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ABSTRACT 

 

CELL-BASED THERAPIES FOR ISCHEMIC CARDIOMYOPATHY– 

INVESTIGATIONS OF INTRAMYOCARDIAL RETENTION AND SAFETY OF 

HIGH DOSE INTRACORONARY DELIVERY OF C-KIT POSITIVE CARDIAC 

PROGENITOR CELLS, AND THERAPEUTIC UTILITY OF A NOVEL 

POPULATION OF CARDIAC MESENCHYMAL STEM CELLS EXPRESSING 

STAGE-SPECIFIC EMBRYONIC ANTIGEN– 3 (SSEA-3) 

 

Matthew C. L. Keith, MD 

 

March 18, 2016 

 

Over the last decade attempts at reducing morbidity and mortality of patients with 

chronic heart failure have been made via the development and implementation of novel 

cell based therapies. Substantial advances in cell based therapies with indications of 

efficacy have been shown along with a robust safety profile.  Despite these advances, 

there is a substantial unmet need for novel therapies, specifically addressing repair and 

regeneration of the damaged or lost myocardium and its vasculature. Accordingly, 

cardiac cell-based therapies have gained attention. Various cell-types have been utilized, 

including bone marrow-derived mononuclear cells, bone marrow-derived mesenchymal 

stem cells, mobilized CD34+ cells, and more recently, cardiosphere-derived cells and 

cardiac-derived c-kit positive progenitor cells. Early studies have suggested a potential of 

cell-based therapies to reduce cardiac scar size and to improve cardiac function in 

patients with ischemic cardiomyopathy. However, variability of results has been observed 

necessitating improvement of current methodologies related to 
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optimizing the cell type(s), infusion techniques, timing, dosage, acuity related to ischemic 

injury, and perhaps repeat dosing over time among others, all the while ensuring 

complete and total patient safety. Accordingly, present efforts and goals of my research 

are aimed at i.) Optimizing methodologies utilized within the recent phase I clinical trial 

(SCIPIO) that showed intracoronary infusion of 1 million c-kit positive cardiac 

progenitor cells was safe with indications of efficacy in cardiac repair, as well as, ii.) 

Development of a novel cell based approach with a newly discovered cardiac cell type. 

Within the present dissertation, I explored the impact of coronary stop-flow on 

cardiac retention of intracoronarily infused c-kit positive cardiac progenitor cells given 

that balloon inflation in a non-stented coronary artery is inherently dangerous, especially 

in already damaged hearts.  I demonstrate that intracardiac retention with or without stop-

flow is equivalent and balloon inflation confers an undue risk to patients.  Furthermore, I 

investigated the safety of intracoronary infusion of 20 million c-kit positive cardiac 

progenitor cells in pigs, an equivalent dose 40 times larger than was used in the SCIPIO 

trial. High dose of cells delivered intracoronarily is safe and does not result in myocardial 

injury or functional deficit. Therefore, larger doses may reasonably be utilized in future 

clinical trials.  Finally, I describe a novel adult cardiac cell type that maintains expression 

of an embryonic stem cell associated marker, stage-specific embryonic antigen (SSEA)-3, 

resides within the native adult heart, and can be isolated and utilized for cardiac repair as 

a cell based therapy.   
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CHAPTER I 

 

CELL BASED THERAPIES FOR CARDIAC REPAIR 

 

 

Introduction 

Cardiovascular disease accounts for more than 30 % of global mortality making it 

the largest contributor to death worldwide. In the U.S., coronary heart disease accounts 

for approximately 17 million cases annually1, 2, and there are approximately 5-6 million 

patients who currently have a diagnosis of heart failure. The most prevalent cause of 

heart failure is the loss of viable, functioning myocytes which are replaced by 

noncontractile scar after myocardial infarction, although heart failure from nonischemic 

causes is quickly becoming more prevalent.3  Nevertheless, the majority of treatment 

options (medical therapy, catheter-based or surgical revascularization for earlier stages, 

and mechanical support for later stages) employ strategies to limit further scar formation 

and curtail deleterious adverse cardiac remodeling while enhancing or supplementing the 

function of residual myocardium.4, 5 While some therapies have improved mortality and 

work to provide what is essentially a palliative relief of heart failure symptoms, the issue 

of replacing, reducing, or transforming non-viable scar tissue to functional, contractile 

and supporting cells remains the ultimate goal.  To this end, recent efforts within 

regenerative medicine have been aimed at adoptive transfer of various stem cell  

populations in an attempt to accomplish this “holy grail”.  
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Stem cells are undifferentiated, clonal, self-renewing cells that possess a multi-lineage 

differentiation potential toward terminal mature phenotypes.6 Multiple classifications of 

stem cells exist that describe the degree of lineages to which one cell may commit.  Cells 

that can differentiate to all of the body’s cell types are termed pluripotent or totipotent 

(such as embryonic stem cells), and others with differentiation limited to one or more 

lineages of a particular organ are termed unipotent or multipotent progenitors 

respectively.6  Within this framework various types of stem cells, both pluripotent and 

multipotent, have been evaluated for their utilities in the treatment of heart failure with 

the goal to curatively replace damaged cardiac tissue and not simply to delay progression 

of disease.7, 8   

The recent explosion of regenerative medicine has led to the exploration of a wide 

variety of cell types and their respective cardiac differentiation potentials, both in vitro 

and in vivo.  Knowledge of developmental biology and identification of cellular markers 

associated with known stem/progenitor phenotypes have enabled identification of 

candidate cell types that may have cardiomyogenic potential and repair damaged hearts.  

These include pluripotent embryonic stem cells and induced pluripotent stem cells (and 

their derivatives) as well as postnatal stem cells that persist into adulthood.  Among 

postnatal cells, populations both intrinsic to the heart (c-kit+ cardiac progenitor cells and 

cardiosphere derived cells), and extrinsic to the heart (bone marrow and adipose derived 

cells) are under investigation. Importantly, how, when, and the dosage of these progenitor 

cells that are administered to damaged hearts have been found to drastically impact safety 

and efficacy of cell based therapy affecting engraftment, longevity, and therapeutic 

response, which further adds tremendous complexity independent of the intricate cellular 
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biologic processes.  Intuitively, cells of cardiac origin have demonstrated superior ability 

to adopt more mature cardiac phenotypes9, likely secondary to genetic predisposition 

related to chromatin structure and arrangement, than that of progenitors not of cardiac 

origin.  Moreover, cardiac progenitor cells have demonstrated more robust myocardial 

reparative effects via a variety of mechanisms independent of their direct differentiation 

capacity.9  Of these, c-kit+ cardiac progenitor cells have been the most widely 

investigated.10 These cardiac progenitor cells have largely been the focus of our 

investigations here within the Institute of Molecular Cardiology at the University of 

Louisville.  A brief overarching review of past and present cell based modalities that have 

been evaluated for cardiac repair and regeneration is provided below with expanded focus 

on c-kit+ cardiac progenitor cells as they are specifically relevant to the present work.  

The limitations and gaps in knowledge associated with individual modalities and 

methodologies are highlighted to lay out the rational for the newly conducted studies 

described within the present dissertation.   

 

Cell based therapies for heart failure: Extracardiac cell populations 

Skeletal Myoblasts 

Skeletal myoblasts are cells derived from satellite cells, a skeletal muscle 

progenitor cell population located beneath the basal membrane of myofibers.  Satellite 

cells undergo proliferation in response to injury and promote repair and regeneration of 

skeletal muscle via differentiation into new myotubes and muscle fibers.11, 12 They are 

easily obtained from muscle biopsies, rapidly expandable in vitro, and have shown 
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resistance to hypoxic and ischemic conditions.13, 14 Accordingly, skeletal myoblasts were 

the first cells to be tested in preclinical15 and clinical16 studies of HF.  

The ability of skeletal myoblasts to promote cardiac repair and recovery has been 

evaluated in both preclinical and clinical models of HF. 17-19 Studies using both 

intramyocardial and intracoronary administration of myoblasts demonstrated formation of 

myotubes and viable skeletal muscle-like grafts within damaged cardiac tissue.  Myoblast 

administration was associated with attenuation of adverse ventricular remodeling, 

decreased interstitial fibrosis, and improvement of cardiac performance after ischemic 

injury. Beneficial effects of myoblasts, other than direct supplementation contractility, 

are mediated by the correction of the imbalance between matrix metalloproteinases 

(MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) involved in 

extracellular matrix (ECM) remodeling as well as activation of intrinsic cardiac stem 

cells via the secretion of growth factors.20  

The first human transplantation of myoblasts was performed by Menasche et al. in 

patients with HF secondary to ischemic injury.16, 21 Injection of myoblasts into a scarred 

left ventricular (LV) region at the time of coronary artery bypass grafting (CABG) was 

associated with a significant improvement in LV function and NYHA classification. 

However, some treated patients experienced dangerous arrhythmias, specifically, 

ventricular tachycardia, necessitating implantation of internal cardioverter-defibrillators 

(ICDs). The electrical instability of treated hearts is due to the lack of electromechanical 

coupling, and failure of differentiated myotubes to express key gap junction proteins 

involved in cardiac excitation-contraction coupling, namely connexin.22 This 

phenomenon is likely due to the fact that myoblasts transplanted in injured hearts form 
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skeletal (striated) muscle fibers rather than cardiac muscle.16, 22 Myoblasts have proven to 

be unipotent lacking multipotent plasticity to adopt alternate muscle phenotypes.  

Menasche et al. conducted MAGIC, a phase II randomized, placebo-controlled, double-

blind trial that examined the effects of intramyocardial injection of skeletal myoblasts (at 

two doses: 400 or 800 millions) plus CABG vs. CABG alone (controls) in 97 patients 

with severe LV dysfunction (LV ejection fraction [EF] between 15-35%). No significant 

difference in cardiac function or occurrence of malignant arrhythmias between patients 

receiving myoblasts and controls at the end of 6 months was observed.21 Other 

investigators have used catheter-based intramyocardial injection of skeletal myoblasts in 

ischemic HF.  However, no tangible benefits to LV function or patient quality of life 

were able to be reproducibly obtained that mirrored those in preclinical models.  

Presently, attempts at improving cardiac function and ameliorating HF through the use of 

myoblasts have been all but completely abandoned.20  

Bone marrow cells 

Unfractionated bone marrow mononuclear cells (BMMNCs) are a heterogeneous 

population composed of mesenchymal stem cells (MSCs), hematopoietic stem cells 

(HSCs) such as CD34+ cells, and endothelial progenitor cells expressing CD133 (EPCs), 

as well as more committed cell lineages. BMMNCs, and thereby all the cellular subtypes, 

can be easily obtained in large numbers by standard technique using density gradient 

centrifugation and do not require extensive culture or in vitro expansion.23  They have the 

advantage of being able to be utilized shortly after isolation thus maximizing therapeutic 

utility and maximal preservation of intrinsic differentiation potential that may be 

diminished by prolonged culture in vitro.23-25  Nevertheless, conflicting results have been 
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obtained with preclinical models of acute MI and chronic HF.25 In sheep and pig models 

of ischemic heart failure, BMMNCs (injected directly into the scar tissue) produced no 

improvement in LV function (although one study reported increased angiogenesis and 

reduction in infarct size).23 In contrast, studies in dogs and rats have reported 

improvement in myocardial function and increased angiogenesis.23  

Clinical trials utilizing BMMNCs to treat ischemic heart failure have yielded less 

than exciting results of efficacy although overwhelming safety has been observed without 

any teratogenicity.23 Perin et al. were the first to evaluate the safety and efficacy of 

autologous BMMNCs, injected transendocardially in patients with ischemic HF 

demonstrating statistically significant improvement in LVEF and a reduction in end-

systolic volume in cell-treated patients.26-28 Observations by other investigators using 

BMMNCs seemed to support these findings.29, 30 However, other trials have failed to 

show any tangible benefit of BMMNCs in the setting of acute or chronic ischemic cardiac 

injury.31, 32 The reasons for discrepant results are not apparent. Additional studies using 

intracoronary infusion of BMMNCs in patients with HF have also been conducted.  

Similarly, mixed results have been obtained related to efficacy.  Without exhaustively 

comparing the numerous clinical trials, it may best serve to hypothesize that variations in 

dosages of cells, cellular consistency of specific phenotypes such as CD34+ stem cells or 

MSCs, route of administration such as intramyocardial vs intracoronary, site of injection 

such as peri-infarct border zone or direct cell injection into the scar, and timing of cell 

administration after injury , i.e. chronicity of myocardial dysfunction, may all impact the 

efficacy of BMMNC therapy.   
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As is easily seen, these aforementioned factors apply much more broadly to cell 

based therapies in general and contribute to the totality of lacking knowledge related to 

not only the optimal cell type to administer to sick hearts to induce functional recovery, 

but also the how, when, and where to infuse these cells.  

In efforts to determine if specific cellular subsets within the bone marrow may 

offer superior beneficial effects related to cardiac functional improvement, studies have 

utilized purified mesenchymal stem cells (MSCs)33 as well as CD34+ bone marrow cells. 

MSCs, also known as bone marrow stromal cells, are a subset of non-hematopoietic bone 

marrow cells that are multipotent and plastic-adherent under in vitro expansion culture 

conditions. MSCs have demonstrated chondrogenic, adipogenic, and osteogenic 

differentiation potential.33-35  MSCs have also been reported to differentiate into 

cardiomyocytes36, 37 and endothelial cells38, although this cardiogenic potential remains 

controversial39, 40 as no mature cardiomyocytes with complete functional sarcomeric 

apparatus has been observed to arise from MSCs in vitro. In vivo, mature cardiomyocytes 

observed to possibly arise from implanted MSCs have largely been attributed to fusion 

events in which MSCs and native cardiomyocytes merge to form one cell.40  MSCs 

typically express the cell surface markers CD105, CD73, CD90, CD29, CD44, and 

CD166 but lack hematopoietic markers (CD45, CD34 and CD14/CD11b).34, 35, 41 

The results of MSC administration in animal models of chronic heart failure have 

demonstrated salubrious effects of MSC therapy using various intramyocardial and 

intracoronary injection techniques. Studies utilizing autologous MSCs injected directly 

into myocardial scar, reduced infarct size and attenuated further deleterious LV 

remodeling in a porcine model of ischemic cardiomyopathy (ICM).42  Intramyocardial 



8 
 

injection of MSCs in rodent models of both ischemic  and nonischemic cardiomyopathy 

have shown improvement in indices of cardiac function and angiogenesis along with 

reduced myocardial fibrosis.42-46 These and other preclinical studies provided the 

groundwork for randomized, double-blind, placebo-controlled studies using autologous 

and allogeneic MSCs in patients with chronic ischemic LV dysfunction undergoing 

CABG (PROMETHEUS; NCT00587990)47 as well as the POSEIDON trial conducted by 

Hare et al.42 The latter additionally compared three doses of autologous or allogeneic 

MSCs (20, 100, and 200 ×106 cells) in patients with ischemic cardiomyopathy and 

demonstrated that all doses favorably impacted patient functional capacity, quality of life, 

and ventricular remodeling. Further trials using intramyocardial injection of autologous 

and allogeneic MSCs in ischemic and nonischemic CM are currently underway, 

specifically, the CONCERT and SENECA phase I/II clinical trials which were conceived 

and designed here at the University of Louisville within the Department of 

Cardiovascular Medicine in conjunction with the National Heart, Lung, and Blood 

Institute (NHLBI) sponsored Cardiovascular Cell Therapy Research Network (CCTRN). 

I was fortunate to have made substantial contributions to these endeavors under the 

guidance of my mentor, who is the primary investigator of these studies, Dr. Roberto 

Bolli.  

Hematopoietic stem cells reside in the bone marrow and differentiate into cells of 

both myeloid and lymphoid lineages centrally within the bone marrow. EPCs, on the 

other hand, are mobilized into peripheral blood, often in response to ischemic injury, and 

differentiate into endothelial cells peripherally promoting neovascularization (re-

endothelialization).48, 49 CD34 is a typical surface marker of both HSCs and EPCs.50 
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Thusly, CD34+ cells have the capacity to give rise to all blood cell types as well as 

endothelial cells (<1% of nucleated cells in the blood are CD34+). Autologous CD34+ cell 

transplantation has been performed in patients with ischemic51 and nonischemic52, 53 

cardiomyopathy. Injection of CD34+ cells into the peri-infarct regions of the left ventricle 

during coronary bypass surgery produced greater improvement in left ventricular ejection 

fraction than did coronary bypass alone.51 Additionally, a study by Vrtovec et al. 

concluded that intracoronary infusion of CD34+ cells led to a modest increase in 

functional endpoints of ejection fraction and 6-min walk distance and a decrease in levels 

of the cardiac stress marker NT-proBNP.52, 53 Importantly, these beneficial effects were 

sustained over time. Additional studies by the same group have shown reproducibility of 

these results related to cardiac function as well as provided data on the effective 

intracardiac doses responsible for patient response to CD34+ bone marrow cell therapy.   

Adipose-derived MSCs 

Similar to bone marrow, adipose tissue contains a pool of multipotent stem cells, 

designated as adipose-derived MSCs that are able to differentiate into not only mature 

adipocytes but also aforementioned cell types of the mesenchymal lineage.54 Adipose-

derived MSCs have also demonstrated the capacity to upregulate cardiac proteins 

although this differentiation is incomplete as no organized, functional sarcomeric 

structure has thus far been able to be obtained, similar to other studies using bone marrow 

derived MSCs.  Nevertheless, adipose derived MSCs administered in animal models of 

heart failure have shown beneficial effects, mirroring bone marrow MSC preclinical 

studies.54 For example, using a cell sheet technology, Miyahara et al. reported that 

transplantation of monolayer MSCs into infarcted myocardium reversed wall thinning 
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and resulted in improved ejection fraction.55 In another study, the effects of transplanting 

undifferentiated or cardiac pre-differentiated adipose-derived MSCs were compared with 

those of unfractionated BMMNCs in a rat model of chronic ICM.56 One month after 

transplantation into infarcted hearts, undifferentiated adipose-derived MSCs improved 

EF, augmented angiogenesis, and decreased fibrosis to a greater degree than that 

observed with adipose-derived cardiomyogenic cells or BMMNCs injection. 

Additionally, intramyocardial injection of adipose derived MSCs just 1 week after 

coronary occlusion abrogated the declinate in myocardial contractile function and 

enhanced post infarction angiogenesis in rodents.57 Clinical trials utilizing adipose 

derived MSCs are currently underway.58  

Embryonic stem cells (ESCs) and ESC-derived cells 

Embryonic stem cells (ESCs) are pluripotent cells harvested from the inner cell 

mass of pre-implantation-stage blastocysts.59, 60 When cultured in suspension, allowing 

sphere formation during in vitro proliferation leading to formation of embryoid bodies, 

both mouse (m) and human (h) ESCs have demonstrated the capacity to differentiate into 

cells of all three germ layers, namely, ectoderm, endoderm, and mesoderm (including 

cardiac myocytes, endothelium, and smooth muscle cells).59-61 Particularly, hESC-derived 

cardiomyocytes exhibit the morphology of adult cardiomyocytes with expression of 

mature sarcomeric proteins and mature structural arrangement of the contractile 

apparatus.23, 62-64 They also express cardiac-specific transcription factors such as Nkx2.5, 

GATA-4, and MEF2C and display spontaneous beating activity with characteristic atrial, 

ventricular, and nodal action potentials.62-64 The strong cardiogenic potential of ESCs and 

the availability of hESC-derived cardiomyocytes have motivated research into their 
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effects in the treatment of heart failure in preclinical models via replacement of lost 

contractile cells.  

Menard et al. first reported that cardiac-committed mouse ESCs, transplanted into 

infarcted sheep myocardium, engrafted and differentiated into cardiomyocytes and 

improved LV function.65 Similarly, using hESC-derived cardiomyocytes, Caspi et al.66 

and Cai et al.67 reported formation of stable cardiomyocyte grafts, attenuated LV 

remodeling, and improvement in LV systolic function in rat models with old myocardial 

infarction (MI) (although in the latter study they caused formation of teratomas).   More 

recently, studies reporting the use of hESC-derived cardiomyocytes (hESC-CMs) in 

chronic animal models of ischemic cardiomyopathy in other large animals, including 

non-human primates (specifically macaques)68, focused specifically on aspects of 

engraftment, functional integration, and electrophysiological behavior of transplanted 

ESC-derived cardiomyocytes in injured myocardium.  In guinea pig models, Shiba and 

colleagues observed re-muscularization with human myocardium which occupied 

approximately 8% of the scar area. While vehicle and non-cardiac control cell groups 

demonstrated progressive LV dilatation and fractional shortening deterioration, ESC-CM 

recipients demonstrated sustained fractional shortening and displayed overall superior 

fractional shortening relative to controls.69  In addition to improved cardiac function, 

animals transplanted with ESC-CMs also exhibited reduced occurrences of both 

spontaneous and induced ventricular tachycardic events.  Utilizing a genetically encoded 

calcium sensor (GCaMP3), the activity of hESC-CM grafted cells was tracked in vivo 

suggesting successful electromechanical integration of grafted cells with host 

myocardium; however, graft-host coupling in injured hearts was notably heterogeneous.69  
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Similar results were observed in a later study employing hESC-CMs in a chronic non-

human primate model of ischemic cardiomyopathy.68  Here, an unprecedented number of 

hESC-CMs (1 billion) were delivered intramyocardially to macaques 2 weeks following 

ischemia-reperfusion injury.  According to the authors, hearts of hESC-CM recipient 

monkeys demonstrated significant re-muscularization of infarct regions which ranged 

from 0.7 to 5.3% (an average of 3% at 4 weeks and 1% at 12 weeks), comprising 

approximately 40% of the infarct volume.68 Despite the fact that hESC-CMs assumed 

only an immature phenotype, electromechanical junctions were evident among hESC-

CMs and host myocytes shortly after engraftment (2 weeks).  The authors showed 

evidence of electromechanical coupling whereby hESC-CMs exhibited regular calcium 

transients that synchronized with host electrocardiograms.  However, contrary to the 

guinea pig model where hESC-CMs afforded protection against arrhythmias69, increased 

incidence of ventricular arrhythmias was noted in primate that was given hESC-CMs.68  

Strong objections to the validity and applicability of the study by Chong et al.68 

were recently published.  In a commentary, Anderson and colleagues highlight notable 

issues of i.) small number of animals studied; ii.) small size of infarcts;  iii.) a lack of 

infarct size reduction compared to controls in the setting of claims of hESC-CM induced 

remuscularization; iv.) possible off target effects of the zinc finger nuclease methodology 

used for gene targeting of the Ca2+ indicator GCaMP3 that was utilized to assess 

electrical coupling; v.) a lack of assessment of cardiac functional parameters or electrical 

properties; vi.) increased prevalence of cardiac arrhythmias resulting from hESC-CM 

administration; vii.) a lack of long term follow-up to assess true myocyte regeneration 

which is characterized by permanent survival and terminal differentiation of engrafted 
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electrically coupled cells; viii.) a lack of sufficient assessment of teratogenicity of hESC-

CMs given that hESC-derived cells are intrinsically heterogeneous, and one cannot 

guarantee that no cells remain in an undifferentiated, pluripotent state and may therefore 

give rise to malignancies.70  Given the plethora of concerns70, 71, the use of such hESC-

CMs in humans and the conclusions of Chong et al regarding the utility of hESC-CMs in 

treating ischemic cardiomyopathy are untenable. Clear objections to the use of ESCs and 

ESC-derived cells have been made.71  

Despite the well-documented capacity of ESCs for cardiac differentiation, both 

ethical and biological concerns have prevented their use as a treatment modality in 

human patients. Specifically, because of their pluripotency and allogeneic nature, 

adoptive transfer of ESCs is plagued by teratoma formation72, 73 and graft rejection72, 

which essentially preclude the clinical use of these cells. In human clinical research, 

tolerance for even the possibility of tumor formation is zero.  Despite efforts to reduce the 

probability of this occurrence by various ESC manipulations, it is cannot be completely 

eliminated.  Therefore, no clinical trial of ESCs in cardiovascular disease has been 

conducted, as one neoplastic occurrence within a human trial subject would be sufficient 

to all but halt clinical investigation of ESCs for the foreseeable future. However, the 

recent emergence of induced pluripotent stem cells (vide infra), has provided an 

alternative that obviates one of the two major problems inherent in ESC-based therapies – 

graft rejection secondary to allogenicity. 

