
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2009

An analysis pipeline for the processing, annotation, and An analysis pipeline for the processing, annotation, and

dissemination of Expressed Sequence Tags. dissemination of Expressed Sequence Tags.

Joseph P. Morris
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Morris, Joseph P., "An analysis pipeline for the processing, annotation, and dissemination of Expressed
Sequence Tags." (2009). Electronic Theses and Dissertations. Paper 1009.
https://doi.org/10.18297/etd/1009

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1009
mailto:thinkir@louisville.edu

AN ANALYSIS PIPELINE FOR THE PROCESSING, ANNOTATION, AND

DISSEMINATION OF EXPRESSED SEQUENCE TAGS

By

Joseph P. Morris

B.S., University of Louisville, 2006

A Thesis

Submitted to the Faculty of the

University of Louisville

J. B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

May 2009

iii

AN ANALYSIS PIPELINE FOR THE PROCESSING, ANNOTATION, AND

DISSEMINATION OF EXPRESSED SEQUENCE TAGS

Submitted by:__________________________________

Joseph P. Morris

A Thesis Approved on

(Date)

by the Following Reading and Examination Committee:

Eric Rouchka, Thesis Director

Ming Ouyang

Gail DePuy

David Schultz

iv

ABSTRACT

Due to the complex nature of interactions at the genomic level as well as the large

number of proteins present in an organism, understanding the functions of various genes

that are expressed is essential. Creating an analysis pipeline for Expressed Sequence

Tags (ESTs) is one way to accomplish this, allowing a researcher to quickly take a set of

sequences, perform all necessary analysis operations, and publish the data in a database

with a graphical user interface (GUI). This pipeline falls into several steps. First, the

data must be preprocessed to remove any extraneous sequence data, low-complexity

regions, and regions that repeat throughout the genome. Next, it is necessary to combine

a large number of ESTs into larger sequences that better describe the underlying mRNA.

After larger contiguous sequences have been constructed, putative functions can be

assigned to each sequence, whether part of a larger grouping or a singleton.

An application of this pipeline using 3906 ESTs generated from trichome tissue of

Pelargonium xhotorum (commonly, the geranium plant) resulted in 425 contiguous

sequences using the CAP3 program. These sequences, along with the 2208 sequences

that are not a part of a contig, were then BLASTed against the non-redundant protein

database to assign putative functions to each sequence. Finally, BLAST2GO was run on

these BLAST results in order to assign a GO (Gene Ontology) to each sequence. These

annotations were then added to the database for later investigation by researchers.

In order to aid researchers in the further analysis of the annotated sequences, a

mySQL database was used for data storage and a GUI was developed using Java and Java

v

Server Pages. In addition, an applet for viewing the Sanger trace files for each sequence

is included to further aid the researcher in determining the validity of the data.

vi

ACKNOWLEDGMENTS

First, I would like to thank my parents, James and Mary Morris, as well as the rest

of my family, for supporting me through the time it took for me to complete this project.

It was only with their encouragement and support that I was able to accomplish

everything that I have accomplished.

Next, I would like to thank the members of my committee, Dr. Eric Rouchka, Dr.

David Schultz, Dr. Ming Ouyang, and Dr. Gail DuPuy for ther time, advice, and

guidance. I would especially like to thank Dr. Eric Rouchka for his patience and

invaluable advice that helped to make this a reality.

I would like to thank the rest of the faculty, staff, and students of the University of

Louisville for all the help I received, including Dr. Ted Kalbfleisch, Dr. Elizabeth Cha,

Christy Bogard, Dr. Tim Hardin, Nate Johnson, and everyone else that has given me

advice along the way. I would also like to thank Steven Yelton and Chris Keen at

Mission Data for giving me lots of good ideas about web design and architecture.

Finally, I would like to thank my friends who gave me encouragement and

support through this difficult process, including Cassandra Hobbic, Matt Bates, Michal

Kruger, Jack Hazlett, Jamie Fries, Jon Rohner, Joe Evans, and John Finkbone. This

includes the times they were a distraction from the work at hand. You know who you are

and the times of which I am speaking. I thank you for it.

vii

TABLE OF CONTENTS

APPROVAL PAGE...iii

ABSTRACT...iv

ACKNOWLEDGMENTS...vi

LIST OF FIGURES...viii

I. INTRODUCTION..1

II. BACKGROUND..4

A. Biological Background..4

1. Central Dogma of Molecular Biology...4

2. Expressed Sequence Tags..7

3. Sanger Sequencing...8

4. Trichomes...10

B. Technology Background..11

1. BLAST...11

2. Phred..12

3. CAP3..13

4. GO Ontologies..14

III. METHODOLOGY..16

A. Analysis Pipeline..16

B. Database Design...21

C. Interface Design...23

1. Data Storage...26

2. Applet...27

3. Searchability...28

4. Administrative Access..28

IV. RESULTS..30

A. Analysis Pipeline..30

B. Database Browser...34

V. FUTURE DIRECTION...37

REFERENCES..39

APPENDIX I. BLAST CODE EXAMPLE...42

APPENDIX II. QUALITY SCORES...49

APPENDIX III. SEQUENCE FILE...50

APPENDIX IV. PHRED FILE...51

APPENDIX V. SCREEN SHOTS...52

APPENDIX VI. REMOVED VECTORS...56

CURRICULUM VITAE..57

viii

LIST OF FIGURES

FIGURE 1: THE CENTRAL DOGMA OF MOLECULAR BIOLOGY...........................5

FIGURE 2: GENERATION OF ESTs..8

FIGURE 3: SANGER SEQUNCING...9

FIGURE 4: SANGER TRACE FILE ...10

FIGURE 5: BLAST2GO SCHEMA...15

FIGURE 6: ANALYSIS PIPELINE DATAFLOW...17

FIGURE 7: DATABASE STRUCTURE...21

FIGURE 8: LOW-QUALITY TRACE DATA..27

FIGURE 9: ANNOT_TABLE QUERY..32

FIGURE 10: SEQUENCE_TABLE QUERY...32

FIGURE 11: SEQ_TO_HIT QUERY..33

FIGURE 12: HIT_TO_HSP QUERY..34

FIGURE 13: HSP_TAB QUERY..34

FIGURE 14: NORMAL SEQUENCE VIEW...36

FIGURE 15: ADMIN SEQUENCE VIEW...36

1

I. INTRODUCTION

In the analysis of Expressed Sequence Tags (ESTs), there are numerous techniques

and tools available to aid the bioinformatician. Due to the nature of ESTs, it is important

to preprocess the sequences, create consensus sequences of the ESTs, then attempt to

annotate the sequences to glean useful information from the set. In addition, it is helpful

to organize the sequences so that the information can be made available for use by other

scientists.

 There are a number of issues related to the analysis, storage, and retrieval of

ESTs. Because of the varied needs of scientists, it is necessary to have a comprehensive

system in order to assist with a wide range of interests. In addition, varying organisms

may have different needs for specific annotations or additional analyses that will aid the

researcher. Finally, the system must be organized in a way that it acts as an aid to

research, not as a hindrance.

 Analysis of ESTs is, by no means, standardized. The fact that ESTs themselves

are only partially composed of usable sequences makes some sort of trimming of the

sequences a necessary first step. After that, because each EST is a small section of

genetic sequence, larger contiguous sequences must be constructed from the trimmed

sequences. Finally, the larger sequences and those that do not fit into larger sequences

can be annotated with some putative function.

 Storage of ESTs into a database and the data’s subsequent retrieval must be done

with two considerations in mind. First, the data must be stored so that the raw data can

2

be extracted from the database, if needed for additional or alternate analysis. Second, the

analysis that accompanies the data must be organized so that it can be easily searched and

downloaded for the researcher’s use. These two principles allow for a system that is

suited both from an information technology view as well as for the end user, the

researcher.

Several programs are readily available that can aid in this task. Among them,

VecScreen and RepeatMasker can be used to eliminate unwanted vector contamination

and repeat regions, respectively. CAP3 (Huang & Madan, 1999) is a program that

constructs consensus sequences out of a number of ESTs. With this data in hand,

BLASTing against the non-redundant database at NCBI can help to assign putative

functions. Further analysis and grouping can be done with BLAST2GO (Conesa & Gotz,

2008), a program that assigns potential Gene Ontology (Ashburner et al., 2000) names to

sequences using existing BLAST data.

In addition to the analysis pipeline, a structure has been created to store the data

for ease of access. This has been designed so allow for several factors. First, the data

must be easy to access, both for further analysis as well as for the researcher to add and

update entries. Next, the structure must be flexible enough to be reused with other data.

