
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2014 

Avatar captcha : telling computers and humans apart via face Avatar captcha : telling computers and humans apart via face 

classification and mouse dynamics. classification and mouse dynamics. 

Darryl Felix D’Souza 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
D’Souza, Darryl Felix, "Avatar captcha : telling computers and humans apart via face classification and 
mouse dynamics." (2014). Electronic Theses and Dissertations. Paper 1715. 
https://doi.org/10.18297/etd/1715 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1715
mailto:thinkir@louisville.edu


AVATAR CAPTCHA: TELLING COMPUTERS AND HUMANS
APART VIA FACE CLASSIFICATION AND MOUSE

DYNAMICS

By

Darryl Felix D’Souza
M.S. in Computer Science, University of Louisville, USA, 2009

B. Eng. in Computer Engineering, University of Mumbai, India, 2006

A Dissertation
Submitted to the Faculty of the

J.B.Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

December 2014



Copyright © 2014 by Darryl Felix D’Souza

All rights reserved





AVATAR CAPTCHA: TELLING COMPUTERS AND HUMANS APART VIA FACE

CLASSIFICATION AND MOUSE DYNAMICS

By

Darryl Felix D’Souza
M.S. in Computer Science, University of Louisville, USA, 2009

B. Eng. in Computer Engineering, University of Mumbai, India, 2006

A Dissertation Approved

on October 13th, 2014

by the following Dissertation Committee:

Dr. Roman V. Yampolskiy, CECS Department,

Dissertation Director

Dr. Dar-jen Chang, CECS Department

Dr. Ibrahim Imam, CECS Department

Dr. Charles Timothy Hardin,

Industrial Engineering Department

ii



DEDICATION

This dissertation is dedicated to my dear parents Felix and Philomena, my late grandpa

Joseph, my grandma Lily, my dear family members and friends who have been my moral

support through their incessant love and patience. I owe this one to you all as I could never

achieve this pinnacle in my career without your blessings and friendship.

iii



ACKNOWLEDGMENT

The completion and writing of my Ph.D. dissertation has been a long and wonderful jour-

ney. It has been one of the most significant academic challenges with an immensely rewarding

experience and a learning curve that has taught me the l of research. Without the support,

patience and guidance of the following people I would not have achieved this milestone. I owe

them my deepest gratitude.

With great pleasure and gratitude I thank my mentor Dr. Roman V. Yampolskiy who has

been inspirational and motivating through his wisdom, knowledge and commitment. He has

been a great source of guidance complemented with a down to earth attitude and an innovative

research vision.

My committee members, who have bestowed upon me the knowledge through their

courses that have been extremely helpful and instrumental not only in completing this dis-

sertation but also in my academic career.

My friend and colleague, Jacob Matchuny who deserves a special vote of thanks for as-

sisting me in this work with patience, interest and enthusiasm.

The volunteer subjects and online human users who contributed their invaluable time

and feedback towards solving the CAPTCHA challenges and helping me gain some resourceful

insights into my work as well as validate it.

My lab colleagues Abdallah Mohamed, Nawaf Ali, Marc Beck and Roger Ouch together

with my department colleagues and friends for helping me during different phases of my work.

They have supported and motivated me as fellow peers. We have all been a close-knit, diverse

group that enjoyed research, travel, sports and food.

The two-year Grosscurth fellowship and the Department of Computer Engineering and

Computer Science for two and a half additional years of financial support that aided the pursuit

of my Ph.D.

iv



Felix and Philomena, my dear parents, Delna, my sister and my family members without

whom this effort would have amounted to nothing. Your unconditional love, support, prayers

and profound understanding have been inspirational and encouraging supplements to fuel my

motivation to help me achieve this goal.

v



ABSTRACT

AVATAR CAPTCHA: TELLING COMPUTERS AND HUMANS
APART VIA FACE CLASSIFICATION AND MOUSE

DYNAMICS

Darryl Felix D’Souza

October 13th, 2014

Bots are malicious, automated computer programs that execute malicious scripts and

predefined functions on an affected computer. They pose cybersecurity threats and are one

of the most sophisticated and common types of cybercrime tools today. They spread viruses,

generate spam, steal personal sensitive information, rig online polls and commit other types of

online crime and fraud. They sneak into unprotected systems through the Internet by seeking

vulnerable entry points. They access the system’s resources like a human user does. Now

the question arises how do we counter this? How do we prevent bots and on the other hand

allow human users to access the system resources? One solution is by designing a CAPTCHA

(Completely Automated Public Turing Tests to tell Computers and Humans Apart), a program

that can generate and grade tests that most humans can pass but computers cannot. It is used

as a tool to distinguish humans from malicious bots. They are a class of Human Interactive

Proofs (HIPs) meant to be easily solvable by humans and economically infeasible for computers.

Text CAPTCHAs are very popular and commonly used. For each challenge, they generate a

sequence of alphabets by distorting standard fonts, requesting users to identify them and type

them out. However, they are vulnerable to character segmentation attacks by bots, English

language dependent and are increasingly becoming too complex for people to solve. A solution

to this is to design Image CAPTCHAs that use images instead of text and require users to

vi



identify certain images to solve the challenges. They are user-friendly and convenient for

human users and a much more challenging problem for bots to solve.

In today’s Internet world the role of user profiling or user identification has gained a lot of

significance. Identity thefts, etc. can be prevented by providing authorized access to resources.

To achieve timely response to a security breach frequent user verification is needed. However,

this process must be passive, transparent and non-obtrusive. In order for such a system to

be practical it must be accurate, efficient and difficult to forge. Behavioral biometric systems

are usually less prominent however, they provide numerous and significant advantages over

traditional biometric systems. Collection of behavior data is non-obtrusive and cost-effective

as it requires no special hardware. While these systems are not unique enough to provide

reliable human identification, they have shown to be highly accurate in identity verification.

In accomplishing everyday tasks, human beings use different styles, strategies, apply unique

skills and knowledge, etc. These define the behavioral traits of the user. Behavioral biometrics

attempts to quantify these traits to profile users and establish their identity. Human com-

puter interaction (HCI)-based biometrics comprise of interaction strategies and styles between

a human and a computer. These unique user traits are quantified to build profiles for identifi-

cation. A specific category of HCI-based biometrics is based on recording human interactions

with mouse as the input device and is known as Mouse Dynamics. By monitoring the mouse

usage activities produced by a user during interaction with the GUI, a unique profile can be

created for that user that can help identify him/her. Mouse-based verification approaches do

not record sensitive user credentials like usernames and passwords. Thus, they avoid privacy

issues.

An image CAPTCHA is proposed that incorporates Mouse Dynamics to help fortify it.

It displays random images obtained from Yahoo’s Flickr. To solve the challenge the user must

identify and select a certain class of images. Two theme-based challenges have been designed.

They are Avatar CAPTCHA and Zoo CAPTCHA. The former displays human and avatar faces

whereas the latter displays different animal species. In addition to the dynamically selected

images, while attempting to solve the CAPTCHA, the way each user interacts with the mouse

i.e. mouse clicks, mouse movements, mouse cursor screen co-ordinates, etc. are recorded non-

obtrusively at regular time intervals. These recorded mouse movements constitute the Mouse

Dynamics Signature (MDS) of the user. This MDS provides an additional secure technique to

segregate humans from bots. The security of the CAPTCHA is tested by an adversary executing

a mouse bot attempting to solve the CAPTCHA challenges.
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CHAPTER I

INTRODUCTION

1.1 Overview
“Why spend time and efforts in solving a problem manually when I can write an au-

tomated computer program (bot) to perform the task and achieve the goal ?” Users over the

Internet are resorting to writing computer programs, known as bots, to perform automated

tasks. In today’s technologically advanced era there are numerous tools available to write bots.

Bots are chiefly used to perform repetitive tasks automatically thus, saving the user a consid-

erable amount of time and efforts to perform the same task manually. They can be classified as

good and bad bots. The good bots are used for constructive purposes such as to find and index

new pages for a search engine. E.g. Google, Bing, Yahoo, etc. However, cyber criminals use bots

to send out spam emails, rig online polls, distribute malware, steal personal sensitive informa-

tion such as credit card numbers, bank account numbers and flood servers causing Denial of

Service (DoS) attacks creating security issues in the online world. These bots are malicious

and have a substantial presence in today’s online Internet traffic. So how do we prevent bots

from gaining access to resources on computer systems and running the show? How do we seg-

regate the human user activities from bot activities over the Internet ? One potential solution

is to use CAPTCHAs (Completely automated Public Turing tests to Tell Computers and Hu-

mans Apart). It is a program that can generate and grade tests online that most humans can

pass but computers cannot. Text CAPTCHAs are very popular and commonly used. For each

challenge, they generate sequence of alphabets, distort them and request users to identify and

type them out. However, they are vulnerable to character segmentation attacks by bots and

are English-language dependent. Image CAPTCHAs are substitute for them. They use images

instead of text and require users to identify certain images to solve the challenges. They are

user-friendly and convenient to use.

Our work involves building an image CAPTCHA that displays random images obtained
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from Yahoo’s Flickr. To solve the challenge the user must identify and select a certain class of

images. Two theme-based challenges have been designed. They are Avatar CAPTCHA and Zoo

CAPTCHA. The former displays human and avatar faces whereas the latter displays different

animal species. In addition to the dynamically selected images, while attempting to solve the

CAPTCHA, the way each user interacts with the mouse i.e. mouse clicks, mouse movements,

mouse cursor screen co-ordinates, etc. are recorded non-obtrusively at regular time intervals.

These recorded mouse movements constitute the Mouse Dynamics Signature (MDS) of the

user. This MDS provides an additional secure technique to segregate humans from bots as

they have different styles of mouse usage activities. This concept of monitoring the human

user mouse interaction is a branch of Behavioral Biometrics, known as Mouse Dynamics. The

security of our CAPTCHA is tested by an adversary executing a mouse bot attempting to solve

the CAPTCHA challenges.

1.2 Bots and their threats in the online world
A “bot” is an automated computer program that executes malicious scripts and prede-

fined functions on an affected computer. Bots pose cybersecurity threats and are one of the

most sophisticated and popular types of cybercrime today. They allow hackers/attackers (bot

creators) to gain control of many computers at one time, turning them into “zombie” comput-

ers, which operate as part of a powerful “botnet” to spread viruses, generate spam and commit

other types of online crime and fraud. A bot might cause your computer to slow down, display

mysterious messages or even crash. They sneak into a computer system in many different

ways usually through the Internet by seeking vulnerable, unprotected computers to infect [1].

After taking over a computer, it carries out a variety of automated tasks such as:

• Sending: Spam emails to users containing web links that download spyware, malware

and viruses on clicking it.

• Stealing: Personal, sensitive information such as credit card numbers, bank credentials,

passwords are stolen.

• Denial of Service (DoS): Cybercriminals use bots to launch DoS attacks to extort money

from Web site owners in exchange of regaining control of the compromised sites.

• Clickfraud: Fraudsters use bots to boost Web advertising billings by automatically click-

ing on Internet ads [1].
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Some other threats involve:

• Online polls: Rig online polls by falsely and recurrently voting in online polls.

• Free email accounts: Signing up for several email accounts to dish out spam emails.

• Gold farming: Affects virtual worlds (Second Life, Sims Online, etc.) and Massively

Multiplayer Online Role Playing Games (MMORPG) such as World of Warcraft, etc. by

acquiring in-game virtual currency to be exchanged for real currency and reaching higher

game levels over a short time span.

1.3 CAPTCHAs (Completely Automated Public Turing Tests

to tell Computers and Humans Apart)
How do we prevent bots and allow human users from getting access to system resources?

One solution is by designing a CAPTCHA. A CAPTCHA is a program that can generate and

grade tests that most humans can pass but computers cannot. It is used as a tool to distinguish

humans from malicious bots. They are a class of Human Interactive Proofs (HIPs) meant to

be easily solvable by humans and economically infeasible for computers. The work on distin-

guishing computers from humans traces back to the original Turing Test [2]. Since the concept

of CAPTCHA was widely introduced by von Ahn [3], many design variations have appeared.

Text CAPTCHAs are popular and very commonly used. The computer generates challenges

by selecting a sequence of letters and distorting them. Figure 1 shows an example from the

popular Captcha Project undertaken at Carnegie Mellon University (CMU) [4].

Figure 1: A text CAPTCHA by CMU [4].

It has been shown that text CAPTCHAs are vulnerable to segmentation attacks from

Optical Character Recognition (OCR) systems capable of achieving human-like accuracy even
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when the letters are distorted, as long as the image can be segmented into its constituent let-

ters [5]. Moreover, most of the text-CAPTCHAs are fixed length English word based challenges.

The English words based CAPTCHAs, irrespective of their usage of dictionary words, are de-

veloped under the assumption that the user is either a native English speaker or fluent with

the English vocabulary. These word based CAPTCHAs present distorted images of English

letters to the user [6]. They make segmentation difficult by introducing noise in it to thwart

OCR attacks. However, it has usability concerns as it adds to the woes of readability and toler-

ability for the users. Thus, text-based CAPTCHAs seem to be hard not only for a computer but

also for humans as well. How do we overcome this problem? One solution is to use images in

CAPTCHA challenges. We as human users can easily identify and recognize images however,

it is a much more challenging problem for a computer program to solve. Image recognition, as

a general machine vision problem, is much harder than character recognition. It helps exploit

the gap between human and computer capabilities. However, the database constructed to sup-

port an image CAPTCHA must be large and dynamic enough to prevent brute-force attacks on

it as a small database is always under the threat of brute force attacks by the attacker to break

it. Figure 2 shows an example of an image CAPTCHA.

