
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2006

Software based deployment of encryption keys in wireless sensor Software based deployment of encryption keys in wireless sensor

networks. networks.

Timothy William Hnat
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Hnat, Timothy William, "Software based deployment of encryption keys in wireless sensor networks."
(2006). Electronic Theses and Dissertations. Paper 622.
https://doi.org/10.18297/etd/622

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143833478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/622
mailto:thinkir@louisville.edu

SOFTWARE BASED DEPLOYMENT OF ENCRYPTION KEYS IN WIRELESS
SENSOR NETWORKS

By

Timothy William Hnat
M.Eng., University of Louisville, 2006

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed School of Engineering

as Partial Fulfillment of the Requirements
for the Professional Degree of

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

July 2006

SOFTWARE BASED DEPLOYMENT OF ENCRYPTION KEYS IN WIRELESS
SENSOR NETWORKS

Submitted by

Timothy William Hnat

A Thesis Approved on

(Date)

by the Following Reading and Examination Committee:

Rammohan K. Ragade, Thesis Advisor

Adel S. Elmaghraby

John F. Naber

i

ABSTRACT

Sensor networks are just in their infancy. Their use will continue to grow as the

technology becomes cheaper and more efficient. A current shortcoming with sensor

networks is the inability to efficiently provide secure communications. As sensor

networks are deployed to monitor and control systems, the security of communications

will become a more important.

This thesis proposes a new approach to key establishment and renewal through

the use of point-to-point keys and software verification and validation to ensure the

integrity of two nodes. Sensor networks exist on limited resources, so power efficiency

is a concern. The proposed protocol allows for the use of small keys instead of large

pre-distributed keys.

This thesis explores the design and implementation of a new point-to-point key

generation and renewal algorithm. The main contribution is the development of an

algorithm that utilizes a software integrity check to ensure the validity of a node. The

thesis also utilizes a simulated sensor network to test and validate the new software

algorithm.

ii

ACKNOWLEDGMENTS

I would like to express my appreciation to my advisor, Dr. Rammohan Ragade,

for his support and guidance during my pursuit of this research and my committee,

Dr. Adel Elmaghraby and Dr. John Naber. I would like to thank Jeff Hieb and Brian

Carter who have helped me through the research process and have provided insight

into the technical side of sensors and security. I would also like to thank my parents,

William and Janice Hnat, for supporting me through these past 5 years of college.

iii

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION . 1

1.1. Background . 1

1.2. Organization of Thesis . 4

II. LITERATURE REVIEW . 5

2.1. Cryptographic Keys . 10

2.2. Authentication . 14

2.3. Availability . 14

2.3.1. Sybil Attack . 15

2.4. Scalability . 16

2.5. Efficient Cryptographic Systems 16

2.6. Attacks . 16

III. THEORY AND DESIGN . 19

3.1. Wireless Sensors . 19

3.2. TinyOS Framework . 20

3.3. TOSSIM . 21

3.4. Energy Consumption . 22

3.5. Design of Algorithms . 22

3.5.1. Session Keys . 23

3.5.2. Soft Key Distribution . 23

IV. IMPLEMENTATION . 29

4.1. nesC . 29

4.2. Application Code . 30

iv

V. TESTING AND RESULTS . 33

5.1. Testing Overview . 33

5.1.1. Testing Key Generation . 33

5.1.2. Testing Network Communication 34

5.2. Experimental Design . 37

5.2.1. Sample Tree Application . 37

5.3. Security . 42

5.3.1. Intrusion . 42

5.3.2. Breaking the Encryption . 43

5.3.3. Misuse or Abuse . 46

VI. CONCLUSIONS AND FUTURE DIRECTIONS 48

6.1. Conclusions . 48

6.2. Future Directions . 50

REFERENCES . 52

APPENDIX

I. TinyOS System . 58

1.1. TinyOS Installation . 58

1.2. TinyViz . 58

1.3. Power Profiling . 59

II. Testing . 61

2.1. Key Generation Testing . 61

2.2. Network Communication Testing 63

2.3. Sample Tree Application Test . 64

2.4. Base Tree Power Profile . 71

2.5. New Tree Power Profile . 73

III. Source Code . 76

3.1. Network Test Application . 76

v

3.1.1. NetTest.nc . 76

3.1.2. NetTestM.nc . 76

3.2. Basic Tree Application . 77

3.2.1. Tree.nc . 78

3.2.2. TreeM.nc . 78

3.3. Encrypted Tree Application . 80

3.3.1. TreeTest.nc . 80

3.3.2. TreeTestM.nc . 80

vi

LIST OF TABLES

TABLE 2.1. Benefits and drawbacks of key distribution schemes 14

TABLE 5.1. Simulation Results for Key Generation Testing 35

TABLE 5.2. Simulation Results for Network Communications Testing 36

vii

LIST OF FIGURES

FIGURE 2.1. Wireless Network Example . 6

FIGURE 2.2. Compromised Master Key Example 7

FIGURE 2.3. Compromised Group Key Example 7

FIGURE 2.4. Compromised Point-to-Point Key Example 8

FIGURE 3.1. Mica2 mote . 20

FIGURE 3.2. XBow Sensor Board . 21

FIGURE 3.3. Setup Key Procedure . 24

FIGURE 3.4. Validation Request Procedure 25

FIGURE 3.5. Example Memory Map . 26

FIGURE 3.6. Algorithm Message Passing . 27

FIGURE 4.1. TOS Msg Structure (from AM.h) 31

FIGURE 4.2. Int Msg Structure . 31

FIGURE 5.1. Key Generation Test Setup . 34

FIGURE 5.2. Network Communications Test Setup 36

FIGURE 5.3. TOSSIM Network Test . 37

FIGURE 5.4. Basic Tree Routing . 38

FIGURE 5.5. Basic Tree Power Chart . 39

FIGURE 5.6. Encrypted Tree Power Chart 40

FIGURE 5.7. Difference Power Chart . 40

FIGURE 5.8. Power Efficiency of the Algorithm 41

FIGURE 5.9. Key Renewal Algorithm . 44

viii

CHAPTER I

INTRODUCTION

1.1. Background

Wireless sensor networks are becoming popular as a net method to gather

information. The miniaturization of digital electronics, with regards to chip and

sensor design, are allowing wireless sensor grids to become an economically practical

solution.

Early work in sensor technologies used large wired sensors to gather data on

large remote devices to monitor from afar. However, the technology today allows

sensors to be battery powered and manufacturing costs are low enough to place mul-

tiple sensors within a given area. A device is created that can monitor and report

information to a central location by reducing the cost per sensor and making their

communication wireless. “A sensor grid is comprised of many individual and inde-

pendent sensors which can be deployed inside or near a phenomenon” [1].

Wireless grids can be utilized for a variety of scenarios. Many sensors monitor

temperature, humidity, lighting conditions, pressure, noise levels, chemical makeup of

the area, etc. . . The sensors can be utilized for military applications from personnel

detection to battlefield surveillance and chemical attack detection [43, 11]. Other

uses for sensor technology include monitoring human health and the environment

[43, 11, 28, 29]. For the consumer, home automation and smart environments require

the abilities of the sensor grid to gather and distribute information. Commercial

impacts involve better control of environmental conditions in office buildings [1].

The new wireless sensor grids present a whole new set of problems including,

but not limited to: device integrity, communication security, and operating lifetime

(battery power). As the devices become smaller, more power efficient, and less ex-

pensive, limitations are placed on the ability to secure each device and to maintain

the security of network communications. A problem possible in hostile situations can

be the enemy, with more sensors, has a larger opportunity to capture and/or break

into the communication network of sensors [43, 15, 20].

A lack of organization is inherent to the nature of wireless grids. Each sensor

does not know where it will end up and with whom it can safely communicate. It

is not aware of the location of other sensors within the grid. The sensor knows of

nearby sensors but not their locations in the environment. This lack of organization

presents problems in resolving communication channels back to a master controller,

as well as problems with trust among other devices in the grid.

A critical component that must be addressed for large scale deployment of

wireless sensor grids is the cost of the system. At present, each wireless sensor node

costs upward of 250 dollars, a price which is cost prohibitive for wide-scale deployment

[10]. The cost needs to be under one dollar per sensor for the economics of wireless

grids to make fiscal sense [1]. At that price, sensors are expendable, something which

is necessary in battlefield scenarios.

The power consumption of these wireless sensors is still too large to be of

use in long-term environments and scenarios. The advantage of wireless sensor grids

is limited due to the inability to provide long-term monitoring capabilities. Power

consumption needs to be reduced and power sources must be improved. This could

involve alternative power from solar and other environmental sources to support bat-

teries. The long term capabilities need to rely on a power source that is available for

extended periods of time. Without a long term wireless sensor, the network is neither

fiscally nor logistically feasible to maintain [1, 35].

2

These sensors are usually built upon a framework package known as TinyOS [1].

This framework provides the ability to quickly program and control sensor packages

without the need to custom program each device during assembly. These sensors are

built upon an Atmel micro-controller and run the AVR instruction set. TinyOS is

capable of running on other types of sensors. TinyOS wraps this in a framework to

provide a quick and easy interface for the sensors to work with.

Communication between sensors in the grid environment is cause for concern

in security oriented deployments [1]. Basic communication protocols broadcast the

transmitted information in a ASCII stream. The thrust of research up to this point

has been on getting sensor networks functional and scaleable, not in the security of

their information. This problem of scalability has been addressed in a variety of

methods. These methods are based in software and network routing schemes.

Basic communication protocols and transmission methods utilize an omnidi-

rectional antenna to both send and receive signals, though this does not provide any

type of security in the transmission. However, directional antennas can limit the sig-

nal broadcast to the direction of the sensor in which communication is going to take

place. The complexity of a directional approach makes this technique infeasible for

most scenarios.

Wireless sensor grids are currently receiving a lot of research attention; how-

ever, the majority of research examines the communication and handoff protocols or

the implementation side of networks. This thesis will describe the design and im-

plementation of a software authentication procedure for establishing unique security

keys between sensor nodes.

3

1.2. Organization of Thesis

Chapter II presents a detailed literature review of wireless sensor grid concepts,

techniques, and concerns. Chapter III discusses the design of the software based key

determination approach. Chapter IV describes the implementation of the software-

based key determination algorithm. Chapter V contains the testing and results from

both simulation of the wireless grid system and a real-world scenario. Chapter VI

contains conclusions and future directions.

4

CHAPTER II

LITERATURE REVIEW

Sensor grids are deployed for a wide variety of uses. A potential application

area of concern is hostility to the grid infrastructure [32, 43, 15]. Sensor grids will

be subjected to various security attacks within the confines of their deployment [32].

Three issues must be addressed with the deployments of sensors: (1) attacks on

communications and data integrity from the sensors, (2) the physical vulnerability

associated with deployed sensors, and (3) a method to provide a “self-checking” aspect

within the sensor network and on the sensors themselves [32].

In order to verify that the program residing within a sensor has not been

modified (integrity), some sort of authentication mechanism must be utilized [32].

One method is the use of a Program-Integrity Verification (PIV) server. A controller

on a wireless grid is able to maintain a list of all authenticated nodes [32]. This

process involves checking and authenticating the nodes as they join the network or

after experiencing a long service blockage. This verification process does contain

overhead. However, this overhead can be made relatively small as compared to tra-

ditional cryptographic functions. The verification process can utilize a cryptographic

hash function that is “orders-of-magnitude cheaper and faster than other approaches”

[32]. The hash functions can be optimized for the embedded controllers at both the

8- and 16-bit sizes.

The system architecture plays a major role in how resilient to attack the net-

work and individual nodes can be made. Nodes can be made relatively secure through

a variety of well-defined hardware design methods. There are two general classes of

hardware security mechanisms: read-proof and tamper-proof. Read-proof hardware

FIGURE 2.1 –Wireless Network Example

are the group of technologies that prevent the enemy from reading data contained

within the chip. Tamper-proof hardware are the group of technologies that prevent

the enemy from changing data on the chip [18]. This technology, so far, is relatively

expensive to produce and cost prohibitive for deployment in sensor networks [33].

How the wireless system is setup in regards to the architecture will affect its security

and resiliency.

Figure 2.1 demonstrates an example of a wireless sensor network. The solid

arrows denote secure wireless traffic. A breakdown of a master key encrypted network,

as shown in figure 2.2, has all of its communications insecure. Once a master key is

discovered, the entire network is lost. The utilization of a group-based key system

prevents the entire network from being lost (Figure 2.3). The best method is to use a

point-to-point key system so if a link or node is compromised, only the current node

is lost and not the rest of the network (Figure 2.4).

Attacks on a wireless grid come from many sources. “Node compromise is

the central problem that uniquely characterizes the sensor network’s threat model”

[35, 21]. The first is a hostile attack on the transmitted signal. This involves cap-

turing some of the wireless signal data and processing it in an attempt to break into

6

Dashed lines represent
compromised links

FIGURE 2.2 –Compromised Master Key Example

Dashed lines represent
compromised links

FIGURE 2.3 –Compromised Group Key Example

7

Dashed lines represent
compromised links

FIGURE 2.4 –Compromised Point-to-Point Key Example

the current encryption of the wireless network. “Sensor nodes use wireless communi-

cation, which is particularly easy to eavesdrop on” [35, 9, 11]. This is impossible to

detect from within the network. Passive monitoring will not cause any interference

to the network.

The second attack vector is a physical attack on the node. This involves

obtaining a node from the network or a replica of one and taking it into a lab to use

a more powerful computer to break into the system. In the worst case, a scanning

electron microscope could be utilized to dissect the memory from the device and

rebuild the system on a new device, though this would be a very expensive process

and most likely take too much time to be of much use.

A third option for attack would be to cause service disruptions to the wireless

grid. This could be as easy as jamming the wireless signal or doing any thing else that

would disrupt the ability of the network to do its task. Nodes could be destroyed

in an attempt to decrease the range of the network. Once the network has been

compromised, a data attack can be made on the system. Compromised nodes could

be made to send invalid data throughout the network in an effort to disrupt the ability

of the sensing grid [31, 16, 35, 33].

8

The last attack vector is a more traditional method from the world of network

computing. The wireless sensors are battery-powered devices and because of this,

severely constrained in resources and lifetime. A resource consumption attack would

attempt to get the individual nodes to utilize their sensors, processor, or transmitter

in an effort to consume available battery resources [3]. This would quickly end the life

of the sensor and eliminate it from the system. This also parallels denial-of-service

attacks as seen on traditional networks [32, 35, 33, 11].

The ultimate problem with any wireless sensor network is the ability of a for-

eign body to capture and reproduce nodes in a more sophisticated device with more

memory in such a way that the new device functions the same way from network’s

perspective as the original node but contains malicious code [32, 11]. In traditional

computing and security, physical security is one of the primary foci and communi-

cation restrictions another. A generally accepted practice is once an intruder gains

physical access to a machine, anything on that machine is no longer secure and safe.

Security within wireless sensor grids needs to be able to scale efficiently to

large-scale deployments [35, 2, 6, 20]. The mechanisms and protocols need to have

either bandwidth efficiency or be self-contained within a cluster of sensor nodes. This

will allow for large-scale deployments to occur.

Sensor networks are expected to grow to many thousands of nodes in the

future. This large scale deployment presents a scalability problem that is similar

to problems occurring in large scale super-computing. The main difference is the

computational and bandwidth resources available to the sensor networks. Security is

usually not of too much concern within the super-computing environment other than

at the perimeter of the system. The security model for sensor networks needs to be

ultra scaleable for any viable deployment [35, 33, 2, 9, 6].

9

2.1. Cryptographic Keys

The security requirements for a key distribution protocol involve the availabil-

ity of sensor nodes, authenticating sensor nodes, integrity of communication messages,

confidentiality of communication, non-reputation of nodes, survivability of sensor

nodes, and degradation of security services [4, 19]. All of these are critical to ensure

that total security of the system is kept intact. Key distribution mechanisms involve

the ability to scale the key scheme to large networks, the efficiency at which this

distribution occurs is measured in storage, processing and communication complex-

ity, key connectivity and resilience to capture [4, 15, 19, 28]. The key distribution

schemes involve one of two types of techniques: pre-distribution or post-distribution

schemes.

The management systems need to provide and ensure key independence (if the

protocol allows this), perfect forward secrecy, and backward/forward secrecy [2]. The

key independence guarantees that an adversary, knowing a subset of the keys, cannot

discover future or prior keys. “Forward secrecy guarantees that a passive adversary

who knows a subset of old group keys cannot discover subsequent group keys, while

backward secrecy guarantees that a passive adversary who knows a subset of group

keys cannot discover preceding group keys” [2].

Key distribution within wireless sensor networks is critical to the ability of the

system to keep communications secure. Many different approaches exist in this field.

The pair-wise key pre-distribution scheme involves computing distinct pair-wise keys

to distribute to the nodes [13]. The base case is typically only to utilize a single

master key and distribute this to all nodes. This is a significant problem when one

of the nodes is captured and the entire network is compromised. The best case is to

generate n-1 keys for the network of size n in order to keep communication between

all nodes open. This poses problems with the scalability of the network [4, 8, 27, 40].

The random pair-wise key scheme addresses the storage component of the

10

basic scheme at the expense of the inter-node key connectivity [12, 4, 13]. This

scheme loads a small subset of the total keys into each node in an attempt to provide

a high probability of matching a fellow node’s key. This scheme has the same benefits

and weaknesses as the basic key distribution scheme mentioned with regards to node

compromise and scalability. The only benefit is with the storage of keys within each

node [8, 34].

The closest pair-wise key pre-distribution scheme provides a more efficient

system as compared to the random or basic schemes; however, this scheme relies on

the ability to know approximately where each sensor is going to be placed [4, 25, 27].

This is not a good technique for networks in which sensors are not going to be placed

in specific areas [14]. The ID-based one-way function scheme provides a mechanism

in which two nodes can share a key in, at most, two hops [4]. Multiple ID based one-

way function schemes offer a more efficient approach to the single one-way function

scheme in terms of memory usage. The disadvantage of these schemes is that with

a compromised node, multiple nodes within the network will now be compromised

[12, 4, 27].