Finally, the data must be secure so that the researcher can allow outside users to only see

data that has been deemed accurate and trustworthy.

The storage and access to the data was accomplished using open source, freely

available software. In this case, a mySQL (DuBois, 2005) database was created to store

the data, satisfying the goal of ease of access. MySQL can be queried for results with

minimal computer training, is widely documented, and can be easily integrated into most

3

programming languages. In addition, a web interface was created that allows a user

without database knowledge to access the data for analysis as well as administrative

purposes, such as altering the data as necessary. These web pages were generated using

JSP, or Java Server Pages, and servlets. Run on an Apache Tomcat servlet engine, this

group of technologies allow for dynamic web development within the Java programming

language. Also, with the necessary security already present in the database software, a

researcher can feel safe knowing that the data cannot be compromised and can only be

accessed by qualified individuals.

It is these three areas that are the primary focus of this project: the preparation and

analysis of the data, the design of a flexible database, and the design of web pages to

disseminate the data in a secure and user-friendly manner. By successfully applying this

approach to the set of ESTs used in this project, it is hoped that the work can be

generalized to allow other researches the ability to use this system for other data sets.

4

II. BACKGROUND

A. Biological Background

DNA is the basis of all biological life, and therefore, a brief review of molecular

biology is important for understanding the work of this project. First, a discussion of the

“Central Dogma of Biology” will give context to the biological data present in this

system. Next, a discussion of ESTs, how they are generated, and their importance in

analysis of protein expression will help to show the meaning of the data from a biological

standpoint. Finally, a discussion of the specific tissue and organism used for this project

will aid in showing the importance of this data and why biologists are interested in it in

the first place.

1. Central Dogma of Molecular Biology

The “Central Dogma of Molecular Biology” (Crick, 1970) is a term used to

describe the general path that cells use to create working proteins from DNA. Using

DNA as a template, the cell goes through several steps to eventually produce the proteins

needed for every aspect of a cell’s existence. The steps generally taken by the cell are

replication, or the copying of DNA needed for cell division; transcription, or the creation

of a template of RNA molecules from existing DNA; and translation, or the transition of

the RNA from a string of nucleotides to a strand of amino acids, which fold into a

protein. Each of these steps will now be looked at in greater detail.

DNA is a made of two strands of nucleotides, connected in a double helix, with

the two strands running in opposite directions. The nucleotides are adenine, cytosine,

5

guanine, and thymine, and are commonly represented by the letters A, C, G, and T. Each

nucleotide is made up of a sugar backbone which connects the nucleotide to its neighbor,

and a base, which is unique for each type of nucleotide. The bases connect the two

strands by loose bonds, called hydrogen bonds, such that adenines always connect to

thymines and cytosines always connect to guanines. This makes the two stands of a

DNA molecule reverse complements of each other, meaning the two strands run in

opposite directions and have complementary bases to one another.

FIGURE 1: THE CENTRAL DOGMA OF MOLECULAR BIOLOGY

(Ussery, 2003)

6

Through various complex mechanism within cells, the cell determines that

particular proteins must be produced in order for proper cell functioning. How each

protein is created is encoded within that cell’s DNA but it must be extracted first. A

template is created from the section of the DNA that encodes for the needed protein.

This process is known as transcription. A strand of messenger RNA, or mRNA, is

created. mRNA, like DNA, is made up of nucleotides stranded together (with the

exception being uracil is used instead of thymine), in the reverse complement of one of

the DNA strands. Unlike DNA, RNA is single-stranded. This mRNA is then processed

and sent outside the nucleus to be translated into a protein.

Translation is the process by which a cell converts the template made of mRNA

into a working protein. This is done at the ribosomes within the cell and involves reading

the mRNA, three bases at a time, and creating a chain of amino acids that correspond to

each of the three-nucleotide group (called a codon). From this translation, the strand of

amino acids folds into a protein. This protein is the product that is needed by the cell to

perform the task that prompted its initial creation.

The Central Dogma has been found to be somewhat simplistic in describing all

molecular biology behavior (1970). In retroviruses, single stranded RNA can be

transcribed into double stranded DNA, the reverse of the way transcription occurs in the

Central Dogma. In addition, it has been discovered that some RNA, known as small

interfering RNA (SIRNA), act in a regulatory capacity to prevent the expression of other

genes (Hamilton & Baulcombe, 1999). These exceptions are important to note because,

since ESTs are representative of RNA, it is possible that the EST does not necessarily

represent part of an mRNA that would ultimately result in a functional protein. If the

7

EST was generated from mRNA that functions as a retrovirus or SIRNA, there is no

protein product.

2. Expressed Sequence Tags

Now that the general mechanism for protein creation has been established, it is

important to understand what ESTs are and how they can be used to gain insight into this

process. Expressed Sequence Tags, or ESTs, are short sequences of nucleotides that are

copies of parts of mRNA from a cell (Adams et al., 1991). They are rarely complete

copies due to restrictions in the technology and are often of relatively low quality.

However, they do represent parts of the DNA that have been transcribed, potentially to

become proteins. The “expressed” part of their name derives from this: these are parts of

the DNA the cell has found a need to express.

The process for generating ESTs is somewhat complex, but necessary to capture

the information contained in the fragile and easily degraded mRNA. Because mRNA is

unstable outside of the nucleus, the first step is making a template of the mRNA

fragments that can undergo subsequent treatments. These template strands are called

complimentary DNA, or cDNA. The cDNA fragments are then cloned.

The next step in the processing of ESTs is to clone the cDNA fragments into

amounts of the sequences that can be more easily read by a sequencing machine. The

process involves inserting the cDNA segments into an organism that rapidly replicates its

DNA, usually bacteria such as E. coli. The circular DNA strand inserted into the

bacterium cell is replicated quickly. The resulting cells, which have replicated the cDNA

segments, can then have the segments removed for sequencing.

8

Removal of the section of the DNA of interest requires cutting the circular DNA

at points outside of the cDNA section, known as restriction sites. Because each end of

the cDNA segments had additional known segments added, through biochemical

processes, those sections can be sought out and the DNA can be cleaved at those sites.

This leaves the segments of interest plus some of the cloning vector, separate from the

rest of the DNA. Figure 2 shows an overview of this process.

FIGURE 2: GENERATION OF ESTs

3. Sanger Sequencing

Once the cDNA sequences are separated from the rest of the vector plasmid DNA in

the bacteria, the sequencing can begin. Sequencing begins replicating the cDNA with

nucleotides that are marked with fluorescent markers that allow subsequent identification.

After the sequences have been marked, a machine able to read the fluorescent markers is

9

employed and the result is a trace file. This trace file can then be used to determine the

underlying sequence.

In Sanger sequencing (Sanger, Nicklen, & Coulson, 1977), the sequence to be

sequenced, known as the template, is mixed with a combination of regular

deoxynucleotides and deoxynucleotides, which are nucleotides that terminate replication.

These are labeled with four different fluorescent markers. DNA polymerase is added,

allowing for replication of the template.

FIGURE 3: SANGER SEQUNCING (Kae, 2003)

The reaction results in fragments starting at the 5’ end of the template. Each of the

fragments is terminated by a marked nucleotide. The segments are separated by size

using gel electrophoresis. Because each of the different nucleotides is marked with a dye

that fluoresces at a different wavelength, the underlying template can be determined by

10

reading the signal from the markers from one end to the other. This results in a file that

can be viewed in a trace viewer, as seen in Figure 4.

FIGURE 4: SANGER TRACE FILE (http://en.wikipedia.org/wiki/DNA_sequencing)

4. Trichomes

 It is also important to understand the tissues that are being sequenced for this

particular project and why scientists would be interested in the genes of this particular

tissue. Because genes are differentially expressed in distinct tissues, both the species and

the specific tissue are important for an understanding of the ultimate goal of this research.

So, the question remains: what is a trichome and why is it significant.

 Trichomes are outgrowths on surface of a plant. Most commonly, these are

manifested as a hair which is present on the stalk or leaf surface of the plant. They aid

the plant in several ways, most commonly as a defense from herbivorous pests and offer

protection from frost and water evaporation at the surface. Besides the protection of the

plant, however, trichomes have been found to secrete substances that are can be used in

beneficial ways with other organisms.

 There has been significant research into the substances secreted by trichomes.

