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ABSTRACT

PENALIZED REGRESSIONS FOR VARIABLE SELECTION MODEL, SINGLE

INDEX MODEL AND AN ANALYSIS OF MASS SPECTROMETRY DATA

Yubing Wan

July 30, 2014

The focus of this dissertation is to develop statistical methods, under the frame-

work of penalized regressions, to handle three different problems. The first re-

search topic is to address missing data problem for variable selection models

including elastic net (ENet) method and sparse partial least squares (SPLS). I

proposed a multiple imputation (MI) based weighted ENet (MI-WENet) method

based on the stacked MI data and a weighting scheme for each observation. Nu-

merical simulations were implemented to examine the performance of the MI-

WENet method, and compare it with competing alternatives. I then applied the

MI-WENet method to examine the predictors for the endothelial function charac-

terized by median effective dose and maximum effect in an ex-vivo experiment.

The second topic is to develop monotonic single-index models for assessing drug

interactions. In single-index models, the link function f is unnecessary mono-

tonic. However, in combination drug studies, it is desired to have a monotonic

link function f . I proposed to estimate f by using penalized splines with I-spline

basis. An algorithm for estimating f and the parameter α in the index was de-

veloped. Simulation studies were conducted to examine the performance of the

proposed models in term of accuracy in estimating f and α. Moreover, I applied
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the proposed method to examine the drug interaction of two drugs in a real case

study. The third topic was focused on the SPLS and ENet based accelerated failure

time (AFT) models for predicting patient survival time with mass spectrometry

(MS) data. A typical MS data set contains limited number of spectra, while each

spectrum contains tens of thousands of intensity measurements representing an

unknown number of peptide peaks as the key features of interest. Due to the

high dimension and high correlations among features, traditional linear regres-

sion modeling is not applicable. Semi-parametric AFT model with an unspecified

error distribution is a well-accepted approach in survival analysis. To reduce the

bias caused in denoising step, we proposed a nonparametric imputation approach

based on Kaplan-Meier estimator. Numerical simulations and a real case study

were conducted under the proposed method.
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INTRODUCTION

This dissertation work is composed of three different while connected research

projects.

In project I, I dealt with the issue of handling missing values of multiple pre-

dictors and studied its effect on variable selection and prediction. When missing

values in some predictor variables exist, the statistical methods for variable se-

lection and prediction could be challenging. Although multiple imputation (MI)

(Rubin, 1987; Little and Rubin, 1987; 2002) is a universally accepted technique

for solving missing data problem, how to combine the MI results for variable

selection is not very clear because different imputations may result in different

selected variables. The widely applied variable selection methods in the contex-

t of regression include the sparse partial least squares (SPLS) (Chun and Keleş,

2010) and the penalized least squares, e.g. the elastic net (ENet) method (Zou

and Hastie, 2005). We proposed a MI-based weighted elastic net (MI-WENet)

method, which is based on the stacked MI data sets and a weighting scheme in

the regression procedure. In this method, MI accounts for sampling and impu-

tation uncertainty for missing values, and the weight accounts for the observed

information. Extensive numerical simulations were carried out to compare this

MI-WENet method with other competing alternatives, such as the original ENet

and SPLS methods. Moreover, we applied the MI-WENet method to examine the

predictor variables for the endothelium dysfunction that is quantified by median

effective dose (ED50) and maximum effect (Emax) in an ex-vivo acetylcholine-

induced extension and phenylephrine-induced relaxation experiment.

The project II was inspired with the promising development of combination

therapies within the pharmaceutical industry. In the combination drug studies,
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the dose response relationship is often described by a response surface model

(Greco et al., 1995). Denote the response at the combination dose (d1, d2) as y.

A relative potency, say ρ is often used to describe how effective drug 2 is rela-

tive to drug 1. If we assume the dose-response curve for drug 1 is y = f (d1),

then the dose-response curve for drug 2 is f (ρd2). In the case that the two drugs

have no interaction, i.e. the combination is additive, the effect of the combination

dose (d1, d2) can be described by f (d1 + ρd2). If the effect at (d1, d2) is more (or

less) than the effect of drug 1 at dose level d1 + ρd2, we say the combination dose

(d1, d2) is synergetic (or antagonistic) (Lee et al., 2007; Berenbaum, 1989). It is de-

sirable that the response surface model is reduced to a dose-response when only

one drug is applied. In the dose-response studies, the dose response relationship

is often assumed to be monotonic (Kong and Eubank, 2006; Ramsay and Bara-

hamowicz, 1989; Ramsay, 1998). Plummer and Short (1990) and Kong and Lee

(2006) used monotonic parametric models to identify and quantify departures

from additivity. However, the estimates of α can be biased when the parametric

function f is misspecified. To avoid the problem caused by the misspecification

of the function f , we propose the single-index model for assessing drug inter-

actions. We do not assume any specific function form for f . Instead, we only

assume that f is monotonic, and has continuous first and second derivatives. The

function f is estimated by using penalized splines with I-splines as its basis func-

tions, and the monotonicity of the function f is achieved by adding constraints

to the coefficients of I-splines basis functions. (Kong and Eubank, 2006; Ramsay

and Barahamowicz, 1989; Ramsay, 1998). Single-index models have been exten-

sively studied in the statistical literatures (Stoker, 1986; Härdle and Stoker, 1989;

Ichimura, 1993; Yu and Ruppert, 2002). A single-index model could be considered

as an extension of a general linear model by replacing Xα with a nonparametric

function of Xα, f (Xα), where X is a vector of covariates, α is the unknown param-
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eter vector, and f is an unknown univariate link function. Although single-index

models have been well studied, the function f in the model is unnecessary mono-

tonic. We developed an algorithm for estimating the monotonic link function f

and the parameter α in the single-index model. Simulation studies are carried

out to examine the performance of the proposed model in term of accuracy in

estimating f and α. In addition, we apply the proposed monotonic single-index

method to examine the drug interaction of two drugs in a case study given by

Harbron (2010).

Mass spectrometry (MS) data has been applied extensively and demonstrated

great advantage in diagnosing and identifying proteomic biological markers to

the discovery of key proteins and protein profiles associated with various types

of diseases (Stoeckli et al., 2001; Adam et al., 2002; Aebersold and Mann, 2003; Rai

and Chan, 2004; Datta et al., 2008; Datta and Pihur, 2010). Matrix-assisted laser

desorption/ionization imaging mass spectrometry (MALDI-IMS) is a prosperous

molecular technology that acquires information from intact proteins directly from

thin sections of tissue. A typical MALDI-IMS data set contains hundreds of spec-

tra, and each spectrum contains tens of thousands of intensity measurements

representing an unknown number of protein/peptide peaks which are the key

features of interest. Although some basic preprocesses like denoising and peak

detection may identify some peaks for interested features, there are still hundreds

or thousands of retained potentially important features which could be useful for

the predictive modeling. Due to the high dimension as well as some high corre-

lations among features, traditional linear regression modeling of survival times

with proteomic features is not applicable. In order to predict patient survival

using a predictive statistical model, one needs to consider dimension reduction

and important feature selection on top of basic pre-processing of mass spectrom-

etry data very carefully. Semi-parametric accelerated failure time (AFT) model

3



with an unspecified error distribution is a flexible and well-accepted approach in

survival analysis. As far as we know, there are only a few publications on em-

ployment of the AFT model in high dimensional data setting, which mostly use

the microarray platforms. Mostajabi et al. (2012) compared the performances of

four relatively recent latent factor and/or penalized regression techniques (PLS,

SPLS, LASSO and elastic net) in fitting AFT models based on high dimensional

regressions, specifically to predict patient survival times using high dimensional

mass spectrometry data. In project III, I focused on two popular techniques that

performed best in the study of Mostajabi et al. (2012), namely SPLS and elastic net,

to fit AFT models for predicting patient survivals. For identifying the subsets of

features important for prediction analysis, some preprocessing steps like binning,

standardizing, baseline correcting, and peak identifying are usually necessary.

Depending on analysis goals, the preprocessing procedures can be different and

complex in different literatures (Datta et al., 2007; Antoniadis et al., 2010; Morris

et al., 2005; Mostajabi et al., 2012; Ndukum et al., 2011). In our methodology,

we performed three basic preprocessing steps as baseline subtraction, alignment,

and denoising to maintain as much information as possible before applying the

AFT models in the subsequent survival analysis. To ensure the features used in

analysis corresponding to real peaks, we applied a hard thresholding algorith-

m similar as in Datta et al. (2007); Ndukum et al. (2011); Mostajabi et al. (2012)

to remove noise signals from the MS data. The denoising step ensures that the

features used in analysis corresponding to real peaks. However, during the de-

noising, the intensities under thresholds are all considered as missing and are

usually replaced with zeroes artificially. It is desirable to find a proper approach

to retain sufficient true signals meanwhile reduce the bias for the subsequent pre-

dictive modeling analysis effectively. To solve this missing problem, we proposed

a nonparametric imputation approach based on Kaplan-Meier estimator by con-
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sidering the aligned intensities across all spectra as life times. We compared the

predictive performance for the patient survival times with and without the impu-

tation of the left censored peaks. Additionally, we compared different penalized

regression schemes along with the AFT models to predict the patient survival

times.

We anticipate that this dissertation research will significantly advance the area

of variable selection and outcome prediction (dose response and patient survival

time), with various types of predicting data, e.g. covariates with missing data and

high dimensional mass spectrometry data.
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TOPIC I: VARIABLE SELECTION MODELS BASED ON MULTIPLE

IMPUTATION WITH APPLICATION FOR PREDICTING MEDIAN

EFFECTIVE DOSE AND MAXIMUM EFFECT

2.1 Introduction

Missing data is a common problem in various settings including clinical trials,

animal studies, and survey sampling (Rubin, 1987; Little and Rubin, 1987; 2002).

When analyzing data with missing values, a straightforward strategy is to con-

duct a complete case analysis, where the observations with any missing values are

ignored. This approach is simple yet ignores the possible differences between the

complete cases and incomplete cases that may result in a substantial bias when the

subjects with complete observations are not a random sub-sample of all subjects

(Rubin, 1987). The complete case analysis also may lose information, and thus,

results in incorrect inferences (Rubin, 1987; Van Buuren, 2012). Because experi-

ments in medical research are usually expensive, the need for adequate handling

of missing data is a constantly recognized source of concern (Wood et al., 2004).

Instead of the complete case analysis, a more sophisticated approach called sin-

gle imputation is used to impute the missing values with plausible values, and

then statistical analyses are carried out on the imputed data set. However, the

single imputation method ignores the uncertainty of imputation on the missing

values that may lead to the underestimation of variances and the distortion of

the correlation structure of the data. Therefore, simple single imputation is usu-

ally not recommended (Rubin, 1987; Little and Rubin, 1987; 2002; Van Buuren,

2012). Multiple imputation (MI) has gradually become a more well-accepted

imputation-based statistical technique for handling missing data since the pub-
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lication of Rubin’s pioneering work for nonresponses in survey (Rubin, 1987).

MI procedure involves imputing each missing value with M (> 1) independent

plausible values, and then applying the standard analysis to each imputed data

set. The final estimates of the parameters and their variances are obtained from

the M sets of estimates using Rubin’s rules, with accounting for the uncertainty

among multiple imputations (Little and Rubin, 2002; Van Buuren, 2012). The ob-

jective of MI method is not to predict missing values as close as possible to the

true values but to handle missing data so that valid statistical inferences can be

made (Little and Rubin, 2002; Van Buuren, 2012). Rubin’s rules have become the

gold standard when data are missing at random (Wood et al., 2005; Van Buuren

et al., 1999; Cohen et al., 2003). By the definition of Little and Rubin in (Rubin,

1987), the three general types of missing mechanism are: 1) missing complete at

random (MCAR); 2) missing at random (MAR); and, 3) not missing at random

(NMAR) (Rubin, 1987; Little and Rubin, 1987; 2002). Standard implementation of

MI relies on an assumption that missing data are either MCAR or MAR, while the

MI procedure may also be extended to the cases where missing data are NMAR

(Van Buuren et al., 1999; Wood et al., 2008; Carpenter et al., 2007).

Variable selection is increasingly important in modern data analysis. Many

techniques, such as the least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996), the elastic net (ENet) (Zou and Hastie, 2005), and the sparse

partial least squares (SPLS) (Chun and Keleş, 2010), have been developed to select

important variables that are associated with outcome variables. LASSO mini-

mizes the restricted least squares with the constraint on the absolute values of

the parameters (i.e., L1 norm), and ENet minimizes the constrained least squares

with the constraint on the combination of the absolute and the squared values of

parameters (Tibshirani, 1996; Zou and Hastie, 2005; Hastie et al., 2001). SPLS max-

imizes the correlation between outcome variables and the linear combinations of
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predictor variables (covariates) with constraints on the L1 norm of the parameters

(Chun and Keleş, 2010). The constraint for LASSO can be considered as a special

case of the ENet, and several studies have shown that ENet performs better than

LASSO (Zou and Hastie, 2005). These methods have assumed that the observa-

tions in the data set are complete. How to apply these variable selection methods

to the situation when there are missing values is an important yet unresolved

problem.

Several approaches to combine the variable selection methods with MI tech-

niques have been proposed recently (Wood et al., 2008; Heymans et al., 2007; Chen

and Wang, 2013). Wood et al. proposed a “stacked” approach in (Wood et al.,

2008) by combining the multiply imputed data sets into one and using a weight-

ing scheme to account for the fraction of missing data in each predictor variable.

However, the variable selection method used by them was the classical backward

stepwise selection approach. Heymans et al. developed and tested a methodolo-

gy combining MI with bootstrapping techniques for studying prognostic variable

selection (Heymans et al., 2007). Chen and Wang proposed a MI-LASSO vari-

able selection method as an extension of the LASSO method to MI-based data,

which is, to the best of our knowledge, the only work combining the penalized

least squares method with MI-based data (Chen and Wang, 2013). In the work

(Chen and Wang, 2013), the observations with missing values and those without

missing values are treated with equal importance. In this chapter, I proposed a

MI-based weighted ENet (MI-WENet) method as an extension of the ENet to the

stacked multiple imputed data, with a weight accounting for the proportion of

the observed information for each observation. The cyclical coordinate descent

methods (Friedman et al., 2010) are applied to minimize the weighted penalized

least squares associated with the MI-WENet variable selection method.

To describe the new approach, in Section 2.2, I first review the two most pop-
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ular variable selection methods: SPLS and ENet, and then propose the MI-based

SPLS (MI-SPLS) and the MI-based weighted ENet (MI-WENet) for analyzing data

with missing values. In Section 2.3, I carry out extensive numerical simulations to

evaluate the performance of the proposed methods, and compare the performance

of the proposed methods with the other competing methods. For Section 2.4, I

apply the proposed MI-WENet method to examine the predictor variables for

the maximum effect and the median effective dose in an ex-vivo phenylephrine-

induced extension and acetylcholine-induced relaxation experiment study. Final-

ly, I provide a discussion of the pros and cons of our current approach in Section

2.5.