Induced pluripotent stem cells (iPSCs) 

Takahashi and Yamanaka were the first to produce a population of induced 

pluripotent stem cells (iPSCs) by transducing mouse adult fibroblasts with defined 
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transcription factors (OCT3/4, Sox2, c-Myc, and Klf4) (the “Yamanaka factors”).74, 75 

These iPSCs express ESC surface markers and exhibit morphology and growth properties 

similar to those of ESCs, essentially being reversely reprogrammed from a differentiated 

cell type with finite phenotype toward an undifferentiated ESC-like cell with clonal 

expansion, self-renewal, and multilineage differentiation capacities.74, 75 This discovery 

ultimately resulted in a Nobel prize in 2012.  Research evaluating the differentiation 

capacities of iPSCs demonstrated that the cardiogenic potential of iPSCs is very similar 

to that of ESCs, and that iPSC-derived cardiomyocytes possess functional properties 

typical of cardiac cells, such as spontaneous beating, contractility, and ion channel 

expression.76 Additionally, iPSCs have shown capacity to form endothelial and smooth 

muscle cells. Thus, iPSC-derived cell lines have quickly gained momentum for cardiac 

regenerative applications and multiple strategies have been employed using iPSCs and 

iPSC-derived cells to treat heart failure in preclinical models. 

In 2012, Gu and colleagues demonstrated the intramyocardial delivery of porcine 

iPSC-derived endothelial cells (piPSC-ECs) in murine infarct models yielded significant 

improvements in cardiac function via paracrine-mediated promotion of 

neovascularization and cardiomyocyte survival.77  Congruent with these studies, the 

administration of human iPS-derived mesenchymal stem cells (iMSCs) in a murine 

infarct model was shown to mitigate ventricular remodeling and preserve myocardial 

strain via paracrine-mediated promotion of neovascularization and parenchymal/stromal 

cell integration in infarcted regions.78  Thus, while iPS are heralded for their 

developmental potential, studies such as these suggest their salubrious effects on cardiac 

function are largely mediated through paracrine signaling mechanisms and not direct 
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functional integration with preexisting cardiac cell types.  Such principles have been 

mirrored in swine models of ischemia-reperfusion injury.79, 80  In said studies, human ES-

derived vascular cells (hESC-VCs) were epicardially delivered via a fibrin patch.  Patch-

enhanced delivery of hESC-VCs ameliorated contractile dysfunction and LV wall stress, 

as well improved myocardial perfusion in border zone regions.  Concomitantly, hESC-

VC delivery promoted the recruitment of endogenous c-kit+ cells to infarct zones.  

Further, cardiac improvements were correlated with enhanced myocardial energetics 

assessed via in vivo 31P magnetic resonance spectroscopy-2-dimensional chemical shift 

imaging.79  Shortly thereafter, a similar study was performed by the same group utilizing 

vascular cells derived from human iPSCs (hiPSC-VCs).80  Patch-enhanced delivery of 

hiPSC-VCs in a swine model of ischemia-reperfusion injury ameliorated ventricular 

structural and functional abnormalities, reduced infarct size, enhanced vascular density 

and border zone perfusion, as well as promoted the mobilization of endogenous c-kit+ 

cells to the injury site.  These combined effects had pronounced consequences on border 

zone physiology resulting in enhanced ATP turnover rates and improved contractility.   

The ability of ESC/iPSC-derived vascular cells alone to enhance myocardial 

bioenergetics, border zone contractility, and ventricular function in the face of acute 

injury was startling and left investigators wondering whether the introduction of 

additional cardiac cell types sourced from totipotent precursors would have an even 

greater impact on infarct dynamics and myocardial physiology following injury.  This 

was addressed in the most recent iPSC related study from the Zhang laboratory.81  Here, 

human iPSC-derived cardiomyocytes (CM), endothelial cells (EC), and smooth muscle 

cells (SMC) (totaling 6 million; 2 million per cell type)  ere simultaneously administered 
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intramyocardially in a swine ischemia-reperfusion injury model.  Cells were delivered in 

combination with a 3D fibrin patch infused with insulin growth factor (IGF)-encapsulated 

microspheres.  The results of this study showed improvements in ventricular function, 

infarct size, ventricular wall stress, vasculogenesis, and myocardial metabolism.  Further 

tri-lineage cell transplantation revealed integration of cells into host myocardial tissues, 

arterioles, and capillaries; the quantity of surviving transplanted cells was substantially 

greater when used in conjunction with the IGF-infused fibrin patch.  Just like what was 

suggested in previous studies utilizing ESC/iPSC-derived cell types, the molecular basis 

of the observed improvements in cardiac function and arteriole density, following their 

transplantation in infarct models, was credited to multiple paracrine mechanisms which 

could promote cardiomyocyte survival, neoangiogenesis, and cardiac repair.81                   

Although iPSCs hold great promise for cardiac regeneration, the transcription 

factors used to generate these cells (c-Myc, Oct4, and Klf4) are known oncogenes that 

may induce neoplastic transformation and tumor formation. Newer methods that involve 

only transient expression of the reprogramming factors rather than permanent over 

expression may circumvent this problem.82 Still, other problems with iPSCs include the 

extremely low efficiency of iPSC generation and the variability from one cell line to 

another due to issues such as viral transfection efficiency.83 Technical aspects of these 

phenomena remain outside the scope of the present report.  However, given the rapidity 

in which the technology in this field is evolving, it is possible that these hurdles will soon 

be overcome and iPSC-based approaches will become applicable for therapeutic use in 

the treatment of heart failure; at present, however, iPSCs have not proven ready for 

clinical application. Accordingly, alternative approaches to ESC-(vide supra) and iPSC-
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based therapies continue to be explored using autologous and allogeneic postnatal 

multipotent progenitors. 

 

Cell based therapies for heart failure: Cardiac cell populations 

Brief synopsis of fetal cardiomyogenesis and known cardiac progenitors 

The heart is the first functional organ formed during embryonic development, 

with cardiac progenitors specified in early gastrulation.  Three spatially and temporally 

distinct cardiac precursors have been identified by lineage tracing experiments in 

embryonic development: cardiac mesodermal cells, proepicardial cells, and cardiac 

neural crest cells.  These individual lineages have been established to give rise not only to 

specific cell types but also to regions of the mature heart.84-86  Understanding the 

specification of these lineages in forming the mature heart is crucial if insights into the 

residual progenitors’ capacity to contribute to the contractile, vascular, and interstitial 

compartments, as well as response to injury, are to be gained.  A brief synopsis of 

embryonic cardiac development is provided below.   

 Within the primitive streak, time-dependent differential co-expression of vascular 

endothelial growth factor receptor 2 (VEGR2, KDR, Flk-1) allows the divergence of 

hematopoietic and peripheral vasculature progenitors from the cardiovascular progenitors 

that give rise to the heart and central portions of the great vessels84, 85, 87-89. The latter are 

designated by up-regulation of the T-box transcription factors Eomesodermin (Eomes) 

and mesoderm posterior 1 (Mesp1).  These Mesp1+/Eomes+/KDR+ progenitors give rise 

to cardiac mesodermal cells that create the first and second heart fields (FHF, SHF) with 

thin endocardium and the proepicardium (PE)84, 85, 87-92. Cooperatively, these mesodermal 
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progenitors and their progeny form the near entirety of the adult heart.  The ectodermal 

originating cardiac neural crest cells also contribute to fetal cardiomyogenesis, but their 

contributions to the contractile compartment are thought to be minimal and, therefore, are 

not covered in this review.93-95  

FHF progenitors in the cardiac crescent are exposed to local cytokines and growth 

factors, which induce differentiation and up-regulation of essential cardiac regulators 

such as Nkx2.5, Tbx5, and GATA4, among others. These transcription factors induce 

commitment to myocyte lineage and sarcomeric protein expression.84, 85, 91, 92  Progenitor 

tracking and lineage tracing studies have shown that the progeny of the FHF eventually 

gives rise to the myocytes and some smooth muscle cells that predominantly make up the 

left ventricle and the two atria.  The endocardium may also arise from FHF progenitors as 

early simultaneous development is observed to form the primitive heart tube, although 

efforts are ongoing to further delineate early divergence of these two fields from one or 

more upstream progenitors.84, 85, 87, 93, 94, 96, 97  Subsequent to FHF commitment and 

formation of the primitive heart tube, the SHF progenitors, identified by the expression of 

Isl-1, Nkx2.5, and KDR, begin to proliferate and migrate, undergoing commitment and 

differentiation under the influence of local FGF, BMP, and Wnt signaling.  SHF 

progenitors have been shown to generate myocytes, some smooth muscle, and some 

endothelial constituents of the right ventricle and ventricular outflow tract.84, 85, 90, 98 

Importantly, these Isl-1+ progenitors have been found to lack c-kit and Sca-196, 99, 100, thus 

likely excluding this compartment as a source of residual myogenic progenitors having a 

c-kit+ phenotype.  
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At this stage of cardiac development, the myocardium of the first and second 

heart fields, possessing only a thin endocardial lining within the contorting primitive 

heart tube is essentially naked, lacking adventitia, perforating vasculature, or surrounding 

epicardium.84, 85, 101 These constituents have been traced to arise from  distinct 

proepicardial progenitor populations that express the transcription factors Wilms’ tumor 

protein (Wt1) and Tbx-1884-86, 93, 94, 102, largely giving rise to adventitial and smooth 

muscle lineages, as well as Scleraxis (Scx) and Semaphorin3D (Sema3D), giving rise to 

adventitia and some vascular endothelium not of endocardial origin.103  Some of these 

proepicardial progenitors have been found within endocardial cushions, areas well known 

to be formed by early endocardial progenitors.  This co-localization indicates that these 

two fields undergo intermigration, essentially cooperating to form the mature structures 

of the atrioventricular (AV) valves and cardiac septa through epithelial to mesenchymal 

transition (EMT).61, 104, 105  It is currently unclear whether these proepicardial populations 

stem from Isl-1+/Nkx2.5+ precursors of the SHF or are separately derived lineages.  

Tracing studies show that these progenitors migrate over the surface of the exposed 

myocardium, derived from the first and second heart fields, and form the epicardium and 

epicardium-derived cells (EPDCs). 84, 106-109 Once formation of the epicardium is 

complete, epicardial cells proliferate in a direction parallel to the basement membrane 

(BM), resulting in thickening of the epicardial lining, or perpendicular to the BM, 

undergoing epithelial to mesenchymal transition beginning around E12.5-13.5.  

Ultimately, penetrating mesenchymally-transitioned EPDCs, which populate the 

subepicardial region, migrate inward to form the coronary plexus (which later becomes 

the coronary vasculature, with contributions of endocardium-derived endothelial cells and 
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cardiac adventitial fibroblasts.84-86, 98, 104  Additionally, the epicardium and EPDCs are 

involved in septation and function to stimulate myocardial growth and myocyte division, 

specifically to aid formation of compact myocardium.  Endocardium-derived adventitia 

aids in forming the inner trabecular myocardium.60  

It has recently been suggested that EPDCs may generate cardiomyocytes in fetal 

development, but this is currently unresolved. Questions have been raised regarding the 

specificity of the initial model that used Tbx-18 for in vivo tracing of EPDCs.110, 111 

However, similar subsequent evaluation of EPDCs by Zhou et al using WT1 also 

suggested that EPDCs can in fact contribute to mature cardiomyocytes during fetal 

cardiogenesis although this was rare.109  The same group also performed tracing studies 

of WT1+ epicardial cells in adult mice but did not find that these cells contribute to 

cardiomyocytes or endothelium after infarction; lineage commitment after ischemic 

injury-induced epicardial activation was primarily limited to smooth muscle and 

adventitial cells.109  Importantly, the study did observe that epicardial activation did occur 

as a result of ischemic injury, leading to proliferation and migration of EPDCs into the 

damaged myocardium in a reparative role.  However, the aforementioned findings would 

support the concept that the differentiation capacity of WT1+ epicardial cells that persists 

into adulthood is less than that present in fetal development, because a more limited 

lineage commitment, restricted almost entirely to non-myocytes, was seen in adult 

mice.109 Scx/Sema3D+ cells were found to be a distinct population of proepicardial cells 

having only 33% overlapping co-expression of either WT1 or Tbx-18.  Scx/Sema3D+ 

cells were found to give rise predominantly to coronary endothelial cells and adventitial 

cells with some additional contributions to smooth muscle, and rarely cardiomyocytes in 
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the embryonic heart.103 This disproportionally low magnitude of cardiomyogenic 

potential mirrors that observed by the Zhou et al tracing study of WT1+ cells.109, 112  

Although initial studies in zebrafish suggested that activation of epicardial progenitors 

was responsible for cardiomyocyte replacement after injury, more recent work has shown 

that they act by inducing division of existing cardiomyocytes; epicardial cells were traced 

to give rise only to non-myocyte lineages in that model.86, 103, 113-116  The current 

consensus is that the direct contribution of EPDCs to the myocardium is minimal and that 

cardiomyocyte differentiation is a rarity among EPDCs, at least in the postnatal heart.86  

Recent studies of the origin of the endocardium, its formation, and its eventual 

contribution to mature cardiac lineages have found that its proportional contributions to 

mature lineages is similar to that attributed to proepicardium-derived cells. The 

endocardium arises very early in cardiac embryogenesis, simultaneously with the FHF, 

likely stemming from a common progenitor.  Endocardial cells have been shown to arise 

from Bry+/Flk-1+/Nkx2.5+ progenitors forming the primitive heart tube.101  These 

progenitors are distinct from hemangioblast precursors and are identified by a distinct 

expression profile (an E-cadherinlow, Flk1low, NF-ATc1+ phenotype).117 NF-ATc1 was 

found to be expressed exclusively in endocardium, providing a lineage specific marker 

that enables differentiation of the endocardium from other endothelial cell types.118  

Tracing and knockout studies performed by de la Pompa et al. demonstrated that 

endocardial cells not only contribute to a subset of cardiac endothelial cells, but also are 

integral to cardiac cushion formation, valvulogenesis, septation of the atria, ventricles, 

and aortopulmonary trunks, as well as to guiding myocardial trabeculation.101, 118 These 

processes are governed by EMT of endocardial cells (similar with respect to mechanism 
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and signaling pathways to that widely recognized to occur in EPDCs) that precipitates 

differential commitment to various mature cardiac lineages.104 The complex regulatory 

pathways underlying EMT of endocardial cells (as well as that of EPDCs) involve Notch, 

TGF beta superfamilies, SMADs, Wnt/β-catenin, and bone morphogenic proteins 

(BMPs) signaling among others. Comprehensive reviews of these signaling cascades 

have recently been published.104  NF-ATc1 null mice, which lacked endocardium and 

therefore endocardial contributions to cardiac morphogenesis, showed marked 

abnormalities in trunkal, valvular and septal formation which were ultimately 

embryonically lethal.  Interestingly, myocardial, adventitial, and most vascular 

endothelial compartments were found to be unaffected indicating that the endocardium 

does not contribute significantly to these compartments.101  Similarly, studies in Tie-

1/TEK(Tie2) null mice showed early embryonic lethality with impairment not only of 

endocardium formation but also of valvular and septal derivatives, and a lack of 

myocardial trabeculation.119 Interestingly, there was no impairment of early 

cardiomyocyte formation.119  It remains unclear, however, whether there are 

subpopulations of endocardial cells not defined by NF-ATc1 or Tie1/TEK expression that 

may contribute to these lineages.    

Cardiosphere-derived cells 

Cardiospheres were first described by Messina et al. in 2004.120 Using atrial or 

ventricular human biopsy samples and murine hearts, these authors identified a 

population of cells that grew as self-adherent clusters and showed ability to differentiate 

into cardiomyocytes, endothelial cells, and smooth muscle cells. Messina et al. termed 

these clusters “cardiospheres”. Cardiospheres were also able to be obtained from 
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percutaneous endomyocardial biopsy specimens. Cardiospheres were plated and 

expanded in vitro to yield cardiosphere-derived cells (CDCs)121. Cardiospheres and 

CDCs are a heterogeneous mixture of many different cell types, including cells that 

express endothelial (KDR [human]/ flk-1 [mouse], CD31), stem cell (CD34, c-kit, Sca-1), 

and mesenchymal (CD105, CD90) antigenic markers.120 Importantly, the precursor cell(s) 

that gives rise to cells capable of cardiosphere generation and CDCs has yet to be 

identified.  CDCs were reported to differentiate into electrically stable cardiomyocytes in 

vitro and, to promote cardiac regeneration and improved cardiac function when injected 

into a murine infarct model.121 Johnston et al. reported that intracoronary delivery of 

human CDCs in pigs with old MI resulted in cardiac regeneration, reduction in “relative” 

infarct size, abrogation of adverse LV remodeling, and improvement in ejection 

fraction.122  

One clinical trial has been conducted to date using CDCs in patients with ICM.  

The safety and efficacy of direct intramyocardial injection of CDCs and cardiospheres 

were compared in a porcine model of ICM.  Although CDCs and cardiospheres had 

equivalent effects on ejection fraction, the latter proved superior in improving 

hemodynamics, regional cardiac function, and reducing ventricular remodeling. This 

preclinical work was translated by Makkar et al. in a phase I, randomized trial 

(CADUCEUS) in patients with a recent myocardial infarction and LVEF≤45% but 

≥25%.123 Patients received an intracoronary infusion of escalating doses of autologous 

CDCs (12.5, 17.3, or 25 x 106 cells) or vehicle control with standard medical therapy.  

CDC-treated patients exhibited a 42% reduction in scar size (from 24% to 12% of the left 

ventricle), associated with an increase in viable tissue and regional systolic wall 
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thickening in the infarcted region. CDC therapy failed to increase ejection fraction, 

reduce LV volumes, or improve heart failure functional class or quality of life as assessed 

by standard questionnaire.123 Further studies utilizing CDCs/cardiospheres are currently 

underway.  

C-kit positive cardiac progenitor cells 

The observation of sex mismatched cardiomyocytes of recipient origin in donor 

hearts led to the conclusion that cells circulating in the peripheral blood, likely 

originating from the bone marrow, engraft and transdifferentiate into integrated, 

functional cardiomyocytes.124  Several studies of unfractionated bone marrow and bone 

marrow-derived mesenchymal stem cells (MSCs) have shown beneficial effects, but 

differentiation of these cells into cardiomyocytes seems unlikely125, 126; more likely 

mechanisms include paracrine actions and/or cell fusion of cardiomyocytes and bone 

marrow derived cells.125-127  Importantly, evidence of cardiomyocyte division, coupled 

with carbon-14 labeling studies, has led to the recognition that there is cardiomyocyte 

turnover in the adult heart, fueling the search for a cardiac stem cell compartment that is 

innately endowed with cardiomyogenic potential.128, 129    

In 2003, Beltrami et al. reported the discovery of resident c-kit+ cardiac cells 

(CSCs) that were able to give rise to all cardiac lineages including cardiomyocytes.130 

The initial discovery was based on the presence of the c-kit receptor on hematopoietic 

progenitors; it was postulated that the presence of c-kit may identify a cardiac population 

of myocardial progenitors similar to that of the hematopoietic compartment.130  In fact, 

this is what Beltrami and colleagues found.  They observed co-localization of c-kit with 

Nxk2.5, GATA-4 (transcription factors active in cardiomyogenesis), and Ki-67 (a nuclear 
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antigen associated with cell division) but not with mature sarcomeric proteins, suggesting 

a precursor cell, i.e., a proliferating cell that is apparently committed to cardiac lineage 

but lacks a mature phenotype.  The absence of the hematopoietic markers CD34 and 

CD45 indicated that the cells were not immediately from the bone marrow, and were 

therefore intrinsic to the heart. Therefore, it was concluded that the c-kit+ cardiac cells 

were derived from the embryonic cardiac compartments that give rise to the adult 

myocardium.130      

Since the c-kit receptor plays an important role in prosurvival and pro-

proliferative signaling, the c-kit+ phenotype may represent an intermediate progenitor, 

derived from an upstream c-kit-, more undifferentiated cardiac progenitor in which c-kit 

expression increases in conjunction with cell cycle entry and differentiation.  This 

remains a conjecture, however, as direct observation of this is currently lacking, although 

it is extremely probable.  Beltrami and colleagues also alluded to this possible hierarchy 

in their report of c-kit+ cardiac cells, which were found to largely coexpress Nkx2.5.130 

This postulated upstream resident progenitor in the heart has yet to be identified. 