Figure 2: Example of an image CAPTCHA [7].
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1.4 Virtual Worlds
Here, we briefly introduce Virtual Worlds. This will help comprehend the concept of

avatars used in the CAPTCHA.

Three-dimensional virtual worlds (VW) are gaining popularity over the Internet. They

use computer graphics to provide real-time, interactive, three-dimensional environments which

seem realistic to the user [8]. VW have the potential to transform the operational ways of so-

ciety. VW provide a digital space for the user and “mirrors” the real world activities. VW help

form social groups and communities revolving around common interests amongst individuals

across the world [9]. In today’s advanced era of technology it becomes easier to build VW.

These worlds are conveniently accessible and run on a conventional browser or a computer or

a smartphone. There are several popular virtual worlds. For e.g. Second Life [10], Entropia

Universe [11], Sims Online [12], etc. VW fosters socializing, shopping, venturing, being cre-

ative, educating, setting up enterprises as well as making money [10]. Examples of some of

these popular VWs are shown in Figure 3.

Figure 3: Examples of popular VWs.

Virtual businesses exist within virtual worlds. Reuters has established a virtual head-

quarters in Second Life to broadcast news to both the real as well as the virtual world. National

Public Radio has held broadcast sessions within Second Life as well.A few real-world univer-

sities are establishing islands in virtual worlds to offer classes. E.g. Kelley School of Business,

Indiana University, Bloomington has its presence in Second Life too [13] as seen in Figure 4.
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Figure 4: Kelley School of Business in Second Life [13].

1.5 Avatars
They represent the digital identity of a user within VW. Users interact with the VW

environment through their respective avatars. Users often wish to create distinct and diverse

avatars that reflect their personality pertaining to an imaginary identity. Though it represents

a user’s identity within VWs, it is not an authentic description of their identity. Within VW,

users can choose how and in what way they wish to express themselves by altering the ap-

pearance of their avatars adding flexibility to their role. Some users make conscious choices

in revealing facts about themselves through their avatars. Some project a popular image as

their avatar. Some online services permit only one avatar identity per user account. This helps

avoid trust issues and non-reliance of the user on their alternative identities. Some users give

their avatars a realistic look that resembles a human being. They believe this helps them re-

late personally to their avatars. Avatars can also extend to other aspects such as emotions,

gestures, animations, speech, voice, etc. They can also be used to express the reputation or

status of a user [14]. Figure 5 shows some examples of avatars from the popular VWs Entropia

Universe and Second Life respectively.
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(b)

(a)

Figure 5: Avatar images from popular VW’s (a) Entropia Universe (b) Second Life.

1.6 Local Directional Pattern (LDP)
In this section we introduce LDP which will help comprehend the technique used to

classify human and avatar faces to test the security of the CAPTCHA.

LDP is a robust local facial feature descriptor introduced by Jabid et al. It is sensi-

tive to non-monotonic illuminations and performs well in the presence of random noise. LDP

computes the edge response values in different directions and uses these to encode the image

texture. It assigns an 8-bit binary code to each pixel based on its neighboring edge response val-

ues in different directions. Kirsch masks, known to detect different directional edge responses,

are used [15]. Its edge response masks in eight directions are shown in Figure 6.
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Figure 6: Kirsch edge response masks in eight directions [15].

For a central pixel the eight directional edge response values {mi} are evaluated using

the Kirsch masks in eight different orientations centered on its position. This helps obtain

varying edge response values of which not all are significant. High response values indicate

the presence of a corner or edge in a particular direction. These values indicating prominent

directions are captured to generate the LDP code. A threshold value of top prominent direc-

tions are chosen to generate the LDP code. These values are set to 1 and the remaining (8-k)

bits are set to 0. The equation below depicts the LDP code generation process [15].

LDPk =
∑7
i=0biti(mi −mh)2

i (1)

biti(z) =


1, z ≥ 0

0, z < 0

(2)

where, mh is the kth most prominent directional response.

Figure 7 depicts an outline of the eight directional responses positions with the LDP

binary bit positions.
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bit3 bit2 bit1

bit4

bit5 bit6

bit0
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bit0 = Right-most bit
bit7 = Left-most bit 

Figure 7: The eight directional responses positions m0−m7and the LDP binary bit positions
bit0 − bit7.

Figure 8 illustrates an example of an LDP code with its decimal equivalent for threshold

k=3

58 23 62

35

70 83

40

54

347 131 275

29

229 381

27

141

1 0 1

0

0 1

0

0

LDP binary code: 01001010
LDP decimal code: 74 

50
{Mi} mk

Figure 8: LDP code with k=3.

Edge response values are more stable than image intensity values. LDP provides the

same pattern in presence of noise and non-monotonic illumination changes. Bit changes due

to noise additions do not affect the LDP code patterns thus making it a robust and stable

descriptor. An example is shown in Figure 9.
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85 32 26

53

60 38

10

45

81 29 32

38

65 43

15

47

LDP binary code unaltered before and after noise: 00010011

50 58
Noise

Figure 9: Robustness of LDP code in presence of noise.

Another interesting property of LDP is rotation invariance. Rotational change of any

image leads to alter its spatial intensity distribution. This results in a change in the edge

response values of each direction, which in turn will consequently generate a completely dif-

ferent LDP code. However, on minutely observing the edge response values we can learn that

the strongest edge response will be unaffected by the image rotation. Figure 10 illustrates a

good example to explain this with a 90 degree anti-clockwise rotation of an image. Thus, ro-

tation invariant LDP feature is obtained by applying circular shift operation on the original

binary LDP code value. The highest edge response becomes the dominant direction of the code.

The bit value associated with the dominant direction is shifted to the rightmost position. For

example, if the bit positions in the original code are ‘pqrstuvw’, where each character signifies

a bit location in the 8-bit code, and t is the dominant directional bit then t is shifted 3 bit

positions to the right. Subsequently the rest of the bits are circularly shifted to the right by 3

places as well to generate the final code ‘uvwpqrst’. The LDP operator produces C8
k different

LDP code values corresponding to the 8-bit binary patterns with k-bits equal to 1. However, af-

ter applying circular shift to achieve rotation invariance the LDP code reduces to C7
k−1 . Thus,

the histogram bin count reduces from C8
k to C7

k−1 [15].
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1 0 0

0

1 0

1

0

Rotated by 90 degrees 
anti-clockwise

1: Dominant direction bit which features as the last bit in the code
Rotation Invariant LDP Binary code: 00101001
Rotation Invariant LDP Decimal code: 41

Figure 10: Rotation invariant LDP calculation.

The LDP image descriptor used is a histogram. The histogram for the entire image is

obtained by concatenating the individual histograms extracted from image regions. Figure

11 shows an example. It is based on the occurrence of LDP features. After computing the

LDP code for every pixel of an image I(x,y), the image is subdivided into blocks of regions.

Histograms are extracted from these individual, local regions. These regional histograms are

finally concatenated into one single histogram. This histogram H serves as a global feature

LDP descriptor of the entire image I of size M x N with τ as the LDP code value.

H(τ) =

M∑
r=1

N∑
c=1

f(LDPk(r, c), τ) (3)

f(a, τ) =


1, a = τ

0, otherwise

(4)
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Figure 11: LDP image descriptor.

1.7 Discrete Wavelet Transform (DWT)
Here we briefly introduce the Discrete Wavelet Transform (DWT) that will help com-

prehend the technique used to classify human and avatar faces to test the security of the

CAPTCHA.

DWT is a very popular tool in the field of image processing. It helps to view and process

digital images at multiple resolutions. Its mathematical background and advantages have

been discussed in many research articles [16]. The chief advantages of using WT are:

• It decomposes an image by reducing the sub-image resolutions thus reducing the compu-

tational complexity of the system.

• It decomposes images into sub-bands corresponding to different frequency ranges. They

easily meet the requirements for the next major step and thereby reduces the computa-

tional overhead of the system.

• It provides local information in both spatial and frequency domains which helps obtain

the spatial and frequency characteristics of an image at the same time.

The main characteristic of wavelets is they provide multi resolution analysis of the image

in the form of co-efficient matrices. Strong arguments for multi-resolution decomposition in

psychovisual research support evidence that humans process images in a multi-scale way .

Figure 12 shows an example of an avatar image with its corresponding structure of the wavelet

coefficient [17].
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(a) (b)

Figure 12: (a) Wavelet coefficient structure (b) A sample avatar image.

Figure 13. depicts the first and second level of wavelet decomposition on a sample avatar

face image [17].

          (a)                                                                                 (b)

Figure 13: (a) One level wavelet decomposition (b) Two levels wavelet decomposition.

The two-dimensional WT is obtained by applying a one-dimensional WT to the rows and

columns of the two-dimensional image data. The one-level wavelet decomposition of an image

results in an approximation image (LL1) and three detail images in the horizontal (HL1),

vertical (LH1) and diagonal (HH1) directions respectively. The approximation image contains

the low frequency information of the facial image which is subsequently used for the next level
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of decomposition. The detail images contain most of the high frequency information of the

facial image. Thus, the original image is decomposed and represented by a set of sub-images

at several scales [17].

1.8 Behavioral Biometrics: Mouse Dynamics
Here we briefly introduce the concept of Behavioral Biometrics along with its sub-category

of human computer interaction with the mouse as the input device known as Mouse Dynamics.

In today’s Internet world user profiling or user identification has gained a lot of signif-

icance. Identity thefts, caused by misusing someone’s personal information, can be prevented

by providing authorized access to resources. To achieve timely response to a security breach

frequent user verification is needed. However, this process must be passive, transparent and

non-obtrusive. In order for such a system to be practical, it must possess the following features:

• Accuracy: Accurately identify an imposter by rejecting access to resources as well as

never reject a genuine user to get through.

• Efficiency: Quick decisions to distinguish users in a timely manner.

• Difficult to forge: Nearly impossible for an impostor to mimic a user’s biometric profile

and defeat the verification system [18].

Behavioral biometric systems are usually less prominent and only muscle based controls such

as keystrokes, signature and gait are well analysed. These systems provide numerous and sig-

nificant advantages over traditional biometric systems. They can be collected non-obtrusively.

Collection of behavior data is cost-effective as it requires no special hardware. While these

systems are not unique enough to provide reliable human identification, they have shown to

be highly accurate in identity verification. In accomplishing everyday tasks, human beings use

different styles, strategies, apply unique skills and knowledge, etc. These define the behav-

ioral traits of the user. Behavioral biometrics attempts to quantify these traits to profile users

and establish their identity. Human computer interaction (HCI)-based biometrics comprise of

interaction strategies and styles between a human and a computer. These unique user traits

are quantified to build profiles for identification. A specific category of HCI-based biometrics is

based on recording human interactions with mouse as the input device and is known as Mouse

Dynamics [19].

By monitoring the mouse usage activities produced by a user during interaction with the

GUI, a unique profile can be created for that user that can help identify him/her. These mouse
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actions include drag and drop, point and click and silence (absence of movement). From these a

set of features such as average speed, velocity, distance travelled, etc. can be extracted. Mouse

event data can be categorized into mouse wheel movements, clicks, menu and toolbar clicks,

single click, double click, etc. This mouse dynamics based biometric scheme has been extended

to online games as well. The extracted features involve x and y co-ordinates, mouse velocity,

tangential velocity, tangential acceleration and angular velocity [19]. Mouse-based verification

approaches do not record sensitive user credentials like usernames and passwords. Thus, they

avoid privacy issues. However, these approaches have resulted in either unacceptably lower

accuracy rates or longer verification times. Environmental factors such as different machines,

operating environments, mice, screen resolution, user’s physical and mental state, etc. play a

significant impact in accurate feature extraction for accurate identification. Thus, mouse-based

biometric approaches have to overcome these limitations and be more robust across different

platforms and environments [18].

Mouse dynamics differ by how users move and click as well as where they click on the

screen. Mouse metrics such as speed, acceleration, velocity, pause and click, time between

clicks, mouse wheel movements, etc. are all hardware dependent i.e. they depend on the nature

of the mouse. These metrics are less reliable and stable towards accurately determining the

identity of the user. Fine-grained angle-based metrics are devised to compensate for these

limitations. These newly defined metrics can accurately characterize a user based on their

unique mouse moving behaviors, independent of the operating platform. These metrics are:

• Direction: For any two consecutive recorded points A and B, the direction traveled along

AB from the first point to the second is recorded. The direction is defined as the angle

between the line AB and the horizontal line.

• Angle of Curvature: For any three consecutive recorded points A, B and C, the angle of

curvature is the angle between the lines from AB and BC.

• Curvature Distance: For any three consecutive recorded points A, B and C, consider the

length of the line AC. The curvature distance is the ratio of the length of AC to the

perpendicular distance from point B to AC. It has no units since it is a ratio of two similar

quantities [18].

Figure 14 illustrates the angle-based metrics which are unique across users. Not only does the

same user have very similar angle-based results on different platforms, different users have
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different angle-based results even on similar platforms. Moreover, these metrics are platform

independent.

Figure 14: Illustration of angle-based metrics [18].

1.9 Support Vector Machines (SVM)
Support Vector Machines (SVM) is a popular, two-class, data classification technique in

the machine learning domain. It is a supervised learning model i.e. it infers a function that

maps unseen data samples based on its learning from a labeled training dataset. It analyzes

data and recognizes patterns. Given a set of labeled training samples, each belonging to one

of two classes, an SVM training algorithm builds a model that assigns a new samples into

one class or the other. Thus, SVM serves as a binary classifier that implements the following

idea: if the data are not linearly separable in that space, it maps the input training feature

vectors into some high dimensional feature space through some non-linear mapping chosen

apriori. In this space, a linear decision surface (hyperplane) is constructed that ensure high

generalization of the network. A hyperplane achieves a good separation if it has the largest

distance to the nearest training data point of any class, since the larger the margin the lower

the generalization error i.e. the distance between the error on the training and the test set.