The resulting metabolic products have been found to be useful as food additives, natural

pesticides, and pharmaceuticals (Schilmiller, Last, & Pichersky, 2008). In addition,

11

because of the ease of access to these organs, further understanding of the metabolic

pathways of the rest of the plant has been achieved.

 The trichomes of geraniums (Pelargonium xhortorum) have been found to contain

several compounds important in potential uses as natural pesticides because of the

resistance of the plant to particular types of mites. The research is not just limited to

beneficial effects on plants, however. Compounds from trichomes are used for the

treatment of malaria and are showing promise for use in treating some cancers.

B. Technology Background

There are numerous tools and databases currently available to aid in the analysis

of biological data. Among these are programs for aligning sequences, BLAST (Altschul,

Gish, Miller, Myers, & Lipman, 1990), T-Coffee (Notredame & Suhre, 2004), and

ClustalW (Chenna et al., 2003), and databases for comparing sequences, such as the

dbEST (http://www.ncbi.nlm.nih.gov/dbEST/), the non-redundant protein database at

NCBI (www.ncbi.nlm.nih.gov/), and PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).

Within this set, it is the job of the bioinformatician to determine which tools to use as

well as how to use them in order to gain insight into the raw biological data. The next

section will discuss several tools that were used, a brief explanation of how they work,

and how they helped in the final analysis of the ESTs.

1. BLAST

One of the great tools that has been created for the analysis of any DNA-based set

of data has been BLAST, or basic local alignment search tool. BLAST allows a

researcher to input one or more biological sequences and, in a relatively short amount of

12

time, determine where in a database of various sequences, a similar sequence occurs.

Housed at the National Center for Biotechnology Information (NCBI), BLAST has

access to the sequences that have been submitted by various researchers, many with an

annotation describing a function or putative function. By doing a similarity search, a

researcher can get a better understanding of a sequence’s function by looking at its

similarity to other annotated sequences. BLASTing the ESTs against the non-redundant

protein database was one of the early steps of the analysis process. Though it will be

discussed in greater detail later, it is important to understand that it is by using BLAST

that any potential function can be assigned to the sequences.

BLAST comes in a number of forms and can be run using a number of parameters

to assure the BLAST search is optimal for the circumstance. Among the various forms of

BLAST are megablast, used for searching highly similar searches, and bl2seq, used for

searching two sequences against each other (as opposed to against a database). In

addition, BLAST can search various combinations of amino acid and protein sequences,

such as nucleotide against a nucleotide database (blastn), protein against a protein

database (blastp), and nucleotide against a protein database (blastx).

2. Phred

Taking trace files, which are of an analog nature, and translating them into a

discrete DNA sequence is the job of programs such as phred (Ewing, Hillier, Wendl, &

Green, 1998). Phred is an analysis tool that takes trace files, analyzes their content, and

generates a file of data that quantifies the underlying sequence, the confidence the

program has for each base call, and the position in the file where each peak resides. It is

the link between the biology lab and computer analysis. For each base call, a quality

13

score is generated, which is based on the likelihood of an incorrect call. A quality score

of 10 represents a 90% confidence, 20 represents a 99%, 30 for 99.9%, etc. Looking at

the quality scores of a trace file helps determine how much of the resulting sequence is

accurate.

Phred files contain a good amount of information about the trace that is invaluable

in the subsequent displaying of the traces. First, it contains the sequence as determined

by phred. This is generated by the program analyzing the four signal channels and

determining what base is most likely at each point.

For each base in the sequence, phred adds two additional pieces of information.

First, it gives a quality score for how likely the call is correct, as detailed above. The

second piece of information is the location of the peak in the trace that corresponds to the

base. This is important in displaying the traces since it allows lining up the sequence

with the peaks.

3. CAP3

Another difficult task is to align the thousands of ESTs into overlapping

sequences. As previously mentioned, ESTs are not complete copies of the expressed

mRNA sequences, but only partial copies. Due to sequencing technology constraints,

ESTs are only 500 to 800 bases long, whereas mRNA sequences can be thousands of

bases long. In addition, since much of the sequencing is random, repeats of the same

expressed regions can exist. Therefore, all of these separate, smaller sequences must be

aligned into larger contiguous sequences where appropriate. CAP3 (Huang & Madan,

1999) is a program that allows for this alignment.

14

Developed at Michigan Technology Institute by Huang and Madan, CAP3 uses

the information directly out of the EST files to form contiguous sequences from the

fragments. Using the quality of the sequence reads as well as the sequences themselves,

CAP3 does multiple alignments to generate larger sequences. It is these larger

sequences, as well as the single sequences which do not align with others, that are

BLASTed.

The CAP3 program works in three distinct phases. First, the quality scores, as

calculated by phred, are analyzed so that lower quality scores at the ends of the sequences

are not taken into effect in the alignments. Next, sequences are connected by finding the

overlapping regions between ESTs. Finally, consensus sequences are created with

quality scores based on choosing the highest quality score of the smaller reads that make

up the consensus sequence (Madan, 1999).

4. GO Ontologies

Another helpful database to use for classifying sequences is the GO database

(http://www.geneontology.org/). GO, or gene ontologies, are standardized descriptions

that are used to classify a gene based on a broad category: biological process, cellular

location, or molecular function. The GO terms are built in a tree-like fashion, with some

terms deriving from others. A single gene can be associated with multiple GO terms. By

adding GO terms to a set of sequences, a description of the gene can be created that is

more standardized than the descriptions given in BLAST.

The GO annotations are organized to give a simplified and uniform description of

a gene without losing the complex behavior and interactions that a gene may possess.

Each GO term is a number that can be used as a key to the GO database where more

15

information about that family of genes can be found. Each term is first categorized by its

function as a cellular component, a molecular function, or a biological process. In

addition, each GO term describes the annotation as a specific description of another term,

an “is a” relationship, or a smaller part of a larger term, a “part of” relationship.

However, the difficulty is in mapping the sequences to GO terms. BLAST2GO is

a program and database developed to allow for the mapping from a set of BLASTed

sequences to potential GO terms. By inputting a file of BLAST results, BLAST2GO uses

its database to assign a putative set of GO terms, if possible. By assigning GO terms, a

number of sequences can have additional, standardized annotations for further

classification and analysis.

FIGURE 5: BLAST2GO SCHEMA (Conesa et al., 2005)

16

III. METHODOLGY

This project breaks into three main areas of development. First, an analysis

pipeline was constructed in order to go from unprocessed ESTs to a set of organized,

annotated sequences. Second, the infrastructure was put into place in order to

accommodate further analysis of the sequences by researchers through a database.

Finally, a web interface was created to allow the researcher without database training to

be able to interrogate the data.

A. Analysis Pipeline

The generation of ESTs is not precise. Because they can be generated quickly

and relatively inexpensively, the resulting data is sometimes unusable. This can be

because of sequencing errors, ESTs that are not long enough to be of use, or regions of

low complexity. Therefore, preprocessing is necessary in order to obtain data that is

usable and free of unwanted subsequences, such as repeat regions. First, due to the

technology used for the sequencing, sequencing vectors are present in each sequence that

must be removed. Next, there are areas of the sequencing where extremely low quality

reads lead to unreliable sequences. Finally, regions of sequences containing known

repeat regions must be masked to avoid incorrect alignments. All of these must be taken

into account before any detailed analysis of the sequences can take place.

The raw data is comprised of several parts. First, there is the trace file, which is

the raw data generated from the experiment. This is a binary file that can be used to

17

generate a graph of the trace. Next, there are files containing the sequence and its quality

scores. Finally, for this set of ESTs, there is a file containing the annotations that were

assigned to the sequences by hand.

FIGURE 6: ANALYSIS PIPELINE DATAFLOW

 The technology for sequencing DNA using the Sanger method has a drawback

that must first be compensated for before the actual sequence can be determined. The

beginning and end of each sequence will have sections of low quality scores which must

be removed because the data is too unreliable to be used as viable sequence. Therefore,

Unprocessed ESTs

ESTs Trimmed of
Vectors and poly - A tails

Pre - processing Unusable Sequences

Consensus Sequence Generator
(CAP 3)

Consensus Sequences Singletons

BLAST against Non -
redundant Database

Sequences

Find GO Terms of High - scoring
Matches (BLAST 2 GO)

High - scoring Matches

Sequences
High - scoring Matches

GO Terms

18

the first step in the analysis process is the removal of the ends where the quality score is

too low.