Evidence of a similar phenotypic progression, now widely accepted, was observed in the 

bone marrow with the isolation in 2003 of c-kit- hematopoietic stem cells, which were 

found to give rise to c-kit+ intermediate phenotypes that ultimately were able to 

reconstitute all mature hematopoietic lineages.131 

Over the last decade, conflicting results have been obtained with respect to the 

cardiomyogenic ability of c-kit+ cardiac cells. In vitro, differentiation of cells from adult 

hearts into mature beating cardiomyocytes has not been reported although expression of 

some sarcomeric proteins has been found 130, 132, 133. In vivo, reports of adult 
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cardiomyocyte formation 130, 132, 134-138 have not been reproduced by several other labs 9, 

10, 139-146. Whether this discrepancy is caused by differences in source (fetal and/or 

neonatal cells vs. adult cells), or culture, isolation, or expansion conditions remains to be 

determined.   

Nevertheless, the ability of human and rodent c-kit+ cardiac progenitor cells to 

ameliorate left ventricular dysfunction and pathologic remodeling and promote 

regeneration has been repeatedly demonstrated by several laboratories in various 

preclinical animal models of acute myocardial infarction.132, 141-143, 145-147 Intramyocardial 

injection of c-kit+ cardiac progenitor cells within the border zones of an infarct 20 days 

after a permanent coronary occlusion in rats resulted in attenuation of LV dilation and 

preservation of LV function.147 Additionally, Tang et al.145 demonstrated that 

administration of CPCs is effective in regenerating cardiac tissue and alleviating post-

infarction LV remodeling and dysfunction when these cells are infused intracoronarily in 

the setting of chronic ICM produced by a temporary coronary occlusion followed by 

reperfusion. One month after coronary occlusion/reperfusion, rats received an 

intracoronary infusion of vehicle or EGFP-labeled cells. Notably, CPC-treated rats 

exhibited more viable myocardium in the risk region, less fibrosis in the noninfarcted 

region, and improved LV function. Interestingly, the number of EGFP+ cells expressing 

markers of cardiogenic commitment was too small to account for the augmentation of LV 

function (EGFP+ cells accounted for only 2.6±1.1% of the region at risk and 1.1±0.4% in 

the noninfarcted region). In short, CPCs did not survive, engraft, or differentiate into 

mature cardiac phenotypes within the myocardium.145 These observations suggest that the 

important mechanism whereby CPCs generate their beneficial effects was likely a 
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paracrine action of donor cells on the endogenous myocardium with secretion of 

cytokines/growth factors locally.  Also, induction of endogenous CPC proliferated and 

differentiated into adult cardiac cells was indicated by the finding that the pool of 

endogenous CPCs expanded to a greater degree in CPC-treated than in control rats.145 

Similar results were obtained with intracoronary infusion of autologous CPCs into a 

large, clinically-relevant porcine model of ICM in which pigs underwent a 90-min 

coronary occlusion followed by reperfusion.139 Intracoronarily delivered stem cells to the 

infarct-related artery using the stop-flow technique produced an increase in ejection 

fraction and systolic thickening fraction in the infarcted left ventricular wall, as well as a 

decrease in left ventricular end-diastolic pressure (LVEDP) and an increase in left 

ventricular dP/dtmax in pigs with old infarcts.139 The encouraging results of these studies 

of intracoronary CSC infusion in the setting of an old MI laid the groundwork for 

SCIPIO, the first clinical trial of c-kit+ CPCs.139, 148 

Because of encouraging results of both preclinical and clinical studies, c-kit+ 

cardiac progenitor cells have emerged as one of the most attractive cell types for 

therapeutic application. At the preclinical level, numerous studies conducted by many 

independent laboratories in a wide variety of animal models of ischemic cardiomyopathy 

have consistently documented salubrious effect of exogenous c-kit+ cardiac progenitor 

cells on left ventricular function and structure, including evidence of regeneration of dead 

myocardium. At the clinical level, a small phase I study (the SCIPIO trial) has 

documented the safety of autologous c-kit+ cardiac cell administration in patients with 

ischemic heart failure.148 Although SCIPIO was not designed to assess efficacy, its results 

suggest that c-kit+ cells may impart beneficial effects on left ventricular function, quality 
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of life, functional class, and infarct size, providing a rationale for larger trials aimed at 

determining efficacy.  Such trials will undoubtedly utilize larger dose(s) of cells than was 

administered to patients within the SCIPIO trial (just 1 million).148 However, no studies 

have evaluated the safety of escalating doses of cells delivered intracoronarily, which 

could have adverse effects such as embolization and resultant myocardial ischemia.  Such 

an event could be catastrophic to already structurally and functionally compromised 

hearts damaged from prior infarction.  

 

Dissertation Research: Overview 

With the work contained in this dissertation, in addition to providing the above 

broad review of clinically relevant past and present cell based therapeutic approaches, I 

sought to expand current modalities of cell based therapies in the treatment of ischemic 

heart failure through discovery and evaluation of novel cardiac cell types and expansion 

of applications of existing approaches using intracoronarily delivered c-kit+ cardiac 

progenitor cells. I evaluated the safety of larger doses of intracoronarily administered c-

kit+ cardiac progenitor cells as well as their intracardiac retention post intracoronary 

delivery within a clinically relevant porcine model of chronic ischemic cardiomyopathy. 

Such data are immediately relevant and translatable to the design of human clinical trials 

utilizing c-kit+ cardiac progenitor cells (CPCs).  Data demonstrating this fact are included 

in two recently published peer reviewed publications and were also presented at the 2015 

Scientific Sessions of the American Heart Association annual meeting by Dr. Roberto 

Bolli.  These data directly aided in the design of the phase I/II clinical trial CONCERT 

that has recently initiated enrollment.  In addition, I provide data related to the discovery, 
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characterization, and therapeutic potential of a novel population of postnatal cardiac 

progenitors, possibly hierarchically related to c-kit+ cardiac progenitor cells, that 

residually express embryonic stem cell associated antigens and are not yet described 

within the literature.  Accordingly, some of the data represented herein remain 

unpublished and highly confidential.  These data will be prefaced in much more detail 

throughout the manuscript (vide infra).   

Hypothesis and Research Aims   

Hypothesis: 

A. The present research seeks to empirically examine the safety of high dose 

intracoronary administration of cardiac stem cells within a porcine model to provide 

relevant information to the design of future clinical trials of cell-based therapy for 

myocardial repair.  B. Additionally, the research seeks test the validity of and provide 

rational for or against the use of the Stop-flow technique during intracoronary infusion 

based on the dogma that Stop-flow is necessary for improved cardiac retention of cells 

post infusion by abrogation of downstream cellular washout.  C. Finally, the research 

seeks to ascertain whether additional populations of cardiac progenitors that may express 

stage-specific embryonic stem cell associated antigens (SSEAs), previously alluded to 

exist within the rodent myocardium), may be found within the human heart.  Could such 

cells be isolated from the human heart, expanded in vitro, and utilized for myocardial 

repair after ischemic injury thus providing an new target cell type to be utilized in future 

human clinical trials  in patients with ischemic heart failure.  

Aims:    

1.  Measure and compare intramyocardial retention of intracoronarily infused  
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CPCs with vs without utilization of coronary stop-flow conditions via radiolabel  

tracking of cell distribution.    

2.  Determine safety of high dose intracoronary CPC administration via  

assessment of myocardial damage/injury via measurement of temporal cardiac  

biomarker release as well as functional parameters measured by 2D  

echocardiography over 1 month following intracoronary infusion. Additionally,  

determine safety of high dose CPC administration related to clinical indices of  

systemic organ function, namely hepatic and renal function.  

3.  In clinically relevant human right atrial appendage samples obtained from  

open heart surgeries, determine if there are intramyocardial populations  

expressing Stage-specific Embryonic Antigens-3&4 that may indicate existence  

of a yet undescribed cardiac progenitor pool. Additionally, characterize this  

population and ascertain in vitro differentiation capacity to possibly relate it to  

one or more embryonic cardiomyogenic compartments.  Finally, determine  

reparative potential of such cells in a model of ischemic cardiomyopathy.  

 

Hypothesis and Aims Summary: 

I hypothesized that higher doses of c-kit+ CPCs delivered intracoronarily in pigs 

with prior infarctions would be safe and not result in myocardial damage via embolic 

phenomena. Furthermore, I hypothesized that intracardiac retention of intracoronarily 

delivered c-kit+ CPCs would be very low, indicating that the salubrious effects observed 

in prior studies were imparted by only a small fraction of the administered dose.  In aim 

1, I utilized indium-111 radiolabeling and nuclear gamma camera imaging to localized 
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the anatomic site of cell deposition/retention and quantify the intracardiac retention of 

cells 24 h post administration to confirm that only a small fraction of cells are actually 

retained within the heart and are responsible for beneficial effects irrespective of any 

attempt to maximize cell retention by coronary stop-flow. In aim 2, , I demonstrated that 

there was no release of cardiac biomarkers or decline in cardiac function indicative of 

myocardial injury after intracoronary administration of 20 million c-kit+ CPCs thus 

confirming safety of doses higher than that previously using in clinical trials to date.    A 

comprehensive review of the literature related to the possible origins of c-kit+ CPCs led 

me to hypothesize that there were yet unidentified upstream progenitors within the heart 

that may give rise to c-kit positive intermediate phenotypes during differentiation. I 

hypothesized that these primitive cells may retain characteristics typical of other 

undifferentiated primitive cells, specifically embryonic stem cell associated antigens that 

may aid in identification and isolation.  In aim 3, I successfully identified cardiac cells 

expressing stage-specific embryonic antigen (SSEA) – 3, demonstrating a partial 

overlapping phenotype with c-kit expression in vivo, and that SSEA-3+ cells possess 

therapeutic utility in the treatment of ischemic cardiomyopathy after isolation and in vitro 

expansion.  
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CHAPTER II 

 

EFFECT OF THE STOP-FLOW TECHNIQUE ON CARDIAC RETENTION OF C-KIT 

POSITIVE HUMAN CARDIAC PROGENITOR CELLS AFTER INTRACORONARY 

INFUSION IN A PORCINE MODEL OF CHRONIC ISCHEMIC 

CARDIOMYOPATHY  

 

Introduction 

Since their initial discovery and characterization130, c-kit+ (c-kitpos) cardiac 

progenitor cells (CPCs) have emerged as a promising modality in the treatment of 

ischemic cardiomyopathy.  Preclinical studies conducted over the last decade have 

reproducibly demonstrated the capacity of in vitro expanded c-kitpos cardiac cells to 

induce myocardial repair and functional recovery.8 These observations led to the Cardiac 

Stem Cell Infusion in Patients with Ischemic CardiOmyopathy (SCIPIO) phase I clinical 

trial, which demonstrated the safety and feasibility of intracoronary delivery of c-kitpos 

CPCs in humans.148  Recently, the safety of even larger doses (up to 20 million in vitro 

expanded c-kitpos CPCs) has been demonstrated in a porcine model and will be discussed 

later (vide infra). 

In SCIPIO148, as well as in almost every trial of intracoronary cell infusion 

performed to date, the cells were delivered with the stop-flow technique149-151; that is, an 

intracoronary balloon was inflated to stop flow within the coronary artery and prevent 

rapid wash out of the cells, thus, in theory, promoting greater cell retention by enhancing 

vascular adhesion and extravasation into the surrounding myocardium.  This approach is  
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being used in most ongoing and planned clinical trials in which cells are infused 

intracoronarily.  Although theoretically attractive, however, the stop-flow technique has 

not been shown to be superior to non-occlusive cell delivery in terms of cell product 

retention. The stop-flow technique is potentially hazardous152, 153, and therefore 

constitutes an impediment to the widespread use of cell therapy in patients with 

cardiovascular disease, particularly when, as is often the case in chronic ischemic 

cardiomyopathy, the culprit coronary arteries targeted for cell delivery are not stented.  

Manipulation of a non-stented coronary artery with an intraluminal balloon under 

pressure carries a significant risk of vascular damage, coronary artery dissection, and 

even life-threatening arterial perforation and rupture.152  In addition, the interruption of 

coronary flow may elicit myocardial injury, either directly from epicardial coronary 

artery occlusion or by distal microembolization of dislodged atherosclerotic plaque 

material154, 155, and may cause arrhythmias in already dysfunctional hearts.  Again, this 

issue is particularly relevant to patients with ischemic cardiomyopathy, whose targeted 

coronary arteries or bypass grafts are often not protected by stents. 

Given the seriousness of the aforementioned complications, objective evidence of 

improved cell retention is essential to justify subjecting patients to increased procedural 

risks in future clinical trials involving intracoronary administration of cell-based 

products. However, as mentioned above, despite the widespread assumption that the stop-

flow technique promotes improved extravasation and cardiac retention of cells, no studies 

have evaluated the utility of the technique using c-kitpos CPCs or any cardiac-derived cell. 

Accordingly, we addressed this issue in a clinically relevant porcine model of ischemic 

cardiomyopathy in which we measured the cardiac retention of 10 million indium-111 
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oxine radiolabeled c-kitpos CPCs infused with or without the stop-flow technique. 

Additionally, this study allows determination of the effective intracardiac retention of 

CPCs that resulted in the salubrious effects of intracoronarily delivered CPCs observed in 

the SCIPIO trial.148 

Methods 

Ethics Statement 

This study was carried out in strict accordance with the Guide for the Care and 

Use of Laboratory Animals of the National Institutes of Health and the guidelines of the 

Animal Care and Use Committee of the University of Louisville (KY) School of 

Medicine following the guidelines set forth by the 1996 Guide for the Care and Use of 

Laboratory Animals.. The protocol was approved by the Institutional Animal Care and 

Use Committee (IACUC) of the University of Louisville (IACUC number: 12114).  

The experimental protocol is illustrated in Fig. 1. 
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Figure 1. Stop-flow study experimental protocol and timeline.  
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Human c-kitpos CSC isolation and flow cytometry 

 Isolation, immunomagnetic selection, and flow cytometric analysis of c-kitpos 

hCPCs was performed as previously described.139, 156  Briefly, human right atrial 

appendage specimens (RAAs) were obtained with Jewish Hospital Institutional Review 

Board (IRB) approval (IRB number 07.0062) from patients undergoing open-heart, on 

pump, coronary artery bypass surgery at Jewish Hospital in Louisville, Kentucky.  All 

patients were between 40 and 80 years of age, so as to approximate the ages of patients in 

the recently conducted SCIPIO trial.148  RAAs were washed several times with PBS and 

were minced to obtain fragments < 1mm3.  The tissue fragments were underwent 

multiple rounds of enzymatic digestion.  Isolated cells were plated in a 6-well plate for 

passage 0 initial expansion.  Passage 1 cells were sorted for c-kit with anti-CD117 

Miltenyi microbeads and a Miltenyi magnetic sorting apparatus per manufacturer’s 

specifications.  Positively selected cells were expanded exponentially over 3-4 additional 

passages to obtain 2-3 x 107 cells per patient.  Multiple patients’ cells were pooled to 

obtain a uniform cell product that was radiolabeled and infused intracoronarily into pigs.  

Cells were assessed for c-kit positivity by flow cytometric analysis at passage 3 after 

fixation and labeling with c-terminal specific Santa Cruz C19 rabbit polyclonal IgG anti-

human c-kit antibody and secondary antibody, a FITC or APC conjugated Invitrogen 

donkey anti-rabbit IgG versus isotype control using a BD LSR flow cytometer.  BD LSR 

DIVA software was used for final analysis of c-kit positivity.   

Cell product generation and indium-111 oxine radiolabeling 

In vitro expanded c-kitpos CPCs were trypsinized and washed with sterile PBS and 

resuspended in Plasmalyte-A solution with ~750 µCi indum-111 oxine, purchased from 
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Cardinal Health, Nuclear Pharmacy Services in Louisville, Kentucky, for 20 min at 37°C 

with 5% CO2. A Capintec CRC-15R Radioisotope Dose Calibrator was used to conduct 

all radioactivity measurements.  After 20 min, the cells were washed twice in 10 mL of 

cold Plasmalyte-A to remove unbound radioisotope.  The cells were resuspended in 1-2 

mL of Plasmalyte-A for final cell count and viability by hemocytometer and Trypan blue.  

A final radioactivity measurement was made to assess percent radiolabeling efficiency.   

 After the intracoronary infusions were completed, tubes, catheters, plastic ware, 

and other materials that had come into contact with the radiolabeled cells were taken back 

to the dose calibrator for radioactivity measurement.  The residual radioactivity was 

subtracted from that of the labeled cell product to obtain the radioactivity of the cell 

product that was administered intracoronarily.  This number was recorded and utilized for 

all subsequent calculations of cardiac cellular retention.  

Radiolabeling efficiency 

 Radiolabeling efficiency was defined as the ratio between the final radioactivity 

of the cell product prior to infusion and the initial dose of indium-111 to which the cells 

were exposed.  

Adjustments for diffusive loss of Indium-111 oxine over the 24 h follow-up and 

calculation of cardiac radioactivity 

 Diffusion of unbound indium-111 oxine out of labeled cells continues over time, 

and this may lead to potential underestimation of cell retention.  Similar observations 

have been made in prior studies.157   

Experiments were performed in triplicate. Ten million cells were radiolabeled 

with indium-111 oxine as described and placed in 5 mL serum-free Ham’s F12 medium 
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for 24 h with periodic media changes. Media was completely changed every 4 h to 

maintain a high diffusive gradient similar to that which occurred in vivo after cell 

infusion.  Extreme care was taken to avoid loss of cells.  After 24 h, cells were 

centrifuged and the cell pellet assessed for radioactivity.  Diffusive loss was quantified as 

percent of expected radioactivity after accounting for radioactive decay over the 24 h 

incubation period.  A correction factor was generated by dividing 100 by this observed 

percent of theoretical maximum radioactivity, so as to account for all infused cells and 

avoid underestimation of intracardiac retention at 24 h.   

The radioactivity measured in all cardiac segments was adjusted according to the 

correction factor (3.52) to obtain the corrected radioactivity for each cardiac tissue 

specimen.  All radioactivities were then summed to obtain the total radioactivity of each 

heart.  This total corrected cardiac radioactivity was divided by the expected maximum 

radioactivity of the infusate (adjusted for time dependent decay) to obtain the percent 

retention of the intracoronarily delivered indium-111 oxine labeled cell product. 

Animal procedures  

Female Yorkshire pigs (39.8 ± 5.2 kg, age 12-18 weeks) were sedated using a 

cocktail of ketamine (20 mg/kg, i.m.) and xylazine (2 mg/kg, i.m.), intubated, and 

mechanically ventilated with 100% oxygen.  Anesthesia was maintained with 0.8-1.5% 

isoflurane.  A femoral artery cut-down was performed and an 8F arterial sheath was 

placed; a 7F Hockey-stick guide catheter was advanced to the left coronary ostium.  An 

angioplasty balloon catheter was positioned in the left anterior descending (LAD) 

coronary artery at a site distal to the first diagonal branch, after which the pigs were 
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subjected to a 90-min LAD coronary occlusion followed by reperfusion by inflation and 

deflation of the balloon, respectively (Fig. ).   

One to two months (45.3 ± 4.5 days) after MI, the pigs were reanesthetized.  An 

angioplasty balloon catheter was placed in the LAD at the site of the previous occlusion. 

Indium-labeled hCSCs were administered with four infusions, each consisting of 3 ml 

over 30 s, with or without concurrent 3-min balloon inflation.  In the pigs with balloon 

inflation, five cycles of 3-min balloon inflation/3-min deflation were performed. The aim 

of the first cycle, which was performed without infusing cells, was to increase 

microvascular permeability in the distal myocardium; during the following four cycles, 

hCPCs were infused into the coronary artery as described above.  In the pigs without 

balloon inflation, hCPCs were infused four times; each infusion lasted 30 s and the four 

infusions were interspaced with intervals of 5 min and 30 s (Fig. 1). 

Twenty-four hours after hCPC administration, the pigs were euthanized and 

various organs (heart, lung, liver, kidney and spleen) were harvested for analysis. 

Immunosuppressive therapy 

Pigs received 15 mg/kg/day of oral cyclosporine (Novartis) orally starting 3 days 

before cell infusion and continuing until euthanasia.   

Echocardiography 

Echocardiograms were obtained at baseline (before the induction of infarction) 

and again 30 d later (prior to radiolabeled hCPC intracoronary infusion) using an HP 

SONOS 7500 ultrasound system (Philips Medical Systems) equipped with a HP 21350A 

(S8) 3.0-8.0 MHz sector array ultrasound transducer. Briefly, pigs were anesthetized and 

placed in the left lateral decubitus position. Temperature was kept between 37.0°C and 
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37.5°C with a heating pad. The parasternal short-axis view was used to obtain 2D and M-

mode images.148  Systolic and diastolic anatomic parameters were obtained from M-mode 

tracings at the mid-papillary level. Digital images were analyzed off-line by a single 

blinded observer using the ComPACS Review Station (version 10.5) image analysis 

software (Medimatic, Las Cruces, NM 88004, USA) according to the American Society 

of Echocardiography standards.158   

Nuclear imaging and cardiac radioactivity measurements 

 Perfusion fixed porcine hearts were subjected to nuclear imaging and radioactivity 

measurements.  After whole heart nuclear imaging with Picker Prism 2000 XP nuclear 

gamma camera, hearts were bread-loafed into five slices of equal thickness from the apex 

to the base; each slice above the apex was then subdivided into three regions: right 

ventricle, left ventricular free wall, and septum.  The base was divided into right and left 

sections.  The right and left atria were sectioned and placed into independent containers. 

The proximal portions of the great vessels were removed and placed together into another 

container.  All specimens were measured with a Capintec CRC-15R Radioisotope Dose 

Calibrator and the anatomic regions were combined to create a regional distribution of 

radioactivity.  The radioactivity in all regions was then combined to obtain the total 

radioactivity in each heart. The same dose calibrator was used throughout the study.  

Statistics 

 Student’s t-test , one-way ANOVA, or two-way repeated measures ANOVA, as 

appropriate, was employed for comparisons of echocardiographic parameters, 

radioactivities, and cell retention between groups.  All data are reported as means ± SEM.   
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Results 

Flow cytometric analysis 

 Flow cytometric analysis for c-kit expression was performed for seven cell lines 

at early passage as described (c-kit positivity ranged from 72.6% to 90.8%). The mean c-

kit positivity of the cells utilized for the study as assessed by standard protocol was 

81.6±7.0% compared with isotype control (Fig. 2A).   
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Figure 2. C-kit positivity, cell product radioactivity, radiolabeling efficiency, cell 

product viability, cell number, and diffusive loss of indium-111 oxine. A. C-kit 

positivity of individual cell lines is illustrated by black bars, with mean positivity shown 

in white. C-kit positivity ranged from 72.6% to 90.8% with mean c-kit positivity of 

81.6±7.0%. Cell lines were combined to obtain a homogenous cell product.  B. Mean 

final cell product radioactivity of cells infused with continuous flow [Stop-flow (-)] or  

stop-flow [Stop-flow(+)]. C. Indium labeling efficiency of cells administered with or 

without stop-flow. D. Mean cell viability, assessed by Trypan blue, before (black bars) 

and after (white bars) radiolabeling. E.  Number of radiolabeled hCSCs in each group. 

