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ABSTRACT

GENERALIZED QUANTIFIERS IN DISTRIBUTED DATABASES

Michael Dobbs

June 22, 2010

Optimizing queries in a distributed database is quite difficult. This work proposes

defining new generalized quantifiers which operate on sets rather than tuples. These

quantifiers would allow for easier optimization in a horizontally distributed database.

These operators are scalable with respect to both the number of hosts in the environment

and the size of the data used.
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CHAPTER I

INTRODUCTION

Databases have classically been housed in large specialized hardware. However, due

to rapidly decreasing commodity hardware prices, it has become increasingly desirable to

distribute databases between hosts. Horizontal scalability, distributing processing between

more processors, allows processing capacity to scale with the costs of ever cheapening

commodity hardware.

Distributed processing presents its own unique set of challenges and problems.

Specialized algorithms must be designed to be run on distributed hosts. The general

concept behind distributed computing is that work is divided into units and these work

units are sent to hosts for processing. Each host then performs the work and returns the

results. Communication commonly occurs over commodity network hardware. For that

reason, communication is usually considered an expensive resource and should be

judiciously managed.

When applied to relational databases, the data is often distributed between the

hosts of the system. Each host is responsible for a subset of the total volume of data.

Querying distributed data presents a unique sent of challenges and opportunities.

Challenges include minimizing network traffic and producing correct results. Opportunities

include exploiting parallelism for performance gains and increased data capacity.

Currently, modern commercial databases do not do much to optimize queries with

subqueries in a distributed setting. This work aims to extend the SQL language in such a

way that some common queries can be rewritten in a manner more suitable for distributed

optimization. This extension, inspired by generalized quantifiers, treat subqueries as sets.

New operators are defined which express the degree to which two sets are related. For
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instance, an operator could gauge how much one set may be contained within another.

This allows the system to work on processing distributed set operations, rather than

arbitrary tuple-level operations as in SQL. Consequently, query optimization can be carried

out more easily.

In this thesis, generalized quantifiers will be described in more detail, a query

language will be proposed based upon generalized quantifiers, and a collection of specific

quantifiers will be implemented and benchmarked. Chapter II provides background

information about SQL. Chapter III presents and explains an approach and the algorithms

to implement it. Chapter IV describes how the algorithms were tested and the results

obtained. Chapter V presents a conclusion.
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CHAPTER II

BACKGROUND

A relational database is a database in which records are stored in the relational

model. The relational model was first proposed by Edgar F Codd in 1970. Almost all

commercial databases implement this design today. In the relational model a database is

represented by one or more relations. A relation is described by a table. That table has

rows and columns. The columns describe aspects of the relation. The rows are elements of

data, which are combinations of the descriptions provided by the columns.

One special type of column is called the primary key. The primary key is composed

of one or more columns and serves as a unique identifier for that row. Because it is unique,

no two rows in a table can share the same primary key. The uniqueness of the primary key

allows the database to refer to a particular row in other places of the system by only the

primary key.

One place where it is common to refer to other rows is in a foreign key relationship.

A foreign key is a special kind of column or columns. This key refers to the primary key of

another relation. The system will verify that any record mentioned in the foreign key

indeed exists in the referenced table. This is a useful method of maintaining data integrity

and enforcing sound database design. One key aspect of relational database design is to

remove duplication anywhere in the database. When information is duplicated it must be

maintained in each location. Thus, if any instance of the data is not updated the database

will no longer be consistent. Additionally, duplicated data wastes space. For instance, if a

catalog has products and each product has a sales representative the products and sales

representatives should be stored in two different tables. A foreign key should exist in

products pointing to the appropriate sales representative. Data would be duplicated if

3



every product also stored all of the information about every sales representative.

Each row of a table is written to disk sequentially in a file. Files are composed of

one or more disk pages. A disk page is the smallest unit of data that a disk can store.

Typically, a disk page is 4 kilobytes. In some implementations, records are written to disk

so that they never span multiple pages. The other alternative is for records to be written

so that they span pages. Non-spanning implementations can be considered faster because

they do not need to go through the code to split the record. However, they are less efficient

in terms of disk space used. The converse is true of spanning systems. They are more space

efficient but less time efficient.

