of hormone-receptor combinations showed 

significance for OS (Table 14) Amylin (IAPP) and calcitonin receptor (CALCR) 

exhibited the largest effect size for statistical interaction for PR+ cancers and 

previously in ER- cancers. Because elevated levels of ER promote elevated levels 

of PR, one would not expect genes that are expressed in ER- cancers to be 

expressed in PR+ cancers. This anomaly should be investigated as a new finding 

in order to rule out as simple randomness. POMC was identified for the first time 

in these interaction models with its partner melanocortin 5 receptor (MC5R).  
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OS Interaction PR+     

Gene Symbol β HR 95% CI (HR) adj. p 

IAPP & CALCR 3.73 41.61 (2.68,645.8) 0.23 

RLN2 & RXFP1 0.64 1.91 (1.2,3.02) 0.23 

CGA & TSHR 0.27 1.31 (1.08,1.58) 0.23 

GHRH & GHRHR 0.58 1.79 (1.16,2.75) 0.23 

EDN1 & EDNRA -1.1 0.33 (0.14,0.78) 0.27 

POMC & MC5R 2.78 16.07 (1.69,153.35) 0.30 

     

Table 14. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with OS for 151 PR+ Breast Carcinomas. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 

 

 For LCM-procured breast carcinoma cells from PR- cancers, four hormone 

and receptor pairs revealed significance for an association for OS (Table 15). 

Orexin (HCRT) along with two of its cognate receptors, HCRTR1 and HCRTR2, 

synergistically increased the risk for their hazard functions. An interesting result is 

the significance of the pair cortistatin (CORT) and SSTR4 in ER- cancers. In ER- 

cancers, POMC and PRL are overexpressed with relative gene expression means 

of 0.38 and 0.24, respectively, while CORT and SSTR4 are under expressed with 

relative gene expression means of -0.2 and -0.1, respectively. CORT has been 

shown to have an inhibitory effect upon the production of POMC and PRL 

(Córdoba-Chacón et al., 2011). If elevated gene expressions of POMC and/or PRL 

in ER- cancer cells are in a signally pathway to cause progression or death from 

the disease, then a therapeutic treatment for ER- cancers may be to find ways to 

increase CORT and SSTR4 gene expression.  
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OS Interaction PR-     

Gene Symbol β HR 95% CI (HR) adj. p 

HCRT & HCRTR2 1.87 6.48 (2.09,20.07) 0.14 

CRH & CRHR1 -1.79 0.17 (0.04,0.63) 0.24 

HCRT & HCRTR1 2.31 10.11 (1.81,56.46) 0.24 

CORT & SSTR4 1.14 3.14 (1.38,7.12) 0.24 

     

     

     

Table 15. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with OS for 96 PR- Breast Carcinomas. As described 
in Methods and Materials, expression levels of 142 candidate genes were determined 
using LCM-procured cells from 247 breast cancer biopsies. 

 

 For ER+/PR+ cancers, three pairs of hormone-receptor combinations 

showed significance for estimating the relationship with PFS (Table 16). All three 

pairs typically produce their hormones in the anterior pituitary gland. The hormone-

receptor pair, pituitary adenylate cyclase-activating peptide (ADCYAP1) and 

pituitary adenylate cyclase-activating peptide receptor (ADCYAP1R), indicated the 

highest significance among these pituitary produced hormone pairs. ADCYAP1 

has been tested as a methylation biomarker for cervical and endometrial cancer 

(Jung et al., 2011; Wentzensen et al., 2014) 

PFS Interaction ER+/PR+         

Gene Symbol β HR 95% CI (HR) adj. p 

ADCYAP1 & ADCYAP1R1 -0.65 0.52 (0.36,0.76) 0.08 

FSHB & FSHR 24.77 5.72E+10 (2153,1.52E+18) 0.23 

LHB & LHCGR 9.58 14473 (15,1.35E+7) 0.23 

     

Table 16. Summary of the Interaction Term for Hormone and Receptor Gene Pairs 
with Expression Levels Associated with PFS for 118 ER+/PR+ Breast Carcinomas. 
As described in Methods and Materials, expression levels of 142 candidate genes 
were determined using LCM-procured cells from 247 breast cancer biopsies. 
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 When carcinomas expressing ER+/PR- status, six gene pairs were found 

significant with three expressing synergistic and three expressing antagonistic 

effects on the hazard function (Table 17). The effect sizes are large for these six 

pairs but caution should be taken since the sample size is relatively small. 

OS Interaction ER+/PR-         

Gene Symbol β HR 95% CI (HR) adj. p 

SST & SSTR4 8.72 6096.72 (11.48,3237235.64) 0.24 

INHA & ACVR2B -7.11 0 (0,0.13) 0.24 

RLN1 & RXFP1 5.67 289.4 (3.81,22009.88) 0.24 

EPO & EPOR 14.1 1335702.39 (20,8.79E+10) 0.24 

EDN1 & EDNRB -3.83 0.02 (0,0.44) 0.24 

VIP & VIPR1 -3.61 0.03 (0,0.39) 0.24 

     

Table 17. Summary of the Interaction Term for Hormone and Receptor Gene Pairs with 
Expression Levels Associated with OS for 28 ER+/PR- Breast Carcinomas. As described in 
Methods and Materials, expression levels of 142 candidate genes were determined 
using LCM-procured cells from 247 breast cancer biopsies. 

 

For ER-/PR+, two gene pairs were significant for an association with PFS 

and 12 gene pairs were significant for an association with OS (Table 18). There 

should be no surprise to find the pancreatic hormone amylin (IAPP) and its cognate 

pair calcitonin receptor (CALCR) as the most significant pair for assessing the 

relationship with both PFS and OS since its statistical interaction was found to be 

the most significant separately for ER- and PR+ cancers. The heart hormone atrial-

natriuretic peptide (NPPA) and each of its three receptors (NPR1, NPR2 and 

NPR3) had a significant synergistic effect on the hazard for both predicting OS. 

