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ABSTRACT 

 

EFFECTS OF AMPLITUDE MODULATION ON SOUND LOCALIZATION IN 

REVERBERANT ENVIRONMENTS 

 

Paul W. Anderson 

May 27, 2015

Auditory localization involves different cues depending on the spatial domain. Azimuth 

localization cues include interaural time differences (ITDs), interaural level differences 

(ILDs) and pinnae cues. Auditory distance perception (ADP) cues include intensity, 

spectral cues, binaural cues, and the direct-to-reverberant energy ratio (D/R). While D/R 

has been established as a primary ADP cue, it is unlikely that it is directly encoded in the 

auditory system because it can be difficult to extract from ongoing signals. It is also 

noteworthy that no neuronal population has been identified that specifically codes D/R. It 

has therefore been proposed that D/R is indirectly encoded in the auditory system, 

through sensitivity to other acoustic parameters that are correlated with D/R, such as 

temporal cues (Zahorik, 2002b), spectral properties (Jetzt, 1979; Larsen, 2008), and 

interaural correlation (Bronkhorst and Houtgast, 1999). An additional D/R correlate relies 

on attenuation of amplitude modulation (AM) as a function of distance. Room 

modulation transfer functions act as low-pass filters on AM signals, and therefore the 

direct portion of a signal will have less modulation depth attenuation than the reverberant 

portion. Although recent neural and behavioral work has demonstrated that this cue can 

provide distance information monaurally, the extent to which the modulation attenuation 
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cue contributes to ADP relative to other ADP cues is not fully understood. It is also 

possible modulation attenuation by the room can provide additional directional 

localization information, perhaps through the resulting dynamic fluctuation of the ILD 

cue. The role of AM in directional sound localization has not been extensively studied, 

particularly in reverberant soundfields which can affect the modulation reaching the two 

ears in a directionally-dependent fashion. Three human psychophysical experiments 

assessed the role of AM signals in distance and directional auditory localization in 

reverberant soundfields. Experiment I focused on validating a graphical response method 

to be used in subsequent experiments. In Experiment II, an auditory distance estimation 

task was performed which yielded measures of the relative perceptual contributions of the 

modulation depth cue during ADP in a reverberant room. Experiment III investigated the 

effect of AM on binaural localization in the horizontal plane in a reverberant room. 
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CHAPTER I 

BACKGROUND 

A. Distance Perception 

 Auditory distance perception (ADP) is known to be relatively inaccurate and 

highly variable (Zahorik, Brungart, and Bronkhorst, 2005; Anderson and Zahorik, 2014). 

It is thought to be governed by four acoustic cues: Intensity, spectral cues, binaural cues 

and the ratio of direct-to-reverberant sound energy (D/R). Binaural distance cues, like 

ITD and ILD, are most useful in the near field (within about 1 m of the head), while 

spectral distance cues are primarily effective for far distances where high frequency 

content is absorbed by the air between the source and the listener. D/R is a ratio of the 

amount of energy in the direct portion of the waveform (energy that is transmitted 

directly from the source to the listener without interacting with any surfaces of the 

environment) to the amount of reverberant energy (energy that interacts with surfaces in 

the environment) of the waveform that reaches the ears. As sound source increases the 

amount of direct energy decreases relative to the amount of reverberant energy which 

remains relatively constant as a function of distance. D/R information is important for 

making absolute distance judgments, and therefore a prerequisite for utilizing D/R is that 

the source signal be presented in a reverberant environment (Mershon and King, 1975; 

Bronkhorst and Houtgast, 1999). In anechoic space, distance estimation is dominated by 

intensity since no reverberant energy is available. Without D/R, only relative distance 

judgments can be made in anechoic space (Mershon and Bowers, 1979). The manner in 
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which D/R is encoded by the brain is uncertain, since no neuronal population has been 

found that directly codes it (For review see Kim, Zahorik, Carney, Bishop, & Kuwada, 

2015). To address this issue, a number of theories have attempted to explain how the 

auditory system might code D/R via other correlated acoustical cues, including temporal 

cues (Zahorik, 2002b), spectral properties (Jetzt, 1979; Larsen, 2008), and interaural 

correlation (Bronkhorst and Houtgast, 1999). Our lab, in collaboration with colleagues at 

University of Connecticut, has proposed a new correlate of D/R specific to amplitude 

modulated (AM) sound sources.  

 Kim et al. (2015) recorded from AM sensitive neurons in the inferior 

colliculus (IC) of rabbits. Sounds were presented monaurally to the rabbits using virtual 

auditory space (VAS) techniques at varying sound source distances in both anechoic and 

reverberant environments. Stimulus level was equalized across distance to compensate 

for propagation loss by 6 dB per doubling of source distance. As modulation depth 

increased some of the AM sensitive neurons would increase their firing rate and others 

would decrease their firing rate. The AM sensitive neurons that decreased firing rates in 

response to decreased modulation depth also decreased their firing rates monotonically 

with source distance only if two conditions were true: 1) the sound was amplitude 

modulated and 2) the stimulus was presented in a reverberant environment. This supports 

the hypothesis that modulation depth attenuation as a function of distance can be used to 

code distance in IC neurons. Kim et al. also reported results from a behavioral experiment 

they performed where human listeners performed a distance judgment task under two 

conditions: modulated or unmodulated stimuli. As in the neural portion of their study, the 

stimuli were equalized for level. The human behavioral results where listeners performed 
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egocentric distance judgments showed that listeners could only discriminate source 

distance if the signal was amplitude modulated in a reverberant environment. For 

modulated sound sources perceived distance increased with physical distance, but for 

unmodulated signals perceived distance was independent of physical distance. The 

combination of these two studies provides evidence that AM can be used as a cue to 

distance in reverberant environments, and there is a neural basis for the cue. 

 Behavioral data from Zahorik & Anderson (2015) found more evidence that 

listeners can use AM as a monaural distance cue. Listeners performed an auditory 

distance perception task where stimuli were either modulated or unmodulated in both a 

reverberant and an anechoic environment. Headphone presentation was either monaural 

(to the contralateral ear) or binaural. Stimulus level was equalized across distance like in 

Kim et al. (2015). Distance judgments were only analyzed for sources less than 2 m from 

the listener. The results indicated that distance judgments were more accurate in a 

reverberant environment when stimuli were AM. This benefit from AM only occurred 

when stimuli were presented monaurally to the contralateral ear.  The basis for the 

hypothesis of using amplitude modulation as a distance cue comes from the modulation 

transfer function (MTF) of a room acting as a low-pass filter in the amplitude modulation 

domain (Houtgast and Steeneken, 1985), where higher modulation frequencies are 

progressively more attenuated with increasing physical distance. MTFs are computed so 

that they are independent of level. Attenuation of the modulation depth in the reverberant 

portion of the signal increases with source distance. The modulation depth of the direct 

energy portion, however, remains unattenuated with increasing source distance. 

Therefore, the direct portion of an AM signal will have modulation depth attenuated less 
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than the reverberant portion of the signal. The difference between the AM depth of the 

direct portion of the waveform and the reverberant portion of the waveform may then be 

used as a correlate of D/R. 

 A common AM signal is speech. Zahorik (2002a) investigated distance 

perception of speech stimuli and found no significant difference in distance estimates 

compared to noise stimuli. Distance judgments were also made at both 0° and 90°. No 

significant difference was found between the two orientations. However, the speech 

signal used was a single syllable, /da/, and thus contained little AM. Nielsen (1991) 

compared distance estimates of white noise and 5 s of speech stimuli (a female talker 

reading a sentence from a short story recorded in an anechoic space) finding no 

significant difference between the two. Any benefit from amplitude modulation on 

distance judgments may have been over powered by more reliable distance cues. This 

will be discussed in more detail below. Nielsen also collected distance judgments at 

azimuths other than midline using speech stimuli. Sources located off midline (45°, 90°, 

and 180°) were perceived as farther away than sources at 0°. However, four target 

distances were tested at 0° and 45°, and only one target distance was tested at 90° and 

180°. When only one target source was present intensity was manipulated to create the 

percept of more sources. Positioning more sources along each azimuth and using a more 

reliably AM signal (like noise) would help elucidate results from these two studies.  

 Modulation depth is predicted to vary with distance as a function of azimuth. 

The description above of how modulation is attenuated in the direct and reverberant 

portions of the waveform is specific to midline where the signal reaching both ears is 

identical. When the source is moved away from midline the contralateral ear will have 
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more modulation attenuated by the room than the ipsilateral ear since the contralateral ear 

has more room exposure. At 90° the difference in modulation depth between ears will be 

greatest for a given distance. The direct portion will have similar AM depth regardless of 

arriving at the ipsilateral or contralateral ear; however, the AM depth of the reverberant 

portion will be more attenuated under contralateral stimulation since the far ear will have 

more exposure to the room. Figure 1.1 illustrates the difference of modulation depth of 

the reverberant portion of the signal as a function of distance at 90°. The left column 

shows modulation depth as a function of distance in a highly reverberant room, and the 

right column shows the same relationship in anechoic space. The figure demonstrates that 

modulation depth is attenuated more at greater distances in a room. The left column 

shows modulation depth at the contralateral ear (green) is more attenuated than the 

ipsilateral ear (blue) in a room. However, the right column shows that in anechoic space 

AM depth remains unchanged as a function of distance for both the ipsilateral and 

contralateral ear. Modulation depth changes similarly to how D/R changes as a function 

of distance. It is difficult to extend this relationship between modulation depth and source 

distance to the near field because the relationship between binaural cues (ITDs and ILDs) 

and physical distance is complex when a sound source is within approximately 1 m of the 

head, especially at more lateral azimuths (Zahorik, Brungart, & Bronkhorst, 2005). 
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Figure 1.1: Example time waveforms that show the effect of distance on amplitude 

modulation at 90° azimuth under reverberant (left) and anechoic (right) conditions. The 

source signal is a sinusoidally amplitude-modulated 1-octave band of noise centered at 4 

kHz, with modulation frequency of 32 Hz. Sound intensity was boosted by +6 dB of gain 

per doubling of distance to compensate for propagation loss with distance using 1.4 m as 

the reference distance. In reverberation, AM is attenuated as distance increases. Under 

anechoic conditions AM depth is relatively constant across distance. AM depth at the 

contralateral ear (green) in the room is more attenuated than the ipsilateral ear (blue).   
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 Auditory distance perception depends upon at least four cues: D/R, intensity, 

binaural cues, and spectral change. To form a stable distance estimate to a sound source, 

these cues must be combined by the perceptual processes underlying auditory distance 

perception. Zahorik (2002a) performed a study investigating how D/R and intensity were 

perceptually weighted during distance judgments under different stimulus conditions. 

Small amounts of independent random perturbation were applied to each parameter 

during stimulus presentation. Perceptual weights can then be estimated using a multiple 

regression model where the perturbed parameters are used to predict distance responses. 

It was found that perceptual weights assigned to D/R and intensity change as a function 

of source signal type and source direction. This approach of measuring perceptual 

weightings of auditory cues would be able to measure the relative contribution of 

modulation depth to distance judgments by perturbing modulation depth the same way 

Zahorik (2002a) perturbed intensity and D/R. While D/R is a cue specific to localization 

in the distance domain, differences of modulation depth as a function of azimuth may 

also aid directional localization ability in rooms. 

B. Directional Perception  

 The primary directional localization cues are interaural level (ILDs) and 

interaural timing (ITDs) cues. According to Duplex theory these two cues derive from 

different frequency regions (Strutt, 1907). ILDs result from the head shadow effect where 

the signal reaching the contralateral ear is more attenuated than the signal reaching the 

ipsilateral ear. Head shadow is most effective for creating ILDs at frequencies higher than 

about 1000 Hz. For frequencies below about 1000 Hz ITDs can be used for localization 

where the signal arrives at the closer ear before the signal reaching the far ear 
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(Middlebrooks & Green, 1991). Directional sound localization in anechoic environments 

is generally known to be quite accurate: Minimum audible angles can be as small as 1° at 

midline for horizontally displaced sounds (Mills, 1958). Reverberation, on the other 

hand, has a complex influence on localization accuracy. While reliable distance 

perception requires the presence of a room, many directional localization studies have 

found rooms are detrimental to localization accuracy (Hartmann, 1983; Giguere and 

Abel, 1993; Ihlefeld and Shinn-Cunningham, 2011). Although localization is generally 

impacted negatively in rooms, there are mechanisms, such as the precedence effect 

(Wallach, Newman, and Rosenweig, 1949) which limit the detrimental effect of 

reverberation by placing importance on the timing of the arrival of the first wave front to 

reach the ears. Other studies have shown that localization ability in reverberant 

environments is equal or even improved relative to anechoic for certain types of stimuli, 

like high frequency noise (Begault, Wenzel, and Anderson, 2001; Ihlefeld and Shinn-

Cunningham, 2011) and depending on the amount of exposure a listener has to the room 

(Shinn-Cunningham, 2001). The stimuli in all of these studies were unmodulated noise. 

C. Directional Localization of AM Stimuli  

 Investigation of localization of AM stimuli has mostly focused on 

lateralization tasks or anechoic environments. Lateralization of AM tones (50 - 800 Hz 

mod rate; Bernstein and Trahiotis, 1985b) and noise (Trahiotis and Bernstein, 1986) have 

been investigated using a pointing task in which listeners adjusted the interaural level 

difference (ILD) of an auditory pointer to match the lateralization of a target tone. They 

found that lateral position could be coded by the ITD resulting from interaural differences 

in the amplitude envelopes. This effect was greatest for high-frequency tonal carrier 
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signals (2-4 kHz; Bernstein and Trahiotis, 1985) and for wide-band noise (Trahiotis and 

Bernstein, 1986). The auditory system is also sensitive to changes in dynamic ILDs in 

lateralization, especially at higher carrier frequencies (Grantham, 1984). While results 

from these studies indicate the importance of envelope ITDs and dynamic ILD cues on 

lateralization, it is not clear what the impact of AM would be on localization when pinna 

cues are present and stimuli are presented in a real environment with reverberation. 

 Directional localization of speech, which can be considered an AM signal, has 

been studied, and localization errors with speech are similar to those with noise stimuli 

(Begault and Wenzel, 1993). Begault and Wenzel used spoken speech samples that were 

one or two syllable words 0.7- 1.3 s in duration. A complication with speech localization 

is that the tested speech signals are often low-pass filtered such that they do not contain 

frequencies in the range of 8-16 kHz, which have been shown to be critically important 

for localization of speech compared to broadband noise (Best, Carlile, Jin, and van 

Schaik, 2005). Eberle, McAnally, Martin, and Flanagan (2000) investigated localization 

ability using more reliable AM stimuli in an anechoic environment at modulation 

frequencies of 20, 80, and 320 Hz. They found localization was more accurate only when 

the signal was modulated at the highest frequency; however, they believe the effect was 

due to the broadening of the signal’s spectral energy from side bands produced by 

modulation. Wagenaars (1990) performed a localization experiment with sinusoidal 

stimuli in a room at very high modulation rates (500 and 2000 Hz) and found that the 

sinusoidal stimuli could be localized well if there was an abrupt onset or offset which is 

similar to how the precedence effect functions (Wallach, Newman, and Rosenweig, 

1949). 