 The process for quality trimming the sequences is straightforward. The phd file

contains the base calls and the resulting quality score for each call. For the start and end

of each sequence, the bases were deemed of low quality until a window of 10 bases with

a quality score of 20 or above was found. Because a score of 20 means that phred is 99%

confident with the called base, 10 bases in a row of scores at or above this threshold

generally means the rest of the sequence is acceptable. This analysis was done from both

ends to remove all base calls of low quality resulting from technology drawbacks of

sequencing.

 After quality trimming, the sequencing vectors had to be removed from each

sequence. As previously mentioned, the process of generating ESTs leaves small,

identical sequences at the beginning and end of the resulting data. These are the result of

the sequencing vector used in the process of generating the sequences. However, because

these vectors are not actually present in the mRNA that has been sequenced, they must

first be removed in order for any sort of alignment to occur. Not doing so would lead to

all sequences lining up along these identical end sequences.

 To perform the vector removal, several options were weighed. First, NCBI has a

tool called VecScreen (2005) which, using a database of some known vectors, scans a

sequence and removes any vector contamination. There are databases containing many

known vectors, such as UniVec (2005) and EMVEC (2009), which can be BLASTed

against for potential vector matches.

19

 For this set of sequences, the decision was made to manually remove the vectors

through string manipulation rather than through a tool or database. This was because it

was known at the onset that all of the sequences would be contaminated with the same

vector and that vector, the blueScript vector, was known beforehand. Therefore, it was

an easier task to simply BLAST that sequence against each sequence for matches and

remove any part of the beginning or end of the sequence with a significant BLAST

match. The FASTA file containing the vectors is listed in Appendix VI.

 The next task in the pre-processing step involved the removal of low complexity

parts of the sequences. First, Repeat Masker (http://www.repeatmasker.org/) was run on

the sequences. Because there are regions of DNA that are often repeated, causing

difficulties in sequence alignments, these must be masked from their current nucleotide to

“N”, the symbol for any nucleotide. This is to help prevent two regions which contain

the same repeated region, but are not the same region, to be inadvertently aligned to each

other.

 Because ESTs are generated from expressed mRNA, it is also important to note

that some of the sequences will contain poly-A tails. Poly-A tails are a result of the post-

transcription processing of mRNA that takes place in the cell. A number of adenine

nucleotides are added to the end of each mRNA strand for protection against degradation

of the strand in the cell. Because these are not present in the actual DNA, but added after

transcription, it is possible that they were transcribed into the ESTs. Any ESTs

containing a long sequence of adenines at the end of a sequence were also trimmed of

these nucleotides.

20

 The next step in the analysis pipeline is running CAP3 on the remaining

sequences in order to construct consensus sequences, or contigs, from the separate ESTs.

Because ESTs are not representative of complete transcribed mRNA strands, any cases

where the same expressed mRNA strand was sequenced more than once can be

combined. This gives longer and more complete representations of existing mRNA as

well as eliminates redundant sequence portions.

 After a set of contiguous and individual sequences has been generated, a first

attempt at at assigning function to the sequences can be executed. The result of CAP3 is

two types of sequences: contigs made of two or more sequences and those sequences that

are made of only one sequences, called singletons. This step involves BLASTing each

sequence against the non-redundant database at NCI using blastx. Blastx translates the

nucleotide sequence into an amino acid sequence in order to search against a protein

database. The non-redundant database, or nr, contains all submitted proteins with an

annotation for most. By BLASTing each sequence against this database, similarities

between these proteins and the generated ESTs can be linked.

 There are issues with using this methodology to assign function to the ESTs.

First, there is no way of knowing how the annotations were assigned to each protein in

the nr database. These proteins were annotated by the submitters who may have

determined the annotations using experimental or computational means. These

annotations are often based on previous entries in the nr database. Thus, previous errors

are often reiterated in subsequent annotations. In addition, because the annotations are

not standardized, various wording can be used, making it difficult to glean similar

meanings from proteins that are in fact similar.

21

 The final step in the analysis pipeline is to analyze the high-scoring matches that

result from BLAST. For each sequence, zero or more matches result. For those without

matches, no further analysis can take place. In addition, those without significant

matches cannot be further analyzed. However, for those with one or more significant

matches, BLAST2GO (Conesa et al., 2005) is used to attempt to assign GO terms.

 The final result of the analysis pipeline is the existance of a set of sequences that

have GO terms associated with them. In addition, there is a set that did not have

significant enough BLAST hits to have GO assignments. Since intial analysis of the

ESTs is complete, the next step of the project was to develop a database to store the data.

B. Database Design

The schema was developed for storing the ESTs, corresponding data, and analysis

results are shown in Figure 7. An explanation of each table follows.

FIGURE 7: DATABASE STRUCTURE

Annotation_Table

PK,FK1 ID

 description

 family

 subfamily

 classification

 subclass

Contigs

PK ID

 Sequence

 Quality_scores

ID_Table

PK,FK1 ID

 plate_num

 row

 col

 experiment_num

 technology

 seq_type

 organism

 tissue

 sub_date

NR_Hits

PK Hit_id

 Description

 E-value

FK1 ID

Quality_Table

PK,FK1 ID

 Full_quality

 Trimmed_quality

Sequence_Table

PK,FK2 ID

 Full_sequence

 Trimmed_seq

 Cap_trimmed_seq

 Start

FK1 Contig_id

GO_Hits

PK ID

 Go_term

 Description

GO_to_Sequence

PK,FK2 ID

FK1 GO_id

22

Sequence_table: This contains information about the sequences themselves. It contains

the original sequence, the sequence as trimmed by vector removal, the sequence as

trimmed by quality score by CAP3, and a reference to the contigs table if the sequence is

part of a larger contig. In addition, if part of a contig, there is a field which notes where

in the contig the sequence begins.

ID_table: This table contains the information originally present with each sequence. It

details the experimental details of the sequence, such as its placement on a plate, the

organism the sequence came from, and the experiment that generated the sequence.

Quality_table: This table contains information from the phred file about the quality

scores of each base call.

Annotation_Table: This table contains information about the annotations given to the

ESTs initially through previous analysis. Because these sequences were initially

annotated by hand, this gives a good comparison for checking the results of the analysis.

Contigs: This table holds the results of CAP3, including the sequence and quality scores

determined by the program.

NR_Hits: This table contains information from the BLAST hits. For each sequence, all

BLAST hits are stored. The actual information contained in the hit, such as the

alignment, are stored in files on the server instead of the database.

GO_Hits: This is a table containing the GO IDs and descriptions of all GO terms.

GO_to_Sequence: This table is a link between sequences and the GO terms. The

relationship between GO terms and sequences is many to many, necessitating this table.

23

C. Interface Design

 Having a comprehensive and useful interface to allow researchers the ability to

query data in a meaningful way is difficult. It is important to be able to show the data

and its aggregate annotations while still allowing the researcher the ability to conduct

additional analysis on the data in either a raw or formatted form. In addition, enough

information about the annotations must be present in order to allow the researcher the

ability to accept or reject the annotations, based on a threshold of desired accuracy of the

results. These were all design considerations that were taken into account when

developing a web interface.

 It was decided that Java would be the primary language for development. This is

for several reasons. First, web development with Java is well-supported and a broad

knowledge base exists as a useful resource. Next, through the Java Data Bridge

Connection, or JDBC, querying a database within Java is simple and effective. Finally,

the use of Java Server Pages, or JSPs, allow for effective dynamic web pages that are

supported across all platforms and web browsers.

 Another reason why Java was chosen was because of an applet that was taken

from the NCBI website and extended for use in this project. The NCBI Trace Viewer

was originally designed as a trace viewer to either be run at the command line or

embedded in a web page. This has been expanded in ways that improve its performance

and eliminate some of the drawbacks of the initial product. Being an applet, it was

written in Java and requires a Java-based web project for its implementation.

 JavaServer Pages, or JSPs, are made up of two elements. The main part of the

page consists of traditional HTML and follows the tag rules of HTML. In addition,

24

however, there are JSP tags, which are denoted by containing a percentage sign, as in

<%=variable%>. Anything contained inside of these tags can be Java code. At the time

of compilation, JSPs are converted to servlets, which can then produce a web page by

replacing anything in the tags with data. This allows for web pages that vary in content

based on Java constructs, such as the data contained in data structures and variables, as

well as taking advantage of control loops, such as “for” and “while” loops. Data is

passed to and retrieved from these tags through the session, where variable values can be

stored.