2.2 Methods

Let Yi denote the outcome variable and Xij be the jth predictor variable (j =

1, ..., p) for the ith subject (i = 1, ..., n). Without loss of generality, I assume that

Yi and Xij are standardized to have zero mean and unit standard deviation. For

simplicity, let us consider the following linear regression model:

Yi =
p

∑
j=1

Xijβ j + εi = Xiβ + εi, i = 1, ..., n, (2.1)

where the regression coefficients β = (β1, ..., βp)T are unknown parameters to

be estimated, and the error term εi are independently identically distributed as

N(0, σ2).

2.2.1 Review of SPLS and ENet

The sparse partial least squares regression (SPLS) (Chun and Keleş, 2010) is

an extension of partial least squares regression (PLS) (Wold, 1985) to achieve si-

multaneous dimension reduction and variable selection. The PLS begins with

9



calculating the first latent direction vector t1 as Xβ̂(1), where β̂(1) is obtained by

maximizing the correlation between the response variable Y and the linear com-

bination of covariates, Xβ, i.e.,

β̂(1) = arg max
β

{
βTXTYYTXβ

}
, subject to βTβ = 1. (2.2)

Suppose the kth (k ≥ 1) direction vector, tk = Xβ̂(k), has been obtained. Denote

T = (t1, t2, ..., tk) and MT = I − T(TTT)−1TT, the (k + 1)th direction vector can be

obtained by solving (2.2), with Y replaced by its orthogonal projection onto the

complementary of the column space of the known direction vectors T, i.e., replac-

ing Y by MTY. This process is repeated to obtain a small number of direction

vectors. Regressing the original Y on those direction vectors result in a relation-

ship between Y and X due to each direction vector is a linear combination of the

covariates X. PLS has become a very popular tool in the field of chemometrics

and bioinformatics (Datta, 2001; Pihur et al., 2008). The SPLS achieves the sparsity

of the coefficients on X by adding the L1 constraints on β (Chun and Keleş, 2010).

For example, β̂(1) is updated as

arg max
β

{
βTXTYYTXβ

}
, subject to βTβ = 1 and ‖β‖L1 ≤ λ, (2.3)

where ‖β‖L1 =
P
∑

j=1
|β j|. The L1 constraint is added to obtain each direction vec-

tor (Chun and Keleş, 2010). SPLS obtains good performance in prediction and

variable selection by producing sparse linear combinations of the original predic-

tors, and is especially applicable when p is much greater than n (Chun and Keleş,

2010).

The elastic net (ENet) (Zou and Hastie, 2005) is a widely applied regulation

and variable selection method. The ENet estimator is obtained by undoing the
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shrinkage for the naïve elastic net estimator that is obtained by minimizing the

penalized least squares

L(λ, α, β0, β) =
1

2n

n

∑
i=1

(yi − β0 − xT
i β)2 + λPα(β), (2.4)

where

Pα(β) = α‖β‖L1 +
1
2
(1− α)‖β‖L2 =

p

∑
j=1

{
α|β j|+

1
2
(1− α)β2

j

}
. (2.5)

Here Pα is the elastic net penalty that is a compromise between the ridge regres-

sion penalty (α = 0) (Hoerl and Kennard, 1970) and the LASSO penalty (α = 1)

(Tibshirani, 1996). Ridge regression is known to shrink the coefficients of correlat-

ed predictor variables, allowing them to borrow strength from each other (Hoerl

and Kennard, 1970; Hastie et al., 2001). The elastic net penalty with α = 1− ε, for

some small ε > 0, performs much like the LASSO but removes any degeneracies

and wild behavior caused by extreme correlations (Friedman et al., 2010). For a

given λ, as α increases from 0 to 1, the sparsity of the solution to (4.4), i.e., the

number of coefficients being zero, increases monotonically from 0 to the spar-

sity of the LASSO solution. The naïve elastic net estimator obtained from (4.4)

and (4.5) does not perform satisfactorily (Zou and Hastie, 2005), while the elastic

net estimator that undoes the shrinkage for the naïve elastic net, performs much

better even compared with LASSO and ridge regression. The ENet estimator is

obtained as

β̂(ENet) = (1 + λ(1− α)) β̂(naß̈ve ENet). (2.6)

The ENet penalty is particularly useful in the cases that p is greater than n and

there are many correlated predictors (Zou and Hastie, 2005), which has also been

shown in our simulation studies.
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2.2.2 MI-based SPLS and MI-based Weighted ENet

Both the SPLS and ENet methods assume that all covariates and outcome

variables are fully observed. In the cases that there are missing values, Rubin’s

rules provide a general framework to handle missing problems provided missing

data are missing at random (MAR) or missing completely at random (MCAR)

(Rubin, 1987; Little and Rubin, 1987; 2002; Van Buuren, 2012). However, Rubin’s

rules can not be directly applied to SPLS or ENet, because the variables selected

for one imputed data set may be quite different from those based on another

imputed data set. To the best of our knowledge, there is no standard rule to

combine the selected variables resulted from different imputed data sets (Cohen

et al., 2003; Wood et al., 2008; Chen and Wang, 2013; Schomaker and Heumann,

2013).

To overcome the shortcoming in combining the multiple results from MI data,

we propose to select variables based on the stacked MI data. To be specific, let

us assume that the outcome variable is fully observed, but the predictor variables

may have some missing values. The missing values in the variables are imputed

M times independently to generate M imputed data sets. We denote the mth im-

puted data set as (yi; x(m)
i1 , ..., x(m)

ip )n
i=1, for m = 1, ..., M, where x(m)

ij is the value of

the jth predictor variable for the ith subject in the mth imputed data set. If Xij is

observed, then we have x(1)ij = ... = x(M)
ij = xij; and if Xij is missing, then x(m)

ij may

take different values in each imputation. Popular softwares for implementing MI

procedure include the R-packages mice (Van Buuren and Groothuis-Oudshoorn,

2011) and mi (Su et al., 2011), the SAS software IVEware (Raghunathan et al.,

2001), and a module named MULTIPLE IMPUTATION in SPSS. In the simulation

studies, we applied the R-package mice that is based on the sequential regression

MI, i.e. the multivariate imputation by chained equations, to impute missing da-

ta (Van Buuren and Groothuis-Oudshoorn, 2011; Raghunathan et al., 2001). In
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applying the R-package mice, users are allowed to specify the conditional distri-

bution of each variable on the other variables in the data. The imputation was

carried out based on the specified conditional distribution for the missing vari-

ables (Van Buuren and Groothuis-Oudshoorn, 2011).

Once M imputed data sets are obtained, one may stack the M imputed data

sets as a large complete data set having M× n observations. SPLS and ENet can

be directly applied to this single stacked data set. These approaches are called MI-

based SPLS (MI-SPLS) and MI-based ENet (MI-ENet), respectively. In general, the

estimates based on the stacked MI data are unbiased if the estimates based on a

single data set are unbiased, while the standard errors based on the stacked MI

data will be under-estimated if they can be estimated (Cohen et al., 2003). For the

MI-ENet method, a simple way to correct the underestimated errors is to apply a

weight to each observation. Denote this weight by wi for subject i. For the stacked

M imputed data sets, one could assign wi = 1/M thus the overall weight for a

subject is 1. This weighting scheme puts the same weight for each subject and

ignores the degree of missing information. A more legitimate way is to assign

weights according to the quality of the observed information. If a subject has

more missing predictor variables, the weight assigned to the subject should be

smaller. We propose to assign the weight wi = fi/M, where fi is the fraction of

observed values for subject i, i.e., the ratio of number of observed variables for the

subject i to the total number of predictor variables p. This approach is named as

MI-based weighted ENet (MI-WENet) method.

The MI-WENet minimizes the following penalized weighted least squares

1
2n

n

∑
i=1

M

∑
m=1

wi

(
yi − β0 − x(m)T

i β
)2

+ λPα(β), (2.7)

where β = (β1, ..., βp). The penalty here is the same as the ENet penalty in (4.4).
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I propose to standardize each predictor variable first based on the available data,

then carry out the multiple imputation to get M imputed data sets. In the stacked

data, the values for each variable may not have mean zero and variance 1 and the

intercept may not be the mean of the observed responses anymore. Thus β0 needs

to be estimated in the same manner as the other regression parameters β. By

avoiding any re-standardization in the stacked data, ∑M
m=1 wi

(
yi − β0 − x(m)T

i β
)2

will reduce to
(
yi − β0 − xT

i β
)2, if there is no missing predictor variable for subject

i. Thus, the objective function is reduced exactly to the standard ENet, when there

is no missing value at all in the original data.

Denote the objective function (2.7) as R(β0, β). To solve for (β0, β), a coordinate

descent method can be applied (Friedman et al., 2010). Assuming the current

estimated β̃0 and β̃ are known, we wish to update β̃ j as β̃ j + ∆β j by partially

optimizing R(β0, β) with respect to β j (j = 0, 1, ..., p). Note that the gradient for

∆β j at β j = β̃ j, which only exists if β j 6= 0, is

∂R(β0, β)

∂∆β j
=

1
n

n

∑
i=1

M

∑
m=1

wi

(
yi − β0 − x(m)T

i β− x(m)
ij ∆β j

) (
−x(m)

ij

)
+ λ (1− α)

(
β j + ∆β j

)
+ sign

(
β j
)

λα, (2.8)

where (β0, β) = (β̃0, β̃). Set ∂R(β0,β)
∂∆β j

= 0, one can get

∆β j =

1
n ∑n

i=1 ∑M
m=1 wi

(
yi − β0 − x(m)T

i β
)

x(m)
ij − sign(β j)λα− λ(1− α)β j

1
n ∑n

i=1 ∑M
m=1 wix

(m)2
ij + λ(1− α)

, (2.9)
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where (β0, β) = (β̃0, β̃). Then β j is updated as follows:

β̃ j
(new)

= β̃ j + ∆β j

=

1
n ∑n

i=1 ∑M
m=1 wi

(
yi − β0 −∑

p
l=1,l 6=j x(m)

il βl

)
x(m)

ij − sign(β j)λα

1
n ∑n

i=1 ∑M
m=1 wix

(m)2
ij + λ(1− α)

=
S
(

1
n ∑n

i=1 ∑M
m=1 wi

(
yi − β0 −∑

p
l=1,l 6=j x(m)

il βl

)
x(m)

ij , λα
)

1
n ∑n

i=1 ∑M
m=1 wix

(m)2
ij + λ(1− α)

,

(2.10)

where (β0, β) = (β̃0, β̃), and S(z, γ) is the soft-thresholding operator with value

sign(z) (|z| − γ)+ =


z− γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|.

To reduce imputation burden, for a given multiple imputed stacked data set and

a given weight, one may first calculate and store the following quantities:

XYj =
1
n

n

∑
i=1

M

∑
m=1

wiyix
(m)
ij , for j = 0, 1, ..., p.

XXjj′ =
1
n

n

∑
i=1

M

∑
m=1

wix
(m)
ij x(m)

ij′ , for 0 ≤ j ≤ j′ ≤ p.

Here x(m)
ij is set to 1 for j = 0. Suppose that β̃ j

(old)
(j = 0, 1, ..., p) are the available

values at the previous iteration, one may update β j (j = 0, 1, ..., p) by

β̃ j
(new)

=
S
(

XYj −∑l<j XXjl β̃l
(new) −∑l>j XXjl β̃l

(old), λα
)

XXjj + λ(1− α)
. (2.11)

The procedure is repeated until convergence to get the estimates for β j (j =

0, 1, ..., p). These estimates are similar to the naïve ENet estimates (Zou and Hastie,

2005), which can be obtained by a truncation at λα and a shrinkage with a factor
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XXjj + λ(1− α) for β j. A better estimate that undoes the shrinkage is obtained by

β̂ j(weighted ENet) =
(
XXjj + λ(1− α)

)
β̂ j(weighted naive ENet). (2.12)

The weighted ENet estimates in (2.12) are used in the simulations in Section 2.3

and the case study in Section 2.4, and performs well in both variable selection and

prediction.

In the present work, I applied 10-fold cross validation method to select the

tuning parameters α and λ. Here α ∈ (0, 1), and λ > 0. Because (α, λ) determines

the soft-threshold boundary, I start with a sequence grid value for α. For each

fixed α, I compute the solution for a decreasing sequence of values for λ starting

at the largest value λmax for which the entire vector β̃ = 0, i.e.,

αλmax = max
0≤j≤p

| XYj |,

and set λmin = ελmax with ε = 0.001. I construct a sequence of λ values decreas-

ing from λmax to λmin on the log-scale. The pair of (α, λ) is chosen such that the

cross validation error is minimized.

2.3 Simulation

In this section, I design different simulation schemes to examine the perfor-

mance of the proposed MI-WENet method and compare it with the other meth-

ods, such as MI-SPLS and MI-ENet. The different simulation scenarios are report-

ed in Section 2.3.1; the corresponding simulation results are reported in Section

2.3.2.
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2.3.1 Simulation Settings

In the simulation studies, I assume that the underlying model is known and

has the form of Yi = Xiβ + εi, for i = 1, ..., n, where Xi = (Xi,1, ..., Xi,p), β =

(β1, ..., βp)T, and εi ∼ N(0, σ2). The predictor variables for each subject were

generated from a multivariate normal distribution with mean zero and a covari-

ance matrix Σ. σ was set as the value such that the signal to noise ratio is 2, i.e.,√
βTΣβ/σ = 2.

Simulation scenarios were designed based on various assumptions of sam-

ple size n, number of predictor variables p, missing mechanism, missing pattern

and correlation structure of the predictor variables. Correlation structure for the

predictor variables of the ith subject (i = 1, ..., n) was tested under three specifica-

tions: 1) compound symmetry with low correlation, i.e., corr(Xi,j, Xi,j′) = 0.1; 2)

compound symmetry with medium correlation, i.e., corr(Xi,j, Xi,j′) = 0.5; and 3)

first-order autoregressive (AR(1)), i.e., corr(Xi,j, Xi,j′) = 0.8|j−j′|, for j, j′ = 1, ..., p

and j 6= j′, respectively. I set the homogenous variances as 1 for all Xi,j, so the

covariance matrix Σ was same as the correlation matrix. Under each specification,

I induced missing values under the MCAR and MAR mechanisms, respectively;

and for each missing mechanism, missing values were generated with indepen-

dent and monotone missing patterns, respectively. In total, 17 scenarios were test-

ed in our simulations, which I believe have covered most situations in practical

application. The independent missing pattern means that the missing observa-

tions for different variables are independent, and the monotone missing pattern

is that a missing observation in xij (where i is the subject index, and j is the

variable index) implies that all observations xij′ for j ≤ j′ ≤ p are missing.

For each scenario with fixed n, p, Σ, missing mechanism and missing pattern,

the following steps are carried out:
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1. Generate fully observed predictor variables for Xi (i = 1, ..., n).

2. Generate the outcome variable for Yi from the underlying model Yi = Xiβ +

εi (i = 1, ..., n), where εi ∼ N(0, σ2).