The broadcast session key negotiation protocol is based upon the master key

pre-distribution solution. Each sensor receives a key prior to deployment and all other

keys are based upon this key. A compromised master key results in a completely

compromised network. The lightweight key management system is a modification

of the broadcast session protocol. The lightweight system utilizes multiple groups

(generations) in which each generation contains a unique key. These generations vary

in size from entire networks to small subsets of nodes [4].

The random keychain-based key pre-distribution solution is based upon a prob-

abilistic key scheme. This involves generating a large key-space and randomly drawing

keys without replacement for use within the sensor networks. Probability is used such

that sensors must have at least one key pair in common with each other and have to

11

search through their list to obtain this information [4, 7]. The difficult part about this

scheme is in what constraints to make on key generation and distribution to ensure

a secure and reliable network.

The key-chains that are utilized in the random key-chain scheme are deter-

mined at runtime. The idea behind combinatorial design-based key pre-distribution

schemes is to design the key-chains using combinatorial design theory. This ensures

that sensor nodes will find exactly one common key and the probability of the net-

work communication succeeding is 100 percent. Scalability becomes a problem in

computing these key-chains for utilization [4].

In a key matrix based dynamic key generation solution, Blom’s scheme utilized

two N x N matrices. There are public and private key matrices. The disadvantage

to this method is that all sensor nodes within a given radio range must respond

with a computation of their two matrices. This is a significant overhead for the

computational resources on nodes. The multiple space key pre-distribution scheme

utilized multiple private matrices and a shared key discovery scheme. This eliminates

some of the computation and communication overhead [4].

The polynomial based dynamic key generation scheme utilized a method to

symmetric polynomial distribution for key generation. Each pair of sensor nodes can

generate their unique key from initial information common to both. The location of

the sensor node (if known) can be utilized to more effectively compute shared keys

[14, 21, 24, 25]. This approach also is in utilization of a shared key discovery algorithm

[4].

The lightweight key management system is a group-wise key distribution scheme.

This utilizes a pair-wise key scheme that can be distributed to groups of sensors as

they are deployed in different phases. The group-wise keys are distributed through

the already secured pair-wise keys among sensors [4].

Network-wise key distribution schemes rely on a wireless sensor network to be

12

based upon a tiered security level. For a master key solution, the base station can

broadcast a network-wise key to the nodes. A better approach is to use a multi-tiered

solution in which nodes are broken up into different security levels. The more sensitive

the information, the more secure the node is required to be. The problem with both

solutions is that once the master/network keys are compromised, the entire security

level is compromised [4, 35].

Public key cryptography is difficult to implement within sensor networks. The

computational overhead for generation and validation of keys is more than the sensor’s

processors can handle [6, 14, 26, 37, 38, 40]. One approach is to move the computa-

tionally expensive operations for the public key system to external components of the

sensor networks. This is only possible when these resources exist [39]. This approach

depends on extra resources that may not be available in all sensor networks. Another

approach is allowing the network to manage and create the trust relations required

for public key cryptography [5].

An alternative method of implementing public key cryptography is to include a

custom hardware chip to offload the computational overhead of the public key system

from the small processor [17]. This would allow the public key computations to occur

more quickly and consume much less power. “The implementation of NtruEncrypt

consumed less than 20µW” [17]. This is significantly better than a general purpose

processor could hope for.

An alternative to basic public key cryptography is to utilize the elliptic curve

cryptography [38]. This has been difficult to implement because of the time and

resources required to generate the keys. It has been shown that it is possible to

implement elliptic curve cryptography on the sensor nodes and have “reasonable”

results [30]. The definition of reasonable is left to the system designer and is dependent

on the conditions the network is being designed for.

13

Benefits Drawbacks Key Compromise

Pair-wise key Complete communication Can not scale Entire network

Random Pair-wise Communication Can not scale well Almost entire network

Closest Pair-wise Efficient Requires sensor locations Compromised area

ID-based Low memory usage for keys Compromised Nodes Multiple nodes

Broadcast Session Keys can be changed Utilizes a master key Entire network

Random Keychain Space efficient Scalability Portions of the network

Group-wise Better Scalability Requires sensor locations Groups of nodes

Public Key Secure Requires computation power Groups of nodes

Point-to-Point Key Scalable Overhead to create keys Captured node links

TABLE 2.1

Benefits and drawbacks of key distribution schemes

2.2. Authentication

Authentication is a component of the overall security of a sensor network and

is necessary to allow sensors to verify and check the packets for malicious activity,

which ensures the integrity of data [35, 20]. However, authentication can only go

so far in protecting the network. A compromised node will be able to inject invalid

data into the stream and still pass the authentication checks. This integrity ensures

protection against man-in-the-middle attacks [42].

2.3. Availability

A sensor network must maintain availability. The entire goal of the network

is to monitor the area and report its information back to a specified location. If the

availability is broken, part of the network will be unable to perform this task. A

Denial-of-Service (DOS) attack is the most common vector in which to attack the

14

availability of the sensor network. An important feature of the network is to provide

a graceful degradation as nodes are either compromised or reach the end of their

operating life [35, 9, 11, 20, 28].

Availability is a real concern for applications of sensor networks within disaster

areas, for utilization with public safety, and in home healthcare [41, 28, 29]. Each of

these three areas present their own concerns for security and availability of the net-

work. In the disaster area, the network will likely be subjected to harsh environment

and the system needs to ensure availability and robustness. The system needs to

provide information as long as possible with a significant number of nodes ceasing to

function. This robustness should provide the availability for the network [41]. In the

case of public safety, the networks would be monitoring areas for hazardous material.

Availability is crucial to not miss anything. An attack on this kind of network could

be cause to look for a real threat [41, 28]. The home healthcare environment has a

necessity to provide high availability and confidential networks. These networks could

provide vital signs and accident-notifications to the authorized users [41, 28, 29].

2.3.1. Sybil Attack

A common attack to sensor network availability is called the Sybil attack. This

is an attack where a malicious node illegitimately claims multiple identities [35, 31].

This attack can occur at multiple logical layers. An attack to the routing of the

network can alter the paths packets will take. By assuming multiple identities, a

node can attempt to get more than its share of packets to come to it and selectively

forward packets [31]. The Sybil attack can also be utilized at the Media Access

Control (MAC) layer to attempt to consume all the available shared communication

bandwidth. This has the effect of causing the real nodes to be unable to transmit

their information [35, 31].

15

2.4. Scalability

Scalability is a critical problem for sensor networks. As most security protocols

have been designed for node to base station security, this is a problem for massive

(thousands) of sensor nodes operating within a single mesh network [35, 9, 6, 40].

Scalability is necessary in order for the networks to be successful. A point-to-point

network which is arranged into groups of sensors will provide a very scalable system.

Each node will only be concerned with communicating among its nearby neighbors

and not with the entire network.

2.5. Efficient Cryptographic Systems

Sensor nodes are severely constrained in regards to their processor and power

capabilities. This is a problem for traditional security measures due to the fact that

many require a large computational capability to accomplish their tasks. There seems

to be a direct correlation between the capabilities of the cryptographic protocol and

the amount of power required to accomplish this encryption [35].

2.6. Attacks

A multitude of attack vectors exist for wireless sensor networks. Outsider

attacks require robustness and strength of the protocols to provide security against

passive monitoring of the communication channels. The outsider attack can also be

by packet injection. Packet injection involves inserting incorrect data into an existing

network. This attack can be prevented through the use of a large quantity of sensor

nodes and placing the nodes in such a way that their coverage areas overlap. Overlap

allows the sensors to verify the information provided from other locations in the

network [35]. Insider attacks are much more difficult to create; however, if successful

they should be virtually undetectable. In order to cause an insider attack, a sensor

16

must be compromised through an attack sufficient to allows modification of the sensor

functionality without showing this modification to the sensor network. One method

is to physically capture a node and interface it with a more powerful computer. This

computer will be able to utilize the sensor, in its original state, to insert the data it

wishes into the network [35].

DOS is an effective vector with which to attack a sensor network. Sensor

networks rely on wireless communications and low power system. A DOS attack on

the wireless communications will leave little bandwidth for utilization by legitimate

traffic. Jamming of the signal involves transmitting noise on the frequencies used

within the sensor network for communication. This will prevent the nodes from

communicating and cause DOS to occur. This technique is effective only within the

area the jammer can transmit. This will stop an entire network, given a large enough

deployment area. A slightly more effective method is to only transmit data to cause

packet collisions. It is not necessary to jam the signal all of the time. Constant

jamming will alert the network to the problem. Selective collisions of wireless packets

is a more directed attack and should eliminate a selected area of the network [41].

Sensor network, unlike traditional wired networks like the Internet or local area

networks (LAN), rely on their batteries for operation. Attacking this power source

is a method to eliminate the sensor network. A DOS attack, using directed packet

injection, aimed at the sensor nodes could cause them to waste their power receiving

and examining the packets. Any other method of causing the sensor to waste power

should be just as effective at attacking the sensors [41].

The prior two attacks relied on brute-force attacks to the network. A more

power efficient and effective strategy would be to selectively target and attack the

network. A homing attack is a method of DOS that relies on traffic observance prior

to commencing the attack. By observing the traffic pattens in a network, the attacker

will be able to identify the critical nodes. The network relies on these particular nodes

17

to pass information through the network. These can either be a node that just happen

to be located in a critical route or that have a more sophisticated system and/or more

power. The attacker can target these critical nodes in order to more effectively bring

down the network. A similar method to the homing attack is to flood the network

with connections. By opening many connections to the victim, the attacker will cause

the victim to consume its battery. This also will not allow this sensor to receive any

legitimate connections, thus preventing it from participating with the network [41].

Misdirection and black hole attacks involve a similar method for compromising

the network. Both vectors rely on the attacker to already have packet access to the

network . The misdirection attack will take all the packets it receives and forward

these packets in the wrong direction. This should cause the network to spend more

battery power than necessary to correctly route this information. This route is usually

chosen to target a single node that is likely to be a critical node [41].

A black hole attack is an advertisement of zero-cost routes. These zero-cost

routes will make the sensor routing tables think the new node is the most power

effective route. This has a two-fold effect: (1) the target node will be DOS attacked

by its own system and (2) all of the packets can be lost to the attacking node. In the

second case, the attacking node will simply discard the message or selectively forward

the ones it wishes to allow. Either method will result in a compromise in the sensor

network [41].

18

CHAPTER III

THEORY AND DESIGN

3.1. Wireless Sensors

A wireless sensor is a miniature computation device capable of detecting in-

formation about the environment, processing this information, and the ability to

transmit this information to other locations. Each sensor is capable of functioning

independently of the others. Multiple sensors comprise a sensor grid or network. This

is the functional object which is designed to perform some kind of monitoring task.

This project uses the Mica2 mote and the MTS300 sensor board. The Mica2

mote (FIGURE 3.1) is powered by two AA batteries with a lifetime upwards of one

year utilizing the sleep modes. There is 128 Kbytes of available flash memory for the

program space. The board supports Universal Asynchronous Receiver/Transmitter

(UART) serial communications. This device has a 10-bit Analog to Digital Converter

(ADC) for monitoring analog sensors. The power consumption is 8mA in active mode

and less than 15µA in sleep mode. This small amount of current allows this device

to have a lengthy lifetime [10].

The multi-channel radio onboard the mote allows for bidirectional communica-

tion within the network. The center frequency is 916MHz. There can be four or five

channels of communications utilizing frequency-shift keying (FSK). The data rate of

the communications is 38.4 Kbaud. This device typically has a 500 foot line-of-site

(LOS) range outdoors. The radio draws 27mA transmitting at maximum power and

10mA receiving data. The radio sleep mode draws less than 1µA [10].

FIGURE 3.1 –Mica2 mote package from XBow [10]

The mote has 3 LEDs to provide feedback from the system. These are pro-

grammable through TinyOS and their functions are only what the developer pro-

grams. The mote is 58 x 32 x 7 mm and weighs 18 grams. An expansion connector

of 51 pins is utilized to attach any number of sensor boards to the mote [10].

The MTS300 sensor board (FIGURE 3.2) is the basic sensor board which can

detect light levels, sound levels, and temperatures, and is capable of sounding a tone

as a feedback mechanism from the mote software. TinyOS can control how each

sensor operates, such as turning the individual sensor on and off to conserver power.

This board is not critical to this thesis’s research; however, it will provide data to the

sample simulation and tests [10].

3.2. TinyOS Framework

TinyOS is the open source framework which is utilized to develop and run

embedded sensor networks. It is designed to support concurrency intensive operations

required by sensor grids with a minimal hardware configuration. TinyOS utilizes a

special language and compiler called nesC to program and develop for individual

sensors [36].

20

FIGURE 3.2 –XBow Sensor Board with Temperator, Sound, and Light sensors [10]

The TinyOS Framework is designed to be completely modular. By wiring

components together, nesC allows for this component-based design with a C-like

syntax. The modules can be written to perform a number of tasks from wireless grid

communication to hardware interfaces to encryption routines. The robustness of the

modules allows for easy and powerful expansion of the system, within bounds of the

limited hardware [36].

3.3. TOSSIM

TinyOS SIMulator (TOSSIM) is the simulator developed for a TinyOS envi-

ronment. This simulator is useful when developing sensor network applications. The

sensor’s small form factor and remote locations prohibit examination of the state of

the sensor. This is where TOSSIM becomes very useful. The simulator can scale

to more nodes than a developer usually has available. This scalability of the simu-

lation allows developers to determine what will happen when the network scales to

a particular size. Since TOSSIM emulates the operations of the sensors to the bit

level, any possible experiments can occur and should function the same on physical

21

sensors. This simulator provides a drop-in replacement for the actual sensor and all

of the tools utilized to communicate and test the networks can be utilized within the

simulator [23].

A graphical tool, TinyViz, allows visualization and interaction of sensors with

the user. This is very useful to graphically see what the network is doing. The

basic plugins allow for monitoring, in a graphical fashion, the radio packets and other

communications, sensor status, and anything else which can be monitored. This

graphical tool allows the user to move and manipulate the sensor positions to test

the network under a variety of conditions.

3.4. Energy Consumption

Energy consumption is a direct result of a wireless transceiver and processing

of data. The goal is to minimize the energy consumption while maximizing security.

There are main methods of increasing the energy efficiency of the device. The first

is to build more power efficient hardware. The other method is to develop more

efficient software to take advantage of the hardware. TinyOS and some of the motes

support sleep states to attempt to preserve power. The disadvantage of sleeping is

that the node can not respond to anything while it is sleeping. Features and energy

efficiency do not go hand in hand and sacrifices must be made as to which one is more

important.

3.5. Design of Algorithms

This section describes how the algorithms were designed. It provides the nec-

essary figures and discussion to replicate these algorithms.

22

3.5.1. Session Keys

Session keys are utilized for node to node communication. They exist only

between any two communicating nodes. Session keys are typically deployed in large

sensor networks and when nodes are resource constrained. These nodes are assumed

to be immobile and must share a master key [22]. The BROSK method assumes the

master key is the sole determining factor in authenticating other nodes [22].

3.5.2. Soft Key Distribution

This BROSK method forms the basis on which new key distribution proce-

dures are built. The new process combines this procedure from Lai [22] and the soft

authentication ideas from Park [32] to form a new mechanism for generating and

ensuring security within wireless sensor networks.

The goal is to provide smaller keys, generated on demand as the network sees

fit, to secure point-to-point communications among pairs of nodes. The authentica-

tion mechanism examines the sensors to ensure the validity of the underlying system.

Each procedure (FIGURE 3.3,3.4) will run concurrently on a pair of motes,

with mote A running the (setupKey) and mote B will run the (validationRequest).

These procedures will run concurrently. Prior to utilizing the key generation and

authentication algorithms, all communications for the key determination occur over

a pre-shared master key. This key is only to be utilized during the startup procedures

of the sensor network. Once the network has been established, the generated keys are

the only form of encryption.

Mote A discovers which mote it wishes to setup a key with and adds this id

to a list. Mote A then generates four random byte locations, within the operating

system code, which then computes a cyclic-redundancy check (CRC) based upon the

data at these four locations. Mote A sends the four byte locations in a data packet

23

procedure setupKey(mote)

add mote to list

generate 4 random byte locations

checksum <-- CRC(byte1, byte2, byte3, byte4)

send byte[1..4] to mote

motesum <-- response from mote

if checksum == motesum then

send confirmation message to mote

byte <-- get bytes from mote

checksum2 <-- CRC(byte1, byte2, byte3, byte4)

send checksum2 to mote

moteconfirmation <-- response from mote

if moteconfirmation != null then

add moteconfirmation as key for the mote

else

add 0 as invalid key for the mote

endif

else

add 0 as invalid key for the mote

endif

end

FIGURE 3.3 –First half of a procedure to setup a key on a pair of nodes.

24

procedure validationRequest(byte[1..4],mote)

add mote to list

checksum <-- CRC(byte1, byte2, byte3, byte4)

send checksum to mote

confirmation <-- response from mote

if confirmation == true then

generate 4 random byte locations

checksum <-- CRC(byte1, byte2, byte3, byte4)

send byte[1..4] to mote

motesum <-- response from mote

if checksum == motesum then

key <-- generate random key

send key to mote

add key to list for use with mote

else

add 0 as invalid key for the mote

endif

else

add 0 as invalid key for the mote

endif

end

FIGURE 3.4 –Other half of the procedure to setup a key on a pair of nodes.

25

1
2
3
4
5
6
7
8
9

10

Memory

FIGURE 3.5 –Example Memory Map

to mote B (Figure 3.5), the discovered mote. Mote A now waits for a response from

mote B. Mote B performs the same steps as mote A and adds mote A’s ID to a

list. Mote B computes the CRC and returns this value inside of a data packet to

mote A. Mote A check the received value from mote B to ensure it is the same as

its checksum. If the checksums do not match, then mark mote B as a compromised

node. If the checksums match, then send a confirmation message to mote B. Mote

B will now generate four random byte locations and compute the CRC for these

memory locations. Mote B sends these byte locations to mote A. Mote A receives

four byte locations and computes the CRC based upon this information and returns

the checksum to mote B. If the checksum from mote A matches the one for mote B

then mote B will generate a 16-bit cryptographic key. This key is added to the list

for use with mote A and sent to mote A. Mote A will receive the key and add it to

its list for use with mote B (Figure 3.6).