All values are mean±SEM. 
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Final cell product radioactivity, labeling efficiency, cell viability, and cell number 

 Final radioactivity and radiolabeling efficiency were calculated for all cell 

products prior to intracoronary infusion.  No significant difference between cell products 

was observed with regard to the final mean radioactivity (Fig. 2B) (635±74.28 µCi in the 

continuous-flow group vs. 661±63.28 µCi in the stop-flow group) or mean labeling 

efficiency (Fig. 2C) (81.0±8.4% in the continuous-flow group, 84.5±9.8% in the stop-

flow group).  

Cell viability, measured by hemocytometer and Trypan blue, declined in both 

groups as a result of indium-111 oxine radiolabeling. However, no significant difference 

was observed in the viability of the cell products between the continuous-flow 

(85.0±0.81%) and the stop-flow (83.0±0.78%) groups (Fig. 2D). Similarly, there was no 

significant difference with respect to the final numbers of cells infused intracoronarily 

between the continuous-flow (10.1±0.41 x 106 cells) and the stop-flow (9.83±0.25 x 106 

cells) groups (Fig. 2E).   

Echocardiographic analyses 

 Baseline left ventricular (LV) ejection fraction (EF) was not significantly different 

between the continuous-flow group (74.35±4.09%) and the stop-flow group 

(71.16±4.11%) (Fig. 3).  At 30 days after infarction, there was a significant decline in 

both the continuous-flow group (44.57±6.75%) and the stop-flow group (37.79±6.77%).  

The decline in ejection fraction did not differ significantly between the continuous-flow 

and stop-flow groups (P=0.49).  
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Figure 3. LV ejection fraction.  Echocardiographic analyses were performed at baseline 

and again 30 d after infarction prior to intracoronary radiolabeled hCSC delivery to 

measure ejection fraction. Ejection fraction at 30 d after infarction was not significantly 

different between groups indicating similar degree of myocardial injury and functional 

decline (P=0.49).   
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Nuclear imaging 

 Myocardial nuclear imaging was performed to visualize the distribution of 

radioactivity and, indirectly, cell retention.  As expected, cell (radioactivity) retention 

was observed in the distribution of the mid-distal LAD within the apical, anteroseptal, 

and anterolateral regions (Fig. 4).  
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Figure 4.  Nuclear imaging of hCSC retention. Cell retention was assessed by 

radioactivity and visualized by whole heart nuclear imaging. Radioactivity was observed 

in the distribution of the LAD, specifically, in the anteroseptal, anterior, and anterolateral 

walls of the left ventricle.  Areas of high radioactivity and cell retention are identified by 

the bright orange coloration while areas with no or low radioactivity are identified by 

blue/purple coloration.   

  



47 
 

Cardiac retention of hCSCs  

 Measurements of total cardiac radioactivity demonstrated that the stop-flow 

technique did not result in significantly higher retention of hCPCs at 24 h compared with 

the continuous-flow technique (5.41±0.80% vs. 4.87±0.62% of initial radioactivity, 

respectively, P=0.61) (Fig. 5).  Regional retention was also not significantly different 

between stop-flow vs. continuous-flow (right ventricle: 1.60±0.30% vs. 1.02±0.15%, 

respectively, P=0.12;  LV septum: 1.88±0.43% vs. 1.81±0.33%, P=0.91; LV anterolateral 

wall: 1.17±0.37% vs. 1.10±0.17%, P=0.87; LV apex: 0.23±0.05% vs 0.31±0.11%, 

P=0.56; right atrium:  0.10±0.03% vs. 0.11±0.02%, P=0.81; left atrium: 0.10±0.02% vs. 

0.12±0.03%, P=0.61; base: 0.33±0.38% vs 0.39±0.13%, P=0.71) (Fig. 5).  
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Figure 5.  Myocardial hCSC retention at 24 h. Illustrated is the regional distribution of 

radioactivity in the continuous-flow (black) and stop-flow (white) groups. There was no 

significant difference in regional or total radioactivity (cell retention) between the 

continuous-flow (4.87±0.62%) and the stop-flow (5.41±0.80%) groups (P=0.61). 
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CSC distribution in noncardiac tissues 

 In all pigs, three small samples of lung, liver, kidney, and spleen were assessed 

for radioactivity.  Radioactivity was highest in the lung (17.48±0.11% of initial dose), 

followed by the liver (9.52±0.51 of initial dose), kidney (3.08±0.43%), and lastly spleen 

(0.26±0.06%).  Radioactivity was highly variable in different regions of the same organ.   

Discussion 

This study simultaneously addressed three fundamental questions regarding 

intracoronary infusion of c-kitpos hCPCs: i) what fraction of hCPCs is retained in the heart 

24 h after intracoronary infusion?, ii) what may have been the effective dose of CPCs 

responsible for the indications of function benefits observed in the SCIPIO trial? and iii) 

is the stop-flow technique superior to continuous-flow in promoting cardiac retention of 

hCPCs? That is, is the increased risk of procedural complications associated with balloon 

inflation justified by increased hCPC retention?  Our results indicate that, in pigs with an 

old myocardial infarction, intracoronary infusion of hCPCs without coronary occlusion is 

equivalent to intracoronary delivery utilizing the stop-flow technique in terms of cardiac 

hCPC retention at 24 h.  It may also be reasonably inferred that ischemic preconditioning 

with intermittent balloon inflation/deflation, which has been shown to confer 

cardioprotective effects155, does not affect cardiac retention of CPCs, thus eliminating 

this confounder in studies in which cell therapy has shown benefit when true stop-flow 

was utilized in the treatment group but was withheld in the vehicle control group to 

minimize risk of complication.  With either method, we found that only ~4-5% of the 

infused hCPCs remained in the heart 24 h after intracoronary delivery. To our 

knowledge, this is the first head-to-head comparison of cardiac retention after 
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intracoronary delivery of hCPCs (or any cardiac-derived cell) using continuous flow vs. 

stop flow.  

Previous studies have examined the retention of various stem/progenitor cell types 

using various routes of administration, such as intravenous, intracoronary, and 

transmyocardial injections, in clinical and preclinical models.52, 141, 159-165 However, 

studies that specifically compared cell product retention under continuous-flow and stop-

flow conditions have been limited to bone marrow cells, and most have infused cells after 

acute myocardial infarction.159, 162, 164  Doyle et al159 infused 18F-FDG-labeled BMCs 

intracoronarily in pigs after acute myocardial infarction and observed that a single dose 

of cells given with continuous flow was superior to repeated infusions with stop-flow 

with respect to cardiac retention 1 hour later.  Tussios et al164 infused indium-111 oxine-

labeled BMCs intracoronarily into pigs and found no difference in cardiac retention at 

both 1 h and 24 h after infusion comparing the two techniques.  Perhaps of greater 

relevance, Musialek et al. infused 99Tc-extametazime-labeled bone marrow CD34+ cells 

in patients 6-14 days after acute myocardial infarction under continuous and stop-flow 

conditions; they found equivalent cardiac retention (~ 5%) with both techniques at 36-48 

h after infusion162, which is similar to the results of the present study.  Our study differs 

from the aforementioned preclinical studies in that we evaluated cardiac-derived cells and 

used a model of old myocardial infarction (scar), which is more relevant to the clinical 

use of cardiac-derived cells.   

Analysis of various cardiac regions showed that there were no significant 

differences in the distribution of indium-111 oxine-labeled hCPCs between the two 

infusion techniques (Fig. 5). The overall retention of cells observed at 24 h (~4-5%) was 
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comparable to that observed in previous preclinical and clinical investigations using a 

variety of cell types.26, 52, 141, 160, 162, 163, 165-167 Therefore, intracardiac retention may be 

more related to route of administration rather than cell type whether intrinsically native 

heart or from extra-cardiac organs.  We found a relatively high level of radioactivity in 

the apical portions of the right ventricular wall (Fig. 5).  This observation can be 

accounted for by the fact that, in the pig, an accessory arterial branch originating from the 

distal LAD supplies the apical portions of the right ventricle.168, 169 Radioactivity 

measurements of noncardiac organs indicated that the highest deposition of CPCs after 

intracoronary infusion is in the lungs followed by liver, kidneys, and spleen.    

 The specific protocol for the stop-flow technique (one 3-min occlusion without 

cell infusion followed by four 3-min occlusion/3-min reperfusion cycles) was chosen 

because it is the same protocol that was used in the SCIPIO trial. The infusion of 

radiolabeled cells made it impossible to perform histologic analysis of the myocardium, 

because of the prolonged decay period of indium-111 oxine and attendant safety 

concerns. We were unable to ascertain whether remaining CPCs were adherent to walls 

of the microvasculature or had extravasated into the myocardium.  To verify that the 

magnitude of damage produced by coronary occlusion/reperfusion was comparable 

between the two groups of pigs, we assessed LV function before and 30 d after infarction 

using echocardiography.  Our measurements show that, 30 d after infarction, LV function 

did not differ significantly between the two groups, indicating a similar severity of the 

ischemic damage (Fig. 3).     

The choice of the animal model was dictated by considerations related to clinical 

relevance. Clinically, the question of whether the risk of balloon inflation is justified 
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arises most commonly in patients with chronic ischemic cardiomyopathy who have non-

stented target coronary arteries. This issue is less relevant to patients with acute 

myocardial infarction, since in this setting the culprit vessel is usually stented during 

revascularization and the risk of dissection or injury associated with balloon inflation is 

therefore minimized. Accordingly, we decided to use a porcine model of old infarction 

and scarred myocardium, which mimics the clinical setting of chronic ischemic 

cardiomyopathy. Obviously, the effect of balloon inflation could not be studied in 

rodents. We could have used less complex and expensive porcine models (e.g., pigs 

without myocardial infarction or pigs with acute, rather than chronic, myocardial 

infarction); however, these models would not be relevant to the large cohort of patients 

with old stable myocardial infarcts (scars). 

A variety of methods could have been used to assess cell retention at 24 h. The 

advantage of our methodology, based on quantification of residual radioactivity, is that it 

enabled us to assess the left ventricle as a whole.  Alternative techniques such as PCR-

based methods141, 170 have the advantage of high sensitivity and precision in small 

samples, such as in murine hearts; however, they are not applicable to large tissue 

samples because the large amount of native DNA in such samples would cause a dilution 

in the targeted sequences of human genomic DNA of the residual hCPCs.  This would 

lead to an underestimation of cell numbers.  Additionally, PCR-based methods, as well as 

other methods such as fluorescence in situ hybridization of sex-mismatched donor-

recipient pairs171 and nuclear affinity labeling for cell tracking160, enable quantification of 

cell numbers only in small myocardial samples assumed to be representative of the whole 

heart; these numbers must then be normalized to total myocardial weight to calculate 
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global cardiac retention.  Because cells may be distributed heterogeneously within the 

heart, as observed in the present study (Figs. 4 and 5), these methodologies can 

potentially lead to inaccurate quantification due to sampling bias.  We obviated these 

problems by measuring residual radioactivity in the entire heart. 

 In summary, using a clinically relevant porcine model of ischemic 

cardiomyopathy, we have demonstrated that the stop-flow technique does not result in 

superior hCPC retention 24 h after intracoronary infusion compared with non-occlusive 

hCPC infusion.  Therefore, the increased procedural risks associated with balloon 

inflation do not appear to be warranted.  These results have important practical 

implications for the design of future clinical trials in which hCPCs (or other 

stem/progenitor cells) are administered by the intracoronary route. 
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CHAPTER III 

SAFETY OF INTRACORONARY INFUSION OF 20 MILLION C-KIT POSITIVE  

HUMAN CARDIAC PROGENITOR CELLS IN PIGS 

Introduction 

C-kitpos cardiac progenitor cells (CPCs) are one of a number of stem/progenitor 

cells described in the mammalian heart and one of the two types ever used clinically for 

cardiac regeneration.130, 148  We recently reported the results of the first in-human clinical 

trial of autologous c-kitpos CPCs in patients with ischemic cardiomyopathy.148 In this 

phase I trial, designed to evaluate the safety and feasibility of intracoronary 

administration of c-kitpos CPCs, 1 million cells were injected in the infarct-related artery 

using the stop-flow technique. The administration of c-kitpos CPCs was shown to be safe 

and there were encouraging results related to efficacy, with a significant improvement in 

left ventricular (LV) ejection fraction in the hCPC treated group. These encouraging 

findings have sparked growing interest in utilizing c-kitpos CPCs in additional trials with 

escalating doses >1 million cells, particularly in light of  reports of dose-dependent 

responses with stem cells.172 However, the safety of higher doses of c-kitpos CPCs has 

never been evaluated in any clinical or preclinical model. 

Intracoronary administration has been utilized with many cell types.  

Mesenchymal stromal cells (MSCs) have been used in a large number of cardiac 

regeneration trials.  Although these cells are usually administered via transendocardial 

injection, a number of clinical trials have used them intracoronarily.173-177  The cell dose 
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in these studies ranged from 1 million to > 100 million cells.173-175, 177, 178 A number of 

other studies are ongoing with intracoronary administration of MSCs (e.g., RELIEF-

NCT01652209). Nevertheless, there still exist important safety concerns with 

intracoronary injection of MSCs.167, 179, 180 Grieve et al. demonstrated that although 

intracoronary infusion of 25 million MSCs was safe, 75 million cells caused biochemical 

and histological myocardial infarction in an ovine model.180 Similarly, Vulliet et al. 

showed a dose-dependent rise in ST segments during intracoronary injection of MSCs in 

all 7 dogs studied.167 The average size of MSCs and BMMNCs is ~21.0±3.3 μm and 

8.6±1.8 μm, respectively.41, 181 At 7 to 10 μm, the typical capillary luminal diameter is 

smaller than the average sized MSCs, the likely explanation for the findings in the 

aforementioned studies.181, 182  In the CADUCEUS trial, 12.5 to 25 million cardiosphere-

derived cells (CDCs) were injected intracoronarily with no significant safety concern.123 

However, administration of 50 million allogeneic CDCs resulted in large infarctions in 

pigs.181 Measuring 20.6±3.9 μm in diameter, CDCs are larger than the average capillary 

diameter, thereby causing microvascular obstruction in that model. Finally, bone marrow 

mononuclear cells (BMMNCs) have almost always been administered intracoronarily. 

Close to 100 phase I and II clinical trials using large numbers of BMMNCs have 

demonstrated that intracoronary administration is safe.183 For instance, within the three 

phase II trials of BMMNCs led by the Cardiovascular Cell Therapy Research Network 

(CCTRN), 100-150 million cells were administered intracoronarily with no 

complications.184, 185 

C-kitpos CPCs are similar in size to the unselected cell population from which they 

are sorted, ranging from ~12 to 20 µm in diameter in suspension.  Therefore, it is 
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conceivable that they could bring about significant microvascular obstruction if 

administered in high enough doses. Therefore, we set out to investigate the safety of 20 

million intracoronarily delivered c-kitpos human CPCs, a dose ~40 times higher than that 

used in our previous porcine study139, in a porcine model, as a preamble to future clinical 

trials. 

Methods 

A detailed timeline of the experimental protocol is illustrated (Fig. 6). 
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Fig. 6.  Safety Study protocol and timeline.   
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Human c-kit pos CPC isolation and expansion 

Right atrial appendage specimens were obtained with IRB approval (IRB number 

07.0062) from patients undergoing open-heart, on pump, coronary artery bypass surgery 

at Jewish Hospital in Louisville, Kentucky.  All patients were between the ages of 50 and 

75 years of age, so as to approximate the ages of patients that were included in the 

recently conducted SCIPIO phase I clinical trial.148  Right atrial appendages were 

transported to the cell processing lab under sterile conditions on wet ice.  The tissue was 

washed several time with ice cold PBS to remove gross blood.  Adipose tissue was then 

resected manually from the external surface of the tissue with subsequent repeated 

washing in cold PBS.  The tissue was then manually minced to obtain fragments < 1mm3 

(Fig. 7).  The tissue fragments were then incubated on a shaking incubator at 37°C in 

Worthington Collagenase type II/Hams F12 solution with multiple rounds enzymatic 

digestion.  Once complete, the solution of released cells was centrifuged with discarding 

of the supernatant.  The cells were washed in full growth media consisting of Ham’s F12 

(Gibco), 10% FBS (Thermo Scientific Hyclone), 10ng/ml Recombinant Human bFGF 

(PeproTech), 0.2mM L-Glutathion (Sigma), human Erythropoietin (Sigma), and 100U/ml 

penicillin/streptomycin (Gibco).  The supernatant was discarded and the cells were 

resuspended in full growth media and plated in a 6-well plate for passage 0 initial 

expansion.  Media was changed at 24 h completely.  Additional media changes were 

performed every 3-4 days or if necessitated by visual examination of the culture.  Cells 

were expanded until 70% confluence at which time they were passaged to T75 Flasks for 

additional subconfluent expansion prior to immunoselection for c-kit expression.  Media 

was added or changed partially every 3-4 days for the remainder of the culture process. 
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Cells were passaged 1 time prior to immunomagnetic sorting for c-kit (CD117) using 

Miltenyi immunomagnetic beads according to manufacturer’s recommendations. 

Illustrations of the tissue processing and initial cell expansion are shown in Fig. 7.  
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Fig. 7. Isolation and expansion of c-kitpos hCPCs. Right atrial appendages (RAA) were 

harvested with subsequent mechanical and enzymatic digestion to obtain primary 

outgrowth of total adherent cardiac cells. Primary cells were immunomagnetically sorted 

for c-kit and the resultant cells expanded in vitro.   
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c-kitpos hCPC immunomagnetic sorting (MACS) 

Passage 1 cells at 70-75% confluence in T75 culture flasks were sorted for c-kit 

with anti-CD117 Miltenyi microbeads and Miltenyi magnetic sorting apparatus (Fig. 7). 

Cell sorting was performed through the direct technique. Cells were trypsined and 

washed twice in ice cold MACS buffer made per manufacturer’s specifications.  All 

solutions were cooled on ice prior to beginning the sorting protocol.  Cells were 

immunomagnetically sorted according to manufacturer’s specifications using Miltenyi 

MS columns and pre-separation filters with magnetic stand. Positively selected cells were 

plated in 6-well plates at subconfluence for subsequent in vitro expansion of c-kitpos cells 

(Fig. 7).  Human c-kitpos CPCs were expanded exponentially over 3-4 additional passages 

to ultimately obtain approximately 3 x 107 cells per patient.  Multiple patients cells were 

pooled to obtain a uniform cell product that was ultimately infused intracoronarily into 

the treatment group of pigs (n = 9). Cells were assessed by flow cytometric analysis per 

standard protocol for c-kit positivity at passage 3-4.  Only populations of cells showing 

greater than 70% c-kit positivity were used for the study. 

Flow cytometric analysis and immunocytochemistry 

Cells were trypsinized from dedicated flasks at passage 3-4 per standard protocol. 

Cells were washed 1x in ice cold buffer with 1% bovine serum albumin (BSA)/phosphate 

buffered saline (PBS) buffer followed by a second wash in cold PBS.  Cells were then 

fixed with 15 minutes at room temperature in freshly prepared or commercially 

purchased 4% PFA buffered to pH 7.  Fixed cells were washed twice in PBS.  Cells were 

stained for c-kit directly after fixation.   Cells were blocked for 10 minutes at RT in 1% 

BSA buffer and then stained for c-kit with c-terminal specific Santa Cruz C19 rabbit 
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polyclonal IgG anti-human c-kit antibody for 1 h at room temperature in the dark.  

Isotype rabbit polyclonal IgG in identical concentration was used in parallel as an isotype 

control.  Cells were then washed twice with 1% BSA buffer.  Secondary antibody, FITC 

or TRITC conjugated Invitrogen Donkey anti-rabbit IgG was then added for 1 h at room 

temperature in the dark for flow cytometry or confocal microscopic imaging after cells 

were spun onto glass slides.  Confocal images were taken using Zeiss 510 inverted 

confocal microscope and image processing performed relative to isotype control labeling 

with integral instrument software only.  Flow cytometric analysis was performed using 

BD Accuri C6 flow cytometer.  All analysis gates were set for false positivity of <1% in 

respective isotype controls (Fig. 8).  Accuri C6 software was used for final analysis of c-

kit positivity. Illustrations of flow plots and immunocytochemistry images (Fig. 8) as 

well as data regarding c-kit positivity of all cell lines utilized for the study are shown 

(Fig. 9). Only cell lines with greater than 70% c-kit positivity measured by flow 

cytometric analysis were utilized for the study.  
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Fig. 8. Flow cytometric validation and immunocytochemistry of c-kitpos hCPCs.  

Representative flow cytometric analyses of isotype control (left) and c-kit-labeled cell 

flow plots (center) are shown.  Suspension immunocytochemistry of c-kitpos hCPCs 

showing positive anti-c-kit labeling is shown in the right panels, with DAPI labeled 

nuclei in blue.  
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Fig. 9. Cumulative c-kit positivity by flow cytometry and Trypan blue cell product 

viability.  The left panel shows c-kit positivity in seven cell lines utilized for the study, 

which averaged 85.6%±1.9% (mean±SEM).  The right panel shows viability of c-kitpos 

hCPCs measured by cellular exclusion of Trypan blue staining prior to intracoronary 

infusion.  Trypan negative, viable cells averaged 97.8±0.4%. Data are mean±SEM. 
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Cell product generation 

Positively selected cells were expanded in vitro for 3-4 additional passages prior 

to intracoronary infusion.  In vitro expanded c-kitpos CPCs were trypsinized and washed 

with sterile PBS and resuspended in 12mL of Plasmalyte-A solution. Final cell count and 

viability by hemocytometer and Trypan blue were performed.    Cell number was 

adjusted by volume to closely approximate 20 million cells in 12mL Plasmalyte-A 

solution. The cells were placed on wet ice and transported to the cath lab for 

intracoronary infusion. 

Ethics Statement 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocol was approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Louisville (IACUC number: 12114). 