3. Independently generate test data set (xt, yt) (t = 1, ..., nt) by repeating steps 1

& 2, where the sample size nt is larger than n (nt = 1000 in our simulations).

4. Fit the full data set that has a sample size n and has been generated in steps 1

& 2 by using SPLS and ENet, respectively (see the rows named as Full-SPLS

and Full-ENet in Tables 2.1-2.3).

5. Induce missing values for the predictor variables according to each pre-

specified missing mechanism and missing pattern.

6. Fit the data set including complete cases only by using SPLS and ENet,

respectively (see the rows named as CC-SPLS and CC-ENet in Tables 2.1-

2.3).

7. Impute missing values M times (M=5), and stack the M imputed data sets

into an enlarged one.

8. Perform SPLS, ENet and WENet based on the first single imputed data set

(see the rows named SI-SPLS, SI-ENet and SI-WENet in Tables 2.1-2.3), and

based on the stacked data set (see the rows named MI-SPLS, MI-ENet and

MI-WENet in Tables 2.1-2.3).

9. Repeat Steps 1-8 100 times, and summarize the averaged key performance

measures of each method.

The key performance measures for each method under each simulation sce-

nario are predicted mean squared error (PMSE), mean squared error (MSE), sen-
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sitivity and specificity. The PMSE is defined as

PMSE(β̂) =
1
nt

nt

∑
t=1

(yt − xt β̂)
2,

where xt and yt are fully observed independent test data generated in Step 3, and

β̂ is the estimate of the underlying regression parameter β for each model. PMSE

is obtained by averaging the predicted errors on a large number of observations,

where I have set nt as 1000. The MSE is defined as

MSE = (β̂− β)TΣ(β̂− β),

where β̂ and β are the same as for PMSE, Lower values of PMSE and MSE are

desirable. The sensitivity is defined as the fraction of variables selected among

those whose coefficients are not zero in the underlying model, and the specificity

is defined as the fraction of variables not selected among those whose coefficients

are zeros in the underlying model. Larger sensitivity and specificity indicate a

better performance.

To examine the performance of different methods, I first fixed p = 12, n = 50

and β = (3, 1.5, 0, 0, 2, 0, 3, 1.5, 0, 0, 2, 0)T, and I considered the combinations of

different missing mechanism (MCAR and MAR), different missing pattern (in-

dependent and monotone) and different correlation structure for the predictor

variables. Under the MCAR scheme, the independent missing pattern was gener-

ated by independently removing 16% of the observations from each of the first 6

predictor variables, which resulted in around 50% observations containing miss-

ing values; the monotone missing pattern was generated by first inducing missing

values to the 8% of randomly sampled observations from the 1st to 6th predictors,

and then repeatedly adding missing values to another 8% randomly sampled ob-

servations from the 2nd to 6th, 3rd to 6th, 4th to 6th, 5th to 6th, and the 6th only
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predictor variables, which eventually resulted in 48% subjects containing missing

values. The simulation results for MCAR, with different missing patterns and

different correlation structures for the predictor variables, are reported in Table

2.1. For MAR, missing values were induced by the following logistic regression

model:

logit{Pr(Xij(m) is missing|Xij(c) , Yi)} = Xij(c) + Yi, for i = 1, ..., n. (2.13)

Here j(m) = 1, ..., p1 are indices for the predictor variables in which missing values

are to be induced, and j(c) = p1 + j(m) are indexes for the completely observed

predictor variables. When p equals to 12, p1 is set as 6. For independent missing

pattern, the procedure to generate missing values was the same as in the MCAR

cases, except that the 16% removed observations for each of the 6 missing predic-

tor variables were selected by the highest probabilities calculated from the logistic

model (2.13). For monotone missing pattern, we applied the logistic model (2.13)

to the whole data set first, and removed 8% observations from the 1st to 6th predic-

tor variables according to the missing probabilities for the 1st predictor variable.

We then applied the logistic model (2.13) to the remaining data set with complete

cases only, and removed 8% additional observations from the 2nd to 6th predictor

variables according to the missing probabilities of the 2nd predictor variable. Re-

peating above procedure until 8% additional observations were removed for the

6th predictor variable only, resulted in 48% subjects containing missing values in

total. The corresponding simulation results for MAR are reported in Table 2.2.

I also conducted simulations with different combinations of p and n, under

the specification of monotone MAR and AR(1) correlation structure, so that the

performance of different methods with large p and small n (say p = 24, 48, and

60, with n fixed at 50) and with small p and large n (say n = 50, 100, and 200,
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with p fixed at 12) can be examined. Here, when p > 12, the β in the underlying

models were set as the repetitions of (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0). The procedures

for generating monotone MAR missing values were similar as when p = 12 and

n = 50. In the cases when p = 24 and p = 48, p1 in (2.13) were set as p/2, and the

the percentages of missing values in each iteration were controlled at 4% and 2%,

respectively. When p = 60, p1 was set as 24 and the percentage of missing value

in each iteration was controlled at 2%. The total missing percentage was fixed at

48% under each scenario. The corresponding simulation results are reported in

Table 2.3.

The number of simulation runs is 100 in Tables 2.1-2.3. To examine whether a

large number of simulation runs impacts the simulation results, I carried out the

simulations with 500 runs for each scenario showed in Table 2.3. The correspond-

ing results are reported in Table 2.4.

2.3.2 Simulation Results

The results for MCAR with different missing patterns and different correla-

tions for X are summarized in Table 2.1, and results for MAR are summarized

in Table 2.2. The results for MCAR (Table 2.1) and MAR (Table 2.2) explain con-

sistent improvement in the estimation and prediction errors using the MI-WENet

procedure compared to others. From Tables 2.1 and 2.2, we see that: (1) Full-ENet

is consistently having lower PMSE and MSE than those from Full-SPLS. When

correlations of X are low, Full-ENet has both higher sensitivity and specificity

compared to Full-SPLS; when correlations of X are medium to high, Full-ENet

has similar or a little lower sensitivity (within 12%), while the specificity is around

30% higher than those from Full-SPLS, indicating that the ENet method has better

performances than the SPLS method for the variable selection and prediction in

our simulations. (2) Based on complete cases analysis, both SPLS and ENet (CC-
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SPLS and CC-ENet) methods have much higher PMSE and MSE than all other

imputation based methods; the sensitivity for CC-ENet dropped 30%-50% com-

pared to the Full-ENet, and the specificity for CC-SPLS are generally low. All

these measurements indicate that CC-SPLS and CC-ENet are not recommended.

(3) MI-SPLS has a high sensitivity but the specificity is at least 30% lower than

MI-WENet, indicating that MI-SPLS would select more variables of those should

not be selected. (4) In all the tested simulation scenarios, the MI-based weighted

ENet (MI-WENet) method generally obtains the lowest PMSE and MSE among

all competing imputation methods considered here with an exception in Table

2.1. That is, for the independent MCAR case when the correlations are following

an AR(1) process, the PMSE and MSE for MI-WEnet are slightly larger than the

other imputation based Enet method. The sensitivity and specificity of the MI-

WENet is always close to the full-ENet model. Opposed to that, other imputed

ENet models gain sensitivity with a significant loss in specificity compared to the

full-ENet model. MI-WENet also maintains a reasonable sensitivity and speci-

ficity across all the simulation scenarios. This demonstrates that the MI-WENet

method outperforms all the other methods.

Table 2.3 displays the results based on different combinations of p and n, un-

der the specification of monotone MAR and AR(1) correlation structure. The first

column in Table 2.3 shows the performance of different methods for fixed p = 12,

when n increases, say n = 50, 100, and 200. The results demonstrate that: as n

increases, (1) the PMSE and MSE for each method decreases, which means that

the prediction becomes more accurate as n goes larger; (2) the sensitivity increas-

es, indicating that as n increases, the percentage of correctly selected variables

increases; (3) the specificity stays almost the same, indicating that the sample

size does not impact the percentage of correctly rejected variables effectively; (4)

among all the imputation methods, the MI-WENet method has the best perfor-
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Table 2.1: Simulation results for missing complete at random (MCAR) scenarios
with different missing patterns (independent and monotone) and different corre-
lation structures (compound symmetry with low correlation, compound symme-
try with medium correlation and first-order autoregressive (AR(1))) for p = 12
and n = 50.

Independent MCAR Monotone MCAR

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

Low correlation: corr(Xi,j, Xi,j′) = 0.1

Full-SPLS 14.72 3.52 97.2 67.0 15.05 3.96 95.7 70.2
CC-SPLS 28.84 15.34 80.7 47.7 22.08 10.23 84.5 52.0
SI-SPLS 17.72 6.20 91.7 60.3 18.64 7.21 86.8 70.0
MI-SPLS 16.10 4.68 98.3 36.5 16.59 5.24 98.7 42.5
Full-ENet 13.98 2.83 97.7 74.0 14.28 3.07 97.2 74.7
CC-ENet 30.27 18.51 52.5 87.5 21.99 10.47 68.8 89.3
SI-ENet 15.85 4.61 94.5 71.5 17.18 5.96 89.0 75.3
MI-ENet 15.43 4.22 96.3 71.7 16.38 5.16 94.8 72.2
SI-WENet 15.70 4.45 94.5 74.0 16.56 5.29 91.8 75.7
MI-WENet 15.34 4.14 96.0 74.8 15.90 4.66 94.0 72.8

Medium correlation: corr(Xi,j, Xi,j′) = 0.5

Full-SPLS 32.86 7.60 90.8 41.0 33.30 7.87 86.5 44.3
CC-SPLS 44.56 17.55 81.5 34.5 37.40 11.01 86.8 31.2
SI-SPLS 34.06 8.76 88.5 36.5 34.76 9.25 86.8 40.0
MI-SPLS 33.98 8.28 93.8 23.2 34.28 8.73 91.5 32.2
Full-ENet 30.63 5.67 87.3 71.7 30.99 5.84 86.0 71.5
CC-ENet 58.10 33.02 33.8 84.0 50.03 24.86 42.7 86.0
SI-ENet 32.45 7.42 82.5 66.2 33.18 8.10 77.0 69.0
MI-ENet 31.72 6.67 84.8 68.2 31.99 6.93 81.8 69.2
SI-WENet 32.00 6.95 83.5 69.7 32.73 7.60 79.3 70.8
MI-WENet 31.35 6.35 86.7 68.2 32.01 6.87 81.8 70.3

AR(1) correlation: corr(Xi,j, Xi,j′) = 0.8|j−j′|

Full-SPLS 27.77 5.91 87.7 28.3 27.93 6.00 88.3 30.2
CC-SPLS 38.42 15.22 85.8 23.7 31.88 9.41 89.3 22.3
SI-SPLS 28.01 5.95 91.0 23.5 29.40 6.94 85.8 35.2
MI-SPLS 28.26 6.04 94.3 17.3 29.71 7.56 89.7 25.3
Full-ENet 27.14 5.39 78.5 65.8 26.94 4.99 80.0 66.7
CC-ENet 48.79 26.79 36.8 83.0 43.19 21.26 42.7 83.3
SI-ENet 27.33 5.61 76.8 65.7 28.54 6.64 71.3 65.3
MI-ENet 27.07 5.35 78.3 63.7 27.76 5.80 74.8 66.2
SI-WENet 27.20 5.50 77.7 63.8 28.03 6.07 74.8 64.2
MI-WENet 27.40 5.65 77.3 62.8 27.53 5.56 76.8 64.2
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Table 2.2: Simulation results for missing at random (MAR) scenarios with d-
ifferent missing patterns (independent and monotone) and different correlation
structures (compound symmetry with low correlation, compound symmetry with
medium correlation and first-order autoregressive (AR(1))) for p = 12 and n = 50.

Independent MAR Monotone MAR

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

Low correlation: corr(Xi,j, Xi,j′) = 0.1

Full-SPLS 14.45 3.33 94.8 75.7 14.66 3.54 95.3 70.5
CC-SPLS 27.27 12.69 78.7 59.2 33.38 14.95 72.5 56.3
SI-SPLS 18.03 6.61 89.3 68.0 19.66 8.19 84.0 66.0
MI-SPLS 16.52 4.93 98.0 38.7 17.18 5.72 95.0 44.3
Full-ENet 13.83 2.71 96.8 78.8 13.93 2.88 97.2 75.2
CC-ENet 26.83 12.82 64.5 92.0 31.14 15.20 58.8 91.5
SI-ENet 16.90 5.73 90.7 77.2 18.25 7.07 85.2 72.8
MI-ENet 16.38 5.07 92.8 74.7 16.88 5.70 90.0 75.5
SI-WENet 16.57 5.35 91.3 78.3 17.20 5.96 88.7 73.5
MI-WENet 15.96 4.74 93.5 76.5 16.41 5.23 89.8 73.7

Medium correlation: corr(Xi,j, Xi,j′) = 0.5

Full-SPLS 32.28 7.24 90.5 34.5 32.77 7.67 89.0 38.0
CC-SPLS 40.92 16.02 81.3 40.2 49.39 19.42 79.8 38.2
SI-SPLS 35.15 9.57 80.7 45.0 35.49 9.47 81.3 41.5
MI-SPLS 34.69 8.83 91.5 30.8 34.88 8.69 90.7 34.3
Full-ENet 31.27 6.27 83.3 72.8 30.76 6.01 84.2 73.2
CC-ENet 53.89 27.42 47.5 91.3 58.18 28.58 43.8 88.8
SI-ENet 33.21 8.31 77.3 70.5 33.31 8.17 76.2 69.3
MI-ENet 32.72 7.79 78.2 69.0 32.22 7.20 77.5 68.2
SI-WENet 33.47 8.57 76.8 71.3 33.00 8.06 75.8 71.7
MI-WENet 32.63 7.66 78.8 69.0 31.94 6.99 78.2 67.8

AR(1) correlation: corr(Xi,j, Xi,j′) = 0.8|j−j′|

Full-SPLS 27.36 5.66 89.7 30.2 27.45 5.82 87.5 31.0
CC-SPLS 33.11 11.68 81.0 36.3 43.08 15.44 75.8 35.8
SI-SPLS 30.46 8.28 81.3 40.3 30.33 7.31 81.3 42.0
MI-SPLS 30.96 8.46 91.0 23.5 30.02 7.15 89.2 27.3
Full-ENet 26.91 5.19 78.5 66.8 26.59 5.04 78.5 70.5
CC-ENet 45.50 22.77 41.8 84.5 53.26 28.26 38.0 87.2
SI-ENet 30.21 8.30 67.8 70.5 28.28 6.68 69.3 72.2
MI-ENet 28.76 6.93 72.8 69.2 27.76 6.05 72.7 70.5
SI-WENet 28.81 7.01 70.3 67.5 27.95 6.37 69.0 72.0
MI-WENet 27.97 6.34 73.8 68.8 27.22 5.63 73.5 69.8
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mance in terms of smallest PMSE and MSE, and relatively high sensitivity and

specificity compared to all the ENet based imputation methods. However, we

observe a higher sensitivity with a significant loss of specificity in the SPLS based

imputation methods. Although we see the reduced sensitivity in MI-ENet impu-

tations for highly correlated data compared to many SPLS based imputations. The

lower sensitivity is not as severe compared to the loss of specificity in the SPLS

based imputations. The second column in Table 2.3 illustrates the performance of

different methods when the number of predictor variables increases from 24 to 60

with fixed sample size n at 50, from which we conclude that: (1) as p increases

(say p = 24, 48, 60), the PMSE and MSE for each method increase apparently; (2)

as p gets larger, the sensitivity decreases, and the specificity slightly decreases as

well for SPLS methods, while increase slightly for ENet methods; (3) in general,

the performance of MI-WENet is as good as the Full-ENet.