 

10 

 Because these studies on localization of AM stimuli were all performed in 

anechoic space, the effect of reverberation on localization of AM stimuli is currently 

unknown. It is possible that reverberation may provide additional information which 

could aid localization. Figure 1.2 shows how AM depth is attenuated as a function of 

azimuth in both a highly reverberant room (right column) and in anechoic space (left 

column). In the room, AM at the contralateral ear (green) is more attenuated as the source 

is moved away from midline while the AM depth at the ipsilateral ear (blue) remains 

relatively constant. This causes the interaural difference in modulation depth to increase 

as the source moves away from midline. In anechoic space the AM depth at both ears is 

constant across all azimuths. Since the modulation depth reaching each ear would differ 

in reverberation, and the amplitude of the signal would be fluctuating, this may cause 

dynamic ILD cues to be used as well. While localization is already highly accurate, it is 

uncertain whether the addition of modulation will provide any benefit to localization 

ability. 
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Figure 1.2: Example time waveforms that show the effect of azimuth on amplitude 

modulation at 1.4 m under reverberant (left) and anechoic (right) conditions. The same 

waveform parameters from figure 1 were used here. The amplitude modulation depth of 

the contralateral signal (green) in the room is progressively less attenuated as the source 

is moved toward midline while the modulation depth of the contralateral signal (blue) 

maintains approximately unchanged. In anechoic space the AM depth of the contralateral 

and ipsilateral (blue) signals remains relatively unchanged as a function of azimuth and 

no difference in AM depth between ears is noticeable.   
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D. Response Methods in Distance and Directional Localization Studies  

 Auditory distance perception and directional localization studies use a variety 

of response methods. While some studies employed forced-choice procedures (Hartmann, 

1983) for localization, where speakers are visible during the task, this is not ideal because 

of the visual bias and restricted response space inherent in the design (Perrett and Noble, 

1995). Studies using verbal reports for both direction (Wightman and Kistler, 1989b) and 

distance (Anderson and Zahorik, 2011; Anderson and Zahorik, 2014) provide reliable 

responses from participants when no visual cues are available, but the subjects in certain 

cases must learn a coordinate system for responding, and the responses are often highly 

variable. In an effort to streamline data collection in the current study, the use of a 

response method similar to Nielsen (1991) was considered. Nielsen employed a polar plot 

graphical user interface (GUI) that allowed the listener to respond using the cursor by 

clicking inside of a circle that represents a two dimensional top-down view of the listener 

and surrounding space. Distance from the center of the circle represented egocentric 

distance while the azimuth around the center represented directional of the sound source. 

This method allows for simultaneous directional and distance responses. Nielsen found 

response times averaged around 5.8 seconds per trial, which is shorter than observed for 

distance judgments in Anderson and Zahorik (2014). Shinn Cunningham, Santarelli, and 

Kopco (2000) used a similar polar response GUI to collect distance judgments from 

listeners without a noticeable effect on the results. Ihlefeld and Shinn-Cunningham 

(2011) had success using a similar response method with a GUI of a frontal hemi-field 

rather than the full 360° space surrounding the listener. A similar, but more complex, 

GUI method was used by Begault, Wenzel, and Anderson (2001) which allowed listeners 



 

13 

to provide localization estimates that included azimuth, distance, and elevation estimates. 

In addition to the response time benefit, judgments may also be more accurate since 

listeners would be able to spatially view their judgments before responding.  

E. Goals of Present Research 

 The present investigation studied the effect of amplitude modulation in 

reverberant environments on distance and directional localization in the horizontal plane. 

The purpose was to 1) Find a response method that requires less response time while 

obtaining more accurate localization judgments, 2) investigate a recently identified 

auditory distance cue and compare its perceptual salience to established distance cues, 

and 3) determine whether the auditory system can exploit characteristics of degraded 

signals in reverberant environments to improve directional localization. Three 

experiments were conducted. The first experiment, involving validation of the polar plot 

GUI, informed how subsequent experiments were designed. Experiment II investigated 

the contribution of modulation depth during distance judgments. Experiment III 

investigated whether directional localization estimates are influenced by modulation 

depth changes in a room. 
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CHAPTER II 

EXPERIMENT I 

 The graphical response method for collecting localization judgments is 

potentially more desirable than direct estimates because data collection can be performed 

more rapidly, potentially with less response variability, and does not require the 

participant to learn a coordinate system for responding. For these reasons, a graphical 

response method using a polar plot of space surrounding the listener was developed that 

was similar to those used by Shinn-Cunningham, Santarelli, and Kopco (2000) and 

Nielsen (1991). Because these studies did not provide data collected with other response 

methods, it is not possible to validate the methods. Experiment I therefore sought to 

validate the polar plot response method by comparing results to a traditional direct 

estimate method in which listeners directly estimated sound source location using an 

internally represented coordinate system.  

A. Methods 

1. Participants 

 In this experiment, 16 (15 female) listeners participated ranging in age from 18 to 

34 (M = 22.00). Listeners were recruited through University of Louisville’s subject pool 

and received course credit for their participation. All listeners had normal hearing based 

on self-reports because the amount of time available for running participants was limited 

due to subject pool. Informed consent was obtained from all listeners prior to data 
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collection. All procedures involving human subject participants were approved by the 

University of Louisville Institutional Review Board (IRB). 

2. Stimuli 

Materials. Binaural room impulse responses (BRIRs) were measured in a large 

lecture hall (Bigelow Hall, University of Louisville). The hall was the shape of a 

trapezoidal box with a raised stage at one end of the room. All BRIR measurements were 

recorded on the floor in front of the stage with chairs removed. The hall’s total volume 

was approximately 11074 m
3
 (L = 14.0208; H = 5.6388; A = 25.908 x H; B = 23.7744 * 

H; L x H x (A + B)/2). The broadband reverberation time (T60) was 2.3 s (ISO-3382, 

1997). BRIRs were measured using a KEMAR mannequin (G.R.A.S. Type 45BM) with 

IEC711 ear-canal simulators (G.R.A.S. RA0045) and large pinnae (G.R.A.S. KB1060/1) 

positioned at a fixed location in the hall. The sound source was a high quality 2-way co-

axial loudspeaker (Bag End PM-6). The loudspeaker was moved away from KEMAR 

toward the stage to manipulate distance. To manipulate azimuth KEMAR was rotated on 

a turntable.  

A total of 11 BRIR measurement locations were used for Experiment I. BRIR 

measurement locations for distance were made 0.3, 1.22, and 4.88 m from the 

measurement microphone at 0°. For azimuth locations BRIR measurements were 

recorded .3 m and 4.88 m from the measurement microphone at 0, -30, -60, -90, and -

150° azimuths. BRIRs were estimated using Maximum Length Sequence (MLS) system 

identification techniques (Rife & Vanderkooy, 1989). The MLS signal was 2.73 s in 

duration (17
th

 order MLS), sampled at 48000 kHz with 24-bit resolution. 16 repetitions of 

this signal were presented and averaged to improve signal-to-noise ratio (SNR), which 
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was 47dB (25 Hz – 12.5 kHz) at 1 m after averaging. All BRIR measurements were post-

processed to compensate for response characteristics of the measurement loudspeaker and 

the presentation headphones (Beyerdynamic DT-990 Pro). The source signal for virtual 

synthesis was a 1 s sample of Gaussian shaped wide-band noise. 

3. Design 

 Listeners were tested in a within-subjects design using two response methods. In 

the direct estimate condition listeners responded by using a computer keyboard to input 

both a distance judgment and azimuth judgment for each stimulus. Figure 2.1 shows a 

screenshot of the direct estimate graphical user interface (GUI). The GUI has two dialog 

boxes, one for the distance response and one for the azimuth response. A diagram below 

the text boxes reminded listeners that azimuths to the left were negative and to the right 

were positive. The second response method, the polar plot GUI, required listeners to use 

only the computer mouse to make their response. This method used a GUI in which a 

two-dimensional top down view of the space surrounding the listener is displayed (see 

figure 2.2). As the mouse moved around the figure the current location (distance and 

azimuth) of the cursor was displayed at the top of the GUI. Concentric circles represented 

the distance from the center, while lines radiating from the center represented azimuth. A 

zoomed-in version of the GUI is shown in Figure 2.3. When the user responded, a red ‘x’ 

appeared at the chosen location and he/she could click ‘confirm’ to enter the response. 

The ‘play’ button allowed listeners to listen to the stimulus as many times as desired 

during a trial. The polar plot GUI was made up of a circle with concentric circles at 1.52, 

3.05 and 4.57 m and with lines radiating from the center starting at 0° and increasing in 

30° increments. The distance units displayed in the GUI depended on whether the listener 
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had selected feet or meters as their preferred measure. At the center of the circle was a 

drawing representing the listener’s head facing forward toward 0°. Azimuths in the left 

hemisphere were labeled with negative degrees while azimuths to the right were positive. 

Above the circle the current location of the mouse inside the circle was displayed, both in 

azimuth and distance from the center. The listener could use the scroll wheel on the 

mouse to zoom in on the polar plot to make more accurate judgments if they chose (see 

figure 2.3). Both response conditions were self-paced, so the listener would press ‘Play’ 

to start the trial and press ‘Confirm’ to enter the response and move to the next trial 

 

Figure 2.1: Direct estimate GUI. Listeners responded with distance judgments using the 

‘Distance’ text box and azimuth judgments in the ‘Direction’ text box. Listeners clicked 

‘Play’ to listen to the stimulus and ‘Confirm’ to enter a response. A diagram at the 

bottom reminded the listener that judgments to the left were negative, judgments to the 

right were positive, and directly behind the listener was 180°.  
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Figure 2.2: Proposed polar plot GUI. In the center of the polar plot lies a circle 

representing the listener’s head facing 0°. As the mouse moves around the figure to click 

a location the azimuth and distance of the current location of the mouse was displayed at 

the top of the GUI. Concentric circles represented the distance from the center, while line 

radiating from the center represented azimuth. The scroll wheel on the mouse allowed the 

user to zoom in or out to adjust the resolution of their response. When the user made a 

response a red ‘x’ appeared at their chosen location and they can clicked ‘confirm’ to 

enter their response. The ‘play’ button allowed listeners to listen to the stimulus multiple 

times during a trial. 
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Figure 2.3: Zoomed-in version of figure 2.2. 

4. Procedure 

 Listeners first responded to a GUI asking for their preferred units of 

measurements (either feet or meters) and the response GUIs were updated to reflect the 

listener’s choice. Stimulus location varied in both azimuth and distance, and listeners 

were asked to simultaneously respond in both dimensions. Response method was 

blocked, and the order of which response method came first was counterbalanced 

between listeners. Each response condition had 110 trials (3 distances at 0° x 10 reps + 4 

azimuths at 0.3 m x 10 reps + 4 azimuths at 4.88 m x 10 reps). Trial order was pseudo-

randomized for each condition prior to running participants (each condition had a 

different order of trials) and the order of trials was kept the same for all participants. For 

the polar response condition listeners were instructed to click where the sound source was 
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located within the circle and were shown that they could zoom-in on the GUI. The direct 

estimate condition required additional instructions for the listener. The listener was 

instructed to only respond with a distance of ‘zero’ if the sound was located inside-the-

head (Blauert, 1997, p. 132), and to use two decimal-point precision for distance 

judgments to allow for higher resolution. Both response methods had positive degrees in 

the right hemisphere and negative degrees to the left. The experiment took place inside a 

custom-double walled sound attenuating booth. No feedback was provided to the listener. 

Stimulus presentation and data collection were carried out using custom MATLAB 

(Mathworks Inc., Natick, MA) software. 

Data Analysis. Distance and directional data were analyzed separately. Distance 

analyses were performed only on stimulus locations at 0° azimuth because the other 

azimuths off midline only had sources located at two distances (near and far). The 

geometric means of distance judgments were fit to power functions of the form ŷ r = kΦr
a
 

(ŷ r = perceived distance, k = constant, a = power-law exponent, Φr = target source 

distance) for each condition, as used in previous studies (Anderson and Zahorik, 2014; 

Zahorik, Brungart, & Bronkhorst, 2005). Fit parameters, a and k, were used to describe 

the amount of linear and non-linear compression, respectively. R
2
, derived from the 

power function fit, was used as a measure of within-subject variability. For azimuth data, 

unsigned angular errors at each target azimuth were computed after front-back reversals 

were recorded and resolved as performed in Wightman & Kistler (1989b). Angular error 

was defined as the unsigned error between the judged vector and the vector from the 

origin (the listener) to the target position. Additionally, the amount of time to complete 

each condition was recorded. Analyses were used to compare how localization judgments 
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varied between the two response methods. Fit parameters, R
2
 values, angular errors, and 

time to complete were compared between conditions using paired t-tests. Independent t-

tests were used to analyze order effects for constants, exponents, R
2
 values, and angular 

errors between conditions. All analyses were performed using custom MATLAB 

software.  

B. Results 

1. Distance Analyses 

Distance and azimuth analyses were performed separately. For distance analyses, 

only judgments to target positions located on the front midline were analyzed. Distance 

judgments from the polar plot GUI were measured as the distance of the response from 

the origin of the circle. Before any distance analyses were performed all distance 

judgments were converted to meters and log transformed. Figure 2.4 displays distance 

judgments of representative listener (Subject ID: QES) for the polar plot (left panel) and 

direct estimate (right panel) conditions. Data from each condition were fit with a power 

function (ŷ; solid line) of the form described above. Dots represent raw distance 

judgments (y): 10 replications/target distance. Open circles indicate geometric means ( y̅) 

for each target distance. The dashed line represents a perfectly accurate relationship 

between judged and target distance (i.e., a = 1, k = 1). Each panel includes the R
2 

value, 

exponent, and constant values.   
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Figure 2.4: Data from a single representative listener (Subject ID: QES) for the Polar Plot 

GUI (left), and direct estimate GUI (right) conditions plotted on logarithmic axes. Dots 

show raw distance judgments (y): 10 replications/target distance. Open circles indicate 

geometric means ( y̅) for each target distance. Data from each condition were fit with a 

power function (ŷ; solid line) of the form ŷ r = kΦr
a
 (ŷ r = perceived distance, k = 

constant, a = power-law exponent, Φr = target source distance). Fit parameters and the 

proportion of variability accounted for by the fit (R
2
) are shown in each panel. Perfectly 

accurate performance is indicated by the dotted line in each panel. 

 

The R
2
 values from the power function fits for the polar plot (M = 0.516, SD = 

0.099) and direct estimate (M = .625, SD = 0.251) were compared across listeners using 

paired t-tests. There was no significant difference between R
2
 values in the two 

conditions, t(15) = -1.648, p = 0.120. The high R
2
 values in each condition indicate that 

the power functions were good fits to the data. 
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Constant values, which measure the amount of linear compression of distance 

judgments, were compared between conditions using a Wilcoxon Matched-Pairs test 

because the constant values in the Direct Estimate condition were positively skewed. 

There was no significant difference between the constants in the Polar Plot (Mdn = 1.605, 

IQR = 1.248 - 2.068) and Direct Estimate (Mdn = 1.661, IQR = 1.214 - 2.373) conditions, 

Z = -0.879, p = 0.379. This suggests that the amount of linear compression was not 

influenced by response method type. 

Exponents, based on power functions fit to distance judgments in both conditions 

were compared using paired t-tests. The exponents in the polar plot response (M = 0.468, 

SD = 0.162) method were not significantly different from those in the direct estimate (M 

= 0.468, SD = 0.191) method, t(15) = -0.005, p = 0.996. The response type did not affect 

amount of non-linear compression. 

 Range effects were a concern for distance judgments because the polar plot GUI 

had an inherently restricted range within which listeners could respond. Additionally, 

listeners may quantize azimuth responses in the polar plot GUI along the dotted lines 

radiating from the center in 30° increments. The distribution of distance and azimuth 

responses were pooled across listeners and plotted to visualize possible range effects in 

the two GUIs. Figure 2.5a-b displays distributions of log transformed judged distances, in 

meters, pooled across listeners in the polar plot GUI and direct estimate GUI 

respectively. Each plot includes the mean and standard deviation of the distribution. The 

distribution of the Polar Plot GUI responses is negatively skewed with responses stopping 

abruptly at approximately 4 m which closely aligns with the maximum response of 4.572 

m (0.6601 log10(m)) allowed by the polar response GUI. Comparatively, the distribution 
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of responses from the direct estimate GUI more closely approximates a Gaussian 

distribution with many responses exceeding the maximum response limit in the polar plot 

GUI. The standard deviation of the distribution of judgments from the Direct estimate 

GUI is larger than the standard deviation of responses from the polar plot GUI condition. 

It is important to allow for variability of listeners’ distance judgments given that large 

variability of responses is an inherent characteristic of auditory distance perception 

(Zahorik et al, 2005; Anderson & Zahorik, 2014). By restricting the distance judgment 

range the amount of variability of distance judgments is artificially reduced.  

 

Figure 2.5: Distribution of log transformed distance judgments pooled across listeners 

from the polar plot GUI (left) and direct estimate GUI (right). Each panel includes the 

mean and standard deviation of the distribution. Note that the x-axis is plotted in log 

space. 