Such an hyperplane is known as maximum-margin hyperplane and is ideal for classification

[20, 21]. Figure 15 shows an example of two hyperplanes separating data points from two

classes of which one is the maximal-margin hyperplane.
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Figure 15: Hyperplanes separating data points using SVM.

Given some training data D, a set of n points of the form

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1 (5)

where each xi is a p-dimensional vector and yi is either 1 or -1, indicating the class to

which the point xi belongs. Any hyperplane can be written as

w · x− b = 0 (6)

where, · denotes the dot product and w denotes the normal vector to the hyperplane. The

parameter b
‖w‖ determines the offset of the hyperplane from the origin along w.
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If the training data are linearly separable, we can select two hyperplanes that separate

the data and there are no points between them, and then try to maximize their distance. The

region bounded by them is called “the margin”. These hyperplanes can be described by the

equations:

w · x− b = 1 (7)

w · x− b = −1 (8)

By geometry, the distance between these two hyperplanes is 2
‖w‖ . Thus, we want to

minimize ‖ w ‖ as well as prevent data points from falling into the margin, the following

constraint for each i can be written as

yi(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n (9)

Putting this together we get the optimization problem: Minimize ‖ w ‖ in (w, b) subject

to yi(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n [21]

Figure 16 shows an example of the maximum-margin hyperplane and margins for an

SVM, trained with samples with two classes.
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Figure 16: Maximum-margin hyperplane and margins for SVM trained with samples from two
classes.

To keep the computational load reasonable, the mappings used by SVM are designed

to ensure that dot products may be computed easily in terms of the variables in the original

space by defining them in terms of a kernel function K(x, y). There are four basic kernels used

in SVM. For linear classification a linear kernel is used. However, it is not always possible to

linearly classify the data. For this a kernel trick is applied to the maximum-margin hyperplane

to achieve non-linear classification. This allows the algorithm to fit the maximum-margin

hyperplane in a transformed feature space. An example is shown in Figure 17. The kernels

used to achieve this are the Polynomial kernel, Radial Basis Function (RBF) kernel and the

Sigmoid kernel. The mathematical equations of each kernel is stated below:

• Linear kernel: K(x, y) = xT y

• Polynomial kernel: K(x, y) = (γxT y + r)d, γ > 0
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• Radial Basis Function kernel: K(x, y) = e(−γ‖x−y‖
2), γ > 0

• Sigmoid kernel: K(x, y) = tanh(γxT y + r)

Here, γ, r and d are kernel parameters [22].

Data points for Class 1

Data points for Class 2
Hyperplane

Figure 17: Non-linear classification using SVM.
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CHAPTER II

RESEARCH TRENDS

In this section we highlight the significant contributions in the domains of CAPTCHAs

and their security, Local Directional Pattern (LDP), Behavioral Biometrics and Mouse Dynam-

ics.

2.1 CAPTCHAs
CAPTCHA is an acronym for Completely Automated Public Turing Tests to tell Com-

puters and Humans Apart. It is used to verify human users from malicious bots. The concept

of the Turing test stems from [2] and the concept “Can machines think?”. A collection of pub-

lished research works in the domains of HIP and CAPTCHA systems together with CAPTCHA

schemes, attacks and analysis, applications and their usability issues are highlighted in [23]. A

game is described in which a human interrogator has to distinguish between responses to cer-

tain queries from a human user and a machine located in separate rooms apart from that of the

interrogator. The Turing test was first utilized by Moni Naor to verify the presence of a human

user, and not a bot [24] . Alta Vista patented a similar idea in 1997 as one of the first CAPTCHA

techniques. A formal definition of CAPTCHA was coined in 2000 by Manuel Blum and Luis

Von Ahn at Carnegie Mellon University [3]. They apply a reverse Turing Test principle to de-

sign CAPTCHAs that are tests generated and graded by computers to identify the human user

[25]. Baird has generated some CAPTCHA techniques together with describing the evolution

of Human Interactive Proofs (HIPs) Research and Development as challenge/response proto-

cols to allow humans to authenticate themselves [26]. He has also discussed using HIPs to

defend web services against abuse by bots by using them to distinguish between human users

and bots [27].

2.1.1 Text CAPTCHAs

Text CAPTCHAs are the most popular and widely deployed. Renowned organizations

such as Microsoft, Yahoo, Google, etc. have their own versions of this form of CAPTCHA.
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Pessimal Print, a variant of the Turing test, uses low-quality images of machine-printed text

synthesized pseudo-randomly over certain ranges of words and shown to be illegible to Optical

Character Recognition (OCR) attacks [28]. BaffleText uses non-English pronounceable words

and Gestalt-motivated image-masking degradations to defend against dictionary and image

restoration attacks respectively [29]. ScatterType is designed to resist character-segmentation

attacks by generating pseudo-random synthesized images of text strings in which the char-

acters are fragmented using horizontal and vertical cuts and the fragments are scattered by

vertical and horizontal displacements [30]. Mathematical theory of assurance is used to en-

sure that the probability of a correct response to a CAPTCHA is not just a lucky guess and the

most common types of challenge strings are examined for weaknesses [31]. Random words and

unfamiliar text have been used to generate CAPTCHA challenges with a more uniform dis-

tribution of difficulty by balancing image degradations against familiarity [32]. The masking

characteristics of the Human Visual System is adequately utilized by picking random English

alphabets for CAPTCHA challenges with added noise to deceive the bot by randomly chang-

ing the visibility of characters for humans [33]. Human friendly HIPs have been designed

to find out the visual distortions most effective at foiling computer attacks without hinder-

ing humans [34] as well as introducing segmentation-based reading challenges to help build

stronger human-friendly HIPs [35]. There are other CAPTCHAs with non-English word based

challenges which aid the non-native English users [36, 37, 38, 39]. Semantic CAPTCHAs are

designed to incorporate perception or cognition of human users to understand the semantic dif-

ferences in the challenges before solving them thus, giving it an advantage over machines [40].

Visual word-based CAPTCHA using 3D characters with 3D boundaries delimited by shadows

have been designed as well. The shadows are obtained from different light effects to further

enhance security against automatic character recognition tools [41]. Figure 18 shows samples

of few of these text CAPTCHAs.

There have been attacks carried out to break text CAPTCHAs. One of the first renowned

attack was on the EZ-Gimpy CAPTCHA using shape context matching that identified the chal-

lenge word with an accuracy of 92% and the requisite 3 words in the Gimpy CAPTCHA image

33% of the time [42]. Some other attacks on the Gimpy CAPTCHA used representative shape

contexts and shapemes to determine similar shapes [43], using correlation with an accuracy

of 99% on the EZ-Gimpy challenge and direct distortion estimation to identify the four letters

in the Gimpy-r challenge image 78% of the time [44] and using shape matching and chamfer

matching for correlation [45]. Two low cost-methods using Affine Moment Invariants and a
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naive, trivial technique have been employed to break CAPTCHAs used to protect SMS gate-

ways of two mobile operators [46]. Simple pattern recognition algorithms were used to exploit

fatal design errors in the CAPTCHA generation schemes, believed to be resistant to OCR at-

tacks, with a near 100% success rate [47]. HIPs were identified to be pure recognition tasks

and were found to be easily broken using machine learning algorithms, thus enabling to build

effective HIPs by designing challenging segmentation tasks to confuse the algorithms [48].

A simple, low-cost segmentation attack was carried out on the Microsoft CAPTCHA with an

overall success rate of about 60% [49].

(a)

(b)

(c)

(d) (e)

Figure 18: Samples of Text CAPTCHAs (a) Pessimal Print [28] (b) BaffleText [29] (c) ScatterType
[30] (d) Arabic CAPTCHA [36] (e) Semantic CAPTCHA [40].

2.1.2 Image CAPTCHAs

Image CAPTCHAs have been used as an alternative to text CAPTCHAs. Implicit

CAPTCHAs extend the traditional Text CAPTCHA usage domain wherein challenges can be

answered with a single click, can be answered through contextual experiences and easy enough

for humans to pass and detect failure attempt by a bot [50]. CAPTCHA challenges can also

be designed based on naming, distinguishing and identifying anomalies between images [51].

ESP, Peekaboom, Phetch and Verbosity are some online computer games that utilize and con-

structively channel human processing power to solve problems that computers cannot [52].

Microsoft’s ASIRRA (Animal Species Image Recognition for Restricting Access) is an HIP that
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request users to identify images of cats and dogs [53]. Google’s What’s Up CAPTCHA, based

on image orientation, requests users to set a bunch of rotated images in their upright posi-

tions [54]. More robust and user-friendly CAPTCHA systems have been developed. Images in

challenges are randomly distorted before presenting them to the user. IMAGINATION (Im-

age Generation for Internet Authentication) CAPTCHA is attack-resistant and user-friendly

in which controlled distortions are produced on randomly chosen images and requests users to

annotate them. The distortions applied have low perceptual degradation and high resistance

to attacks by content-based image retrieval systems [55]. CAPTCHA challenges are also de-

signed using human faces [56], matching distorted faces of several different human subjects

[6], finding human face image pairs [57], detection of visually distorted human faces embedded

in a complex background [58], distinguishing between human and avatar faces [59] as well as

identifying gender of face images [60]. Three-dimensional (3D) character images [61], 3D ani-

mation [62] and interactive 3D Flash-based [63] CAPTCHA challenges have been designed to

extend the two-dimensional (2D) domain in an effort to thwart OCR attacks. Most visual based

HIPs require a database of labeled images whose creation is expensive and time consuming.

An approach to solve this is to create games [52] and use image search engines [64]. Image

CAPTCHAs have been also combined with graphical passwords for user authentication [65].

Some other forms and variants of CAPTCHAs include themes based on humorous cartoons to

make it an enjoyable experience to the user by focusing on the human ability to understand

humor [66], solving jigsaw puzzles as challenges [67] , determine the logical sequence of im-

ages based on their tags [68], etc. There have been image CAPTCHAs designed for touchscreen

devices such as PDA’s and mobile phones too [69, 70, 71]. Figure 19 shows a few samples of

Image CAPTCHAs.

There have been attacks carried out against Image CAPTCHAs as well. The semantic

gap i.e. limitations of automatic methods for image retrieval as compared to humans is nar-

rowed by motivating users to provide semantic image annotations [72]. The IMAGINATION

CAPTCHA is attacked by detecting candidate rectangles to detect the object boundaries and

by examining the consistency of the interface of each rectangle with its neighboring rectangles

to determine the highest likelihood. Besides this, computers are typically good at extracting

low-level features such as color, shape, texture, color layout, etc. and high-level semantics

associated with perception or interpretation of semantically meaningful objects contained in

an image and their relationships [73]. The ESP-PIX CAPTCHA is attacked by first scanning

the images through an OCR system for tags and then compare the challenge images with the
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images associated with the four given tags for correlation probabilities. Then it combines the

results of the tag and image correlation probabilities to compute the highest possible proba-

bility for the correct response challenge [74]. A combination of support-vector machine (SVM)

classifiers are trained on color and texture features extracted from images of cats and dogs

of the ASIRRA CAPTCHA to solve it with 80.6% accuracy [75]. Moreover, another attack on

ASIRRA using Hierarchical Temporary Model (HTM) (a form of neural networks) yielded an

accuracy of 74.7% [74]. A machine learning attack was carried out on ARTiFACIAL which

comprised of detecting the face in the challenge and then locating the six facial corner points

on the face [73]. Image recognition and machine learning algorithms are used to break the

HumanAuth CAPTCHA system [76].

(a)
(b) (c)

(d)

(e)

(f)

Figure 19: Samples of Image CAPTCHAs. (a) ESP [52] (b) ASIRRA [53] (c) What’s Up [54]
(d) FaceD [58] (e) Cartoon [66] (f) Jigsaw puzzle [67].

2.2 Local Directional Patterns
Local Directional Patterns (LDP) describes the local features of an image. Experimental

results on the Brodatz texture database show that it impressively outperforms other dense

descriptors such as Gabor-Wavelet and Local Binary Patterns (LBP) [15]. Few applications of

this technique involve local feature extraction from depth silhouettes for human gait recogni-
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tion by processing depth videos from a depth camera [77], fingerprint image texture extraction

for matching [78]. LDP has also been applied towards analyzing facial images. Some examples

include classifying natural and artificial faces in combination with wavelets [79], represent

facial geometry and analyze its performance in facial expression recognition [80], etc. An en-

hanced version of Local Directional Pattern (ELDP) adopts local edge gradient information of

facial images towards face recognition [81]. LDP has also been applied towards gender classi-

fication as well [82].

2.3 Discrete Wavelet Transform
The Discrete Wavelet Transform (DWT) is a very popular tool in the field of image

processing. It helps analyze images at multiple resolutions. High frequency components

are studied with sharper time resolutions than low frequency components [83]. An image-

watermarking technique is developed with DWT and Singular Value Decomposition (SVD)

[84]. Wavelet decomposition is used to diagnose fault in industrial induction machines by ex-

tracting health information of a system through signals and detecting different electrical faults

[85]. Satellite image resolutions have been enhanced using DWT as well [86]. DWT has also

been applied towards analyzing facial images. Face recognition is a popular application. Few

such examples involve recognizing faces under varying lighting conditions [87], building a face

recognition system in combination with fast Principal Component Analysis (PCA) [88], etc.