To examine whether a large number of simulation runs impacts the simulation

results, I carried out the simulations of the same scenarios as presented in Tables

3 but with 500 simulation runs. The results are presented in Table 2.4, from which

we can see the results with 500 runs are very similar to those with 100 simulation

runs (See Table 2.3).

Based on all simulation results, I conclude that the MI-WENet method obtains

more or less the lowest PMSE and MSE among all the imputation based methods.

The sensitivity and specificity of the MI-ENet method is better than all other

ENet based imputation methods. In some cases although it looses in terms of

sensitivity to some of the SPLS based imputation methods its loss in sensitivity

is not as severe as the loss of specificity in some of the SPLS based imputations.

Moreover, in most of our simulation scenarios, the PMSE, MSE, sensitivity and

specificity from MI-WENet are closest to those from ENet on fully observed data.

MI-WENet is therefore recommended for variable selection and prediction when
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Table 2.3: Simulation results for scenarios with different combinations of p and
n under monotone MAR and AR(1) correlation structure specifications based on
100 simulation runs.

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

p = 12, n = 50 p = 24, n = 50
Full-SPLS 27.45 5.82 87.5 31.0 24.25 7.33 87.7 54.4
CC-SPLS 43.08 15.44 75.8 35.8 43.97 18.29 78.2 47.2
SI-SPLS 30.33 7.31 81.3 42.0 26.40 9.15 80.8 59.6
MI-SPLS 30.02 7.15 89.2 27.3 29.33 11.66 91.0 26.8
Full-ENet 26.59 5.04 78.5 70.5 22.81 5.89 82.5 82.7
CC-ENet 53.26 28.26 38.0 87.2 47.90 27.29 41.7 93.4
SI-ENet 28.28 6.68 69.3 72.2 24.17 7.24 75.0 83.2
MI-ENet 27.76 6.05 72.7 70.5 23.15 6.19 78.3 82.7
SI-WENet 27.95 6.37 69.0 72.0 23.78 6.85 78.3 82.7
MI-WENet 27.22 5.63 73.5 69.8 23.03 6.08 79.3 84.3

p = 12, n = 100 p = 48, n = 50
Full-SPLS 24.89 2.96 90.7 35.0 64.14 26.81 84.6 38.7
CC-SPLS 40.66 13.77 80.0 40.5 125.58 63.08 68.1 39.9
SI-SPLS 27.12 4.67 82.8 47.7 71.94 35.72 75.8 44.2
MI-SPLS 26.46 4.13 91.8 33.3 122.30 81.38 87.8 24.7
Full-ENet 24.35 2.44 89.5 68.2 62.51 26.75 55.6 87.1
CC-ENet 46.01 19.01 53.0 86.8 139.63 95.08 16.2 95.6
SI-ENet 26.13 4.06 79.5 70.7 79.43 43.50 45.1 86.8
MI-ENET 25.98 3.85 81.2 70.0 72.33 36.19 52.2 83.0
SI-WENet 25.61 3.71 80.5 69.8 77.47 41.56 47.2 86.9
MI-WENet 25.34 3.41 83.0 72.2 69.98 34.01 53.5 84.4

p = 12, n = 200 p = 60, n = 50
Full-SPLS 23.26 1.53 97.2 35.3 86.32 39.61 85.1 32.0
CC-SPLS 33.61 9.76 87.2 34.8 172.15 89.69 65.5 42.1
SI-SPLS 24.92 3.07 90.0 54.5 95.03 48.63 79.5 38.5
MI-SPLS 24.69 2.83 95.8 39.2 276.42 218.87 91.8 11.6
Full-ENet 22.95 1.20 97.3 71.2 91.66 46.41 48.9 86.7
CC-ENet 38.12 11.94 68.0 83.8 183.00 126.53 14.5 95.4
SI-ENet 24.63 2.76 89.5 75.2 105.60 60.05 40.9 87.2
MI-ENet 24.36 2.48 92.2 71.2 97.83 52.21 46.9 86.8
SI-WENet 23.84 2.06 92.0 72.5 103.51 58.41 41.7 87.9
MI-WENet 23.72 1.97 93.0 69.7 94.69 49.27 47.9 86.6
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Table 2.4: Simulation results for scenarios with different combinations of p and
n under monotone MAR and AR(1) correlation structure specifications based on
500 simulation runs.

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

p = 12, n = 50 p = 24, n = 50
Full-SPLS 27.90 6.11 88.1 30.4 24.36 7.16 88.0 52.3
CC-SPLS 44.22 16.62 77.0 38.0 44.36 18.91 77.0 47.1
SI-SPLS 30.82 8.16 79.2 45.6 26.67 8.97 81.2 60.8
MI-SPLS 30.67 8.10 87.4 29.8 29.30 11.45 92.5 27.5
Full-ENet 27.11 5.34 78.2 68.6 22.95 5.93 80.9 82.7
CC-ENet 53.80 28.20 38.1 85.6 47.73 27.26 40.1 93.0
SI-ENet 29.49 7.63 68.4 73.5 24.56 7.53 74.2 82.2
MI-ENet 28.62 6.70 70.7 73.7 23.36 6.34 77.9 82.8
SI-WENet 28.85 7.04 69.8 72.5 24.09 7.03 76.6 82.3
MI-WENet 27.97 6.16 73.0 72.4 23.25 6.20 78.1 83.1

p = 12, n = 100 p = 48, n = 50
Full-SPLS 24.80 3.16 92.8 32.7 64.41 27.52 84.9 40.0
CC-SPLS 37.82 12.56 82.2 38.2 117.09 56.28 74.1 36.0
SI-SPLS 26.90 4.79 83.8 48.6 75.06 38.56 75.6 45.2
MI-SPLS 26.34 4.35 91.8 33.0 116.28 76.58 85.4 25.8
Full-ENet 24.18 2.52 90.3 67.2 64.41 28.48 57.2 85.2
CC-ENet 44.37 18.25 54.4 85.2 137.51 93.63 17.0 95.4
SI-ENet 26.15 4.38 79.4 70.2 78.09 42.30 45.5 84.7
MI-ENET 25.63 3.79 82.7 70.5 72.12 36.19 52.5 83.5
SI-WENet 25.21 3.53 83.3 68.9 76.92 40.97 47.1 85.1
MI-WENet 24.88 3.20 85.6 69.1 69.80 33.94 54.7 83.6

p = 12, n = 200 p = 60, n = 50
Full-SPLS 23.27 1.57 96.2 36.7 84.43 37.53 83.6 34.8
CC-SPLS 33.71 9.82 87.8 33.9 164.11 82.84 69.4 39.1
SI-SPLS 24.86 2.98 88.7 55.2 96.66 49.80 76.1 40.4
MI-SPLS 24.55 2.70 96.0 36.9 285.05 225.15 91.0 15.6
Full-ENet 23.02 1.27 97.2 70.0 88.60 43.01 50.6 86.3
CC-ENet 36.95 10.69 70.1 84.8 183.30 128.18 13.8 95.7
SI-ENet 24.49 2.64 88.2 71.1 104.67 59.05 40.6 87.2
MI-ENet 24.26 2.37 92.6 70.4 99.70 54.00 45.3 86.1
SI-WENet 23.76 2.00 91.8 71.5 103.13 57.48 41.4 87.2
MI-WENet 23.60 1.85 94.2 70.2 97.24 51.57 46.3 86.4
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missing data exist.

In the following section, I applied the MI-WENet method to examine which

variables were associated with the median effective dose and maximum effect

in an ex-vivo phenylephrine-induced extension and acetylcholine-induced relax-

ation experiment.

2.4 Case Study

The high-fat diet and normal chow fed mouse model has been used to ex-

amine the mechanisms by which high-fat diet impacts cardiovascular function.

Early on, high fat diet feeding induces endothelium inflammation, insulin resis-

tance and endothelium dysfunction, which precedes the onset of diabetes (Kim

et al., 2008). Thus, endothelium dysfunction, characterized by decreased nitric

oxide (NO) production or bioavailability, is used as a robust and early indicator

of cardiovascular injury (Rizzo et al., 2010). In the mouse model, mice were ran-

domly assigned to high-fat diet and normal chow groups. The mice were fed

for 12 weeks. Their body weight (BW), organ weight, blood variables and an

array of plasma compositions and the ex-vivo endothelial functional outcomes

were measured. Organ weights included heart, liver, kidney and spleen weight.

The blood variables included percentage of red blood counts (%RBC, i.e., hema-

tocrit) and percentage of white blood counts (%buffy). The plasma parameters

included the counts of cholesterol , triglyceride, albumin, total protein (TP), high

density lipoprotein (HDL), low density lipoprotein (LDL), alanine aminotrans-

ferase, aspartate aminotransferase, creatine kinase, alkaline phosphatase, creati-

nine, hemoglobin A1c (HbA1c), insulin, and nitrogen oxide species (NOx, i.e., the

sum of nitrite (NO2) and nitrate (NO3)), the ratio of HDL to LDL, and the per-

centage of albumin to total protein (Alb/TP). Isolated aorta were contracted with

phenylephrine and relaxed with acetylcholine as previously published (Conklin
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et al., 2009). Percentage relaxation based on maximal contraction was calculated

for each aorta. The percentage of maximal relaxation is called the Emax, and

the acetylcholine concentration needed to achieve 50% relaxation is called the ef-

fective concentration producing 50% response, i.e., EC50. Emax and EC50 are

two important parameters used to quantify endothelial function. In this section,

we examined whether the two measurements of endothelial function, Emax and

EC50, were related to any of the blood variables, plasma parameters, organ and

body weights of the mice.

The final data set included 22 mice and 28 measured predictor variables. Some

values in the predictor variables were missing due to inadequate volume of plas-

ma. In total, 8 mice had missing observations. In order to include the 8 mice in

the analysis, we applied the MI-WENet method to examine what variables were

closely associated with the measurements of endothelial function. To apply the

MI-WENet method, we imputed 5 realizations for each missing value, and stacked

the five imputed data sets into one large data set. Each variable was scaled to have

unit variance before multiple imputation, and there was no additional standard-

ization carried out after imputation. Thus, the subjects without missing values

remained the same in the stacked data set. The log-transformation for EC50 was

applied to ensure the normality of residuals. I applied the MI-WENet method

to the stacked multiple imputed data set to obtain the coefficient estimates and

select the important predictor variables. In addition, I applied leave-one-out cross

validated samples to construct 95% confidence intervals (95% CIs) for the estimat-

ed coefficients. The predictor variables whose 95% CIs did not contain zero were

selected as the important variables for predicting the measurements of endothe-

lial function. The estimates for the selected important predictors and their 95%

CIs are shown in Table 2.5.

The selected important predictors for Emax were NOx and the ratio of kidney
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Table 2.5: The estimated coefficients and their 95% CIs based on leave-one-out
samples for Emax and EC50 using the MI-based weighted ENet method.

Covariate Estimate 95% CI-low X95% CI-up

Emax
NOx 0.1894 0.0792 0.2997
kidney/BW 0.2664 0.0128 0.5200

EC50
NOx -1.0803 -1.6983 -0.4623
kidney -1.2246 -1.9112 -0.5379
kidney/BW -1.7004 -2.6188 -0.7821
spleen -1.5503 -2.3522 -0.7484
spleen/BW -1.9629 -2.5398 -1.3860
heart/BW -0.9037 -1.5152 -0.2923
TP -1.0097 -1.4712 -0.5481
Alb/TP -0.9950 -1.4623 -0.5276
HDL -1.1533 -1.6846 -0.6220
LDL -1.0116 -1.4736 -0.5497

to body weight. The selected important predictors for the log-transformed EC50

were NOx, kidney weight, the ratio of kidney to body weight, spleen weight, the

ratio of spleen to body weight, the ratio of heart to body weight, TP, Alb/TP,

HDL and LDL. Endothelium dysfunction is commonly associated with decreased

nitric oxide production and/or bioavailability (Hadi et al., 2005; Davignon and

Ganz, 2004; Versari et al., 2009). The current results show that the decreased NOx

is associated with decreased Emax and increased EC50, which is consistent with

previous findings. The other findings, such as association between endothelium

dysfunction and kidney/BW, are also interesting and may be investigated further.

The selected important predictor NOx for Emax and EC50 demonstrates the se-

lection precision of our proposed model, and thus, re-emphasizes the importance

of using these endpoints to highlight the fundamental role of the endothelium in

diet-induced cardiovascular injury.
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2.5 Discussion and Conclusions

Missing data is common in animal experiments and clinical studies. In this

project I concentrated on the cases with missing covariate values. One of the fre-

quently used methods in practice is the complete case analysis which ignores the

covariates with missing observations. This method is easy to carry out, while it is

inefficient and sometimes incorrect because the missing observations may not be a

random subset of the whole sample. In this chapter, I proposed a multiple impu-

tation based weighted elastic net method (MI-WEnet) for variable selection and

prediction. The simulation studies demonstrated that the proposed MI-WENet

method was able to identify important predictor variables with similar precisions

as the SPLS and elastic net methods would have achieved if the data were com-

pletely observed. Sensitivity and specificity obtained by the MI-WENet method

were close to the results from the ENet method based on the full data in all the

tested simulation scenarios. In addition, the MI-WENet method had the lowest

MSE and PMSE among almost all methods we have evaluated. The simulations

also showed that the use of SPLS and ENet on complete cases only resulted in

models with poor sensitivity and much larger PMSE and MSE than MI-WENet,

especially when proportion of missing data is high and the missing patterns are

MAR. This again indicates that the use of MI-WENet is especially recommended

when proportion of missing values of the covariates is moderate to high.

MI-WENet maintained a balanced sensitivity and specificity in all the sim-

ulation scenarios and all the imputation schemes. The MI-WENet is also easy

to implement. By applying the cyclical coordinate descent algorithm (Friedman

et al., 2010), the coefficients of MI-WENet can be easily estimated by iterative-

ly minimizing the weighted penalized least squares. The computational cost is

mainly affected by the number of predictor variables not the sample size. R code
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for implementing the MI-WENet method can be obtained upon request. At last,

it should be pointed out that the weights we proposed account for the available

information in an observation; how to account for the available information more

accurately is challenging and is beyond the scope of the current work.
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TOPIC II: MONOTONIC SINGLE-INDEX MODELS WITH APPLICATION TO

ASSESSING DRUG INTERACTION

3.1 Introduction

Single-index models have been extensively studied in the statistical literatures

(Stoker, 1986; Härdle and Stoker, 1989; Ichimura, 1993; Yu and Ruppert, 2002).