Animal procedures  

Female Yorkshire pigs (weight 32.4 ± 0.7 kg, age: 13.4 ± 0.3 weeks) were used 

for this study. All animal procedures were approved by the University of Louisville 

IACUC (IACUC number 12114) prior to initiation of the study. Pigs were fasted for at 

least 12 h prior to sedation. On the day of cell delivery, pigs received a prophylactic dose 

of antibiotics (Ceftiofur 3 mg/kg, IM) and a preemptive dose of analgesics 

(buprenorphine 0.025 mg/kg, IM).  Pigs were sedated using a cocktail of ketamine (20 

mg/kg, i.m.) and xylazine (2 mg/kg, i.m.).  An intravenous catheter was placed in a 

marginal ear vein for the administration of fluids and drugs. Animal received diazepam (1 

mg/kg IV) to facilitate intubation.  Following adequate sedation, pigs were intubated and 
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mechanically ventilated.  General anesthesia was maintained with isoflurane (1.5% - 

2.0% 50/50 oxygen/nitrogen).  Pigs received aspirin (2300 mg, IV) and heparin (300 

U/kg, IV) before the catheterization procedure. 

A cut-down on the right neck was performed and the right jugular was used for 

placement of a 7-10 F chronic cath polyurethane catheter (Access Technologies or 

Bard/Hickman). This catheter was implanted, secured, tunneled to the back of the neck 

and kept in place for the duration of the 1 month follow-up for serial blood collections; 

using this catheter, blood samples were obtained for serial measurement of cardiac 

markers at baseline (before catheterization procedure) and at 6, 12, 24 h, and 1 week, and 

1 month after cell delivery (Fig. 6). The catheter dead-space was measured and filled with 

heparin (1000 units/mL) after each withdrawal to maintain patency. Care was taken to fill 

the dead-space only with no spillover into the systemic circulation after each blood 

collection.  

At the end of the 1 month follow up, pigs were anesthetized with 22 mg/kg 

ketamine and 2 mg/kg xylazine IM. Pig was transported to the cath lab for final 

hemodynamic measurement.  Animals received diazepam 1 mg/kg IV to facilitate 

intubation.  Animals were then again intubated and ventilated. General anesthesia was 

maintained with isoflurane (1.5% - 2.0% 50/50 oxygen/nitrogen).  Hemodynamic 

variables were monitored and recorded.  After the final hemodynamic recording was 

taken, the animal was deeply anesthetized with 5% isoflurane.  A bolus of 3-6 ml/kg of 3 

mmol/ml potassium chloride solution was injected intravenously until the heart was 

completely arrested.  Asystole was confirmed by cessation of cardiac electric activity 
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from ECG monitoring. The chest was opened via a left thoracotomy, the aorta was 

transected, and the pig exsanguinated. The heart was then harvested. 

Cell delivery / catheterization procedure  

Through a right femoral artery cut-down, a 7F fast-cath sheath was introduced. A 

6 F Hockey-stick catheter (Cordis) was fluoroscopically guided to the left main coronary 

artery. The left main coronary ostium was engaged by the catheter and an angioplasty-

type balloon catheter (Maverick 2.0 x 9 mm) and guide wire (BMW, Boston Scientific) 

assembly was guided into the LAD; the wire was advanced into the mid LAD and the 

catheter telescoped over the wire and positioned just proximal to the 1st diagonal branch. 

The CPC solution (20 million cells in 12 ml of sterile Plasma-Lyte A solution or vehicle, 

divided by 4 injections, 3 ml each, interspersed with 4’30” between each injection) or 

vehicle (12 ml of sterile Plasma-Lyte A solution) was injected manually at a constant rate 

through the central port of the angioplasty balloon catheter over the 3 min.  After the 

procedure, the Hockey-stick catheter, and the femoral sheath were removed and the groin 

access site was closed in 3 layers using 3-0 PDS suture. A transdermal fentanyl patch (2.5 

µg/kg/h) was placed at the end of the procedure for postoperative analgesics.  The pigs 

were weaned from anesthesia, extubated, and moved to a post-operative area for 

postoperative monitoring. Ceftiofur (3 mg/kg, s.c.) was be repeated on day 1 and 2 post-

procedure.   

Immunosuppressive Therapy 

Pigs received 15 mg/kg/day of Cyclosporine A (CsA) starting 2 days before cell 

injection and continuing until the end of follow-up.  CsA (powder from Novartis) was 
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mixed with a tablespoon of grape flavored Kool-Aid powder and ~60 ml of drinking 

water to make a suspension beverage to feed the animal orally. 

Echocardiography 

Echocardiograms were obtained at baseline (before CSC delivery), 24 h, 1 week, 

and 1 month after CSC delivery (Fig. 6) using a HP SONOS 7500 ultrasound system 

(Philips Medical Systems) equipped with a HP 21350A (S8) 3.0-8.0 MHz sector array 

ultrasound transducer. Before the echocardiographic study, pigs were anesthetized 

(isoflurane) and placed in the left lateral decubitus position. Temperature was monitored 

with a rectal temperature probe and kept between 37.0°C and 37.5°C with a heating pad. 

The parasternal short-axis view was used to obtain 2D and M-mode images19. Systolic 

and diastolic anatomic parameters were obtained from M-mode tracings at the mid-

papillary level. Digital images were analyzed off-line by a single blinded observer using 

ComPACS Review Station (version 10.5) image analysis software (Medimatic, Las 

Cruces, NM 88004, USA ) according to the American Society of Echocardiography 

standards.158   

Cardiac biomarkers assays: Troponin I and CK-MB  

Plasma cTnI levels were measured with a pig cTnI ELISA kit according to the 

manufacturer’s instruction (Life Diagnostics, West Chester, PA) at baseline as well as 6, 

12, and 24 hrs, and one week and one month post infusion (Fig. 6). Fresh blood was 

collected with the heparinized tube and then centrifuged to separate plasma from the 

blood sample. Each assay was performed in duplicate and in a blinded fashion. The 

original cTnI data (i.e., the optical density absorbance values acquired from Beckman 

Coulter DU730 Spectrophotometer) were calibrated and converted with cTnI standard 
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curve. The final cTnI results were expressed as nanogram per milliliter plasma (ng/ml). 

All measurements were performed in duplicate.   

Plasma CK-MB concentration was measured via an  ELISA kit (MyBioSource) at 

baseline as well as 6, 12, and 24 hrs, and one week and one month post infusion (Fig. 6). 

Briefly, the 96-well plate was pre-coated with an antibody specific to pig CK-MB. The 

plasma samples were loaded onto the wells and bound by the pre-coated specific 

antibody. Then a biotinylated detection antibody specific for pig CK-MB and Avidin-

Horseradish Peroxidase (HRP) conjugate were added to the wells. After incubation, free 

components were washed away. The substrate solution was added to each well. Only the 

wells contained CK-MB protein, biotinylated detection antibody and Avidin-HRP 

conjugate presented blue in color. This enzyme-substrate reaction was terminated by the 

addition of a sulphuric acid solution, therefore the color turned to yellow. The optical 

density (OD) was measured spectrophotometrically at a wavelength of 450 nm. The 

original CK-MB data (i.e., OD values) in the pig plasma samples were calculated and 

converted with pig CK-MB standard curve. Duplicate assays were performed for each 

sample and CK-MB concentration was expressed as nanogram per milliliter of plasma 

(ng/ml). All CK-MB assays and calculation were conducted in a blinded fashion relative 

to hCSC treated vs control group.  All measurements were performed in duplicate.  

Assessment of renal and hepatic function 

Functions were assessed by measurement of respective biomarkers.  Peripheral 

blood was drawn and complete metabolic panels (CMPs) were obtained in hCSC-treated 

and control groups at baseline and 6, 12, and 24 h, 1 week, and 1 month after 

intracoronary infusion (Fig. 6).  All CMPs were analyzed by the veterinary lab company 
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Antech Diagnostics (Louisville, Ky) in a blinded fashion.  Resultant biomarker values 

were compared with known porcine reference ranges provided by Antech Diagnostic as 

well as with absolute initial baseline values. Changes in blood urea nitrogen (BUN) and 

creatinine (Cr) were used to assess renal function.  Change in AST, ALT, alkaline 

phosphatase (Alk Phos), and total creatine phosphokinase (CPK) were used to assess 

hepatic function.   

DNA isolation from paraffin embedded sections and PCR  

Genomic DNA was isolated from representative paraffin embedded left 

ventricular tissue sections using QIAamp DNA FFPE Tissue Kit (Qiagen) according to 

the manufacturer’s instructions. Samples were analyzed for the presence of human (HLA-

DMA) and pig (Pig Gapdh) genomic DNA using the following primer sets:  

HLA-DMA fwd, 5’-TACAAACCTCAGCTACCTTCGTGGC-3’  

HLA-DMA rev, 5’-AACCCAGCTGACTCTGGGTGG-3’  

Pig Gapdh fwd, 5’-CCCCCTCAGATTTGGCCGCA-3’ 

Pig Gapdh rev, 5’-CACGGGGGCCACTCACCAT-3’ 

For PCR reaction, 100 ng of each DNA sample was amplified in a 20 µl reaction 

for 40 cycles (denaturation at 95 ºC; annealing at 61 ºC; and extension at 72 ºC) using 

Taq 2X Master Mix (New England Biolabs).  Accordingly, the limiting threshold or 

sensitivity of detection of human CSCs approximated 1 hCSC per 15,000 porcine cells. 

Statistical Analyses 

One or two-way repeated measures ANOVA statistical analysis was employed for 

all comparisons of echocardiographic parameters as well as cardiac, hepatic, and renal 

biomarkers between groups across multiple time points where applicable.  All data are 
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represented as means ± SEM. Datasets are illustrated in the supplemental supporting 

information. 

Results  

Intracoronary infusion of 20 million c-kitpos CPCs does not impair LV function or 

structure 

Echocardiographic measurements were performed at serial time points after 

intracoronary infusion of 20 million human c-kitpos CPCs (n=9) or vehicle (n=5) (Fig. 

10). Baseline parameters were not significantly different between the two groups. No 

significant change in left ventricular (LV) function or dimensions occurred as a result of 

the infusion.  For example, LV ejection fraction (EF) did not differ between hCPC-

treated and vehicle controls at any time point (baseline: 55.8±1.8% vs 60.3±2.9%, 

respectively; 24 h: 56.9±1.6% vs 59.2±1.6%; 1 week: 58.2±1.7% vs 58.0±1.6%; 1 month: 

58.0±2.0 vs 59.0±1.1) (Fig. 10A&E); changes within groups compared with baseline 

were also not significantly different (P>0.05). Mean anterior wall thickening fraction was 

examined in the treatment group and was not observed to be significantly different before 

(58.4±4.9%) vs 24 h after CSC infusion (57.5±6.2%), P>0.05 (Fig. 10D). Similarly, there 

was no significant difference in LV end-diastolic diameter, fractional shortening, end-

diastolic volume, end-systolic volume, end-systolic diameter and anterior and posterior 

wall thickness in both systole and diastole.  These data indicate that the intracoronary 

infusion of hCPCs had no deleterious effect on LV function and dimensions.   
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Fig. 10.  Intracoronary infusion of 20 million human c-kitpos CPCs does not impair 

left ventricular (LV) function or morphology.  The line graphs in the top panel show 

individual values of each pig’s progress over time (baseline, 6, 12, 24 h, 1 week, and 1 

month). Individual plots are in yellow, and group means are illustrated by the red line 
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plots. A. ejection fraction (EF). B. LV end-diastolic diameter (EDD). C. LV end-diastolic 

volume (EDV), D. LV anterior wall fractional thickening. The bottom panel shows group 

mean±SEM at each time point for respective LV functional and morphologic indices.  

Green and red bars indicate hCSC-treated and vehicle groups respectively.  E. ejection 

fraction, F. fractional shortening, G. LV end-systolic area, H. LV end-diastolic area, I. 

LV end-systolic volume, J. LV end-diastolic volume, K. LV anterior wall thickness in 

systole, L. LV anterior wall thickness in diastole, M. LV end-systolic diameter, N. LV 

end-diastolic diameter, O. LV posterior wall thickness in systole, P. LV posterior wall 

thickness in diastole. Data are mean±SEM. There were no significant differences 

between groups with respect to any parameter at respective time points (P > 0.05). 
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Intracoronary infusion of 20 million c-kitpos CPCs does not cause ischemic myocardial 

injury 

Myocardial injury resulting from possible micro-embolization and ischemia was 

assessed by serial measurements of plasma cTnI (Fig. 11) and CK-MB levels (Fig. 12).  

In both c-kitpos CPCs-treated and vehicle controls, cTnI levels rose slightly after 

catheterization and intracoronary infusion, peaking at 6 h post catheterization in both 

groups (hCPC treated, 1.3±0.68 vs. 0.08±0.08 ng/ml at baseline; controls, 1.4±0.58 vs, 

0.07±0.08 ng/ml at baseline). In both groups, cTnI returned to baseline by 12 h and 

remained at baseline levels at 24 h, 1 week, and 1 month after infusion. At no time-point 

during the study was there a significant difference in plasma cTnI levels between the two 

groups. In addition, total cumulative myocardial cTnI release did not differ significantly 

between the hCSC-treated and vehicle-treated groups.  Plasma levels of CK-MB 

exhibited a very slight but clinically irrelevant increase from baseline in both groups, 

(0.068±0.01 vs 0.039±0.01 ng/ml at baseline in the treated group; 0.058±0.013 vs 

0.039±0.01 ng/ml at baseline in the control group) peaking at 12 h in the treatment group 

and 24 h in the control group. Importantly, neither peak mean nor cumulative enzyme 

levels differed significantly between vehicle-treated and hCPC-treated groups, indicating 

that hCPC delivery was not associated with myocardial injury(P>0.05). 
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Fig. 11.  Intracoronary infusion of 20 million human c-kitpos CPCs does not cause 

myocardial damage as assessed by cardiac troponin I (cTnI) release.  A. Individual 

plots of serum cTnI levels (ng/ml) are shown at serial time points (baseline, 6, 12, 24 h, 1 

week, and 1 month).  Green and red plots indicate hCPC-treated and vehicle control pigs, 

respectively.  B.  Group means at each time point are shown. The green and red plots 

indicate hCPC-treated and vehicle control groups, respectively.  The inset in panel B 

shows cumulative cTnI levels. Data are mean±SEM. There were no significant 

differences in plasma cTnI levels over the 1 month follow up between groups (P > 0.05 at 

each time point). 
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Fig. 12.  Intracoronary infusion of 20 million human c-kitpos CPCs does not cause 

myocardial damage as assessed by cardiac CK-MB release.  A. Individual serum CK-

MB levels (ng/ml) over serial time points (baseline, 6, 12, 24 h, 1 week, and 1 month). 

Green and red plots identify hCSC-treated and vehicle control pigs, respectively. B. 

Group means at each time point are shown. The green and red plots identify hCPC-

treated and vehicle control groups, respectively.  The inset in panel B shows cumulative 

CK-MB levels. Data are mean±SEM. There were no significant differences in plasma 

CK-MB levels over the 1 month follow up between groups (P > 0.05 at each time point). 
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Intracoronary infusion of 20 million c c-kitpos CPCs does not impair renal function 

Serum creatinine and BUN levels rose approximated 25% over baseline in the 

first 12-24 h in both the hCPC-treated and the vehicle groups (Fig. 13).  In the treated 

group, creatinine increased from 1.32 mg/dL to 1.68 mg/dL at 6 h after catheterization; a 

similar pattern was observed in the control group, in which creatinine increased from 

1.54 mg/dL at baseline to 2.04 mg/dL at 6 h after catheterization.  Serum creatinine levels 

returned to baseline values in both groups by 24 h, and no changes were observed at 1 

week and 1 month (Fig. 13A).  Serum BUN levels showed a similar pattern of transient 

increase at 6 h followed by a return to baseline levels (Fig. 13B).  There was no 

significant difference at any time point between hCPC-treated and control pigs with 

respect to either creatinine or BUN serum levels, indicating that the slight increases 

observed at 6 h were not due to the infusion of hCPCs.  
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Fig. 13.  Intracoronary infusion of 20 million human c c-kitpos CPCs does not impair 

renal function. Renal function was assessed by serum creatinine and blood urea nitrogen 

(BUN) values over serial time-points (baseline, 6, 12, 24 h, 1 week, and 1 month).  A. 

Bar graph of serum creatinine levels in hCPC-treated and vehicle control group .  B. Bar 

graph of serum BUN levels in hCPC-treated and vehicle control group.  Blue and purple 

bars identify hCPC-treated and vehicle control groups, respectively. Upper limits of 
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normal (ULN) and lower limits of normal (LLN) in each graph are depicted by dashed 

lines respectively. Data are mean±SEM. There were no significant differences in serum 

creatinine or BUN levels over the 1 month follow up between groups (P > 0.05 at each 

time point). 
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Intracoronary infusion of 20 million c-kitpos CPCs does not impair hepatic function 

Serum AST, ALT, alkaline phosphatase, and total CPK levels were significantly 

higher after catheterization (P< 0.05 vs. baseline) in both hCPC-treated and control 

groups (Fig. 14). Specifically, AST increased to levels four times (200-400 IU/L) the 

upper limit of normal (45-83 IU/L), peaking 24 h after catheterization (Fig. 14A).  ALT 

also increased but did not surpass the upper limits of normal (52-81 IU/L) in either 

treatment (61.8±23.6 IU/L) or control (67.6±23.0 IU/L) groups (Fig. 14D).  There was no 

significant difference between hCPC-treated and control pigs in either AST or ALT, 

indicating that the rise in these markers was not due to the infused cell product. All 

values were within normal limits 1 week and 1 month after catheterization (P>0.05 vs. 

baseline). 
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Fig. 14.  Intracoronary infusion of 20 million human c-kitpos CPCs does not impair 

liver function.  Liver function was assessed by serum AST, ALT, alkaline phosphatase, 

and total CK levels at serial time points (baseline, 6, 12, 24 h, 1 week, and 1 month). A. 

Serum aspartate aminotransferase (AST), B. Serum creatine phosphokinase (CPK), C. 

Serum alkaline phosphatase (Alk. Phos.), D. Serum alanine aminotransferase (ALT). 

Upper limits of normal) and lower limits of normal (LLN) in each graph are depicted by 

dashed lines respectively. Data are mean±SEM. There were no significant differences in 

serum AST, ALT, alkaline phosphatase, or total CK levels over the 1 month follow up 

between groups (P > 0.05 at each time point). 
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Intracardiac retention of c-kitpos CPCs in pigs 30 days post intracoronary infusion 

 To assess the number of hCPCs retained in the porcine heart 30 days after 

intracoronary infusion, genomic DNA was isolated from anterior portions of the left 

ventricle and analyzed by PCR for the presence of human genomic DNA (HLA-DMA) 

(Fig. 15). No human DNA could be detected in any control (lanes 1-5) or human CSC-

treated (lanes 6-14) LV samples, indicating the retention of human CPCs was minimal 

and/or below the detection limit of our assay (1 hCPC per 15,000 porcine cells).  Samples 

were also analyzed for the presence of pig genomic DNA (Gapdh) as a control for DNA 

quality.  Porcine DNA was detected in all samples.  
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Fig. 15.  Detection of human CPCs in control versus hCPC-treated pig hearts. 

Genomic DNA isolated from representative LV sections from control (lanes 1-5) and 

human CSC-treated pigs (lanes 6-14) were analyzed by PCR for the presence of human 

genomic DNA (HLA-DMA). Samples were also analyzed for the presence of pig 

genomic DNA (Gapdh) as a control for DNA quality. Genomic DNA isolated from 

human heart sections was used as both positive and negative control. None of the 

samples, including CSC-treated ones, show detectable levels of human DNA. 
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Discussion 

The present study was conducted to assess the safety of intracoronary infusion of 

20 million c-kitpos CPCs.  We have previously found in a porcine model of ischemic 

cardiomyopathy that intracoronary delivery of 500,000 autologous c-kitpos CPCs, which 

is roughly equivalent to 1 million CSCs in humans, does not result in apparent cardiac 

injury.  The SCIPIO trial showed that intracoronary infusion of 1 million autologous c-

kitpos CPCs in humans is safe and may produce beneficial effects on cardiac function, 

myocardial scar size, and functional capacity. However, the dose employed in SCIPIO 

was relatively low (compared with other trials that have infused, for example, 25 

million123 or even >200 million186 cells). Evidence suggests that higher doses of cells 

may be more efficacious.161 It is currently unknown whether doses of hCPCs greater than 

1 million can be safely administered intracoronarily.  Therefore, we conducted the 

present study with a dose of cells 40 times higher than that used in our previous study139 

as a preamble to future clinical trials. To our knowledge, our infused dose of 20 million 

human c-kitpos CPCs delivered intracoronarily is the highest dose ever attempted in any 

clinical or preclinical model using hCSCs.   

The results of the present study indicate that intracoronary infusion of 20 million 

c-kitpos CPCs is safe.  This higher dose did not result in any evidence of myocardial 

injury, impairment in regional or global cardiac function, deterioration of renal or hepatic 

function, or other adverse effects, either in the immediate post-infusion period or during 

the subsequent month, compared with vehicle (Figs. 10-14). Very small, transient 

increases in plasma troponin I were observed after catheterization in both groups (Fig. 

11) but were not associated with any measurable impairment in LV function (Fig. 10). 
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These low-level, transient increases in plasma troponin are not dissimilar from those seen 

in prior studies139; given their low magnitude and brief duration, they are likely 

insignificant. Importantly, since they were observed in both groups, they cannot be 

attributed to the hCPC product.  We suspect that these early transient increases in plasma 

troponin I in both hCPC- and vehicle-treated animals may have been, at least in part, a 

result of the observed impairment in renal function caused by exposure to cyclosporine 

and a large intravenous contrast load.  Indeed, the time-course of renal dysfunction 

coincided with the transient rise and resolution of plasma troponin over the first 12-24 h 

following catheterization.  Renal dysfunction, decreased creatinine clearance, and uremia 

have been implicated in increased plasma levels of troponin in patients without acute 

myocardial injury.187  In clinical studies in which elevations of plasma troponin were 

related to renal dysfunction, acute myocardial injury was excluded by observing a lack of 

parallel elevations in plasma CK-MB.187  This pattern of low-level troponin increase with 

minimal or no concurrent increase in CK-MB during a period of renal impairment 

mirrors the pattern of cardiac biomarkers observed in the present study. It is possible that 

other factors associated with cardiac catheterization also contributed to the slight rise in 

plasma troponin. In any case, the fact that vehicle-treated pigs exhibited similar 

elevations despite receiving no hCPCs indicates the elevations in treated pigs were not 

caused by hCPCs but, rather, by mechanisms that affected both groups.  