In order to find a record in the system, the file must be read from the beginning

until that record is found. If the record is not found, then the entire file will have to be

read. This method becomes increasingly laborious as the file size grows. Indices are a

specialized mechanism to make record retrieval more efficient.

Index structures include but are not limited to B-trees and hash tables. B-trees are

more flexible because they can handle greater than or less than operators by simply looking

at either the left or right children of a tree node respectively. Hash tables are theoretically

faster for single element access. However, hash tables generally only support comparing for

strict equality. Indices can aid in retrieval time; unfortunately, they also come at some

cost. Indices must be maintained whenever a record is inserted, updated, or deleted. That

maintenance requires time and thus indices will slow the aforementioned operations.

In SQL, each table can be thought of as a set of elements of a given format. That

format is specified by the table’s schema. The schema is the database’s formal definition of

the structure and interaction of the database’s tables. Real world data often cannot be

adequately represented with a single table. For that reason, SQL provides for relations

between tables. One of the most fundamental ways of working with these relations is to

join them.

One important feature of SQL is that it is a declarative language. This means that

SQL queries only specify what information is requested. How to retrieve that information

4



is left to the system’s implementation. Thus, different implementations may perform the

retrieval differently. As long as they both supply the correct results, both are considered

valid SQL databases. This creates room for database vendors to design systems to specific

factors. Common factors include security, stability, and scalability.

Various benchmarks have been created to compare the performance of databases.

TPCH is one such benchmark. TPCH is a product from the Transaction Processing

Performance Council. It aims to benchmark the decision support capabilities of a database.

Decision support generally consists of answering queries that analyze large amounts of

legacy data to direct business decisions. The TPCH schema is diagrammed in Figure 1.

Queries are composed of different operators. Queries can be classified in to different

types depending on which operators are used. A Select-Project (SP) query is the simplest

type. An SP query only involves one table. Below is an example of an SP query in the

TPCH schema:

SELECT o_orderkey

FROM orders

WHERE o_custkey = 1

This SP query selects the orderkey from all of the orders that were ordered by a

specific customer. Another, more complicated, query is the Select-Project-Join (SPJ)

query. The following is an example of an SPJ query:

SELECT l_partkey

FROM orders, lineitem

WHERE o_custkey = 1

AND l_orderkey = o_orderkey

The SPJ query is similar to the SP query except it has a join, hence the ”J” in the

description. In this example, the join is between orders and lineitem. Joins create the

cross product of the two sets involved. In order to restrict ourselves to only the relevant

combinations, a condition was added in the ”WHERE” block so that the orderkeys must

5



Figure 1. The TPC-H Schema. Source: TPC BENCHMARK H (Decision Support) Standard
Specification
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match. Group-By is an operator that can be added to an SP or SPJ query to make an

SPG or SPJG query respectively. Below is an example of an SPJG query:

SELECT o_orderkey, count(l_partkey)

FROM orders, lineitem

WHERE o_custkey = 1

AND l_orderkey = o_orderkey

GROUP BY o_orderkey

This SPJG query lists all of the orders and how many parts were ordered by

customer 1. The Group-By operator creates tuples that are not necessarily in the

underlying tables. Notice the returned tuples are orderkeys and a count. None of the

underlying tables, lineitem and orders, have the count column. Another useful operator is

the Having operator. Having restricts results like the Where operator but it acts on the

tuples returned by the Group-By rather than the tuples in the underlying tables. Queries

using the Having operator must use the Group-By operator. Queries with a Having clause

can be symbolized with an H at the end. Below is an SPJGH query:

SELECT o_orderkey, count(l_partkey)

FROM orders, lineitem

WHERE o_custkey = 1

AND l_orderkey = o_orderkey

GROUP BY o_orderkey

HAVING count(l_partkey) > 3

This query is like the previous example except that it adds the restriction that the

number of partkeys must be greater than 3.