If anything happens in either procedure, the motes will assume a security prob-

lem has occurred and mark each other as invalid nodes. This will ensure the security

and integrity of the procedures by not allowing a method for attack against the algo-

rithm. This deny-on-error policy should guarantee these procedures to be hardened.

26

Sensor 1 Sensor 2
Send 4 byte addresses

Checksum of addresses

Confirmation

Send 4 byte addresses

Checksum of addresses

Confirmation and Cryptographic key

FIGURE 3.6 –Algorithm Message Passing

27

The controlling network layer should ensure the delivery of the data packets, even in

the event of failures and interruptions. These two procedures will provide a 16-bit

symmetric key for utilization between the two motes. This key is only valid for com-

munication on this link. If a mote wishes to communicate with a different node, it

must utilize the appropriate key for the link. This algorithm utilizes the 16-bit key;

however, this key length may be changed to whatever is desired, within the limits of

a single data packet. The current structure limits this key to be 160-bits.

Multi-hop communications will take a slight power and performance hit when

routing information with the unique point-to-point keys. In order for data to route

from one node to another node via multiple hops through different sensor nodes, the

data packet will have to be decrypted and re-encrypted at each hop in the route.

This will take only slightly more effort than a network utilizing a single master key.

The major benefit to the point-to-point keys is with the extra security from node

compromise. The losses from the decryption and re-encryption should not affect the

power consumption and performance of the network very much. There will be a larger

problem with power in multi-hop communications.

28

CHAPTER IV

IMPLEMENTATION

4.1. nesC

NesC is the language in which TinyOS is written. All modifications to the

TinyOS system must be implemented in this language. NesC is a language for pro-

gramming structured component-based applications. It has a C-like syntax, but sup-

ports the concurrency model from TinyOS. NesC allows for mechanisms for struc-

turing, naming, and linking software components into embedded applications. This

facilitates the designers in building components for complete concurrent systems [36].

One benefit of the nesC language is the ability to do extensive compile time

testing and validation of software. The compilers can identify and detect many errors

and problems both in syntax and in concurrency within the language. This provides

valuable information to the developer. Concurrency errors are significantly reduced

through the use of code checking [36].

The language, nesC, provides a component object. The application is com-

prised of one or more components linked together to form the application. Com-

ponents provide and use interfaces. This is the only interaction available to the

component. The interfaces are bidirectional for communication and interaction. The

interface declares a set of methods called commands which must be implemented by

the interface designer. These methods are similar to the sense of method in Java

where they are part of a class. The other set of methods the interface declares is

events. Events give the component a method to force the application designer to

provide the implementation which will likely be unique to the individual application.

These events are similar to Java interfaces. All events must be implemented to utilize

the component [36].

There are two different types of components in a nesC application. The first is

a module. Modules provide the application code for the platform. The second is the

configuration. The configuration links the interfaces of the provided models together

to form a working application. This linking is known as wiring [36].

The concurrency model is a unique design that is necessary for TinyOS to

function with the hardware. The system contains two type of handlers: task and

hardware event. Tasks are run in such a way that they run to completion and do

not preempt one another. Hardware events are similar to tasks in that they run

to completion; however, they may preempt another hardware event or task. Race

conditions become a problem when multiple asynchronous handlers occur and can

preempt each other. This is why TinyOS contains checks for race condition. There

are methods that the programmer can employ to resolve the race conditions reported

by the TinyOS compiler. These are discussed in the NesC documentation [36].

4.2. Application Code

Data and control values must be passed between motes in order to accomplish

the key establishment protocol. A TOS Msg (FIGURE 4.1) structure is the building

block on which custom structures may be added for data exchange. The message

contains the destination address (addr) and type of message (type). A group can be

specified if necessary and the length of the message is stored. The data structure is

where a custom structure can be added for different tasks. A CRC is computed prior

to transmission to ensure the integrity of the data within the packet.

For the new protocol, an IntMsg structure provides the necessary informa-

tion. The source of the data (src) is transmitted with the structure. This allows the

30

typedef struct TOS_Msg

{

/* The following fields are transmitted

and received on the radio. */

uint16_t addr;

uint8_t type;

uint8_t group;

uint8_t length;

int8_t data[TOSH_DATA_LENGTH];

uint16_t crc;

} TOS_Msg;

FIGURE 4.1 –TOS Msg Structure (from AM.h)

typedef struct IntMsg

{

uint8_t src;

uint8_t val;

uint16_t data[10];

} IntMsg;

FIGURE 4.2 – Int Msg Structure

receiving mote to identify where the data is coming from and is important in the

key establishment procedure (FIGURE 4.2). Message types are stored in the val at-

tribute. This is utilized for tracking which data is contained within the data portion

of the structure and is how the setup key algorithm keeps everything in order.

Passing of message between motes prompts the inclusion of the “val” attribute

into the IntMsg structure. This is required to keep track of the process of key-

generation. Each step of the key-generation algorithm updates this value with where

its message should be routed. The receive method, which processing incoming packets,

examines this information and calls the appropriate function to process either the next

stage of key establishment or any other user defined procedure. This message handler

31

is responsible for the decryption of the incoming message and routing this message

to the appropriate location.

A procedure named sendSecure takes the place of the usual Sendmsg.send

method. This function provides the required encryption procedure to encode the

data portion of the TOS Msg structure. If a point-to-point link is not setup for the

particular communications, then this will initiate the setup procedure before sending

the current message. The current message is stored in a backup object and completed

at the conclusion of the key setup procedure. Since multiple messages are being

passed between motes, a flag is set to indicate the presence of the backup data and

the last thing the mote does is check this flag before completing the key establishment

procedure.

The encryption procedure is a simple exclusive-or (XOR) between the data

bytes and the encryption key. This is the simplest form of encryption possible as well

as the most power efficient. Initially, the encryption occurs with the master key built

into the system; however, this is only utilized for the initial creation of a point-to-

point key. Once the point-to-point key is established, all other communications occur

with the generated key. The lifetime of a key can be set so the system will renew a

particular key after this limit is reached. This will allow for key changing to prevent

unauthorized access to the data streams. Each mote contains a list of keys for use

with its communications that are stored in RAM. A physical attack on the mote will

not easily allow the contents of this RAM to be determined.

32

CHAPTER V

TESTING AND RESULTS

5.1. Testing Overview

There are two main components to the system: key generation and network

communication. The first test is for the key generation and establishment of dynamic

point-to-point keys; while, the second test is to ensure the scenario is functional for

multi-hop communications. Final testing combines both the prior tests to form the

basic structure of the sensor network security. This is tested for correctness.

5.1.1. Testing Key Generation

Testing the key generation algorithm involves setting up two sensor nodes

(FIGURE 5.1) and having them establish a shared key. Through the use of debug

messages, TOSSIM can be utilized to test the key generation algorithm. Appropriate

messages are placed at critical sections of the algorithm to display the contents of

memory concerning the key generation. These messages are also used to show the

progression of the algorithm, much like hand-tracing an algorithm.

For testing purposes, the key generation algorithm is slightly modified. In-

stead of reading data directly from the program code, byte data will be read from the

data EEPROM. The structure of TinyOS places a limitation on reading and writ-

ing information from within the program EEPROM. This change will only affect the

implementation of the algorithm, but will provide similar features and energy con-

sumptions. For a practical implementation, TinyOS will need to be modified to allow

FIGURE 5.1 –Key Generation Test Setup

reading of the program EEPROM data.

Node 0 and 1 will utilize the master key to secure the initial communication

and establish a shared secret key. Once this key is established, some data will be trans-

mitted between the nodes to ensure the communications and encryption are properly

implemented. A default key utilization length of five transmissions is implemented

within this application.

The following is the output excerpts from a sample run of the test. These

results (TABLE 5.1) show the progression of the key generation algorithm. The

debug dump message show the state of the data contained within the packets as well

as the node transmitting and a status value for process control. Each step of the

algorithm will utilize a different number of elements within the data packet. At the

end of the process, an encryption key is generated and provided to each node for their

private communications.

5.1.2. Testing Network Communication

Testing the network communications involves establishing a sensor network, in

simulation, to verify the communications are functioning. This test will pass infor-

mation from the initial node through a series of hops to the final destination node.

(FIGURE 5.2) This is done with no encryption of any kind on the network, just a

basic network.

34

1: TIMER Message: 0

1: Dump: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

1: Dump2: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

1: Dump: 1 100 7612,6759,5585,2749,0,0,0,0,0,0

0: Dump: 0 101 61560,0,0,0,0,0,0,0,0,0

1: Completed sending message

1: Dump: 1 102 11653,10846,9704,14980,12345,12345,12345,12345,12345,12345

0: Completed sending message

0: Dump: 0 103 53954,42243,19085,34196,12345,12345,12345,12345,12345,12345

1: Completed sending message

1: Dump: 1 104 43365,6759,5585,2749,0,0,0,0,0,0

0: Completed sending message

0: Dump: 0 105 2000,38202,31412,46509,0,0,0,0,0,0

1: Completed sending message

1: Mote Link 1 < −− > 0 is complete. Key: 2000

1: Dump: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

0: Completed sending message

TABLE 5.1

Simulation Results for Key Generation Testing

35

4: Sent Message: (Node,value) 3,1

3: Received Message: (Node,value) 4,1

3: Sent Message: (Node,value) 2,1

2: Received Message: (Node,value) 3,1

2: Sent Message: (Node,value) 1,1

1: Received Message: (Node,value) 2,1

1: Sent Message: (Node,value) 0,1

0: Received Message: (Node,value) 1,1

TABLE 5.2

Simulation Results for Network Communications Testing

FIGURE 5.2 –Network Communications Test Setup

This test will send data from node 5 to node 0 by passing the data packet to

each node in the route. Debug messages are produced by each node upon reception

and transmission of a data packet. This allows for easy analysis of the route and

the functionality of the sensor network. The results (FIGURE 5.2) show the debug

messages and progression (FIGURE 5.3) of data through the network. The arrows

are the messages passing to the next node in the network. Meanwhile, the circle is a

broadcast message from node 0 looking to see if any other nodes are in the network.

The debug messages show node 4 sending a message to node 3, then node 3 sends a

message to node 2 and this continues until node 0 receives the message. This is just

an excerpt from the simulation data; the rest can be found in appendix II.

36

FIGURE 5.3 –TOSSIM Network Test

5.2. Experimental Design

Given the procedures work as designed, the question is how much energy is

it going to cost to deploy this algorithm and security system? This cost affects the

capabilities of the network; however, when security is required, what kind of threat

is there to the integrity of the communications and networks.

5.2.1. Sample Tree Application

The following application is for the testing of a basic multi-route wireless sensor

network. It is developed and simulated completely on the computer. The goal is to

monitor information at the bottom of the tree and pass this information through the

sensor network back to the root node. This scenario is used because of the ease of

implementation and predictability of the network.

Nodes follow two simple rules. First, generate a random number between zero

and seven and send this information to the parent. This is the data the network

is to provide to the root node. This routing of information ensures delivery to the

37

FIGURE 5.4 –Routing diagram of the Tree test application

root node. With this first rule, the nodes will just generate numbers and send their

information to their parents. This does not provide a route or method for multi-hop

transfer. The second rule is if a node receives a radio packet with data, the node will

cease to generate data and become a intermediary node within the tree structure.

Once a node has determined if it is an intermediary node, its function changes to

receive the data from both of its children and determine the larger of the two. This

information is then passed along to its parent. The circles denote data/sensing nodes.

This is where the data is generated to be passed along to the root node. The diamonds

denote intermediary nodes whose only goal is to pass the largest of its children up

the tree. The directed graph shows the routing of information to the root node.

(FIGURE 5.4)

This application is tested with TinyViz for two scenarios. The first one being

a basic unencrypted network of 15 nodes. TinyViz, with the directed graph and radio

link plugins enabled, shows the radio packets in the network and is utilized to test

and verify the simulation. Power profiling is tested with the test scripts (APPENDIX

I). The profiling simulation will run for 180 seconds. Node power consumption is

reported in Figure 5.5.

The second test is with the new encrypted point-to-point communications.

The parameters are kept the same. 15 nodes will be utilized for the test and the

power profiling will run for 180 seconds. Node power consumption is reported in

38

FIGURE 5.5 –Power consumptions for the Basic Tree Applications

Figure 5.6.

The differences between each test are provided in Figure 5.7. The power ca-

pacity of a typical AA battery is 2700mah. The motes utilize two batteries, providing

them with 5400mah of power. The average utilization of energy (mJ) over the three

minute trial is 7836mJ. This is equilivent to 7836mJ
180sec

= 43.5mW . 43.5mW
3V

= 14.5ma is

the amount of current consumed each second by each mote. The approximate lifetime

of a sensor running at full power with no sleep is 5400mah
14.5ma

= 372hours = 15.5days.

This is independent of the encryption technology overlaid on the communications.

An initial comparison of the results shows no noticeable differences between

the two tests. Since the tests ran for the same length of time this is expected. With

each mote running full speed, the cpu consumed a similar amount of power across

both tests for all motes. The same holds true for the radio power consumption. The

LEDs caused some variance to the total power levels. This is due to asynchronous

nature of a mote. There is no guarantee exactly when the led will change.

These two tests show the energy consumption of an active running sensor

39

FIGURE 5.6 –Power consumptions for the Encrypted Tree Applications

FIGURE 5.7 –Power consumptions difference between encryption and plain

40

0 4 8 12 16 20 24 28 32 36 40 44 48

0.25

0.5

0.75

1

Message Renewal Length

Efficiency of Algorithm

FIGURE 5.8 –Power Efficiency of the Algorithm

network. Due to the overhead within the protocol (radio messages and cpu time), the

encrypted test did not complete nearly as many bottom to top communications as the

basic unencrypted test. For each effective message, the encrypted technique requires

on average two radio message to send. There is an overhead of radio packets in the

key creation and renewal algorithms. This overhead is the component to minimize

for optimal power consumption.

The actual efficiency of the new protocol is 45 percent. This is from the

total renewal period of messages. 11 total messages for sending 5 data messages

yields the 45 percent efficiency. Figure 5.8 shows the effects of changing the renewal

time (number of messages) before requiring a new key to be generated. A 45 percent

efficiency show that the encrypted version of the software will only provide 45 percent

of the amount of data in the given time period and energy consumption level.

41

5.3. Security

There are three main security problems with the new protocol and with any

sensor network. Intrusion into the network is a serious problem and can result in the

collapse of the functional network. The integrity of the wireless encryption is critical

to keeping intrusions at bay and the communicated information secure. Wireless

integrity is the most likely attack method and potentially the most damaging. The

last major topic is that of misuse and abuse of the sensor network systems. Once an

intrusion has occurred, the attacker will be able to manipulate the network at will

and change data within the network.

5.3.1. Intrusion

Intrusion into the sensor network involves breaking either the encryption keys

or compromising the nodes. A compromised node is a significant problem for the

safety of the network. This compromised node can also be used to affect the network

communications through the use of flooding or black-hole attacks. These attacks

mostly depend on how the routing is implemented within the wireless network. Many

of the problems occur when the compromised node’s security keys are discovered. The

new key establishment protocol protects this network communication because each

node-to-node link is unique. If a link is broken, only the compromised encryption is

lost, not the rest of the network. If this link is discovered, through intrusion detection

means, the area around the compromised key can be isolated and removed from the

active network. The compromised key allows incorrect and misleading information

into the network and the attack will be able to create an environment that does not

exist. For example, a sensor network is monitoring an area for vehicle movement.

A compromised node(s) will be able to simulate this motion through data injection

into the network. Another method is to utilize the nodes to show normal data in the

42

presence of vehicle movement, preventing the network from detecting it.

The new key establishment protocol provides an alternative method to the

problems associated with pre-distribution procedures. These key pre-distribution

methods have significant problems when a key compromise occurs. Attackers usually

will acquire access to all the network’s communications once the key or node has been

compromised. All of the algorithms for encryption and decryption will be visible

from this compromised node. These procedures will provide insight into how the

encryption layer is constructed on the network and allow for a targeted attack against

the network’s security. For example, a compromised node has allowed the attacker

to discover the encryption key for the network. Most likely, this node will contain

enough information to easily communicate with the other nodes. This communication

is all that is necessary to allow misinformation to be injected into the network.

5.3.2. Breaking the Encryption

The most likely attack on a sensor network is a compromise of the wireless

encryption. As discussed in the prior section, this can be accomplished by discovering

a sensor node and examining its code to determine how the encryption works and

the relevant keys. Another method is to attack the wireless signals directly. This is

either a passive or active attack. In the passive attack, the wireless traffic is collected

from the sensor nodes. This traffic is analyzed on a powerful microcomputer in an

attempt to discover the data within the communications and the key utilized in the

encryption. An active attack involved sending and receiving data packets at a sensor

node in an attempt to discover how the encryption works. This attack is usually

detected quickly and stopped before any significant damage can occur.

For example, compromising a 16-bit key with a powerful microcomputer, in

the worst case, one needs to examine 216 = 65536 different keys and 216

2
= 32768

different keys, for the average case. All of these keys would have to be tried against

43

Data Message

Start

Time

1 2 3 4 5 6 7

Key Creation Key Renewal

Time to key renewal

Key Discovered
Compromised

Key Discovered
Link Safe

FIGURE 5.9 –Key Renewal Algorithm

the captured data. Given, the encrypted data portion of the example structure is

20-bytes long and the keys are 16-bits (2-bytes) in length, the computer would have

to perform 216keys × 20bytes
2bytes

× 5packets = 3, 276, 800 trials. Assuming the computer

can perform each trial in 1ms, this computation will take 3276.8 seconds which is 54.6

minutes to try all the keys. This brute force method is practical if the key renewal

time is longer than it takes to try the keys and make a decision about the correctness

of each key. This is the minimum time required to break this encryption. Many other

factors influence the strength of encryption. A longer key will require more time to

evaluate the possible keys. For each bit that the key grows, the time required to check

all the keys doubles. This example assumes the decryption routines are known. A

more sophisticated encryption technique, such as a Advanced Encryption Standard

(AES), would better secure the data. The price of security in sensor networks is

limited lifetime and speed. AES will consume a lot more power than XOR (Figure

5.9).