Our findings are consistent with previous studies documenting the safety of 

intracoronary infusion (without stop flow) of similar numbers of other cell types, 

including bone marrow derived MSCs.188, 189 Specifically, Suzuki et al188 demonstrated 

the safety and efficacy of 45 million MSCs infused intracoronarily without stop-flow; the 
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authors observed myocyte regeneration and improved cardiac function without any 

evidence of myocardial necrosis related to the infusion.188 The same group observed a 

similar safety and efficacy profile following intracoronary infusion (without stop flow) of 

30 million cardiosphere-derived cells divided among each of three coronary vessels.189 

Again, no significant TnI elevation was observed. 

As mentioned above, after the catheterization procedure renal function was 

transiently impaired in both treated and control groups (Fig. 13), indicating that the 

decline in creatinine clearance was not due to systemic distribution of hCPCs and renal 

microembolization.  The mild degree and brief duration of renal impairment, along with 

the complete return of creatinine and BUN to baseline levels within 24 h after 

catheterization in both groups, indicates that the etiology was most likely related to the 

contrast administered intravenously during coronary angiography.  Contrast-induced 

nephropathy (CIN) is commonly observed in clinical settings, with temporary decreases 

in creatinine clearance that usually return to normal values within 24-48 h.190  

Concomitant exposure of pigs to cyclosporine likely predisposed to the occurrence of 

CIN and decreased creatinine clearance, since both cyclosporine and intravenous contrast 

exposure produce vasoconstriction of renal afferent arterioles190, 191, which in turn 

decreases the glomerular filtration rate.  

A slight, transient impairment in liver function was also observed (Fig. 14). But 

again, this phenomenon was seen in both hCPC-treated and vehicle-treated pigs, and the 

duration and magnitude were not significantly different between groups, indicating that 

the elevated levels of AST, ALT, and alkaline phosphatase were not caused by 

intracoronarily delivered hCPCs.  ALT, being more specific for liver injury than either 
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AST or alkaline phosphatase192, did not increase above the upper limits of normal (51-82 

IU/L) (Fig. 14D).  In fact, a hepatic source of these elevated biomarkers is highly 

unlikely.  While leak of aminotransferases into the systemic circulation can indicate liver 

injury, the liver is not the only source of these biomarkers and caution should be observed 

in clinical interpretation.192 Increases in these biomarkers are also seen with skeletal 

muscle injury.192, 193 In our porcine model, a cut-down procedure was used to provide 

unrestricted access to the femoral artery for arterial sheath and catheter placement.  The 

resultant soft tissue and skeletal muscle injury provides a non-hepatic source of elevated 

transaminases. This is confirmed by the concurrent increase in muscle specific creatine 

phosphokinase (CPK) (Fig. 14B), which mirrored the magnitude and duration of the rise 

in transaminase levels (Fig. 14A). All of these markers returned to baseline levels 

concurrently.  

Despite the high dose of 20 million cells, myocardial retention of c-kitpos CPCs 30 

days after intracoronary infusion was observed to be minimal and below the threshold of 

detection as measured by PCR targeting human genomic DNA.  In our experience, this 

finding is neither surprising nor unexpected.  Previous studies141, 143, 170 have also found 

minimal retention 30-35 days after c-kitpos CPCs administration in rodent models.  

Additionally, in the current study, human c-kitpos CPCs were infused as a xenograft, and 

only cyclosporine was utilized to prevent acute rejection.  The animal’s immune reaction 

to these human cells is not likely to be completely suppressed by cyclosporine alone over 

a 35-day time period, and thus is likely to have contributed to the attrition of the human 

cells via immune clearance.  In a recent study performed to quantify hCPC engraftment 

and retention in pigs after intracoronary infusion of 10 million Indium111-radiolabeled c-
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kitpos CPCs, we found that just 4-5% of the infused cells remained in the entire heart at 24 

h.194 Additionally, in this study we compared intracoronary infusion both with and 

without utilization of the stop-flow technique, and found no significant difference 

between the two methodologies with respect to hCPC retention at 24 h.  This would 

suggest that the negligible level of hCSC cardiac retention observed in the present study 

was not due to the fact that we did not use the stop flow technique.  However, it should 

be pointed out that in the current study we infused cells into normal, noninfarcted hearts 

(this was done in order to maximize the sensitivity of our model in detecting any 

myocardial damage caused by the high dose of 20 million hCPCs).  This may have 

accelerated the disappearance of hCPCs from the myocardium by negatively impacting 

the homing and/or adhesion of the hCPCs to damaged tissue that occurs in the setting of 

ischemic cardiomyopathy.195, 196 

In conclusion, intracoronary infusion of 20 million human c-kitpos CPCs in pigs 

(equivalent to ~40 million hCPCs in humans) does not cause acute myocardial injury, 

impaired regional or global myocardial function, adverse changes in LV dimensions, or 

liver and renal injury.  These results have immediate translational value and lay the 

groundwork for using doses of CPCs >1 million in future clinical trials. Further studies 

are needed to determine whether doses of c-kitpos CPCs >1 million result in greater 

efficacy in patients with ischemic cardiomyopathy.   
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CHAPTER IV 

A NOVEL POPULATIONOF HUMAN CARDIAC PROGENITOR CELLS 

EXPRESSING STAGE-SPECIFIC EMBRYONIC ANTIGEN-3: PHENOTYPE AND 

THERAPUTIC UTILITY IN A MURINE MODEL OF ISCHEMIC 

CARDIOMYOPATHY 

 

Introduction 

The discovery that the human heart intrinsically possesses cells with multipotent 

and transdifferentiation capacities has overturned the long held dogma that the postnatal 

heart is a static organ.  Numerous cell types have been isolated from the adult human 

myocardium by various methodologies and studied relative to their ability to minimize or 

reverse ischemic myocardial injury either by stimulation of mechanisms that initiate 

reverse remodeling or by induction of myocardial neovascularization and/or formation of 

new viable myocardium.  The most widely studied include c-kitpos cardiac progenitor 

cells (CPCs) and cardiosphere derived cells (CDCs), which have shown to impart 

salubrious clinical effects in patients with ischemic cardiomyopathy.123, 148  Epicardial 

derived progenitor cells (EPDCs) have also been widely characterized, but evaluation of 

their therapeutic potential has been limited to preclinical models. While the embryonic 

origin of adult EPDCs has been widely studied, originating from proepicardial 

progenitors during fetal cardiomyogenesis and persisting into adulthood,84, 197  the 

embryonic origins of c-kitpos CPCs and cells that give rise to CDCs under in vitro 

conditions remain unclear.10  Evidence suggesting the possibility of an upstream c-kit 
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negative progenitor that may give rise to c-kitpos CPCs within the heart may indirectly be 

proposed based on the discovery by Klarmann et al that c-kit positive hematopoietic stem 

cells arise from a c-kit negative, hematopoietic lineage (lin) negative precursor within the 

bone marrow.131  Beltrami et al allude to this hypothetical hierarchy within the heart and 

existence of such a progenitor population that may give rise to c-kitpos CPCs.130 Similarly, 

the mesenchymal phenotype and reported multipotentiality of cells generated by the 

cardiosphere method would indicate that the human heart harbors a yet unidentified 

multipotent mesenchymal stem cell population that may give rise to mature myocardial 

lineages.198  Gaps in knowledge remain regarding intrinsic cardiac progenitor pools 

responsible for myocardial homeostasis and repair because discrete markers that 

distinguish such upstream, undifferentiated progenitor populations remain to be 

identified.  Based on this, we began to explore markers not previously defined within the 

human heart that have been associated with stemness capacity in other stem cell 

populations, and we sought to determine whether such markers could aid in the 

identification of cardiac cell populations that might be utilized for therapeutic purposes.  

Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), 

as well as some tissue specific mesenchymal stem cells (MSCs) from cord blood199, adult 

bone marrow200-202, adipose tissue201, 202, and dermis202-204 have been found to express the 

glycosphingolipids stage-specific embryonic antigens (SSEA)-3 and SSEA-4, antigens 

first characterized in undifferentiated carcinomas.205, 206 SSEA-3 and SSEA-4 expression 

is observed to be lost with lineage commitment and differentiation as the core structures 

of glycosphingolipid expression in stem cells switches from globo- and lacto- to ganglio- 

series.207  SSEA-3 has shown to be more rapidly down regulated than SSEA-4 indicating 
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that the presence of SSEA-3 is associated with a more primitive state than is SSEA-4 

positivity alone.207  The existence of myocardial cells expressing SSEA-4 has been 

previously described within neonatal and some adult cardiac mesenchymal cells202, 208 

although the presence of SSEA-3 expression remained undefined.  Equivalents of human 

SSEA-3 have been previously observed within adult rat myocardium.209 In the present 

study, we sought to ascertain whether the adult human heart harbored a yet unidentified 

population of cells with a stemness associated phenotype expressing SSEA-3, and 

whether SSEA-3 expressing myocardial cells may be utilized in therapeutic applications 

for myocardial repair after ischemic injury.  For the first time, we report the discovery, 

isolation, characterization, and therapeutic potential of a novel population of cardiac 

progenitor cells expressing SSEA-3.  

Methods 

Acquisition of Human Right Atrial Appendage Specimens 

 Right atrial appendage specimens were obtained with IRB approval from patients 

undergoing open heart, on-pump, coronary artery bypass surgery from 2011 to 2015 at 

Jewish Hospital and Kosair Children’s Hospital (IRB number 07.0062) in Louisville, KY.  

All research was performed in accordance with HHS Regulations (45 CFR Part 46) - 

Protection of Human Subjects and respective exemptions.   

Tissue Processing 

Right atrial appendages (~20-400 mg) were rinsed with ice-cold 1X PBS, 

weighed, and manually minced (fragments < 1 mm3) with sterile surgical scissors. Tissue 

fragments were subsequently washed twice in ice-cold Ham’s F12 base media and 

enzymatically digested with Worthington Collagenase type II/Hams F12 solution 
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(1500U/mL; 10 mL per 100 mg of tissue) for 90 min at 37°C with gentle agitation.  

Resultant cells were harvested via centrifugation (400xg for 5 min), and washed in 

SSEA-3 cell growth media consisting of a combination of mTESR1 media (STEMCELL 

Technologies) containing 20% FBS (Seradigm) and basal growth media [Ham’s F12 

(Gibco) supplemented with 10% FBS (Seradigm), 10 ng/ml Recombinant Human bFGF 

(PeproTech), 0.2 mM L-Glutathione (Sigma), 0.005 U/mL human erythropoietin 

(Sigma), and 100 U/ml penicillin/streptomycin (Gibco)].  Ultimately, the mTESR1 and 

basal media were combined in a 60/40 ratio, respectively, to generate the initial passage 

(P0) SSEA-3 cell growth media. Cells were resuspended in SSEA-3 cell growth media 

and plated in 6-well plates for primary expansion (passage 0).  Media was removed at 24 

h and placed in an empty adjacent well to provide further time for adhesion of cells 

remaining in suspension at 24 h.  These were termed secondary cultures.  2 mL of fresh 

SSEA-3 cell growth media was added to the primary wells.  24 h later, media was 

changed in secondary cultures.  Additional media changes were performed every 3 days 

in both primary and secondary cultures.  Cells were expanded until 70-80% confluence at 

which time they were passaged to T75 Flasks (passage 1) for additional expansion prior 

to immunoselection for SSEA-3 expression.  Primary and secondary unsorted cultures 

were combined at the time of passaging to T75 flasks.  Illustrations of the tissue 

processing and initial cell expansion are similar to what was demonstrated in Figure 7. 

FACS sorting of SSEA-3pos linneg cells 

 Passage 1 cardiac cells were trypsinized and sorted for SSEA-3 expression.  

Briefly, cells at 70-80% confluence were trypsinized, washed with ice-cold MACS 

buffer, and labeled with Ebioscience PE- or Alexa-488-conjugated Rat IgM Anti-
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Human/Mouse SSEA-3 for 30 min per the manufacturer’s instructions. Cells were sorted 

using a Beckman Coulter MoFlo cell sorter.  Gates were set to isolate the highest 1-2% 

SSEA-3 positive events as well as the least positive (SSEA-3 negative) events.   

Immunomagnetic sorting for SSEA-3pos linneg cells 

Passage 1 cells at 70-80% confluence were immunomagnetically sorted for 

SSEA-3 according to the manufacturer’s specifications using Miltenyi MS columns in 

conjunction with pre-separation filters.  Briefly, cells were trypsinized, washed twice in 

ice-cold MACS buffer (1% BSA), suspended in 300 µl 1% BSA MACS buffer, and 

incubated with 15 µl of primary antibody (Ebioscience PE-conjugated rat IgM anti-

human/mouse SSEA-3) for 20 min. Subsequently, cells were washed with 1% BSA 

MACS buffer, suspended in 80 µl 1% BSA MACS buffer, and incubated with 20 µl 

Miltenyi Mouse IgG anti-PE microbead antibody for 20 min.  Cells were then washed in 

10 mL sterile 1% BSA MACS buffer, suspended in 500 ul 1% BSA MACS buffer, and 

loaded onto a primed magnetic column with a 30 µm pre-separation filter. Elution 

procedures were performed according to the manufacturer’s MS column protocol.  

Positively selected cells were plated in T75 flasks at subconfluence for subsequent in 

vitro expansion of human SSEA-3pos linneg cells.  Human SSEA-3pos linneg cells were used 

immediately or expanded exponentially over 2 additional passages to obtain 

approximately 3-20 x 106 cells for use in both in vitro and in vivo studies.  Cells were 

assessed by flow cytometric analysis for SSEA-3 positivity at passage 2 following 

immunomagnetic sorting.   

Flow cytometric analysis  
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Cells were trypsinized from dedicated flasks at passage 2 with TrypLE (Life 

Technologies) and then washed 2 times with 1% BSA MACS buffer (Miltenyi).  Cells 

were incubated with Ebioscience rat IgM anti-human SSEA-3 Alexa Fluor 488-

conjugated antibody for 45 min.  Isotype control Ebioscience Alexa Fluor 488-conjugated 

Rat IgM was used in parallel to establish gating for flow cytometric analyses.  All 

antibodies were used at manufacturer suggested concentrations.  Flow cytometric 

analysis was performed using a BD Accuri C6 flow cytometer or BD LSR flow 

cytometer. Gates were set for false positivity of <1% in respective isotype controls.  

Figures and illustrations of resultant flow plots were obtained by generating jpeg images 

directly from the instrument without the use of any additional software. A comprehensive 

list of antibodies utilized for flow cytometric analyses is provided in Table 1.   
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Table 1. 
Flow Cytometry     

Marker Manufacturer Species (anti-human) Fluorochrome(s) 

        

SSEA-3 Ebioscience Rat IgM 

unconjugated, alexa-

488, PE 

SSEA-4 Ebioscience Mouse IgG3 

unconjugated, alexa-

488, PE 

KDR R&D systems Mouse IgG1 

unconjugated, alexa-

700 

CD31 BD Mouse IgG1 v450 

CD31 Ebioscience Mouse IgG1 PE 

c-kit Ebioscience Mouse IgG1  PE, APC  

c-kit Sant Cruz Rabbit IgG unconjugated 

CD34 BD Mouse IgG1 v450 

CD34 Ebioscience Mouse IgG1 APC 

CD45 BD Mouse IgG1 v450 

CD45 Ebioscience Mouse IgG1 ACP 

CD105 Ebioscience Mouse IgG1 PE, APC, eFluor-450 

CD73 Ebioscience Mouse IgG1 PE 

CD90 Ebioscience Mouse IgG1 PE, APC 

CD29 Ebioscience Mouse IgG1 APC 

CD44 Ebioscience Rat IgG2b efluor-450 

CD166 Ebioscience Mouse IgG1 PE 

HLA-I BD Mouse IgG1 v450 

HLA-II BD Mouse IgG PE 

TRA-1-60 Ebioscience Mouse IgM PE 

TRA-1-81 Ebioscience Rat IgG2a APC 

CD15 BD Mouse IgM APC, v450 

    

Isotype controls:     

Species Manufacturer Fluorochrome(s)   

Mouse IgG1 Ebioscience 

unconjugated, FITC, alexa-

488, PE, APC, eFluor-450   

Mouse IgG3 Ebioscience 

unconjugated, FITC, alexa-

488, PE   

Rat IgM Ebioscience unconjugated, alexa-488, PE   

Mouse IgG1 R&D unconjugated, alexa-700   

Rabbit IgG 

Novus/Santa 

Cruz unconjugated   

        

Secondary antibodies:     

goat anti-mouge IgG   Life technologies alexa-488,PE , APC 

donkey anti-mouse IgG   Life technologies alexa-488, PE, APC 

goat anti-rabbit IgG   Life technologies alexa-488, PE, APC 

goat anti-rat IgM   Life technologies alexa-488, APC 

        

Antibodies : used per manufacturer's 

recommendations and concentrations       
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Immunohistochemistry 

Right atrial specimens were cut longitudinally into 2-4 mm sections and fixed for 

24 h with 10% neutral buffered formalin.  Tissue fragments were ethanol dehydrated, 

xylene cleared, and paraffin embedded. Paraffin embedded specimens were sectioned (4 

µm) using a microtome, deparaffinized, and rehydrated.  Antigen retrieval was performed 

by incubating sections with DAKO citrate buffer solution for 10 min at 95°C. Slides were 

next blocked in 5% BSA for 1 h prior to immunostaining. Immunostaining for SSEA-3, 

SSEA-4, and c-kit was performed by staining overnight at 4°C with primary antibodies. 

Primary antibody staining for α-sarcomeric actin, myosin heavy chain, and CD45 was 

performed at room temperature for 1 h.  After primary antibody labeling, the sections 

were washed 3 times in 1X PBS for 3 min. Sections were incubated at room temperature 

for 1 h with secondary antibodies, counterstained with DAPI, and permanently mounted 

using vectashield. Images were taken on a Zeiss 510 confocal microscope and analyzed 

with the accompanying Zeiss software with optimization of contrast and brightness 

applied globally to the entire image.  No extrinsic software was used to process or alter 

images.  

Immunocytochemistry 

SSEA-3pos linneg cells were either seeded on chamber slides or immunolabeled in 

suspension for immunocytochemical characterization.  In both cases, primary antibody 

labeling for SSEA-3, SSEA-4, and other cell surface markers was performed on live cells 

followed by fixation in buffered 4% PFA, methanol permeabilization for additional 

intracellular staining, and secondary staining with fluorophore conjugated antibodies.  



97 
 

Briefly, cells that were seeded onto chamber slides were allowed to attach 

overnight.  Slides were then washed with 1X PBS and stained live with anti-human 

SSEA-3- and SSEA-4-unconjugated antibodies (Ebioscience at 1:100 dilutions) for 1 h at 

room temperature in 1% BSA MACS buffer.  Slides were subsequently washed with 1X 

PBS for 10 min, fixed with 4% PFA (Sigma) for 15 min at room temperature, and washed 

with 1X PBS.  Cells were permeabilized with methanol for additional intracellular 

immunostaining in appropriate cases.  Slides were incubated with secondary antibodies 

conjugated with fluorophores (FITC, PE, TRITC, or APC) at room temperature (all 

secondary antibodies were obtained from Life Technologies).   After secondary labeling 

and nuclear counterstaining with DAPI, slides were washed with 1X PBS and images 

acquired.  

Suspension immunostaining was performed with similar antibody concentrations, 

incubation periods, fixation steps, and secondary antibody labeling as previously 

described, but was followed with adhering cells to microscope slides via a Cytospin and 

mounting with Vectashield mounting medium (Vector Labs).  As before, all images were 

taken with a Zeiss 510 confocal microscope and analyzed with the accompanying Zeiss 

software.  Image processing was performed relative to isotype control labeling with 

integral instrument software only.  Modifications to brightness and contrast of images 

were applied to the entire image fields.  No accessory image software was utilized to 

adjust images.  A list of antibodies utilized for immunohistochemistry/cytochemistry is 

provided in supplemental Table 2.   
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Table 2. 

Immunohistochemistry/Immunocytochemistry 

Marker Manufacturer Species (anti-human) 

      

hNA Millipore Mouse IgG1 

SSEA-3 Ebioscience Rat IgM 

SSEA-4 Ebioscience Mouse IgG3a 

WT-1 Sigma Rabbit IgG 

NANOG Abcam Rabbit IgG 

OCT4 Ebioscience Rat IgG 

c-kit DAKO Rabbit IgG 

c-kit Santa Cruz Rabbit IgG 

CD45 DAKO Mouse IgG 

Tryptase DAKO Mouse IgG 

Sarcomeric actin Sigma Mouse IgM 

a-Myosin heavy chain Abcam Mouse IgG 

Smooth muscle actin Sigma Mouse IgG 

alpha-tubulin Abcam Mouse IgG1 

connexin-43 Sigma Rabbit IgG 
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Doubling times 

Cell population doubling times were calculated by exponential regression, where 

doubling time (d) can be obtained by noting the number of final cells at time t [N(t)], the 

initial number of cells seeded for expansion C, and the time the culture was allowed to 

expand in hours t within the formula N(t)=C2t/d.  Doubling times at passage 2-3 were 

recorded and average doubling times for SSEA-3pos linneg cells at passage 3 calculated.  

Cell counts were performed by hemocytometer and Trypan blue in duplicate. 