In order to answer a query, the system will generally have multiple options for orders

of joining tables, when to apply projections, etc. The wrong choice can require orders of

magnitude more work than more efficient alternatives. This would bring the system to a

crawl. Thus, it is important to try to select the optimal query plan. Unfortunately,

7



evaluating every query plan and picking the optimal one is an NP-complete problem in

general. This level of optimization is, for practical purposes, too time consuming to be

solved in real-time. Modern commercial systems use a combination of heuristics and

proprietary techniques to produce query plans of sufficient efficiency. Because there is no

freely published ’perfect’ solution, there is fierce competition between vendors to produce

query optimizers that are both fast and produce efficient query plans.

Historically, databases have been housed on large centralized servers. In this

architecture, all of the data is stored on one server. A distributed database stores data

across multiple servers. The majority of query processing optimization has been focused on

non-distributed databases. Optimizing queries in distributed databases is difficult because

it requires peeling back some of the assumptions used in centralized databases. One

important assumption used in centralized databases is the closed world assumption,

abbreviated CWA [1]. The CWA states that anything not known to be true is false. Thus,

any and all information is held within the database. To illustrate this point, an example is

provided below:

Suppose a large company uses multiple databases DB1, DB2, DB3. The company

processes lots of orders for the parts it sells. In order to accommodate the workload, orders

are stored in whichever database as the lowest work load at the time. Thus, orders are

partitioned across the hosts horizontally. Horizontal partitioning divides tuples between

hosts. Vertical partitioning divides columns between hosts. Relational technology is used

to implement the databases. Assume each database has the relation Lineitem from the

TPCH schema described above, where orderkey is the order’s identifier and partkey is the

part’s identifier, but each database only sees its own part of the world and not all of it (i.e

Lineitem can be considered as horizontally partitioned among databases). The term system

refers to all of the databases together, and the term node refers to an individual database.

When the system receives a query, the user expects back an answer that takes into account

all the information in the system, that is, that is correct with respect to the totality of the

data. Since we do not want to make a commitment to a particular architecture, we assume

8



that the node that receives the query can somehow communicate with all other nodes, and

in particular send requests to them for any information needed.

TABLE 1

An example of a horizontally partitioned database

DB1 DB2 DB3

Lineitem Lineitem Lineitem
orderkey partkey orderkey partkey orderkey partkey

O1 P1 O1 P2 O2 P1
O2 P2 O2 P3 O4 P2
O3 P1 O3 P1 O5 P3
O4 P1

Table 1 shows the data at a certain point in time. Assume now that the following

queries are issued by a user:

• Query 1: Which orders ordered part P1?. Clearly, the answer is the set {O1, O2, O3,

O4}. In SQL, the query could be written as

SELECT l.orderkey

FROM lineitem l

WHERE l.partkey = ’P1’

This is a Select-Project query that can be simply answered by sending a copy of the

query as is to each database and taking the union of the answers.

• Query 2: Which orders share a part with O1?. This requires a self-join of Lineitem

with itself. In SQL, the query could be written as

SELECT l2.orderkey

FROM Lineitem l1, Lineitem l2

WHERE l1.orderkey= ’O1’ and l1.partkey = l1.partkey

9



This is a Select-Project-Join (SPJ) query. If we send this query as is to each database,

DB1 will return the answer {O3, O4}, and DB2 and DB3 will return the empty

answer. However, the real answer over the system is {O3, O4, O2}. It can be seen

that O2 and O1 are both ordered P2 but since the tuples specifying so are in different

databases, they are never part of any local join; therefore O2 is not retrieved. There

is no obvious way to decompose the given query in order to obtain the correct answer.

• Query 3: Which orders share at least two parts with order O1?. This query can be

expressed as three self-joins of WorksOn with itself, or as one self join followed by a

group-by and a count, as follows:

SELECT l1.orderkey

FROM Lineitem l1, Lineitem l2

WHERE l1.partkey = l2.partkey and

l2.orderkey = ’O2’

GROUP BY l1.orderkey

HAVING count(l1.orderkey) > 2

Note that this is a Select-Project-Join-Groupby (SPJG) query on this formulation,

but it could be written as an SPJ query too. In either case, it is easy to see that if we

send copies of the query as is, all databases will return the empty answer, missing O2

(O1 and O2 both ordered P1 and P2). Again, there is no clear way to break down

the query (note that it could be written in two very different ways).