Radon and Wavelet Transforms are combined to extract key facial features for gender clas-

sification from facial images [89]. The domain of face classification and recognition has also

been extended beyond human faces to virtual (artificial) avatar faces. Few examples include

classification of natural and artificial faces with LDP [79], recognizing avatar faces using DWT

and eigenfaces [90] and using hierarchical multi-scale LBP [17].

2.4 Behavioral Biometrics: Mouse Dynamics (MD)
Several different usages and techniques for MD have been proposed. The MD analysis

can be divided into two categories: static analysis and continuous analysis. The former ana-

lyzes mouse behavior at some particular moment e.g. login time, game-solving, etc. whereas

the latter analyzes mouse behavior throughout the course of interaction [91].

• Static analysis: A user identification system, based on signature writing is presented

in [92]. It utilizes new signature writing parameters and verifies the data using geomet-
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ric average means and updates its database dynamically. An online, hybrid, Java-based

internet biometric authentication system is described in [93]. It requires authenticity

confirmation from a typing style test and a signature match and achieves a fraudulent

success rate and authentic users access rate of approximately 4.4% and 99% respectively.

A two-phase authentication model based on enrollment and verification is presented in

[94]. It enroll users by requesting them to move the mouse and follow a sequence of dots

presented on the screen, later verifying them during the login phase when they perform

the same action. Biometric traits based on user’s interaction with a web page is extracted

in [95]. Here the online environment of entering a virtual pin in an Internet login page

is simulated through a memory game-like environment by identifying matching tiles to

uncover hidden patterns. A graphical authentication system, dubbed Mouse-lock, is pre-

sented in [96], which deploys the analogy of a safe and the password is entered via the

mouse in a graphical equivalent of a combination lock. A login system requesting users

to follow a maze is described in [97]. The task consists of navigating the mouse pointer

between two lines from a start point to an end point based on which mouse features are

extracted to authenticate that user. An application for authenticating users is presented

in [98]. In here, the mouse features are extracted from nine paths traced by users be-

tween seven squares displayed consecutively on the screen.

• Continuous analysis: User interaction via the mouse is captured and the behavioral

information is used for user identity authentication. Statistical pattern recognition tech-

niques are used to classify the interactions as genuine or imposter [99]. A re-authentication

model based on continuous monitoring of the user’s behavior to flag anomalous user be-

havior is presented in [100]. This model applies a supervised learning technique and

raises an alarm if the current user behavior deviates sufficiently from its learned behav-

ior. A biometric system based on mouse curves (mouse movements with little or no pause

between them) is presented in [101]. These curves are individually classified and used

to develop classification algorithms to characterize the user’s mouse usage activities dur-

ing an entire session. Three sets of experiments are carried out to model the behavioral

characteristic of users based on their mouse data. The main experiment reproduces real

operating conditions and the other examine confounding factors arised from the main

experiment by fixing the environment variables [102]. Fine-grained, angle-based metrics

for mouse movements are used for user verification in [18]. These metrics are relatively
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unique for each user and platform independent. A pattern-growth based mining method

to extract frequent-behavior segments to obtain stable mouse characteristics is described

in [103]. Here, one-class classification is employed to achieve continuous user authen-

tication. Users are authenticated per mouse event performed on their system in this

model [104]. Here, MD data of forty nine users are used and the system performance is

evaluated with six machine learning algorithms.

The domain of Behavioral Biometrics (BB) has been extended towards verifying and recog-

nizing malicious software agents such as bots. As such programs draw closer to the abilities

and intelligence of human beings the need is to segregate between human and bot activities

over the Internet. This research is known as Artimetrics after the word “artiliect”, a shortened

version of “artificial intellect” [105]. BB has also been used for intrusion detection and online

gaming. A system for verification of online poker players based on a behavioral profile rep-

resenting the statistical model of player’s strategy and its expansion to verify artificial poker

playing agents has been proposed in [106]. The abuse of online games by game bots for gaining

unfair advantage has plagued several online game players. To counter this a continuous game

bot detection strategy has been devised differentiating bots from human players by passively

monitoring input actions that are difficult for current bots to perform in a human-like manner

[107]. Blog bots post comments to blog sites often including spam or other malicious links. An

effective defense approach is devised using BB, primarily mouse and keystroke dynamics, to

distinguish between human and bots based on passive monitoring and their behavioral differ-

ences [108]. Notable work has also been carried out to assist human users in identifying who

they are interacting with on Twitter i.e. a fellow human user, a bot or a cyborg (bot-assisted

human or human-assisted bot) by observing the difference in terms of their tweeting behavior,

tweet content and account properties [109].
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CHAPTER III

INITIAL DESIGN & SECURITY EVALUATION

3.1 Avatar CAPTCHA
Our first approach builds a prototype for an image-based CAPTCHA. The aim is to build

a CAPTCHA using grayscale biological (human) faces and non-biological (avatar) faces with

a challenge requesting users to identify the latter from a set of 12 images . Avatar faces

resemble human faces which makes it a significantly challenging problem for bots, who are

good at detecting faces, to distinguish between the two. The CAPTCHA was solved fairly

successfully. Good feedback was obtained from the users as well on this prototype. Several

users preferred solving image CAPTCHAs and rated this one positively as they found it easy

to solve. Inspiration is drawn from Microsoft’s ASIRRA CAPTCHA [53] and Luis von Ahn’s art

of harnessing human capabilities to address problems that computers cannot solve [52]. Faces

are easily identifiable and distinguished by the human eye as demonstrated by the results

below. Moreover, to the best of our knowledge, there is no work in the area of distinguishing

grayscale images of human and avatar faces. Our CAPTCHA comprises of 2 rows with 6 images

each. These images are randomly picked from human and avatar face datasets. Each image

has a checkbox associated with it for the user to select/deselect them . There are Refresh and

Submit buttons at the bottom of the page. A snapshot is shown in Figure 20. Refresh helps to

randomly pick a new set of 12 images. On hitting Submit the challenge is validated. The goal

is to select all the avatar faces in the challenge.
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Figure 20: Snapshot of the grayscale Avatar CAPTCHA [59].

The images are converted to grayscale before being displayed to prevent malicious com-

puter programs (bots) to breach it by taking advantage of the varying color spectrum difference

between the images. The user’s choices are validated to prevent unauthorized access to bots.

The architecture of the CAPTCHA is based on the popular client-server architecture as seen

in Figure 21, where the client machine (browser) requests the server for an authentication ser-

vice. The server randomly picks 12 images of humans and avatars from the database. Of these,

5 or 6 are avatar images. The server then transfers these images to the client. Their selection

is verified by the server which in turn notifies the client to validate the user as a human or a

bot.
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Figure 21: Client-Server architecture.

On hitting Submit, a feedback form is presented to the users to record their experiences

and observations in solving this CAPTCHA. A messages is displayed above the form indicating

the outcome of the challenge i.e. passed or failed as seen in Figure 22. These user responses

help us obtain qualitative and quantitative information to improve the security and usability

features of the CAPTCHA. The outcomes of the CAPTCHA test as well as the user responses

are stored in two tables named Test_Results and Survey_Feedback within the database.

Figure 22: Feedback form: On solving/failing the CAPTCHA.

The feedback survey form gets the following responses from the users:

Gender, age, education background, their experiences in solving text and image CAPTCHAs

before, rating the fun factor in solving this Avatar CAPTCHA, justifying the choice of faces

here, how challenging is it, their preferences in solving text or image CAPTCHAs, usage of

this CAPTCHA on their websites, rate it and finally their comments or feedback on it. Once

the user hits the Submit key the outcomes are stored in the Test_Results table. We capture

the users IP address, success or failure outcome, number of avatars not selected, number of
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humans selected and time taken to give the test. Now if the users fill out the feedback form

they are stored in the Survey_Feedback table.

3.1.1 Datasets

Facial images with upright frontal poses, complex backgrounds and varying illumina-

tions were chosen and converted to grayscale images. This prevents the usage of color-based

image recognition algorithms to detect unusually bright and uncommonly colored avatar faces,

image backgrounds, etc. and consequently breach the system. In our proof of concept we used

the following datasets:

• Humans: The Nottingham scans dataset [110] is used that contains a grayscale, facial

images of 50 males and 50 females. They are primarily frontal and some profile views

with differences in lighting and expression variation. Their resolutions vary from 358 x

463 to 468 x 536. For efficiency, thumbnail-sized images with resolutions of 100 x 123 are

used. Figure 23 shows a sample of it.

Figure 23: Sample of human faces from Nottingham scans dataset [110].

• Avatars: 100 samples of grayscale, frontal face avatar images [111] from the popular

online virtual world Entropia Universe [11] are used. Each has a resolution of 407 x 549

pixels. Thumbnail-sized images with a resolution of 100 x 135 are used here for efficiency.

Figure 24 shows a sample of it.

Figure 24: Sample of avatar faces from the Entropia Universe dataset [111].
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3.1.2 Security

If a bot tries to break the CAPTCHA using a brute force approach, it will have a 50%

(1/2) success in guessing the right image. So guessing 5 or 6 avatar images of 12 images

will yield a success probability of ((1/2)5 + (1/2)6 ) / 2 = 0.0234375, which is low. Users are

unable to access the image databases. However, through a challenge presented at the ICMLA

2012 conference [112] to classify human and avatar facial images, it was learned that this

problem was solved successfully [113, 114, 115, 116]. We aim to generate human and avatar

datasets dynamically, obtained in real-time, from popular online websites such as Flickr and

ActiveWorlds. These datasets will help us combat manual brute force attacks on the database

by raising the computational costs and time.

3.1.3 Results

The results evaluated are records from 121 user test evaluations stored in the Test_Results

table and 50 user feedback responses stored in the Survey_Feedback table within the database.

Table 1 depicts an overview of their data.

Table 1: Overview of the CAPTCHA outcome data.
Outcome Avg. Submit

Time (secs)
Avg. Success
Time (secs)

Success Failure
Avatars missed

(Avg)
Humans

checked (Avg)
101/111

= 90.99%
14 5 2689/121

= 22.2231
2410/101
= 23.8614

We observe that 91% of the users solved the CAPTCHA. Amongst the failures, on an

average, one avatar missed out on being selected and one human face was accidentally selected.

The submit time is the time when the user hits the Submit button to validate the test. The

success time is the time reported when the CAPTCHA is solved. Average submit and success

times of 22 and 24 seconds were reported respectively. Results from the Survey_Feedback table

are split into two tables. Table 2 presents an overview of user demographics, text and image

CAPTCHAs in general. Table 3 presents an overview of the Avatar CAPTCHA ratings by the

users.
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Table 2: Part 1 of the user feedback data.
Gender Age Text CAPTCHA knowledge

Male Female Min Max Yes No
30/50 = 60 % 20/50 = 40 % 18 61 42/50 = 84 % 8/50 = 16 %

Education Image CAPTCHA knowledge
Bachelor’s Master’s Ph.D. Yes No
14/50 = 28 % 16/50 = 32 % 20/50 = 40 % 22/50 = 44 % 28/50 = 56 %

From Table 2 we observe that 56% of the users had never seen or solved an image

CAPTCHA before. This signifies the need for this approach to be presented to the users.

Table 3: Part 2 of the user feedback data.
Usage of faces Preferred CAPTCHA Website usage

Helping Unhelping Image Text Yes No
44/50 = 88 % 6/50 = 12 % 47/50 = 94 % 3/50 = 6 % 45/50 = 90 % 5/50 = 10 %

Rating Solvability
Excellent Good Average Poor Easy Confusing Hard

26/50 = 52 % 19/50 = 38 % 3/50 = 6 % 2/50 = 4 % 46/50 = 92 % 3/50 = 6 % 1/50 = 2%

Specific user comments are summarized and stated below:

• “Image CAPTCHAs are very easy”

• “A smaller, configurable interface would be nice as this takes a large amount of screen

space”

• “I would prefer colored images over black and white (grayscale)”

• “Not everyone understands what an avatar is”

• “It is like a virtual keyboard where one uses a mouse”

• “Easy to solve”

The users also rated the “fun factor” of solving an image/graphic CAPTCHA over the traditional

text CAPTCHAs on a scale of 1 (bad) to 10 (best). Figure 25 shows the outcomes in the labeled

histogram.
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Figure 25: Histogram for user ratings of an image CAPTCHA over the text CAPTCHA with
labeled frequencies.

3.1.4 Conclusions

Avatar CAPTCHA is a novel approach based on human computation relying on identi-

fication of avatar faces. Of 121 user tests recorded, 91% of the users solved the CAPTCHA.

The average success time was 24 seconds. Of the 50 user feedback responses recorded 56%

of the users had absolutely no knowledge about solving image CAPTCHAs, 94% of the users

preferred image CAPTCHAs over text CAPTCHAs. 88% of the users stated that facial-image

CAPTCHAs are easier to solve. 92% of the users rated it as easily solvable and 90% of the

users had positive ratings for it. 90% of the users voted to use this on their websites. These

statistics show it to be a convenient tool to filter out unauthorized access by bots. Designing

CAPTCHAs indeed proves to be a challenge in building foolproof systems. A good approach is

to make it fun and convenient for users to solve them.

3.2 Security
The security of the Avatar CAPTCHA prototype was tested by applying Local Directional

Patterns (LDP) and two new face classification techniques to classify human faces from avatar
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faces and obtain baseline results. These two techniques were executed on a Gateway desktop

computer with an Intel core i7 processor with a clock frequency of 3.4 GHz, 10 GB DDR3

memory and 2 TB hard drive.