 

2. Azimuth Analysis 

Front back reversals were resolved if the azimuth error of the judgment was 

reduced by reflecting the judgment across the interaural axis. Table 1.1 lists the number 

of front-back reversals across all subjects for both the polar plot GUI and direct estimate 

GUI conditions. Chi-square tests of independence (degrees of freedom = 1) were 
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performed to statistically compare the number of reversals collapsed across target 

azimuth between conditions. The table shows that there were significantly fewer reversals 

in the direct estimate condition than in the polar plot condition for seven of the 16 

listeners. The remaining nine listeners did not have a significant difference between 

conditions. When the number of reversals was summed across listeners in each condition, 

it was found that there were significantly fewer reversals in the direct estimate GUI 

condition (N = 431) than in the polar plot GUI condition (N = 717); χ
2
(1) = 71.251, = 

0.001) 
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Table 1.1. Displays the percentage of responses that were reversals in each condition for 

all listeners. The bottom displays the means across all listeners. On the right the χ
2
statistic 

and associated p-values are displayed comparing the number of reversals in each 

condition for all listeners. Listeners with superscript ‘1’ performed the localization task 

using the polar plot GUI first. 

Subject ID Polar Plot GUI 

%-Reversals 

Direct Est GUI 

%-Reversals 

χ
2
 

 

p 

QEM
1 

36.7 36.0 0.0 0.92 

QEN 39.3 26.0 4.1 0.04 

QEO
1 

20.7 22.7 0.1 0.71 

QEQ
1 

38.7 17.3 12.2 0.00 

QER 33.3 33.3 0.0 1.00 

QES
1 

32.7 28.0 0.5 0.46 

QET 38.0 11.3 21.6 0.00 

QEU
1 

14.7 10.7 0.9 0.33 

QEV 26.0 16.0 3.6 0.06 

QEW
1 

27.3 6.7 18.8 0.00 

QEY
1 

28.7 4.0 27.9 0.00 

QEZ 35.3 6.0 31.2 0.00 

QFB
1 

26.7 7.3 16.5 0.00 

QFC 26.7 18.7 2.1 0.15 

QFE
1 

14.7 12.0 0.4 0.53 

QFF 38.7 31.3 1.2 0.28 

Mean 29.9 18.0  

 

 

Azimuth judgments were plotted using the double pole plotting method, adapted 

from Kistler & Wightman (1992), which separates azimuth judgments into two domains 

based on the extent of laterality (right-left angle) and on extent from the interaural axis 

(front-back angle). Figure 2.6 shows azimuth judgments for left-right judgments (top 

panel) and front-back judgments (bottom panel) for a representative listener (Subject ID: 

QFC). For right-left angle the largest possible judgments are -90° (left) and 90° (right). 
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Using this measure, 15° and 165° both have the right-left angle of 15°. Red dots represent 

judgments from the polar plot condition and blue dots represent judgments from the 

direct estimate condition. In the top panel, the solid horizontal bar represents midline, so 

judgments below are to the left and judgments above are to the right. The diagonal 

dashed line represents a perfect relationship between judged and target position. Because 

of the transformation to double pole coordinates, the target position of -30° in the figure 

represents locations at both -30° and -150°. This figure shows that for this listener almost 

all judgments were in the correct left-right hemisphere. Figure 2.6b (bottom) displays 

azimuth judgments for front-back judgments. For front-back angle the extremes are -90° 

directly behind the listener and 90° directly in front of the listener. Judgments of 30° and 

-30° have a front-back angle of 75°. The horizontal solid black line at 0° represents the 

interaural axis so judgments plotted above are in the front hemisphere and judgments 

plotted below are in the back hemisphere.  
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Figure 2.6: Data in the form of Double-Pole coordinates from a single representative 

listener (Subject ID: QFC) for right-left Angle (top) and front-back angle (bottom) from 

both GUI response conditions. Red dots show raw azimuth judgments transformed to 

double-pole coordinates from the polar plot GUI: 10 replications/target azimuth. Blue 

dots show raw judgments transformed to double-pole coordinates from the direct estimate 

GUI: 10 replications/target azimuth. Perfectly accurate performance is indicated by the 

dotted line in each panel. The mean angular error for listener QFC was 27.54° in the polar 

plot condition and 27.12° in the direct estimation condition. The mean angular error 

across all subjects was 27.42° in the polar plot condition and 32.85° in the direct estimate 

condition.   
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Angular error was collapsed across target azimuth and compared between 

conditions using paired t-tests. The polar plot response method (M = 27.422, SD = 4.105) 

had significantly less angular error than the direct estimate method (M = 32.851, SD = 

7.795), t(15) = -3.834, p = 0.002. Azimuth judgments were more accurate in the polar 

response method than in the direct estimate method. 

Figure 2.8a-b displays distributions of azimuth judgments pooled across listeners 

from each response condition. Each figure includes the mean and standard deviation of 

the distribution. The mean and standard deviation are similar in the two conditions. 

Importantly, as mentioned above about the distance response histograms, the shape of the 

distributions are very similar between the two conditions. Through visually inspecting the 

distributions there were almost 300 more responses around -90° in the direct estimate 

GUI condition than in the polar plot GUI condition possibly pointing to a response bias in 

the direct estimate GUI. 

 

Figure 2.8: Distribution of raw azimuth judgments collapsed across target azimuth from 

the polar plot GUI (left) and direct estimate GUI (right). Each panel includes the mean 

and standard deviation of the distribution. 
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3. Elapsed Time Analysis 

The amount of time to complete each condition was measured, in hours, between 

the first and last trial of each condition. The polar plot method (M = 0.177, SD = 0.048) 

was completed in significantly less time than the direct estimate method (M = 0.399, SD 

= 0.102) based on a paired samples t-test, t(15) = -10.086, = 0.001. The polar plot 

method of response was completed faster than the direct estimate condition.  

4. Condition Order Effects 

Condition order effects for each response method were analyzed by comparing fit 

parameters, R
2
 values, and angular error between subjects using independent t-tests based 

on whether listeners responded using the polar plot GUI first (n = 9) or second (n = 7). 

The Polar Plot GUI response had no order effects for constants (polar first: M = 1.587, 

SD = 0.5541; polar second: M = 1.867, SD = 0.381; t(14) = -1.090, p = 0.294), exponents 

(polar first: M = 0.519, SD = 0.143; polar second: M = 0.402, SD = 0.161; t(14) = 1.496, 

p = 0.157), or R
2
 values (polar first: M = 0.498, SD = 0.103; polar second: M = 0.5386, 

SD = 0.085; t(14) = -0.803, p = 0.435). The polar response GUI did have an order effect 

for unsigned azimuth error. When listeners responded using the polar plot method first 

(M = 29.300, SD = 3.292) there was significantly more angular error than when listeners 

responded using the polar plot method second (M = 25.010, SD = 3.950), t(14) = 2.372, = 

0.033).  

Order effects were also analyzed for the direct estimation response method to 

determine whether listeners responded differently when the direct estimate response 

method was presented first or second. The direct estimate GUI had no order effects for 

constants (direct estimate second: M = 3.377, SD = 3.614; direct estimate first: M = 
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2.297, SD = 3.171; t(14) = .601, p = 0.557), exponents (direct estimate second: M = 

0.463, SD = 0.152; direct estimate first: M = 0.402, SD = 0.161; t(14) = -.119, p = 0.907), 

or unsigned azimuth error (direct estimate second: M = 34.896, SD = 5.951; direct 

estimate first: M = 30.222, SD = 9.505; t(14) = 1.208, p > 0.247). R
2
 values were 

significantly smaller when listeners responded using the direct estimate method first (M = 

0.484, SD = 0.306) than when listeners responded using the direct estimate second (M = 

0.735, SD = 0.123; t(14) = 2.225, = 0.043).  

Condition order effects were also analyzed for front/back reversals. Table 1.1 

displays the number of reversals for all listeners and condition order is noted by the 

superscript next to the subject IDs. Listeners with a superscript next to their subject ID 

responded using the polar plot GUI first. Of the nine listeners who responded using the 

polar plot GUI first, four of the listeners had significantly fewer reversals in the direct 

estimate condition. Collapsed across listeners who responded using the polar plot GUI 

first there were significantly more reversals for the polar plot GUI response method (N = 

361) than in the direct estimation (N = 217) condition, χ
2
(1) = 35.875, = 0.001. Of the 

seven listeners who responded using the direct estimate method first, three of the listeners 

had significantly more reversals in the polar plot GUI condition. Collapsed across 

listeners who responded using the direct estimation method first, there were significantly 

more reversals in the polar plot condition (N = 356) than in the direct estimation (N = 

214) condition, χ
2
(1) = 35.375, = 0.001. For both condition orders there were more 

reversals when listeners responded using the polar plot GUI method. This suggests that 

practice effects are unlikely to influence the number of front-back reversals for each 

response method.  
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C. Discussion 

 Overall, the results from this experiment indicate that both response methods 

provide similar results for directional localization judgments based on t-statistics alone; 

however, distance judgments should not be collected using the polar plot GUI because of 

range effects that were not detected by the paired t-tests. More reversals in the direct 

estimate condition does not lead to the conclusion that the polar plot GUI is inappropriate 

for collecting responses. Non-individualized HRTFs are known to result in front-back 

reversal rates of about 31.5%, which is numerically greater than the average rates in both 

the polar plot and the direct response condition (Wenzel, Arruda, Kistler, & Wightman, 

1993). As long as reversals are recorded and corrected for in subsequent analyses 

(Wightman & Kistler, 1989b) the polar plot response GUI would be an appropriate 

directional judgment response method.  

Power functions have been shown to be good fits to distance judgments in the 

auditory distance studies (Anderson & Zahorik, 2014; Zahorik, Brungart, & Bronkhorst, 

2005). Based on R
2
 values, power functions were good fits to the distance judgments in 

both conditions. The R
2
 values observed in both the direct estimate and polar plot GUI 

conditions are in close agreement with past auditory distance perception results 

(Anderson & Zahorik, 2014; Zahorik, Brungart, & Bronkhorst, 2005). Additionally the fit 

parameters (a and k) from both conditions fell within one standard deviation of those 

reported by Anderson & Zahorik (2014). Fit parameters were also similar between 

response conditions. From this it can be concluded that there were similar linear and non-

linear compression for both response methods.  
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Azimuth judgments were compared between conditions using a measure of 

angular error which has been used in past sound directional localization studies 

(Wightman & Kistler, 1989b; Eberle et al., 2000). Wightman and Kistler’s (1989b) 

listeners were very accurate localizing sounds over headphones with a mean angular error 

of 19°, however their stimuli were generated using individualized HRTFs. Eberle et al. 

(2000) used a similar analysis using angular error of judgments collapsed across azimuth 

to measure directional localization and found a mean angular error of approximately 32° 

using the a direct estimate response method. A previous study that used a similar polar 

plot GUI response method measured a mean unsigned error of approximately 27° 

(Begault, Wenzel, and Anderson, 2001). Ihlefeld & Shinn-Cunningham (2011) also used 

a similar polar response method; however, the GUI only displayed the front hemi-field. 

Their listeners’ judgments were less accurate at more lateral targets, but they concluded 

that range effects did not cause the results. Given results of their study, and that the polar 

plot GUI employed here was a full 360°, there were no concerns that range effects 

impacted the present results for the azimuth responses. A within-subjects comparison of 

responses from these two types of response methods has not previously been performed. 

Based on the present results the polar plot GUI response is suitable to collect directional 

localization judgments since there were smaller angular errors in the polar plot GUI 

condition than in the direct estimate GUI condition. 

Another component, beyond the accuracy achieved using the two response 

methods, is the amount of time each method requires to complete data collection. As 

shown above the polar plot GUI required less time for data collection than the direct 

estimate GUI while achieving the same amount of accuracy in the distance judgments 



 

34 

and more accuracy in the azimuth judgments. Nielsen (1991) reported data collection 

time using a polar plot GUI response method that was also faster than Anderson & 

Zahorik (2014) which used a direct estimate method. This provides further support for the 

use of the polar plot GUI. 

Order effects were more complicated to evaluate. While order effects were 

analyzed across all measures of directional localization and distance judgment accuracy 

used in this study, only two significant differences were found. When the polar plot GUI 

was presented second there were smaller angular errors in that condition than when it was 

presented first. When the Direct estimate GUI was presented second the power function 

fits explained more variability in that condition than when the Direct estimate GUI was 

presented first. Both of these results point toward practice or familiarization effects. This 

effect could be curtailed by continuing to counterbalance the order of conditions or 

allowing listeners to practice using the response method before performing the task. 

There were more front-back reversals when listeners responded using the polar plot GUI 

whether it was presented first or second, so familiarization does not help reduce reversals 

for either response method. 

While these results point to the polar plot response being suitable for subsequent 

data collection for both distance and azimuth judgments, range effects in the distance 

domain are a serious concern when using the polar plot response GUI. It became apparent 

that any distance percepts that may lie beyond the radius of the polar plot figure would be 

artificially compressed to fit inside the response area. The results show that the polar plot 

GUI effectively restricts the possible response options, and therefore undermines the 

validity of task (Perrett and Noble, 1995). Given the inherent variability of distance 
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judgments (Anderson & Zahorik, 2014), the larger variability recorded in the direct 

estimate GUI condition than in the polar plot condition is important to consider when 

measuring distance judgments. The shape of the two distributions in figure 2.5 were also 

important when considering which GUI is suitable for collecting distance responses. 

Anderson & Zahorik (2014) found that distance responses are normally distributed 

around the target distances, which is in agreement with the distribution of direct estimate 

GUI responses but not the distribution of responses from the polar plot GUI condition. 

Based on these observations the direct estimate GUI is more suitable for collecting 

distance responses.  

As mentioned above, Shinn-Cunningham, Santarelli, and Kopco (2000) used a 

similar polar plot GUI to collect distance judgments, but they do not mention the effect 

the GUI may have had on their results. In their study listeners performed near field 

distance judgments in four conditions: monaural medial sound sources, monaural lateral 

sound sources, binaural medial sound sources, and binaural lateral sound sources. 

Distance judgments were plotted as a function of target distance for each condition. Their 

judgments show most variability both within and between conditions at close target 

distances. Judgments in all of the conditions show decreasing variability within and 

between conditions as target distance increases. Their result fits with the present 

observation that the restricted range of polar plot GUIs in the distance domain created 

range effects at the far end of the response space.  

Based on range effects in distance, the polar plot GUI is inherently flawed for 

collecting distance judgments. The possibility of increasing the radius of the circle does 

not ameliorate the range effect problem because the response range will always be 
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constrained. When listeners have a restricted response range listeners may feel obligated 

to fit their responses along the entire response space. The direct estimate GUI prevents 

range effects by allowing listeners to create their own response space. Additionally, if it 

were possible to make a polar plot GUI with an infinite range, new problems would arise 

like the response range where the physical sources were located would be dwarfed 

compared to the rest of the response space.  

Range effects were also analyzed in the azimuth domain. Similar means and 

standard deviations of the distribution of responses in the two conditions are good 

indications that the two GUIs yield similar response patterns. One difference between the 

two conditions was that there were almost 300 more responses around -90° in the direct 

estimate GUI condition than in the polar plot GUI condition. This may be an indication of 

a response bias which can be avoided by using the polar plot GUI. Based on these results 

drawn from the response distribution in figures 2.5a-b and 2.8a-b respectively, 

subsequent distance judgments will be made using the Direct Estimate GUI while 

subsequent azimuth judgments will be made using the polar plot GUI. 

D. Conclusions: Response methods choices for subsequent experiments.  

Based on the results of Experiment I, it seems clear that the polar plot GUI is 

potentially problematic for collecting of distance perception judgements, given the 

demonstrated range effects. For this reason, traditional direct estimate response methods 

will be used for subsequent auditory distance perception testing (Experiment II). Because 

range effect concerns were not evident for direction components of the responses, the 

polar plot GUI will be used for subsequent directional localization testing (Experiment 

III), given its advantages in data collection speed and accuracy in terms of angular error. 
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These advantages outweighed the increase in reversals observed with the polar plot GUI. 