• Query 4: Which orders do not share any parts with O1? This query can be

formulated as the negation of Query 2; in SQL, it could be written in a number of

ways: using subqueries and NOT IN, correlated subqueries and NOT EXISTS, or

simply set difference. For instance, the second approach yields

SELECT l1.orderkey

FROM lineitem l1
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WHERE NOT EXISTS (SELECT l2.orderkey

FROM Lineitem l2

WHERE l2.orderkey = ’O2’

and l1.partkey = l2.partkey)

In any case, this is not an SPJG query. As before, sending the query as it is does not

provide the right answer; DB1 yields {O2}, DB2 yields {O2,O3} and DB3 yields

{O2,O3,O5}. However, the correct answer is {O5}. It is not obvious how to combine

the partial answers into the correct one, and it is not obvious how to break down the

original query to retrieve the information (and recall that it could be expressed in

several different ways).

• Query 5: List the orders that share all the parts with O1. It is well known that

universal quantification is not directly supported in SQL; as before, we have several

options, all involving subqueries (with NOT IN, or NOT EXISTS, or EXCEPT; or

even subqueries with grouping and count). One typical approach is to write:

SELECT l1.orderkey

FROM Lineitem l1

WHERE NOT EXISTS

(SELECT l3.partkey

FROM Lineitem l3

WHERE l3.orderkey = ’O1’

and l3.partkey NOT IN

(SELECT l2.partkey

FROM Lineitem l2

WHERE l2.orderkey = l1.orderkey))

Again, this is not an SPJG query. And again, sending the query as is will not retrieve

the right answer, but there is no obvious way to handle the query in all its possible

variations.
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Thus, only one of the above five queries is answered correctly by the system. These

incorrect answers are caused by each database using the CWA with nothing but the data it

has available. A person could analyze each case, craft appropriate SQL queries to send to

each node, and combine the information returned into a correct answer. This reliance on

manual labor underscores a shortcoming of distributed query processing that can hopefully

be reduced, if not eliminated, with the approach proposed in the follow chapter.

To generalize the above examples, it is straightforward to express set containment

requests for some elements or all elements from one set contained in another. Expressing

more complex operators like Half, 25%, All But 3, At Least 3, etc requires subqueries.

Support for query optimization with subqueries in a distributed setting is currently lacking

from most commercial systems.

In addition to the semantic gap in distributed queries the costs of implementation

are also not trivial. Sending messages from one host to another costs network resources.

These resources must be managed diligently in any suitable solution.

In order to incorporate such operators in a commercial grade database, the

underlying algorithms must be at least as scalable as existing database algorithms with

respect to the amount of data processed. For reference, the ’order by’ clause in SQL sorts

the results in O(n lg n) time given enough memory. A suitable algorithm should also be

horizontally scalable as well. Horizontal scalability refers to the algorithm being scalable

across multiple hosts. The rest of this work will focus on demonstrating both the data size

and horizontal scalability of the algorithms used to implement a more robust set of set

containment operators.
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CHAPTER III

PROPOSED APPROACH

The following section will explore some general algorithms for set comparison.

Details about specific operators and their analysis and optimization will be described in

subsequent sections. These algorithms assume that the sets are horizontally split between

multiple hosts and that duplicate records do not exist. The algorithms to be described will

exploit some properties of generalized quantifiers. As such, a description of generalized

quantifiers and some of their properties will be provided. The properties of these

quantifiers will then be used to construct a query language

A Generalized Quantifiers

Historically, Generalized Quantifiers(GQs) were mainly studied by logicians.

Mostowski explored the fundamentals ([10]). The original goal was to be able to express

properties that are not first order logic-definable. Lindstrom ([12]) refined the concept and

studied logics with GQs in a general setting. The following will use a restricted version of

the general concept. Specifically, the following work will be constricted to using generalized

quantifiers of type [1, 1], GQs with two parameters. Both parameters are sets. GQs of this

type have been found to be the most common type of GQ used in query languages

([2, 3, 4]).