 Because there can be a considerable amount of processing involved within the

Java part of the JSPs, each of the JSPs is backed by a Java class which does all

computations, leaving the JSPs free of lengthy tags of Java interspersed with HTML. All

database calls, data manipulation, and organization is left to the background class,

leaving only retrieval of data from the session as the task of the tags within the JSP. This

makes the code for the page more readable and easier to eventually add Cascading Style

Sheets, or CSS, for formatting. It is based on the Resource-Oriented Programming

principles.

 ROP is based on the REST architecture. REST, or Representational State

Transfer, first detailed by Roy Thomas Fielding (Fielding, 2000), is a set of design

principles that describe a series of rules and organizational paradigms for the ordering,

manipulation, and transfer of data. ROP takes these principles and applies them to create

a RESTful web architecture.

 The core of a ROP-organized web program is the Resource Servlet. The

Resource Servlet, which is inherited by all subsequent servlets, is in charge of directing

25

data to the correct method within the servlet. The URI contains the information about

what servlet is being called, what method within that servlet, and any data that is required

to retrieve information from the database or manipulate information. The method within

the servlet finishes by storing information in the session and rendering a new JSP page.

 For example, there is a page which conducts BLAST searches against the tags in

the trichome database. The JSP page, blast.jsp, contains a box for entering a sequence.

When the user submits the sequence by hitting the button, the sequence is sent to the

class Blast.java using the URI

“http://server/TriPages/blast/search?sequence=AAACCGTT”. The Resource Servlet

tokenizes the URI and separates the name of the class that is being called, in this case

Blast, from the method called, in this case “search”. It is in this method where BLAST

is run and the results are saved to the session in a variable called results and the

results.jsp is rendered. The results page can then retrieve the contents of the results

variable from the session and include them when rendering the page. Examples of the

source files are included in Appendix I.

 There are several reasons why this architecture improves the organization of the

project. As stated, it removes much of the Java from the JSP, allowing easier reading of

the code. Next, because only small amounts of data are sent to the servlets, the methods

can be easily reused based on what parameters are sent in the URI. Finally, it allows for

a class encapsulate a number of methods that deal with related data, but have different

tasks.

26

The following specifications were used in developing the TriPages web browser:

1. The original data must be stored along with information about trimming done to

remove vectors, poly-A tails, low quality and repeat sections, as well as any

trimming done by CAP3.

2. The trace files must be able to be viewed from an applet-based viewer.

3. The annotations of the data must be easily accessible and searchable to allow the

researcher to mine information from the database.

4. The data must be searchable using BLAST.

5. An administrative researcher must be able to alter or remove data and annotations

that are found to be inaccurate.

1. Data Storage

 Several steps in the analysis pipeline trim the underlying sequences. The

sequencing vector are removed, the poly-A tails are eliminated, and the sequences are

trimmed for quality by CAP3. This leads to sequences which are thought to be the most

meaningful subsequences of the originals. Because a researcher may have less-stringent

thresholds for using the ESTs, the data was stored so that the original sequences as well

as the trimmed sequences can be retrieved.

Another important factor is that the ESTs were constructed into contiguous sequences

by the CAP3 program. Although this is what was needed for this project, another

researcher may want to look at the ESTs separately, without the use of CAP3. Therefore,

all ESTs were stored in their original form, along with information about how to

reconstruct them into the CAP3 contigs.

27

2. Applet

 The ability to view the trace files and to investigate the signals for accuracy is key

in several areas of analysis in bioinformatics. The trace file is a binary representation of

an analog process, the process of reading signal strengths of a sequence, which is turned

into a binary file for further analysis. The phred base-calling program, in most cases,

does a reasonable job of detecting the underlying sequence, but occasionally incorrectly

calls bases due to experimental error, the existence of polymorphisms on the sequence, or

an insertion or deletion of a base on a sequence. Any of these can lead to results that may

need to be verified by looking at the trace.

 The applet used for this project was originally developed by NCBI. It was

designed to retrieve trace files either from a specified file or from the NCBI Trace

Archive. In order to meet the needs of this project, it was altered in several significant

ways. The result is a more robust applet that allows for the viewing of trace files as well

as other significant information about the sequences.

FIGURE 8: LOW-QUALITY TRACE DATA

 Initially, a problem was encountered with the formatting of the trace files due to

the sequencer that was used. With this change in formatting, it was impossible for the

trace viewer to read the called sequence from the file. Therefore, an alternate form was

28

used for the trace viewer. When the applet is called, several actions are taken. First, the

trace file is located. Next, phred is run on the trace file in order to get the called bases

and locations directly from the phred file. This information is then used in conjunction

with the data from the trace file to render the trace and bases.

3. Searchability

 A vital use of the database and its web portal is the ability to mine the data in

meaningful ways. To facilitate this, several ways to search the data are built into the

interface. Among the ways that the data could be used, BLASTing against the data is

essential to allow users to compare the sequences in this database with sequences of their

own. Comparison of new sequences with those in the database allows the user to view

similar sequences and annotations to gain more understanding about their own sequences.

 In addition to searching using BLAST, the interface allows for searching the

sequences based on other factors. Besides searching by sequence name, the sequences

have several ways to search by annotations. Each sequence has a family, putative

function based on BLAST searches, and GO annotations based on BLAST2GO. These

can searched through a number of interfaces.

4. Administrative Access

 There are several places in the process where errors can be introduced. Thus, it is

necessary to alter the data when these errors are discovered. Whether in sequencing

errors, data trimming, or annotation discrepancies, it is important to allow an

administrative researcher the ability to alter or remove data. This is accomplished using

an administrative tool.

29

The most important part of the process of altering data is to retain information about

the initial data so that accidental or malicious changes can be restored to their initial

form. This is accomplished using audit tables within the database. Any time data is

changed in the database, a trigger within the database records the ID of the record that

was altered, the name of the user that changed the data, the date of the change, and the

original data. This is enough information to reconstruct data if necessary as well as

determine who and when the data was altered. The trigger is fired on updates and

deletes.

30

IV. RESULTS

A. Analysis Pipeline

For the implementation of this project, 3906 sequences were used for analysis. These

sequences range from 70 to 1433 bases in length and each was accompanied by the

following information:

1. qual file: This is a file containing the quality score for each of the bases as

determined by the sequencing machine. An example of a quality file can be

found in Appendix II.

2. scf file: This is a binary file of the sampling of the raw data from the

sequencing machine. It is the file that is read in order to generate the trace file

in the trace viewing applet of the database browser. These files are

approximately 100 kb in size.

3. seq file: This is a file that contains the sequence in FASTA format. An

example of a seq file is contained in Appendix III.

 In addition to the files generated by the sequencing machine, the following

additional information is attached to each sequence:

1. Annotation: Each sequence has been previously annotated manually by a

researcher and information about the family, classification, subclass, and a

description is contained in the file contained in Appendix IV.

2. phd file: Phred was run on each of the scf files. Because phred acts as an

independent base-caller, the resulting phd file contains information about the

31

underlying sequence, quality scores, and the location of each of the peaks in

the trace file. The sequence and quality scores are ignored because this

information is already present in other files. The location of the peaks is used

for the trace viewer applet. An example of a phred file is contained in

Appendix IV.

 The next step was to trim the sequences of sequencing vectors. These are the

vector fragments present due to the sequencing process. The process for removing the

vectors is as follows:

1. Create a BLASTable database containing the vector sequences.

2. BLAST each of the EST sequences against the vector sequences.

3. Analyze the BLAST results, noting the positions where the vector matches

either the beginning or end of the EST sequence.

 Next, any poly-A tails were removed from the sequences. Because mRNA is

processed in the cell by adding a series of adenines to the sequence to prevent

degradation outside of the nucleus, this part of the sequence is not present in the genome

and will not be translated into a subsequent protein. Therefore, it should not be included

in the trimmed sequences. This is accomplished by removing any multi-adenine

oligonucleotide sequence on the ends of the EST sequences.

 After the trimming of the sequences was completed, CAP3 was run on the

trimmed sequences to generate contiguous sequences. The resulting file contains

information about each sequence, which contig the sequence belongs to, and the starting

position of the sequence within the contig. This led to the compilation of 425 contigs,

accounting for 1,698 of the sequences, leaving 2,208 single sequences.

32

 Once the information about the sequence annotations, trimming positions, and

contig composition was compiled, the information was added to the database. This is

enough information to populate the ANNOT_TABLE and SEQUENCE_TABLE.

Example of a query run to display annotation information about a sequence is shown in

Figure 9.