A single-index model could be considered as an extension of a general linear

model. Recall that a general linear model is defined as Y = Xα + ε, where X is a

vector of covariates X = (X0, X1, ..., Xp), and α = (α0, α1, ..., αp)T is an unknown

parameter vector. A single-index model generalizes the general linear regression

by replacing Xα with a nonparametric function of Xα, say f (Xα), where f is an

unknown univariate link function, and α remains the same. In the literature, f is

usually estimated by using kernel spline (Ichimura, 1993; Härdle and Stoker, 1989;

Xia and Härdle, 2006), or using penalized spline (Yu and Ruppert, 2002). Both α

and f are unknown and need to be estimated. For identification, one may either

restrict α0 = 1 or add constraints on α such that ‖ α ‖=
√

α2
0 + α2

1 + ... + α2
p = 1

and α0 > 0. The asymptotic properties for α have been established (Stoker, 1986;

Härdle and Stoker, 1989; Ichimura, 1993; Yu and Ruppert, 2002). A single-index

model reduces the dimensionality from multivariate predictors to a univariate

index z (say z = Xα), while it still captures important features in high-dimensional

data (Yu and Ruppert, 2002). Any interactions between the covariates can also

be included in the single index z. Single-index model has wide application in

econometrics (Stoker, 1986; Härdle and Stoker, 1989; Ichimura, 1993) as well as in

biometrics (Yu and Ruppert, 2002).

Although single-index models have been well studied, the function f in the
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single-index models is not necessary monotonic. In certain applications, it is de-

sirable to have the function f monotonic. For example, in the dose-response stud-

ies, the dose response relationship is often assumed to be monotonic (Kong and

Eubank, 2006; Ramsay and Barahamowicz, 1989; Ramsay, 1998). In the combina-

tion drug studies, the dose response relationship is often described by a response

surface model (Greco et al., 1995). It is desirable that the response surface mod-

el is reduced to a dose-response curve when only one drug is applied. Without

loss of generality, let denote the response at the combination dose (d1, d2) is y. A

relative potency, say ρ, is often used to describe how effective drug 2 is relative

to drug 1, that is the effect of drug 2 at dose level d2 when applied alone, is the

same as that of drug 1 at dose level ρd2. If we assume the dose-response curve

for drug 1 is y = f (d1), then the dose-response curve for drug 2 is f (ρd2). In

case that the two drugs do not have any interaction, i.e. the combination is addi-

tive, the effect of the combination dose (d1, d2) can be described by f (d1 + ρd2).

If the effect at (d1, d2) is more (or less) than the effect of drug 1 at dose level

d1 + ρd2, we say the combination dose (d1, d2) is synergetic (or antagonistic) (Lee

et al., 2007; Berenbaum, 1989). Plummer and Short (1990) used a model of the for-

m f (d1 + ρd2 + k
√

d1d2) identify and quantify departures from additivity, where

k > 0 indicates synergy of the combination dose at (d1, d2), and k < 0 indicates

antagonism of the combination dose at (d1, d2). Kong and Lee (2006) extended

the model of Plummer and Short (1990) by replacing k with a quadratic function

of (d1, d2) so that the model has the flexibility to capture different patterns of

drug interaction, i.e. some combination dose may be synergistic and some may

be antagonistic (Savelev et al., 2003). These models can be rewritten as the form

of f (xTα). For example, one may set x = (d1, d2,
√

d1d2) and α = (1, ρ, κ) for

Plummer and Short (1990)’s model.

Note that in the approaches by Plummer and Short (1990) and the extension by
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Kong and Lee (2006), the function is assumed to be monotonic parametric model.

The estimates of α can be biased when the parametric function f is misspecified.

To avoid the problem caused by the misspecification of the function f , we do

not assume any specific function form for f . Instead, we only assume that f

is monotonic and has continuous first and second derivatives. The function f is

estimated by using penalized splines with I-splines as its basis functions (Ramsay,

1998). The monotonicity of the function f is achieved by adding constraints to

the coefficients of I-splines basis functions (Kong and Eubank, 2006; Ramsay and

Barahamowicz, 1989; Ramsay, 1998). The presentation of this topic is organized

as follows. In Section 3.2, I propose the single-index model for assessing drug

interactions, and develop algorithm for estimating the monotonic function f and

the parameter α in the single-index model. Simulation studies are carried out

in Section 3.3 to examine the performance of the proposed model in term of

accuracy in estimating f and α. In Section 3.4, I apply the proposed monotonic

single-index method to examine the drug interaction of two drugs in a case study

given by Harbron (2010). The last section is devoted to a discussion.

3.2 Monotonic Single-index Model

3.2.1 Monotonic Single-index Model

Let yi denote the response observed at the combination dose (d1i, d2i) (i =

1, ..., n). In case that drug 1 is applied alone, d2i is set to zero. Similarly, d1i is set to

zero if drug 2 is applied alone. In the literature, the dose-response curve is usually

described by a parametric function, which may not be specified correctly. In the

project, we develop dose-response surface model under the minimal assumption

that the dose-response curve is monotonic. Similar to Kong and Lee (2008), a
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quadratic function of (d1, d2) of the form

g(d1, d2; κ) = κ0 + κ1
√

d1 + κ2
√

d2 + κ3d1 + κ4d2 + κ5
√

d1d2, (3.1)

is used to capture different patterns of drug interaction. I propose the following

response surface model to assess different patterns of drug interactions:

y = f
(

d1 + ρd2 + g(d1, d2; κ)
√

d1d2

)
+ ε, (3.2)

where f is monotonic function and is estimated by cubic splines, and ε is a ran-

dom error with mean zero and variance σ2.

Denote

αT = (1, ρ, κ0, κ1, κ2, κ3, κ4, κ5)

= (α0, α1, ..., α7), (3.3)

xT =

(
d1, d2,

√
d1d2,

√
d1d2, d1

√
d2,
√

d3
1d2,

√
d1d3

2, d1d2

)
.

Model (3.1) and (3.2) can be expressed as single-index models of the form

yi = f
(

xT
i α
)
+ εi, i = 1, ..., n (3.4)

subject to α0 = 1 and f is monotonic.

Let us denote zi = xT
i α (i = 1, ..., n), zi is often called single index for xT

i =

(xi0, ..., xip). Let us also denote a knot sequence τ = {τj}K
j=1, where min{zi, i =

1, ..., n} = L = τ1 < τ2 < ... < τK = U = max{zi, i = 1, ..., n}. The function

f is defined on the domain [L, U] over which f is approximated by a piecewise

polynomial function in each interval [τl, τl+1], and the two polynomials in the two

adjacent intervals, say [τl−1, τl] and [τl, τl+1], are required to join smoothly. The
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most commonly used spline is the cubic spline in which each polynomial is a cu-

bic, and the piece-wise polynomials are joined at each knot with continuous first

and second derivatives so that the curve changes smoothly. There are different

basis functions for cubic splines, such as B-splines, M-spines, and I-splines (Ram-

say, 1998). I found I-splines are convenient for constructing monotonic curves

(Ramsay, 1998).

In general, the I-spline basis function of degree k is determined by k + 1 knots,

say {τj, τj+1, ...τj+k}, and can be expressed as

Ik
j (z) =

∫ z

L
Mk

j (u)du, (3.5)

with z ∈ [L, U] and j = 1, 2, ..., K − k. Here the M-splines can be iteratively ob-

tained by the following formula:

Mk
j (z) =

k
[
(z− τj)Mk−1

j (z) + (τj+k − z)Mk−1
j+1 (z)

]
(k− 1)(τj+k − τj)

, (3.6)

with k > 1 and

M1
j (z) =


1

τj+1−τj
, τj ≤ z < τj+1;

0, otherwise.
(3.7)

Because the M-spline basis Mk
j (z) is a piecewise nonnegative polynomial of de-

gree k− 1, the corresponding I-spline basis function Ik
j (z) is therefore a piecewise

monotone polynomial of degree k (Ramsay, 1988). The I-spine function Ik
j (z) can

also be put in a more convenient form

Ik
j (z) =


0, j > l

∑l
m=j

τm+k+1−τm
k+1 Mk+1

m (z), l − k + 1 ≤ j ≤ l

1, j < l − k + 1,

.
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for any z ∈ [τl, τl+1]. In the rest of this presentation, I set k=3. The monotonic

function f is approximated by a linear combination of the I-splines in the follow-

ing form

f (z) =
K−3

∑
j=1

β j I3
j (z), (3.8)

subject to β j ≥ 0 for j = 1, ..., K− 3. The parameters βT = (β1, ..., βK−3) in equation

(3.8) is obtained by minimizing the following penalized residuals sum of squares

(PRSS),

PRSS =
n

∑
i=1
{yi − f (zi)}2 + λ

∫ U

L
f ′′(u)2du, (3.9)

subject to β j ≥ 0 (j = 1, ..., K− 3). Note that

f ′(z) =
K−3

∑
j=1

β jM3
j (z). (3.10)

and

f ′′(z) =
K−3

∑
j=1

β j(M3
j (z))

′. (3.11)

The second term in (3.9),
∫ U

L f ′′(u)2du, can be written in the form of βTDβ, where

D is a (K− 3)× (K− 3) tri-diagonal matrix, and the (j, j′) entry is

∫ U

L

[
M3

j (u)
]′ [

M3
j′(u)

]′
du,

which is specified in Appendix A. Thus, given the indices zi = xT
i α (i = 1, ...., n)

and knots sequence, one can obtain the estimate of f from minimizing the PRSS

in equation (3.9).

To obtain the estimate for α, for fixed function f , one may minimize the fol-

lowing residual sum of squares for errors

RSSE(α) =
n

∑
i=1

{
yi − f (xT

i α)
}2

. (3.12)
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Consider the first order Taylor expansion for f (xT
i α) at α(0):

f (xT
i α) ≈ f (xT

i α(0)) + f ′(xT
i α(0))xT

i (α− α(0))

= f (xT
i α(0))− f ′(xT

i α(0))xT
i α(0) + f ′(xT

i α(0))xT
i α,

one can update α by minimizing

RSSE∗(α) =
n

∑
i=1

{
y∗i − x∗Ti α

}2
, (3.13)

where x∗i = f ′(xT
i α(0))xi and y∗i = yi − f (xT

i α(0)) + f ′(xT
i α(0))xT

i α(0). By replacing

α(0) by the current available α and using the first order Taylor expansion, one can

minimize the RSSE for α. It should be noticed that the estimates for α and f are

obtained iteratively. That is, given α, one estimates f ; and given f , one estimates

α. The iteration continues until the estimates of α from two adjacent estimations

of f are close enough.

3.2.2 Algorithm for Estimating f and α

The algorithm for estimating α and f can be described as the follows:

Step 1. Set a grid of 100 values for λ (λ > 0) by equally spacing λ in log-scale.

For each fixed λ (given α) obtain the monotonic link function by minimizing the

PRSS in (3.9). Set the optional link function as the one which has the minimum

generalized cross validation (GCV) score, which has the following form

GCV(λ) =
n−1 ∑n

i=1{yi −∑K−3
j=1 β̂ j Ij(xT

i α̂)}2

{1− n−1tr(Sλ)}2 ,

where tr(Sλ) = tr{I(IT I + nλD)−1 IT}, and I = (I1, ..., IK−3) is the matrix of I-

spline basis on the estimated single-index ẑi = xT
i α̂, for i = 1, ..., n.

Step 2: Given the estimate of f , α is obtained by minimizing the RSSE in (3.13).
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Step 3: Repeat step 1 and step 2 until the estimates of α from two repeats are

converged within a small tolerance error.

Remark: In nonparametric regression, the trace of smoothing matrix Sλ is often

called the degrees of freedom of the fit (Hastie and Tibshirani, 1990), i.e., d f f it =

tr(Sλ). It has the rough interpretation as the equivalent number of parameters

as defined in linear regression. The residual degrees of freedom is defined as

d fres = n− 2tr(Sλ) + tr(SλST
λ). Consequently, the error variance σ2 in model (3.4)

can be estimated by σ̂2 = RSSE/d fres, where RSSE = ∑n
i=1{yi − f̂ (xT

i α̂)}2.

3.2.3 Variance Estimate for α̂ and Assessing Drug Interaction

The asymptotic properties for α̂ in single-index model have been studied by

Hardle et al (2000) and Xia et al. (2006) using kernal estimation for f and by Yu

and Ruppert (2002) using penalized splines. Under the assumption that f̂ is an

unbiased estimate for f , α̂ has the following asymptotic property:

√
n(α̂− α)

D−→ N(0, V−1ΣV−T), (3.14)

where

V =
1
n

n

∑
i=1

∂ f (xT
i α)

∂α

∂ f (xT
i α)

∂αT =
1
n

n

∑
i=1

( f ′(zi))
2xixT

i , (3.15)

and

Σ =
1
n

n

∑
i=1

∂ f (xT
i α)

∂α
(yi − f (zi))

2 ∂ f (xT
i α)

∂αT

=
1
n

n

∑
i=1

( f ′(zi))
2(yi − f (zi))

2xixT
i . (3.16)

Therefore, the variance of α̂ can be estimated by

V̂ar(α̂) =
1
n

V̂−1Σ̂V̂−T, (3.17)
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where V̂ and Σ̂ are obtained by replacing every quantity in (3.15) and (3.16) by

their final estimates, respectively. Note that the model is developed to assess drug

interaction. It is important to estimate the quantity of the function g(d1, d2; α) in

(3.1) and estimate its variation so that the inference for drug interaction can be

made with statistic rigor. Indeed, the function g(d1, d2; α) can be written as a

linear function of α, say uTα, where uT =
(
1,
√

d1,
√

d2, d1, d2,
√

d1d2
)
. Once the

estimate α̂ and its variance become available, the variance for g(d1, d2; α) can be

obtained as uTVar(α̂)u. Thus the 95% confidence interval (CI) for g(d1, d2; α̂) can

be constructed as g(d1, d2; α̂)± zα/2
√

uTVar(α̂)u. An alternative approach for the

variances of g(d1, d2; α̂) can be obtained by using bootstrap method that is shown

in Appendix B.

3.3 Simulation

Extended simulation studies were performed to examine the finite-sample

properties of the estimates of the proposed model, with a set of parameters

α = (1, 1, 0, 0, 0, 0.5,−0.5, 0) was considered. The corresponding response surface

model was defined as

Y = log
(

E
1− E

)
= log

(
d1 + d2 + (0.5d1 − 0.5d2)(d1d2)

1
2

)
+ ε, (3.18)

where ε ∼ N(0, σ2). I generated 100 random samples with σ = 0.01, and d1 and d2

taking values among (0, 0.1, 0.5, 1, 2, 4). The replicates for each sample was set as

3. Then the total sample size in each simulation run was 3× 6× 6 = 108. I fitted

each random sample to the full model as specified in Equations (3.1) and (3.2),

and obtained the estimated parameters and their corresponding standard errors

(SE). The averages of the estimated parameters (Est.), averaged SE (SE.Ave), and
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the standard error of the estimates from the 100 estimates of α (SE.Emp) were

reported in Table 3.1.