The explanation for this increase is unknown, but since subsequent testing will all be 

conducted within listeners using the same response technique, this should have minimal 

impact on the comparisons.
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CHAPTER III 

EXPERIMENT II

 Experiment II utilized a perceptual weighting paradigm similar to Zahorik 

(2002a) to measure the relative perceptual weights assigned to intensity and modulation 

depth during distance judgments. In auditory distance perception, multiple cues are likely 

combined and weighted to form a single distance percept. The amount of perceptual 

weight placed on individual distance cues by the auditory system can be estimated by 

correlating physical stimulus parameters with distance judgments. This paradigm uses 

multiple regression analysis to estimate the perceptual weights of cues by perturbing the 

stimulus parameters of interest and using distance judgments as the response variable. 

This is done by independently placing a small random rove, or slight variation, on both 

the intensity and modulation depth of the stimulus on each trial. To calculate the 

perceptual weights, the intensity, modulation depth, and physical distance are placed into 

a multiple regression model with the judged distance as the predictor variable. The 

standardized coefficients for each parameter in the model can then be used as a measure 

of the perceptual weighting of each parameter. This same paradigm was used by Zahorik 

(2002a) to measure the perceptual weights of intensity and the D/R in distance judgments 

and found that weights shifted based on stimulus type. The physical distance parameter in 

the model is expected to be weighted most strongly since it reflects the listener’s usage of 

all distance cues that are correlated with physical distance. Modulation depth is expected 

to be significantly weighted based on results from behavioral distance judgment tasks 
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where listeners benefit from modulated stimuli (Zahorik & Anderson 2015; Kim et al., 

2015), but less weighted than intensity since it is a primary distance cue (Mershon & 

King, 1975). Unlike stimulus generation in Experiment I where BRIRs were measured in 

Bigelow Hall, virtual room simulation methods were used to generate BRIRs because the 

MTFs of the measured BRIRs did not attenuate modulation significantly as a function of 

distance. 

A. Methods 

1. Participants 

 Nine listeners (8 female) ranging in age from 22 to 29 years old participated in 

this experiment. None of the listeners participated in Experiment I. Listeners were 

recruited through flyers, email advertisements, and personal contacts. All listeners had 

normal hearing as verified by audiograms (Maico MA41 audiometer; TDH-39 

Headphones) in a sound attenuating booth with less than 25 dB HL at octave frequencies 

between 250 and 8000 Hz. Listeners also had normal central auditory processing as 

verified by dichotic digits (Musiek, Gollegly, Kibbe, & Verkest-Lenz, 1991) and masking 

level difference testing (Wilson, Zizz, & Sperry, 1994) which were performed in the 

sound booth after audiograms were measured. Listener compensation was in the form of 

cash payments. All testing was approved by the University of Louisville Internal Review 

Board. 

2. Materials  

 BRIR Generation. Simulated BRIRs were used to ensure MTFs changed 

predictably as a function of distance. BRIRs were generated using virtual auditory space 

techniques as described in Zahorik (2009). This room modeling software simulated early 
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reflections using an image-model (Allen and Berkley, 1979), while the late reverberant 

energy was simulated using a statistical model. The direct path and early reflections are 

filtered using the measured HRTF of an individual listener (ID: SLO) to spatially render 

convolved stimuli. The non-individualized HRTFs were measured at a fixed distance of 

1.4 m from the source in anechoic space, so near-field measurements were unavailable; 

however, near-field distance cues are useable only within 1 m of the source and are not 

considered a primary distance cue (Mershon & King, 1975). This simulation technique 

produces BRIRs that describe transformations of sound between the source and the 

listeners’ ear in a simulated room that are reasonable physical and perceptual 

approximations to those measured in a real environment (Zahorik, 2009). 

 A simulated room was used to generate BRIRs because results from pilot data 

collected using BRIRs measured in Bigelow Hall (described above in Experiment I) 

indicated listeners had severe trouble performing the distance judgment task. Upon visual 

inspection of modulation gain as a function of distance for the BRIRs measured in 

Bigelow Hall, it was clear that modulation gain varied only slightly as a function of 

distance for the measured distance range, therefore listeners did not have access to the 

modulation attenuation cue for distance judgments. The simulated room used to generate 

BRIRs was based on a room used in Brandewie (2012) because of its known acoustic 

characteristics. The simulated room measured approximately 500 m
3
 (10 x 10 x 5 m) with 

the simulated omni-directional measurement loudspeaker located 2 m from both the front 

and left wall (2 x 2 x 1.28 m). The simulated microphone was located directly to the left 

of the simulated measurement loudspeaker (2 m from the left wall) 1.28 m above the 

ground at 9 distances ranging logarithmically 0.35 to 5.6 m from the loudspeaker. The 



 

41 

broadband energy absorption coefficient, or early α parameter, which controls the 

absorptive properties of the room’s surfaces was 0.06. The late α parameters, are used for 

the late statistical portion of the room model at octave bandwidths from 125 to 8000 Hz 

(125 Hz: 0.06; 250 Hz: 0.06; 1000 Hz: 0.06; 2000 Hz: 0.06; 4000 Hz: 0.06; 8000 Hz: 

0.20). The broadband T60 (ISO-3382, 1997) was approximately 3 s.  

 Stimulus Parameter Determination. The MTFs of the room informed what 

stimulus parameters to use. MTFs were computed from each of the nine BRIRs based on 

a technique described by Schroeder (1981). The BRIR is first band-pass filtered using a 

filterbank of 1/3 octave-wide filters spanning the frequency range of the BRIR. The MTF 

is then computed as the amplitude at each frequency of the squared band-pass filtered 

impulse response normalized by the total energy of the impulse response. Figure 3.1 

displays how the MTFs of the room change as a function of distance for a source at 90° 

azimuth for both ears. Each panel displays the modulation gain provided by the room at 

0.35 m (top row) and 5.6 m (bottom row). Cooler colors denote decreasing modulation 

gain. Zero gain indicates no change in modulation depth. When the simulated 

measurement loudspeaker is 90° to the right there is more modulation depth attenuation 

at the left ear than at the right ear across distance. At both distances displayed, there is 

noticeably less modulation attenuation at the lower modulation frequency, which is 

expected based on how modulation transfer functions are affected by rooms (Houtgast & 

Steeneken, 1985).  
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Figure 3.1: Modulation Transfer Functions for the left (left column; contralateral) and 

right (right column; ipsilateral) ears increasing with distance of 0.35 m in the top row and 

5.6 m on the bottom row for a source located 90° to the left. Warmer colors indicate more 

modulation gain (less attenuation) and cooler colors indicate less modulation gain 

(greater attenuation). The x-axis denotes modulation frequency (Hz) and the y-axis 

denotes carrier frequency (Hz).  

 

 While the amount of modulation attenuation changes most drastically as a 

function of distance at the contralateral ear there were concerns about whether D/R cues 

(and amplitude modulation cues) would be less robust at the contralateral ear since the 

direct energy will be attenuated by the head shadow. A pilot experiment was performed 
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where stimuli were presented monaurally to the listeners’ contralateral ear, and the 

stimulus level was equalized for distance by adjusting the gain of the source signal to 

compensate for the propagation loss of 6 dB per doubling of source distance in anechoic 

space. The listener’s task was to estimate the egocentric distance to the sound source. The 

results from the pilot experiment indicated that listeners had trouble with the task and 

seemed to scale reverberation level instead of distance. In this situation the proportion of 

reverberant energy increases with increasing distance but the level of the direct portion of 

the source signal remains constant. As reverberation level increases with target distance 

listeners scale the level of the reverberation and respond to increasing target distances 

with closer distance judgments. Consequently the decision was made to present stimuli 

monaurally to the ipsilateral ear and to not compensate for propagation loss. With 

ipsilateral presentation and not equalizing level the energy in the direct portion of the 

waveform will remain unattenuated by head shadow while the energy proportion of 

energy in the direct and reverberant portions of the waveform will vary naturally.  

 Figures 3.2a-b, derived from the MTFs, plotted modulation gain as a function 

of target distance for the ipsilateral ear, were used to make further decisions about 

stimulus parameters. The signal was a 1-octave wide band of noise at different center 

frequencies. The center frequency increases from 2000 Hz in the top panel to 4000 Hz in 

the bottom panel. Figures 3.3a-b display the same information for center frequencies of 

6000 Hz (top) and 8000 Hz (bottom). Each panel of figures 3.2 and 3.3 displays the 

modulation gain for the signal at modulation frequencies of 4 (red), 8 (green), 16 (blue), 

32 (black), and 64 Hz (cyan). Based on these figures, the 4000 Hz center frequency was 

chosen because the modulation gain monotonically decreased as a function of distance at 
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all modulation frequencies and there were larger differences in the amount of gain 

between modulation frequencies, especially at the farthest target distance. A low and high 

modulation rate were chosen so there could be one condition where modulation was 

attenuated less by the room (low modulation rate). This would hopefully allow 

predictions to be made about how the MTF affects distance judgments. The low 

modulation frequency was chosen to be 4 Hz, and the high modulation frequency was 

chosen to be 32 Hz because it was attenuated most at the furthest target location. Since 

rooms act as low-pass filters in the modulation domain (Houtgast & Steeneken, 1985), it 

would be expected that the 64 Hz modulation frequency would be attenuated more than 

the 32 Hz modulation frequency; however, the MTFs in figure 3.1 demonstrate that 

modulation attenuation is frequency dependent. Frequency dependencies in MTFs can 

result from early reflections caused by differently sized surfaces in the room that act as 

frequency dependent reflectors. As a result all rooms have unique physical properties that 

will result in different in different acoustic characteristics that approximate a low-pass 

filter in the modulation domain. The signal was 1-octave band of noise because the way 

the MTF would filter a 1-octave band of noise was easily predictable.  
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Figure 3.2: Modulation gain as a function of target distance for the ipsilateral (right) ear 

for center frequencies of 2000 Hz (top) and 4000 Hz (bottom). The carrier signal is 1-

octave band noise. Each panel displays the modulation gain for the signal at modulation 

frequencies of 4 (red), 8 (green), 16 (blue), 32 (black), and 64 Hz (cyan). Arrows indicate 

the functions that were tested.  
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Figure 3.3: Same as figure 3.2, but for center frequencies 6000 Hz (top) and 8000 Hz 

(bottom).  

 

 Source Signal. The source signal was composed of a 1-octave Gaussian noise 

sample (pseudo-randomly generated before each trial) centered at 4000 Hz with a 2000 

ms duration. The signal duration includes a Hanning window of 500 ms rise/fall time. 
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The noise sample was then sinusoidally amplitude modulated at either 32 or 4 Hz 

depending on the condition. The source signal was generated and convolved with the 

BRIR before each trial. Modulation depth attenuation was roved before BRIR 

convolution using attenuation values randomly sampled from a Gaussian distribution 

with a mean of 6 dB and a standard deviation of 2 dB. A standard deviation of 2dB, 

calculated as the modulation depth just noticeable difference (Wakefield & Viemeister, 

1990), was used to ensure listeners could extract modulation depth variations placed on 

the stimuli between trials without drawing listeners’ attention overtly to modulation depth 

changes. The noise signal was then multiplied by the amplitude modulator and convolved 

with the BRIR. The intensity of the convolved signal was then roved +/- 6 dB based on a 

random sample from a Gaussian shaped distribution with a mean of -6 dB and a standard 

deviation of 2 dB. After modulation rove, convolution, and intensity rove, the signal was 

presented to the listener. Stimuli were presented monaurally to the ipsilateral ear. 

3. Design 

 Listeners were tested using a within-subjects design where egocentric distance 

judgments to the sound source were made in two conditions: 32 Hz and 4 Hz modulation. 

The entire experiment took place inside a double-walled sound proof booth (Acoustic 

Systems, Austin, TX). Listeners responded using the direct estimate GUI as described in 

Experiment I, except the text box for azimuth judgments was removed from the GUI for 

this experiment, so only distance judgments were recorded. Each condition was tested 

within its own block of trials, which included 40 judgments for each of the 9 target 

distances (360 trials total). The order of blocks was counterbalanced and the order of 

trials within each block was randomized. Feedback was not provided to the listeners.  
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4. Procedure 

 Auditory central processing disorder (ACPD) screening was performed before 

listeners participated. ACPD was screened because listeners with ACPD have difficulty 

combining information from both ears, and for subsequent tasks in Experiment III normal 

binaural integration may be important for exploiting modulation depth cues for 

directional localization. The screening included dichotic digits (Musiek, Gollegly, Kibbe, 

& Verkest-Lenz, 1991) and masking level difference testing (Wilson, Zizz, & Sperry, 

1994). Before beginning the task, listeners chose between responding in feet or meters. 

Listeners could listen to the stimulus as many times as they wished before entering their 

response. Listeners were required to be precise to two decimal places and were instructed 

to reserve a response of zero for a percept of inside the head locatedness (Blauert, 1997, 

p. 132). Custom MATLAB software was used to stimulus presentation and data 

collection.   

 Data Analysis. Data from both conditions were fit independently using two 

models: power function and multiple linear regression. Following methods used in 

previous auditory distance perception studies (Zahorik, et al., 2005; Anderson & Zahorik, 

2014), power functions of the following form were fit were fit (least-squares criterion) to 

the geometric means in each condition: ŷ r = kΦr
a
 (ŷ r = perceived distance, k = constant, 

a = power-law exponent, Φr = target source distance). Fit parameters, a and k, were used 

as a measures of accuracy. The exponent indicates non-linear compression (a < 1) and 

expansion (a >1) in the function while the constant indicates linear compression (k <1) 

and expansion (k >1) in the function. Power functions fit to individual listener’s data 

were used to gauge individual performance on the judgment task.  
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 Multiple linear regression was performed on standardized scores fit to 

individual data to measure perceptual weights placed on distance cues as performed in 

Zahorik (2002a). This fit is similar to the power function described above except 

expressed in linear terms (response' = BrXr +C + e; response' = predicted log-transformed 

responses, Br = beta coefficient for log-transformed physical distances, Xr = log-

transformed physical distances, C = logarithmic constant, e = error term) with additional 

parameters added to the model to explain more response variability from the independent 

perturbations applied to intensity (I) and modulation depth (m). Predicted responses may 

then be characterized by the following multiple regression equation: response' = BrXr + 

BIXI + BmXm + C + e. Interaction terms were not included in this weighting equation 

because these terms did not produce statistically significant weights. In the model form 

above it is difficult to interpret the perceptual weightings since parameters are in different 

units and to not have the same variance. Therefore all parameters were standardized prior 

to multiple regression. Standardized predicted responses are given by the model 

Zresponse' = BrZr + BIZI + BmZm + e. In this weighting equation the Bi weights are all 

partial correlations between the given term (either log-physical distance or cue 

perturbation value) and the log-response. Weights, Bi, were calculated for each listener 

individually. R
2
 is a measure of the proportion of total variance accounted for by the 

model as well as how well the weighting model fits the data. The number of trials per 

condition (360 trials = 9 stimuli x 10 reps x 4 blocks) was based on a previous perceptual 

weighting study (Zahorik, 2002a) where there were five predictor variables and 480 trials 

(12 stimuli x 10 reps x 4 blocks). 