Yet, caution should be taken with these results due to the small sample size of 33 

ER-/PR+ cancers. 
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A. PFS Interaction ER-/PR+       

Gene Symbol β HR 95% CI (HR) adj. p 

IAPP & CALCR 7.49 1781.76 (15.68,202470.3) 0.22 

NPPA & NPR3 3.58 35.86 (3.12,411.6) 0.23 

     

B. OS Interaction ER-/PR+        

Gene Symbol β HR 95% CI (HR) adj. p 

IAPP & CALCR 6.71 818.18 (9.23,72540.58) 0.17 

INHBA & ACVR1 0.92 2.52 (1.35,4.7) 0.17 

NPPA & NPR3 3.96 52.38 (3.41,804.52) 0.17 

INHBA & ACVR1B -0.76 0.47 (0.24,0.89) 0.24 

INHBC & ACVR1B 1.09 2.96 (1.27,6.92) 0.24 

INHBC & ACVR2B 0.98 2.66 (1.23,5.74) 0.24 

INHBE & ACVR2A -1.12 0.33 (0.13,0.81) 0.24 

RLN2 & RXFP1 0.85 2.33 (1.14,4.76) 0.24 

CGA & TSHR 0.29 1.34 (1.04,1.72) 0.24 

NPPA & NPR1 11.18 71334.66 (3.98,1.27E+9) 0.24 

NPPA & NPR2 8.94 7617.82 (4.57,1.27E+7) 0.24 

CORT & SSTR5 10.36 31462.61 (3.73,2.65E+8) 0.24 

     

Table 18. Summary of the Interaction Term for Hormone and Receptor Gene Pairs with 
Expression Levels Associated with either PFS (A) or OS (B) for 33 ER-/PR+ Breast 
Carcinomas. As described in Methods and Materials, expression levels of 142 
candidate genes were determined using LCM-procured cells from 247 breast cancer 
biopsies. 

 

 For ER-/PR- cancers, two pairs of hormone-receptor genes showed 

expression levels that exhibited significance for predicting OS (Table 19). HCRT 

and HCRTR2 were found to be significant in both ER- and PR- cancers separately. 

Surprisingly a new gene pair, arginine vasopressin (AVP) and cullin 5 (CUL5) 

appeared with an antagonistic effect on its hazard. CUL5 has been shown to inhibit 

cell proliferation (Burnatowska-Hledin et al., 2004; Van Dort et al., 2003). 
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OS Interaction ER-/PR-        

Gene Symbol β HR 95% CI (HR) adj. p 

HCRT & HCRTR2 1.97 7.21 (1.87,27.79) 0.24 

AVP & CUL5 -1.44 0.24 (0.09,0.62) 0.24 

     

Table 19. Summary of the Interaction Term for Hormone and Receptor Gene Pairs with 
Expression Levels Associated with OS for 68 ER-/PR- Breast Carcinomas. As described in 
Methods and Materials, expression levels of 142 candidate genes were determined 
using LCM-procured cells from 247 breast cancer biopsies. 

 

Multivariate Cox Regression for the Hormone of PFS and OS without Regard to 

ER and PR Status of the Cancer Biopsy 

 Two-variable models were employed to evaluate gene expression results 

for the hormones while controlling for all the levels of relative gene expression for 

their cognate receptors. In Table 20, the beta coefficient for the hormone term was 

analyzed for PFS without regard to sex-hormone receptor status. Among the 20 

gene pairs in the Table 20, the hormones with multiple receptors had multiple 

appearances. Each of the hormones were significant for univariate analyses for 

PFS with no significant effect of their betas when accounting for the statistical 

presence of its receptor.  

 In Table 21, the beta coefficient for the hormone term was analyzed for OS 

without regard to sex-hormone receptor status. The strength of the signal from 

POMC regardless its cognate receptor dominated the significance for an 

association for OS. All gene pairs significant for OS were significant for PFS 

including secretin (SCT) with secretion receptor (SCRT) and pancreatic 

polypeptide (PPY) with neuropeptide Y receptor (NPY4R).   
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PFS Hormone         

Two Gene Model β for Hormone HR 95% CI (HR) adj. p 

POMC + MC1R 0.54 1.71 (1.37,2.15) <0.001 

POMC + MC2R 0.56 1.74 (1.39,2.18) <0.001 

POMC + MC3R 0.54 1.72 (1.37,2.15) <0.001 

POMC + MC4R 0.54 1.72 (1.37,2.15) <0.001 

POMC + MC5R 0.51 1.66 (1.32,2.1) <0.001 

SST + SSTR2 0.56 1.75 (1.29,2.39) 0.007 

SST + SSTR5 0.55 1.74 (1.28,2.36) 0.007 

SST + SSTR3 0.51 1.67 (1.24,2.25) 0.01 

SST + SSTR4 0.54 1.71 (1.25,2.34) 0.01 

PPY + NPY4R 0.96 2.6 (1.35,5.02) 0.05 

CRH + CRHR1 0.54 1.72 (1.17,2.55) 0.07 

REN + ATP6AP2 0.6 1.82 (1.13,2.93) 0.13 

PRL + PRLR 0.32 1.37 (1.06,1.77) 0.15 

SCT + SCTR 0.57 1.78 (1.06,2.97) 0.21 

EDN1 + EDNRA 0.39 1.48 (1.04,2.1) 0.21 

EDN1 + EDNRB 0.4 1.49 (1.05,2.11) 0.21 

RLN1 + RXFP1 -0.21 0.81 (0.67,0.99) 0.28 

RLN1 + RXFP3 -0.2 0.82 (0.67,1) 0.30 

RLN2 + RXFP1 -0.13 0.88 (0.77,1) 0.30 

PTH + PTH2R -1.26 0.28 (0.08,0.99) 0.30 

     

Table 20. Summary of the Hormone Term from Two Variable Cox Models of Hormone 
and Receptor Gene Pairs with Expression Levels Associated with PFS. As described in 
Methods and Materials, expression levels of 142 candidate genes were determined 
using LCM-procured cells from 247 breast cancer biopsies. 
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OS Hormone         

Two Gene Model β for Hormone HR 95% CI (HR) adj. p 

POMC + MC1R 0.52 1.68 (1.34,2.1) <0.001 

POMC + MC2R 0.53 1.71 (1.36,2.13) <0.001 

POMC + MC3R 0.52 1.67 (1.34,2.1) <0.001 

POMC + MC4R 0.52 1.68 (1.34,2.1) <0.001 

POMC + MC5R 0.48 1.62 (1.28,2.05) 0.002 

SCT + SCTR 0.77 2.17 (1.24,3.8) 0.13 

PPY + NPY4R 0.88 2.4 (1.16,4.97) 0.30 

     

Table 21. Summary of the Hormone Term from Two Variable Cox Models of Hormone 
and Receptor Gene Pairs with Expression Levels Associated with OS. As described in 
Methods and Materials, expression levels of 142 candidate genes were determined 
using LCM-procured cells from 247 breast cancer biopsies. 