44

The difficult part of breaking any type of encryption is determining if this

trial contains the actual key. The data can be arranged such that there are 65536

different sets of attempted decryptions, with each set containing 5 separate packets.

One method for attempting to discover the key is to look at the decrypted data

(spanning all recorded data packets) for decryptions showing “reasonable” values.

These reasonable values will have to be determined from environmental measurements

of the data being sensed and detailed knowledge of the outputs of the sensors on the

devices. If the device’s sensor is a custom design and not widely available, it may

be necessary to capture a device and experiment on the sensor in order to determine

“reasonable.” Data packets contain little information (20-bytes max). The process

of breaking the encryption is going to be difficult given this small sample size. The

ability of the attacker to determine the type of information contained within this

data packet is critical to the speed and certainty with which the encryption may be

broken.

Longer key lengths or more sophisticated encryption techniques will better

secure the data and communications; however, the cost to implement and deploy

these techniques may be more than the sensor networks can handle. Consider the

prior example, except utilize a 32-bit key instead of 16-bit key. This means there are

232 = 4,294,967,296 = 4.3 billion keys available. If the same computer is utilized to

attempt to break the encryption, the computation will take 107, 374, 182, 400 trials

which results in about 3.4 years of computation. There are 2160 = 1.461 · 1045 keys

possible in a 160-bit key length scheme. The processing time for brute-forceing this

length of key is 4.63 · 1037 years. This is the maximum key length supported by

the data structures. There is a significant cost to compute cryptographic keys and

encrypting the data on the sensor nodes prior to transmission. A similar cost occurs

when the packet is received and decrypted. For this reason, small key sizes should be

utilized for the encryption. The cost of key generation and encryption outweighs the

45

cost of renewing a smaller key more times in a given period.

5.3.3. Misuse or Abuse

Misuse or abuse can occur when a foreign entity gains access to the sensor

network. This is usually done through intrusion by a physical means or breaking the

wireless encryption of a network. Once access is gained, under typical pre-distribution

schemes, the intruder should be able to identify the encryption keys to most of the

other network nodes. This will allow the exploitation of these nodes through the use

of target messages or different routing of packets to misinform the intended node.

This misinformed node will act as if the messages it received are valid and perform

the necessary actions based upon the programming and data. Misinformation will

allow the attacker to hide real information from the network, causing blind spots in

the sensing ability of the network. The sensor can be fooled into thinking they are

passing information along about a target, when in reality, there is nothing happening

at that location.

This new point-to-point protocol separates each node from any other node

more that a single hop away. This isolates the nodes into groups based on their

communications. When a particular node has been compromised, only the data

associated with the node needs to be invalidated. Compromised nodes do not provide

keys for the rest of the network. The advantage of using the point-to-point protocol

verses some kind of pre-distribution key is the integrity of the other point-to-point

links is preserved. If the infrastructure supports detection of malicious nodes, this

method will allow the entire rest of the system to continue to function unimpeded.

Abuse occurs when malicious nodes or outsiders attempt to consume resources

within the sensor network. For a malicious node case, the protocol can do nothing

to prevent DOS attacks on the rest of the network. The only thing the sensors can

do is to ignore, as best they can, the incoming data packets. This does not stop the

46

attack but hopefully reduces the impact on the sensor network’s lifetime. The abuse

can occur as a flood of data or attempts to change and disrupt the routing of the

sensor network. There is no protection given by any encryption protocol to this type

of abuse and the point-to-point protocol does nothing to stop this. The only hope is

to prevent the abusive node from entering the network with the use of the encryption

and not rely on stopping them once inside.

47

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1. Conclusions

Wireless sensors will become more commonplace in the future, as the price

of each individual sensor drops. These sensor networks will start to become part of

everyday life and the security of their communication will become a concern. Good

security is achieved through the practice of good implementation techniques and

hardware technology. It is certain that security of sensor networks will be required

and good security will rely on the development of new technologies.

In this thesis, a unique adaptation of two pre-existing ideas was utilized to

provide a method to verify which node the communications are occurring with and

develop a shared symmetric key between the two nodes. This algorithm allows indi-

vidual nodes to choose who they wish to communicate with and generate a shared

secret key with the node. This secret is only shared between these two nodes and

is useless to any other pair of nodes on the sensor network. This secret key can be

changes at necessary. The changing of the key is necessary because of the small size

of the key.

Once deployed, sensor networks are at the mercy of their environment. This

lack of physical security, at the sensor level, places a burden on the hardware and

software. Not only is the software required to be energy efficient, it must be secure

in its implementation. The hardware must be designed to prohibit discovery of the

underlying software in the event of a captured node.

A current problem with sensor networks is with the effect of a compromised or

malicious node. The compromised node can do serious damage to an existing network.

For a pre-shared key scenario, the attacker can use the information contained within

the node to target and manipulate all the other nodes in the network. In the new

point-to-point algorithm, the compromised node is only able to communicate directly

with its neighbors, thus eliminating the attacker’s ability to capture a single node

and attack the entire network. This security style effectively isolates each node from

the rest of the network in the event of a failure.

The ability of the point-to-point system to accommodate a variety of encryp-

tion techniques is a good benefit. The system is designed to support small keys to

provide energy efficiency as well as large keys and sophisticated encryption algorithms

to provide more security. This ability to easily allow different key sizes allows for easy

expandability of the type and strength of the encryption.

The results of the energy comparison between the two different setups show

the effects of encryption. The encryption is shown to consume more energy than the

unencrypted version. This is expected due to the computation and packet overhead

needed to setup and maintain this encryption. The single largest benefit obtained

from utilizing this point-to-point protocol is the ability to change keys and the uti-

lization of smaller key lengths.

For an actual implementation and deployment, the base system, TinyOS, must

be modified to allow the application to be able to read the program code data in order

to perform the validation of the sensor. For testing purposes, this was not done and

data was read from a different data memory. This is acceptable for simulations;

however, it should not be used for practical implementation.

The random number generator in the TinyOS package is a linear feedback

shift register (LFSR). This is a basic algorithm used to generate a string of pseudo-

random numbers. A significant problem for the sensors is how this LFSR is initialized.

49

Currently, the seed value, is set to the mote ID. This lack of environmental seed

significantly limits the random number sequences available to the mote.

This research has shown that there is a relationship between security and power

efficiency. One cannot have both. There must be a line drawn between the two based

upon the needs of the application. Security research is a tricky topic because it has no

clear methodology for testing the security of the system. This is clearly evident in the

Internet with the proliferation of thousands of viruses. Each virus takes advantage

of a breakdown of security and there is no single solution to the problem. There are

best practices, but no single solution. The best method for research is to examine

security as a component of a larger scenario. This will allow security to be developed

as part of a system, and avoid the problems of developing a security system and then

finding an application for it.

6.2. Future Directions

Sensor networks are still in their infancy. There is still much to learn in

terms of their capabilities and the drawbacks. The sensor networks utilized in this

research are homogeneous. This allowed for each node to easily verify the validity

of the others. A new direction for research would be to include multiple hardware

configurations into the network. This will allow for larger hardware to provide the

long-range communications and more powerful computation abilities. This would

solve the problem with communication power consumption. The new device could

contain more powerful batteries to provide the necessary resources to the nearby

nodes. This approach is typically described as a flock and shepherd. This is one

method of clustering nodes together. The drawbacks are in the validation algorithm.

The new, more powerful nodes, will have to be able to communicate and validate the

smaller sensor nodes as well as perform their own validations between other new nodes.

This tiered approach to sensor networks adds complexity to the system; however, the

50

benefits can be significant.

Another direction would be to improve on the random number generator. The

simple LFSR would benefit from a more powerful algorithm as well as a hardware

based random number generator. If a chip could be built to generate better random

numbers, the whole system would benefit from the availability of these new random

numbers.

The energy consumption is a good direction to pursue with new research.

This is a critical component to the lifetime of a sensor network. Barring better

power sources, energy consumption minimization is the only way to extend the life

of a network. From this research, more sophisticated test cases are needed to better

understand the energy consumption of real world networks. The example chosen

is a simple, easy to test and trace algorithm. The real world applications will not

be so trivial. Energy mapping of a network could show where the point of failures

will occur. This mapping could be utilize to reposition sensors to better utilized the

available resources. It could also be used to redefine the routing system within the

network to spread out the power consumption.

51

REFERENCES

[1] I.F. Akyildiz, W. Su, T. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: A survey. Computer Networks, 38, 2002.

[2] Yair Amir, Cristina Nita-Rotaru, Jonathan Stanton, and Gene Tsudik. Secure

spread: An integrated architecture for secure group communication. IEEE Trans-

actions on Dependable and Secure Computing, 2(3):248–261, Jul–Sep 2005.

[3] Michael Brownfield, Yatharth Gupta, and Nathaniel Davis IV. Wireless sensor

network denial of sleep attack. Proceedings of the IEEE Workshop on Information

Assurance and Security, pages 356–364, 2005.

[4] Seyit A. Camtepe and Bülent Yener. Key distribution mechanisms for wireless

sensor networks: A survey. IEEE Transactions on Mobile Computing, 4(3), 2005.

[5] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux. Self-organized

public-key management for mobile ad hoc networks. IEEE Transaction on Mobile

Computing, 2(1):52–64, Jan-Mar 2003.

[6] H. Chan and A. Perrig. Pike: Peer intermediaries for key establishment in sensor

networks. Proceedings of IEEE Infocom, 2005.

[7] H Chan, A Perrig, and D Song. Random key predistribution schemes for sensor

networks. Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages

197–213, 2003.

[8] Haowen Chan, Virgil D. Gilgor, Adrian Perrig, and Gautam Muralidharan. On

the distribution and revocation of cryptographic keys in sensor networks. IEEE

Transactions on Dependable and Secure Computing, 2(3):233–247, Jul–Sep 2005.

[9] Haowen Chan and Adrian Perrig. Security and privacy in sensor networks. IEEE

Security, October 2003.

[10] Inc. Crossbow Technology. http://www.xbow.com/.

[11] Jing Deng, Richard Han, and Shivakant Mishra. Enhancing base station security

in wireless sensor networks. April 2003.

[12] R Di Pietro, LV Mancini, and A Mei. Random key-assignment for secure wireless

sensor networks. Proceedings of the 1st ACM workshop on Security of ad hoc and

sensor networks, pages 62–71, 2003.

[13] W Du, J Deng, YS Han, PK Varshney, J Katz, and A Khalili. A pairwise

key predistribution scheme for wireless sensor networks. ACM Transactions on

Information and System Security (TISSEC), 8(2):228–258, 2005.

[14] Wenliang Du, Jing Deng, Yunghsiang S. Han, Shigang Chen, and Pramod K.

Varshney. A key management scheme for wireless sensor networks using deploy-

ment knowledge. IEEE Conference on Computer Communications, 2004.

[15] L Eschenauer and VD Gligor. A key-management scheme for distributed sensor

networks. pages –.

[16] Huirong Fu, Satoshi Kawamura, Ming Zhang, and Liren. Replication attack on

random key pre-distribution schemes for wireless sensor networks. Proceedings

of the IEEE Workshop on Information Assurance and Security, pages 134–141,

2005.

53

[17] Gunnar Gaubatz, Jens-Peter Kaps, and Berk Sunar. Public key cryptography

in sensor networks – revisited. First European Workshop on Security in Ad-Hoc

and Sensor Networks, August 2004.

[18] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorith-

mic tamper-proof (atp) security: Theoretical foundations for security against

hardware tampering. 2004.

[19] Fei Hu, Jim Ziobro, Jason Tillett, and Neeraj K. Sharma. Secure Wireless Sensor

Networks: Problems and Solutions.

[20] Linqxuan Hu and David Evans. Secure aggregation for wireless networks. IEEE

Workshop on Security Assurance in Ad Hoc Networks, 2003.

[21] Dijiang Huang, Manish Mehta, Deep Medhi, and Lein Harn. Location-aware key

management scheme for wireless sensor networks. ACM Workshop on Security

of Ad Hoc and Sensor Networks, pages 29–42, October 2004.

[22] Bocheng Lai, Sungha Kim, and Ingrid Verbuwhede. Scalable session key con-

struction protocol for wireless sensor networks. IEEE Workshop on Large Scale

Real-Time and Embedded Systems, December 2002.

[23] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and

scalable simulation of entire tinyos applications. ACM Conference on Embedded

Networked Sensor Systems, pages 126–137, November 2003.

[24] Zang Li, Wade Trappe, Yanyong Zhang, and Badri Nath. Robust statistical

methods for securing wireless localization in sensor networks. Proceedings of the

International Conference on Information Processing in Sensor Networks, pages

91–98, April 2005.

54

[25] D Liu and P Ning. Location-based pairwise key establishments for static sensor

networks. Proceedings of the 1st ACM workshop on Security of ad hoc and sensor

networks, pages 72–82, 2003.

[26] Donggang Liu and Peng Ning. Establishing pairwise keys in distributed sensor

networks. ACM Conference on Computer and Communications Security, Octo-

ber 2003.

[27] Donggang Liu, Peng Ning, and Wenliang Du. Group-based key pre-distribution

in wireless sensor networks. Proceedings of ACM Workshop on Wireless Security,

2005.

[28] Konrad Lorincz, David J. Malan, Thaddeus R.F. Fulford-Jones, Alan Nawoj,

Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh, and Steve

Moulton. Sensor networks for emergency response: Challenges and opportunities.

IEEE Pervasive Computing, pages 16–23, 2004.

[29] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John

Anderson. Wireless sensor networks for habitat monitoring. ACM International

Workshop on Wireless Sensor Networks and Applications, September 2002.

[30] DJ Malan, M Welsh, and MD Smith. A public-key infrastructure for key dis-

tribution in tinyos based on elliptic curve cryptography. Sensor and Ad Hoc

Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual

IEEE Communications Society Conference on, pages 71–80, 2004.

[31] J Newsome, E Shi, D Song, and A Perrig. The Sybil attack in sensor networks:

analysis & defenses. Proceedings of the third international symposium on Infor-

mation processing in sensor networks, pages 259–268, 2004.

55

[32] Taejoon Park and Kang G. Shin. Soft tamper-proofing via a program integrity

verification in wireless sensor networks. IEEE Transactions on Mobile Comput-

ing, 4(3), 2005.

[33] A Perrig, J Stankovic, and D Wagner. Security in wireless sensor networks.

Communications of the ACM, 47(6):53–57, 2004.

[34] Mahalingam Ramkumar. Safe renewal of a random key pre-distribution scheme

for trusted devices. Proceedings of the IEEE Workshop on Information Assurance

and Security, pages 142–149, 2005.

[35] Elaine Shi and Adrian Perrig. Designing secure sensor networks. IEEE Wireless

Communications, December 2004.

[36] TinyOS. http://www.tinyos.net/.

[37] Patrick Traynor, Heesook Choi, Guohong Cao, Seneun Zhu, and Tom La Porta.

Establishing pair-wise keys in heterogeneous sensor networks. 2004.

[38] AS Wander, N Gura, H Eberle, V Gupta, and SC Shantz. Energy analysis of

public-key cryptography for wireless sensor networks. Third IEEE International

Conference on Pervasive Computing and Communications (PERCOMÍ05), 2005.

[39] R Watro, D Kong, S Cuti, C Gardiner, C Lynn, and P Kruus. Tinypk: secur-

ing sensor networks with public key technology. Proceedings of the 2nd ACM

workshop on Security of ad hoc and sensor networks, pages 59–64, 2004.

[40] R. Wei and J. Wu. Product construction of key distribution schemes for sensor

networks. May 2004.

[41] Anthony D. Wood and John A. Stankovic. Denial of service in sensor networks.

IEEE Computer, pages 54–62, 2002.

56

[42] Qi Xue and Aura Ganz. Runtime security composition for sensor networks (se-

curesense). IEEE Vehicular Technology Conference, 2003.

[43] Chee yee Chong and Srikanta P. Kumar. Sensor networks: Evolution, opportu-

nities and challenges. Proceedings of the IEEE, 91(8), August 2003.

57

APPENDIX I

TinyOS System

1.1. TinyOS Installation

The following procedure is the method used to install TinyOS.

1. Download and install the stable version of TinyOS from

http://www.xbow.com/Support/Support_pdf_files/tinyos-1.1.0-1is.zip

This will include all the necessary components for the Cygwin, TinyOS pack-

ages, TinyViz, and the special Crossbow libraries.

2. To launch the system, run the Cygwin shortcut on the desktop.

3. Navigate to the tinyos system

bash$ cd /opt/tinyos-1.x

4. You are now ready to use the TinyOS system.

1.2. TinyViz

TinyViz is installed with TinyOS. This is the simulator for running motes. In

order to run a simulation, one must follow this procedure:

1. Build the application for the computer

bash$ make pc

2. Enable the appropriate debug environment variables. For example:

bash$ export DBG=usr,usr2,usr3

3. Run main.exe and save the output to a trace file

bash$ /opt/tinyos-1.x/tools/java/net/tinyos/sim/tinyviz -run

./build/pc/main.exe 15

1.3. Power Profiling

1. Build the application

bash$ make pc

2. Enable the power debug environment variable

bash$ export DBG=power

3. Run main.exe and save the output to a trace file

bash$./build/pc/main.exe -t=60 -p 15 ¿ tree.trace

4. Run a post process script to compute the power consumption for each mote

bash$ /opt/tinyos-1.x/tools/scripts/PowerTOSSIM/postprocess.py –sb=0

–em /opt/tinyos-1.x/tools/scripts/PowerTOSSIM/mica2EnergyModel.txt

tree.trace

5. Single node example results which can be directly compared to other nodes to

determine relative energy consumption.