B. Results 
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1. Central Auditory Processing Disorder Screening 

 Listeners’ central auditory processing abilities were assessed using dichotic 

digits (DD; Musiek, Gollegly, Kibbe, & Verkest-Lenz, 1991) and masking level 

difference (MLD; Wilson, Zizz, & Sperry, 1994) disability screening tests. Auditory 

processing disorder screening was not performed in Experiment I because the 

experimental AM stimuli were not used. Listeners’ performances on these tests were 

reported in table 2.1. For the DD test a listener would hear 20 trials of 4 digits presented 

in pairs to each ear simultaneously. The task for the listener was to repeat back all four 

numbers correctly. Each correct digit is worth 2.5 points where perfect performance was 

a score of 50 points for each ear. The criterion for normal performance on the DD test is a 

score of 90% (45 of 50 points) or more of the digits correctly identified for each ear. This 

is equivalent to missing two digits or fewer at each ear. All listeners in Experiment II had 

normal results for the DD test for both the left (M = 95.6%, SD = 4.37%) and right ear (M 

= 95.6%, SD = 3.69%). In the MLD test words were presented to listeners in noise and 

the listeners had to respond by saying what word they heard. In the first block of words 

the masking noise was presented in phase to each ear (S0N0) and in the second block the 

noise was 180° out of phase (S0NΠ). Sets of four words were presented at a given SNR, 

and the SNR was decreased by 2 dB every time a listener correctly reported all four 

words. A threshold for each block was considered the lowest SNR at which the listener 

correctly reported three of the four words. The masking level difference was then 

measured as the threshold difference between the two conditions. Normal performance 

was a masking level difference of 6 dB or greater. All listeners in Experiment II had 

normal results for the MLD test (M = 6.89; SD = 1.45). Based on these tests all listeners 
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in Experiment II had normal central auditory processing. Because of the small variability 

of responses and the small number of observations for each screening measure it was 

difficult to meaningfully relate these results to perceptual weighting measures in 

Experiment II.   
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Table 2.1. Measurements from the dichotic digits and masking level difference screening 

tests for each listener in Experiment II. For the dichotic digits test, the number of items 

missed for each ear is reported. Normal performance in the dichotic digits task is defined 

as missing 2 or fewer items at each ear. For the masking level difference test, the masking 

level difference (in dB) is reported. Normal performance in the masking level difference 

test is a 6 dB or greater masking level difference. Means and standard deviations for each 

measure are at the bottom of the table. 

 Dichotic Digits  

Subject ID Left 

Ear 

Right 

Ear 

MLD 

(dB) 

ZFS 1 2 8 

ZFU 1 2 6 

ZFV 2 1 6 

ZFW 0 1 6 

ZFY 0 0 6 

ZGB 2 1 10 

ZGC 0 0 6 

ZGD 2 0 6 

ZFP 0 1 8 

    

Mean 0.9 0.9 6.9 

Std 0.9 0.8 1.5 

 

2. Multiple Regression Analysis (all target distances) 

 Power functions and distance judgments for all participants are shown in 

Figure 3.4 for the 32 Hz modulation condition plotted in log space. Dots indicate the raw 

distance judgments provided by the participant (y), while the open circles represent the 

geometric mean ( y̅) for each distance. The power function fits for each condition are 

plotted as a solid black line (ŷ), and the diagonal dotted black line represents a perfectly 

accurate relationship between target distance and estimated distance (i.e., a = 1, k = 1). 
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Each panel includes the subject I.D. of the listener, the fit parameters (a and k) and the 

proportion of variability accounted for by the fit (R
2
). Figure 3.5 displays the same plots 

as figure 3.4 but for the 4 Hz modulation condition. Consistent with previous auditory 

distance estimation studies (Zahorik et al., 2005; Anderson & Zahorik, 2014), power 

functions in both conditions appear to be good fits to the data evidenced by the R
2
 values 

while the exponent and constant values reflect expected individual differences typical of 

auditory distance perception studies. Table 2.2 and Table 2.3 display the unstandardized 

coefficients and R
2
 values, from models in the 32 Hz and 4 Hz conditions respectively, 

with only r' included in the model, only r' and I included in the model, and the full 

multiple regression model. The R
2 

values were compared across the three models to 

demonstrate that more variability was explained as terms were added to the model. When 

all of the parameters were included in the model, 18-19% more variability was explained 

by the model, in the 32 Hz and 4 Hz conditions respectively, compared to when the only 

parameter in the model was r'. If the predictor values were centered at a mean of zero, the 

unstandardized coefficients did not change as terms were added to the model.  
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Figure 3.4: Power functions in the 32 Hz modulation condition. Each panel displays data 

from each listener. Dots show raw distance judgments (y): 40 repetitions/target distance. 

Open circles indicate geometric means ( y̅) for each target distance. Data from each 

listener were fit with a power function (ŷ; black solid line) of the form ŷ r = kΦr
a
 (ŷ r = 

perceived distance, k = constant, a = power-law exponent, Φr = target source distance). 

Each panel includes the subject ID of the listener in the bottom right-hand corner. 

Perfectly accurate performance is indicated by the dotted line in each panel.  
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Figure 3.5: Same as figure 3.4 for the 4 Hz modulation condition. 

  



 

56 

Table 2.2. Unstandardized coefficients from the model when only r’ is included as a 

predictor variable and R
2
 values from all three models in the 32 Hz condition for all 

listeners (From left to right: Only r' in the model which is equivalent to the power 

function; R
2 

for model with intensity rove; R
2 

for model with intensity rove and 

modulation rove). Below the parameters and R
2
 values from the listeners are means and 

standard deviations for each column. At the bottom of the table paired t-tests were 

performed to compare the R
2 

values to the model with only r' included in the model. 

Associated p-values appear below each t-statistic. 

 32Hz Condition (Unstandardized Coefficients) 

 Only r' in model r' and I in model r', I and m in model 

 constant r’  R
2
  R

2
 R

2
 

ZFU 1.70 0.55 0.55 0.71 0.76 

ZFS 2.98 0.23 0.49 0.59 0.63 

ZFV 3.22 0.11 0.48 0.79 0.80 

ZGB 1.76 0.54 0.45 0.66 0.70 

ZFW 3.84 0.29 0.39 0.54 0.58 

ZGD 0.70 1.12 0.56 0.65 0.69 

ZFY 2.83 0.31 0.30 0.39 0.40 

ZFP 2.43 0.24 0.42 0.57 0.64 

ZGC 1.40 0.28 0.31 0.37 0.42 

Mean 2.32 0.41 0.44 0.59 0.62 

Std 1.00 0.30 0.09 0.14 0.14 

t-stat(against only r’ in model)   -5.79 -7.82 

p-value (uncorrected)    0.00 0.00 

p-value (Bonferroni corrected) 0.00 0.00 
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Table 2.3. Same as Table 2.2 for the 4 Hz condition. 

 r' in model r' and I in model r', I and m in model 

 constant r’  R
2
 R

2
 R

2
 

ZFU 1.62 0.57 0.58 0.71 0.74 

ZFS 3.41 0.20 0.39 0.50 0.54 

ZFV 3.26 0.09 0.41 0.71 0.74 

ZGB 1.00 0.64 0.58 0.70 0.73 

ZFW 4.72 0.11 0.40 0.65 0.66 

ZGD 0.44 1.03 0.61 0.71 0.75 

ZFY 2.54 0.56 0.55 0.63 0.67 

ZFP 2.82 0.17 0.39 0.55 0.63 

ZGC 1.45 0.19 0.25 0.30 0.37 

Mean 2.36 0.39 0.46 0.61 0.65 

std 1.35 0.32 0.12 0.14 0.12 

t-stat(against only r’ in model)   -5.54 -7.61 

p-value (uncorrected)    0.00 0.00 

p-value (Bonferroni corrected)  0.00 0.00 

 

 The R
2
 values from the multiple regression model above were compared to a 

regression model that excluded the intensity and modulation parameters to measure the 

amount of variability in the distance judgments that was accounted for by the intensity 

and modulation parameters. When intensity was added to the model that only included r' 

as a predictor, the R
2
 value increased in both the 32 Hz (M = 0.585, SD = 0.138; t(8) = -

5.788, = 0.001) and 4 Hz (M = 0.607, SD = 0.136; t(8) = -5.545, = 0.001) conditions. 

When r', intensity, and modulation were included in the model the R
2
 value increased in 

both the 32 Hz (M = 0.623, SD = 0.139; t(8) = -7.825, = 0.001) and 4 Hz (M = 0.646, SD 

= 0.125; t(8) = -7.614, = 0.001) conditions compared to the models with only r' as a 

predictor.  

 Standardized coefficients from the full multiple regression model for all 

participants from the 32 Hz and 4 Hz conditions are displayed in figures 3.6a-b 

respectively. In these figures white bars indicate significant non-zero weightings. Each 
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bar within a grouping represents the weighting from the model fit to an individual 

listener. R
2
 values from the model fit are displayed to the right of each figure. A few 

observations can be made by initially looking at the two figures. For all listeners in both 

conditions, weights placed on physical distance (r') were positive and significant (4 Hz: 

M = 0.672, SD = 0.092; 32 Hz: M = 0.6527, SD = 0.083. The r' parameter was expected 

to be positive because it reflects the target location of the stimulus and distance 

judgments increase with physical distance. Intensity rove standardized beta coefficients 

were negative and significant for all listeners in both the 4 Hz (M = -0.372, SD = 0.105) 

and 32 Hz (M = -0.374, SD = 0.091) conditions. Modulation depth rove standardized beta 

coefficients were negative and significant for all listeners (except SID: ZFY in the 32 Hz 

condition) in both the 4 Hz (M = -0.189, SD = 0.059) and 32 Hz (M = -0.185, SD = 

0.066) conditions. Negative weighting for the intensity and modulation depth parameters 

were expected since they both have an inverse relationship with physical distance. In both 

figures it appears that modulation depth weightings were about half as strong as the 

intensity weighting. This is interesting since modulation depth has not been previously 

described as an auditory distance cue, yet it is weighted about half that of intensity which 

is a primary distance cue. R
2
 values were also high and significant across participants in 

both the 4 Hz (M = -0.646, SD = 0.125) and 32 Hz (M = -0.623, SD = 0.139) conditions 

indicating the multiple regression model was a good fit to the data.  
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Figure 3.6: Individual listener weights across all target distances with the 32 Hz 

modulation condition in the top panel (panel A), and the 4 Hz modulation result in the 

bottom panel (panel b). The order of individual weights is displayed at the top of each 

panel. The rank from left to right was determined by the r' weight from low to high. 

Black bars represent weights that are not significantly different from zero (p > 0.05). The 

proportion of variance explained by the weighting model for each listener, R
2
, is 

displayed on the right side of both panels. Dotted lines indicate mean weights and R
2
 

values.  
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 Standardized beta coefficients were compared between modulation rate 

conditions. Using a model with judgments from all target source distances, paired t-tests 

revealed no significant differences between conditions for r' (t(8) = -1.9566, = 0.086), 

intensity rove (t(8) = -0.062, = 0.952), and modulation depth rove (t(8) = .159, = 0.878). 

This means weighting strategies did not change between the two conditions when 

including data from all target distances in the model. There was also no significant 

change of R
2
 values between the 32 Hz and 4 Hz conditions (t(8) = -1.162, = 0.279). 

3. Multiple Regression Analysis (target distances > 2 m) 

 Figures 3.7a-b show perceptual weights using the same multiple regression 

analysis as above except only data from target sources greater than 2 m were included in 

the model. This range was chosen based on figure 3.2 which shows modulation gain for a 

center frequency of 4000 Hz as a function of distance is greatest beyond 2 m. Figures 

3.7a-b have the same labeling scheme as the weighting figures 3.6a-b. High R
2
 values 

indicate good fits to the data (4Hz: M = 0.468, SD = 0.123; 32 Hz: M = 0.406, SD = 

0.162) in both conditions. For all listeners (except listener ZGC) weights placed on r' in 

both conditions were positive and significant (4 Hz: M = 0.230, SD = .067; 32 Hz: M = 

0.267, SD = 0.091). Intensity rove standardized beta coefficients were negative and 

significant for all listeners in both the 4 Hz (M = -0.520, SD = 0.147) and 32 Hz (M = -

0.489, SD = 0.173) conditions. Modulation depth rove standardized beta coefficients 

were negative and significant (except listener ZFY 32 Hz condition and listener ZFW in 

the 4 Hz condition) in both the 4 Hz (M = -0.304, SD = 0.135) and 32 Hz (M = -0.221, 

SD = 0.108) conditions.  
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Figure 3.7: Same as figure 3.6 for the 4 Hz condition except only data from targets 2 m or 

greater were included in the weighting procedures. 

 

 Standardized beta coefficients were also compared between conditions for 

only the far target locations. Paired t-tests revealed there was a significant difference 

between r' standardized beta coefficients in the 32 Hz and 4 Hz conditions (t(8) = 3.615, 

= 0.007) for far target distances. There were no significant differences between the 4Hz 

and 32 Hz conditions for the intensity (t(8) = 0.541, = 0.603) and modulation depth (t(8) 
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= 1.911, = 0.092) standardized beta coefficients for far target distances. This result means 

that for far source distances the standardized beta coefficients for r' were smaller in the 4 

Hz condition than in the 32 Hz condition. There was no significant change of R
2
 values in 

the 4Hz and 32 Hz conditions (t(8) = -1.453, = 0.184) for far target distances. 

4. Results Summary 

 In summary, the perceptual weights assigned to modulation depth were 

significant and approximately half of the perceptual weights assigned to intensity, a 

primary distance cue, when looking across either all target distances or only targets 

greater than 2 m from the listener. When analyzing only far target distances, where the 

attenuation of modulation depth is greatest from the room, r' weights were significantly 

smaller in the 4 Hz condition than in the 32 Hz condition. This relationship does not hold 

when analyzing across all source distances.  

C. Discussion 

 Overall, the results from this experiment indicated that for monaural stimuli, 

the modulation depth attenuation cue improves the accuracy of distance judgments for 

sources beyond 2 m. Past auditory distance studies (Zahorik, 2001; Zahorik, 2002a; 

Zahorik et al., 2005; Anderson & Zahorik, 2014; Zahorik & Anderson 2015; Kim et al., 

2015) used power function fit parameters, a and k, as measures of distance judgment 

accuracy. Fit parameters from the present investigation and previous studies that used 

monaural modulated stimuli (Zahorik & Anderson 2015; Kim et al., 2015) were 

compared to baseline auditory distance judgment investigations with large sample sizes 

(Zahorik et al., 2005; Anderson & Zahorik, 2014). Zahorik et al. (2005), collected mean 

fit parameters and R
2
 values from across 21 auditory distance studies and reported mean 
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fit parameters of a = 0.54 and k = 1.32. Anderson and Zahorik (2014) collected auditory 

distance judgments using binaural unmodulated stimuli from a large sample of listeners 

(N = 62) and reported mean fit parameters of a = 0.61 and k = 2.22. Auditory distance 

studies using monaural AM stimuli reported constant values between 2.3 and 3.3(Zahorik 

& Anderson, 2015; Kim et al., 2015), which is similar to the reported constant values in 

baseline studies using binaural unmodulated stimuli (Zahorik, et al., 2005; Anderson & 

Zahorik, 2014). Exponents in studies using monaural AM stimuli (Zahorik & Anderson, 

2015; Kim et al., 2015) are much lower (a = approximately 0.2) than studies using 

binaural unmodulated stimuli (Zahorik, et al., 2005; Anderson & Zahorik, 2014). The 

constants in the present study were in agreement with both sets of auditory distance 

studies; however, the exponents in the present experiment were in closer agreement with 

those reported in auditory distance studies using binaural unmodulated stimuli. The 

smaller exponents in the previous studies using monaural AM stimuli may have resulted 

from the use of level normalization that compensated for the 6 dB propagation loss for 

each doubling of source distance (Zahorik and Anderson, 2015; Kim et al., 2015). Even 

in the monaural unmodulated conditions of Zahorik and Anderson (2015) and Kim et al. 

(2015) exponents were below 0.10. The general agreement of the present fit parameters 

with past auditory distance studies collected using large sample sizes and binaural 

unmodulated stimuli (Zahorik et al., 2005; Anderson & Zahorik, 2014) indicates that the 

listeners in Experiment II responded almost as accurately as listeners in auditory distance 

baseline studies. 

 The R
2
 values reported here were low compared to other auditory distance 

investigations. In auditory distance perception studies using binaural unmodulated 
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stimuli, R
2 

values were measured to be 0.91 (Zahorik, et al, 2005) and 0.64 (Anderson & 

Zahorik, 2014). Zahorik & Anderson (2015) reported a high mean R
2
 value of 0.90 and 

used modulated stimuli presented monaurally and level was normalized. The lower R
2

 

values reported here may have been due to the stimuli varying on three independent 

dimensions (distance, modulation depth, and intensity) while in Zahorik and Anderson 

(2015) level was normalized and no rove was placed on modulation depth, so stimuli 

only varied along two independent dimensions: physical distance and intensity rove.  