1. Uniform Local Directional Pattern (ULDP), utilizes the uniform patterns from Local Di-

rectional Pattern (LDP).

2. Wavelet Uniform Local Directional Pattern (WULDP), applies the ULDP technique on

the wavelet transform of the facial image.

Let us examine each of them in detail.

3.2.1 Applying Local Directional Patterns (LDP) for Human Avatar

face classification

We implement the concept of LDP described in [15]. The Chi-square distance is used for

classification. However, the concept of rotational invariance is absent. The implementation

is performed using MATLAB on two datasets of human and avatar faces. Set I comprises

of thumbnail-sized grayscale images presented as a challenge at International Conference on

Machine Learning and Applications 2012 (ICMLA 2012) [112]. Set II comprises of thumbnail-

sized grayscale images from the Avatar CAPTCHA prototype [59]. Kirsch masks, as described

in [15], in all the eight directions are defined, are shown in Figure 6. For each image pixel

these masks help evaluate the edge response value for each of its corresponding neighboring

pixels. Table 4 lists the variables with their corresponding initial values.

Table 4: LDP parameters and their corresponding initial values.
Parameters Neighbors

(n)
Radius

(r)
Window

size (pixels)
Threshold

(k)
Region size

(pixels)
Bins Human/Avatar

Images
Initalized

values
8 1 3x3 3 25x25 nCk=8C3 = 56 bins 52/48 (Set I) &

90/90 (Set II)

Here, we consider 8 neighbors for a window size of 3 x 3 pixels. A threshold value of

k=3 is chosen to set the 3 most prominent edge response values to 1. The LDP coded image is

divided into regions comprising of 25 x 25 pixels. If the size of a region ends up with less than

this then it is selected as it is by default. The number of bins here is 56 and the human/avatar

images is the ratio of the number of human and avatar images in the training dataset of Set

I and II respectively. This value helps to evaluate the accuracy of the classifier by acting as a

threshold. Now for 8 neighbors we end up with 0 to 28 -1 = 255 values of which only 55 values

meet the threshold criteria of 3 bits set to 1. The rest of them are mapped to a single value.
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This mapping helps in the binning process to generate the histogram. Thus, we end up with a

histogram with 56 bins and consequently a feature descriptor of size 56. The datasets from Set

I and II are divided into training and testing sets. The LDP coded image is evaluated for each of

the training images from both the sets. This image is subdivided into regions depending on the

region size. A histogram descriptor is extracted from each of these regions with 56 bins. These

individual regional histogram descriptors are concatenated together to form the global image

descriptor for each of the training images. A similar approach is followed for the testing images.

The distance of the image descriptor of a testing image is compared with each of the training

images using Chi-square distance classifier. These distances are sorted in the ascending order

based on the training image index. The index of the image with the shortest distance to the

testing image is noted. If this index value falls below the Human/Avatar threshold (HAT) value

then it is classified as an avatar or else it is classified as a human. This accuracy, evaluated as

a percentage, with the elapsed time in seconds is shown in the output.

3.2.1.1 Datasets

The following two datasets were used:

• Set I: This dataset comprises of thumbnail-sized, grayscale images from the ICMLA chal-

lenge [112] dataset. It is divided into 100 distinct training images (48 avatar faces and

52 human faces) and 30 distinct testing images (15 avatar and 15 human faces placed

alternately). These images are preprocessed using histogram equalization and cropping

to select the facial region only. Each image has a dimension of 50 x 75 pixels. A sample

set is shown in Figure 26.

Figure 26: Sample images of human and avatar faces (Set I)[112].

• Set II: This dataset comprises of thumbnail-sized, grayscale images selected for the

Avatar CAPTCHA prototype. It is divided into 180 distinct training images (90 avatar

faces and 90 human faces) and 20 distinct testing images (10 avatar and 10 human faces

placed alternately). There is no preprocessing on these images. Each image consists of
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the face, part of the body and has a dimension of 100 x 120 pixels. A sample set is shown

in Figure 27.

Figure 27: Sample images of human and avatar faces (Set II) [59].

3.2.1.2 Results

The results obtained on evaluating the LDP operator on Set I and II as seen in Table 5.

Table 5: Results of applying the LDP operator on Set I and Set II.
Dataset Training Testing Dimension Accuracy

(%)
Set I 100 30 50 x 75 28/30

= 93%
Set II 180 20 100 x 120 20/20

= 100%

For Set I, we observe that 28 of 30 images are classified accurately yielding an accuracy

rate of 93%. These images are cropped to select only the facial region and preprocessed using

histogram equalization. This helps make it a challenging dataset and avoid template matching

techniques to easily distinguish between the two classes of images. For Set II, we observe that

20 of 20 images are classified accurately yielding an accuracy rate of 100%. There are a few

reasons for this. First, these images are not preprocessed i.e. no histogram equalization or

cropping is performed. Second, the texture variance between human and avatar images are

quite evident to the naked eye. Finally, the images being non-cropped contain the face as well

as some part of the body, background, etc. that reveal some extra information. More details in

an image helps make it an easier task to classify them.

3.2.1.3 Conclusion

The accuracy estimates achieved are on a small dataset. They can vary while dealing

with real-time images. These results give us an insight on the possible modifications that can

be applied in terms of preprocessing or altering the appearance of the real-time CAPTCHA
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images to make it robust and thereby improve its security. If higher accuracy rates are

achieved, we have solved a difficult AI problem and consequently the CAPTCHA images must

be processed, avoiding over distortion beyond visual identification. If lower accuracy rates are

achieved, we must improve the LDP descriptor to subsequently improve the classification.

3.2.2 Applying Uniform Local Directional Patterns (ULDP) and Wavelet

Uniform Local Directional Patterns (WULDP) for Human Avatar

face classification

3.2.2.1 Datasets

The datasets comprised of upright frontal faces with plain/non-plain backgrounds and

varying illuminations. All images were 400 x 400 pixels in dimension.

The datasets used were:

1. Humans

• Set C - Caltech: Images from the California Institute of Technology [117] with non-

plain backgrounds and varying illuminations.

• Set F - FERET: Images from the FERET [118] dataset with plain backgrounds with

varying illuminations.

Figure 28 shows sample images from the C and F datasets respectively.

(a)

(b)

Figure 28: Sample human facial images from (a) Caltech (b) FERET datasets.

39



2. Avatars

• Set E - Entropia Universe: Images obtained from a scripting technique designed to auto-

matically collect avatar faces [111] with non-plain backgrounds.

• Set SL - Second Life: Images obtained from the same scripting technique as that of En-

tropia [111] with non-plain backgrounds and varying illuminations.

• Set EV - Evolver: Images from an automated bot, used to collect avatar images [119] with

plain background and varying illuminations.

Figure 29 shows sample images from the E, SL and EV datasets respectively. Six human-

avatar dataset combinations are used altogether: CE, CSL, CEV, FE, FSL, FEV. Each combi-

nation has a total of 300 images (150 human and 150 avatar images).

(a)

(b)

(c)

Figure 29: Sample avatar facial images from (a) Entropia Universe (b) Second Life (c) Evolver
datasets.
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3.2.2.2 Applying ULDP over an image

We considered the 8-neighbors for each pixel in the image. We obtained an 8-bit binary

pattern i.e. values that range from 0-255. Of these, 56 values were LDP patterns with k=3.

Of these 56 values, we obtained 8 uniform (8-bit binary patterns with no more than 2 bit

transitions (0-1 or 1-0)) LDP values. These ULDP values obtained were 7, 14, 28, 56, 112, 131,

193 and 224. They were used to create 8-bin histograms, reducing the feature vector dimension

from 56 (for LDP) to 8 (for ULDP). First, we applied Gaussian noise with its default parameters

(zero mean and unit variance) on all the images. This was done to test the robustness of

the algorithm in presence of noise. Next, we subdivided each 400 x 400 image into regions

of size 80 x 80. Thus, we ended up with 25 regions per image. Next, we applied a 3 x 3

window with radius=1, neighbors=8 and threshold(k)=3 to each region to obtain the ULDP

coded image using a mapping table. This table mapped each ULDP value to a different bin and

the remaining values to one single bin. Thus, we ended up with a 7+1=8 bin local histogram for

each region and a 25x8 bin histograms for the entire image. These histograms are concatenated

to form a 1 x 200 bin global histogram which is the global descriptor for each image. Figure

30 (a) shows the ULDP coded image generation process and Figure 31 (a) shows the global

descriptor generation process for an image.

3.2.2.3 Wavelet Uniform Local Directional Patterns (WULDP)

Here we applied WULDP to classify the images from each dataset as a human or avatar.

First, we applied the Gaussian noise with its default parameters (zero mean and unit variance)

on all the images. Next, we performed first-level decomposition on the input noisy image

through 2D discrete wavelet transform using Daubechies wavelet filter db2 [16] to obtain the

approximation image. This approximation image had a resolution half of that of the original

image i.e. 200 x 200. This sped up its processing time. We subdivided each image into regions

of size 40 x 40 thus, ending up with 25 regions per image. Finally, we applied the ULDP

technique on this approximation image to obtain the WULDP coded image. Figure 30 (b) shows

the WULDP coded image generation process and Figure 31 (b) shows the global descriptor

generation process for an image.
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Figure 30: Coded image generation process (a) ULDP (b) WULDP.

For both the techniques, a 10-fold cross validation was performed over each dataset. The

training set comprised of 270 random images whereas the test set comprised of the remaining

30 images from the set. The Chi Square distance was used to classify the images yielding

accuracies for each dataset. Training times, test times as well as accuracies for each fold were

recorded. We report the average training times, test times as well as the overall accuracy for

each dataset.
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Figure 31: Global image descriptor generation (a) From ULDP coded image (b) From WULDP
coded image.

3.2.2.4 Results

Results from ULDP and WULDP for each dataset are presented in Table 6 and Table 7

respectively with the average values over 10 folds of cross-validation.
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Table 6: Results over 10 folds of cross-validation for each dataset for ULDP.
Image = 400 x 400 pixels, Window size = 3 x 3, Radius=1, Neighbors = 8, Region size = 80 x 80.

Datasets Avg.
Training

time (secs)

Avg. Test
time (secs)

Overall
Accuracy

(%)
CE 45.97 45.87 99

CSL 49.07 48.49 95
CEV 47.46 47.03 100
FE 47.21 47.24 100

FSL 48.21 48.28 97.33
FEV 51.91 48.66 100

Average 48.30 47.59 98.55

From Table 6 we observe that for ULDP, best accuracies were achieved for the CEV,

FE and FEV datasets. The EV and F datasets had plain backgrounds which provided distinct

patterns for classification. However, when evaluated against each other the remarkable results

demonstrate the power of the ULDP descriptor. Executing this technique on the entire image

yielded higher average training and testing times as that for WULDP.

Table 7: Results over 10 folds of cross-validation for each dataset for WULDP.
Image = 200 x 200 pixels, Window size = 3 x 3, Radius=1, Neighbors = 8, Region size = 80 x 80.

Datasets Avg.
Training

time (secs)

Avg.
Test time

(secs)

Overall
Accuracy

(%)
CE 11.18 11.16 82.67

CSL 11.07 11.08 87.33
CEV 11.66 11.57 94.67
FE 11.37 11.46 87.33

FSL 11.66 11.55 96.33
FEV 12.15 12.17 89

Average 11.51 11.49 89.55

From Table 7 we observed that for WULDP, good accuracies were achieved for the FSL

and CEV datasets. Since this was executed on the approximate image it yields lower average

training and testing times. Figure 32 shows the ROC curves for both the techniques. The

ULDP curves are segregated into three parts for clarity. Overall, we observe that ULDP de-

scriptors are better than WULDP in classifying human and avatar facial images.
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Figure 32: ROC curves for ULDP (a) CE and CEV (b) CSL and FE (c) FEV and FSL (d) WULDP.
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CHAPTER IV

IMPROVING THE CAPTCHA DESIGN AND SECURITY

In this section, we describe our approach towards improving the CAPTCHA, hardening

its security by applying Mouse Dynamics as a behavioral biometric and evaluating it in real-

time to segregate human users from bots.

4.1 Approach
To begin with, the Avatar CAPTCHA prototype served as the starting point. First, the

checkboxes are eliminated and the images are made click-friendly for users to select/deselect

them. This helps in obtaining valuable mouse click data that helps in applying Mouse dynam-

ics. Next, human and avatar face datasets are obtained from Flickr [120] using its API [121].

Flickr [120] is an image hosting web service with an evolving database of images. Millions

of new images are being added everyday. It is an extremely challenging task to brute force

its database. Public-accessible images are accessed and are solely used for research purposes

by complying with Flickr APIs Terms of Use [122]. A pool comprising of different human and

avatar groups from Flickr [120] is created to demonstrate the CAPTCHA as a proof of con-

cept . Misclassified images are kept track of. Two approaches are followed in designing this

CAPTCHA based on the way the datasets are obtained :

4.1.1 Real-time

The following steps briefly describe the pseudocode involved in obtaining real-time im-

ages from Flickr for the CAPTCHA :

1. GroupPicker: Select the two image groups randomly for human and avatars on Flickr

[120] from the pool. Obtain 100 random images per group based on their dates taken

(day, month and year).

2. AvatarImageSelector: This represents the main class of images to be chosen to solve the

CAPTCHA. Pick out either 5 or 6 random images (of 100) from the avatar group. This
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will be the avatar set.

3. HumanImageSelector: Pick out the remaining images randomly (of 100) from the human

group . This will be the human set.

4. Combine the two sets from steps (1) and (2) together to form the Dictionary.

5. MissingImageChecker: Checks for missing images in the Dictionary. If there are missing

images, loop back to get a different image from the appropriate class and update the

dictionary.