FIGURE 9: ANNOT_TABLE QUERY

 The query to get an entire record from the SEQUENCE_TABLE results in a large

and poorly formatted result due to the large sequences, so a query was run to display the

information in this table and the lengths of the sequences, shown in Figure 10.

FIGURE 10: SEQUENCE_TABLE QUERY

 A FASTA file containing all of the individual sequences as well as the contig

sequences was compiled. This file was BLASTed against the non-redundant database

and the file was analyzed. The results were then used to populate the NCBI_HITS table,

the HSP_TAB, and the linking tables that associated sequences with hits and hits with

high scoring pairs. Queries to view the BLAST results for a sequence are displayed in

Figures 11, 12, and 13.

 The BLAST results were used for the subsequent task of using BLAST2GO.

BLAST2GO runs in a user interface that takes the BLAST results as input and

33

determines, based on the proteins that match each sequence and the GO annotation of the

matching protein, what GO IDs should be attached to the sequence. The information

from the GO database was then entered into the Trichome database. At the time this was

done, 27,010 GO terms were present in the GO database. These were stored in the

Trichome database along with the information about the “is a” and “part of”

relationships. 11,963 terms were assigned to the sequences in the database. These

mapped to 1,913 of the sequences. Not all of the sequences obtained GO annotations due

to the fact that some of the sequences did not have significant BLAST hits and some of

the matching proteins were not present in the GO database.

FIGURE 11: SEQ_TO_HIT QUERY

34

FIGURE 12: HIT_TO_HSP QUERY

FIGURE 13: HSP_TAB QUERY

B. Database Browser

 The database browser is divided into five pathways to get ultimately reach the

sequence data. Sequence data can be found on each of the following:

 Name: Either the name of the sequence or a contig. The name can be

searched for by the entire name or a substring within the name. For example,

35

searching for “Contig1” will return a list of contigs including “Contig1”,

“Contig10”, and “Contig11”.

 Keyword: This searches the description in the SEQUENCE_TABLE for

matching substrings based on the inputted string.

 BLAST: By inputting a sequence or sequence file, BLAST is run against all of

the sequences in the Trichome database and the results are displayed.

 GO ID: The GO terms can be searched, either by GO ID or keyword in the

description, and the information about the matching GO terms is displayed.

This includes any sequences annotated with that GO ID.

 The result of any of these searches leads to the sequence page, which displays the

pertinent information about the sequence. This page can be displayed in two modes,

regular or administrative. In regular mode, the mode for most users to view the page, all

data is static and cannot be changed. In administrative mode, however, all fields are

editable and all BLAST hits and GO terms can be removed as annotations for that

sequence. Examples of the sequence display, in both regular and administrative mode,

are shown in Figures 14 and 15. In addition, examples of all pages can be found in

Appendix VI.

36

FIGURE 14: NORMAL SEQUENCE VIEW

FIGURE 15: ADMIN SEQUENCE VIEW

37

V. FUTURE DIRECTION

 There are a number of potential future extensions of this project. First, additional

information about P. xhotorum or other organisms can be added to the database. Second,

systematic issues with the data and its analysis can be improved to allow for additional

information in the sequence browser, notably in the applet. Third, the various processes

that were used for this analysis can be incorporated into a user interface to allow for

greater ease of adding additional data. Finally, an additional administrative functionality

can added to submit the data to NCBI for incorporation into dbEST.

 The amount of EST data that is not currently incorporated into a database is vast.

For any experiment that generates EST data, thousands of sequences are generated and

need analysis, especially in a case such as P. xhotorum where the whole genome has not

been sequenced. In addition to being a resource for the researchers at the University of

Louisville, additional annotated plant ESTs from institutions such as the Noble

Foundation (http://www.noble.org/) can add to the breadth of the database.

 In the initial implementation of the database browser, it was intended to add

notations in the applet to show where sequences have been trimmed. This created a

systematic problem that was not realized until the end of the project. The sequences, as

used throughout the project, were obtained from the sequencing machine used to generate

the trace files. However, the positions in the applet where these bases occur were

obtained from phred, which does an independent base calling. In most cases, the two

sequences were identical. However, in cases where the two sequences were discordant, it

38

was impossible to determine where in the trace file the trimming occurred. Therefore, it

is suggested that the initial step in analysis should be to run phred on all trace files and

use the results as analysis. Using two different base callers, as was done here, results in

data that does not always agree.

 This project includes several steps that were run independently of each other. For

development purposes, this was acceptable as each step required a trial and error

approach to find the best solution. However, in order to be of the greatest use, packaging

all processes into one application would improve the usability for the researcher. By

incorporating all steps into one larger interface and allowing the researcher to specify the

location of all input files, the data could be analyzed, annotation, and added to the

database.

 Finally, this database is only meant for temporary storage of EST data. It is

assumed that the eventual destination of most data is for public dissemination in a

database such as dbEST at NCBI. The guidelines for submission to dbEST require

specific formatting and a system such as the one described here would aid the researcher

in ultimately adding data to a publicly available database.

39

REFERENCES

Central dogma reversed (1970). Nature, 226, 1198-1199.

VecScreen (2005). NCBI [On-line]. Available:

http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen_docs.html

EMVEC (2009). EMBL-EBI [On-line]. Available:

http://www.ebi.ac.uk/Tools/blastall/vectors.html

Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M.

H., Xiao, H. et al. (1991). Complementary DNA sequencing: expressed sequence tags

and human genome project. Science, 252, 1651-1656.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990).

Basic local alignment search tool. J.Mol.Biol., 215, 403-410.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M. et

al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology

Consortium. Nat.Genet., 25, 25-29.

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. et

al. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic

Acids Res., 31, 3497-3500.

http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen_docs.html
http://www.ebi.ac.uk/Tools/blastall/vectors.html

40

Conesa, A. & Gotz, S. (2008). Blast2GO: A Comprehensive Suite for Functional

Analysis in Plant Genomics. Int.J.Plant Genomics, 2008, 619832.

Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M.

(2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional

genomics research. Bioinformatics., 21, 3674-3676.

Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561-563.

DuBois, P. (2005). MySQL

the definitive guide to using, programming, and administering MySQL 4.1 and

5.0. (3rd ed ed.) Indianapolis, Ind: Sams Pub.

Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of

automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 8, 175-

185.

Fielding, R. (2000). Architectural Styles and the Design of Network-based

Software Architectures. University of California, Irvine.

Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in

posttranscriptional gene silencing in plants. Science, 286, 950-952.

Huang, X. & Madan, A. (1999). CAP3: A DNA sequence assembly program.

Genome Res., 9, 868-877.

41

Kae, H. (2003). GENOME PROJECTS: UNCOVERING THE BLUEPRINTS OF

BIOLOGY. scq.ubc.ca [On-line]. Available: http://www.scq.ubc.ca/genome-projects-

uncovering-the-blueprints-of-biology/

Notredame, C. & Suhre, K. (2004). Computing multiple sequence/structure

alignments with the T-coffee package. Curr.Protoc.Bioinformatics., Chapter 3, Unit3.

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-

terminating inhibitors. Proc.Natl.Acad.Sci.U.S.A, 74, 5463-5467.

Schilmiller, A. L., Last, R. L., & Pichersky, E. (2008). Harnessing plant trichome

biochemistry for the production of useful compounds. Plant J., 54, 702-711.

Ussery, D. (2003). Bioinformatics Lekture Notes. David Ussery [On-line].