 

Multivariate Cox Regression for the Genes of Hormones of PFS and OS without 

Regard to ER and PR Status of the Cancer Biopsy 

Two-variable models were employed to evaluate gene expression results 

for the receptors while controlling for all the levels of relative gene expression for 

their cognate hormones. In Table 22, the beta coefficient for the receptor term was 

analyzed for PFS without regard to sex-hormone receptor status. Receptors 

appeared in nearly the same order they appeared in univariate analysis for PFS 

with no significant effect on their betas when accounting for the statistical presence 

of its hormone.  

In Table 23, the beta coefficient for the receptor term was analyzed for OS 

without regard to sex-hormone receptor status. Similar to PFS, the receptors 

appeared in the same order as they did for significance in univariate Cox 

regression with no effect seen with the statistical presence of its cognate hormone. 
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This interpretation continues into the subtypes of ER/PR and for the sake of brevity 

will not be shown here. 
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PFS Receptor         

Two Gene Model β for Receptor HR 95% CI (HR) adj. p 

CALCA + CALCR 0.44 1.55 (1.2,2) 0.04 

IAPP + CALCR 0.46 1.58 (1.22,2.03) 0.04 

IGF1 + IGF1R.clone -0.17 0.84 (0.75,0.94) 0.06 

INS + IGF1R.clone -0.17 0.85 (0.76,0.94) 0.07 

CORT + SSTR1 0.62 1.86 (1.24,2.8) 0.07 

SST + SSTR3 0.93 2.53 (1.2,5.35) 0.10 

INHA + ACVR2A 0.31 1.37 (1.08,1.73) 0.10 

INHA + ACVR2B 0.35 1.42 (1.07,1.89) 0.10 

INHBA + ACVR2A 0.29 1.34 (1.06,1.7) 0.10 

INHBA + ACVR2B 0.35 1.42 (1.08,1.87) 0.10 

INHBB + ACVR2A 0.33 1.39 (1.09,1.77) 0.10 

INHBC + ACVR2A 0.32 1.38 (1.08,1.77) 0.10 

INHBC + ACVR2B 0.35 1.42 (1.08,1.87) 0.10 

INHBE + ACVR2A 0.29 1.34 (1.06,1.7) 0.10 

INHBE + ACVR2B 0.35 1.42 (1.08,1.86) 0.10 

AVP + AVPR2 0.91 2.49 (1.19,5.23) 0.10 

CORT + SSTR3 0.96 2.61 (1.25,5.44) 0.10 

VIP + VIPR1 -0.28 0.75 (0.6,0.94) 0.10 

NPY + NPY1R -0.17 0.85 (0.73,0.97) 0.12 

INHBB + ACVR2B 0.32 1.38 (1.04,1.81) 0.13 

ADCYAP1 + VIPR1 -0.25 0.78 (0.62,0.97) 0.13 

GHRL + GHSR -1.14 0.32 (0.12,0.88) 0.14 

NPY + NPY6R -1 0.37 (0.15,0.9) 0.14 

INHBB + ACVR1B 0.27 1.31 (1.02,1.67) 0.15 

GH1 + GHR 0.43 1.54 (1.04,2.28) 0.15 

AGT + RXFP3 1.23 3.42 (1.09,10.76) 0.15 

INS + INSR.AL365454 -0.25 0.78 (0.61,1) 0.17 

INHBA + ACVR1 -0.27 0.76 (0.58,0.99) 0.17 

INHBA + ACVR1B 0.26 1.29 (1.01,1.65) 0.17 

INHBC + ACVR1 -0.28 0.75 (0.57,0.99) 0.17 

INHBC + ACVR1B 0.26 1.29 (1.01,1.65) 0.17 

INHBE + ACVR1B 0.25 1.29 (1.01,1.65) 0.17 

INHA + ACVR1B 0.25 1.28 (1,1.65) 0.17 

INHBE + ACVR1 -0.27 0.76 (0.58,1) 0.17 

     

Table 22. Representative Summary of the Receptor Term from Two Variable Cox Models 
of Hormone and Receptor Gene Pairs with Expression Levels Associated with PFS. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 
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OS Receptor         