 Results from the weighting analysis suggest that modulation depth is a 

perceptually weighted, salient auditory distance cue. Large, significant R
2
 values from all 

listeners in both conditions indicate that the multiple regression model was a good fit to 

the data in both conditions. The model was very similar to Zahorik (2002a) where 

multiple regression analysis was used to determine the perceptual weightings of intensity 

and D/R for auditory distance judgments. Zahorik’s model included interaction terms for 

both intensity x r' and D/R x r', however interaction terms were excluded from the present 

model because they were not significant. The model used here included prediction terms 

for physical distance, intensity, and modulation depth. Like Zahorik’s model fits all of the 

R
2
 values from the present model fits were significant and relatively large indicating that 

the models were good fits to the data for both the 4 Hz and 32 Hz conditions.  

 Perceptual weightings for the two conditions, when data from all target 

distances were included in the model, have several similarities such as all terms in the 

model were significantly weighted by all listeners (except for the modulation depth 

weighting of one listener in the 32 Hz condition). In both conditions physical distance 

was positively weighted while intensity and modulation depth were negatively weighted. 
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The direction of these weightings were all expected based on what is known about 

auditory distance cues. Physical distance is expected to be positively weighted because 

judged distances increases with physical distance. The physical distance model term 

includes all distance cues in the stimulus not accounted for in the model by intensity and 

modulation depth, like D/R. Because D/R is a highly salient auditory distance cue 

(Mershon & King, 1975), the physical distance term was expected to be strongly 

weighted. The negative weighting intensity rove was also predicted because increasing 

physical distance results in decreasing intensity, as evidenced by the inverse square law 

where intensity decreases by 6 dB for every doubling of physical distance. Modulation 

depth was also expected to be negatively weighted because with increasing distance 

modulation depth decreases in a room based on the filter characteristic of rooms in the 

modulation domain (Houtgast & Steeneken, 1985). An unexpected observation from both 

conditions is that modulation depth is weighted approximately half of intensity. Intensity 

is a very salient distance cue (Mershon & King, 1975), so for this new correlate of D/R to 

be weighted almost half that of intensity is surprising. Previous investigations have found 

other possible correlates to D/R that the auditory system may use for distance judgments 

including temporal onset/offset duration cues (Zahorik, 2002b), spectral variance (Jetzt, 

1979; Larsen, 2008), and interaural correlation (Bronkhorst & Houtgast, 1999). The high 

perceptual weighting of modulation depth relative to intensity provides strong evidence 

that it can be added to the list of correlates to D/R. However the results only apply to 

monaural stimuli. It remains uncertain how binaural presentation would impact the 

results. 
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 The amount of benefit from the modulation depth attenuation cue may be 

predicted by the MTF of the room. It was determined that distance judgments were more 

accurate when modulation was more attenuated by the room. Based on the modulation 

gain analysis in figure 3.2b (4000 Hz center frequency) there was relatively little 

difference in modulation attenuation between the 4Hz and 32 Hz modulation conditions 

for near distances – at most 1 dB difference between 32 Hz and 4 Hz modulation. There 

were no significant perceptual weight changes between the 4 Hz and 32 Hz conditions 

when distance judgments from all target source distances were included in the regression 

model. The modulation gain analysis indicates that larger modulation gain differences 

between the two modulation rates exist at farther distances. At the farthest target distance 

(5.6 m) the modulation depth in the 32 Hz condition is about 6 dB more attenuated than 

the 4 Hz condition. When the multiple regression analysis was performed using only 

judgments from physical distances 2 m or more away, an interesting weight change 

emerged between conditions: r' weights were significantly larger in the 32 Hz condition 

than in the 4 Hz condition. The unstandardized coefficient for the r' parameter is 

mathematically identical to the alpha parameter, or slope value, from the power function 

fits. This indicates that distance judgments were more accurate and less compressed when 

modulation was more attenuated by the room (at far distances in the 32 Hz condition). 

The acoustic parameter space where modulation was attenuated most appears to provide 

the most benefit to listeners making distance judgments. This offers evidence that the 

room’s MTF can be used to predict the modulation rate that will most benefit auditory 

distance judgments based on the amount of modulation depth attenuation at that 

modulation rate, for the stimuli and parameters used here. Since the intensity and 
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modulation depth weights remain unchanged between conditions, even at far distances, 

this means that the weights placed on intensity and modulation depth are independent of 

the amount of modulation depth attenuated by the room. This is important because it 

indicates that listeners did not optimally use the modulation depth cue since the 

perceptual weighting of modulation depth would be expected to increase when it is more 

correlated with physical distance (as in the 32 Hz condition). While listeners use 

modulation depth as a distance cue they may not understand how modulation depth is 

associated with physical distance. 

 In Kim et al, (2015) and Zahorik and Anderson (2015) listeners performed 

distance judgment tasks were stimuli were either modulated or unmodulated. Both studies 

observed that judgments were more accurate in the modulated condition than in the 

unmodulated condition. The results from the present experiment expanded on these 

previous studies in several ways: 1) The stimuli used here were not normalized to 

compensate for the for the propagation loss of 6dB per source distance doubling. 

Therefore intensity cues were preserved by allowing source level to vary with distance; 

2) the relative contribution of modulation depth was measured using the perceptual 

weighting paradigm; and 3) the acoustic parameters that facilitate the use of AM as a 

distance cue were determined.  

 The use of monaural stimuli qualifies the results from Experiment II. Under 

naturalistic listening conditions, input is present at both ears. It is unknown whether 

modulation depth will remain an effective cue under binaural presentation. More distance 

information is available under binaural presentation in the near-field where ITD and ILD 

cues are present as a function of distance. Zahorik and Anderson (2015) included a 
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condition in which listeners performed the distance judgment task using modulated and 

unmodulated binaural stimuli. Their results indicated there was no difference between the 

binaural modulated and unmodulated conditions, indicating the modulation depth cue 

was not effective when stimuli were presented binaurally. However, their stimuli were 

normalized for level, so it is uncertain how the results would change using the stimuli in 

the present experiment with binaural presentation where more distance information is 

available to the listener.  

D. Conclusions 

 A few main conclusions can be drawn from this experiment. First, power 

functions were good fits to listener’s data in both the 4 Hz and 32 Hz conditions. Second, 

in both the 4 Hz and 32 Hz conditions modulation depth is weighted approximately half 

that of intensity. Third, the MTF of a room can be used to predict the modulation rate that 

will benefit auditory distance judgments because the r' weight changes between the 4 Hz 

and 32 Hz conditions for sources more than 2 m from the listener, which coincides with a 

region of greater modulation attenuation. These conclusions together provide strong 

evidence that modulation depth cues are used by listeners when estimating sound source 

distance monaurally; however, the modulation depth cues are not optimally used by 

listeners. 
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CHAPTER IV 

EXPERIMENT III

 Unlike auditory distance perception, directional auditory localization in the 

horizontal plane (azimuth angle) is highly accurate with a minimum audible angle as 

small as 1° at midline (Mills, 1958). In general, reverberant environments have been 

found to reduce the accuracy of directional auditory localization judgments for 

unmodulated signals (Hartmann, 1983; Giguere & Abel, 1993; Ihlefeld & Shinn-

Cunningham, 2011). However, the manner in which MTFs attenuate modulation depth as 

a function of azimuth may provide additional acoustic information related to direction at 

the two ears. This in turn could potentially increase directional localization accuracy in 

reverberant environments for modulated signals.  

 To understand the additional acoustic information present for modulated 

signals in rooms, consider a source positioned 90° to a listener’s side where interaural 

modulation depth difference is greatest. The modulation depth is more attenuated at the 

contralateral ear due to that ear having more exposure to the modulation depth 

attenuating reverberation of the room. As a sound source moves toward midline, the 

interaural modulation depth difference of the signal reaching the ears is reduced because 

at midline the ears have the same amount of exposure to the room. The extent to which 

this additional acoustic information can lead to changes in directional localization 

performance in reverberation is unknown. Experiment III tests the hypothesis that 
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modulated source signals in a reverberant environment can improve directional 

localization accuracy.  

A. Methods 

1. Participants 

 For Experiment III, 12 listeners (10 female) ranging in age from 20 to 32 

years old participated. Nine of the listeners also participated in Experiment II. Listeners 

were recruited through flyers, email advertisements, and personal contacts. All listeners 

had normal hearing as verified by audiograms with less than 25 dB HL at octave 

frequencies between 250 and 8000 Hz. Listeners also had normal central auditory 

processing as verified by dichotic digits (Musiek, Gollegly, Kibbe, & Verkest-Lenz, 

1991) and masking level difference tests (Wilson, Zizz, & Sperry, 1994). Five of the 12 

listeners were left out of analysis because of task compliance issues. The criterion for 

exclusion from analysis was that the more than 10% of the listener’s judgments for 

targets more than 15° from midline were placed in the wrong left-right hemisphere. This 

was a good indicator of task compliance especially since all target sources were in the left 

hemisphere. Listeners were compensated in the form of cash payments. All testing was 

approved by the University of Louisville Internal Review Board. 

2. Stimuli 

 BRIR Generation. BRIRs were recorded in Bigelow Hall using the same 

specifications described in Experiment I. Measurements were recorded 4.88 m from the 

measurement microphone in -15° steps from 0° to 180° with recordings to the left of 

KEMAR. For the anechoic condition BRIRs were windowed so only the direct portion of 

the BRIR remained. The start of the direct energy of the BRIR was determined by finding 
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the first time the energy exceeded 20 dB above the noise floor, and the duration of the 

direct portion was defined as 2.5 ms from the start of the direct energy (Zahorik, 2002b). 

ITDs were maintained in the BRIR during extraction of the direct portion.  

 Stimulus Parameters. The MTF of the room was measured using the same 

techniques described in Experiment II. Figure 4.1 displays the MTF of the BRIRs 

described above. The left column displays MTFs from the left (ipsilateral ear) and the 

right column displays MTFs from the right (contralateral ear). The top panels display 

MTFs measured at 0°, and the bottom panels display MTFs measured at -90° to the 

listener’s left. Each panel displays the modulation gain of the room at varying center 

frequencies as a function of modulation frequency. Cooler colors denote greater 

modulation removed by the room. Moving from midline to -90° interaural modulation 

depth difference increases. At 0° only very small interaural modulation depth differences 

were noticeable with careful observation. However, at -90° interaural modulation depth 

differences are more visible especially around 3000 Hz. In the right ear there are some 

blues present (greater modulation depth attenuation) at 3000 Hz for modulation 

frequencies above 16 Hz, while in the left ear the same region remains red (very little 

modulation depth attenuation).  
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Figure 4.1: Same as figure 3.1. MTFs for sources as a function of azimuth for the 

ipsilateral (left) and contralateral (right) ears. The source location is 4.88 m. Source 

azimuth is 0° in the top row and -90° on the bottom row.  

 

 Figures 4.2a-b and 4.3a-b, derived from the MTFs, display modulation gain as 

a function of azimuth at the ipsilateral (left) and contralateral (right) ears. These plots 

were used to make further decisions about stimulus parameters. The center frequencies in 

4.2a-b are 2000 Hz (top) and 4000 Hz (bottom). The center frequencies in 4.3a-b are 

6000Hz (top) and 8000 Hz (bottom). Each panel in figures 4.2 and 4.3 displays the 

modulation gain for the signal at modulation frequencies of 4 (red), 8 (green), 16 (blue), 

32 (black), and 64 Hz (cyan). The rebound in the in the amount of modulation gain for 
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highly lateralized source locations may be due to early reflections. ITDs are known to be 

a primary directional localization cue in the horizontal plane (Wightman and Kistler, 

1992). Listeners are less sensitive to high frequency ITD cues (Moore, 2008, p. 236), so 

higher center frequencies, than those used in Experiment II, were preferred in for this 

experiment to limit directional localization information from ITDs. The ILDs, however, 

were not limited. 

 By limiting the ITD cue, other cues, like interaural modulation depth 

differences, may be used instead. A higher modulation rate is also necessary because of 

the low-pass characteristic of rooms in the modulation domain. With these two stimulus 

requirements in mind, an 8000 Hz center frequency was chosen for all azimuth stimuli 

and a 64 Hz modulation frequency was chosen for the modulated condition. These same 

stimulus parameters were used to generate stimuli in the no modulation condition. 
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Figure 4.2: Same as figure 3.2 for locations as a function of target azimuth for center 

frequencies 2000 Hz (top) and 4000 Hz (bottom) for the ipsilateral (left) and contralateral 

(right) ears.  
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Figure 4.3: Same as figure 4.2 for center frequencies 6000 Hz (top) and 8000 Hz 

(bottom). 

 

The source signal was composed of a 1-octave Gaussian noise sample centered at 8000 

Hz with a 2000 ms duration. The signal duration includes a Hanning window of 500 ms 

rise/fall time. The source was either unmodulated or modulated at 64 Hz before 

convolution with the BRIR. All stimuli were presented binaurally over headphones.  

3. Design 

 Listeners were tested using a 2 x 2 within-subjects design where directional 

localization judgments of a target source were made in anechoic and reverberant 

conditions with modulated and unmodulated signals. The entire experiment took place 

inside a double-walled sound proof booth (Acoustic Systems, Austin, TX). Listeners 
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responded using the polar plot GUI as described in Experiment I. Listeners were told to 

judge both the azimuth and distance to the target, however only azimuth judgments were 

analyzed. Each level of each condition was tested within its own block (modulated and 

unmodulated anechoic; modulated and unmodulated reverberant) which included 10 

judgments for each of the 13 target locations (130 trials x 4 blocks). A limitation of the 

design was that the anechoic condition was run before the reverberant condition with the 

intention of collecting baseline data from listeners before reverberant conditions. 

Anechoic responses were collected at least 5 weeks before responses in the reverberation 

condition. The ramifications of this will be discussed in more detail below. The order of 

modulation presentation within each environment was counterbalanced and the order of 

trials within each block was randomized. No feedback was provided to the listeners.  

4. Procedure 

 Auditory central processing disorder screening was performed before listeners 

participated. The screening included dichotic digits (Musiek, Gollegly, Kibbe, & Verkest-

Lenz, 1991) and masking level difference testing (Wilson, Zizz, & Sperry, 1994). Like in 

Experiment I, at the beginning of each block the listener chose to respond using either 

feet or meters and the GUI would update to reflect their choice. Listeners could listen to 

the stimulus as many times as they wished before making a response. Custom MATLAB 

software was used for stimulus presentation and data collection.  

 Data Analysis. Data from directional conditions were analyzed similarly to the 

azimuth data in Experiment I using unsigned angular errors with front/back errors 

resolved and recorded. Unlike Experiment I, angular error was measured for each target 

azimuth. Subsequent analyses on angular errors were divided into three regions based on 
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amount of mean angular error across listeners for each target azimuth (Wightman & 

Kistler, 1989b): front (0-45°), side (60-120°) and back (135-180°). Angular error was 

analyzed between conditions using a 2 x 2 within-subjects ANOVA for each of the three 

regions. The distribution of front/back errors between conditions was analyzed between 

conditions using Chi-square tests of independence. 

B. Results 

1. Auditory Processing Disorder Analyses 

  As in Experiment 2, listeners’ central auditory processing was tested using 

dichotic digits (DD; Musiek, Gollegly, Kibbe, & Verkest-Lenz, 1991) and masking level 

difference (MLD; Wilson, Zizz, & Sperry, 1994) screening tests. Listeners’ performances 

on these tests are reported in table 3.1. All listeners in Experiment III had normal results 

(score >90% i.e., missing 2 or fewer digits) for the DD test for both the left (M = 95.0%, 

SD = 3.78%) and right ear (M = 95.0%, SD = 3.78%). All listeners in Experiment III had 

normal results (MLD ≥ 6 dB) for the MLD test (M = 7.43; SD = 1.90). Based on these 

tests all listeners in Experiment III had normal central auditory processing. Like 

Experiment II, the small variability of responses and the small number of observations for 

each measure made it difficult to meaningfully relate these results to further localization 

results from this experiment. 
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Table 3.1. Measurements from the dichotic digits and masking level difference screening 

tests for each listener in Experiment III. For the dichotic digits test, the number of items 

missed for each ear is reported. Normal performance in the dichotic digits task is defined 

as missing 2 or fewer items at each ear. For the masking level difference test, the masking 

level difference (in dB) is reported. Normal performance in the masking level difference 

test is a 6 dB or greater masking level difference. Means and standard deviations for each 

measure are at the bottom of the table. 