Clonogenicity 

Freshly MACS sorted human cardiac SSEA-3pos linneg cells were seeded onto 

Terasaki plates using the limiting dilution technique.  Wells with more than one cell were 

marked and excluded from further analysis.  In total, fifteen 72-well Terasaki plates were 

seeded per patient.  Six patients were utilized for the assay to calculate mean 

clonogenicity of human SSEA-3pos linneg cells. Clonogenicity was defined as a visually 

verified single cell proliferating to form a colony that completely covered the well.  Wells 

that had single cells that did proliferate but spontaneously senesced and did not result in 

complete well coverage were deemed “negative”.  The number of colonies formed was 

divided by the original number of visually verified single cell wells to obtain a percent 

for each patient’s cells. The percentages for each patient were averaged to obtain a mean 

clonogenicity for human cardiac SSEA-3pos linneg cells.   

qPCR 

Total RNA was prepared from MACS/FACS sorted SSEA-3pos linneg and SSEA-

3neg linneg cells using PureLink® RNA Mini Kit (Life Technologies). cDNA was 

synthesized from total RNA using the High-Capacity cDNA Reverse Transcription Kit 
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(Life Technologies) with random hexamers primers according to the manufacturer's 

instructions. Real-time PCR was performed using the Fast SYBR® Green Master Mix 

(Life Technologies) per the manufacturer’s protocol. Reactions were performed in 

duplicate on a 7900 Fast Real-Time PCR System (Applied Biosystems) at 95 °C for 30 s 

and 40 cycles of 5 s at 95 °C, and 30 s at 60 °C. A negative control with RNA instead of 

cDNA was carried out, and the integrity of PCR was verified by dissociation curve 

analysis. Relative gene expression was quantified from fluorescence cycle threshold (Ct) 

values using the ΔΔCt method. Primer sequences for all targets are listed in supplemental 

Table 3.   
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Table 3: 

Gene name  Forward  Reverse  

BRY T 

GTGCTGTCCCAGGTGGCTTACA 

GATG 

CCTTAACAGCTCAACTCTAACT 

ACTTG 

OCT4 GATGTGGTCCGAGTGTGGTTCT TGTGCATAGTCGCTGCTTGAT 

MIXL1 GGATCCAGGTATGGTTCCAG GGAGCACAGTGGTTGAGGAT 

NANOG  GCAGAAGGCCTCAGCACCTA AGGTTCCCAGTCGGGTTCA 

TBX5 TTCTGCACTCACGTCTTTCC TGGCAAAGGGATTATTCTCA 

TBX18 CAACAGAATGGGTTTGGAAG AAGGTGGAGGAACTTGCATT 

TBX20 AGCTTTGGGACAAATTCCAT CTTGGCCTCAGGATCCAC 

NKX2.5 CCCCTGGATTTTGCATTCAC CGTGCGCAAGAACAAACG 

GATA4  AAGACACCAGCAGCTCCTTC TGTGCCCGTAGTGAGATGAC 

GATA6 AAAGAGGGAATTCAAACCAGGAA GAAGTTGGAGTCATGGGAATGG 

KDR GAGGAGAAGTCCCTCAGTGATGTAG 

ACTTGGAAGCTGTAACAGATGA 

GATG 

TERT CGTCGAGCTGCTCAGGTCTT AGTGCTGTCTGATTCCAATGCTT 

WT1 CCAGCCCGCTATTCGCAA CGAGTACTGCTGCTCACCCA 

IGF-1R TGTCCTGACATGCTGTTTGA AGGCTCCATCTCCTCTTTGA 

GAPDH  TCAGACACCATGGGGAAG ACATGTAAACCATGTAGTTGAG 

Beta2 

microglobulin  AATGCGGCATCTTCAAACCT TGACTTTGTCACAGCCCAAGATA 

OCT4 GATGTGGTCCGAGTGTGGTTCT TGTGCATAGTCGCTGCTTGAT 

NANOG  GCAGAAGGCCTCAGCACCTA AGGTTCCCAGTCGGGTTCA 

NKX2.5 CCCCTGGATTTTGCATTCAC CGTGCGCAAGAACAAACG 

GATA4  AACGACGGCAACAACGATAAT GTTTTTTCCCCTTTGATTTTTGATC 

MEF2C CTGGCAACAGCAACACCTACA GCTAGTGCAAGCTCCCAACTG 

GATA6 AAAGAGGGAATTCAAACCAGGAA GAAGTTGGAGTCATGGGAATGG 

KDR GAGGAGAAGTCCCTCAGTGATGTAG 

ACTTGGAAGCTGTAACAGATGA 

GATG 
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In vitro differentiation 

 For myogenic differentiation, cells were expanded in T75 flasks one passage after 

sorting to obtain approximately 3-5 million SSEA-3pos linneg sorted cells.  Cells were 

trypsinized, seeded at a density of 104 cells/cm2 in 6-well plates, and allowed to attach 

for 24 h in SSEA-3 cell growth media.  Growth media was changed to myogenic 

differentiation media [DMEM-LG (GIBCO), 5% horse serum (Life Technologies), 10-

5M dexamethasone (Sigma), 0.75% DMSO (Sigma), 20 mmol/L ascorbic acid, 0.1% ITS 

liquid media supplement (Sigma),  0.1% NEAA (Lonza), and 100 U/mL Pen-Strep.  

Media was changed every 48 h without passaging for 35 days.  Cells were harvested by 

trypsinization at various time points for western blot analysis for myocyte and smooth 

muscle contractile proteins.  Additionally, cells were trypsinized and reseeded on 

chamber slides for contractile protein immunostaining and confocal microscopy.  

Endothelial differentiation was induced by changing full growth media to EGM-

2MV (Lonza) media supplemented with 60 ng/mL VEGF (PeproTech).  EGM-2MV 

media was replaced every 48 h during the 10 day duration of endothelial differentiation.  

Cells were trypsinized at 90% confluence and reseeded at 40% confluence when visually 

indicated in T75 flasks.  Cells were trypsinized and submitted for flow cytometric 

analysis for CD31 expression at days 0, 4, and 10 for comparison.  

Western blot analyses 

Cells were trypsinized, washed with 1X PBS, suspended in cell lysis buffer (1% 

NP40, 150mM NaCl, 20mM Tris-HCl, 1% Triton X-100, 4mM PMSF, 1:100 Proteinase 

Inhibitor Cocktail), and briefly sonicated. Whole cell lysates were centrifuged at 14,000 x 

g for 20 min and resultant lysate protein concentrations determined using Bio-Rad 
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Protein Assay Dye Reagent (Cat#500-0006).  Whole cell lysates (15-40 µg of protein) 

were resolved on 10-12% SDS-PAGE gels (Reagents from Bio-Rad), transferred to 

PVDF membranes, and blocked in 3% milk TBST buffer at room temperature for 30 min. 

Membranes were subsequently incubated with primary antibody in blocking buffer (3% 

milk in TBST) overnight at 4°C, washed in 1X TBST, and incubated with HRP-

conjugated secondary antibodies at RT for 1 h. Membranes were then rinsed with 1X 

TBST and proteins detected using enhanced chemiluminescence substrate (HyGOL, 

Denville Scientific, Cat#E2500) according to the company instructions. Western blot 

antibodies are listed in Table 4.  
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Table 4: 

Marker Manufacturer Cat# Species Mw Usage 

NKX2.5 abcam ab91196 Ms  IgG1 35kDa WB, 1:1000  

NKX2.5 abcam ab106923 Gt  IgG 35kDa WB, 1:1000  

 Brachyury 

(T) 
abcam ab20680 Rb IgG 

47, 53,  

75kDa 

WB:higher 

1:1000 

sm-MHC Sigma M7786 Ms IgG1 200kDa WB: 1:2000   

 SMA Sigma A5228 Ms, IgG2a  42kDa 
WB: 

1:10000   

α-SA Sigma A7811 Ms IgG 42kDa 
WB:higher 

1:2500  

α-MHC Novas NB300-284 Ms IgG 250kDa WB:1:1000   

MYH6 
Novas 

NBP2-36746 

(CL2162) 
Ms, IgG2b 250kDa 

WB: 1:500-

1000 

CX43 Sigma C6219 Rb, IgG 43KDa WB: 1:8000 

 WT1 Sigma WH0007490M1 Ms IgG2bk 56KDa WB, 1:500  

KDR Abcam Ab9530 Ms, IgG1 220KDa WB, 1:500  

KDR Sigma SAB4300657 Rb, IgG 220KDa WB, 1:500  

vWF Abcam Ab6994 Rb, IgG 
500+ 

KDa 
WB, 1:500 

Anti-β-actin 
Cell Signaling  

Tech 
#3700 Rb, IgG 42kDa WB :1:1000  
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Cytokine Array  

5×106 SSEA-3pos linneg or dermal fibroblasts were seeded in culture flasks in 

identical conditions with FBS‐free F-12 media for 24 h. The supernatants (conditioned 

media) were collected and the secretion of various cytokines was visualized by a semi-

quantitative Ab array (R&D biosystems). Intensity was determined using ImageJ 

software (NIH) according to manufacturer’s specifications.   

Animal studies 

This study was performed in immunodeficient NOD/SCID (NOD.CB17-

Prkdcscid/J) female mice (age ~4 months), purchased from The Jackson Laboratory (Bar 

Harbor, ME). All mice were maintained in micro-isolator cages under specific pathogen-

free conditions in a room with a temperature of 24℃, 55–65% relative humidity, and a 

12-h light–dark cycle. 

Murine Model of Acute Myocardial Infarction and Intramyocardial Cell Delivery 

The murine model of myocardial ischemia and reperfusion has been described in 

detail20. Briefly, mice were anesthetized with sodium pentobarbital (60 g/kg i.p.) and 

ventilated using carefully selected parameters. The chest was opened through a left 

anterolateral thoracotomy, and a nontraumatic balloon occluder was implanted around the 

mid-left anterior descending coronary artery using an 8–0 nylon suture. To prevent 

hypotension, blood from a donor mouse was given at serial times during surgery. Rectal 

temperature was carefully monitored and maintained between 36.7 and 37.3 ℃ 

throughout the experiment. In all groups, myocardial infarction (MI) was produced by a 

45 min coronary occlusion followed by reperfusion.  
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The procedure for cell transplantation by intramyocardial injection was similar to 

that used in our previous studies143.  Briefly, 30 min after reperfusion, 2 ×105 human 

cardiac SSEA-3pos linneg,  an equivalent number of control cells (human dermal 

fibroblasts obtained from ATCC), or an equivalent volume of vehicle were injected 

intramyocardially using a 30-gauge needle. A total of four injections (10 µl each) were 

made in the peri-infarct region in a circular pattern, at the border between infarcted and 

non-infarcted myocardium. Mice were then allowed to recover for 39 days until 

euthanasia and tissue collection. 

Echocardiographic studies  

Murine echocardiographic images were obtained with a Vevo 2100 high 

frequency, high resolution (30 micron) digital imaging ultrasound system (VisualSonics, 

Inc.) as previously described.20 Serial echocardiograms were obtained at baseline (4 days 

prior to coronary occlusion/reperfusion and cell transplantation), 5 days after cell 

transplantation, and 35 days after cell transplantation (4 days prior to hemodynamic 

studies and euthanasia). All studies were performed under isoflurane anesthesia. Using a 

rectal temperature probe, body temperature was carefully maintained between 36.7 and 

37.3 ˚C throughout the study. Digital images were analyzed off-line by blinded observers 

using the Vevo 2100 workstation software. At least three measurements were taken and 

averaged for each parameter. Standard echocardiographic parameters were derived from 

the two-dimensional, M-mode, and Doppler images, as in our previous studies.20 

Speckle-tracking echocardiographic (STE) analysis was performed with the STE 

software, which utilizes semi-automated border tracking (VisualSonics, Inc.), as detailed 

in the online Supplement.  
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Hemodynamic Studies 

Hemodynamic studies were performed 39 days after cell or vehicle treatment, just 

before euthanasia, using the ARIA-1 system and Millar catheter as described.141, 143 

Briefly, mice were anesthetized with isoflurane and rectal temperature kept between 36.7 

and 37.3 ˚C. A 1.0 French Millar catheter was inserted into the LV via the right carotid 

artery.  Inferior vena cava occlusion was performed with external compression to produce 

variably loaded beats for determination of the end-systolic PV relation (ESPVR) and 

other derived constructs of LV performance. As in the case of the echocardiographic 

studies, all hemodynamic data analyses were performed off-line by investigators blinded 

to treatment group. 

Cardiac tissue fixation and morphometric analysis 

At the conclusion of the in vivo study, the mouse heart was arrested in diastole by 

an intravenous  injection of 0.15 ml CdCl2 (100 mM), excised, and perfused retrogradely 

at 70–80 mmHg (LVEDP = 8 mmHg) with heparinized PBS followed by 10% neutral 

buffered formalin solution for 15 min. The heart was then sectioned into three slices from 

apex to base, fixed in formalin for 24 h, and subjected to tissue processing and paraffin 

embedding. Paraffin-embedded LV blocks were sectioned at a thickness of 4 µm for 

histochemistry and immunohistochemistry. Morphometric parameters, including LV 

cavity area, total LV area, risk region area, scar area, LV wall thickness, and infarct 

expansion index were measured in sections stained with Masson’s Trichrome as 

previously described.143 In each mouse heart, 4 – 5 slides were stained and analyzed. 

From apex to base, the average distance between two stained slides was 120 - 150 um. 
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Images were analyzed using NIH Image J (1.42v) and measurements from the various 

slices per heart averaged. 

Immunohistochemistry of murine cardiac specimens 

Formalin-fixed, paraffin-embedded, 4 µm-thick heart sections were 

deparaffinized in xylene and rehydrated gradually in a series of ethanol followed by 

antigen retrieval procedure. After incubation with blocking solution, persistence of 

transplanted human stem cells was determined by human nuclear antigen (HNA) 

(Millipore) immunofluorescent staining and confocal microscopy. The fate of 

transplanted cells was assessed by staining with specific antibodies against the myocyte 

marker cardiac troponin I (cTnI) (Santa Cruz), endothelial cell marker isolectin IB4 (Life 

Technologies), and smooth muscle cell marker α-smooth muscle actin (α-SMA) (Santa 

Cruz). Proliferation of transplanted cells was evaluated by immunofluorescent staining of 

nuclei for BrdU using a rat monoclonal antibody (Santa Cruz). In all of the 

immunofluorescent staining procedures, secondary antibodies conjugated with the 

appropriate fluorochromes (Jackson ImmunoResearch) were used. The concentration of 

primary and secondary antibodies corresponded to that indicated by the manufacturers. 

Immunohistochemical signals were acquired by confocal microscopy and quantitatively 

analyzed by Image J (1.42q, NIH). In each heart, HNA+ nuclei, double positive cells 

(HNA+/cTnI+, HNA+/IB4+, and HNA+/α-SMA+), triple positive cells 

(HNA+/cTnI+/BrdU+, HNA+/IB4+/BrdU+, and HNA+/α-SMA+/BrdU+), and total nuclei 

were counted in 25 confocal images acquired from the infarcted area (10), two border 

zones (10), and noninfarcted area (5). In all cases, at least five hearts per group were 

examined. 
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Statistics 

 Student’s t-test, one-way ANOVA, or two-way repeated measures ANOVA, as 

appropriate, was employed for comparisons of qPCR analyses as well as 

echocardiographic, hemodynamic, and immunohistochemical studies of murine hearts.  

All data are reported as means ± SEM.  

Results 

Localization of SSEA-3pos linneg cells in human right atrial tissue 

 Localization of human SSEA-3pos linneg cardiac cells was accomplished by 

immunohistochemical staining of formalin fixed, paraffin embedded, human right atrial 

tissue samples.  Immunolabeling was performed not only for localization but also for 

immunophenotypic characterization of the cells in situ with antibodies specific for c-kit 

(CD117), CD34, CD45, SSEA-3, and SSEA-4.    SSEA-3pos linneg cardiac cells were 

observed to be most highly prevalent within the subepicardium with a decreasing gradient 

to the compact myocardium where they were mainly visualized as single or doubly 

grouped cells within the interstitial space between myocytes (Fig. 16A and  Fig. 17A-C). 

SSEA-3pos linneg cells appropriately co-expressed SSEA-4 (Fig. 16B-D). In situ, SSEA-

3pos linneg cells were largely c-kit negative (Fig 16E-F); however, in very rare cases, 

overlapping expression of c-kit [i.e. SSEA-3pos SSEA-4pos c-kitpos cells] was also 

observed (Fig. 17D-G).  SSEA-3 expression did not overlap with mature myocytes, 

smooth muscle, endothelial cells, or cardiac fibroblasts. 
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Figure 16. Cells expressing the embryonic stem cell-associate antigen SSEA-3 are 

present in the human heart and lack hematopoietic lineage markers (linneg). A. 

Transmission confocal microscopic image of human right atrial myocardium with 
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immunolabeling of SSEA-3 (green) and SSEA-4 (red). SSEA-3pos cells (green) are 

located in the cardiac interstitium between striated myocytes. Scale bar is 50um. B-D. 

Immunolabeling of SSEA-3 (green), SSEA-4 (red), and DAPI nuclear counterstain 

demonstrate that SSEA-3pos linneg cells appropriately co-express SSEA-4 (merged image). 

E. SSEA-3pos linneg cells (green) in the white box (enlarged in panel F) lack c-kit 

expression.  Scale bar is 50um. F. A c-kitpos cell is shown in close proximity to the 

SSEA-3pos linneg cells; this suggests that SSEA-3pos linneg cells are distinct from 

previously described populations of cardiac progenitors. G-I. The prevalence of SSEA-

3pos linneg cells in human right atrial myocardium was quantified by flow cytometric 

analysis after total enzymatic digestion of right atrial samples and was normalized to 

milligrams of right atrial tissue from which the cells originated.  G. An average of 

1.13±0.27 x 105 nucleated cells were analyzed per human right atrial sample (n=12) after 

complete enzymatic digestion. H. SSEA-3pos linneg cells accounted for 1.3±0.19% of total 

nucleated cells obtained from right atrial samples. I. The prevalence of SSEA-3pos linneg 

cells was 5.8±1.7 cells per milligram of human right atrial tissue (n=12). 
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Figure 17. SSEA-3pos cardiac cells are located within the subepicardium and 

myocardial interstitium predominantly as solitary cells, and a subpopulation of 

SSEA-3 positive cells express c-kit, likely representing an intermediate phenotype of 

cardiac progenitors. A-C. Shown (top) are three confocal microscopy images of solitary 

SSEA-3pos cardiac cells (green) within formalin fixed adult human right atrial tissue 

specimens from separate patients. D. This confocal microscopic image demonstrates 

higher prevalence of SSEA-3pos cells within the subepicardium.   The SSEA-3pos cells 
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within the compact myocardium were observed as single cells within the interstitium as 

shown in images A-C.  SSEA-3pos (green) c-kitneg (red) cells are highlighted by arrows 

and c-kitpos SSEA-3neg cells by arrowheads (scale is 20um). Notably, a cell expressing 

both SSEA-3 and c-kit can be seen within the white box.  E. An enlarged image of the 

white box in image D shows the intermediate phenotype of SSEA-3 and c-kit positivity 

(scale is 10um).  F. Another example of an SSEA3pos c-kitpos cell within the white box. 

SSEA-3pos c-kitneg cells are indicated by arrows and a c-kitpos SSEA-3neg cell marked by 

the arrowhead (scale is 20um). G. A group of SSEA-3 expressing cells (arrowhead) 

within the myocardial interstitium between striated myofibrils is shown within the white 

box.  These cells co-express SSEA-4 as shown on the right with fluorophore separated 

images expanded from the white box.  One of the cells was observed to also express c-kit 

(arrow) in addition to SSEA-3 and SSEA-4. Scale bar is 10um. H. Flow cytometric based 

quantitation of cells obtained from freshly digested right atrial tissue samples 

demonstrated that cardiac SSEA-3pos linneg cells displayed partial overlap with SSEA-3 

expression (69.2±3.4%, n=10) validating the in vivo observation shown in images D-G. I. 

Immediately after enzymatic digestion, 7.18±1.78% of SSEA-3pos linneg cells co-

expressed c-kit (n=10). Data are mean±SEM. 
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Prevalence of SSEA-3pos linneg cells in human right atrial tissue in situ 

The prevalence of SSEA-3pos linneg cells was quantified by immunolabeling of 

cardiac cells obtained after total enzymatic digestion of human right atrial tissue samples 

with antibodies specific to SSEA-3, CD34, and CD45. An average of 1.13±0.27 x 105 

nucleated cells were analyzed per human right atrial sample (n=12). SSEA-3pos linneg cells 

accounted for 1.3±0.19% of total nucleated cells obtained from right atrial samples after 

robust enzymatic digestion. The prevalence of SSEA-3pos linneg cells was 5.8±1.7 cells 

per milligram of right atrial tissue (Fig. 16G-I).   

Quantification of overlapping c-kitpos and SSEA-3pos linneg populations in situ 

Quantification of c-kitpos and SSEA-3pos populations was performed by 

immunolabeling and flow cytometric analysis (excluding CD34pos/45pos cells) after 

complete enzymatic digestion of right atrial tissue samples (n=10).  C-kitpos linneg cardiac 

cells demonstrated a high degree of overlap with SSEA-3 expression (69.2±3.41%).  

However, SSEA-3pos linneg cells demonstrated much less overlap with c-kit co-

expression: only 7.18±1.78% of SSEA-3pos linneg cells showed co-expression of c-kit 

(Fig. 17H-I) as assessed by flow cytometric analysis immediately after total enzymatic 

digestion.  

SSEA-3 immunoselection confers enrichment for markers associated with stemness 

and early cardiac commitment 

 After enzymatic digestion of right atrial tissue and primary expansion of tissue 

culture plate adherent cardiac cells, passage 1 cells were immunolabeled with antibodies 

specific to SSEA-3 and c-kit.  To validate the utility of SSEA-3 as a surrogate stemness 

associated cell surface molecular target by which cardiac precursors may be selected for 



115 
 

and isolated, SSEA-3pos linneg cells were FACS sorted for qPCR comparison with 

unsorted cardiac cells to determine if selection of cells expressing SSEA-3 results in 

enriched expression of the pluripotency associated markers OCT4 and NANOG as well 

as early and late cardiac markers NKX2.5 and GATA4 and MEF2C, respectively.  SSEA-

3pos linneg cardiac cells demonstrated higher expression of OCT4 (62.5±26.33 fold, 

P<0.05) and NANOG (89.7±42.6, P<0.05) as well as the early cardiac marker NKX2.5 

(137.3±75.3, P<0.05) (n=5), albeit at relatively low levels compared with the internal 

control (GAPDH or β2-microglobulin). There was no enrichment of GATA4 or MEF2C 

transcript expression in SSEA-3 expressing cells (Fig. 3) compared with unsorted cardiac 

cells.  All SSEA-3pos linneg cardiac cells at passage 1 lacked expression of the 

hematopoietic markers CD34 and CD45 (data not shown) and showed adherence to 

plastic culture plates, indicating that these cells are not hematopoietic progenitors (which 

are non-adherent to tissue culture plates) and are not immediately from the bone marrow.  
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Figure 18. SSEA-3 immunoselection: Enrichment of pluripotency associated 

markers, cardiac mesodermal markers, isolation and expansion. A. A representative 

FACS sorting plot of SSEA-3pos linneg cardiac cells at passage 2 is shown with sorting 

gate R4 (center panel) established with respect to isotype control (left panel) for false 

positivity <1%. In this patient, SSEA-3pos linneg cells were 2% of the total in vitro 

expanded cell population that were FACS sorted for qPCR-based comparison. 