Two Gene Model β for Receptor HR 95% CI (HR) adj. p 

CALCA + CALCR 0.44 1.55 (1.17,2.06) 0.12 

IAPP + CALCR 0.46 1.58 (1.19,2.1) 0.12 

INS + IGF1R.clone -0.17 0.84 (0.75,0.95) 0.12 

SST + SSTR3 1.11 3.02 (1.34,6.83) 0.12 

IGF1 + IGF1R.clone -0.16 0.85 (0.75,0.96) 0.12 

INHBB + ACVR2A 0.38 1.46 (1.11,1.93) 0.12 

CORT + SSTR3 1.1 3.02 (1.35,6.73) 0.12 

NPY + NPY6R -1.4 0.25 (0.09,0.69) 0.12 

INHA + ACVR2A 0.35 1.42 (1.08,1.87) 0.13 

INHBA + ACVR2A 0.35 1.43 (1.08,1.88) 0.13 

INHBC + ACVR2A 0.36 1.43 (1.08,1.89) 0.13 

INHBE + ACVR2A 0.34 1.41 (1.08,1.85) 0.13 

VIP + VIPR1 -0.31 0.74 (0.57,0.95) 0.17 

NPY + NPY1R -0.2 0.82 (0.69,0.97) 0.17 

INS + IGF1R -0.19 0.83 (0.69,1) 0.18 

IGF1 + IGF1R -0.18 0.83 (0.69,0.99) 0.18 

AGT + RXFP3 1.29 3.65 (1.04,12.78) 0.18 

INHA + ACVR1 -0.35 0.7 (0.51,0.98) 0.18 

INHA + ACVR1B 0.3 1.35 (1.01,1.8) 0.18 

INHA + ACVR2B 0.36 1.44 (1.04,1.99) 0.18 

INHBA + ACVR1B 0.3 1.35 (1.01,1.79) 0.18 

INHBA + ACVR2B 0.35 1.41 (1.03,1.94) 0.18 

INHBB + ACVR1B 0.29 1.34 (1.01,1.77) 0.18 

INHBC + ACVR1B 0.29 1.33 (1,1.77) 0.18 

INHBC + ACVR2B 0.33 1.4 (1.02,1.91) 0.18 

INHBE + ACVR2B 0.32 1.37 (1,1.88) 0.18 

ADCYAP1 + VIPR1 -0.27 0.77 (0.6,0.99) 0.18 

ADCYAP1 + VIPR2 -0.13 0.88 (0.78,0.99) 0.18 

GHRL + GHSR -1.35 0.26 (0.08,0.86) 0.18 

VIP + VIPR2 -0.13 0.87 (0.78,0.99) 0.18 

IAPP + RAMP2 -0.18 0.84 (0.7,1) 0.19 

INHBC + ACVR1 -0.31 0.74 (0.54,1) 0.19 

INHBA + ACVR1 -0.29 0.75 (0.55,1.01) 0.21 

     

Table 23. Representative Summary of the Receptor Term from Two Variable Cox Models 
of Hormone and Receptor Gene Pairs with Expression Levels Associated with OS. As 
described in Methods and Materials, expression levels of 142 candidate genes were 
determined using LCM-procured cells from 247 breast cancer biopsies. 
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Kaplan-Meier Plots Discriminating Hormone-Receptor Pairs Whose Expression 

Levels Predict Clinical Outcomes 

 With 115 possible pairs of genes for peptide/protein hormones and their 

cognate receptors, 59 exhibited gene expression levels that were significant for 

the non-parametric log-rank test for PFS and 41 were significant for the non-

parametric log-rank test for OS without regard to receptor status (i.e., ER+, ER-, 

PR+, PR- and ER/PR combinations). Figure 5 has a representative sample of the 

most significant gene pairs from the log-rank test. Three examples are listed for 

cancers with regard to receptor status and one example for ER+/PR+, ER-/PR-, 

ER+, ER-, PR+ and PR-.  There is a complexity to comparing these Kaplan-Meier 

plots to our interaction models. The main effects of the hormone and receptor in 

the interaction models are a stronger driver of the behavior of the four categories: 

above/below the median expression for the hormone and above/below the median 

expression for the receptor. Kaplan-Meier plots are different from our previous 

analyses with univariate and multivariate Cox regression because the magnitude 

of the relative gene expression isn’t considered in the analysis once cancers are 

stratified into their respective groups. One aspect to consider when evaluating 

these plots is the behavior of cancers that exhibit both elevated hormone and 

receptor gene expression levels. 

Without regard to ER/PR status, the PFS expressed in Kaplan-Meier plots 

for SST & SSTR1 and SST & SSTR3 show a contrasting difference between 

cancers exhibiting the worst prognosis that express mRNA levels of the hormone 

and receptor above the median and cancers with the best prognosis that express 
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the mRNA levels of hormone and receptor below the median (Figure 4). Three 

plots discriminated cancers expressing mRNA above the median for the hormone 

and receptor as the worst prognostic group, which included the OS without regard 

to ER/PR status for POMC and MC5R, the OS for patients with ER+ cancers for 

SST and SSTR2 and the PFS for patients with ER-/PR- cancers for ADCYAP1 and 

VIPR2. For ER+/PR+ cancers, EDN1 & EDNRA was significant for OS for the 

interaction term from multivariate Cox regression. EDN1 & EDNRA was also 

significant for OS for KM plots with cancers expressing both the hormone and 

receptor below the median resulting in the best prognosis. Gene expression results 

shown in the Kaplan-Meier plots for  AVP & AVPR2 (ER-, OS), MLN & MLNR (PR+, 

PFS) and PTH & PTH2R (PR-, PFS), are representative of discordant pairs (i.e., 

above the median expression of the hormone gene and below the median 

expression of the receptor gene) as the group of patients with the poorest 

prognosis.  Although the molecular basis for this predicted clinical behavior is 

unknown currently, the gene expression patterns warrant further research to 

determine if they may be useful in predicting clinical outcomes. 

Multivariable Gene Expression Model fitted using the LASSO  

 The use of regularization techniques such as LASSO allowed us to evaluate 

gene expression levels of all 142 gene candidates to a model by penalizing the 

number of parameters in the model. The analyses were performed for predicting 

either PFS or OS without regard to either ER or PR receptor status, as well as in 

relationship to the four different combinations of ER/PR. Using the loss function to 

decide which model is the best, only three groups showed the minimal loss function 
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not equal to all zeroes for beta coefficients. In other words, all but three models 

exhibited their best fitted models having coefficients with all zeroes, which 

translates to having no significant variables associated with PFS and OS when a 

penalty is put on the size of the beta coefficients. 

 The LASSO fitted and cross-validated model for predicting breast cancer 

outcome expressing ER+/PR+ status for predicting OS was composed of 

expression levels of seven hormone genes (IGF1, INHBB, GNRH2, PENK, 

CALCA, GAL and PTMS) and those for nine receptor genes (SSTR2, SSTR3, 

SSTR4, PRLHR, EPOR, PRLR, CUL5, NPY2R and NPY5R) (Table 24). Strikingly, 

expression results of each of the eight genes showing statistical significance in 

univariate Cox regression analyses for predicting OS of ER+/PR+ cancers 

reappeared in the model derived from LASSO. The LASSO derived model of gene 

expression results for predicting PFS of ER-/PR- cancers was composed of  five 

hormone genes (AGT, POMC, GH1, PRL and PTH) and five receptor genes 

(CALR, SSTR1, AGTRAP, AVPR1A and AVPR2). Expression levels of these ten 

genes were all significant for predicting PFS of ER-/PR- cancers from univariate 

analyses. The LASSO derived model for prediction of PFS of ER- breast cancers 

was composed of four hormone genes (POMC, GH1, LHB and SCT) and two 

receptor genes (CALCR and AVPR1A). Expression levels of these six genes were 

all significant for assessing PFS of ER- breast cancers using univariate analyses. 
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A                                        B                                        C 