 Dichotic Digits  

Subject ID Left 

Ear 

Right 

Ear 

MLD 

(dB) 

ZFS 1 2 8 

ZFW 0 1 6 

ZFU 1 2 6 

ZGB 2 1 10 

LHI 1 0 10 

ZGA 0 1 6 

ZGD 2 0 6 

    

Mean 1.0 1.0 7.4 

Std 0.8 0.8 1.8 

 

2. Double Pole Coordinate Plots 

 Double pole scatter plots of azimuth judgments for left-right and front-back 

angles in both reverberant and anechoic conditions, similar to figure 2.6 in Experiment I, 

were plotted for all participants in figures 4.4 through 4.10. Each plot includes subject 

I.D., and data from both the modulated (red) and unmodulated (blue) conditions. The 

diagonal dashed line represents a perfectly accurate relationship between double pole 

coordinates of the target azimuths and judged azimuths. Small random jitter was added to 

the target azimuths on the x-axis for visualization purposes. Assessing these figures it is 

apparent that there are a few different response patterns between listeners in all four 
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conditions. For example listener ZFU, in figure 4.6 (top), appears to have an effect of 

modulation in reverberation where front-back judgments in the unmodulated condition 

were concentrated in the front hemisphere, while their judgments in the modulation 

condition were mostly in the back hemisphere. And Listener ZGB, in figure 4.7, appears 

to have an effect of reverberation where their left-right responses in anechoic were less 

variable than in reverberation. 
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Figure 4.4: Azimuth data in the form of Double-Pole coordinates from listener ZFS for 

front-back angle (top) right-left angles (bottom). Data from the reverberant environment 

are plotted on the right, and data from the anechoic environment are plotted on the left. 

Red dots indicate raw azimuth judgments transformed to double-pole coordinates from 

the modulated condition: 10 replications/target azimuth. Blue dots show raw judgments 

transformed to double-pole coordinates from the no modulation condition: 10 

replications/target azimuth. Perfectly accurate performance is indicated by the dotted line 

in each panel 
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.

 
Figure 4.5: Same as Figure 4.4 but for listener ZFW.  
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Figure 4.6:Same as Figure 4.4, but for listener ZFU  
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Figure 4.7: Same as Figure 4.4, but for listener ZGB.  
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Figure 4.8: Same as Figure 4.4, but for listener LHI. 
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Figure 4.9: Same as Figure 4.4, but for listener ZGA.  
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Figure 4.10: Same as Figure 4.4, but for listener ZGD. 

 Across listeners, there are some indicators that listeners are accurately 

performing the task. Based on responses in the left-right angle plots almost all responses 

are correctly placed in the left hemisphere. The exception is near midline where some 

listeners appear to have difficulty discriminating between hemispheres. In the front-back 

plots there are a few consistent response patterns that emerge between participants. 

Listeners who show a ‘U’ or inverted ‘U’ pattern, like ZGB, place all of their responses 

in one hemisphere but are more accurate near 0°. Front/back reversals are common in 

azimuth studies especially when stimuli are generated using non-individualized HRTFs 

(Wenzel, Arruda, Kistler, & Wightman, 1993). Their study found that listeners using 
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nonindividualized HRTFs had an average increase in front-back reversals of 12.2% when 

compared to free-field localization.  

3. Angle of Error Analyses 

 Figure 4.11 shows the mean average angle of error for all participants at each 

target azimuth for each condition. Dots represent the individual mean for each participant 

while the circles represent the mean azimuth error pooled across all participants, with 

standard error bars included. Across the four panels it is evident that mean angle of error 

is dependent on the region in which the target lies. These three regions (front, side, and 

back) are divided by vertical lines in each panel. Most notable when comparing across 

region is that angular error decreases in the side locations (-60 to -120°). For this reason, 

subsequent analyses and figures for angle of error were pooled across region. Similar 

procedures have been used previously in the directional localization literature (e.g. 

Wightman & Kistler, 1989b).  
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Figure 4.11: Individual (n = 7) average angle of error (computed with reversals resolved, 

see text for details) as a function of azimuth for the no modulation in anechoic (top right), 

64 Hz modulation in anechoic (top left), no modulation in reverberation (bottom right), 

64 Hz modulation (bottom left). Dots indicate individual means. Circles indicate group 

means with standard error bars. Vertical lines in each plot separate the front (0° - -45°), 

side (-60° - -120°), and back (-135° - -180°) regions. 
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 Figures 4.12, 4.13, and 4.15 display grouped bar charts of mean angle of error 

for all conditions for the front, side, and back region respectively. Each grouping 

represents a performance of an individual listener with the right-most grouping 

displaying the mean (with error bars representing standard deviation) across all listeners. 

Conditions are represented by differently shaded bars (black = modulated anechoic; dark 

gray = unmodulated anechoic; light gray = modulated reverberation; white = 

unmodulated reverberation). These plots are used to call attention to response strategies 

between listeners.   
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Figure 4.12: Average angle of error (degrees) for each listener and across all listeners in 

each condition for the front region. Each group of bars represents a listener and includes 

error bars representing 95% confidence intervals. The right most group displays mean 

angle of error across listeners with standard error bars. Conditions are displayed by 

shaded colors (Black = modulated anechoic; Dark Gray = not modulated anechoic; Light 

gray = modulated reverberation; White = not modulated reverberation) within each 

group. 
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Figure 4.13: Same as figure 4.12, but for the side region.  
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Figure 4.14: Interaction of average angle of error in the side region. Data from the not 

modulated conditions are plotted in red, and data from the modulated conditions are 

plotted in blue. Error bars represent standard errors. Each environment is placed on the x-

axis.  
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Figure 4.15: Same as figure 4.12, but for the back region.  

 

 In the front region, individual differences between listeners are prominent; 

however a few patterns can be obtained from figure 4.12. Five listeners (Subject IDs: 

ZFS, ZFW, ZGB, ZGA, and ZGD) appear to be using a response strategy related to 

reverberation. A within-subjects 2 x 2 ANOVA was performed on the group means 

within the front region. There was no significant main effect for reverberation (F(1,6) = 

1.720, = 0.238) or modulation (F(1,6) = 2.375, = 0.174) and no significant interaction 

(F(1,6) = 2.550, = 0.161). Therefore in the front region modulation and reverberation 

have no effect on angular error. 

 The side region in figure 4.13 has noticeably less average angle of error and 

less variability than the front and back regions. Listeners ZFS and ZGA appear to use a 

response strategy related to modulation while listeners ZGB and LHI appear to use a 
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response strategy related to reverberation. A within-subjects 2 x 2 ANOVA was 

performed on the group means within the side region. There were no main effects 

(reverberation: F(1,6) = 0.002, p= 0.969; modulation: F(1,6) = 0.141, p= 0.720), but 

there was a significant interaction between modulation and reverberation (F(1,6) = 6.215, 

p= 0.047). The interaction is displayed in figure 4.14 with environment plotted on the x-

axis and modulation condition plotted with difference colored lines (red: not modulated; 

blue: modulated) In the side region there was more angular error for the unmodulated 

stimulus in a reverberant environment than in anechoic, and for modulated stimuli there 

was more error in the anechoic environment than in reverberant environment. Post-hoc 

simple effects were performed comparing angular errors between the anechoic and 

reverberant environments for both modulated stimuli and for unmodulated stimuli using 

paired t-tests. For modulated stimuli there was no significant difference between the 

anechoic (M = 16.254, SD = 4.117) and reverberant (M = 15.050, SD = 2.010) conditions, 

t(6) = 0.597, p = 0.573. For unmodulated stimuli, there was also no significant difference 

between the anechoic (M = 14.656, SD = 3.506) and reverberant (M = 15.906, SD = 

4.064) conditions, t(6) = 0.609, p = .565. Simple effects were also analyzed between the 

reverberant and anechoic environments. There was no significant difference between the 

modulated (M = 15.159, SD = 2.010) and not modulated (M = 15.906, SD = 4.064) 

conditions in the reverberant environment, t(6) = 0.515, p = 0.625. In the anechoic 

environment there was no significant difference between the modulated (M = 16.254, SD 

= 4.117) and not modulated (M = 14.656, SD = 3.506) stimuli, t(6) = -1.682, p = .144. 

The lack of significant simple effects may be due to power issues that result from a small 

sample size.  
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 A few response patterns emerged in the back region in figure 4.14, but they 

are not as well defined as in the front region. Three listeners (Subject ID: ZFS, ZGB, 

ZGD) appear to be using a response strategy related to reverberation while listeners ZFW 

and ZFU appear to be using a response strategy related to modulation. A within-subjects 

2 x 2 ANOVA was performed on the group means within the back region. There was no 

main effect for reverberation (F(1,6) = 0.031, p= 0.865) or modulation (F(1,6) = 4.313, p 

= 0.083) and no significant interaction (F(1,6) = 0.606, p= 0.466).  

  Given the variability within individual listeners, 95% confidence intervals 

comparing conditions within each listener were plotted in figures 4.12, 4.13, and 4.15 

(front, side, and back regions respectively) to examine whether individual listeners 

showed effects of reverberation and/or modulation. In each figure anechoic conditions are 

displayed with square symbols and reverberant conditions are displayed with circles. The 

symbols are filled for modulated conditions and unfilled for unmodulated conditions. The 

symbols represent individual means and the error bars are 95% confidence intervals. 

Overlapping bars within a subject indicate that there was no significant difference 

between overlapping conditions. 

 In all three regions confidence intervals overlap for all listeners in all 

conditions. The only exception is listener LHI in the side region where the modulated 

anechoic condition does not overlap with the not modulated reverberant condition. For 

this listener the modulated anechoic condition has more angular error than the 

unmodulated reverberant condition. The lack of individual effects confirms the results 

from the ANOVAs performed above that there were no effects of reverberation or 

modulation for directional localization. The absence of significant simple effects for the 
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interaction in the side region, and the large variability both between and within listeners 

may have been the result of low power from the small sample size in this experiment. 

4. Front-Back Reversal Analyses 

 Table 3.2 displays the percentage of reversals for each condition. Chi-square 

tests of independence were performed for each participant to determine whether the 

number of front-back reversals differed between conditions. Table 3.2 also shows the 

results of the chi-square tests (degrees of freedom = 3) for each listener. Only one of the 

seven listeners showed a significant difference in the number of front-back reversals 

between conditions. Based on these results it can be said that generally the number of 

front-back reversals does not differ between conditions. It is interesting that listener 

‘ZFS’ was the only listener with a significant Chi-square test of independence, and s/he 

also showed possible response strategies in all three directional regions above. This 

listener appeared to have used more distinct response strategies compared to other 

listeners. In the front and back regions, listener ZFS used a response strategy related to 

reverberation and in the side region a strategy related to modulation. 
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Table 3.2. The percentage of responses that were front-back reversals in each condition 

for all listeners. The bottom displays the means across all listeners. On the right the 

χ
2
statistic and associated p-values are displayed comparing the number of reversals in 

each condition for all listeners. 

Subject 

ID 

Modulated 

Anechoic 

%Reversals 

Unmodulated 

Anechoic 

%Reversals 

Modulated 

Reverb 

%Reversals 

Unmodulated  

Reverb 

%Reversals 

χ
2
 p 

ZFS 38.5 22.3 46.2 45.4 12.5 0.01 

ZFW 46.2 40.0 40.8 35.4 1.9 0.60 

ZFU 41.5 47.7 38.5 45.4 1.5 0.68 

ZGB 40.0 41.5 43.1 46.2 0.6 0.89 

LHI 37.7 40.0 46.2 45.4 1.6 0.67 

ZGA 36.2 43.1 34.6 40.8 1.6 0.67 

ZGD 29.2 26.9 26.9 36.9 2.9 0.40 

       

Mean 38.5 37.4 39.5 42.2   

 

 Chi-square analyses were also performed to determine whether the number of 

front-back reversals differed between conditions within each hemisphere. Table 3.3 

displays the percentage of front-back reversals separated by whether the target was in the 

front or back hemisphere. The Chi-square statistic is displayed in the table for each 

listener in the table along with the associated p-value (degrees of freedom = 3). For 

targets in the front hemisphere all listeners, except one, showed a significant difference in 

the number of reversals between conditions. Follow-up Chi-square tests were performed, 

with Bonferroni correction, comparing the mean number of reversals between the 

anechoic and reverberant environments and between the modulated and unmodulated 

conditions in the front hemisphere. There were significantly more reversals in the 

anechoic environment than in the reverberant environment (χ
2
(1) = 12.967, p= 0.003), 

but there was no significant difference between the modulated and unmodulated 
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conditions (χ
2
(1) = 0.215, p = 0.003). For targets in the back hemisphere all listeners, 

except one, showed a significant difference between conditions. The same follow-up Chi-

square tests as above were performed for the back hemisphere. More reversals were 

recorded in the reverberant environment than in the anechoic environment (χ
2
(1) = 

15.246, p = 0.003), and there was no significant difference between the modulated and 

unmodulated conditions (χ
2
 = 0.042, p= 0.837). Synthesizing these two results, it can be 

said that in anechoic conditions there are more responses in the back hemisphere while in 

the reverberant conditions there are more responses in the front hemisphere. 
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Table 3.3. Percentage of responses that were front-back reversals for each condition 

divided by whether the targets were in the front or back hemisphere for all listeners. 

Means are displayed below individual percentages for each hemisphere. On the right the 

χ
2
statistic and associated p-values are displayed comparing the number of reversals in 

each condition for all listeners. 

Hemi-field Subject 

 ID 

Modulated  

Anechoic  

%Reversals 

Unmodulated  

Anechoic  

%Reversals 

Modulated  

Reverb  

%Reversals 

Unmodulated  

Reverb  

%Reversals 

χ
2
 p 

Front ZFS 37.7 13.8 2.3 0.0 86.2 0.00 

 ZFW 23.8 15.4 6.2 5.4 23.3 0.00 

 ZFU 25.4 37.7 33.1 11.5 19.0 0.00 

 ZGB 10.8 13.1 0.0 0.0 31.6 0.00 

 LHI 35.4 38.5 0.0 0.8 93.4 0.00 

 ZGA 24.6 40.8 25.4 28.5 7.3 0.06 

 ZGD 3.1 14.6 3.1 34.6 62.3 0.00 

        

 Mean 23.0 24.8 10.0 11.5   

        

        

Back ZFS 0.8 8.5 43.8 45.4 86.1 0.00 

 ZFW 22.3 24.6 34.6 30.0 4.3 0.23 

 ZFU 16.2 10.0 5.4 33.8 37.1 0.00 

 ZGB 29.2 28.5 43.1 46.2 9.0 0.03 

 LHI 2.3 1.5 46.2 44.6 103.9 0.00 

 ZGA 11.5 2.3 9.2 12.3 9.1 0.03 

 ZGD 26.2 12.3 23.8 2.3 29.4 0.00 

        

 Mean 15.5 12.5 29.5 30.7   

 

C. Discussion 

 Double-pole scatter plots were used as a visualization method to assess 

performance of individual listeners. From these visualizations it is clear that there are 

individual differences between listeners both in the size of their angular errors and in the 

strategies used for directional localization. Part of the reason for this could be related to 
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the stimuli used. Narrowband stimuli degrade directional localization and results in 

systematic errors like front-back reversals (Middlebrooks, 1992). Additionally the use of 

ITDs would have been limited since listeners are less sensitive to high frequency ITDs 

(Moore, 2008, p. 236). The use of nonindividualized HRTFs recorded with KEMAR is 

also known to hurt directional localization performance (See Moller, Hammershoi, 

Jensen, & Sorensen, 1999 for extensive lit review). Moller et al. found directional 

localization errors increased in the median plane from 16% in the free field to 38.5% 

when stimuli were generated from recordings made with a KEMAR mannequin. While 

reverberation can be detrimental to directional localization (Hartmann, 1983; Giguere and 

Abel, 1993; Ihlefeld and Shinn-Cunningham, 2011), it can also assist with externalization 

of stimuli (Plenge, 1974). When interpreting the results it is important to remember that 

the stimuli were generated to be difficult to localize with narrow bandwidths, high center 

frequency, (Stevens & Newman, 1936; Yost, 2013; Middlebrooks & Green, 1991) and 

gradual onsets and offsets (Wagenaars, 1990; Wallach, Newman, and Rosenweig, 1949). 