Table 3.1: Simulation results from fitting the full model based on the 100 simulat-
ed data.

g(d1, d2; α) = 0.5d1 − 0.5d2
Parameters True value Est. SE.Ave SE.Emp
α0 1.0 1.000 0.001 0.000
α1 1.0 0.999 0.004 0.004
α2 0.0 0.022 0.031 0.034
α3 0.0 -0.012 0.038 0.057
α4 0.0 -0.026 0.028 0.044
α5 0.5 0.489 0.013 0.048
α6 -0.5 -0.496 0.010 0.016
α7 0.0 0.018 0.012 0.029

Figure 3.1 showed the contour plot of the underlying polynomial function

g(d1, d2) in panel A. We can see that some combination doses are synergistic (i.e.,

g(d1, d2) > 0), and some combinations doses are antagonistic (i.e., g(d1, d2) < 0).

The underlying polynomial function g(d1, d2) and the fitted polynomial function

for the 100 simulations are plotted in panels B1-B5 of Figure 3.1, where the x-axis

is the dose level for drug 1 under each fixed drug 2 dose level. The underlying

function g(d1, d2) and the 95% limit bounds based on the 100 simulation data are

shown in panels C3-C5 of Figure 3.1.

Based on the simulation results shown in Table 3.1 and Figure 3.1, I conclude

that (1) the estimates of the parameters in the single-index model were unbiased

(Table 3.1); (2) the functions g(d1, d2) ware estimated correctly (panels B1-B5 and

C3-C5 of Figure 3.1); (3) the empirical standard errors (Table 3.1 under column

"SE.Emp") were close to the formula based SE (Table 3.1 under column "SE.Ave"),

indicating the variance estimates were reasonable.
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Figure 3.1: The results from simulation studies. Panel A shows the contour plot
of the underlying polynomial function g(d1, d2). Each of the panels B1-B5 shows
the underlying curve (solid lines) and the fitted curves (dotted lines) based on
100 simulation runs. Panels of C3-C5 present the underlying curve (solid lines),
the mean of fitted curve (dotted line), and the 95% point-wise confidence bounds
(dashed lines).
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3.4 Case Study

In this section, I studied a real case data resulting from an in vitro combination

experiment (Harbron, 2010). In the data set, there were two compounds A and B,

both dosed in monotherapy along a 9 dose levels with 3 replicates in each dose

level. The two compounds were combined in a factorial design manner for all

of the 6 lower doses (Table 3.2). All design points were tested in triplicate. The

Table 3.2: Experimental results (per cent inhibition) from a combination study.

Dose of compound B

Dose of compound A 0 0.037 0.11 0.33 1 3 9 27 81 243

0
3.1 1.0 1.0 8.5 13.3 23.7 53.1 78.9 93.5
1.5 1.0 8.8 1.0 14.7 30.2 59.0 82.9 98.8
1.0 1.0 5.9 4.5 18.1 42.5 62.0 81.5 96.2

0.037
1.0 1.0 1.0 1.0 8.4 21.8 38.5
5.8 2.0 1.0 2.9 10.0 4.7 34.9
1.0 1.0 1.0 4.2 7.6 9.5 35.2

0.11
1.0 1.0 2.6 1.0 5.4 22.2 32.8
1.0 1.0 1.0 2.5 9.8 22.5 34.8
1.0 1.0 9.2 2.0 8.9 15.6 30.4

0.33
1.0 1.0 1.0 4.7 8.5 22.5 37.9
4.2 6.2 4.9 6.3 12.3 19.8 41.7

13.3 6.1 9.5 5.6 7.2 15.9 34.3

1
1.9 16.0 3.4 21.2 22.9 34.0 52.9
4.2 6.0 6.6 19.6 23.4 37.7 46.4
5.7 15.8 15.5 14.7 26.4 42.1 53.9

3
20.6 41.1 49.4 43.0 50.5 55.8 66.8
31.7 42.1 50.4 48.3 40.0 56.6 59.2
23.9 43.1 51.3 46.1 52.5 61.8 64.2

9
56.2 69.2 66.8 76.8 84.7 75.6 77.5
58.5 82.1 83.5 83.4 79.3 68.6 77.6
66.6 71.1 72.8 83.1 84.0 85.5 79.8

27
89.4
84.9
85.8

81
92.9
97.6
90.9

243
99.0
93.7
99.0

percentage of growth inhibition of a cell culture was measured as the endpoint.

It is calculated from an optical density, corrected for background and normalized
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Table 3.3: The estimates of α and their standard error estimates based on model
formula and bootstrap method.

Direct estimates Bootstrap estimates
Par. Est. SE CI.low CI.up SE CI.low CI.up
α0 1.00 0.00 1.00 1.00 0.00 1.00 1.00
α1 0.34 0.14 0.07 0.62 0.03 0.29 0.40
α2 -0.20 0.66 -1.49 1.08 0.61 -1.25 1.16
α3 1.62 0.54 0.57 2.68 0.51 0.61 2.61
α4 0.26 0.86 -1.43 1.95 0.48 -0.76 1.13
α5 -0.03 0.14 -0.30 0.24 0.15 -0.36 0.24
α6 -0.06 0.30 -0.64 0.52 0.10 -0.25 0.16
α7 -0.41 0.17 -0.74 -0.07 0.13 -0.65 -0.14

against an average no treatment response (Harbron, 2010). I set the grid of penalty

parameter as λ ∈ [10−10, 1010] by equally spacing log(λ) on [−10, 10].

The plot of GCV versus λ at final step is shown in Figure 3.2. The optimal

λ was λ = 0.012 after 19 iterations. The estimates of α and their 95% confidence

intervals based on model-based variances and bootstrap variances were presented

in Table 3.3, and both gave similar results.

Figure 3.2: The plots of penalty parameter λ vs GCV. The top plot is for
log(λ) ∈ [−10, 10], and the bottom plot is for log(λ) ∈ [−10, 0]. The minimum
GCV corresponds to λ = 0.012.
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Figure 3.3 showed the fitted f̂ (xT α̂) versus the indices xT α̂ as the solid lines

and the observed responses as circles (panel A1), the fitted function f̂ when only

drug A was applied (panel A2), when only drug B was applied (panel A3), and

when drug A and drug B were combined with equal amount (panel A4). To

facilitate viewing, Figure 3.3 is shown on a logged scale, though the analysis was

performed on the unlogged dose scale. From Figure 3.3, it is clear that the model

fitted the data very well for all data (panel A1), marginal dose-response (panels

A2 and A3), and a typical combinations (panel A4).

Figure 3.3: Fitted response versus the estimated single-index (panel A1), fitted
responses versus dose of drug A when drug A was applied alone (panel A2),
dose of drug B when drug B was applied alone (panel A3), and dose of drug A
when drug A was combined with drug B in equal amount (panel A4).
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In Figure 3.4, panel A showed the contour plot of the fitted response sur-

face, and panel B showed the contour plot of the polynomial function g(d1, d2; κ),

where the dotted curve is the intercept of lower 95% confidence surface with
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Figure 3.4: Contour plot of response surface of the combination of compounds A
and B (panel A), and contour plot of polynomial function g(d1, d2; κ̂) (panel B).
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ĝ(d1, d2; κ) = 0. From panel B of Figure 3.4, I concluded that the combination

doses for all but left side of the dashed lines were synergistic, the combination

dose with low level of drug A (left side of the dashed lines) were additive. The

results were consistent with the findings of Harbron (2010).

3.5 Discussion and Conclusions

Based on simulation and case study, I conclude that the proposed monotonic

single-index modeling approach worked effectively in assessing the interactions

of two drugs. By using I-spline basis, we can easily construct a monotonic link

function f in the single-index model to describe the dose-response relationship.

The estimates of both f and α are unbiased. The polynomial function g(d1, d2; κ)

is estimated accurately to capture different patterns of drug interaction. The ap-

proach can be extended to assess drug interaction of multiple drugs. The algo-

rithm was implemented in R and will be made public available to facilitate the

use of this method.
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According to (Ramsay, 1998), the primary distinction between smoothing s-

plines and regression splines is how to place the knots. The knots selection tech-

nique for classical smoothing splines is to select all unique values of z. The knots

for regression penalized splines are usually selected from a smaller set of candi-

dates. The more knots on the interested region of z, the more flexible the spline is.

This principle applies locally, such that if we need a lot of flexibility in a particular

region of z, we use more knots in this region, and we may use less knots in the

region if we don’t need much curvature. However, to decide how many knots

needed and where to position the knots is often challenging. Practically, user first

simply make knots equally spaced, while paying attention to the requirement of

having at least one observation in every subinterval. The optimal number of knots

K should be sufficiently large to fit the data, meanwhile K can not be so large that

computation time is excessive or the estimated curve f is over-fitted. Unfortunate-

ly, there is no standard rules to decide the number of K. Penalized splines tend

to select more knots but add penalty to make fitted curve more smooth. Ruppert

(2002) has made a detailed study of the choice for K for penalized splines. How-

ever, the algorithm developed by Ruppert (2002) may either stop prematurely or

there are multiple local minimums of GCV(λ) at the sequence of K. Therefore, the

selection of K seems challenging.

In this chapter, I applied a penalty approach that is similar to smoothing s-

plines but with a little fewer knots. In order to fit data to capture as enough

features as possible while to save computation burden, I proposed a new knots

selection approach. Use all the unique values of z as knot candidates, and include

min(z) and max(z) into the knot sequence first. By setting up a jump width w, say

w = 0.1, suppose zj is an element selected in the knot sequence, if zj+1 − zj > w,

we maintain zj+1 in the knot sequence; otherwise we drop zj+1 and examine

whether zj+2 − zj > w. A subset of indexes z is then formed as knots with the
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distance of any two knots being larger than w. By using this approach, we avoid

the dense knot values and include important z values in the knot sequence. The

simulation and case study showed this approach provided efficient way for knots

determination.
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TOPIC III: A STUDY FOR PREDICTING PATIENT SURVIVAL TIME WITH

HIGH THROUGHPUT MASS SPECTROMETRY DATA

4.1 Introduction

Genomic and proteomic technologies have become more and more important

in biomedical studies in a recent time. The use of mass spectrometry as a diag-

nostic tool and identification of proteomic biological markers has risen extensively

and demonstrated great advantage that led to the discovery of numerous protein-

s and protein profiles associated with various types of diseases (Stoeckli et al.,

2001; Adam et al., 2002; Aebersold and Mann, 2003; Rai and Chan, 2004; Datta

et al., 2008; Datta and Pihur, 2010). In this chapter, I aim to develop an effec-

tive model for predicting the survival time of cancer patients via penalized linear

regression modeling on log-transformed failure times by the proteomic features

as obtained from the matrix-assisted laser desorption/ionization Time-of-Flight

mass spectrometry (MALDI-TOF-MS) data.

A typical MALDI-TOF-MS data set contains hundreds of spectra, and each

spectrum contains tens of thousands of intensity measurements representing an

unknown number of protein/peptide peaks which are the key features of inter-

est (Hardesty et al., 2011). The data of a single spectrum is usually given in two

columns, with the first column containing the mass-to-charge ratio (m/z) and the

second column containing the corresponding intensity. Before applying this data

directly to the final modeling analysis, it is also important to conduct basic pre-

processing analyses such as baseline correction, denoising, alignment and peak

detection to identify key interested features (Satten et al., 2004; Jeffries, 2005; Re-

nard et al., 2008; Atlas and Datta, 2009; Ndukum et al., 2011). Although these
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basic preprocessing steps may generally extract some peaks for further interest,

there are still hundreds or thousands of retaining potentially important features

which could be used for the subsequent predictive modeling analysis. On the

other hand, the preprocessing procedures should be performed well and carefully

for assuring the precision of feature extraction and quantification, as subsequent

analysis depends on these determinations. It has been shown that the use of i-

nadequate or ineffective methods in the preprocessing steps make it difficult to

extract meaningful biological information from these data (Sorace and Zhan 2003;

Baggerlt et al. 2003, 2004; Yasui et al. 2003a). In this chapter, I have also stud-

ied how to carry out these preprocessing procedures properly and efficiently for

the prediction of patient survival times. Moreover, since the high-dimensionality

of the feature set as well as some high correlations among features, in order to

predict patient survival using a predictive statistical model, one needs to consid-

er dimension reduction and important feature selection in addition to the basic

pre-processing of mass spectrometry (MS) data very carefully.

A number of early attempts, mostly in the genomic data setting, use some ad

hoc dimension reduction methods and incorporate the reduced set of covariates

(e.g., principal components, meta-genes etc.) in a Cox proportional hazards re-

gression model (Pawitan et al., 2004; Bovelstad et al., 2007). In proteomic studies,

dimensionality of the feature set (covariates) is typically even larger comparing

with gene expression data. Recently, penalized regression versions of the Cox

model (Cox, 1972) have been attempted to deal with high dimensional data (Li

and Luan, 2003; Gui and Li, 2005). However, the proportional hazards assumption

of a Cox model itself may be too simplistic for genomic and proteomic applica-

tions. On the other hand, semi-parametric accelerated failure time (AFT) model

with an unspecified error distribution is often regarded as a more flexible alter-

native to the Cox model in survival analysis. As far as I know, there are only a
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few publications about using the AFT model in high dimensional data setting,

which mostly use the microarray platforms. For example, the LASSO (Tibshirani,

1996) and the threshold-gradient-directed regularization along with AFT model

are applied for estimation and variable selection by Huang et al. (2006); predict-

ing survival times using AFT model along with PLS and LASSO is studied by

Datta et al. (2007); the elastic net approach for variable selection under both the

Cox proportional hazards model and the AFT model is adopted by Engler and Li

(2009); Mostajabi et al. (2012) compared the performances of four relatively recent

latent factor and/or penalized regression techniques (PLS, SPLS, LASSO and e-

lastic net) to fit an AFT model based on high dimensional regressors specifically,

to predict patient survival times using high dimensional MS data.

In this chapter, I focused on the two techniques performed best in the study

of Mostajabi et al. (2012), SPLS and elastic net, to fit AFT models for predicting

survival times of patients by using high dimensional MS data. These methods are

then applied to analyze survival times generated from simulated mass spectra,

as well as a real MS data set on advanced non-small cell lung caner (NSCLC)

patients. To ensure the features used in analysis corresponding to real peaks, I

applied a hard thresholding algorithm to remove noise signals from the MS da-

ta. However, under this denoising approach, the intensities under thresholds are

considered as missing data and are usually replaced by zeroes artificially. The

missing data patterns are not independent of the peak intensities of the peptides

and can be considered as left censored data censored at the threshold. There are

generally two basic strategies to dealing with missing values in practice. The sim-

plest strategy is to work only with the complete intensities. That is the data used

for a particular peptide/protein would be based on only the observed peak in-

tensity, and the features containing missing data are excluded from the analysis.