6. Repeat steps (1) to (5) for a new challenge.

Figure 33 outlines the sequence of the components mentioned in the above steps. It is an

iterative process as it loops back to pick different groups for each challenge.

GroupPicker

HumanImage
Selector

AvatarImage
Selector

MissingImage
Checker

CAPTCHA

Dictionary

Missing Human image Missing Avatar image

New challenge

Figure 33: Flowchart for the real-time approach.

This approach works well and misclassified images are stored in separate folders. How-

ever, it is slow as it takes approximately 17 seconds to load each challenge. This is because it

goes to Flickr to get the images for the Dictionary before checking for missing images amongst

them. On learning this, a secondary approach was implemented using a database which will

store the images from Flickr on a regular basis and serve as an intermediary data source for

the CAPTCHA challenges.
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4.1.2 Maintaining a database

The following steps briefly describe the pseudocode involved in creating a database for

our CAPTCHA:

1. GroupPicker: Select the two image groups randomly for human and avatars on Flickr

[120] from a pool of several different human-avatar groups. Obtain 100 random images

per group based on their dates taken (day, month and year).

2. AvatarImageSelector: This represents the main class of images to be chosen to solve the

CAPTCHA. Pick out 7 random images (of 100) from the avatar group. This will be the

avatar set.

3. HumanImageSelector: Pick out the 7 random images (of 100) from the human group.

This will be the human set.

4. Combine the two sets from steps (1) and (2) together to form the Dictionary.

5. MissingImageChecker: Checks for missing images in the Dictionary. If there are missing

images, loop back to get a different image from the appropriate class and update the

dictionary.

6. CollisionChecker: Checks for non-repetitive images within each challenge by computing

hashes using Secure Hash Algorithm 256 (SHA256) and subsequently comparing them.

7. ImageDatabase: Save the image URLs , their class information and their misclassifica-

tion count to the database.

8. Repeat steps (1) to (7) to populate the database.

Figure 34 outlines the sequence of the components mentioned in the above steps. It is an

iterative process as it loops back to populate the database which is subsequently accessed to

load each challenge.
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MissingImage
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Missing Human image(s) Missing Avatar image(s)

New challenge

Image
Database

Populating the database 
as a backend process

CollisionChecker
Repeating Human image(s) Repeating Avatar image(s)

Figure 34: Flowchart for the database approach.

4.1.3 CAPTCHA Description

To solve the CAPTCHA the user has to identify and select all the avatar (artificial) im-

ages by clicking on them. Each challenge presents 12 image tiles of both human and avatar

images. As the mouse cursor hovers over an image tile, a preview of that corresponding im-

age is displayed at the top right corner of the page to help identify/recognize the image better.

Figure 35 shows a snapshot of this CAPTCHA.
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Figure 35: Snapshot of the Avatar CAPTCHA.

The Submit button validates the challenge leading to a feedback page and the Refresh

button presents a new challenge with different sets of human and avatar images. The user

feedback responses are analyzed in the Results section.

4.1.4 Theme variations

We have also used two other themes besides human and avatar images. This is primar-

ily done to move out of the two-class (human-avatar) classification/recognition problem to a

broader one vs n-class problem to help diversify the datasets and make it a more challenging

problem for a bot to break. The themes used are Zoo and Objects. The former theme consists

of images of mammals, birds, reptiles and insects commonly grouped together under the term

’animals’. The latter theme consists of images of aeroplanes, helicopters, books, sodas and

candies. Figure 36 shows snapshots of both these themes.
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(b)

(a)

Figure 36: Snapshots of (a) Zoo CAPTCHA (b) Object CAPTCHA.

4.1.5 Datasets

The datasets comprised of different images based on the themes. Table 8 lists the dif-

ferent groups of images used. Color images were used with resolutions varying between 300 x

500 to 500 x 300. Figure 37 shows a few samples of the human and avatar images.
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Table 8: Different image groups for the CAPTCHAs.
Theme Group
Avatar Humans, Avatars

Zoo Ants, Butterflies, Alligators, Dolphins, Elephants, Frogs,
Giraffes, Horses, Iguanas, Jaguars, Kangaroos, Lizards,

Gorillas, Bears, Owls, Parrots, Snakes, Rhinos, Scorpions,
Tigers, Wolves, Eagles, Spiders, Turtles

Object Aeroplanes, Helicopters, Books, Sodas, Candies

(a)

(b)

Figure 37: Sample images of (a) Avatar and (b) Human.

4.1.6 User evaluation

The two possible outcomes from this are Passed (Human) or Failed (potentially a bot).

Now the failure is mainly due to either missing out on selecting the avatar image(s) or selecting

the human image(s). The count of these values (misclassification frequency) are tracked by

saving it in the database and the respective misclassified images are stored in the system.

This helps us possibly eliminate such images in our future implementation. The outcomes

and feedback are stored in two tables: User_Test_Results and User_Survey_Feedback in the

database. The responses obtained from the feedback form are correspondingly stored in the
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User_Survey_Feedback table. On hitting Submit, the following information is stored for each

challenge in the User_Test_Results table:

• A numerical id, associated with each challenge, auto incrementing each time a challenge

is submitted.

• The user computer’s IP address.

• Success / Failure outcome (1 / 0).

• Number of images missed .

• Number of images selected incorrectly.

• Session time (time taken to submit the challenge).

Our CAPTCHA is designed using ASP.NET with Microsoft SQL Server as the database. Here,

we followed the database approach to load images for each challenge. We recorded human user

data following two approaches: Recruited subjects and Online users. For the former, we re-

cruited 16 subjects to our lab to evaluate our CAPTCHA and get some feedback on it. Each user

session was maximum 30 minutes in length. The first 9 subjects were asked to solve 72 con-

secutive challenges from the Zoo CAPTCHA and the remaining 7 subjects were asked to solve

24 consecutive challenges from the Avatar, Zoo and Object CAPTCHAs respectively. At the end

of each session users provided their feedback on our CAPTCHA. Thus, we altogether received

888 attempts and 17 feedback responses. The images used were 100 x 100 pixel thumbnail

images. For the latter, we posted the Zoo CAPTCHA online (http://darryl.cecsresearch.org) and

emailed users requesting them to solve and provide their feedback on it. Altogether, we re-

ceived 98 attempts and 49 feedback responses. A common feedback from the recruited subjects

was that the images used were of low resolution (100 x 100 pixels) rendering them difficult for

identification. Thus, we improved the image resolutions to approximately 320 x 240 pixels and

used them for our online CAPTCHA dataset [123].

4.1.7 Results

Our results are reported based on an image dataset of different animal species with a

maximum of 72 CAPTCHA challenges. The results are organized into three parts. In Part 1,

we report results for the first 9 recruited subjects who attempted 72 consecutive Zoo CAPTCHA

challenges. In Part 2, we report results for the remaining 7 recruited subjects who attempted

24 consecutive challenges from the Avatar, and Zoo CAPTCHAs respectively. In Part 3, we
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report the results for users who attempted to solve the Zoo CAPTCHA online. M1: Missed 1

correct image, S1: Selected 1 incorrect image, M1-S1: Missed 1 correct image and Selected 1

incorrect image.

Table 9. presents the results for Part 1. Here we observe that, subjecting users to attempt 72

consecutive challenges yields a best accuracy of 76.39%.The failure to solve the CAPTCHA is

mostly due to users missing out on selecting one image. Perhaps, the intensity of focus the task

demanded and thumbnail resolution (100 x 100 pixels) of the images used led to this outcome

[123].

Table 9: Overview of Part 1 Zoo CAPTCHA data (First 9 recruited subjects solving 72 consecu-
tive challenges).

User Success
(%)

Failure Avg.
Submit

time (secs)

Avg.
Success

time (secs)
M1 S1 M1-S1

1 30.56 37 1 1 21.97 20.23
2 47.22 25 4 1 14.85 13.15
3 66.67 16 1 0 24.53 23.75
4 70.83 4 8 1 13.83 13.94
5 58.33 22 2 1 28.90 28.90
6 44.44 29 1 4 18.97 18.25
7 31.94 36 2 2 22.81 22.52
8 76.39 8 4 2 14.67 13.8
9 69.44 12 3 3 17.5 17.5

Average 39.66 24.14 2.71 1.42 19.78 19.12

Table 10 and Table 11 present the results for Part 2. Here we observe that, subjecting

users to fewer consecutive challenges yields a best accuracy of 87.50%. Failure due to users

missing out on selecting one image is relatively low as compared to Part 1 results. Failure to

solve the CAPTCHA is mostly due to users missing out on selecting one image. Accidentally

selecting an image outside the requested class is almost negligible.
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Table 10: Overview of Part 2 data (7 recruited subjects solving 24 consecutive challenges from
Zoo CAPTCHA).

User Success
(%)

Failure Avg.
Submit

time (secs)

Avg.
Success

time (secs)

M1 S1 M1-S1
10 75 3 2 1 16.29 15
11 83.33 3 1 0 20.88 21.10
12 62.50 5 1 1 22.04 20.87
13 87.50 1 2 0 15.42 14.05
14 70.83 2 1 1 18.42 17.41
15 41.67 8 1 0 13.71 13.30
16 62.50 7 1 0 29.33 28.47

Average 69.05 4.14 1.29 0.43 19.44 18.60

Table 11: Overview of Part 2 data (7 recruited subjects solving 24 consecutive challenges from
Avatar CAPTCHA).

User Success
(%)

Failure Avg.
Submit

time (secs)

Avg.
Success

time (secs)
M1 S1 M1-S1

10 78.26 2 2 0 14.69 13
11 64 2 8 1 20.04 19.68
12 75 0 5 0 22.41 22.16
13 20.83 7 7 2 12.20 9.4
14 87.5 2 1 0 20.12 20.38
15 66.66 4 6 2 16.33 15.81
16 58.33 5 4 0 27.20 24.92

Average 64.36 3.14 4.71 0.71 18.99 17.90

Table 12 presents the feedback results of 16 recruited users. A brief description of each

alphabet-symbolized category is given below:

A: Minimum/Maximum age of users

B: Experience in solving Text CAPTCHAs?

C: Experience in solving Image CAPTCHAs?

D: Animal images helpful in solving this CAPTCHA?

E: Preference for image CAPTCHAs over text CAPTCHAs

F: Use this CAPTCHA on websites?

55



Table 12: User feedback data from the 16 recruited subjects.
A B C D E F

22/52 13/16
= 81.25%

7/16
= 43.75%

11/16
= 68.75%

14/16
= 87.50%

14/16
= 87.50%

Solvability Rating
Easy Confusing Difficult Excellent Good Average
7/16

= 43.75%
7/16

= 43.75%
2/16

= 12.5%
3/16

= 18.75%
10/16

= 62.50%
3/16

= 18.75%

From Table 12 we observe that 7 of 16 users found it confusing to solve perhaps due to

the low resolution of images which made it somewhat difficult to identify the images and 13

of 16 users rated this CAPTCHA positively. Similarly, Table 13 presents the results for Part 3

and Table 14 presents the feedback results from 56 online users respectively.

M-All: Missed all the correct images. S-All: Selected all the incorrect images. Rest: All

intermediate cases

Table 13: Overview of Part 3 data (Online users solving the Zoo CAPTCHA challenges).
Challenges
submitted

Success Failure

M1 S1 M1-S1
228 95/228

= 41.66%
29/133

= 21.80%
8/133

= 6.01%
7/133

= 5.26%
Avg.

Submit
time (secs)

Avg.
Success

time (secs)

M-All S-All Rest

6213/228
= 27.25

2518/95
= 26.51

24/133
= 18.04%

1/133
= 0.75%

64/133
= 48.12%

Table 14: User feedback from online users.
A B C D E F

19/64 44/56
= 78.57%

21/56
= 37.50%

45/56
= 80.35%

47/56
= 83.92%

45/56
= 80.35%

Solvability Rating
Easy Confusing Difficult Excellent Good Average
39/56

= 69.64%
16/56

= 28.57%
1/56

= 1.78%
27/56

= 48.21%
20/56

= 35.71%
9/56

= 16.07%

The most common feedback comment received from the recruited subjects was "The im-

ages have a low resolution rendering them difficult to recognize, thus confusing.". On improving

the image resolutions for the online users, we received some valuable feedback. Few are stated

below:

"Good one. Looks good !!"

56



"I think images are better than words which are sometimes not legible"

"Innovative idea. Looks good and works well."

"Way better than Text CAPTCHAs !! "

“Some images were difficult to recognize when the target animal is very small in the

image."

"Use frequently noticed images."

From the above comments we note that some images confused the users in recognizing

them, especially those with smaller images. Some images were incorrectly selected or not

selected at all. These images are termed as Misclassified and were tracked in our database. A

few sample misclassified images from this group are shown in Figure 38.

(a) (b)

(d)(c)

Figure 38: (a) Ant, mistaken for a Spider (b) Kangaroo not selected (camouflage)
(c) Male avatar, mistaken for an human (d) Female human, mistaken for an avatar.

4.2 Behavioral Biometrics: Mouse Dynamics
In this section, we examine the security of the CAPTCHA using Mouse Dynamics i.e.

monitoring the mouse usage activities while the CAPTCHA is being solved and subsequently

using this feature to segregate human users from bots. Mouse usage data from human users

and a bot, simulated by an adversary as an attempt to break the CAPTCHA, are obtained.
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4.2.1 Acquiring mouse usage data from human users

4.2.1.1 System Design

For our study, we developed our CAPTCHA as a Windows application to be displayed

on a web browser. It is setup on a Dell Inspiron 1440 laptop with a Pentium Dual-Core 2.2

GHz processor, 4 GB RAM and 64-bit Windows 7 operating system. It is equipped with a 14”

Monitor (1366 x 768 resolution) and a Microsoft Wireless Notebook Presenter 8000 mouse.