59

Mote 0, cpu total: 2224.706574

Mote 0, radio total: 3617.270259

Mote 0, adc total: 0.000000

Mote 0, leds total: 2892.881511

Mote 0, sensor total: 0.000000

Mote 0, eeprom total: 0.000000

Mote 0, cpucycle total: 0.000000

Mote 0, Total energy: 8734.858344

60

APPENDIX II

Testing

2.1. Key Generation Testing

Results from 180 seconds of simulation with 2 mote sensors. This output shows
the debug messages containing the packet data, the timer fired messages pushing data
into the network, and the process of setting up the keys.

SIM: Random seed is 429878

SIM: Time for mote 0 initialized to 6139606.

SIM: Time for mote 1 initialized to 11929239.

0: Starting Node

1: Starting Node

1: TIMER Message: 0

1: Dump: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

1: Dump2: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

1: Dump: 1 100 7612,6759,5585,2749,0,0,0,0,0,0

0: Dump: 0 101 61560,0,0,0,0,0,0,0,0,0

1: Completed sending message

1: Dump: 1 102 11653,10846,9704,14980,12345,12345,12345,12345,12345,12345

0: Completed sending message

0: Dump: 0 103 53954,42243,19085,34196,12345,12345,12345,12345,12345,12345

1: Completed sending message

1: Dump: 1 104 43365,6759,5585,2749,0,0,0,0,0,0

0: Completed sending message

0: Dump: 0 105 2000,38202,31412,46509,0,0,0,0,0,0

1: Completed sending message

1: Mote Link 1<-->0 is complete. Key: 2000

1: Dump: 1 7 12321,46472,23066,38187,6976,6047,3617,15709,23461,38485

0: Completed sending message

1: Completed sending message

1: TIMER Message: 4

1: Dump: 1 7 12321,8920,25775,59457,57748,62002,54646,39934,1774,11459

1: Completed sending message

1: TIMER Message: 3

1: Dump: 1 5 12321,37196,4994,1563,11561,31565,55173,40476,3362,15195

1: Completed sending message

1: TIMER Message: 2

1: Dump: 1 5 12321,11660,31239,54545,39732,1906,12283,32489,56525,34956

1: Completed sending message

1: TIMER Message: 1

1: Dump: 1 3 12321,58153,63300,57234,36406,11646,31715,55001,40100,2130

1: Completed sending message

1: TIMER Message: 0

1: Dump: 1 1 12321,42445,31372,54279,39192,826,10091,28617,65165,52236

1: Dump2: 1 1 12321,42445,31372,54279,39192,826,10091,28617,65165,52236

1: Dump: 1 100 43266,25366,59187,65392,12345,12345,12345,12345,12345,12345

0: Dump: 0 101 13050,42243,19085,34196,12345,12345,12345,12345,12345,12345

1: Completed sending message

1: Dump: 1 102 44754,25798,57571,63648,14313,14313,14313,14313,14313,14313

0: Completed sending message

0: Dump: 0 103 19754,35546,5427,15080,14313,14313,14313,14313,14313,14313

1: Completed sending message

1: Dump: 1 104 53584,25366,59187,65392,12345,12345,12345,12345,12345,12345

0: Completed sending message

0: Dump: 0 105 55858,36106,4835,15672,12345,12345,12345,12345,12345,12345

1: Completed sending message

1: Mote Link 1<-->0 is complete. Key: 55858

1: Dump: 1 1 12321,42445,31372,54279,39192,826,10091,28617,65165,52236

0: Completed sending message

1: Completed sending message

1: TIMER Message: 4

1: Dump: 1 0 12321,36810,11910,31763,55609,33636,14290,20155,48233,18884

1: Completed sending message

1: TIMER Message: 3

1: Dump: 1 0 12321,35183,9160,26255,60417,59668,58162,63350,57342,36590

1: Completed sending message

1: TIMER Message: 2

1: Dump: 1 3 12321,53273,37156,4946,1979,11881,32205,55941,33820,14626

1: Completed sending message

1: TIMER Message: 1

1: Dump: 1 1 12321,15940,23959,39473,1396,11255,30449,52477,43244,24770

1: Completed sending message

1: TIMER Message: 0

1: Dump: 1 0 12321,53610,37830,5790,3107,14681,21421,34373,15772,23079

1: Dump2: 1 0 12321,53610,37830,5790,3107,14681,21421,34373,15772,23079

1: Dump: 1 100 38225,7092,5751,3569,14313,14313,14313,14313,14313,14313

0: Dump: 0 101 20288,35546,5427,15080,14313,14313,14313,14313,14313,14313

1: Completed sending message

1: Dump: 1 102 20323,49542,52293,55235,60891,60891,60891,60891,60891,60891

0: Completed sending message

0: Dump: 0 103 49684,33967,2533,836,60891,60891,60891,60891,60891,60891

1: Completed sending message

1: Dump: 1 104 43004,7092,5751,3569,14313,14313,14313,14313,14313,14313

0: Completed sending message

0: Dump: 0 105 15490,24221,54231,55670,14313,14313,14313,14313,14313,14313

1: Completed sending message

1: Mote Link 1<-->0 is complete. Key: 15490

1: Dump: 1 0 12321,53610,37830,5790,3107,14681,21421,34373,15772,23079

0: Completed sending message

1: Completed sending message

1: TIMER Message: 4

1: Dump: 1 7 12321,57809,62132,54386,39414,766,9443,26841,61613,53324

1: Completed sending message

1: TIMER Message: 3

1: Dump: 1 6 12321,1331,11129,30701,52933,44188,26658,61787,54176,38506

1: Completed sending message

1: TIMER Message: 2

1: Dump: 1 3 12321,5177,2413,13253,18069,44085,27004,62439,55000,40122

1: Completed sending message

1: TIMER Message: 1

1: Dump: 1 3 12321,17081,42093,31180,53895,37912,6458,4971,1993,11917

1: Completed sending message

1: TIMER Message: 0

1: Dump: 1 5 12321,33596,14178,20443,48809,19524,47511,16952,42351,31688

1: Dump2: 1 5 12321,33596,14178,20443,48809,19524,47511,16952,42351,31688

1: Dump: 1 100 54927,39944,2330,13099,60891,60891,60891,60891,60891,60891

0: Dump: 0 101 55750,33967,2533,836,60891,60891,60891,60891,60891,60891

1: Completed sending message

1: Dump: 1 102 59917,41098,13720,4009,53593,53593,53593,53593,53593,53593

0: Completed sending message

0: Dump: 0 103 34739,4077,3924,3622,53593,53593,53593,53593,53593,53593

1: Completed sending message

1: Dump: 1 104 3762,39944,2330,13099,60891,60891,60891,60891,60891,60891

0: Completed sending message

0: Dump: 0 105 2314,13167,13270,12964,60891,60891,60891,60891,60891,60891

1: Completed sending message

1: Mote Link 1<-->0 is complete. Key: 2314

1: Dump: 1 5 12321,33596,14178,20443,48809,19524,47511,16952,42351,31688

0: Completed sending message

1: Completed sending message

62

1: TIMER Message: 4

1: Dump: 1 0 12321,42810,32614,57299,36528,11402,30731,53513,37636,5906

1: Completed sending message

1: TIMER Message: 3

1: Dump: 1 1 12321,24525,40581,3100,14631,21329,34749,15980,24007,39569

1: Completed sending message

Simulation of 2 motes completed.

2.2. Network Communication Testing

Results from 30 seconds of simulation with 5 mote sensors.

SIM: Random seed is 163419

4: Sent Message: (Node,value) 3,2

3: Received Message: (Node,value) 4,2

3: Sent Message: (Node,value) 2,2

1: Sent Message: (Node,value) 0,7

4: Sent Message: (Node,value) 3,6

3: Received Message: (Node,value) 4,6

3: Sent Message: (Node,value) 2,6

2: Received Message: (Node,value) 3,6

2: Sent Message: (Node,value) 1,6

1: Received Message: (Node,value) 2,6

1: Sent Message: (Node,value) 0,6

4: Sent Message: (Node,value) 3,4

3: Received Message: (Node,value) 4,4

3: Sent Message: (Node,value) 2,4

2: Received Message: (Node,value) 3,4

2: Sent Message: (Node,value) 1,4

1: Received Message: (Node,value) 2,4

1: Sent Message: (Node,value) 0,4

0: Received Message: (Node,value) 1,4

4: Sent Message: (Node,value) 3,4

3: Received Message: (Node,value) 4,4

3: Sent Message: (Node,value) 2,4

2: Received Message: (Node,value) 3,4

2: Sent Message: (Node,value) 1,4

1: Received Message: (Node,value) 2,4

1: Sent Message: (Node,value) 0,4

0: Received Message: (Node,value) 1,4

4: Sent Message: (Node,value) 3,1

3: Received Message: (Node,value) 4,1

3: Sent Message: (Node,value) 2,1

2: Received Message: (Node,value) 3,1

2: Sent Message: (Node,value) 1,1

1: Received Message: (Node,value) 2,1

1: Sent Message: (Node,value) 0,1

0: Received Message: (Node,value) 1,1

4: Sent Message: (Node,value) 3,0

3: Received Message: (Node,value) 4,0

3: Sent Message: (Node,value) 2,0

2: Received Message: (Node,value) 3,0

2: Sent Message: (Node,value) 1,0

1: Received Message: (Node,value) 2,0

1: Sent Message: (Node,value) 0,0

0: Received Message: (Node,value) 1,0

4: Sent Message: (Node,value) 3,7

3: Received Message: (Node,value) 4,7

3: Sent Message: (Node,value) 2,7

2: Received Message: (Node,value) 3,7

2: Sent Message: (Node,value) 1,7

1: Received Message: (Node,value) 2,7

1: Sent Message: (Node,value) 0,7

0: Received Message: (Node,value) 1,7

63

4: Sent Message: (Node,value) 3,2

3: Received Message: (Node,value) 4,2

3: Sent Message: (Node,value) 2,2

2: Received Message: (Node,value) 3,2

2: Sent Message: (Node,value) 1,2

1: Received Message: (Node,value) 2,2

1: Sent Message: (Node,value) 0,2

0: Received Message: (Node,value) 1,2

4: Sent Message: (Node,value) 3,1

3: Received Message: (Node,value) 4,1

3: Sent Message: (Node,value) 2,1

2: Received Message: (Node,value) 3,1

2: Sent Message: (Node,value) 1,1

1: Received Message: (Node,value) 2,1

1: Sent Message: (Node,value) 0,1

0: Received Message: (Node,value) 1,1

Simulation of 5 motes completed.

2.3. Sample Tree Application Test

Results from 30 seconds of simulation with 15 mote sensors.

SIM: Random seed is 505942

SIM: Time for mote 0 initialized to 38308441.

SIM: Time for mote 1 initialized to 11063463.

SIM: Time for mote 2 initialized to 37427157.

SIM: Time for mote 3 initialized to 6269218.

SIM: Time for mote 4 initialized to 7424788.

SIM: Time for mote 5 initialized to 21263943.

SIM: Time for mote 6 initialized to 30998662.

SIM: Time for mote 7 initialized to 26766772.

SIM: Time for mote 8 initialized to 37219119.

SIM: Time for mote 9 initialized to 793060.

SIM: Time for mote 10 initialized to 9022949.

SIM: Time for mote 11 initialized to 366235.

SIM: Time for mote 12 initialized to 13551507.

SIM: Time for mote 13 initialized to 35265355.

SIM: Time for mote 14 initialized to 28527150.