In the interest of disambiguation, Q,Q1, ... will represent variables over GQs.

Q(A,B) indicates that sets A,B are related by Q’s denotation. |A| represents the

cardinality of set A. Below are a few natural examples, particular quantifiers are in

boldface.

most is given here the sense of “more than half”; other meanings are possible, but
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all = {A,B ⊆M |A ⊆ B}
some = {A,B ⊆M |A ∩B 6= ∅}
no = {A,B ⊆M |A ∩B = ∅}
not all = {A,B ⊆M |A 6⊆ B}
at least n = {A,B ⊆M ||A ∩ B| ≥ n}
at most n = {A,B ⊆M ||A ∩ B| ≤ n}
(exactly) n = {A,B ⊆M ||A ∩ B| = n}
more = {A,B ⊆M ||A| > |B|}
most = {A,B ⊆M ||A ∩ B| > |A− B|}
H = {A,B ⊆M | | A |= | B |}
n%of = {A,B ⊆M | |A ∩B| × 100

n
= |B|}

(1)

some require the introduction of a metric in the domain. Traditional first-order quantifiers

∃ and ∀ bind only one variable in one formula. It can be seen that all(A,B) corresponds to

the first order formula ∀ x (A(x)→ B(x)), while some(A,B) corresponds to

∃ x (A(x) ∧ B(x)). These are the guarded forms of quantification often used in queries; the

reason is that they make explicit the domain of discourse, that is, the group of objects that

the query is considering, and that should be used to evaluate the quantifier. This usage of

type [1, 1] quantifiers makes them particularly useful in a distributed context.

Sometimes, other constraints have been added to the definition of a GQ. Some

definitions imply that the behavior of a quantifier is independent of the context, as is the

case for the usual logic constants. This is a desirable property. There is an axiom that

makes context independence a characteristic:

Definition A.1 (EXT) Quantifier Q follows EXT if for all M,M ′, all A,B such that

A,B ⊆M ⊆M ′, QM (A,B) iff QM ′(A,B)1.

The importance of this concept is that it makes GQs behave like domain

independent operators, thus satisfying the basic conditions usually attributed to query

language operators ([1]). While not all GQs are domain independent, all the ones used in

this paper do have this property.

These definitions are from [14]. Quantifiers with this property are called monotone

1EXT stands for extensionality.
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in [7] and monotonic in [8], where upward monotone quantifiers are called increasing and

downward monotone decreasing. A monotonically increasing quantifier will only increase or

not change. A monotonically decreasing quantifier will only decrease or not change. An

important property to be exploited later is the following: since monadic quantifiers deal

with sets, their definition can be completely specified by cardinality properties. In

particular, for Q of type [1, 1], any sets A,B, Q(A,B) is completely determined by four

numbers, |A ∩ B|, |A− B|, |B − A|, and |M − (A ∪B)|. For quantifiers that follow EXT,

or in finite models, only the first three are needed. This property is already exploited in

other research ([2, 5, 14, 13]).

B A Query Language with Generalized Quantifiers

This section will propose a query language that exploits Generalized Quantifiers.

The language will be composed of variables, constants, predicate, and [1, 1] quantifier

symbols. The following assumes a set V of variables, a set C of constants, a set R of

relation names and a set Q of quantifier names are specified.

Definition B.1 The quantified language QL(Q) is made up of set terms and formulas. A

set term or formula ϕ has associated a set of free variables (in symbols, Fvar(ϕ)). Set

terms, formulas, and their free variables are defined as follows:

1. Basic terms

(a) If x ∈ V then x is a basic term. Fvar(x) = {x}

(b) If c ∈ C then c is a basic term. Fvar(c) = ∅

(c) ’ ’ is a term, called an anonymous term. Fvar( ) = ∅

2. Set terms

(a) If ϕ is a formula2, {x1, . . . , xm} ⊆ Fvar(ϕ) with m ≥ 1, and

{y1, . . . , yr} ⊆ Fvar(ϕ), with r ≥ 0, then {x1, . . . , xm(y1, . . . , yr) | ϕ} is a set

2Set terms and formulas are mutually recursive in QL(Q). The definition of formula is below.
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term.