   
 D                                        E                                        F 

  
 G                                        H                                        I 

   
Figure 5. Representative Kaplan-Meier Plots Comparing Above and Below the Median 
Relative Gene Expression for Peptide/Protein Hormones and Their Cognate Receptors. 
Cancers with above the median expression for the hormone and the receptor have the 
worst prognosis (A (n=247), B (n=247), C (n=247), E (n=68), F (n=146)). ER+/PR+ cancers 
with below the median expression for both the hormone and receptor have the best 
prognosis. (D (n=118)) Cancers with below the median expression for the hormone and 
above the median expression for the receptor have the worst prognosis (G (n=101), I 
(n=96)). Cancers with above the median expression for the hormone and below the 
median expression for the receptor have the worst prognosis (H (n=151)). 
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A. OS ER+/PR+   B. PFS ER-/PR-   C. PFS ER- 

Gene Symbol β   Gene Symbol β   Gene Symbol β 

SSTR2 2.01  CALCR 0.17  CALCR 0.35 

SSTR3 1.04  SSTR1 0.03  POMC 0.31 

SSTR4 0.17  AGT 0.14  GH1 -0.40 

IGF1 -0.31  AGTRAP -0.09  LHB 0.05 

INHBB -0.59  POMC 0.31  SCT 0.13 

GNRH2 0.39  GH1 -0.38  AVPR1A 0.23 

PRLHR -0.78  PRL 0.10    

PENK -0.06  AVPR1A 0.12    

EPOR 0.12  AVPR2 0.21    

PRLR 0.42  PTH -0.07    

CUL5 -0.41       

CALCA 1.27        

GAL 0.08       

NPY2R 0.34       

NPY5R -0.03       

PTMS 0.19       

        

Table 24. Significant Genes and Corresponding Beta Coefficients for LASSO Performed 
on 142 Peptide/Protein Hormones and Their Cognate Receptors With and Without 
Receptor Status of Breast Carcinomas. ER+/PR+ cancers for OS (A), ER-/PR- cancers for 
PFS (B) and ER- cancers for PFS (C) were significant models from LASSO with a 
maximized likelihood from an L1 penalty and cross-validation.      

 
Discussion 

 The expansion of our analysis with multivariate techniques intended to 

exhaust all the relationships hormones and receptors may have on each other. 

Two variable models proved to be no better at predicting PFS and OS than their 

respective univariate models. However, the interaction models gave us a myriad 

of questions to be answered, which is exactly what an exploratory based study 

should do.  
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 Interaction models allowed us to explore the idea of endocrine autonomy 

where a cancer cell produces hormone proteins that bind to its own receptor 

proteins. This self-promoting loop could be associated with signaling pathways for 

proliferation. The idea that cancer cells have autonomous mechanisms to promote 

proliferation is not new (Hanahan & Weinberg, 2000). In addition, we know of a 

few peptide proteins which have been researched as biomarkers for early cancer 

detection (Assiri, Kamel, & Hassanien, 2015; Bae, Schaab, & Kratzsch, 2015). Yet 

to the best of our knowledge no one as looked at these peptide/protein hormones 

and their cognate receptors collectively.  

What we have revealed with the novel findings from significant gene pairs 

for interaction are potential gene pairs to be used in a molecular model to predict 

cancer prognosis or potential targets for therapy. Throughout our exhaustive 

search through related literature, we found no studies that employed the use of 

statistical interaction to develop their molecular signatures to predict cancer 

behavior. For future studies we would like to investigate combinations of these 

significant genes for interaction to develop a unique molecular signature. Hormone 

therapy treatment with tamoxifen blocks the estrogen receptor site, thus disrupting 

the function of the receptor signaling inside the cell. If further investigation reveals 

a pathway for proliferation through one of our many hormone-receptor pairs, then 

specific targets could be developed to block those receptor sites. 

The Kaplan-Meier plots offered us the best visual understanding of the 

relationship between hormones and their cognate receptors. The distinction drawn 

from cancers expressing high levels of hormones and receptor genes and those 
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expressing low levels of hormone and receptor genes suggests a strong dose-

response for predicting PFS and OS (i.e., (A) SST and SSTR3 and (B) SST and 

SSTR1 in Figure 5). Significant Kaplan-Meier plots with a single group exhibiting 

a worse prognosis spawn exploratory ideas such as why do patients with cancers 

expressing high levels of the hormone motilin (MLN) and low levels of its cognate 

receptor MLNR have a significantly worse prognosis compared to the other three 

groups (Figure 5 (H)). The best way to embark on an investigation of one of these 

anomalies is to culminate univariate and multivariate Cox regressions, ER/PR 

boxplots and Kaplan-Meier plots for the hormone and receptor. Thus, these results 

serve as a platform for further investigation. 

LASSO was performed on all 142 peptide/protein hormones and their 

cognate receptors to evaluate which genes were being expressed with the 

strongest signals for predict PFS and OS. The only non-zero models materialized 

from ER/PR subtypes. This suggests that the role of the sex hormones play a 

larger role in the behavior of peptide/protein hormones and receptors in predicting 

PFS and OS than trying to predict PFS and OS without considering the ER/PR 

receptor status. Receptor status is essential to determining the type of treatment 

a patient receives. Further examination of our findings may provide better 

prognosis for breast cancer patients across multiple biomarkers especially with the 

molecular signatures developed in Chapter IV. 
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CHAPTER IV 

META-ANALYSIS AND MOLECULAR SIGNATURES 

 To strengthen our findings of specific genes whose expression predicts 

clinical behavior of breast cancer, we extended our analyses by examining our 

results with those reported in several public databases. The unique nature of the 

HRL dataset, having been developed using RNA extracted from Laser Capture 

Micro-dissected breast carcinoma cells, made direct comparisons to results of 

each of the four public databases examined difficult since none of them used LCM 

techniques in their studies.  Therefore, it was reasoned that the meta-analysis 

would be conducted using various approaches of combining the HRL dataset with 

the public databases to determine the relationships of expression of genes for the 

142 peptide/protein hormone and their cognate receptors related to clinical 

outcomes of  breast carcinoma patients (Figure 1 Flow Diagram).  