All system parameters related to the mouse such as speed and sensitivity configurations were

fixed and unaltered during the course of the study. The CAPTCHA was written as a Windows

application in C# and presented users with challenges to be solved. During data collection the

CAPTCHA was presented on the laptop monitor and the mouse data was recorded as each user

attempted to solve it.

The following mouse usage activities by users were non-obtrusively recorded and consti-

tute our raw mouse data:

• On screen cursor position coordinates (x and y).

• Mouse movement.

• Mouse Click.

• Mouse Release.

• Timestamps (in ms)

The Javascript Date function was used to timestamp the mouse operations and the Windows-

event clock resolution of 15.625 milliseconds, corresponding to 64 updates per second was used

to perform the conversion to milliseconds [124]. During data collection each subject was invited

to solve the CAPTCHA challenges on the same laptop free independent of other subjects and

the data was collected one by one on the same platform. Figure 39 shows an overview of

our approach which depicts the Training as well as the real-time classification process of the

incoming mouse data samples.
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Figure 39: Overview of our MD approach.

4.2.1.2 Subjects and Data collection

We recruited 16 subjects, 13 male and 3 females, from within our lab, the department

and some from the university. Each user session constituted of solving consecutive CAPTCHA

challenges. Each user had one session. The first 9 users solved 72 challenges from the Zoo

CAPTCHA. The next 7 users solved 24 challenges each from the Zoo, Avatar and Object

CAPTCHAs respectively. The data collection process took 15 days. As each subject solved

each challenge their mouse usage activity data were non-obtrusively recorded in the back-

ground using JavaScript and stored in separate text files. The final dataset comprised of 1150

samples. Figure 40 shows a visualization sample of the recorded mouse data for a human user

for one session.
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Figure 40: Visualization sample of recorded mouse data for a human user.

4.2.2 Acquiring mouse usage data from the bot

Someone else besides me served as an adversary to design a bot with an attempt to pen-

etrate the CAPTCHA. He had little to no knowledge in the domain of image processing coming

into the project. Knowledge was briefly gained in curriculum where he learned about it and the

different methods associated with it, by working on this project and modifying the algorithm

bit by bit to until it became workable. In bot writing however, he had a bit of experience when

he used to write mouse-bots to move the mouse pointers to random locations on the screen

but nothing in the way of mimicking human-like mouse movements. In Computer Science,

his knowledge is as much as his curriculum and based on his research experience working

on this project. With absolutely no access to the source code except for the CAPTCHA web

page HTML interface and theoretical knowledge about how it worked, he began the process of

solving the CAPTCHA by breaking the task into smaller, manageable chunks. He pulled the

images from the web page and downloaded them to the system to use for processing. Either

five or six images of a particular group were to be selected to solve it. A script was written to

save all images and a reverse image search was performed using Google’s Image Search [125]

to pull “tags” from the images. Following this, several attempts were made to execute it over

the CAPTCHA. However, the results were not promising. Reliable image tags could not be

pulled of other search engines as well such as Flickr [120] and TinEye [126] since they yielded

inconclusive results.
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On completing the rendition of the script a new challenge faced by the adversary was

to fool the mouse dynamics aspect of the system in addition to solving the image recognition

problem. To mimic the mouse movements, the adversary first observed his own movements

when using the computer. He learned that his mouse cursor movements resembled a parabolic

path and the mouse shakes a bit when the user first begins to use it. Mimicking these as-

pects in a script was the next significant challenge in the development process. To transform

this process into code a few calculations were performed with the parabolic movements of the

mouse cursor simulated using the equation for a parabola and have the bot’s motion follow this

pattern. To simplify the process, only four possible parabolas that could be formed were used:

up-left, up-right, down-left and down-right.

The next design section involved mimicking the shake of the mouse as performed by a

human using it. A routine was created for this purpose that is randomly called throughout

the iteration of the script that modifies the mouse cursor position by a few pixels in random

directions. On random occasions, the script overshoots its destination which is compensated

by sliding the mouse cursor back. Image recognition is by no means a trivial task. To evaluate

how a computer could determine the similarity between the images, they were re-sized to 300 x

300 pixels, divided into 10 x 10 pixel chunks and stored in individual arrays. Next, each chunk

is compared to the corresponding chunk in the other image using pixel by pixel comparison.

The chunk similarity threshold is set to 35% to determine that two images are similar and

they are subsequently added to a list of similar images along with their similarity percentages.

Thus for each challenge, every image is compared to every other image and five or six images

of the twelve presented with higher similarities are chosen by the bot script. This script is fully

functional for selecting the number of images that is currently required by the CAPTCHA to

solve its challenges. On implementing the basic image recognition algorithm, random alike

images from the internet were compared to validate the algorithm. Next, all these features

were integrated into one finished bot script. On completing the integration process, some final

testing was performed during which it was realized that the script must scrape the images from

the CAPTCHA web page itself, save, compare and subsequently simulate the mouse movement

to select them.

Figure 41 shows a visualization sample of the recorded mouse data for a bot for one

session.
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Figure 41: Visualization sample of recorded mouse data for a bot.

4.2.2.1 Gather bot training data samples (B1)

The goal here is to acquire mouse usage data samples for bot attempts to solve the

Avatar and Zoo CAPTCHA challenges respectively. We also evaluate the bot’s accuracy of

solving the challenges using image recognition. These samples, both correct and incorrect,

together constitute the bot profile which we combine with the human user profile to help build

our training dataset. A MATLAB code is run to evaluate the best cost and best gamma values

that help achieve the best classification accuracy for SVM. A range of cost and gamma values

are evaluated for this purpose. The value of cost is varied from -15 to 5 in steps of 1 and the

value of gamma is varied from -15 to 5 in steps of 1. WEKA [127] is used to perform a 10-

fold cross validation utilizing the best cost and best gamma values on the accurate human-bot

samples to yield accuracies. This help us train and build the SVM classifier model to classify

CAPTCHA attempts as either that by a human or a bot.

4.2.2.2 Bot performance on individual animal image groups (B2)

The goal here is to evaluate the bot’s image recognition performance on individual ani-

mal image groups from the Zoo CAPTCHA mentioned in Table 8. This helps us determine the

animal image groups that are easy/difficult for the bot to solve.
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4.2.2.3 Mouse dynamics classifier performance against the bot (B3)

The goal here is to evaluate the performance of the SVM classifier in real-time to distin-

guish between human users and bots based on their respective mouse usage activities as they

attempt to solve challenges from the Avatar and Zoo CAPTCHA respectively.

4.2.3 Feature extraction

We extract the following 20 features based on this data collected to create feature vectors

and build Mouse Dynamic Signature (MDS) profiles for both, human users and bots for each

session:

• Average Speed (AS): The average of all the speed values between consecutive data points.

The speed between the two consecutive data points is evaluated as the ratio of Euclidean

distances between their cursor position coordinates over the time difference between

them. Equation 1 shows how it is evaluated.

AS =

∑n
i=1

EuclideanDistance(xi,y1,xi+1,yi+1)
(ti+1−ti)

n
(1)

where, n: total number of raw data points recorded per session and

EuclideanDistance(x1, y1, x2, y2) =

√
(x2 − x1)2 + (y2 − y1)2 (2)

• Average Acceleration (AA): The average of all the acceleration values between consecu-

tive data points. The acceleration between two consecutive data points is evaluated as

the ratio of the speed (s) between their speed over the time difference between them.

Equation 3 shows how it is evaluated.

AA =

∑n
i=1

EuclideanDistance(xi,y1,xi+1,yi+1)
(ti+1−ti)

2

n
(3)

where, n: total number of raw data points recorded per session.

• Average Angle of Curvature (AAOC): The average of all the angles of curvature values

between consecutive data points. The angle of curvature, measured between three con-

secutive data points, is evaluated as the angle formed between the two line segments

joining them. It is summarized in equations 4 - 8. below:
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AAOC =

∑n
i=1AOCi(pi, pi+1, pi+2)

n
(4)

a = EuclideanDistance(pix, piy, p(i+1)x, p(i+1)y) (5)

b = EuclideanDistance(p(i+1)x, p(i+1)y, p(i+2)x, p(i+2)y) (6)

c = EuclideanDistance(p(i+2)x, p(i+2)y, pix, piy) (7)

AOCi = Cos−1((a2 + b2 − c2)/(2ab)) (8)

where, p1,p2,p3,.......,pn are consecutive raw data points, n: total number of raw data

points recorded per session.

• Average Click time (AC): The average of all the times measured between a mouse click

and a mouse release. The click time is measured between data point pairings of a mouse

click and its next immediate mouse release. Equation 9 shows how it is evaluated.

AC =

∑n
i=1(tr − tc)

n
(9)

where, tc: timestamp for a mouse click, tr: timestamp for the mouse release following tc,

n: total number of raw data points recorded per session.

• Average Silence time (ASIL): The average of all the times measured during inactivity of

the mouse. The silence time is measured for those successive data points where the x and

y cursor coordinates are equal. This signifies no mouse movement. Equation 10 shows

how it is evaluated.

ASIL =

∑n
i=1(t2 − t1)

n
(10)

where, t1: timestamp for cursor position (x1, y1) , t2: timestamp for cursor position (x2,

y, 2) provided x1=x2 and y1=y2 and t1 6= t2 and n: total number of raw data points recorded per

session.

• Average Movement time (AM): The average of all the times measured when the mouse is

moving i.e. not silent. The movement time is measured for those data points where the x

and y cursor coordinates are not equal. This signifies mouse movement and its evaluation

is shown in Equation 11.

64



AM =

∑n
i=1(t2 − t1)

n
(11)

where. t1: timestamp for cursor position (x1, y1) and t2: timestamp for cursor position (x2,

y2) provided x1 6= x2 and y1 6= y2 and t1 6= t2 and n: total number of raw data points recorded

per session.

• Average speeds in eight directions (S1 - S8): For mouse movements, there is a difference

between the x and y co-ordinates of two consecutive mouse data samples. For example,

if (x1, y1)and (x2, y2) are two such points then the angle θ (converted to degrees from

radians) made by the line joining these two points with the Y-axis is given as shown in

Equation 12.

θ = arctan(dx, dy)

(
180

π

)
(12)

where, dx = Absolute difference between x1 and x2; dy = Absolute difference between y1

and y2,

We subdivide each quadrant into two equal sectors of 45 degrees each. Thus, we end

up with eight sectors altogether based on increments of 45 degree angles with the Y-axis. The

average speeds (S1 - S8) are evaluated accordingly depending on which quadrant sector the

line lies based on θ using the general formula for speed as shown in Equation 13.

Speed(Si) =
EuclideanDistance(x1, y1, x2, y2)

(t2 − t1)
(13)

where, t1: Time stamp for the first point, t2: Time stamp for the second point and t1 6= t2

and i: Sector number from 1-8 .

Figure 42 illustrates a visual representation of this.
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Figure 42: The eight sectors for the eight directional speed feature evaluation.

• Speed Standard Deviation (SSD): The standard deviation evaluated over the speed val-

ues for each data point based on the AS obtained.

• Acceleration Standard Deviation (ASD): The standard deviation evaluated over the ac-

celeration values for each data point based on the AA obtained.

• Angle of Curvature Standard Deviation (AOCSD): The standard deviation evaluated over

the angle of curvature values for the data points based on the AAOC obtained.

• Click Standard Deviation (CSD): The standard deviation evaluated over the click time

values for the data points based on the AC obtained.

• Silence Standard Deviation (SiSD): The standard deviation evaluated over the silence

time values for the data points based on the ASILobtained.

• Movement Standard Deviation (MSD): The standard deviation evaluated over the move-

ment time values for the data points based on the AM obtained.
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The general formula for the evaluation of standard deviation (SD) for each of these features is

given in Equation 14.

SD =

√√√√ 1

n

n∑
i=1

(xi − x)2 (14)

where, xi: Value of each data point, x: Mean value of the feature and n: total number of

raw data points recorded per session.

We use the Support Vector Machine (SVM) classifier here. It is a well known supervised

learning model which can be used for classification and regression analysis. Here the training

vectors are mapped to a higher dimensional space and SVM finds a linear separating hyper-

plane with the maximal margin in this higher dimensional space. C is the penalty parameter

for the error term. Different kernel functions are used to achieve the classification. Four of the

basic kernels used to devise the kernel functions are: linear, polynomial, radial basis function

(RBF) and sigmoid. For more details on SVM please refer [22]. In our work, we have used the

LibSVM software distribution [128] for the SVM classifier using the RBF kernel as a similarity

measure function.