 Analysis of angular error in the side region using the 2 x 2 within-subjects 

ANOVA revealed a significant interaction between modulation and reverberation. For 

unmodulated stimuli, there were larger angular errors in the reverberant environment than 

in the anechoic environment. While for modulated stimuli there were larger angular 

errors in the anechoic environment than in the reverberant environment. This result for 

the unmodulated stimuli fits other past directional localization experiments showing that 

directional localization is worse in reverberant environments (Hartmann, 1983; Giguere 

and Abel, 1993; Ihlefeld and Shinn-Cunningham, 2011). It is interesting that for 

modulated stimuli, angular errors were larger in the anechoic environment. This does 
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support the hypothesis that directional localization benefits from modulation in 

reverberant conditions; however, the benefit was only found in the side region. The side 

region is also where minimum audible angle (Mills, 1958) is worst. Therefore the benefit 

from modulation in reverberation in the side region may result from directional 

localization ability being impaired in the side region. Eberle et al. (2000), which did not 

separate azimuth judgments by region, found modulation decreased angular error for very 

high modulation frequencies, but believe it was due to the sidebands increasing the 

bandwidth of the stimuli. In the present experiment, the modulation rate was not high 

enough for sidebands to increase the stimulus bandwidth. In Experiment III, a deliberate 

effort was made to minimize ITD cues to force listeners to use other directional 

localization strategies, like modulation depth. The side region may have benefitted from 

AM in reverberation because other directional localization cues were minimized 

sufficiently to allow listeners to benefit from modulated stimuli. 

 There are a few limitations evaluating the results of the 2 x 2 ANOVA for 

angular error in the side region. One limitation is that compared to the front and back 

regions, angular errors were much smaller across all listeners. The smaller variability in 

the side region may have been driving the significant interaction. While the ANOVA 

results support the hypothesis of modulation benefiting directional localization in a 

reverberant environment, the lack of consistent response patterns between listeners makes 

it difficult to definitively conclude that either modulation or reverberation affected 

angular errors. Additionally, a limitation across Experiment III is that the anechoic 

condition was presented before the reverberant condition, so a benefit in reverberation 

may be due to practice effects, and not from the modulation itself. However, if that were 
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the case, then performance should be improved in reverberation for both modulated and 

unmodulated stimuli, which was not observed.  

 The results from the 2 x 2 within-subjects ANOVA on mean angle of error in 

the front and back regions showed that there was no effect of modulation or room on 

angular error. The lack of significant main effects and interactions in these regions maybe 

due to individual differences which would make effects difficult to detect by the 

ANOVAs. Additionally the statistical power was relatively low with only seven subjects, 

and some of the listeners demonstrated conflicting response strategies. 

 Front-back errors were analyzed using a Chi-square test of independence to 

compare the number of front-back errors between conditions. In the anechoic 

environment there were more responses in the back hemisphere, while in the reverberant 

environment there were more responses in the front hemisphere. There was no effect of 

modulation on front-back reversals. Past studies acknowledge the prevalence of front-

back reversals in directional localization studies (Wenzel, Arruda, Kistler, Wightman, 

1993; Wightman & Kistler, 1989b), particularly when spectral cues are limited due to 

decreased signal bandwidth (Middlebrooks, 1992). 

 When the number of front-back reversals was separated based on whether the 

target was in the front or back hemisphere a response bias became evident. Again Chi-

square tests of independence were used to determine whether the number of front-back 

reversals differed between conditions within each hemisphere. This test revealed a 

tendency under anechoic conditions for listeners to place responses in the back 

hemisphere, while under reverberant conditions listeners tended to place response in the 

front hemisphere. Typically there are more front-to-back reversals than back-to-front 
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(Zahorik, 2006; Wightman and Kistler, 1999). There is no precedent in the literature for 

an interaction between reverberant and anechoic environments and front/back reversals. 

Reverberation has been shown to help with spatializing sounds (Plenge, 1974) and this 

may impact front-back response shifts, but it does not explain why there would be an 

overall tendency for directional localizations to be in the front hemisphere. In more 

ecologically valid conditions, resolution of front-back errors can be mediated by moving 

either the head of the listener or the source during stimulus presentation (Wightman & 

Kistler, 1999), however this was not possible in the current set up. 

 Two listeners (ZGB and LHI) had larger thresholds (better performance) than 

the rest of the listeners in the MLD diagnostic test. This task is sensitive to central 

auditory processing problems in the auditory brain stem (Wilson, Zizz, & Sperry, 1994). 

The angular errors from these listeners were visually compared to the results of other 

listeners to determine whether better performance in the MLD task had any 

corresponding performance changes on the localization task. The only noticeable trend 

was that both listeners appeared to use a response strategy related to reverberation in the 

side region; however, there were no significant effects for either listener. 

 Interaural modulation gain differences in the side region may have facilitated 

improved localization performance. Comparing the modulation gain between the two ears 

in Figure 4.2 for the 8000 Hz center frequency shows that modulation depth at 

contralateral ear is more attenuated than the ipsilateral ear as a function of azimuth. The 

largest modulation gain difference between ears is in the side region at -90° where 

modulation is attenuated about 8 dB more at the contralateral ear than at the ipsilateral 

ear. Near midline there is relatively little interaural modulation gain difference. The large 
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interaural modulation depth gain differences in the side region may create dynamic ILDs 

that listeners can use as a localization cue. Dynamic ILDs are level differences between 

the two ears that fluctuate in time. Sinusoidal amplitude modulation (SAM) can be 

thought of as sinusoidally varying stimulus level. If modulation gain is identical at both 

ears, then when a SAM signal reaches the ears the level at each ear will be identical 

across time (assuming no phase shift between ears): That is there would be no dynamic 

ILDs. If modulation is more attenuated at the contralateral ear than the ipsilateral ear, 

then when a SAM signal reaches the ears, the level at the contralateral ear will vary in 

amplitude less than the signal at the ipsilateral ear: That is, there will be larger dynamic 

ILDs. Dynamic ILDs will be greatest when the interaural modulation depth attenuation is 

greatest, and that is in the side region under reverberant conditions. In practice, where 

phase shifts would be present, dynamic ILDs would be more prominent because the 

difference between the waveforms reaching each ear would be larger across time. 

D. Conclusions 

 Individual differences between listeners were prevalent in the directional 

localization task and were an impediment for studying the impact of modulation on 

directional localization. Nevertheless, the significant interaction in the side region 

indicated that both the acoustic environment and modulation influenced directional 

localization accuracy. 
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CHAPTER V 

GENERAL DISCUSSION

 The results from Experiments II and III collectively provide evidence that AM 

attenuation can facilitate both distance (Exp. II) and directional (Exp. III) sound 

localization under specific conditions. For distance (Exp. II), the facilitation from 

modulation is most evident for targets beyond 2 m where the AM attenuation is 

physically the greatest. For direction (Exp. III), the facilitation is evident only on the side 

region where the dynamic fluctuation in ILD caused by AM attenuation is the greatest. 

Both cases of facilitation require listening in a reverberant soundfield, and listening to 

signals that are amplitude modulated. Neither reverberation (Hartmann, 1983; Giguere 

and Abel, 1993; Ihlefeld and Shinn-Cunningham, 2011) nor modulation alone (Eberle et 

al., 2000) enhance localization performance. It is, therefore, truly the combination of 

reverberation and amplitude modulation that must be present for enhanced localization. 

These constraints are interesting because they are representative of the vast majority of 

our everyday listening experience: most signals have AM, and most listening is done in 

reverberant soundfields. 

A. Effects on Speech 

 It is as though the auditory system has evolved mechanisms specifically to 

extract localization and speech information in reverberant environments. Research in 

speech intelligibility (Brandewie & Zahorik, 2010) has found that intelligibility improved 

when listeners have prior exposure to a room environment. This enhancement is 
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eliminated when the prior exposure to speech is in an anechoic environment instead of a 

reverberant environment. This provides further evidence that the auditory system 

includes mechanisms that specifically extract information from degraded signals 

specifically in a reverberant environment.  

 The ability to discriminate two sound sources in space is important for 

obtaining spatial release from masking in azimuth (Plomp & Mimpen, 1981) and distance 

(Brungart & Simpson, 2002). The present findings are applicable to improving spatial 

release from masking in the distance domain within the modulation range of speech 

stimuli. By taking advantage of how a room attenuates modulation as a function of 

distance, spatial release from masking between a signal and a masker may be enhanced. 

The envelope spectrum of speech shows a maximum around 3 Hz (Houtgast & 

Steeneken, 1985) which is below the range of modulation rates tested in Experiment II. 

Results from experiment II showed no benefit from AM stimuli in the 4 Hz conditions; 

however, the modulation gain as a function of distance did not predict a benefit from 

modulation in the lower range of modulation frequencies. The envelope spectrum of 

speech ranges between 2 and 50 Hz, with even higher modulation rates (50 - 500 Hz) 

associated with periodicity in speech (Rosen, 1992). These higher modulation rates that 

were more attenuated by the room as a function of distance provided a greater benefit to 

distance judgments, like in the 32 Hz condition. Since the modulation frequency range 

over which AM benefits distance judgments overlaps with the modulation spectra of 

speech, spatial release from masking should be enhanced in the distance domain for 

speech stimuli. An additional benefit of using speech as a stimulus is that listeners are 

already very familiar with the stimulus. 
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B. Role of Familiarity 

 An important consideration for the use of modulation-based localization cues 

relates to prior knowledge of the source signal modulation characteristics. For modulation 

depth to be used as a localization cue, it seems likely that listeners must make 

assumptions about the modulation depth of the source signal. The modulation depth cue 

exists because the room attenuates the depth of modulation before the signal reaches the 

ears, but listeners do not know how much modulation depth is removed by the room 

compared to how much modulation depth was in the original signal. This ambiguity 

implies that listeners must be making an assumption about the modulation depth of the 

original signal. In the case of speech, where listeners are familiar with the stimulus, it is 

conceivable that the modulation depth of the signal is known, so the amount of 

modulation attenuated by the room would be easier for listeners to discern. Kim et al. 

(2015) also suggested that the modulation depth of the source must be known by the 

listener to take advantage of the AM depth cue for distance perception.  

 Without prior knowledge about the source signal’s modulation characteristics, 

modulation depth can only serve as a relative distance cue. In auditory distance 

perception D/R is generally considered to be an absolute distance cue because in a 

reverberant environment. This is in contrast to anechoic environments, where only 

intensity is available as a distance cue, and distance judgments change with practice, 

presumably because listeners must hear presentations of stimuli at different relative 

physical distances to create a stable distance percept (Mershon & King, 1975). Similarly 

listeners may shift their distance judgments after exposure to successive trials with 

varying modulation depths. Not only does this provide information about the original 
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source signal, but also how modulation is attenuated by the specific room as a function of 

distance. To determine whether modulation depth is a relative distance cue, distance 

judgments from Experiment II were pooled across listeners and split between the first 

half and second half of trials in the 32 Hz and 4 Hz conditions to test whether listeners’ 

first set of judgements were different from their second set. If there is a significant 

difference between the first set and the second set then this supports AM being a relative 

distance cue. In the 32 Hz condition, distance judgments were significantly smaller for 

the first half of judgments (M = 3.032, SD = 1.877) than the second half (M = 3.181, SD 

= 1.223), t(1619) = -2.760, p = 0.006, but in the 4 Hz condition there was no significant 

difference between the first half (M = 2.865, SD = 1.569)and second half (M = 2.844, SD 

= 1.816) of judgments, t(1619) = 0.487, p = 0.627. This suggests that AM is a relative 

distance cue, but only when modulation depth changes appreciably as a function of 

distance (in the 32 Hz condition). The range of modulation frequencies attenuated by the 

room as a function of distance will change depending on room acoustics. 

C. Room Acoustics 

 While modulation depth can be used as an auditory distance cue, the 

conditions that allow listeners to extract distance information from modulation depth are 

dependent on both stimulus parameters and acoustical properties of the listening 

environment. In Experiment II, AM provides the most benefit for the listener under 

acoustic conditions where the modulation depth of the signal is significantly attenuated as 

a function of distance by the room. Therefore it is important to take room acoustics into 

account to determine the amount of benefit provided by modulation depth. In the room 

used in Experiment II the modulation depth cue was most useful for targets greater than 
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approximately 2 m from the listener and for higher modulation rates. While this 

combination of stimulus parameters was ideal for this room, they may change depending 

on acoustic characteristics of other environments. Acoustic properties like reverberation 

(Mershon & King, 1975) and T60 (Bronkhorst & Houtgast, 1999) have been shown to 

influence distance judgments. Unpublished data from our lab show that varying the T60 of 

a room will shift the constant value of listeners’ power function fits while leaving 

exponents relatively unchanged indicating that the amount of reverberation in a room 

linearly scales distance judgments.  

 Both the measured and simulated BRIRs used to generate stimuli in 

Experiments II and III, respectively, were from large halls with long reverberation times 

(T60). Although it may be difficult to directly generalize the results from these rooms to 

other rooms, the general techniques for room acoustic analysis may be applied: The MTF 

of a room can be used to predict whether the room removes a significant amount of 

modulation depth as a function of distance and azimuth for specific stimulus parameters. 

Large rooms were used here because they typically have a long T60 and because larger 

rooms allow for a wider range of source positions to be measured. T60 can shift depending 

on room size, absorption coefficients of surfaces in the room, and where the 

measurements were made in the room. Increasing the T60 of a room would generally 

increase the amount of reverberation for all source locations in the room, which would 

result in greater modulation depth attenuation for all sources. Houtgast & Steeneken 

(1985) theorized that increasing T60 results in greater modulation attenuation across 

modulation rates. In the distance domain, as mentioned above, this may push distance 

judgments farther away because there will be more reverberation and all stimuli will have 
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less modulation depth. For directional judgments the modulation depth of the signal 

reaching the contralateral ear would be even more attenuated compared to the ipsilateral 

ear. If dynamic ILD cues are driving the benefit of modulation depth in the side region 

then increased reverberation would be predicted to make ILD fluctuations between the 

two ears even larger because the modulation gain difference between the two ears would 

be increased. So far, these results can only be applied to normal hearing listeners because 

no hearing impaired listeners participated in experiments II and III.  

D. Hearing Impaired Listeners 

 The impact of hearing impairment on acoustic cue processing related to 

modulation gain is difficult to predict because of complexities introduced by hearing aids. 

It is unlikely that hearing impaired listeners with current hearing aid technology, can take 

advantage of these modulation-based localization cues. Hearing aids can deteriorate 

intensity cues because of compression algorithms that may degrade both the intensity 

information of the original signal as well as the modulation depth of the signal. To use 

the AM distance cue, the listener must know the modulation depth of the original signal, 

but this is complicated if the AM depth is attenuated by both the room and compression 

algorithms. Directional localization is also complicated by the compression algorithms 

because dynamic ILDs may be necessary to take advantage of interaural AM depth as a 

function of azimuth. Assuming a listener has bilateral hearing aids, the compression 

algorithms at each ear will impose compression independently at each ear, which will 

artificially shift dynamic ILDs. If the listener has asymmetrical hearing loss and uses a 

unilateral hearing aid then predicting whether AM cues can be used becomes even more 

complicated. In Experiment II the benefit from AM on distance judgments was only 
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shown for the ipsilateral ear, so the amount of benefit would depend on both the amount 

of hearing loss and whether or not the ipsilateral ear had the hearing aid. In directional 

localization a unilateral hearing aid would also complicate the use of dynamic ILDs. If 

the modulation depth at one ear is attenuated by the compression algorithms, while the 

modulation depth at the other ear is only attenuated by the room then the dynamic ILDs 

will be different than if the modulation depth arriving at each ear were left to vary 

naturally. Based on the complications of hearing aid algorithms and bilateral vs. 

unilateral fitting, the impact of hearing aids on the use of AM depth localization cues is 

too complicated to hypothesize whether hearing aid listeners can also benefit from AM 

depth cues.
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