11: Starting Node

11: Starting Timer

9: Starting Node

9: Starting Timer

3: Starting Node

3: Starting Timer

4: Starting Node

4: Starting Timer

10: Starting Node

10: Starting Timer

1: Starting Node

1: Starting Timer

12: Starting Node

12: Starting Timer

5: Starting Node

5: Starting Timer

7: Starting Node

7: Starting Timer

14: Starting Node

14: Starting Timer

6: Starting Node

6: Starting Timer

13: Starting Node

13: Starting Timer

8: Starting Node

8: Starting Timer

64

2: Starting Node

2: Starting Timer

0: Starting Node

0: Starting Timer

11: Sending Message to 5 val: 5

11: TIMER Message: 0

11: Dump: 11 0 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

11: Dump2: 11 0 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

11: Dump: 11 100 13489,46894,40985,36471,0,0,0,0,0,0

5: Dump: 5 101 44345,0,0,0,0,0,0,0,0,0

11: Completed sending message

11: Dump: 11 102 1160,34583,36896,48718,12345,12345,12345,12345,12345,12345

5: Completed sending message

5: Dump: 5 103 25228,8763,41813,45440,12345,12345,12345,12345,12345,12345

11: Completed sending message

9: Sending Message to 4 val: 1

9: TIMER Message: 0

9: Dump: 9 7 1,49772,10639,60992,29143,24304,162,48158,54635,1921

9: Dump2: 9 7 1,49772,10639,60992,29143,24304,162,48158,54635,1921

9: Dump: 9 100 45660,51695,16009,49228,0,0,0,0,0,0

11: Dump: 11 104 51100,46894,40985,36471,0,0,0,0,0,0

5: Completed sending message

4: Dump: 4 101 40513,0,0,0,0,0,0,0,0,0

9: Completed sending message

9: Dump: 9 102 33381,63958,3760,61557,12345,12345,12345,12345,12345,12345

4: Completed sending message

5: Dump: 5 105 57186,4610,37740,33209,0,0,0,0,0,0

11: Completed sending message

4: Dump: 4 103 8142,59702,5327,65332,12345,12345,12345,12345,12345,12345

9: Completed sending message

11: Mote Link 11<-->5 is complete. Key: 57186

11: Dump: 11 0 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

5: Completed sending message

9: Dump: 9 104 5702,51695,16009,49228,0,0,0,0,0,0

4: Completed sending message

5: Processing Data 11 0

5: Dump: 5 5 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

5: Dump2: 5 5 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

5: Dump: 5 100 29943,3789,64185,600,12345,12345,12345,12345,12345,12345

11: Completed sending message

2: Dump: 2 101 54702,0,0,0,0,0,0,0,0,0

5: Completed sending message

5: Dump: 5 102 17614,16116,51840,12897,0,0,0,0,0,0

2: Completed sending message

2: Dump: 2 103 39250,20797,53738,49229,12345,12345,12345,12345,12345,12345

5: Completed sending message

4: Dump: 4 105 42812,55567,9462,53005,0,0,0,0,0,0

9: Completed sending message

5: Dump: 5 104 31159,3789,64185,600,12345,12345,12345,12345,12345,12345

2: Completed sending message

9: Mote Link 9<-->4 is complete. Key: 42812

9: Dump: 9 7 1,49772,10639,60992,29143,24304,162,48158,54635,1921

4: Completed sending message

2: Dump: 2 105 42403,24836,57811,61556,0,0,0,0,0,0

5: Completed sending message

4: Processing Data 9 7

4: Dump: 4 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

4: Dump2: 4 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

4: Dump: 4 100 55049,26805,1984,55594,12345,12345,12345,12345,12345,12345

9: Completed sending message

5: Mote Link 5<-->2 is complete. Key: 42403

5: Dump: 5 5 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

2: Completed sending message

1: Dump: 1 101 29956,0,0,0,0,0,0,0,0,0

4: Completed sending message

2: Processing Data 5 5

2: Dump: 2 5 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

2: Dump2: 2 5 5,17519,22162,29540,14464,44872,37077,61423,4507,64890

65

2: Dump: 2 100 8742,14300,7208,19392,12345,12345,12345,12345,12345,12345

5: Completed sending message

4: Dump: 4 102 59184,22668,14329,59667,0,0,0,0,0,0

1: Completed sending message

0: Dump: 0 101 22049,0,0,0,0,0,0,0,0,0

2: Completed sending message

1: Dump: 1 103 46472,23066,38187,6976,12345,12345,12345,12345,12345,12345

4: Completed sending message

2: Dump: 2 102 4639,2021,11281,31737,0,0,0,0,0,0

0: Completed sending message

4: Dump: 4 104 20097,26805,1984,55594,12345,12345,12345,12345,12345,12345

1: Completed sending message

0: Dump: 0 103 53954,42243,19085,34196,12345,12345,12345,12345,12345,12345

2: Completed sending message

2: Dump: 2 104 43365,14300,7208,19392,12345,12345,12345,12345,12345,12345

0: Completed sending message

1: Dump: 1 105 3617,27171,42258,11129,0,0,0,0,0,0

4: Completed sending message

4: Mote Link 4<-->1 is complete. Key: 3617

4: Dump: 4 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

1: Completed sending message

1: Processing Data 4 1

1: Dump: 1 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

1: Dump2: 1 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

1: Dump: 1 100 23461,38485,7612,6759,12345,12345,12345,12345,12345,12345

4: Completed sending message

0: Dump: 0 101 42028,38202,31412,46509,0,0,0,0,0,0

1: Completed sending message

0: Dump: 0 105 7982,42243,19085,34196,12345,12345,12345,12345,12345,12345

2: Completed sending message

1: Mote Link 1<-->0 is complete. Key: 7982

1: Dump: 1 1 1,49772,10639,60992,29143,24304,162,48158,54635,1921

0: Completed sending message

0: Processing Data 1 1

1: Completed sending message

3: Sending Message to 1 val: 0

3: TIMER Message: 0

3: Dump: 3 0 0,46109,14862,13857,11903,7875,32699,48459,10402,4985

3: Dump2: 3 0 0,46109,14862,13857,11903,7875,32699,48459,10402,4985

3: Dump: 3 100 25807,35747,17778,51417,0,0,0,0,0,0

1: Dump: 1 101 47081,42604,11653,10846,0,0,0,0,0,0

3: Completed sending message

3: Dump: 3 102 21750,48026,30027,63712,12345,12345,12345,12345,12345,12345

1: Completed sending message

1: Dump: 1 103 18901,45749,21628,35303,12345,12345,12345,12345,12345,12345

3: Completed sending message

3: Dump: 3 104 49588,35747,17778,51417,0,0,0,0,0,0

1: Completed sending message

1: Dump: 1 105 25775,33420,25669,47582,0,0,0,0,0,0

3: Completed sending message

3: Mote Link 3<-->1 is complete. Key: 25775

3: Dump: 3 0 0,46109,14862,13857,11903,7875,32699,48459,10402,4985

1: Completed sending message

1: Processing Data 3 0

1: Dump: 1 1 0,46109,14862,13857,11903,7875,32699,48459,10402,4985

3: Completed sending message

0: Processing Data 1 1

1: Completed sending message

10: Sending Message to 4 val: 1

10: TIMER Message: 0

10: Dump: 10 0 1,39295,52518,26004,9465,42543,45958,39124,52848,25400

10: Dump2: 10 0 1,39295,52518,26004,9465,42543,45958,39124,52848,25400

10: Dump: 10 100 10657,48287,34534,61972,0,0,0,0,0,0

4: Dump: 4 101 8299,22668,14329,59667,0,0,0,0,0,0

10: Completed sending message

10: Dump: 10 102 6552,36006,46815,49709,12345,12345,12345,12345,12345,12345

4: Completed sending message

4: Dump: 4 103 63072,10851,33388,49787,12345,12345,12345,12345,12345,12345

66

10: Completed sending message

10: Dump: 10 104 6738,48287,34534,61972,0,0,0,0,0,0

4: Completed sending message

4: Dump: 4 105 21048,6746,45653,62018,0,0,0,0,0,0

10: Completed sending message

10: Mote Link 10<-->4 is complete. Key: 21048

10: Dump: 10 0 1,39295,52518,26004,9465,42543,45958,39124,52848,25400

4: Completed sending message

4: Processing Data 10 0

4: Dump: 4 1 1,39295,52518,26004,9465,42543,45958,39124,52848,25400

10: Completed sending message

1: Processing Data 4 1

1: Dump: 1 1 1,39295,52518,26004,9465,42543,45958,39124,52848,25400

4: Completed sending message

0: Processing Data 1 1

1: Completed sending message

12: Sending Message to 5 val: 1

12: TIMER Message: 0

12: Dump: 12 3 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

12: Dump2: 12 3 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

12: Dump: 12 100 11100,7411,29617,44333,0,0,0,0,0,0

5: Dump: 5 101 22776,16116,51840,12897,0,0,0,0,0,0

12: Completed sending message

12: Dump: 12 102 7013,11466,17288,40212,12345,12345,12345,12345,12345,12345

5: Completed sending message

5: Dump: 5 103 60479,12116,47499,33852,12345,12345,12345,12345,12345,12345

12: Completed sending message

12: Dump: 12 104 19124,7411,29617,44333,0,0,0,0,0,0

5: Completed sending message

5: Dump: 5 105 2482,8045,35250,46085,0,0,0,0,0,0

12: Completed sending message

12: Mote Link 12<-->5 is complete. Key: 2482

12: Dump: 12 3 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

5: Completed sending message

5: Processing Data 12 3

5: Dump: 5 5 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

12: Completed sending message

2: Processing Data 5 5

2: Dump: 2 1 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

2: Dump2: 2 1 1,53536,63490,43590,3790,22487,58857,37264,31074,47247

2: Dump: 2 100 64968,38921,21383,54430,0,0,0,0,0,0

5: Completed sending message

0: Dump: 0 101 15557,38202,31412,46509,0,0,0,0,0,0

2: Completed sending message

0: Completed sending message

7: Sending Message to 3 val: 1

7: TIMER Message: 0

7: Dump: 7 4 1,63570,25896,20009,6187,46127,64558,27680,23609,15371

7: Dump2: 7 4 1,63570,25896,20009,6187,46127,64558,27680,23609,15371

7: Dump: 7 100 64623,27822,23845,15923,0,0,0,0,0,0

3: Dump: 3 101 54402,48026,30027,63712,12345,12345,12345,12345,12345,12345

7: Completed sending message

7: Dump: 7 102 52310,23703,27932,3594,12345,12345,12345,12345,12345,12345

3: Completed sending message

3: Dump: 3 103 27997,39047,25402,33865,0,0,0,0,0,0

7: Completed sending message

7: Dump: 7 104 49604,27822,23845,15923,0,0,0,0,0,0

3: Completed sending message

3: Dump: 3 105 63345,43198,21251,46192,12345,12345,12345,12345,12345,12345

7: Completed sending message

7: Mote Link 7<-->3 is complete. Key: 63345

7: Dump: 7 4 1,63570,25896,20009,6187,46127,64558,27680,23609,15371

3: Completed sending message

3: Processing Data 7 4

3: Dump: 3 1 1,63570,25896,20009,6187,46127,64558,27680,23609,15371

7: Completed sending message

1: Processing Data 3 1

1: Dump: 1 1 1,63570,25896,20009,6187,46127,64558,27680,23609,15371

67

3: Completed sending message

0: Processing Data 1 1

1: Completed sending message

14: Sending Message to 6 val: 4

14: TIMER Message: 0

14: Dump: 14 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

14: Dump2: 14 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

14: Dump: 14 100 21625,33211,14890,23809,0,0,0,0,0,0

6: Dump: 6 101 17920,0,0,0,0,0,0,0,0,0

14: Completed sending message

14: Dump: 14 102 25664,45442,2579,27960,12345,12345,12345,12345,12345,12345

6: Completed sending message

6: Dump: 6 103 16494,13624,57236,6853,12345,12345,12345,12345,12345,12345

14: Completed sending message

14: Dump: 14 104 51786,33211,14890,23809,0,0,0,0,0,0

6: Completed sending message

6: Dump: 6 105 42289,1281,61357,11004,0,0,0,0,0,0

14: Completed sending message

14: Mote Link 14<-->6 is complete. Key: 42289

14: Dump: 14 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

6: Completed sending message

6: Processing Data 14 4

6: Dump: 6 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

6: Dump2: 6 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

6: Dump: 6 100 31439,16506,13584,57284,12345,12345,12345,12345,12345,12345

14: Completed sending message

2: Dump: 2 101 57912,43056,25534,58535,12345,12345,12345,12345,12345,12345

6: Completed sending message

6: Dump: 6 102 19190,28739,1321,61437,0,0,0,0,0,0

2: Completed sending message

2: Dump: 2 103 36419,32539,36262,30933,0,0,0,0,0,0

6: Completed sending message

6: Dump: 6 104 27346,16506,13584,57284,12345,12345,12345,12345,12345,12345

2: Completed sending message

2: Dump: 2 105 26605,20258,48543,18668,12345,12345,12345,12345,12345,12345

6: Completed sending message

6: Mote Link 6<-->2 is complete. Key: 26605

6: Dump: 6 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

2: Completed sending message

2: Processing Data 6 4

2: Dump: 2 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

2: Dump2: 2 4 4,5437,803,12055,30591,51119,46594,21848,33765,16022

2: Dump: 2 100 6925,17802,63620,37521,0,0,0,0,0,0

6: Completed sending message

0: Dump: 0 101 62866,35348,26010,43651,7982,7982,7982,7982,7982,7982

2: Completed sending message

0: Completed sending message

13: Sending Message to 6 val: 5

13: TIMER Message: 0

13: Dump: 13 3 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

13: Dump2: 13 3 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

13: Dump: 13 100 13401,4976,23854,49562,0,0,0,0,0,0

6: Dump: 6 101 22878,28739,1321,61437,0,0,0,0,0,0

13: Completed sending message

13: Dump: 13 102 1120,9033,27927,61859,12345,12345,12345,12345,12345,12345

6: Completed sending message

6: Dump: 6 103 21626,7440,36804,47717,12345,12345,12345,12345,12345,12345

13: Completed sending message

13: Dump: 13 104 36654,4976,23854,49562,0,0,0,0,0,0

6: Completed sending message

6: Dump: 6 105 1983,11561,49149,35420,0,0,0,0,0,0

13: Completed sending message

13: Mote Link 13<-->6 is complete. Key: 1983

13: Dump: 13 3 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

6: Completed sending message

6: Processing Data 13 3

6: Dump: 6 5 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

13: Completed sending message

68

2: Processing Data 6 5

2: Dump: 2 5 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

2: Dump2: 2 5 5,59953,49065,5273,21232,56878,55191,50405,57857,45001

2: Dump: 2 100 65278,40549,24431,52558,12345,12345,12345,12345,12345,12345

6: Completed sending message

0: Dump: 0 101 35801,38202,31412,46509,0,0,0,0,0,0

2: Completed sending message

0: Completed sending message

8: Sending Message to 3 val: 5

8: TIMER Message: 0

8: Dump: 8 7 5,29857,26041,18313,1001,35625,35492,35262,36746,33762

8: Dump2: 8 7 5,29857,26041,18313,1001,35625,35492,35262,36746,33762

8: Dump: 8 100 39730,43666,51666,3922,0,0,0,0,0,0

3: Dump: 3 101 56874,39047,25402,33865,0,0,0,0,0,0

8: Completed sending message

8: Dump: 8 102 43787,39595,63979,16235,12345,12345,12345,12345,12345,12345

3: Completed sending message

3: Dump: 3 103 26711,37523,30482,44057,12345,12345,12345,12345,12345,12345

8: Completed sending message

8: Dump: 8 104 58230,43666,51666,3922,0,0,0,0,0,0

3: Completed sending message

3: Dump: 3 105 22065,41642,18219,39968,0,0,0,0,0,0

8: Completed sending message

8: Mote Link 8<-->3 is complete. Key: 22065

8: Dump: 8 7 5,29857,26041,18313,1001,35625,35492,35262,36746,33762

3: Completed sending message

3: Processing Data 8 7

3: Dump: 3 5 5,29857,26041,18313,1001,35625,35492,35262,36746,33762

8: Completed sending message

1: Processing Data 3 5

1: Dump: 1 5 5,29857,26041,18313,1001,35625,35492,35262,36746,33762

3: Completed sending message

0: Processing Data 1 5

1: Completed sending message

11: Sending Message to 5 val: 4

11: TIMER Message: 4

11: Dump: 11 6 4,33008,53157,20751,31826,9956,37760,59717,7375,59346

5: Processing Data 11 6

5: Dump: 5 4 4,33008,53157,20751,31826,9956,37760,59717,7375,59346

11: Completed sending message

2: Processing Data 5 4

2: Dump: 2 5 4,33008,53157,20751,31826,9956,37760,59717,7375,59346

2: Dump2: 2 5 4,33008,53157,20751,31826,9956,37760,59717,7375,59346

2: Dump: 2 100 37295,16579,61974,34741,0,0,0,0,0,0

5: Completed sending message

0: Dump: 0 101 27615,35348,26010,43651,7982,7982,7982,7982,7982,7982

2: Completed sending message

9: Sending Message to 4 val: 3

9: TIMER Message: 4

9: Dump: 9 6 3,45672,51591,15961,49644,11919,57408,28119,26352,28834

0: Completed sending message

4: Processing Data 9 6

4: Dump: 4 3 3,45672,51591,15961,49644,11919,57408,28119,26352,28834

9: Completed sending message

1: Processing Data 4 3

1: Dump: 1 5 3,45672,51591,15961,49644,11919,57408,28119,26352,28834

1: Dump2: 1 5 3,45672,51591,15961,49644,11919,57408,28119,26352,28834

1: Dump: 1 100 1774,11459,30873,53293,12345,12345,12345,12345,12345,12345

4: Completed sending message

0: Dump: 0 101 31456,38202,31412,46509,0,0,0,0,0,0

1: Completed sending message

0: Completed sending message

10: Sending Message to 4 val: 3

10: TIMER Message: 4

10: Dump: 10 7 3,6766,56077,18882,31829,5991,49435,32238,5133,50999

4: Processing Data 10 7

4: Dump: 4 3 3,6766,56077,18882,31829,5991,49435,32238,5133,50999

10: Completed sending message

69

1: Processing Data 4 3

1: Dump: 1 5 3,6766,56077,18882,31829,5991,49435,32238,5133,50999

1: Dump2: 1 5 3,6766,56077,18882,31829,5991,49435,32238,5133,50999

1: Dump: 1 100 4994,1563,11561,31565,12055,12055,12055,12055,12055,12055

4: Completed sending message

0: Dump: 0 101 53918,42243,19085,34196,12345,12345,12345,12345,12345,12345

1: Completed sending message

0: Completed sending message

12: Sending Message to 5 val: 6

12: TIMER Message: 4

12: Dump: 12 2 6,41415,6604,31187,47601,10656,6411,30817,47757,12120

5: Processing Data 12 2

5: Dump: 5 6 6,41415,6604,31187,47601,10656,6411,30817,47757,12120

12: Completed sending message

2: Processing Data 5 6

2: Dump: 2 6 6,41415,6604,31187,47601,10656,6411,30817,47757,12120

2: Dump2: 2 6 6,41415,6604,31187,47601,10656,6411,30817,47757,12120

2: Dump: 2 100 43918,13445,6810,18084,12345,12345,12345,12345,12345,12345

5: Completed sending message

0: Dump: 0 101 55757,38202,31412,46509,0,0,0,0,0,0

2: Completed sending message

0: Completed sending message

7: Sending Message to 3 val: 6

7: TIMER Message: 4

7: Dump: 7 7 6,16608,1465,36619,35430,32944,38164,48732,59596,17900

3: Processing Data 7 7

3: Dump: 3 6 6,16608,1465,36619,35430,32944,38164,48732,59596,17900

7: Completed sending message

1: Processing Data 3 6

1: Dump: 1 6 6,16608,1465,36619,35430,32944,38164,48732,59596,17900

1: Dump2: 1 6 6,16608,1465,36619,35430,32944,38164,48732,59596,17900

1: Dump: 1 100 40476,3362,15195,22441,12345,12345,12345,12345,12345,12345

3: Completed sending message

0: Dump: 0 101 16126,35348,26010,43651,7982,7982,7982,7982,7982,7982

1: Completed sending message

0: Completed sending message

14: Sending Message to 6 val: 7

14: TIMER Message: 4

14: Dump: 14 7 7,61935,55938,35928,8684,27277,64579,49626,47848,19596

6: Processing Data 14 7

6: Dump: 6 7 7,61935,55938,35928,8684,27277,64579,49626,47848,19596

14: Completed sending message

2: Processing Data 6 7

2: Dump: 2 7 7,61935,55938,35928,8684,27277,64579,49626,47848,19596

2: Dump2: 2 7 7,61935,55938,35928,8684,27277,64579,49626,47848,19596

2: Dump: 2 100 40489,24519,52254,64421,0,0,0,0,0,0

6: Completed sending message

0: Dump: 0 101 54822,47661,21923,39610,12055,12055,12055,12055,12055,12055

2: Completed sending message

0: Completed sending message

13: Sending Message to 6 val: 7

13: TIMER Message: 4

13: Dump: 13 6 7,30565,38152,16859,63604,39715,23949,49368,60027,48957

6: Processing Data 13 6

6: Dump: 6 7 7,30565,38152,16859,63604,39715,23949,49368,60027,48957

13: Completed sending message

2: Processing Data 6 7

2: Dump: 2 7 7,30565,38152,16859,63604,39715,23949,49368,60027,48957

2: Dump2: 2 7 7,30565,38152,16859,63604,39715,23949,49368,60027,48957

2: Dump: 2 100 19011,59158,44469,14351,12345,12345,12345,12345,12345,12345

6: Completed sending message

0: Dump: 0 101 24799,42243,19085,34196,12345,12345,12345,12345,12345,12345

2: Completed sending message

0: Completed sending message

8: Sending Message to 3 val: 5

8: TIMER Message: 4

8: Dump: 8 3 5,38460,45198,65002,26402,17083,2437,40945,41748,56030

3: Processing Data 8 3

70

3: Dump: 3 6 5,38460,45198,65002,26402,17083,2437,40945,41748,56030

8: Completed sending message

1: Processing Data 3 6

1: Dump: 1 5 5,38460,45198,65002,26402,17083,2437,40945,41748,56030

1: Dump2: 1 5 5,38460,45198,65002,26402,17083,2437,40945,41748,56030

1: Dump: 1 100 11660,31239,54545,39732,12055,12055,12055,12055,12055,12055

3: Completed sending message

0: Dump: 0 101 9540,47661,21923,39610,12055,12055,12055,12055,12055,12055

1: Completed sending message

0: Completed sending message

11: Sending Message to 5 val: 1

11: TIMER Message: 3

11: Dump: 11 6 1,13566,47020,41245,35967,54971,25395,6186,60948,4717

5: Processing Data 11 6

5: Dump: 5 6 1,13566,47020,41245,35967,54971,25395,6186,60948,4717

11: Completed sending message

2: Processing Data 5 6

2: Dump: 2 7 1,13566,47020,41245,35967,54971,25395,6186,60948,4717

2: Dump2: 2 7 1,13566,47020,41245,35967,54971,25395,6186,60948,4717

2: Dump: 2 100 29836,39560,22153,56962,0,0,0,0,0,0

5: Completed sending message

0: Dump: 0 101 25712,35348,26010,43651,7982,7982,7982,7982,7982,7982

2: Completed sending message

9: Sending Message to 4 val: 6

9: TIMER Message: 3

9: Dump: 9 6 6,49787,10657,60956,29039,24448,578,47582,57067,4225

0: Completed sending message

4: Processing Data 9 6

4: Dump: 4 6 6,49787,10657,60956,29039,24448,578,47582,57067,4225

9: Completed sending message

1: Processing Data 4 6

1: Dump: 1 6 6,49787,10657,60956,29039,24448,578,47582,57067,4225

1: Dump2: 1 6 6,49787,10657,60956,29039,24448,578,47582,57067,4225

1: Dump: 1 100 12283,32489,56525,34956,12345,12345,12345,12345,12345,12345

4: Completed sending message

0: Dump: 0 101 64437,38202,31412,46509,0,0,0,0,0,0

1: Completed sending message

0: Completed sending message

Simulation of 15 motes completed.