Methods and Material 

Public Databases 

One of the widely accepted practices is to externally validate the significant 

findings of our study using public datasets. Four public databases, TRANSBIG, 

VDX, MAINZ and UNT, were chosen based on the strength of their studies and 

their accessibility through Gene Omnibus Expression (GEO).  Gene 
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expression values and clinical measurements were downloaded using the 

Bioconductor (version 3.2) packages ‘breastCancerTRANSBIG’, 

‘breastCancerVDX’, ‘breastCancerMAINZ’ and ‘breastCancerUNT’. Microarray 

data of relative gene expression levels determined with the AffymetrixU133a 

GeneChip were reported by TRANSBIG, VDX, MAINZ and UNT. TRANSBIG 

contained results from 198 lymph-node negative patients treated at five different 

centers. (Buyse et al., 2006) (Desmedt et al., 2007) VDX reported the relative gene 

expression results from 286 lymph-node negative patients with primary breast 

cancer. (Wang et al., 2005) The MAINZ database contained results from 200-node 

negative patients. (Schmidt et al., 2008) while UNT reported gene expression 

levels of 189 lymph-node negative patients. (Sotiriou et al., 2006) Each of the four 

public databases employed in these investigations contained the levels of estrogen 

receptor expressed in each cancer biopsy. 

 Prior to performing meta-analysis, the relative expression levels of each of 

the 142 candidate genes were normalized to a mean of zero and standard 

deviation of one within each of the five datasets. The relative gene expression 

results of the HRL database and those of the four public databases, in various 

combinations, were concatenated into individual datasets. No weight was given to 

any dataset nor to any subset of patients based on their characteristics (e.g., ER 

status of the cancer). Using each of the combined datasets, univariate Cox 

regression and multivariate Cox regression analyses were performed with gene 

expression results of each of the 142 candidate genes using only the clinical 

outcome PFS/RFS and the status of the biomarker, ER. 
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Molecular Signatures and Multivariable Cox Model 

The field of 142 candidate genes was constricted to a smaller specialized 

group by a predefined criterion. In order for a gene to meet the criterion it must be 

significant (p < 0.05) for univariate Cox regression in the HRL data analysis and at 

least one other public database. This technique gives a higher preference for the 

HRL dataset, which is the only database to use LCM on its tissue biopsies.      

These genes were selected as the special candidates for a molecular 

signature to be modeled with training and test sets using the meta-analyses 

dataset. Initially, the patients were placed into subsets based on their ER status 

since ER status is a strong predictor of clinical outcome. Patients were randomly 

selected into a 70% training set and the other 30% of patients were placed in a 

test set. Equal proportions of ER+ and ER- patients were selected to reflect the 

same proportion in the entire population. This randomization was independently 

repeated 1000 times.  

Each training set was evaluated using Least Absolute Shrinkage and 

Selection Operator (LASSO) with an L1 penalty determined by the optL1 command 

in the penalized package. An L1 penalty shrinks the beta coefficients of non-

significant genes to zero. The genes in each model were tallied after 1000 

iterations. The number of gene occurrences in the training models was then 

compared to the maximum gene occurrence in permuted data sets. The permuted 

sets were constructed by randomly reordering the patient’s clinical outcomes 

against their gene expression values. This approach established a baseline for the 

noise in the data as well as identified the genes with the strongest signals. Any of 
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the genes within the training set that contain a higher frequency than the maximum 

frequency in the permuted set were considered to be significant. (S. A. Andres et 

al., 2015) 

Linear predictors were determined with the training set models and applied 

to the remaining 30% (test sets). A linear predictor is constructed for each patient 

by the summation of the relative gene expressions for each gene in the model 

multiplied by each gene’s beta coefficient. The linear predictors were segregated 

into above/below the median subsets. Kaplan-Meier plots were constructed for the 

median splits using all models that had predictors in them. In order to visually 

compare these plots an alternative Kaplan-Meier plot was constructed which 

permuted the clinical outcomes (progression free survival, recurrence) against 

their corresponding linear predictors. These alternative plots should have no 

recognizable pattern between the median and tertiary split subsets. The 

distributions of the p-values from the non-zero Cox models, median splits, and 

tertiary subsets are shown in boxplots.   

In order to externally validate the genes in our molecular signatures (MS), 

the four public databases were divided into 1000 training (70%) and test (30%) 

sets. The beta coefficients determined by Cox regression with the genes in each 

of the molecular signatures were applied to their corresponding test set. These 

linear predictors were evaluated against the clinical outcomes of the test set using 

the concordance index (C-index). Boxplots were employed on the 1000 C-indices 

to illustrate their distributions. The R command rcorrcens in R package Hmisc 
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calculated the C-index for each linear predictor and set of clinical outcomes (RFS 

for TRANSBIG and UNT and DMFS for VDX and MAINZ). 

Results 

Meta-analysis of HRL and Four Public Databases  

 Univariate Cox regression performed on 1126 breast cancer biopsies (HRL 

and four public databases combined) for each of the 142 candidate genes resulted 

in 12 genes exhibiting unadjusted p-values < 0.07. After p-values were adjusted 

for multiple comparisons using the Benjamin-Hochberg method, no genes met the 

0.3 discovery threshold. Two limitations of this analysis are the clinical outcome 

being measured by MAINZ and VDX ignore local metastasis as an event and none 

of the public databases utilized LCM to avoid the convolution of surrounding non-

cancerous tissues in their analyses. Despite limitations and loss of significance 

after controlling for the false discovery rate, RLN2, RLN1, VIPR1 and ACVR1B 

appear later in our 14-gene molecular signature for cancers without regard to 

receptor status.  