Alternatively, the missing values can be imputed. Tekwe et al. (2012) studied sev-
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eral imputation algorithms. The imputation approach selected should be appro-

priate when the missing values have been censored, as they can result in biased

estimates and statistical inference (Karpievitch et al., 2009). To retain sufficient

true signals meanwhile reduce the bias for the subsequent predictive modeling

analysis, I propose a nonparametric imputation approach based on Kaplan-Meier

estimator by considering the aligned intensities on the selected m/z values across

all spectra as life times. The detailed imputation scheme was explained in Section

4.2.2. I then compare the predictive performance of the patient survival times

with and without the imputation of the left censored peaks. Additionally, I com-

pare different penalized regression schemes along with the AFT models to predict

the patient survival times.

4.2 Method

4.2.1 Preprocessing of MS Data

According to (Antoniadis et al., 2010; Morris et al., 2005), raw spectra acquired

by TOF mass spectrometers are generally a mixture of a real signal, noise of

different characteristics and a varying baseline. Statistically, a possible model for

a given mass spectrum is to represent it schematically by the equation

yi(tj) = Bi(tj) + NiSi(tj) + εij, (4.1)

where yi(tj) represents the observed log spectral intensity for spectrum i at TOF

tj. The true signal Si(t), consists of a sum of possibly overlapping peaks, each cor-

responding to a particular biological molecule, e.g. a protein or a peptide. Bi(tj)

is the baseline representing a relatively smooth artifact commonly seen in mass

spectrometry data, Ni is a constant multiplicative factor to adjust for spectrum-

specific variability, e.g. the possible different amounts of protein in each sample,
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and εij is an additive white noise with variance σ2
i arising from the measurement

process. To perform feature extraction and quantification with MALDI-TOF-MS

data, the observed TOFs, tj, j = 1, ..., J will be mapped to a set of inferred mass to

charge ratios (m/z) xj, j = 1, ..., J by calibration. This step aligns multiple spectra

and yields molecular masses that can be used to ascertain the protein identity of a

peak of interest. Eventually, the data of a single spectrum is given in two columns,

with the first column containing the m/z and the second column containing the

corresponding intensity. Low-level preprocessing of the raw MS data are neces-

sary to perform feature extraction and quantification with MALDI-TOF-MS data.

Depending on analysis goals, the preprocessing procedures can be different and

complex in different literatures (Datta et al., 2007; Antoniadis et al., 2010; Morris

et al., 2005; Mostajabi et al., 2012; Ndukum et al., 2011). In our methodology, I

performed three basic preprocessing steps as baseline subtraction, alignment, and

denoising to maintain as much information as possible before applying the AFT

models in the subsequent survival analysis.

In the baseline correction step, the baseline is subtracted from each point and

rescale intensities of all spectra to positive producing a baseline corrected spec-

trum. This step is to remove systematic artifacts, usually attributed to clusters

of ionized matrix molecules hitting the detector during early portions of the ex-

periment, or to detector overload. The relations among raw data, baseline and

processed data of one spectrum are illustrated by Figure 4.1. After baseline cor-

rection of the spectrum data, I apply a binning step to divide the m/z axis into

intervals of desired length, which will help to extract meaningful peak pattern for

alignment. The detailed binning scheme works as following: suppose we set the

binning bandwidth as 0.5Da, we start by rounding all mass to charge values to the

nearest 0.5Da. Then, moving from the lowest rounded m/z value of the spectrum

to the right along the m/z axis, for each rounded m/z values say b, search for the
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maximum intensity y within 0.5Da interval (b− 0.25, b + 0.25). Further, select the

maximum value of the intensity y on the corresponding rounded m/z value (or

alternatively, bin the m/z values to the nearest 0.5Da and average over the inten-

sity values with the same m/z value). To make sure the characteristic features

occur at the same time in all spectra, the subsequent step is to align the spectra

cross samples to make sure that the characteristic features occurs at the same time

in all spectra. Eventually, all the binned spectra data are mapped to a matrix of

common m/z values and the corresponding intensities across samples. The next

step is to denoise the individual spectrum by using a hard threshold h. In hard

thresholding, all intensities less than the threshold are set to zero, while all inten-

sities no less than the threshold remain unchanged (Datta et al., 2007; Mostajabi

et al., 2012; Ndukum et al., 2011). As the noise signals are usually assumed to

be normally distributed, by referring the denoising scheme in Morris et al. (2005);

Antoniadis et al. (2010), I propose to estimate the hard threshold for each spec-

trum as the median absolute deviation (MAD) of its raw intensities divided by

0.67. The hard thresholding criterion can be expressed as following:

ỹi(xj) =

 y∗i (xj), y∗i (xj) ≥ MAD(yi)/0.67;

0, otherwise.
(4.2)

The principle is based on keeping features with intensities greater than a certain

threshold. The threshold should be large enough to eliminate initial noisy region

but small enough to retain any peak that could correspond to real observable

proteins or peptides.

4.2.2 Imputation of Denoised MS Data

After the denoising process with hard thresholds, intensity values that are less

than the noise level are replaced by zeroes in each spectrum. We can extract the
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Figure 4.1: An example of baseline corrected spectra sample (Intensity vs M/Z
value).

key interesting features for survival analysis by selecting the m/z’s corresponding

to more than a specified number of nonzero intensities across all samples. The

selected intensity vectors are considered as covariates for the predicting models in

the following procedure (Mostajabi et al., 2012). On the other hand, we may also

want to maintain as many features as possible, and leave the AFT model to select

the correlated features for survival prediction automatically. To reduce the bias

caused by the zeroes induced in the denoising step, I proposed a nonparametric

imputation method to impute the denoised value by its expected value given that

the noise level of the spectrum was larger than the unobserved true signal.

In the proposed imputation algorithm, first for i = 1, ..., n, we have n spectra

with n cutoffs of noise levels h = (h1, ..., hn). After alignment, we have J selected

m/z values on each spectrum. let X denote a variable for the intensities aligned

on a selected m/z value across all spectra. Let T denote the variable of intensities

in X that are larger than the noise levels h, and E denote the variable of intensities

in X that are lower than h. In the denoising step, all values in E are replaced
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by zeroes. However, If we consider X as a life time variable, X is therefore left

censored with the values in E censored at the noised levels h respectively. By

replacing each value in E with its expected value based on T = {max(h, X); δ =

I(h ≤ X))}, we can apply the AFT model to automatically select key related

features for predicting patient survival times with reduced bias.

The detailed imputation process is as following: for each fixed j, the data is

Tij = {max(hi, Xij); δ = I(hi ≤ Xij)}, for i = 1, ..., n. The variable Tj can therefore

be considered as a left censored life time variable. It is much easier to apply the

Kaplan-Meier estimator to right censored variable compared with left censored

one, therefore we apply a flipping approach to Tj such that T′j = max(Tj)− Tj +

(max(Tj) −min(Tj)). The flipped data is then T′ij = {min(h′i, X′ij); δ′ = I(h′i ≥

X′ij)}, for i = 1, ..., n. When Tj is left censored, its flipped variable T′j is right

censored, and the survival function of T′j becomes the cumulative distribution

function (percentiles) of the original data Tj (Helsel and Lee, 2006).

Given a fixed j, after flipping Tj to T′j , we can then compute the survival

function for T′j by the Kaplan-Meier estimator. Suppose the survival function of

T′j = {min(h′, X′j); δ′ = I(h′ ≥ X′j)} is denoted as S(t). Under the assumption that

T′j is independent of X′j, S(t) can be estimated by the Kaplan-Meier estimator

Ŝ(t) = ∏
τij≤t

{
1−

∆N(τij)

R(τij)

}
, (4.3)

where τ(1j), ...., τ(mj) are the distinct ordered life time, ∆Nc(τij) is the number of

observations at time τ(ij), and R(τij) = Number of {k : Tc
kj ≥ τij}, counts the

number of individuals at risk of failing just before time τ(ij).

The censored values can then be imputed from the survival distribution of T′j .

In detail, for the jth covariate X′j, we keep the observed X′ij intact; replace each of

the unobserved X′ij by its expected values given that the true failure time T′ij was
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larger than the censored time h′i. It can be estimated from the Kaplan-Meier curve

of the survival function of T′j as

X
′∗
ij = {Ŝ(h′i)}−1 ∑

τij>h′i

T′ij∆Ŝ(τij),

where Ŝ is the Kaplan-Meier estimator of the survival function of T′j , and ∆Ŝ(τij) is

the jump size of Ŝ at time τij. Note that for this calculation, the largest event time

τm is treated as a true failure no matter if δm = 0 or not. The further explanation

of this approach can be found in (Datta et al., 2007; Datta, 2005). The estimated

conditional expectation X
′∗
ij is then flipped back to X∗ij under the original scale.

Thus, under this imputation approach, we let X̃j = Xj, if δi = 1, and X̃j = X∗j , if

δi = 0. Then the AFT model with SPLS and Enet can be used to fit the imputed

MS data set on the log-transformed patient survival times, respectively.

4.2.3 Survival Prediction Models

The AFT model is presented as logT = XTβ + ε, where β is an unknown

p × 1 parameter of interest associated with the proteomic features X and ε is

an unobservable random error term that is assumed to be independent of X.

Each identified protein feature will be examined as an independent covariate.

The association of each feature with patient survival or time-to-recurrence will

be evaluated. The latent factor and regularization techniques for fitting the AFT

model of Y = logT (logarithm of the patient survival time) on the proteomic

features X (intensity data corresponding to selected m/z values) of patients are

selected by the SPLS and elastic net methods.

The sparse partial least squares regression (SPLS) (Chun and Keleş, 2010) is an

extension of partial least squares regression (PLS) (Wold, 1985) to achieve simul-

taneous dimension reduction and variable selection. PLS extracts latent factors or
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linear combinations of the original regressors that account for most of the varia-

tion in the response while avoiding over-fitting. PLS has become a very popular

tool in the field of chemometrics and bioinformatics (Datta, 2001; Pihur et al.,

2008). SPLS combines the latent factor approach with regularization to obtain

good performance in prediction and variable selection by producing sparse linear

combinations XβT of the original predictors X. This technique achieves the spar-

sity of the coefficients on X by adding the L1 constraints on β, and is especially

applicable when p is much greater than n (Chun and Keleş, 2010).

The elastic net (ENet) (Zou and Hastie, 2005) is a widely applied regularization

and variable selection method. The ENet estimator is obtained by undoing the

shrinkage for the naïve elastic net estimator that is obtained by minimizing the

penalized least squares

L(λ, α, β0, β) =
1

2n

n

∑
i=1

(yi − β0 − xT
i β)2 + λPα(β), (4.4)

where

Pα(β) = α‖β‖L1 +
1
2
(1− α)‖β‖L2 =

p

∑
j=1

{
α|β j|+

1
2
(1− α)β2

j

}
. (4.5)

Here Pα is the elastic net penalty that is a compromise between the ridge regres-

sion penalty (α = 0) (Hoerl and Kennard, 1970) and the LASSO penalty (α = 1)

(Tibshirani, 1996). The elastic net penalty with α = 1− ε, for some small ε > 0,

performs much like the LASSO but removes any degeneracies and wild behavior

caused by extreme correlations (Friedman et al., 2010). For a given λ, as α increas-

es from 0 to 1, the sparsity of the solution to (4.4), i.e., the number of coefficients

being zero, increases monotonically from 0 to the sparsity of the LASSO solution.

The ENet penalty is particularly useful in the cases that p is greater than n and

there are many correlated predictors (Zou and Hastie, 2005).
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4.3 Simulation

Using the tool developed by Coombes et al. (2005) for simulating realistic mass

spectra, Morris et al. (2005) simulated hundreds of proteomic data sets. The list

of corresponding true peaks (features) is also available. There are 100 data sets

from this collection each containing 100 spectra. We select the first data set for

our simulation. The R package pkDACLASS (Ndukum et al., 2011) was used

for the preprocessing steps explained early. By binning the m/z values to the

nearest 1 Da, I identified 11832 potential features across all the 100 spectra for

the subsequent prediction modeling procedure. The corresponding distinct m/z

values are ranged from 941 Da to 24277 Da.

In order to retain the true signals from the denoised spectra to build a predic-

tive model, three different approached are applied for pre-selection of interesting

features in (Mostajabi et al., 2012). To exam the performance of our imputation

technique, we also applied three approaches referring to (Mostajabi et al., 2012).

The corresponding three groups of data sets of features identified from prepro-

cessed MALDI-TOF-MS data are then denoted as: X(1): features with no less than

one nonzero denoised intensities in all spectra. X(2): features with no less than

half of nonzero denoised intensities in all spectra. X(3): features with nonzero

denoised intensities in all spectra. I denote X(4) as the set of same features in

X(1) with zeroes imputed. The first and third approaches were same as applied

in (Mostajabi et al., 2012). I increased the limit number of nonzeros in the second

approach from 5 to 40 compared with in (Mostajabi et al., 2012).

To simulate survival times T, I randomly select 80 spectra from the first data

set. Four different scenarios for the β coefficients are considered in our simula-

tion. These are as follows: (i) β j = exp{−j} for 1 ≤ j ≤ 11832; (ii) β j = 1/j

for 1 ≤ j ≤ 11832; (iii) for 1 ≤ j ≤ 1000, β j = (j mod 5)/10 if j mod 5 > 0,
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otherwise β j = 0.5 and for 1001 ≤ j ≤ 11832, β j = 0; and (iv) β j = 0.1 and

for 1 ≤ j ≤ 11832. Note that (i) and (ii) both represent situations when all the

co-variables have positive but variable effects on survival; however, due to the

exponential nature of the decaying coefficients, only the first few will have a real

effect on survival in scenario (i). Case (iv) denotes an extreme hypothetical sce-

nario when all covariates have the same positive effect on survival. Presumably,

(iii) denotes the most realistic scenario when the collection of covariates contains

a large number of pure noise variables. In each case, the vector of coefficients is

randomly sampled for computational stability. A normal distribution with vari-

ance rσ2 is used for generating the additive errors, where σ2 = βT ∑X β is the

variability in the regression model. The variance-covariance matrix ∑X is a diag-

onal matrix with the diagonals are all set as 1 and the off-diagonals are all 0. r

denotes a noise to signal ratio. Thus, log normally distributed failure times are

considered. To maintain a similar scale of error variance in each scenario, a value

of r = 1 was used for scenarios (i) and (iii), and r = 0.1 was used for scenarios (ii)

and (iv).

For each design choice, I simulated our training data set by sampling 40 spec-

tra at random from the preselected 80 spectra, and the left are used as test data set.

Denote the training response variable as Yt
i = log Tt

i , for i = 1, ..., 40. Next, de-

note the response variable in the test data set as Ye
i = log Te

i , for i = 1, ..., 40,

I calculate the estimated mean squared error of prediction (EMSEP) for test-

ing the prediction performance of each method. EMSEP here is computed as

EMSEP= 1
40 ∑40

i=1(Ŷ
e
i −Ye

i )
2, where Ŷe

i is the estimated predicting value calculated

by using the fitted model on the ith sample in the test data set. Each of these mea-

sures is computed by averaging these quantities over 50 Monte-Carlo replicates.