Fvar({x1, . . . , xm | ϕ}) = Fvar(ϕ) − ({x1, . . . , xm} ∪ {y1, . . . , yr}).

(b) If S1, S2 are set terms, S1 ∪ S2 is a set term, provided that

Fvar(S1) = Fvar(S2).

Fvar(S1 ∪ S2) = Fvar(S1) ∪ Fvar(S2);

3. Formulas:

(a) If R ∈ R and t1, . . . , tarity(R) are basic or anonymous terms, then

R(t1, . . . , tarity(R)) is a (basic) formula.

Fvar(R(t1, . . . , tarity(R))) = Fvar(t1) ∪ . . . ∪ Fvar(tarity(R)).

4. If ϕ1 is a formula and ϕ2 is a formula, then ϕ1 ∧ ϕ2 is a formula.

Fvar(ϕ1 ∧ ϕ2) = Fvar(ϕ1) ∪ Fvar(ϕ2).

Also, if ϕ1 is basic formula and ϕ2 is a basic formula, then ϕ1 ∧ ϕ2 is a basic formula.

5. If ϕ is a formula, then ϕ ∧ t1θ t2 (with θ one of =,≤,≥, <,> and ti is a basic term

(i = 1, 2)) is a formula provided that

(a) If θ is =, then Fvar(t1 = t2) ∩ Fvar(ϕ) 6= ∅.

(b) If θ one of ≤,≥, <,>, then Fvar(t1θ t2) ⊆ Fvar(ϕ).

Fvar(ϕ ∧ t1θ t2) = Fvar(ϕ) ∪ Fvar(t1) ∪ Fvar(t2). Also, if ϕ is basic, then ϕ ∧ t1θt2

is also basic.

6. If Q ∈ Q is a quantifier name and S1, S2 are set terms, then Q(S1, S2) is a formula.

Fvar(Q(S1, S2)) = Fvar(S1) ∪ Fvar(S2).

Q(S1, S2) is called a quantified formula.

A query is a set term S such that Fvar(S) = ∅, that is, a set term with no free variables.

A sentence is a formula ϕ such that Fvar(ϕ) = ∅, that is, a formula with no free variables.

Call a query q = {~x | ϕ(~x)} basic if ϕ is a basic formula, and quantified if ϕ is a quantified

formula. Note that all formulas in the query language are either basic or quantified.
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To give a feel for the language, and to introduce the semantics in an intuitive way,

we give an example. Recall the TPCH schema described in Figure 1. Specifically, recall the

relations Lineitem, Orders, and Part. Basic relations can be translated into relational

algebra as demonstrated by the following:

• {x | Lineitem(x,Order1)} denotes the set of parts (identified by partkey) ordered in

Order1;

• {x, y | Order(x, y, ) ∧ y > 50, 000} retrieves the orderkeys and prices with prices over

50, 000.

Note that {x | Order(x)} can be seen as a subquery which denotes the Order

relation. Likewise {y | Lineitem(w, y)} can be seen as a correlated subquery, one which

returns a particular relation for each value of the correlated variable w. A set term like

{y(w) | Lineitem(w, y)} is not correlated; it is equivalent to {y | Lineitem( , y)}, that is, it

corresponds simply to a projection (variable y is bound but discarded). The following

queries are quantified:

• – “Find the parts that were ordered in some order”

– {z | some {x | Orders(x)} {x | Lineitem(z, x)}}

• – “Find the parts ordered by all orders”

– {z | all {x | Orders(x)} {x | Lineitem(z, x)}}

• – “Find the parts no one ordered”

– {z | no {x | Orders(x)} {x | Lineitem(z, x)}}

• – “Find the parts ordered by at least three orders”

– {z | at least 3 {x | Orders(x)} {x | Lineitem(z, x)}}

• – “Find the parts ordered in half of the orders”

– {z | half ({x | Orders(x)}, {y | Lineitem(z, y)})}
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The queries above give the values a such that the set {x | Orders(x)} (the set of all

orders) and the set {x | Lineitem(x, a)} (the set of all parts in order a) are in the

relationships established by the quantifier: non-empty intersection in the first case3, subset

in the second (so that a was in all the orders), disjointness in the third (so that a is not

currently in any order), and so on. How exactly such computation is achieved is discussed

in the next section.