Available: http://protfun.com/staff/dave/MScourse/Lekt_11Feb2003a.html

http://www.scq.ubc.ca/genome-projects-uncovering-the-blueprints-of-biology/
http://www.scq.ubc.ca/genome-projects-uncovering-the-blueprints-of-biology/
http://protfun.com/staff/dave/MScourse/Lekt_11Feb2003a.html

42

APPENDIX I: BLAST CODE EXAMPLE

Blast.java

package web;

import java.io.FileNotFoundException;

import java.sql.ResultSet;

import edu.louisville.bioinformatics.utilities.ExternalCmdExec;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.SQLException;

import java.util.Random;

import javax.servlet.ServletException;

import javax.servlet.ServletInputStream;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import objects.BlastParser;

import objects.BlastResults;

import objects.FileUploadBean;

import objects.Hit;

import objects.Iteration;

import org.xml.sax.SAXException;

public class Blast extends ResourceServlet {

 public void index(HttpServletRequest request, HttpServletResponse response) throws

IOException, InterruptedException, SAXException, ServletException {

 Random r = new Random();

 long id = r.nextLong();

 String filename = "query.fas";

 if (request.getParameter("sequence") != null) {

 createBlastFile(request.getParameter("sequence"), id);

 } else {

 filename = processRequest(request, response, id);

 }

 System.out.println("BLASTing file");

 blastFile(id, filename);

 System.out.println("BLASTed");

 BlastResults results = getBlastResults(id);

43

 System.out.println("Got results");

 request.setAttribute("results", results);

 render("blast_results.jsp", request, response);

 }

 public void createBlastFile(String sequence, long connectionId) throws IOException {

 BufferedWriter out = new BufferedWriter(new FileWriter(new File("/tmp/EST/" +

connectionId + "query.fas")));

 out.write(sequence);

 out.close();

 }

 protected String processRequest(HttpServletRequest request,

 HttpServletResponse response, long id)

 throws ServletException, IOException {

 FileUploadBean upLoader = new FileUploadBean();

 upLoader.setSavePath("/tmp/EST/" + id);

 upLoader.doUpload(request);

 return (upLoader.getFilename());

 }

 public void database(HttpServletRequest request, HttpServletResponse response)

throws SQLException, IOException, ServletException {

 Connection conn = (Connection) request.getSession().getAttribute("connection");

 String sequence = request.getParameter("sequenceId");

 String hitId = request.getParameter("hitId");

 BlastResults blastResults = getDatabaseBlastResults(conn, sequence, hitId);

 request.setAttribute("results", blastResults);

 render("blast_results.jsp",request,response);

 }

 public void blastFile(long connectionId, String filename) throws IOException,

InterruptedException {

 String infile = "/tmp/EST/" + connectionId + filename;

 String cmd = "megablast -F F -r 1 -q -2 -m 7" +

 " -i " + infile + " -d /tmp/EST/formattedDatabase -o " + "/tmp/EST/" +

connectionId + "results.txt";

 String[] execCmd = {"/bin/sh", "-c", cmd};

 System.out.println(cmd);

 ExternalCmdExec externalCmdExec = new ExternalCmdExec(execCmd, new

String[0], "stdOut.txt", "stdErr.txt");

 int exitCode = externalCmdExec.exec();

 }

44

 public BlastResults getBlastResults(long connectionId) throws SAXException,

IOException, SAXException {

 BlastParser parser = new BlastParser("/tmp/EST/" + connectionId + "results.txt");

 BlastResults results = parser.getResults();

 return results;

 }

 public BlastResults getDatabaseBlastResults(Connection conn, String sequenceId,

String hitId) throws SQLException {

 String defQuery = "Select * from NCBI_HITS where db_id=" + hitId;

 String hitDef = null;

 System.out.println(defQuery);

 try {

 java.sql.Statement stmt = conn.createStatement();

 ResultSet result = stmt.executeQuery(defQuery);

 while (result.next()) {

 hitDef = result.getString("hit_def");

 }

 result.close();

 stmt.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 String query = "select * from HSP_TAB ht, HIT_TO_HSP hh where

ht.id=hh.hsp_id and hit_id=" + hitId;

 System.out.println(query);

 BlastResults returnResults = new BlastResults();

 try {

 java.sql.Statement stmt = conn.createStatement();

 ResultSet result = stmt.executeQuery(query);

 while (result.next()) {

 Hit h = new Hit();

 h.setAlignmentLength(result.getInt("length"));

 h.setHitDef(hitDef);

 h.setHitFrame(result.getInt("h_frame"));

 h.setHitFrom(result.getInt("h_from"));

 h.setHitLength(result.getInt("length"));

 h.setHitSeq(result.getString("h_seq"));

 h.setHitTo(result.getInt("h_to"));

 h.setIdentity(result.getInt("identity"));

 h.setMidline(result.getString("midline"));

45

 h.setPositive(result.getInt("positive"));

 h.setQueryFrame(result.getInt("q_frame"));

 h.setQueryFrom(result.getInt("q_from"));

 h.setQuerySeq(result.getString("q_seq"));

 h.setQueryTo(result.getInt("q_to"));

 h.setScore(result.getInt("score"));

 h.setEValue(result.getString("eValue"));

 Iteration newIteration = new Iteration();

 newIteration.setQueryDef(sequenceId);

 newIteration.addHit(h);

 returnResults.addIteration(newIteration);

 }

 result.close();

 stmt.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 return returnResults;

 }

}

blast.jsp

<%@ include file="_top.jsp" %>

<h2>BLAST the Trichome database</h2>

<h3>Enter a sequence:</h3>

<form id='frm'

 action="<%=request.getContextPath()%>/blast/">

 <textarea cols="40" rows="5" name="sequence">

 </textarea>

 <input type="submit"/>

 <input name="type" type="hidden" value="blast"/>

</form>

<h3>Enter a FASTA file:</h3>

<form id='frm'

 action="<%=request.getContextPath()%>/blast/"

 enctype="multipart/form-data"

 method="post">

46

 <INPUT TYPE="file" NAME="fastaFile"/>

 <INPUT TYPE="submit" VALUE="Upload File">

</form>

<%@ include file="_bottom.jsp" %>

blast_results.jsp

<%@ include file="_top.jsp" %>

<%@include file="_blast_results.jsp" %>

<%@ include file="_bottom.jsp" %>

_blast_results.jsp

<%@ page import="objects.*" %>

<%@ page import="java.util.StringTokenizer" %>

 <%

 BlastResults blastResults=(BlastResults)request.getAttribute("results");

%>

 <%

 Iteration[] iterations = blastResults.getIterations();

 for (int i = 0; i < iterations.length; i++) {

 Hit[] hits = iterations[i].getHits();

 %>

 <%

 for (int j = 0; j < hits.length; j++) {

 String queryDef = hits[j].getHitDef();

 String link;

 if (queryDef.startsWith("Contig")) {

 StringTokenizer tokenizer = new StringTokenizer(queryDef, "|");

 link = request.getContextPath()+"/sequence/contig/"+tokenizer.nextToken();

 } else if(queryDef.startsWith("UOFL")){

 StringTokenizer tokenizer = new StringTokenizer(queryDef, "|");

 link = request.getContextPath()+"/sequence/index/" + tokenizer.nextToken();

47

 }else{

 StringTokenizer tokenizer = new StringTokenizer(queryDef, "|");

 tokenizer.nextToken();

 link="http://www.ncbi.nlm.nih.gov/protein/"+tokenizer.nextToken();

 }

 %>

 <a href=<%=link%> target="_blank"><%=hits[j].getHitDef()%>

 <%

 }

 }

 %>

 <% for (int i = 0; i < iterations.length; i++) {

 Hit[] hits = iterations[i].getHits();

 %>

 Results for Query Sequence: <%=iterations[i].getQueryDef()%>

 <%for (int j = 0; j < hits.length; j++) {%>

 Hit ID:<%=hits[j].getHitDef()%>

 Score:<%=hits[j].getScore()%>

 Expect:<%=hits[j].getEValue()%>

 Identities:<%=hits[j].getIdentity()%>/<%=hits[j].getAlignmentLength()%>

 <table class="sortable" border="0">

 <%

 String querySeq = hits[j].getQuerySeq();

 String hitSeq = hits[j].getHitSeq();

 String midline = hits[j].getMidline();

 for (int k = 0; k < querySeq.length(); k += 60) {

 int startPos = k;

 int endPos = k + 60;

 if (endPos > querySeq.length()) {

 endPos = querySeq.length();

 }

 %>

 <tr><td>Query</td><td> <%=hits[j].getQueryFrom() + startPos%>

</td><td><%=querySeq.substring(startPos,

endPos)%> <%=hits[j].getQueryFrom() + endPos - 1%></td></tr>

 <tr><td><td/><td> <%=midline.substring(startPos, endPos)%></td></tr>

48

 <tr><td>Sbjct</td><td> <%=hits[j].getHitFrom() + startPos%>

</td><td><%=hitSeq.substring(startPos,

endPos)%> <%=hits[j].getHitFrom() + endPos - 1%></td></tr>

 <tr><td/><td/><td/></tr>

 <tr><td/><td/><td/></tr>

 <tr><td/><td/><td/></tr>

 <%}%>

 </table>

 <%}

 }%>

49

APPENDIX II: QUALITY SCORES

>Plate1_A01.qual

31 35 39 39 33 33 26 28 28 28 30 30 36 36 36 57 42 42 39 34 34 37 42 42 39 39 39 43 43

36 36 32 30 36 36 43 43 43 43 48 48 46 32 29 12 14 14 14 27 30 42 46 39 37 37 39 39 41