2.4. Base Tree Power Profile

Results from 180 seconds of simulation with 15 mote sensors

maxseen 14

Mote 0, cpu total: 2218.976819

Mote 0, radio total: 3652.104705

Mote 0, adc total: 0.000000

Mote 0, leds total: 2898.072327

Mote 0, sensor total: 0.000000

Mote 0, eeprom total: 0.000000

Mote 0, cpu_cycle total: 0.000000

Mote 0, Total energy: 8769.153851

Mote 1, cpu total: 2218.976819

Mote 1, radio total: 3626.642352

Mote 1, adc total: 0.000000

Mote 1, leds total: 2498.434462

Mote 1, sensor total: 0.000000

Mote 1, eeprom total: 0.000000

Mote 1, cpu_cycle total: 0.000000

Mote 1, Total energy: 8344.053632

Mote 2, cpu total: 2218.976819

71

Mote 2, radio total: 3609.511452

Mote 2, adc total: 0.000000

Mote 2, leds total: 2548.352690

Mote 2, sensor total: 0.000000

Mote 2, eeprom total: 0.000000

Mote 2, cpu_cycle total: 0.000000

Mote 2, Total energy: 8376.840962

Mote 3, cpu total: 2218.976819

Mote 3, radio total: 3629.881890

Mote 3, adc total: 0.000000

Mote 3, leds total: 1973.682531

Mote 3, sensor total: 0.000000

Mote 3, eeprom total: 0.000000

Mote 3, cpu_cycle total: 0.000000

Mote 3, Total energy: 7822.541240

Mote 4, cpu total: 2218.976819

Mote 4, radio total: 3715.867709

Mote 4, adc total: 0.000000

Mote 4, leds total: 2226.251559

Mote 4, sensor total: 0.000000

Mote 4, eeprom total: 0.000000

Mote 4, cpu_cycle total: 0.000000

Mote 4, Total energy: 8161.096087

Mote 5, cpu total: 2218.976819

Mote 5, radio total: 3634.872872

Mote 5, adc total: 0.000000

Mote 5, leds total: 2190.444029

Mote 5, sensor total: 0.000000

Mote 5, eeprom total: 0.000000

Mote 5, cpu_cycle total: 0.000000

Mote 5, Total energy: 8044.293721

Mote 6, cpu total: 2218.976819

Mote 6, radio total: 3761.738920

Mote 6, adc total: 0.000000

Mote 6, leds total: 2174.156711

Mote 6, sensor total: 0.000000

Mote 6, eeprom total: 0.000000

Mote 6, cpu_cycle total: 0.000000

Mote 6, Total energy: 8154.872450

Mote 7, cpu total: 2218.976819

Mote 7, radio total: 3672.689758

Mote 7, adc total: 0.000000

Mote 7, leds total: 1578.147064

Mote 7, sensor total: 0.000000

Mote 7, eeprom total: 0.000000

Mote 7, cpu_cycle total: 0.000000

Mote 7, Total energy: 7469.813641

Mote 8, cpu total: 2218.976819

Mote 8, radio total: 3785.418183

Mote 8, adc total: 0.000000

Mote 8, leds total: 1532.638110

Mote 8, sensor total: 0.000000

Mote 8, eeprom total: 0.000000

Mote 8, cpu_cycle total: 0.000000

Mote 8, Total energy: 7537.033112

Mote 9, cpu total: 2202.844661

Mote 9, radio total: 3757.922072

Mote 9, adc total: 0.000000

Mote 9, leds total: 1618.119804

Mote 9, sensor total: 0.000000

Mote 9, eeprom total: 0.000000

72

Mote 9, cpu_cycle total: 0.000000

Mote 9, Total energy: 7578.886537

Mote 10, cpu total: 2150.746170

Mote 10, radio total: 3616.119656

Mote 10, adc total: 0.000000

Mote 10, leds total: 1774.790384

Mote 10, sensor total: 0.000000

Mote 10, eeprom total: 0.000000

Mote 10, cpu_cycle total: 0.000000

Mote 10, Total energy: 7541.656211

Mote 11, cpu total: 2150.746170

Mote 11, radio total: 3594.948287

Mote 11, adc total: 0.000000

Mote 11, leds total: 1722.899798

Mote 11, sensor total: 0.000000

Mote 11, eeprom total: 0.000000

Mote 11, cpu_cycle total: 0.000000

Mote 11, Total energy: 7468.594255

Mote 12, cpu total: 2150.746170

Mote 12, radio total: 3665.030092

Mote 12, adc total: 0.000000

Mote 12, leds total: 1940.712262

Mote 12, sensor total: 0.000000

Mote 12, eeprom total: 0.000000

Mote 12, cpu_cycle total: 0.000000

Mote 12, Total energy: 7756.488524

Mote 13, cpu total: 2150.746170

Mote 13, radio total: 3654.548687

Mote 13, adc total: 0.000000

Mote 13, leds total: 1605.464870

Mote 13, sensor total: 0.000000

Mote 13, eeprom total: 0.000000

Mote 13, cpu_cycle total: 0.000000

Mote 13, Total energy: 7410.759727

Mote 14, cpu total: 2150.746170

Mote 14, radio total: 3669.187537

Mote 14, adc total: 0.000000

Mote 14, leds total: 1648.371681

Mote 14, sensor total: 0.000000

Mote 14, eeprom total: 0.000000

Mote 14, cpu_cycle total: 0.000000

Mote 14, Total energy: 7468.305388

2.5. New Tree Power Profile

Results from 180 seconds of simulation with 15 mote sensors

maxseen 14

Mote 0, cpu total: 2203.959851

Mote 0, radio total: 3696.191106

Mote 0, adc total: 0.000000

Mote 0, leds total: 2222.547375

Mote 0, sensor total: 0.000000

Mote 0, eeprom total: 0.000000

Mote 0, cpu_cycle total: 0.000000

Mote 0, Total energy: 8122.698332

Mote 1, cpu total: 2203.959851

Mote 1, radio total: 3732.661747

73

Mote 1, adc total: 0.000000

Mote 1, leds total: 2052.241901

Mote 1, sensor total: 0.000000

Mote 1, eeprom total: 0.000000

Mote 1, cpu_cycle total: 0.000000

Mote 1, Total energy: 7988.863498

Mote 2, cpu total: 2203.959851

Mote 2, radio total: 3700.232011

Mote 2, adc total: 0.000000

Mote 2, leds total: 2269.787883

Mote 2, sensor total: 0.000000

Mote 2, eeprom total: 0.000000

Mote 2, cpu_cycle total: 0.000000

Mote 2, Total energy: 8173.979745

Mote 3, cpu total: 2203.959851

Mote 3, radio total: 3762.596357

Mote 3, adc total: 0.000000

Mote 3, leds total: 1986.239145

Mote 3, sensor total: 0.000000

Mote 3, eeprom total: 0.000000

Mote 3, cpu_cycle total: 0.000000

Mote 3, Total energy: 7952.795352

Mote 4, cpu total: 2203.943069

Mote 4, radio total: 3690.571027

Mote 4, adc total: 0.000000

Mote 4, leds total: 2202.636157

Mote 4, sensor total: 0.000000

Mote 4, eeprom total: 0.000000

Mote 4, cpu_cycle total: 0.000000

Mote 4, Total energy: 8097.150252

Mote 5, cpu total: 2203.943069

Mote 5, radio total: 3671.221505

Mote 5, adc total: 0.000000

Mote 5, leds total: 2089.842176

Mote 5, sensor total: 0.000000

Mote 5, eeprom total: 0.000000

Mote 5, cpu_cycle total: 0.000000

Mote 5, Total energy: 7965.006750

Mote 6, cpu total: 2203.943069

Mote 6, radio total: 3762.733678

Mote 6, adc total: 0.000000

Mote 6, leds total: 2468.257579

Mote 6, sensor total: 0.000000

Mote 6, eeprom total: 0.000000

Mote 6, cpu_cycle total: 0.000000

Mote 6, Total energy: 8434.934325

Mote 7, cpu total: 2197.774589

Mote 7, radio total: 3668.898956

Mote 7, adc total: 0.000000

Mote 7, leds total: 1274.993334

Mote 7, sensor total: 0.000000

Mote 7, eeprom total: 0.000000

Mote 7, cpu_cycle total: 0.000000

Mote 7, Total energy: 7141.666880

Mote 8, cpu total: 2197.774589

Mote 8, radio total: 3723.208888

Mote 8, adc total: 0.000000

Mote 8, leds total: 1749.073120

Mote 8, sensor total: 0.000000

Mote 8, eeprom total: 0.000000

Mote 8, cpu_cycle total: 0.000000

74

Mote 8, Total energy: 7670.056597

Mote 9, cpu total: 2197.774589

Mote 9, radio total: 3720.864808

Mote 9, adc total: 0.000000

Mote 9, leds total: 1551.275613

Mote 9, sensor total: 0.000000

Mote 9, eeprom total: 0.000000

Mote 9, cpu_cycle total: 0.000000

Mote 9, Total energy: 7469.915010

Mote 10, cpu total: 2197.774589

Mote 10, radio total: 3632.346702

Mote 10, adc total: 0.000000

Mote 10, leds total: 1714.697507

Mote 10, sensor total: 0.000000

Mote 10, eeprom total: 0.000000

Mote 10, cpu_cycle total: 0.000000

Mote 10, Total energy: 7544.818798

Mote 11, cpu total: 2197.774589

Mote 11, radio total: 3631.745911

Mote 11, adc total: 0.000000

Mote 11, leds total: 1663.282477

Mote 11, sensor total: 0.000000

Mote 11, eeprom total: 0.000000

Mote 11, cpu_cycle total: 0.000000

Mote 11, Total energy: 7492.802977

Mote 12, cpu total: 2197.774589

Mote 12, radio total: 3575.857780

Mote 12, adc total: 0.000000

Mote 12, leds total: 1568.121608

Mote 12, sensor total: 0.000000

Mote 12, eeprom total: 0.000000

Mote 12, cpu_cycle total: 0.000000

Mote 12, Total energy: 7341.753977

Mote 13, cpu total: 2197.774589

Mote 13, radio total: 3730.243473

Mote 13, adc total: 0.000000

Mote 13, leds total: 1943.839616

Mote 13, sensor total: 0.000000

Mote 13, eeprom total: 0.000000

Mote 13, cpu_cycle total: 0.000000

Mote 13, Total energy: 7871.857679

Mote 14, cpu total: 2197.774589

Mote 14, radio total: 3747.671901

Mote 14, adc total: 0.000000

Mote 14, leds total: 1954.747879

Mote 14, sensor total: 0.000000

Mote 14, eeprom total: 0.000000

Mote 14, cpu_cycle total: 0.000000

Mote 14, Total energy: 7900.194369

75

APPENDIX III

Source Code

3.1. Network Test Application

3.1.1. NetTest.nc
includes IntMsg;

configuration NetTest {

}

implementation {

components Main, TimerC, RandomLFSR, GenericComm, IntToLeds, NetTestM;

Main.StdControl -> TimerC.StdControl;

Main.StdControl -> NetTestM.StdControl;

Main.StdControl -> GenericComm.Control;

Main.StdControl -> IntToLeds.StdControl;

NetTestM.IntOutput -> IntToLeds.IntOutput;

NetTestM.SendMsg -> GenericComm.SendMsg[AM_INTMSG];

NetTestM.ReceiveMsg -> GenericComm.ReceiveMsg[AM_INTMSG];

NetTestM.Random -> RandomLFSR.Random;

NetTestM.Timer -> TimerC.Timer[unique("Timer")];

}

3.1.2. NetTestM.nc
includes IntMsg;

module NetTestM {

provides {

interface StdControl;

}

uses {

interface SendMsg;

interface ReceiveMsg;

interface IntOutput;

interface Random;

interface Timer;

}

}

implementation {

struct TOS_Msg data;

uint16_t receiveFlag;

uint16_t leftNode;

uint16_t rightNode;

//// Interface /////

////////////////////

command result_t StdControl.init() {

receiveFlag = 0;

return SUCCESS;

}

command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 3000);

}

command result_t StdControl.stop() {

return call Timer.stop();

}

////////////////////

event result_t IntOutput.outputComplete(result_t success) {

return success;

}

event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

IntMsg *message = (IntMsg *)m->data;

IntMsg *message2 = (IntMsg *)data.data;

uint16_t dest;

uint16_t maxVal;

receiveFlag = 1;

dbg(DBG_USR1, "Received Message: (Node,value) %d,%d\n",message->src,message->val);

if(TOS_LOCAL_ADDRESS !=0)

{

message2->val = message->val;

message2->src = TOS_LOCAL_ADDRESS;

dest = TOS_LOCAL_ADDRESS-1;

dbg(DBG_USR1, "Sent Message: (Node,value) %d,%d\n",message2->src,message2->val);

call SendMsg.send(dest, sizeof(IntMsg), &data);

}

call IntOutput.output(message->val); //Put data to LEDS

return m;

}

event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) {

return SUCCESS;

}

event result_t Timer.fired() {

uint16_t dest;

uint16_t randomvalue;

IntMsg *message = (IntMsg *)data.data;

if(receiveFlag == 0)

{

randomvalue = call Random.rand() % 8; //Random value from 0-7

message->val = randomvalue;

message->src = TOS_LOCAL_ADDRESS;

dest = TOS_LOCAL_ADDRESS-1;

call IntOutput.output(randomvalue);

dbg(DBG_USR1, "Sent Message: (Node,value) %d,%d\n",message->src,message->val);

call SendMsg.send(dest, sizeof(IntMsg), &data);

}

return SUCCESS;

}

}

77

3.2. Basic Tree Application

3.2.1. Tree.nc
includes IntMsg;

configuration Tree {

}

implementation {

components Main, TimerC, RandomLFSR, GenericComm, IntToLeds, TreeM;

Main.StdControl -> TimerC.StdControl;

Main.StdControl -> TreeM.StdControl;

Main.StdControl -> GenericComm.Control;

Main.StdControl -> IntToLeds.StdControl;

TreeM.IntOutput -> IntToLeds.IntOutput;

TreeM.SendMsg -> GenericComm.SendMsg[AM_INTMSG];

TreeM.ReceiveMsg -> GenericComm.ReceiveMsg[AM_INTMSG];

TreeM.Random -> RandomLFSR.Random;

TreeM.Timer -> TimerC.Timer[unique("Timer")];

}

3.2.2. TreeM.nc
includes IntMsg;

module TreeM {

provides {

interface StdControl;

}

uses {

interface SendMsg;

interface ReceiveMsg;

interface IntOutput;

interface Random;

interface Timer;

}

}

implementation {

struct TOS_Msg data;

uint16_t receiveFlag;

uint16_t leftNode;

uint16_t rightNode;

//// Interface /////

////////////////////

command result_t StdControl.init() {

receiveFlag = 0;

return SUCCESS;

}

command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 3000);

}

command result_t StdControl.stop() {

return call Timer.stop();

}

////////////////////

78

event result_t IntOutput.outputComplete(result_t success) {

dbg(DBG_USR1, "Output Complete %d\n", success);

return success;

}

event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

IntMsg *message = (IntMsg *)m->data;

IntMsg *message2 = (IntMsg *)data.data;

uint16_t dest;

uint16_t maxVal;

receiveFlag = 1;

dbg(DBG_USR1, "Received Message: (Node,value) %d,%d\n",message->src,message->val);

if((TOS_LOCAL_ADDRESS*2)+1 == message->src)

{

leftNode = message->val;

}

if((TOS_LOCAL_ADDRESS*2)+2 == message->src)

{

rightNode = message->val;

}

if(leftNode > rightNode)

{

maxVal = leftNode;

}

else

{

maxVal = rightNode;

}

if(TOS_LOCAL_ADDRESS !=0)

{

message2->val = maxVal;

message2->src = TOS_LOCAL_ADDRESS;

dest = (TOS_LOCAL_ADDRESS-1)/2;

call SendMsg.send(dest, sizeof(IntMsg), &data);

}

call IntOutput.output(maxVal); //Put data to LEDS

return m;

}

event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) {

dbg(DBG_USR1, "Send Done\n");

return SUCCESS;

}

event result_t Timer.fired() {

uint16_t dest;

uint16_t randomvalue;

IntMsg *message = (IntMsg *)data.data;

if(receiveFlag == 0)

{

randomvalue = call Random.rand() % 8; //Random value from 0-7

message->val = randomvalue;

message->src = TOS_LOCAL_ADDRESS;

dest = (TOS_LOCAL_ADDRESS-1)/2;

call IntOutput.output(randomvalue);

call SendMsg.send(dest, sizeof(IntMsg), &data);

dbg(DBG_USR2, "Timer Fired: RandomNumber: %i\n", randomvalue);

}

return SUCCESS;

}

}

79

3.3. Encrypted Tree Application

3.3.1. TreeTest.nc
includes key;

includes PageEEPROM;

configuration KeyTest {

}

implementation {

components Main, TimerC, RandomLFSR, GenericComm, IntToLeds, KeyTestM, PageEEPROMC;

Main.StdControl -> TimerC.StdControl;

Main.StdControl -> KeyTestM.StdControl;

Main.StdControl -> GenericComm.Control;

Main.StdControl -> IntToLeds.StdControl;

Main.StdControl -> PageEEPROMC;

KeyTestM.Flash -> PageEEPROMC.PageEEPROM[unique("PageEEPROM")];

KeyTestM.IntOutput -> IntToLeds.IntOutput;

KeyTestM.SendMsg -> GenericComm.SendMsg[AM_KEYMSG];

KeyTestM.ReceiveMsg -> GenericComm.ReceiveMsg[AM_KEYMSG];

KeyTestM.Random -> RandomLFSR.Random;

KeyTestM.Timer -> TimerC.Timer[unique("Timer")];

}

3.3.2. TreeTestM.nc
/***

* Linear Network test with point-to-point key security

* Timothy W. Hnat

* M.Eng Thesis

* University of Louisville

**/

/***

* Include Section

**/

includes crc;

/***

* Module Definition

*

* Provides a Stdcontrol interface

* Uses SendMsg, ReceiveMsg, IntOutput, Random, and Timer objects

**/

module KeyTestM {

provides {

interface StdControl;

}

uses {

interface SendMsg;

interface ReceiveMsg;

interface IntOutput;

interface Random;

interface Timer;

interface PageEEPROM as Flash;

}

}

/***

80

* Implementation section

**/

implementation {

/***

* Defines for key establishment procedures and message passing

**/

#define MAXSENSORS 100

#define SETUP1 100

#define SETUP2 101

#define SETUP3 102

#define SETUP4 103

#define SETUP5 104

#define SETUP6 105

#define DATA 0

/***

* Required function definations

**/

void setupKey(uint8_t msgSrc);