 Univariate Cox regression performed on 737 ER+ breast cancer biopsies 

for each of the 142 candidate genes resulted in eight genes exhibiting an 

association with PFS/DMFS and unadjusted p-values less than 0.04. Univariate 

Cox regression performed on 378 ER- breast cancer biopsies for each of the 142 

candidate genes resulted in 13 genes exhibiting an association with PFS/DMFS 

and unadjusted p-values less than 0.07. After adjusting p-values for multiple 

comparisons, the expression of genes in neither ER+ nor ER- cancers exhibited  
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Gene Symbol β HR 95% CI (HR) p adj. p 

RLN2 -0.14 0.87 (0.78,0.96) 0.01 0.69 

GHR 0.12 1.13 (1.03,1.25) 0.01 0.69 

FSHB -0.12 0.89 (0.81,0.98) 0.02 0.69 

VIPR2 -0.11 0.89 (0.81,0.99) 0.02 0.69 

ADCYAP1 0.1 1.11 (1,1.23) 0.04 0.69 

VIPR1 -0.1 0.91 (0.83,1) 0.05 0.69 

TRH -0.1 0.9 (0.81,1) 0.06 0.69 

RLN1 -0.09 0.91 (0.83,1) 0.06 0.69 

SSTR3 0.09 1.1 (1,1.21) 0.06 0.69 

ACVR1B 0.1 1.1 (1,1.22) 0.06 0.69 

TMSB10 0.09 1.1 (1,1.21) 0.06 0.69 

THPO 0.09 1.1 (1,1.21) 0.06 0.69 

      

Table 25. Summary of the Genes from Meta-analysis without Regard to Receptor Status 
(n=1126) with Expression Levels Associated with PFS/DMFS. As described in Methods 
and Materials, expression levels of 142 candidate genes were determined using LCM-
procured cells from 247 breast cancer biopsies. 

 

adjusted p-values less than the 0.3 threshold. The unadjusted univariate 

associated gene, GRP, for ER+ cancers appears in the 3-gene molecular 

signature for ER+ breast cancers while the unadjusted univariate associated 

genes, IGF1 and POMC, for ER- cancers appear in the 9-gene molecular signature 

for ER- breast cancers (Figure 7). 
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A. PFS/DMFS ER+        

Gene Symbol β HR 95% CI (HR) p adj. p 

RLN2 -0.19 0.82 (0.72,0.94) 0.01 0.45 

THPO 0.15 1.16 (1.03,1.31) 0.01 0.45 

PRLR 0.15 1.17 (1.02,1.33) 0.02 0.45 

SST 0.15 1.16 (1.02,1.32) 0.02 0.45 

C19orf80 -0.15 0.86 (0.76,0.98) 0.02 0.45 

ACVR1B 0.14 1.15 (1.02,1.31) 0.03 0.45 

GRP -0.14 0.87 (0.77,0.98) 0.03 0.45 

ATP6AP2 0.15 1.16 (1.02,1.33) 0.03 0.45 

      

B. PFS/DMFS ER-        

Gene Symbol β HR 95% CI (HR) p adj. p 

IGF1 0.22 1.25 (1.06,1.46) 0.01 0.63 

PTMS 0.22 1.25 (1.05,1.49) 0.01 0.63 

AVPR2 0.18 1.2 (1.02,1.4) 0.02 0.63 

GHR 0.16 1.18 (1.02,1.37) 0.03 0.63 

POMC 0.15 1.16 (1.01,1.33) 0.03 0.63 

TSHB -0.19 0.83 (0.7,0.99) 0.04 0.63 

VIPR2 -0.17 0.84 (0.71,0.99) 0.04 0.63 

GALR3 -0.17 0.84 (0.71,0.99) 0.04 0.63 

LEPR 0.16 1.17 (1,1.37) 0.05 0.63 

RAMP2 0.15 1.16 (1,1.36) 0.05 0.63 

C19orf80 0.15 1.16 (0.99,1.36) 0.06 0.63 

INSR 0.14 1.14 (0.99,1.32) 0.06 0.63 

CAP2 -0.15 0.86 (0.74,1.01) 0.06 0.63 

      

Table 26. Summary of the Meta-analysis for (A) ER+ (n=737) and (B) ER- (n=378) Breast 
Cancers with Expression Levels Associated with PFS/DMFS. As described in Methods 
and Materials, expression levels of 142 candidate genes were determined using LCM-
procured cells from 247 breast cancer biopsies. 
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Kaplan-Meier Plots Demonstrating Results from Meta-Analysis 

 The Kaplan-Meier plots in Figure 6 compare the difference between breast 

cancers reported in the public databases and in the HRL database expressing a 

gene above and below the median. The three most significant genes are shown 

for the 1126 cancers without regard to receptor status, 737 ER+ cancers and 378 

ER- cancers (11 cancers had missing data on ER status). For breast cancers 

without regard to receptor status, patients with cancers that expressed ADCYAP1 

and SST above the median and VIPR2 below the median had the worst prognosis. 

Noteworthy, SST and VIPR2 appear in the 14-gene molecular signature (Figure 

7). Patients with ER+ breast cancers expressing SST and SSTR2 above the 

median and RAMP2 below the median tend to have a shorter time for a recurrence 

of cancer. Interestingly, SSTR2 also appears in the 3 –gene molecular signature. 

Patients with ER- breast cancers expressing C19orf80 above the median and TRH 

and FSHB below the median exhibited the worst prognosis.   

 Gene Signatures Predicting Clinical Behavior of Breast Carcinomas 

Significant genes from univariate Cox regression, either PFS or OS, were 

analyzed for their ability to predict risk of breast cancer recurrence as a set with 

1000 LASSO training/test sets. The genes that occurred in more models than in 

the permuted set, which serves as the null distribution, are considered gene 

signature candidates until externally compared with results in public databases, as 

described in Methods and Materials. A 14-gene subset was identified as a 

candidate molecular signature for predicting clinical outcome without regard to the 

sex hormone receptor status of the breast cancer biopsies (Figure 7). When sex-
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hormone receptor status was considered, a three-gene signature composed of 

NPY1R, SSTR2 and GRP was deciphered for ER+ breast cancer biopsies and a 

candidate 9-gene signature was identified for ER- breast cancer biopsies.  

The 14-gene signature was composed of expression patterns for eight 

receptor genes and six hormone ligand genes. Of these 14 genes, only NPY1R 

was also identified in the 3-gene signature in ER+ breast cancers (Figure 7). 

Interestingly, three of the genes, POMC, CALCR and PRL, of the signature 

deciphered without regard for ER status were also found in the 9-gene signature 

identified in ER- breast cancers. Surprisingly, in contrast to the composition of the 

14-gene signature, only two of the 9 genes of the molecular signature associated 

with ER- breast cancer direct the synthesis of hormone receptors. No genes 

reflecting peptide/protein hormone-receptor pairs were detected in the 14-gene 

signature nor in the 3-gene signature. It is noteworthy, that the gene for the 

hormone prolactin (PRL), which plays a central role in breast physiology, and 

prolactin’s cognate receptor PRLR appeared in the 9-gene signature for ER- 

biopsies.  