From the simulation results in Table 4.1, we can easily see that the proposed
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Table 4.1: Estimated mean squared error of prediction (EMSEP) for the simulated
data. Four simulation scenarios of simulation settings are studied.

Case i Case ii Case iii Case iv
Enet SPLS Enet SPLS Enet SPLS Enet SPLS

X(1) - Zeroes 0.97 1.56 2.66 4.42 1.51 11.01 1.31 2.58
X(2) - Half 0.97 1.51 2.70 4.11 2.03 10.05 1.34 2.95
X(3) - Complete 1.03 1.73 2.77 4.75 1.49 2.18 1.37 2.43
X(4) - Imputed 0.95 1.46 2.66 3.53 1.46 5.59 1.34 2.21

imputation approach (see the row X(4) in Table 4.1) reduced the EMSEP in all

four cases for both Enet and SPLS methods, comparing with inducing zero only

method (see the row X(1) in Table 4.1), except the in Case iv for ENet method.

In case iv, the EMSEP for ENet in all four approaches are quite similar. There is

no significant evidence to show that the pre-selection of interesting features (see

the rows X(1)− X(3) in Table 4.1) improved the survival prediction performance

for both ENet and SPLS in all cases with only one exception (see the row X(3)

under case iii in Table 4.1). All these results showed that a proper imputation

method should be applied to the denoised data so that we can retain as many

interesting features as possible for the predictive modeling. I applied the analysis

approach to Netherlands Non Small Cell Lung Cancer Data in the real case study

(Voortman et al., 2009).

4.4 Netherlands Non Small Cell Lung Cancer Data Study

In this case study, I used the data set reported in Voortman et al. (2009).

MALDI-TOF-MS spectra of serum samples of 27 patients with advanced non-

small cell lung cancer (NSCLC), treated with chemotherapy and Bortezomib were

obtained. Serum spectra of these patients are available at three time points: pre-

treatment (preTx), after two cycles of treatment (post-2) and at the end of treat-

ment (EOT). For each patient, there is an associated progression-free survival

(PFS) recorded in days. No censoring exists in this data. The range of observed
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survival time in this data set is 27 days to 601 days. I take EOT samples along

with PFS values as major information for further analysis. Two samples are ex-

cluded due to missing EOT serum spectrum. Each spectrum consisted features

with mass-to-charge ratio range of 800-4000 Dalton (Da) with the corresponding

intensities. After baseline correction, it is necessary to align spectra so that char-

acteristic features occur at the same time in all spectra. Because peak patterns are

not clear in the data, to effectively select real features, I tried three scenarios by

setting three different binning widths as 0.01 Da, 0.05 Da and 1 Da, separately. In

different binning scenario, the number of features we selected for the regression

modeling, indicated by the number of rounded m/z values are different. I se-

lected the maximum intensities within each pre-specified intervals of m/z values.

Next, I denoised all 25 spectra as described above.

To exam the performance of our imputation technique, I applied two ap-

proaches for feature selection. The corresponding two groups of data sets of

features identified from preprocessed MALDI-TOF-MS data are then denoted as:

X(1): Features with nonzero denoised intensities in all spectra. X(2): Features

with no less than one nonzero denoised intensities in all spectra. I denote X(3) as

the set of same features in X(2) with zeroes imputed. The numbers of features se-

lected in each data set under different binning widths were summarized in Table

4.2.

Table 4.2: Number of selected features under different binning widths and feature
selection approaches.

Before Denoising X(2) X(1)

1.0 Da 3214 2757 900
0.5 Da 6427 4716 1474
0.1 Da 32131 15480 3701

In the analysis, I used each of the resulting feature sets X(1), X(2), and X(3),
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respectively, in an AFT model to determine the relationship between progression

free survival time (in days) and proteomic features for the 25 cancer samples. As

mentioned before, two methods of modeling fitting SPLS and elastic net are im-

plemented with each feature set. I compared the performance of these methods

by computing their estimated mean squared error of prediction (EMSEP) which is

minimized with respect to the selected values of the tuning (operational) parame-

ters in a regression method. The EMSEP here is computed by leave-one out cross

validation, EMSEP= 1
n ∑n

i=1(Ŷ−i − Yi)
2, where Ŷ−i is calculated by first fitting the

model on the sample values other than the ith sample unit and predicting the ith

value using the fitted model with the covariate Xi. SPLS regression has two key

tuning parameters: the thresholding parameter (λ) and number of components

(K). Following the guidelines given in Chun and Keles (2010), cross validation

is computed over the grid of K = 1, 2, ..., 20 and λ = 0.1, 0.2, ..., 0.9. There are

two tuning parameters in the elastic net as well. These are the penalty terms λ1

and λ2. I used the ’glmnet’ R-package in the programming, and let the built-in

cross validation function to decide the optimal tuning parameters automatically.

LASSO is a special case of the elastic net with λ2 = 0.

Table 4.3: Estimated mean squared error of prediction (EMSEP) for the Nether-
land NSCLC data. Three feature selection methods are tested; Under three dif-
ferent binning width 1.0 Da, 0.5 Da and 0.1 Da, X(1) has 900, 1474, 3701 features
and X(2) has 2757, 4716, 15480 features. In each case, the minimum EMSEP value
over the operational parameters is reported for each regression method.

Elastic net SPLS
1 Da 0.5 Da 0.1 Da 1 Da 0.5 Da 0.1 Da

Denoised 0.5256 0.5028 0.4885 0.6678 0.6357 0.6158
Complete 0.4957 0.4975 0.5116 0.8066 0.6233 0.7166
Imputed 0.3818 0.4172 0.4412 0.5230 0.6858 0.6949

Table 4.3 showed the measure of prediction for Netherland NSCLC data. For

both SPLS and elastic net methods, the obtained prediction errors were getting

smaller as the increase of width of binning (as the decrease of number of fea-
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tures selected as showed in Table 4.2). Comparing SPLS and Elastic net, the later

method performs better in all nine cases. For all Elastic net cases, the prediction

errors from imputed data sets are smaller than other two data sets. Similar result

showed for SPLS method, when the binning width is 1 Da. This showed that our

imputation approach advanced the prediction performance for both two methods.

4.5 Discussion and Conclusions

The methods Elastic net and SPLS showed promise in predicting survival with

properly preprocessed mass spectrometry data having large number of features

versus limited sample size. Our simulation study confirmed the benefit of treating

the intensity values under the noise levels as left-censored data, and the non-

parametric imputation method we proposed based on Kaplan-Meier estimator

effectively improved the performance of the prediction models.

It is not the primary purpose of this topic to identify the features and the

corresponding proteins used for survival prediction. However, a further study

in this direction can be conducted in the future research. Moreover, to explore

the full effect of all preprocessing of MS data and feature selection strategies on

survival prediction is beyond the scope of this article.
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APPENDICES

Appendix A Specification of Penalty Matrix D

Let us denote the K + 4 knots as {τ1, τ2, ..., τK+4}. By formulas (3.6) and (3.7),

we have

M3
j (z) =

3
2(τj+3 − τj)

[
(z− τj)M2

j (z) + (τj+3 − z)M2
j+1(z)

]
=

3(z− τj)
2

(τj+3 − τj)(τj+2 − τj)
M1

j (z)

+

[
3(z− τj)(τj+2 − z)

(τj+3 − τj)(τj+2 − τj)
+

3(τj+3 − z)(z− τj+1)

(τj+3 − τj)(τj+3 − τj+1)

]
M1

j+1(z)

+
3(τj+3 − z)2

(τj+3 − τj)(τj+3 − τj+1)
M1

j+2(z).

M
′3
j (z) =

6(z− τj)

(τj+3 − τj)(τj+2 − τj)
M1

j (z)

+

[
3(τj + τj+2 − 2z)

(τj+3 − τj)(τj+2 − τj)
+

3(τj+1 + τj+3 − 2z)
(τj+3 − tj)(τj+3 − τj+1)

]
M1

j+1(z)

+
6(z− τj+3)

(τj+3 − τj)(τj+3 − τj+1)
M1

j+2(z)

=aj,1(z− τj)M1
j (z) + (aj,2z + aj,3)M1

j+1(z) + aj,4(z− τj+3)M1
j+2(z),
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with

aj,1 =
6

(τj+3 − τj)(τj+2 − τj)
,

aj,2 =
−6

τj+3 − τj

(
1

τj+2 − τj
+

1
τj+3 − τj+1

)
,

aj,3 =
3

τj+3 − τj

(
τj+2 + τj

τj+2 − τj
+

τj+3 + τj+1

τj+3 − τj+1

)
,

aj,4 =
6

(τj+3 − τj)(τj+3 − τj+1)
.

(4.6)

Therefore, if 1 ≤ j ≤ K + 1, we have

∫ ∞

−∞

[
M
′3
j (z)

]2
dz =

∫ τj+3

τj

[
M
′3
j (z)

]2
dz

=
∫ τj+1

τj

[
aj,1(z− τj)M1

j (z)
]2

dz +
∫ τj+2

τj+1

[
(aj,2z + aj,3)M1

j+1(z)
]2

dz

+
∫ τj+3

τj+2

[
aj,4(z− τj+3)M1

j+2(z)
]2

dz

=
a2

j,1(τj+1 − τj)

3
+

a2
j,2(τ

2
j+2 + τ2

j+1 + τj+2τj+1) + 3aj,2aj,3(τj+2 + τj+1) + 3a2
j,3

3(τj+2 − τj+1)

+
a2

j,4(τj+3 − τj+2)

3
.
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Notice that
∫ U

L

[
M
′3
j (z)

]2
dz =

∫ τK+2
τ3

[
M
′3
j (z)

]2
dz, so if we set

a1 =


a2

j,1(τj+1−τj)

3 , 3 ≤ j ≤ K + 1;

0, otherwise,

a2 =


a2

j,2(τ
2
j+2+τ2

j+1+τj+2τj+1)+3aj,2aj,3(τj+2+τj+1)+3a2
j,3

3(τj+2−τj+1)
, 2 ≤ j ≤ K;

0, otherwise,

a3 =


a2

j,4(τj+3−τj+2)

3 , 1 ≤ j ≤ K− 1;

0, otherwise.

Then ∫ U

L

[
M
′3
j (z)

]2
dz = a1 + a2 + a3. (4.7)

In the similar manner, if 1 ≤ j ≤ K, we have

∫ ∞

−∞
M
′3
j (z)M

′3
j+1(z)dz =

∫ τj+3

τj+1

M
′3
j (z)M

′3
j+1dz

=
∫ τj+2

τj+1

[
(aj,2z + aj,3)M1

j+1(z)
] [

aj+1,1(z− τj+1)M1
j+1(z)

]
dz

+
∫ τj+3

τj+2

[
aj,4(z− τj+3)M1

j+2(z)
] [

(aj+1,2z + aj+1,3)M1
j+2(z)

]
dz

=
aj+1,1

[
aj,2(2τj+2 + τj+1) + 3aj,3

]
6

+
−aj,4

[
aj+1,2(2τj+2 + τj+3) + 3aj+1,3

]
6

.

Also observe that
∫ U

L M
′3
j (z)M

′3
j+1dz =

∫ τK+2
τ3

M
′3
j (z)M

′3
j+1dz, if we denote

a1 =


aj+1,1[aj,2(2τj+2+τj+1)+3aj,3]

6 , 2 ≤ j ≤ K;

0, otherwise,

a2 =


−aj,4[aj+1,2(2τj+2+τj+3)+3aj+1,3]

6 , 1 ≤ j ≤ K− 1;

0, otherwise.
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Then ∫ U

L
M
′3
j (z)M

′3
j+1dz = a1 + a2. (4.8)

Finally, if 1 ≤ j ≤ K− 1, we have

∫ ∞

−∞
M
′3
j (z)M

′3
j+2(z)dz =

∫ τj+3

τj+2

M
′3
j (z)M

′3
j+2dz

=
∫ τj+3

τj+2

[
aj,4(z− τj+3)M1

j+2(z)
] [

aj+2,1(z− τj+2)M1
j+2(z)

]
dz

=
−aj,4aj+2,1(τj+3 − τj+2)

6
.

That is ∫ U

L
M
′3
j (z)M

′3
j+2dz =

−aj,4aj+2,1(τj+3 − τj+2)

6
(4.9)

According to above calculations, we can construct the algorithm to form the

matrix D as following:

For j = 1, ..., K + 1, calculate the matrix aj,1, aj,2, aj,3 and aj,4 according to (4.6).

Set D(j, l) = 0 for all j, l = 1, ..., K + 1.

For j = 1, ..., K + 1,

set D(j, j) according to (4.7),

set D(j, j + 1) and D(j + 1, j) according to (4.8), if j + 1 ≤ K + 1,

set D(j, j + 2) and D(j + 2, j) according to (4.9), if j + 2 ≤ K + 1.

Appendix B Bootstrap Standard Error of g(d1, d2)

The standard error for ĝ(d1, d2) can be obtained via bootstrap. The detailed

procedure is summarized as following:

Step 1. Fit the model based on the original observations, obtain the estimates α̂

for α, and β̂ for β.
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Step 2. Obtain the residuals from the final estimate of f (∗), i.e. εi = yi − f̂ (z) =

yi −∑K−1
j=−1 β̂ j I3

j (xT
i α̂), i = 1, ..., n.

Step 3. Generate bootstrap data set by replacing yi with ∑K−1
j=−1 β̂ j I3

j (xT
i α̂) + ε∗i , i =

1, ..., n, where {ε∗1 , ..., ε∗n} is a random sample from the residuals obtained

in step 2.

Step 4. Fit the model using the generated data, and then obtain the estimated α̂

and ĝ(d1, d2).

Step 5. Repeat step 2 to step 4 B (say, 100) times.

If we denote the estimated g(d1, d2) in the bth (b = 1, ..., B) iteration as g∗b(d1, d2),

the standard deviation for g(d1, d2) will be estimated by

ŜD
∗B
(ĝ(d1, d2)) =

(
1
B

B

∑
b=1

(g∗b(d1, d2)− ĝ(d1, d2))
2

)
,

thus a 100(1− α)% pointwise confidence interval for g(d1, d2) can be constructed

as

[
ĝ(d1, d2)− zα/2 × ŜD

∗B
(ĝ(d1, d2)), ĝ(d1, d2) + zα/2 × ŜD

∗B
(ĝ(d1, d2))

]
,

where zα/2 is the upper α
2 × 100% percentile of the standard normal distribution,

and ĝ(d1, d2) is the estimate for g(d1, d2). Our case study in Section 5 showed that

the estimated variance for g(d1, d2) can account for the carry-over errors from

estimating the marginal dose-effect curves. Our simulations given in Section 4

showed that the proposed bootstrap CIs have good coverage properties.
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