In the next section, we present the results for B1, B2 and B3

4.2.4 Results

4.2.4.1 B1

The bot samples were executed in batches of 100, 200, 300, 400 and 500 over the Avatar

(AC) and Zoo CAPTCHA (ZC) respectively and the accuracies of the bot solving them were

noted along with the session times for both the CAPTCHA themes. Table 15 shows the results.
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Table 15: Results for B1.
Training
samples

AC ZC Accuracy
on AC

(%)

Accuracy
on ZC

(%)

Avg.
Session
Time on
AC (secs)

Avg.
Session

Time on
ZC (secs)

100 50 50 1/50
= 2%

4/50
= 8%

966/50
= 19.32

1088/50
= 21.66

200 100 100 3/100
= 3%

13/100
= 13%

1977/100
= 19.77

2046/100
= 20.46

300 150 150 3/150
= 2%

9/150
= 6%

3509/145
= 24.20

3333/150
= 22.22

400 200 200 0/200
= 0%

22/200
= 11%

3639/200
= 18.19

3716/200
= 18.58

500 250 250 4/250
= 1.6%

22/250
= 8.8%

4582/250
= 18.32

4544/250
= 18.17

Sum = 1500 750 750

We combined equal number of human and bot samples to form the final training set

comprising of altogether 2300 samples i.e. 1150 samples from each class. WEKA [127] was

used to analyze it. Cleaning was performed by deleting the outliers and extreme data values

using Interquartile Range and RemoveWithValues techniques respectively. This resulted in a

pruned training set with 1751 instances altogether. Next, the instances were normalized using

Min-Max Normalization which constitutes the normalized training set. Next, this normalized

training set was analyzed using MATLAB to evaluate the best cost (c) and best gamma (γ). A

grid search was performed by varying the values of c and γ. c was varied between the values

of -5 and 15 with increments of 1 and γ was varied between the values of -15 and 5 with

increments of 1. For each combination of c and γ a 10-fold cross validation was performed on

the training set to evaluate the best-c and best-γ for the best cross validation (cv) accuracy

achieved. The best-c and best-γ achieved for a best-cv of 100% were 0.0625 and 1 respectively.

Figure 43 shows a sample plot depicting the grid search process in obtaining the best-c

and best-γ for the best-cv achieved over the training set.

4.2.4.2 B2

Table 16 shows the results of the bot solving CAPTCHA challenges comprising of dif-

ferent groups of animals in which few images are repeated between different challenges. The

table enlists the animal group name, number of challenges attempted by the bot altogether

and the number of challenges solved by it.
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Start: X=-5, Y=-15, Z=0.5316 End: X=-4, Y=0, Z=1

Figure 43: Plot for the best-c and best-γ obtained on the normalized training set.

Table 16: Outcome of the bot solving CAPTCHA challenges of different animal groups.
Animal
Group

Challenges
attempted

Challenges
solved

Animal
Group

Challenges
attempted

Challenges
solved

Ants 74 6 Jaguars 73 2
Alligators 76 10 Kangaroos 75 3

Bears 76 9 Lizards 74 1
Butterflies 76 6 Owls 75 6
Dolphins 73 4 Parrots 69 0
Eagles 75 0 Rhinos 61 0

Elephants 76 6 Scorpions 73 2
Frogs 75 1 Snakes 77 9

Giraffes 72 4 Spiders 77 6
Gorillas 73 6 Tigers 75 3
Horses 75 5 Turtles 72 4
Iguanas 77 9 Wolves 75 6

69



Figure 44. shows few sample images of that were identified and unidentified by the bot.

Avatar CAPTCHA

Zoo CAPTCHA

(a) (b)

Figure 44: Sample images from both CAPTCHAs (a) Identified (b) Unidentified by the bot.

4.2.4.3 B3

Here, we validate our SVM classifier against real-time human and bot samples to esti-

mate its accuracy.

First, we visualize the raw mouse training data with different set of features using

WEKA [127]. The plots are shown in the Figure 45. From this we observe that there is a

clear distinctive pattern in the features of human users and the bot. Moreover, this being a

two-class (Human vs Bot) classification problem and on observing the plots, we chose SVM as

our classifier with a linear kernel to distinguish between human users and the bot based on

their mouse usage patterns.
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Figure 45: Plots of different set of features (a) Avg. Speed vs Avg. Acceleration (b) Avg. Speed
vs Avg. Silence time

(c) Std.Dev Speed vs Horizontal speed (to the right) (d) Std.Dev Speed vs Vertical speed
(down).

We also examine the average speeds in eight directions between human users and the

bot in terms of the average of each average speed and their frequency of mouse movement

occurrences in each of the eight directions. Figure 46 shows the histograms of both. Here we

observe distinctive patterns in the average of the average speeds between the human user and

the bot. The human user mouse movement had a 100% occurrence rate in each of the eight

directions whereas the bot did not move in directions 1, 4, 5, 7 and 8 respectively on certain

instances.
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(a) (b)

Figure 46: (a) Average of the average speeds (b) Frequency of mouse movement occurrences in
each of the eight directions for human users and the bot.

Next, we analyze the normalized training set using WEKA by applying the SVM clas-

sifier using the linear kernel, the default parameters and 10-fold cross validation. Figure 47

shows the output of the classifier on the training set with the Confusion Matrix.

Figure 47: WEKA output of applying the SVM classifier with linear kernel on the training set.
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We observe that the Linear SVM classifier yields an accuracy of 99.94% and from the

confusion matrix observe that it misclassified only one human as a bot. Next, we validate

this classifier with real-time human and bot mouse data samples as they attempt to solve the

CAPTCHA. For our implementation we used the open source SVM package LIBSVM 4.0 [128].

LIBSVM is an integrated tool for support vector classification. This dual-themed CAPTCHA

was hosted online at

http://www.darryl.cecsresearch.org/avatarzoocaptcha/ with human users and the bot solving

the challenges. We used the C# library for LIBSVM with the Linear kernel. Humans are

labeled 1 and bots 0 for the SVM process. Figure 48 shows a screenshot of the CAPTCHA

which displays the outcome of the previous CAPTCHA challenge as well as that of the mouse

classifier.

Theme Switcher (Avatar/Zoo)

CAPTCHA Pass/Fail outcome

Challenge Number

Mouse classifier outcome

Figure 48: Screenshot of the CAPTCHA depicting the outcomes of its validation and the mouse
classifier.

The classifier validated their mouse usage activities as human or bot together with the

CAPTCHA validation. First, 5 human users were made to solve 20 CAPTCHA challenges with

the first 10 Avatar and the last 10 Zoo thus resulting in 100 human samples. Next, 7 human

users were made to solve 40 CAPTCHA challenges with the first 20 Avatar and the last 20 Zoo

thus, yielding 280 more human samples. Altogether, 100 + 280 = 380 human samples were
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acquired. Finally, the bot was executed on the CAPTCHA solving 380 challenges, first 190

Avatar and the last 190 Zoo yielding 380 bot samples.

Table 17: Outcome of the Linear SVM classifier on real-time human and bot samples.
Class Total validation

samples
Accurate
detection

Percentage

Human 380 325 = 325/380
= 85.52%

Bot 380 380 = 380/380
= 100%

The results of the classifier are shown in Table 17. Here, we observe that the classifier

performs exceptionally well in detecting the bot whereas it has an accuracy of close to 86% in

detecting humans attempting to solve the CAPTCHA.
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CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion
In today’s online world, automated computer programs known as “bots” are posing se-

curity threats by affecting computer systems and causing attacks such as Denial of Service

(DoS). These bots execute malicious scripts and predefined functions on an affected system.

They allow hackers/attackers (bot creators) access to multiple computers at one time to cre-

ate “botnets” to spread viruses, steal sensitive information such as passwords, bank account

details, credit card numbers, rig online polls, sign up for free email accounts, send out spam

emails as well as commit online crime. A CAPTCHA (Completely Automated Public Turing

Tests to tell Computers and Humans Apart) is a program that generates and grades tests that

most humans can pass but computers cannot. It is used as a tool to distinguish human users

from bots. Text-based CAPTCHAs are the most popular however, they have limitations such as

vulnerability to OCR attacks, overly distorted characters, English-language dependence and

limited character-set size. One potential solution to overcome this is to use images and design

Image CAPTCHAs.

Our work here involves designing one such novel image CAPTCHA to identify between

natural (human) and artificial (avatar) faces. We test the security of our CAPTCHA by clas-

sifying the human and avatar faces using Uniform Local Directional Patterns (ULDP) and

Wavelet Uniform Local Directional Patterns (WULDP) respectively. We also evaluate the se-

curity of our CAPTCHA by hosting a challenge at the ICMLA 2012 conference. The goal of this

challenge was to determine how good are computer algorithms to classify human and avatar

faces. On learning the potential pitfalls from this we improve and strengthen the CAPTCHA

by acquiring images from Yahoo’s Flickr based on random upload dates with various theme

based challenges besides human-avatar (Avatar) such as animal (Zoo) and item (Object) im-

ages. Adding multiple themes thus presents a challenging computer vision problem for bots to
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solve and attack the CAPTCHA.

The security of the CAPTCHA is hardened by incorporating Behavioral biometrics in

the form of Mouse Dynamics with it. Here it is tested by segregating human users from bots

based on their mouse usage activities such as movement, click,etc. as they attempt to solve

the CAPTCHA. Mouse Dynamics extracts features such as movement speed, click time, angle

of curvature, etc. to build Mouse Dynamic Signature (MDS) profiles for human users and bots.

Real-time evaluation of this security aspect is performed by building an SVM classifier using

these MDS’s to segregate human users from bots.

5.2 Future Work
There are possible extensions to our work based on extending the CAPTCHA design,

improving the security to strengthen it and applying different behavioral biometric techniques

with exploration of subtle features to help strengthen the human-bot classifier.

The CAPTCHA design can be improved in a few ways. Several different themes and

Flickr groups can be explored and used in the CAPTCHA thus adding variety as well as

strengthening it by posing an even greater challenge to image recognition bot algorithms. The

number of images displayed can also be altered to present users an optimal set of images to

identify and solve the CAPTCHA. The overall user interaction experience can be made much

more fun and interesting for e.g. by designing a game from this CAPTCHA. Accessibility is-

sues can be addressed as well. Besides Flickr, different image sources with available APIs can

also be incorporated to provide a larger pool of images for the CAPTCHA challenges. Noise

and distortion techniques can be examined to thwart image recognition algorithms. Mouse

Dynamics can also be used as an efficient technique towards user authentication and intrusion

detection i.e. different users can be profiled based on their mouse usage activities and can

help segregate one user from another. Besides Mouse Dynamics, the user interaction with the

Graphical User Interface (GUI) can also be examined and used as a behavioral biometric tool

on the CAPTCHA. Several additional features can be explored to help strengthen the human-

bot SVM classifier. Moreover, several different classifiers such as Decision trees, Naive Bayes,

K-Nearest Neighbor etc. can also be used to perform a comparative analysis.
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APPENDIX A

Here, I briefly describe the role of the functions used in this work.

void Page_Load (object, EventArgs):

• Sets a random number of images from the right class to be displayed.

• Reads the images from the database

• Shuffles the set of 12 images to be displayed in the random order

• Displays them on the web page

• Starts a stopwatch timer to begin the session recording time

void GetImagesfromDB (string[], int, int, int[], bool):

• Switch themes appropriately

• Pick a set of 12 images from a random location in the image database

string[] Shuffler (string[], int[], int):

• Shuffles the set of 12 images to be displayed in random order

void ValidateUser(int, int,string[]):

• Validates the user choices on hitting the Submit button

• Tracks and saves the misclassified images to the database

void Display(bool, string[], int, int, int[]):

• Displays the shuffled images on the web page

void SubmitKey_Click(object, EventArgs):

• Validate the challenge

• Stop the stopwatch timer to end the session recording time
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• Record the raw mouse data into files

• Extract the features to form the feature vector

• Write the feature vector to file

• Normalize the feature vector using min-max normalization

• Write the normalized feature vector to file

• Apply the LibSVM classifier i.e. train and test

void Refresh(bool):

• Calls the Page_Load function to display

• Reset the selected/highlighted tiles from the previous challenge

void LibSVMTrain():

• Train the SVM classifier by reading the training file and applying the appropriate kernel

void LibSVMTest():

• Evaluate the incoming mouse data based on the trained/learned model

void ReadFromTextFile(string[], int, int, ref double[,]):

• Read the saved text files containing raw mouse data to form the raw training dataset.

Each saved text file contains data per CAPTCHA challenge attempted

void SpeedAccelerationRecorder(mousedata, mousedata, List<double>[13],double):

• Evaluates the Euclidean distance between consecutive data points and the corresponding

time difference based from the timestamps

• Evaluates speed, acceleration, silence time, movement time and the speed in all the eight

directions

double StdDeviationCalculator(List<double>, double):

• Evaluates the Standard deviation for the recorded mouse data points

double EuclideanDistanceComputer(int, int, int, int):

• Evaluates the Euclidean distance between two recorded mouse data points
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void AngleofCurvatureRecorder(mousedata, mousedata, mousedata, List<double>):

• Evaluates the Angle of Curvature between three consecutive recorded mouse data points

void NormalizeMinMaxData(double[], double[,]):

• Apply min-max normalization to the training dataset

void WriteRawDataToFile(bool, List<mousedata>, int, int):

• Write the raw mouse data to individual text files as users attempt to solve the CAPTCHA

challenges

void WriteNormalizedDataToFile(bool, double[], string, int):

• Write the normalized data into two separate text files based on two different formats for

processing. One for WEKA and the other for MATLAB

void WriteToFile(bool, double, string[], int):

• Write the feature vector data into two separate text files based on two different formats

for processing. One for WEKA and the other for MATLAB

void Submit_Feedback_Click(object, EventArgs):

• Check if any fields on the Feedback page is empty or invalid

• If not, then save the entries to the database

• Redirect to the Thank you page

void BackToTest_Click(object, EventArgs):

• Redirect back to a new CAPTCHA challenge
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APPENDIX B

Here are the application and approval forms from the Institutional Review Board (IRB)

for recruiting human subjects to solve the CAPTCHA challenges

Figure 49: IRB Application form (Pages 1-2)
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Figure 50: IRB Application form (Pages 3-4)

Figure 51: IRB Approval form (Pages 1-2)
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