 Concordance indices evaluated the predictive ability of the genes in each 

of the three molecular signatures on each of the four public databases. Figure 8 

summarizes the distribution of the C-indices determined by 1000 training and test 

sets. The 9-gene MS performed better than the 14-gene and 3-gene MS in VDX, 

UNT and MAINZ and as well as the 3-gene model in TRANSBIG. The median C-

index for the 9-gene model was greater than 0.6 for two public databases, MAINZ 
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and UNT. Excitingly, the best predictive MS is in the 9-gene model for ER- cancers, 

since patients with ER- cancers have very limited treatment options.    
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A                                        B                                        C 

   

D                                        E                                        F 

   

G                                        H                                        I 

   

Figure 6. Representative Kaplan-Meier Plots Comparing Above and Below the Median Relative 
Gene Expression of 142 Peptide/Protein Hormones or Their Cognate Receptors with and without 
Regard to ER Status for PFS from the Meta-analysis. Without regard to ER status, 1126 breast 
carcinomas expressing ADCYAP1 (A) and SST (C) above the median and VIPR2 (B) below the 
median had the worst prognosis. 737 ER+ breast carcinomas expressing RAMP2 (D) below the 
median and SST (E) and SSTR2 (F) above the median had the worst prognosis. 378 ER- breast 
carcinomas expressing TRH (G) and FSHB (H) below the median and C19orf80 (I) above the 
median had the worst prognosis. 
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Figure 7. Composition of Molecular Signatures Derived Showing Genes Common 

to Each 
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A                                                                B 

 

C                                                                D 

 

Figure 8. Summary of 1000 C-indices of Each of the Three Molecular Signatures on Each 

of the Four Public Databases, (A) VDX, (B) TRANSBIG, (C) UNT and (D) MAINZ. The 14-

Gene MS was applied to cancers without regard to receptor status. The 3-Gene MS and 

9-Gene MS was applied to ER+ and ER- cancers, respectively. Validation of the genes in 

the three MS was performed by dividing public databases into 70% training and 30% 

test sets.  
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Discussion  

 As expressed earlier, our overarching goal is to determine the relationships 

of the expression of the genes for each of the peptide/protein hormones and that 

of their cognate receptors with clinical outcomes of breast cancer patients. Our 

hypothesis is that expression profiles of subsets of these genes for regulatory 

molecules may be used to predict risk of breast carcinoma recurrence in patients 

with primary disease. It appears that our approach described in Figure 1 is original 

considering the following resources: 1) only de-identified breast cancer tissues 

were processed by LCM for microarray, 2) gene expression levels reflected only 

mRNA of specific cell types, 3) 22,000 genes were determined in 247 primary 

breast carcinomas in a standardized fashion and 4) data were complemented by 

quantitative results of protein biomarker levels (ER, PR and HER-2). These 

unparalleled properties of each specimen were accompanied by clinical follow-up 

and patient outcome. A multitude of statistical analyses such as univariate and 

multivariate Cox regressions, Kaplan-Meier plots, boxplots and LASSO were 

utilized to predict a patient’s clinical outcome. 

 Recall from Chapter II the importance POMC, GH1 and CALCR contributed 

to predicting PFS and OS for univariate Cox regression and Kaplan-Meier plots for 

ER- subtypes of breast carcinomas. SST and its cognate receptors diverge 

expression towards cancers exuding estrogen receptor proteins (ER+). POMC is 

the standout gene from univariate Cox regression with and without regard to 

receptor status while GH1 in ER- cancers displayed an exceptional differentiation 

between cancers expressing the gene at high and low levels. POMC has appeared 
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in many studies showing an association with a variety of diseases such as obesity 

and cancer (Clark, 2015; Mountjoy, 2015). Other studies have shown 

polymorphisms of GH1 to have a protective influence on breast cancer risk 

(Wagner et al., 2006). Although we did not examine polymorphism, we did 

independently show that elevated levels GH1 in breast carcinomas have a 

protective effect. These findings warrant further the investigation of these two 

genes with the HRL’s Next Generation Sequencing (NGS) database. 

 Chapter III explored a myriad of multivariate predictors for progression of 

disease and survivorship of patients with primary breast cancers. A number of 

hormone-receptors exhibited a significant statistical interaction such as the pairs 

HCRT-HCRTR2 in ER- and PR- cancers, IAPP-CALCR in ER- cancers and FSHB-

FSHR in ER+/PR+ cancers. Two variable models did not distinguish any better 

predictors for PFS and OS than univariate Cox regression results contributed. 

LASSO revealed the prominence of the role that sex hormone status performs in 

predicting PFS and OS for peptide/protein hormones and their receptors.  The 

significant LASSO results of 16 genes for ER+/PR+ cancers, 10 genes for ER-/PR- 

cancers and 6 genes for ER- will be externally validated with the public databases 

as alternative molecular signatures in future studies. 

 We learned from Chapter IV that the significance of many genes in the 

meta-analysis evaporated when adjusted for multiple comparison were calculated. 

This loss in the number of significant genes happened throughout the study. The 

challenge of exploring the relative expression levels of 142 genes is not just the 

volume of work to be organized but discretizing statistical significance from the 
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inherent noise of highly correlated data found in microarray. Our original answer 

to the question of how to validate our discoveries since most of them could not 

overcome the loss of significance from adjusting for a false discovery rate was the 

use of public databases. The challenge was the lack of public databases that used 

LCM to ensure only cancer cells were being evaluated and the uncertainty of their 

consistency used in specimen collection and lab techniques.  

Despite these challenges, our 9-gene molecular signature for ER- cancers 

performed better than the 14 gene and 3-gene MS in predicting the PFS/DMFS in 

all four public databases. The median concordance index of two public databases 

was over 60%. In summary, the resources and approach clearly support the 

integrity of the molecular signatures primary breast carcinoma to predict risk of 

recurrence. Additional steps in the clinical validation of these signatures may 

include the implementation of a clinical trial whereby the molecular signatures are 

used as biomarkers with and without regard to sex hormone receptor status of the 

breast carcinoma biopsy. 
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