44 57 44 47 47 57 57 57 54 54 54 44 32 27 20 27 27 27 27 28 36 40 46 47 50 50 57 57 47

57 57 50 44 43 32 32 44 44 50 43 35 32 32 43 36 43 37 35 35 44 32 57 37 37 35 39 39 48

42 42 31 35 35 35 35 35 36 42 42 37 37 32 32 47 43 44 32 32 39 35 35 44 44 57 57 57 46

37 37 43 48 57 68 68 68 68 68 68 68 68 54 54 48 48 48 48 48 57 57 46 42 39 35 22 24 24

16 22 22 28 28 32 32 30 32 32 39 37 28 33 28 32 33 34 28 24 18 18 24 26 28 28 28 32 37

37 46 46 43 43 39 35 35 32 37 37 32 32 20 15 15 19 21 28 30 29 24 31 31 31 33 30 30 32

32 32 36 36 28 22 24 27 24 30 39 30 41 20 24 20 32 32 43 36 36 30 32 24 24 22 25 32 32

43 57 47 54 47 57 44 43 32 29 28 30 26 17 15 15 21 16 28 21 22 18 20 28 32 28 18 18 10

10 15 20 25 25 19 22 22 24 12 12 12 20 20 21 28 28 20 19 12 14 14 19 30 33 37 24 24 19

15 11 11 14 14 21 21 19 19 18 18 12 16 12 29 29 28 17 13 10 10 10 10 10 8 13 12 9 9 12

11 16 16 16 17 19 14 10 10 10 19 19 22 22 20 15 15 14 17 17 10 10 10 13 13 19 23 25 18

15 13 12 9 9 14 19 12 10 15 11 17 17 11 8 8 8 8 8 10 10 9 9 9 12 20 23 23 23 25 15 12 7

7 7 7 10 12 8 8 8 8 8 13 13 13 12 9 9 9 12 12 18 22 25 22 18 15 16 13 16 13 10 8 8 9 11 9

8 8 6 6 6 8 8 8 8 8 15 15 20 17 14 10 10 10 9 12 11 12 9 11 11 11 10 12 12 9 9 8 8 8 8 8 8

9 9 9 8 8 8 8 8 8 10 10 14 10 9 8 11 9 9 9 9 13 13 13 15 12 10 10 11 16 17 11 10 9 9 10

10 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 8 8 8 8 9 9 9 9 10 10 9 8 8 10 10 8 8 10 10 10

10 10 12 10 10 10 8 8 8 8 8 8 10 10 8 8 8 8 8 9 10 10 10 8 8 10 7 9 12 12 9 9 9 12 13 10

10 11 11 10 10 10 10 10 10 10 10 8 9 9 8 9 9 10 10 10 10 15 15 8 8 8 8 9 10 8 8 8 8 8 8 8

8 9 10 9 9 9 9 9 8 8 8 10 10 10 11 6 8 6 6 13 15 9 13 13 13 12 9 8 8 8 8 7 9 11 9 9 9 9 9 9

10 10 10 10 17 13 10 10 8 8 8 6 6 6 6 8 7 6 10 10 10 10 6 6 6 6 8 8 8 8 6 6 8 8 8 11 9 8 7

6 8 8 8 8 8 8 8 8 10 10 10 10 10 10 11 12 11 11 11

50

APPENDIX III: SEQUENCE FILE

 >Plate1_A01.seq (Untrimmed) Agencourt Bioscience

Corporation ABI

gaggagactgctgacccttgagacagagagacagagagagagataatgttgataacggtc

agagacccatcttcttgcttgagcttcaactccaactccagacacagacacatacacaga

cacagaccctccacctccatttgcagagccaccttttctcttccgaggaaacccaacacc

accaagccccgggaccttgccttttcctctaacaccaacaccagtaatgagagctccgtg

tttgatccattgggtatcaatccagatttatcttctagcttaaatggtacttgggaaagt

cttcaaggattgttttctcaaacctttgagagttcctcaggcccaaaaaaagagagaggg

tcttctgctcgcggggttgcacctgctattgaggatagtttaattgattttagggatttt

tttaaaggccaattaccaggaaaattcctccagctcctgggggtttttggccttatctct

actgcaaaatatataccttccgggtggggtaaatagggaggctattgttcgcattctgga

taaaactgttttttgatcccttgggttccttttctgggggagcattggtagctggggaat

tctccttgtattgccccttcataaggccaattggtttcaacttctgcaccatttttccca

attgtagacttcttaaaaatatgcgcaccagaaaagatatctctttatcaaaaagctcat

tggttgcaata

51

APPENDIX IV: PHRED FILE

BEGIN_SEQUENCE Plate1_A01.scf

BEGIN_COMMENT

CHROMAT_FILE: Plate1_A01.scf

ABI_THUMBPRINT: 0

PHRED_VERSION: 0.020425.c

CALL_METHOD: phred

QUALITY_LEVELS: 99

TIME: Sun Apr 5 19:56:26 2009

TRACE_ARRAY_MIN_INDEX: 0

TRACE_ARRAY_MAX_INDEX: 8716

TRIM: 0 336 0.0500

TRACE_PEAK_AREA_RATIO: 0.1435

CHEM: term

DYE: big

END_COMMENT

BEGIN_DNA

g 24 10

a 25 20

g 40 33

g 40 46

a 29 57

g 29 70

a 22 80

c 27 88

t 26 96

g 26 115

c 26 125

t 32 135

g 35 152

a 35 162

c 35 172

c 42 184

c 35 195

t 37 206

t 35 218

g 35 234

a 33 247

g 34 259

a 35 269

………….

52

APPENDIX V: SCREEN SHOTS

NAME.JSP

CONTIG.JSP

53

FAMILY.JSP

SEQUENCE.JSP (TOP)

54

SEQUENCE.JSP (BOTTOM)

55

BLAST.JSP

GO_SEARCH.JSP

GO_RESULTS.JSP

56

APPENDIX VI: REMOVED VECTORS

>pBlueScript Vector

TTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGTACCGGGCCCCCCCTCGAGGT

CGACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGC

GGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTTCGAGCTTGGCGTAATCATGGTCATAGCTGTTTC

>5' Adapter

AATTCGGCACGAGG

>3' Adapter

GCCGTGCTCC

>Strascript RT

GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTTTTTTTTTTTTTTTTTT

>gi|58066|emb|X52324.1| pBluescript SK(-) vector DNA, phagemid excised from

lambda ZAP

CACCTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC

ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTT

CCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCA

AAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC

GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTC

TATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAA

AATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTCCATTCGCCATTCAGGCTGCGCAACTGT

TGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGC

GATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATA

CGACTCACTATAGGGCGAATTGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATC

GAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGT

TCCCTTTAGTGAGGGTTAATTTCGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTT

ATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGT

GAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTG

CATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCA

CTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTT

ATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGT

AAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCT

CAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGT

GCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCG

CTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGC

ACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG

ACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCT

ACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGC

TGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGG

TGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTT

TCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAA

GGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAAC

TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC

ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTG

CAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGC

CGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGA

GTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCT

CGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTT

GTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCA

CTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTG

GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT

ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGA

AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTT

CAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGG

AATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAG

GGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCA

CATTTCCCCGAAAAGTGC

57

CURRICULUM VITA

Joseph Patrick Morris

EDUCATION

 University of Louisville, Louisville, Ky

M.Eng. in Computer Engineering and Computer Science Complete May 2009

 University of Louisville, Louisville, KY

 B.S. in Computer Engineering and Computer Science 2006

RELATED EXPERIENCE

 May 2008 – Present Department of Biochemistry and Molecular Biology,

University of Louisville

Programmer Analyst

Further development and documentation of existing computing infrastructure for

the storage and dissemination of single nucleotide polymorphisms in cattle

populations.

 Jan 2008 - May 2008 PGxl Labs, University of Louisville

Information Technology Consultant

Development of pharmacogenetic diagnostic tool as well as general maintenance

and consultation of web-based computing needs.

 Aug 2007 – Dec 2008 Center for Genetics and Molecular Medicine, University of

Louisville

Researcher

Development of a web services-based laboratory information management system

for use with microarray data.

 Jun 2006-Aug 2007 Center for Genetics and Molecular Medicine, University of

Louisville

Researcher

Development of web services and database for the dissemination of single

nucleotide polymorphisms in cattle.

	An analysis pipeline for the processing, annotation, and dissemination of Expressed Sequence Tags.
	Recommended Citation

	tmp.1423685735.pdf.WBB_N