/***

* Global variables

**/

struct TOS_Msg data;

struct TOS_Msg backupdata;

struct TOS_Msg rdata;

uint16_t receiveFlag;

uint16_t leftNode;

uint16_t rightNode;

uint16_t masterKey;

/***

* IntMsg structure

*

* src: contains the source mote ID

* val: contains the message type value

* data[10]: ten 16-bit numbers for data (Encrypted for communications)

**/

typedef struct IntMsg

{

uint8_t src;

uint8_t val;

uint16_t data[10];

} IntMsg;

/***

* EncKeys structure

*

* key: copy oef newkey for use with the creation of a newkey

* newkey: encryption key generated by the motes

* mote: mote id

* status: 1 if a newkey has been set, 0 utilized the masterkey

* count: number of remaining valid message on the given encryption key

* moteSum: contains a crc checksum

* resend: set if a message needs to be resent because of key creations

**/

typedef struct EncKeys

{

uint16_t key;

uint16_t newkey;

uint16_t mote;

uint8_t status;

uint8_t count;

uint16_t moteSum;

uint8_t resend;

81

} EncKeys;

EncKeys moteList[MAXSENSORS];

/***

* function sendSecure

* parameters:

* dest: destination of message

* size: size of current message

* ptrMsg: pointer to TOS_Msg

* status: status value for key generation protocol

*

* Secure send function which encrypts the data portion of the packet and if

* necessary establishes a point-to-point key between motes

**/

void sendSecure(uint8_t dest, uint8_t size, struct TOS_Msg * ptrMsg, uint8_t status)

{

uint8_t i;

IntMsg *message = (IntMsg *) ptrMsg->data;

IntMsg *message2 = (IntMsg *)backupdata.data;

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

if(moteList[dest].status==0) //Check the status value for key determination

{

for(i=0; i<10; i++) //Encrypt the data with the masterKey

{

message->data[i] = message->data[i] ^ masterKey;

}

}

else

{

for(i=0; i<10; i++) //Encyrpt the data with the generated key

{

message->data[i] = message->data[i] ^ moteList[dest].newkey;

}

}

//check to see if the count has expired or is invalid.

if(moteList[dest].count == 0 || moteList[dest].count > 5)

{

moteList[dest].resend = 1; //set the resend flag

//make a backup copy of the message

memcpy(&backupdata,ptrMsg,sizeof(TOS_Msg));

if(moteList[dest].status==0) //Check the status value for key determination

{

for(i=0; i<10; i++) //Encrypt the data with the masterKey

{

message2->data[i] = message2->data[i] ^ masterKey;

}

}

else

{

82

for(i=0; i<10; i++) //Encyrpt the data with the generated key

{

message2->data[i] = message2->data[i] ^ moteList[dest].newkey;

}

}

dbg(DBG_USR1, "Dump2: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message2->src

,message2->val

,message2->data[0]

,message2->data[1]

,message2->data[2]

,message2->data[3]

,message2->data[4]

,message2->data[5]

,message2->data[6]

,message2->data[7]

,message2->data[8]

,message2->data[9]);

setupKey(dest); //Start the key generation process

}

else

{

//decrease the count of the valid uses of the current key

moteList[dest].count--;

//send the message with the current encryption.

call SendMsg.send(dest, size, ptrMsg);

}

}

/***

* function sendSecureKEY

* parameters:

* dest: destination of message

* size: size of current message

* ptrMsg: pointer to TOS_Msg

* status: status value for key generation protocol

*

* Secure send function which encrypts the data portion of the packet

* Used only for creation of the point-to-point key

**/

void sendSecureKEY(uint8_t dest, uint8_t size, struct TOS_Msg * ptrMsg, uint8_t status)

{

uint8_t i;

IntMsg *message = (IntMsg *) ptrMsg->data;

//check the status bit to determine which key to use

if(moteList[dest].status==0)

{

for(i=0; i<10; i++) //encrypt the data with the masterKey

{

message->data[i] = message->data[i] ^ masterKey;

}

}

else

{

for(i=0; i<10; i++) //encrypt the data with the custom key

{

message->data[i] = message->data[i] ^ moteList[dest].key;

}

}

call SendMsg.send(dest, size, ptrMsg); //send message with the current encyrption

}

/***

* function setupKey

* parameters:

83

* msgSrc: mote ID

*

* First part of the key procedures. Store the destination mode ID. Generate random

* bytes. Compute a CRC at these byte locations.

**/

void setupKey(uint8_t msgSrc)

{

IntMsg *message = (IntMsg *)data.data;

uint16_t crc;

uint8_t returnValue;

uint8_t dataptr[16];

memset((void *)dataptr,0,16);

moteList[msgSrc].mote = msgSrc; // Store mote ID

message->data[0] = call Random.rand(); //Generate random bytes

message->data[1] = call Random.rand();

message->data[2] = call Random.rand();

message->data[3] = call Random.rand();

message->val = SETUP1; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

//Simulation Restriction for reading EEPROM

returnValue = call Flash.read(0,0,dataptr,16);

returnValue = call Flash.read(1,0,dataptr,16);

returnValue = call Flash.read(2,0,dataptr,16);

returnValue = call Flash.read(3,0,dataptr,16);

crc = 0; //Compute CRC value

crc = crcByte(crc,message->data[0]);

crc = crcByte(crc,message->data[1]);

crc = crcByte(crc,message->data[2]);

crc = crcByte(crc,message->data[3]);

moteList[msgSrc].moteSum = crc; //Store CRC for future reference

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

sendSecureKEY(msgSrc, sizeof(IntMsg), &data,SETUP1); //Send bytes to other mote

}

/***

* function validationRequest

* parameters:

* msgSrc: mote ID

* *pktdata: pointer to data from packet

*

* Checksums the given bytes and returns the results

**/

void validationRequest(uint8_t msgSrc, uint16_t * pktdata)

{

IntMsg *message = (IntMsg *)data.data;

uint16_t crc;

uint8_t returnValue;

uint8_t dataptr[16];

memset((void *)dataptr,0,16);

84

moteList[msgSrc].mote = msgSrc; //Store mote ID

//Simulation Restriction for reading EEPROM

returnValue = call Flash.read(0,0,dataptr,16);

returnValue = call Flash.read(1,0,dataptr,16);

returnValue = call Flash.read(2,0,dataptr,16);

returnValue = call Flash.read(3,0,dataptr,16);

crc = 0; //Compute CRC value

crc = crcByte(crc,pktdata[0]);

crc = crcByte(crc,pktdata[1]);

crc = crcByte(crc,pktdata[2]);

crc = crcByte(crc,pktdata[3]);

message->data[0] = crc; //Add CRC to data portion of packet

message->val = SETUP2; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

sendSecureKEY(msgSrc, sizeof(IntMsg), &data,SETUP2); //Send bytes to other mote

}

/***

* function setupKey2

* parameters:

* msgSrc: mote ID

* *pktdata: pointer to data from packet

*

* Verifies the checksum from the other mote, if they match send next message

**/

void setupKey2(uint8_t msgSrc, uint16_t * pktdata)

{

IntMsg *message = (IntMsg *)data.data;

if(moteList[msgSrc].moteSum == pktdata[0]) //Check checksums

{

message->val = SETUP3; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

//Send bytes to other mote

sendSecureKEY(msgSrc, sizeof(IntMsg), &data,SETUP3);

85

}

}

/***

* function validationRequest2

* parameters:

* msgSrc: mote ID

*

* Store the destination mode ID. Generate random

* bytes. Compute a CRC at these byte locations.

**/

void validationRequest2(uint8_t msgSrc)

{

IntMsg *message = (IntMsg *)data.data;

uint16_t crc;

uint8_t returnValue;

uint8_t dataptr[16];

memset((void *)dataptr,0,16);

message->data[0] = call Random.rand(); //Generate random bytes

message->data[1] = call Random.rand();

message->data[2] = call Random.rand();

message->data[3] = call Random.rand();

message->val = SETUP4; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

//Simulation Restriction for reading EEPROM

returnValue = call Flash.read(0,0,dataptr,16);

returnValue = call Flash.read(1,0,dataptr,16);

returnValue = call Flash.read(2,0,dataptr,16);

returnValue = call Flash.read(3,0,dataptr,16);

crc = 0; //Compute CRC value

crc = crcByte(crc,message->data[0]);

crc = crcByte(crc,message->data[1]);

crc = crcByte(crc,message->data[2]);

crc = crcByte(crc,message->data[3]);

moteList[msgSrc].moteSum = crc; //Store crc value for future reference

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

sendSecureKEY(msgSrc, sizeof(IntMsg), &data,SETUP4); //Send bytes to other node

}

/***

* function setupKey3

* parameters:

* msgSrc: mote ID

* *pktdata: pointer to data from packet

*

* Computes CRC from received bytes and returns the result

**/

void setupKey3(uint8_t msgSrc, uint16_t * pktdata)

{

IntMsg *message = (IntMsg *)data.data;

86

uint16_t crc;

uint8_t returnValue;

uint8_t dataptr[16];

memset((void *)dataptr,0,16);

//Simulation Restriction for reading EEPROM

returnValue = call Flash.read(0,0,dataptr,16);

returnValue = call Flash.read(1,0,dataptr,16);

returnValue = call Flash.read(2,0,dataptr,16);

returnValue = call Flash.read(3,0,dataptr,16);

crc = 0; //Computer CRC value

crc = crcByte(crc,pktdata[0]);

crc = crcByte(crc,pktdata[1]);

crc = crcByte(crc,pktdata[2]);

crc = crcByte(crc,pktdata[3]);

message->data[0] = crc; //Add CRC to data

message->val = SETUP5; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

sendSecureKEY(msgSrc, sizeof(IntMsg), &data,SETUP5); //Send bytes to other node

}

/***

* function validationRequest3

* parameters:

* msgSrc: mote ID

* *pktdata: pointer to data from packet

*

* Verifies the crc values from both motes. If they match, it generates a random key

* and sends this to the other mote. Status and count are set.

**/

void validationRequest3(uint8_t msgSrc, uint16_t * pktdata)

{

IntMsg *message = (IntMsg *)data.data;

if(moteList[msgSrc].moteSum == pktdata[0]) //Check CRC values

{

moteList[msgSrc].newkey = call Random.rand(); //Generation Random Key

message->data[0] = moteList[msgSrc].newkey;

message->val = SETUP6; //Set message type

message->src = TOS_LOCAL_ADDRESS; //Store current mote ID

dbg(DBG_USR1, "Dump: %d\t%d\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n"

,message->src

,message->val

,message->data[0]

,message->data[1]

,message->data[2]

,message->data[3]

,message->data[4]

,message->data[5]

87

,message->data[6]

,message->data[7]

,message->data[8]

,message->data[9]);

sendSecureKEY(msgSrc,sizeof(IntMsg),&data,SETUP6); //Send bytes to other node

moteList[msgSrc].status = 1; //Set status to 1 to indicate a random key

moteList[msgSrc].count = 5; //Set number of uses to the key

moteList[msgSrc].key=moteList[msgSrc].newkey;

}

}

/***

* function setupKey4

* parameters:

* msgSrc: mote ID

* *pktdata: pointer to data from packet

*

* Checks the incoming key and if necessary, resend the backed up message

**/

void setupKey4(uint8_t msgSrc, uint16_t * pktdata)

{

uint16_t moteSum;

moteSum = pktdata[0];

if(moteSum > 0) //Check the incomming key

{

moteList[msgSrc].status = 1; //Set status to indicate the presence of a key

moteList[msgSrc].count = 5; //Set the number of uses of the key

moteList[msgSrc].newkey = pktdata[0]; //Store the incoming key

dbg(DBG_USR1, "Mote Link %d<-->%d is complete. Key: %d\n"

,TOS_LOCAL_ADDRESS, msgSrc,pktdata[0]);

if(moteList[msgSrc].resend == 1) //Resend the message if necessary

{

sendSecure((TOS_LOCAL_ADDRESS-1)/2, sizeof(IntMsg), &backupdata,DATA);

moteList[msgSrc].resend = 0; //Reset the resend flag

}

moteList[msgSrc].key=pktdata[0]; //Save the old key

}

}

/***

* StdControl.init()

* The initialization function for the sensors

**/

command result_t StdControl.init() {

uint8_t i;

receiveFlag = 0;

masterKey = 12345; //Set Master Key

for(i=0; i<MAXSENSORS; i++) //Set all elements of moteList to 0

{

moteList[i].key=0;

moteList[i].mote=0;

moteList[i].status=0;

moteList[i].count=0;

}

dbg(DBG_USR1, "Starting Node\n");

return SUCCESS;

}

/***

* StdControl.start()

* This starts all the necessary components of the system.

**/

command result_t StdControl.start() {

88

dbg(DBG_USR3, "Starting Timer\n");

return call Timer.start(TIMER_REPEAT, 10000);

}

/***

* StdControl.start()

* This stop all the necessary components of the system.

**/

command result_t StdControl.stop() {

return call Timer.stop();

}

event result_t Flash.syncDone(result_t success) {

uint8_t readData[16];

if(success==SUCCESS)

{

call Flash.read(0,0,readData,16);

}

return SUCCESS;

}

event result_t Flash.flushDone(result_t success) { return SUCCESS;}

event result_t Flash.eraseDone(result_t success) { return SUCCESS;}

event result_t Flash.computeCrcDone(result_t success, uint16_t crc) { return SUCCESS;}

event result_t Flash.readDone(result_t success) {

return SUCCESS;

}

event result_t Flash.writeDone(result_t success){

if(success == SUCCESS)

{

call Flash.syncAll();

}

return SUCCESS;

}

/***

* IntOutput.outputComplete()

* Indicates the LED output is successful

**/

event result_t IntOutput.outputComplete(result_t success) {

return success;

}

/***

* ReceiveMsg.receive()

* Handles all of the incoming message. Routing all message to the appropiate

* locations.

**/

event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) {

uint8_t i,dest;

IntMsg *message = (IntMsg *)m->data;

IntMsg *message2 = (IntMsg *)rdata.data;

uint8_t statusValue,messageSource;

uint16_t maxVal;

messageSource = message->src; //Set message source ID

statusValue = message->val; //Set message status value

//Check the status bit to determine which key to utilized

if(moteList[message->src].status==0)

{

for(i=0; i<10; i++) //Use master key

{

message->data[i] = message->data[i] ^ masterKey;

}

89

}

else

{

for(i=0; i<10; i++) //Use generated point-to-point key

{

message->data[i] = message->data[i] ^ moteList[message->src].key;

}

}

if(message->val < SETUP1) //Check for lack of setup messages

{

receiveFlag = 1;

if(moteList[message->src].status==1) //Fix encryption for this data

{

for(i=0; i<10; i++)

{

message->data[i] =

message->data[i] ^

moteList[message->src].key ^

moteList[message->src].newkey;

}

}

message2->val = message->val; //Save copy of message

message2->src = message->src;

for(i=0; i<10; i++)

message2->data[i] = message->data[i];

}

if(statusValue == SETUP1) //Setup Key Procedure

{

validationRequest(messageSource,message->data);

}

else if(statusValue == SETUP2)

{

setupKey2(messageSource,message->data);

}

else if(statusValue == SETUP3)

{

validationRequest2(messageSource);

}

else if(statusValue == SETUP4)

{

setupKey3(messageSource,message->data);

}

else if(statusValue == SETUP5)

{

validationRequest3(messageSource,message->data);

}

else if(statusValue == SETUP6)

{

setupKey4(messageSource,message->data);

}

else //All other messages

{

dbg(DBG_USR3, "Processing Data\t%d\t%d\n",message->src,message->val);

call Timer.stop();

receiveFlag = 1;

if((TOS_LOCAL_ADDRESS*2)+1 == message->src)

{

leftNode = message->data[0];

}

if((TOS_LOCAL_ADDRESS*2)+2 == message->src)

{

rightNode = message->data[0];

}

90

if(leftNode > rightNode)

{

maxVal = leftNode;

}

else

{

maxVal = rightNode;

}

if(TOS_LOCAL_ADDRESS!=0)

{

message2->val = maxVal;

message2->src=TOS_LOCAL_ADDRESS;

dest = (TOS_LOCAL_ADDRESS-1)/2;

sendSecure(dest,sizeof(IntMsg),&rdata,DATA);

}

call IntOutput.output(maxVal); //Put Data on LEDs

}

return m;

}

/***

* SendMsg.sendDone()

*

* Reports the completion of the send message.

**/

event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) {

dbg(DBG_USR2, "Completed sending message\n");

return SUCCESS;

}

/***

* Timer.fired()

*

* Executes at intervals. This provides test data on the network.

**/

event result_t Timer.fired() {

uint16_t dest;

uint16_t randomvalue;

IntMsg *message = (IntMsg *)backupdata.data;

//check receive flag to limit transmission from nodes that have received data

if(receiveFlag == 0)

{

randomvalue = call Random.rand() % 8; //Random value from 0-7

message->val = randomvalue;

message->src = TOS_LOCAL_ADDRESS;

message->data[0] = call Random.rand() % 8;

message->data[1] = call Random.rand();

message->data[2] = call Random.rand();

message->data[3] = call Random.rand();

message->data[4] = call Random.rand();

message->data[5] = call Random.rand();

message->data[6] = call Random.rand();

message->data[7] = call Random.rand();

message->data[8] = call Random.rand();

message->data[9] = call Random.rand();

dest = (TOS_LOCAL_ADDRESS-1)/2;

dbg(DBG_USR3, "Sending Message to \t%d\tval: %d\n", dest,message->data[0]);

call IntOutput.output(message->data[0]);

dbg(DBG_USR1, "TIMER Message: %d\n", moteList[dest].count);

sendSecure(dest, sizeof(IntMsg), &backupdata,DATA); //Send message

}

return SUCCESS;

}

}

91

	Software based deployment of encryption keys in wireless sensor networks.
	Recommended Citation

	tmp.1423685735.pdf.6HwiU