In the context of generalized quantifiers, queries are nothing but set terms and thus

blend naturally with the approach. Furthermore, since set terms can be nested, complex

queries can be expressed by combining different generalized quantifiers.

We point out that we have not really defined a language, but a family of languages.

The expressive power of QL depends on the set Q used. When we need to emphasize which

set is used, we will write a particular language as QL(Q). Also, the language has no

disjunction or negation of basic formulas. Such operators are potentially unsafe; set union

and the quantifier no provide safe counterparts. In particular, it is not difficult to see that

the language QL({some, all,no}) is equivalent to Relational Algebra; that is, to the safe

and domain independent fragment of FOL ([2]). A consequence of this is that basic set

terms (those without quantifiers) correspond to SPJ formulas when conjunction is used;

and to SP formulas when no conjunction is used. All quantified queries are expressed in

our language through the use of a GQs. That is, we have the following facts:

• If q is a basic QL query, then there is an RA query R that is equivalent to q and R is

an SP query.

• If q is a QL(some) query, q is either a basic query or a quantified formula with

quantifier some. Hence, there is an RA query R that is equivalent to q and R is an

3This query is basically equivalent to a join, that is, it is equivalent to

πename(Orders ⊲⊳orderkey Lineitem)

In QL, queries with a join can be written with the quantifier some or with standard logical notation, using
the same variable:

{z, (x) | Orders(x) ∧ Lineitem(x, z)}
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SPJ query.

• Queries that use quantifiers other than some, like no, all, half, 10%, etc. require

subqueries or group by and having when expressed in SQL.

C Application of QL(Q) to SQL

The SQL standard could be extended to accommodate QL(Q) by allowing operators

to represent these quantifiers. Such operators would be in the WHERE clause. These

operators would take two parameters. Each parameter would be a set and the operator

would return a boolean value. These boolean values returned could then be used like any

boolean SQL operator. The operator syntax could look like:

OPERATOR

(

SQL QUERY

) IN (

SQL QUERY

)

In this structure, OPERATOR could be Some,All, AtLeast, etc. Each

SQLQUERY is simply a nested SQL query. These queries would have all of the properties

of existing nested SQL queries. With the proposed extensions, these nested queries could

also include their own instances of these new operators.

In order to illustrate these operators in use, we will revisit some of the previous

needs for data and the SQL query to fill that request.

• Query 1: Which orders ordered part P1?. The current SQL approach worked when

this query was distributed to each hosts, therefore; the existing query is already easily

optimized in a distributed database.

• Query 2: Which orders share a part with O1?.
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SELECT o.orderkey

FROM orders o

WHERE

SOME (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = o.orderkey

) IN (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = O1

)

This query enumerates a list of orders, then looks at that order’s parts. If one of

those parts is in O1 then the WHERE clause is satisfied and that order is returned.

Notice, that each of the nested queries are SP queries. Query 1 shows that SP queries

can be easily distributed. Thus, Query 2 should be optimized far more easily than

the previous SQL approach discussed previously.

• Query 3: Which orders share at least two parts with order O1?.

SELECT o.orderkey

FROM orders o

WHERE

AT LEAST 2 (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = o.orderkey

) IN (

SELECT partkey
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FROM lineitem l

WHERE l.orderkey = O1

)

This query looks similar to Query 2. The only difference is the operator SOME was

replaced with ATLEAST2. This query also has the benefits of the nested SP queries

being more easily distributed as discussed in Query 2.

• Query 4: Which orders do not share any parts with O1?

SELECT o.orderkey

FROM orders o

WHERE

NO (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = o.orderkey

) IN (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = O1

)

This query uses the NO operator. This query could also be expressed with

ATMOST0.

• Query 5: List the orders that share all the parts with O1.

SELECT o.orderkey

FROM orders o

WHERE
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ALL (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = o.orderkey

) IN (

SELECT partkey

FROM lineitem l

WHERE l.orderkey = O1

)

Much like Query 2 and Query 3, the nested queries are simple SP queries.