Comparison of SSEA-3pos linneg FACS sorted cells to the unsorted population by qPCR 

demonstrated enriched relative expression of OCT-4 (62.5±26.33 fold, P<0.05), NANOG 
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(89.7±42.6, P<0.05), and NKX2.5 (137.3±75.3, P<0.05), n=5. B. Flow cytometric 

analysis of resultant magnetically sorted SSEA-3pos linneg cardiac cells is shown with 

gates established by isotype control <1% false positivity in P7 (left panel).  

Immunomagnetically sorted SSEA-3pos cells were 94% positive for SSEA-3 after MACS 

sorting in this particular patient. A representative light microscopic image of SSEA-3pos 

linneg cardiac cells is shown in the right panel (10x magnification). C. Confocal images of 

SSEA-3pos linneg cells (green) are shown in the left (10 um scale) and center (100 um 

scale). SSEA-3pos linneg cells at passage 2-3 demonstrated an average doubling time of 

26.5±2.11 h (n=9 patients).   D. Immunomagnetically selected SSEA-3pos linneg cardiac 

cells were assessed by flow cytometric analysis at the end of passage 2 for SSEA-3 

positivity.  A mean SSEA-3 positivity of 81.4±2.34% was achieved demonstrating 

reproducibility of isolation and in vitro expansion (n=32). E. Doubling times of 

immunomagnetically selected SSEA-3pos linneg cells calculated during passage 2-3 

averaged 26.5±2.1 h.  

  



118 
 

Validation of clinically relevant methods of SSEA-3pos linneg cell isolation and 

expansion 

SSEA-3pos linneg cells could be sorted and enriched with high efficiency.  A 

representative flow cytometric plot of MACS enriched SSEA-3pos linneg cells as well as 

phase contrast and confocal microscopic immunocytochemical images of freshly MACS 

sorted SSEA-3pos linneg cardiac cells prior to passage 2 in vitro expansion are shown (Fig. 

18). In vitro expansion of SSEA-3pos linneg cells yielded approximately 3-5 x 106 cells at 

the end of passage 2 (demonstrating an average SSEA-3 positivity of 81.4±2.34%, n=32) 

which were able to be expanded exponentially to 30-50 x 106 cells by the end of passage 

3 for potential therapeutic utilization. The doubling time of SSEA-3pos linneg cells at 

passage 2-3 averaged 26.5±2.11 h (n=9) (Fig. 18). 

To validate the MACS based sorting methodology, a similar comparison of 

immuno-magnetically (MACS) selected SSEA-3pos linneg cardiac cells with the negatively 

sorted fraction was performed via qPCR (Fig. 4).  MACS selection of cells expressing 

SSEA-3 demonstrated consistent enrichment of cells expressing higher levels of NANOG 

(30.7±5.63 fold), OCT4 (8.48±2.01), MIXL1 (45.4±6.6), NKX2.5 (14.8±3.73), and 

TERT (48.2±13.3), P<0.05 (Fig 4A).  NANOG was detected by immunostaining with 

nuclear localization in some SSEA-3pos cells (Fig. 4D).  KDR and GATA6 exhibited a 

trend toward enrichment; however this was not statistically significant. Although there 

was no significant difference in the expression of TBX5, TBX18, TBX20, or GATA4 

transcripts between SSEA-3pos and SSEAneg cells, qPCR cycle times revealed relatively 

high expression of TBX18, TBX20, and GATA4 in both populations (data not shown).  
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TBX5 was detectable by qPCR, but lowly expressed in both SSEA3pos and SSEA3neg 

sorted cells (data not shown).   Transcripts for ISL-1 and MESP1 were not detected.  
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Figure 19. Characterization of in vitro expanded SSEA-3pos linneg.  A. qPCR of 

immunomagnetically selected SSEA-3pos cardiac cells demonstrated similar patterns of 

enrichment for pluripotency associated markers NANOG (30.6±5.63) and OCT4 

(8.48±2.01), early cardiac mesodermal markers MIXL1 (45.4±6.60) and NKX2.5 

(14.8±3.73), and telomerase reverse transcriptase, TERT (48.15±13.3), P<0.05. B.  Flow 

cytometric analyses of in vitro expanded SSEA-3pos linneg cells isolated from 6 human 
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right atrial tissue samples consistently demonstrated a mesenchymal phenotype with near 

complete positivity for CD105 (98.8±0.43%), CD73 (98.8±0.74%), CD29 (99.5±0.11%), 

CD44 (99.5±0.31%), CD166 (96.7±3.90%), and HLA class 1 (97.4±1.18%) and 

heterogeneity of CD90 (59.6±4.77%) expression.  SSEA-3pos linneg cells lacked 

expression of hematopoietic markers CD34 and CD45 (0.53±0.09%), c-kit (0.28±0.06%), 

CD31 (0.48±0.13%) and HLA class 2 (0.35±0.11%).  Heterogeneity of KDR expression 

was observed (7.0±0.56%). C. As SSEA-3 expression was observed to decrease over 

time and with passaging, qPCR performed after SSEA-3 re-enrichment by 

immunoselection of cells retaining SSEA-3 expression at advanced passage (passage 9) 

showed continued enrichment of pluripotency associated markers NANOG (89.6±23.3) 

and OCT4 (44.6±14.0) as well the early cardiac marker NKX2.5 (57.6±19.0) compared 

with that of the SSEA-3 negative fraction.  GATA4 and GATA6 expression was not 

observed to differ significantly. Asterisks mark statistical significance with P<0.05 in all 

graphs.  
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Immunophenotypic analyses of SSEA-3pos linneg cells 

SSEA-3pos linneg cardiac cells at passage 2 were analyzed by flow cytometry for 

co-expression of mesenchymal, endothelial, and hematopoietic lineage markers (Fig. 20).  

SSEA-3pos linneg cells demonstrated a predominantly mesenchymal phenotype, with near 

complete positivity for CD105 (98.8±0.43%), CD73 (98.8±0.74%), CD29 (99.5±0.11%), 

CD44 (99.5±0.31%), CD166 (96.7±3.90%), and human leukocyte antigen (HLA) class 1 

(97.4±1.18%) and heterogeneity for CD90 (59.6±4.77%) and KDR (7.0±0.56%) 

expression (Fig. 20).  SSEA-3pos linneg cells lacked the endothelial marker CD31 

(0.48±0.13%), hematopoietic lineage markers CD34 and CD45 (0.53±0.09%), and HLA 

class 2 (0.35±0.11%).  Despite showing positivity for SSEA-3 and SSEA-4, in vitro 

expanded cells did not express the tumor related antigen (TRA)-1-60 or TRA-1-81 that 

are commonly observed, in addition to SSEAs, in iPSCs and ESCs.207  Although 

overlapping c-kit expression was observed in situ (vide supra) (~ 8% of SSEA-3pos linneg 

cardiac cells immediately after total enzymatic digestion, n=10) (Fig. 17), analyses at 

passage 2 after in vitro expansion did not demonstrate any appreciable c-kit expression 

(0.28±0.06%), indicating that c-kit expression is transient, that SSEA-3pos c-kitpos cells do 

not expand in the present culture conditions, or that SSEA-3pos c-kitpos cells proliferate at 

a much slower rate than SSEA-3pos c-kitneg  cells, if they are in fact separate populations.  
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Figure 20. Immunophenotype of in vitro expanded SSEA-3pos linneg CPCs. Flow 

cytometric detection of progenitor (SSEA3, C-KIT), endothelial (CD31, KDR), 

mesenchymal (CD29, CD44, CD73, CD90, CD105, CD166), human leukocyte (HLA-1, 

HLA-II), and hematopoietic (CD34/45) cell surface antigens in SSEA-3pos linneg CPCs.     
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TBX18 has been observed to be expressed in proepicardial progenitors110, 

although recent evidence suggests that it is not completely confined to this compartment 

within the fetal or mature heart.111 Therefore, our observation of TBX18 mRNA 

expression within SSEA-3pos linneg cells (vide supra) cannot conclusively link these cells 

to a particular cardiac progenitor lineage from fetal development.  In contrast, Wilms 

tumor gene 1 (WT-1), a marker with significant overlapping expression with TBX18, has 

been utilized to exclusively define and track distinct proepicardial lineage derivatives, 

epicardial derived cells (EPDCs), and epicardial epithelial to mesenchymal transition 

(EMT) during cardiac development.84, 104, 105  WT-1 has also been demonstrated to be 

expressed in response to myocardial injury within epicardial cells, essentially reactivating 

a fetal gene program for cardiac repair after infarction.197, 210, 211  We observed WT-1 

expression within in vitro expanded SSEA-3pos linneg cells.  Immunostaining showed 

primarily nuclear with some cytoplasmic localization of WT-1 (Fig. 19E). PCR analysis 

of SSEA-3pos linneg cells confirmed transcript expression of WT-1 (Fig. 21).  Observation 

of WT-1 expression may suggest SSEA-3pos linneg cells are originally of proepicardial 

origin.   Incidentally, SSEA-3pos linneg cells also demonstrated robust expression of IGF-

1R by PCR (Fig. 21) similar to other described cardiac derived cell populations.212   
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Figure 21.  Validation of PCR products.  Shown are representative gels validating 

target sizes of PCR products ensuring specificity and appropriate target size with negative 

controls.   
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SSEA-3pos linneg cells are clonogenic and display multipotent differentiation potential 

toward myocytes, smooth muscle, and endothelial cells 

 Freshly sorted human cardiac SSEA-3pos linneg cells were plated at low density in 

suspension culture for assessment of their ability to expand and form spheres 

spontaneously, which would indirectly imply clonogenic ability.  SSEA-3pos linneg cells 

formed spheres in suspension culture resembling previously described cardiospheres (Fig. 

22A).213  Spheres were allowed to expand; replating of spheres on normal tissue culture 

plates resulted in expansion of cells contained within the spheres, confirming that the 

spheres consisted of viable cells.  The cell surface immunophenotype of SSEA-3pos linneg 

cells that were expanded in suspension and allowed to form spheres did not differ, after 

replating and in vitro expansion, from those expanded in adherent monolayer conditions. 

The immunophenotype of SSEA-3pos linneg cells was similar to that of cardiosphere-

derived cells214, 215 as well as c-kit sorted cardiac cells140 with respect to cell surface CD 

marker expression (Fig. 20). 

Terasaki plates were seeded by limiting dilution with one cell per well to evaluate 

clonogenicity.  Singly seeded SSEA-3pos linneg cells formed colonies at an average 

frequency of 21.16±3.8%, n=8. Representative single cell cloning progression is shown 

in Figure 22B. 

 SSEA-3pos linneg cells at passage 2 were placed in directed differentiation 

conditions to induce myocyte, smooth muscle, and endothelial differentiation.  

Immunocytochemistry of cells placed in myogenic differentiation conditions 

demonstrated upregulation of the sarcomeric proteins alpha-myosin heavy chain (α-

MHC) and α-sarcomeric actin after 35 days (Fig. 22C).  Connexin 43 expression was 
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visualized at sites of cell-cell contact, indicating functional gap junction formation 

between adjacent cells (Fig. 22B).  However, the staining pattern of sarcomeric proteins 

did not yield mature, striated sarcomeric structures, indicating incomplete differentiation.  

Robust smooth muscle differentiation was observed, with marked upregulation of smooth 

muscle actin and upregulation of smooth muscle myosin heavy chain (Fig. 22E).  After 

differentiation, cell morphology was consistent with mature appearing smooth muscle 

cells.  Endothelial differentiation conditions resulted in marked upregulation of CD31 

(PECAM) by immunostaining and confocal microscopy (Fig. 22F) and flow cytometric 

analysis (Fig. 22G), with changes in morphology resembling typical endothelial cells.  

Flow cytometric analysis of SSEA-3pos linneg cells during endothelial differentiation 

demonstrated upregulation of CD31 at day 4 and appropriate down regulation of SSEA-3.  

By day 10, >75% of cells had become CD31 positive with complete loss of SSEA-3 

expression.  Endothelial differentiated cells formed tubes when seeded in matrigel, 

demonstrating phenomena typical of functional endothelial cells (Fig. 22H).   
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Figure 22. SSEA-3pos linneg cells display clonogenic and multipotent differentiation 

capacities expressing mature cardiac markers of myocytes, smooth muscle, and 

endothelial cells under directed in vitro differentiation conditions. A. SSEA-3pos linneg 

cardiac cells demonstrated the ability to form expanded spheres in suspension when 

seeded at very low density, indicative of clonogenic ability.  Attached SSEA-3pos linneg 
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cells are shown after immunoselection (top left panel). Multicellular spheres formed and 

expanded after low density seeding in suspension culture (center panels).  These 

multicellular spheres contained viable cells as evidenced by the attachment and 

expansion of cells when seeded into normal tissue culture plates (right image). B. True 

clonogenic ability was evaluated by singly seeded SSEA-3pos linneg cardiac cells in 

Terasaki plates shown (left) with enlarged image expanded in the box. Clonogenic 

expansion is seen in the center panel with four cells having originated from a single 

SSEA-3pos linneg, ultimately giving rise to a colony (right panel). Singly seeded SSEA-3pos 

linneg cells from different human patients formed clonal colonies in Terasaki plates at an 

average frequency of 21.16±3.8% as shown in the bar graph on the right (n=8). Values in 

graphs are represented as mean±SEM. C. Immunocytochemistry showing expression of 

alpha-myosin heavy chain (green) and alpha-sarcomeric actin (red) after directed 

myogenic differentiation.  Nuclei were counterstained with DAPI (blue). D. 

Differentiated SSEA-3pos linneg cells formed gap junctions with adjacent cells highlighted 

by connexin 43 (red) expression (arrow) and alpha-tubulin (green). E. SSEA-3pos linneg 

cells robustly formed smooth muscle like cells illustrated by smooth muscle actin (green) 

expression.  F.  Expression of CD31 (magenta) is shown resulting from 10 days of 

endothelial directed differentiation conditions. G. The time course of endothelial 

differentiation is illustrated over 10 days for SSEA-3 positive cells [81% SSEA-3pos/<1% 

CD31pos] at day 0 with respect to isotype control.  CD31 was upregulated at day 4 and 

robustly at day 10 [78% CD31pos] with loss of SSEA-3 during differentiation (<1% at day 

10).  Functional capacity with endothelial tube formation of CD31pos differentiated 

SSEA-3pos linneg CPCs is shown in the right panel. Scale bars are 50um. 
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SSEA-3pos linneg cells induce cardiac repair and functional recovery after 

ischemia/reperfusion injury 

 The effect of SSEA-3pos linneg cardiac cell administration on LV remodeling after 

myocardial infarction was investigated by morphometric analysis of Masson’s trichrome 

stained sections (Fig. 23A).  Although the LV risk region was similar across all groups 

(Fig. 23B), mice that received SSEA-3pos linneg cells exhibited a statistically significant 

increase in viable myocardium relative to vehicle (Fig. 23A&B).  Further, as there were 

no significant differences in mean anterior wall (infarcted wall) thickness across groups, 

LV expansion indices were markedly reduced in SSEA-3pos linneg cell-treated animals 

relative to vehicle (Fig. 23C).  

 The effect of SSEA-3pos linneg cardiac cell therapy on ventricular volume and 

function after myocardial infarction was investigated by echocardiographic analyses and 

Millar methodology.  Significantly reduced left ventricular end-diastolic (Fig. 24A) and 

end-systolic (Fig. 24B) volumes were observed in the SSEA-3pos linneg cell treatment 

group compared to vehicle treated controls. Accordingly, measurements of left 

ventricular ejection fraction were significantly higher in the SSEA-3pos linneg cell 

treatment group compared to controls by both single plane B-mode (44.4±2.8% vs. 

29.8±2.8%) and Simpson’s biplane (44.8±2.5% vs. 31.3±1.8%) methods of assessment. 

In the setting of comparable body weights and heart rates between the treatment and 

control group (data not shown), high ejection fraction in the cell treatment group 

translated to increased stroke work and total cardiac output in SSEA-3pos linneg cell treated 

hearts.  
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Figure 23. Left ventricular morphometric analyses. Vehicle (black), cell control 

(white), and SSEA-3pos linneg cells (grey) groups. Serial echocardiographic studies were 

performed under isoflurane anesthesia at baseline (4 days prior to surgery) and 5 and 35 

days after myocardial infarction. Data are mean ± SEM. A. Mason’s trichome staining 

shows increased viable myocardium and decreased scar size in a representative cross-

section of the left ventricle from a cell treated heart vs. that of control. B. Viable tissue 

was significantly larger with similar size of risk region in the cell treated hearts over 

those of controls.  
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Figure 24. Left ventricular volumetric comparison.  Left ventricular end diastolic and 

end systolic volumes were assessed by Simpson’s method echocardiography comparing 

SSEA-3pos linneg cells (EA-CPC) treatment and vehicle control groups at baseline, 5 days 

and 35 days after I/R injury.  A. The average left ventricular end diastolic volume was 

significantly smaller in the SSEA-3pos linneg cells treatment group (67.0ul) vs that of the 

control (79.9ul) indicating less adverse LV remodeling and less decompensatory LV 

dilatation in the SSEA-3pos linneg cells treatment group.  B. Similarly, end systolic 

volumes were significantly smaller in the SSEA-3pos linneg cells treatment group than 

control group.  Human SSEA-3pos linneg cells abrogate LV dilatation and adverse 

remodeling after ischemia/reperfusion injury that is known to lead to heart failure as well 

as promote restoration of systolic function after ischemic injury. There was no difference 

between groups at baseline or at 5 days (p>0.05) indicating similar starting cohorts of 

female SCID mice and similar initial ischemic cardiac injury. 
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Figure 25. Ejection Fraction.  Echocardiography (echo) was performed for left 

ventricular functional assessment in an immunocompromised murine model (SCID mice) 

of  ischemia/reperfusion (I/R) injury and subsequent human SSEA-3pos linneg cell 

intramyocardial administration.  Echo was performed at baseline prior to injury as well as 

5 days and 35 days post I/R with subsequent cell therapy by intramyocardial injection of 

200K human SSEA-3pos linneg cells or normal saline control in the border zones of the 

infarction area. A. Significant improvement in cardiac function was seen over 35 days in 
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the SSEA-3pos linneg cells treatment group (EA-CPCs) vs that of the control group 

(CTRL).  The control group had an average ejection fraction (EF) of 29.8% while the 

human SSEA-3pos linneg cell treated group saw significant functional improvement to 

44.4% (p<0.05) as measured in B Mode echocardiography. B. Ejection fraction assessed 

by Simpson’s method echocardiography showed similar a pattern of improvement in the 

SSEA-3pos linneg cell (EA-CPC) treatment with 44.8% EF vs. 31.3% EF in the control 

group.  There was no significant difference between groups at baseline or at 5 days by 

either measurement methodology indicating no difference in starting populations/cohorts 

of SCID mice and no difference in the extent of induced myocardial injury. 

Improvements observed at 35 days are solely due to the treatment with SSEA-

3pos linneg cells (EA-CPCs).    
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Figure 26.  Stroke work and cardiac output. A.Stroke work and B. cardiac output were 

measured by standard Millar methodology.  These functional parameters were observed 

to be significantly increased/improved as a result of human SSEA-3pos linneg cells 

administration vs vehicle control in SCID mice that had undergone ischemic injury as 

previously outlined. 
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Discussion 

In summary, we have provided for the first time direct evidence of the existence 

of multipotent SSEA-3pos linneg cardiac progenitor cells, which are not a culture derived 

phenotype but exist in the native human neonatal and adult myocardium.  We have 

shown for the first time that these SSEA-3pos linneg cardiac progenitor cells can be isolated 

and expanded in vitro for the ultimate purpose of use in inducing repair of damaged 

and/or poorly functioning myocardium.  To confirm that these cells truly have a 

phenotype expected of progenitor cells, we have performed the most extensive 

characterization ever attempted in any adult progenitor cell population.  We validated not 

only the expression of markers such as pluripotent stem cell associated markers of oct4 

and nanog but also telomerase, which allows these cells to preserve their progenitor 

phenotype and avoid excessive shortening of their telomeres with repetitive cell 

proliferation in vitro.  Thusly, these cells retain a large proliferative reserve allowing 

sufficient numbers of cells for a therapeutic cell product of SSEA-3pos linneg cells to be 

generated.  We have shown these cells possess a cardiac predisposition as they have 

heterogeneous baseline expression of transcription factors showing early commitment to 

mature cardiac lineages of endothelial, smooth muscle, and cardiomyocytes.  

Furthermore, SSEA-3pos linneg cardiac progenitor cells up-regulate mature sarcomeric 

proteins of smooth muscle and myocytes as well as surface markers and functional 

characteristic of endothelial cells in in vitro myogenic and endothelial differentiation 

conditions respectively.  In other words, SSEA-3pos linneg cardiac progenitor cells have 

cardiac multilineage potential.  This pattern of gene expression and organ specific 

predisposition is unique to progenitor cells isolated from the human heart and in contrast 
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to any ability of other non-embryonic or neonatal non-cardiac stem cell populations (i.e. 

MSCs from various tissues other than heart, HSCs, non-cardiac local tissue progenitors) 

whose native function is not to contribute directly to lineages of the heart or directly to its 

homeostasis.  We have shown that our methods of isolation and expansion are 

reproducible, and that SSEA-3pos linneg cardiac progenitor cells populations from different 

patients have very similar progenitor gene expression patterns.  We have utilized 

clinically relevant methodologies that show exactly the characteristics and capabilities of 

SSEA-3pos linneg cardiac progenitor cells that would be used in a clinically relevant 

therapeutic application.  With these methodologies we have verified within a model of 

ischemically damaged myocardium that administration of SSEA-3pos linneg cardiac 

progenitor cells can induce cardiac repair and abrogate adverse myocardial remodeling 

that leads to functional decompensation.  Again, to our knowledge, a comprehensive 

report of the discovery, isolation, characterization, and evidence of therapeutic utility of 

this kind, related to adult progenitor cells, has never been put forth.  The clinically 

applicable methodology demonstrated above enables rapid bench to bedside applications.   

Future directions 

 Presently, analyses of the SSEA-3pos linneg  cardiac progenitor cell treated hearts 

are underway to evaluate whether donor cells engrafted into recipient hearts. Moreover, 

did donor cells differentiate into mature cardiac phenotypes representing true 

regeneration? If this is not observed, it would indicate primarily a paracrine action of 

these cells on the recipient myocardium by which preservation and recovery of LV 

function was observed compared to controls, similar to other cell types utilized for 

cardiac cell based therapies to date. Regardless of whether the SSEA-3pos linneg  cardiac 



138 
 

cells work by engrafting and differentiating into mature myocytes or via paracrine 

mechanisms, the discovery of this heretofore unknown cell population is an important 

advance in the field of cell therapy and may have significant therapeutic applications.
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