These queries illustrate that requests for information can be encoded using QL(Q) in

queries that are more readily optimized in a distributed setting. Specific algorithms for

how to implement these algorithms are discussed in the following sections.

D Implementation

The following section will explore some algorithms to implement the described GQs.

Details about specific operators and their analysis and optimization will be described in

subsequent sections. These algorithms assume that the sets are horizontally split between

multiple hosts and that duplicates do not exist. Let hi denote the host in the set of all

hosts H and Ai the part of A stored on Hi with A =
⋃

i Ai.

In order to make a reference point for algorithm performance a naive algorithm is

proposed. This algorithm is described in Algorithm 1.

The naive algorithm can be adapted to accommodate all of the specific operators

proposed. The computer running this algorithm shall be called the processing host, h0.

Each of the code blocks contained inside of a ’for each host’ loop can be executed in

parallel because, there should be no interaction between hosts in this scope. Each host is

free to independently answer the part of the larger query it is given. The naive algorithm
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Algorithm 1 Naive Set Operation Algorithm

B ← ∅
for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

for all hi ∈ Hosts do

Ai ← select all elements from h that belong to set A
send Ai to h0

end for

(on h0) A← A0 ∪A1 ∪ ..An

compute Q(A,B)

then sends all of the elements of set A and set B back to the processing host. Therefore,

with respect to network traffic the algorithm would be considered O(|A|+ |B|). The query

executed on each host must be at most polynomial computational complexity because it is

expressed in standard SQL. If the query is an SP query it would only be linear. Building a

hash table to represent set A and looking up each element in A in the hash table would be

of complexity O(|A|+ |B|) assuming enough memory. In the case of large datasets, the

network transfer could potentially be quite expensive. For that reason, an alternative

algorithm is proposed.

This algorithm distributes the set B to each of the hosts. Each host then returns the

minimal amount of information required to the processing host in a similar fashion to a

semijoin. Thus, this method will be referred to as the Set Operation Semijoin. The Set

Operation Semijoin is describe in Algorithm 2. The definition of ’minimal amount of

information required’ will vary depending on the set operator in use.

The network traffic required to construct and distribute a complete instance of set B

would be (N + 1) ∗ |B|, where N is the number of hosts in the network, since the sum of all

contributions to the central instance of set B would be |B|. Distributing set B to N hosts

would then cost N ∗ |B|. Thus, the total network cost to construct and distribute set B

would be (N +1) ∗ |B|. Each host then processes set B with a SQL statement issued by the

processing host. The amount of information retrieved would then be determined based on
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Algorithm 2 Generic Set Operation Semijoin Algorithm

for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

send B to each of the hosts
for all hi ∈ Hosts do

Ai ← select all elements from h that belong to Ai order by Ai

send Q(Ai, B) to h0

end for

(on h0) compute Q(A,B) from results from each host

the specific operator.

Thus far, the assumption has always been made that set B would always be the

distributed set. It is possible that set A could be the set that gets collected and

distributed. The logic executed on each host would only need to be trivially altered to

maintain the ’direction’ of the set operator. It is also possible that one may want to

evaluate multiple set A’s.

E Some

The first operator analyzed in SQL was Some. Some is straightforward in SQL

because it can be implemented by joining the two sets. The Some operator can be

expressed as |Ahi
∩ B| 6= 0 . This gives Some the property of being monotonically

increasing; therefore, once the Some operator has been satisfied by some set no other data

can negate that satisfaction.

In the case of the Naive Set Operation Algorithm, this property means that once an

element of A was found in B, the rest of the elements in A can be consumed without

inspection. In the case of the Set Operator Semijoin, this means that the only information

that needs to be returned to the processing host is a token to identify that set A satisfies

the condition. In the case of multiple set A’s in a Set Operator Semijoin being evaluated

only a series of identifiers to represent those sets needs to be returned to the processing
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host.

The Naive Set Operation Algorithm would compute Some by retrieving all of the

elements of set B and storing them in a hashmap. Because hashmaps store key-value pairs,

a token that represents the tuple will be chosen for the key and an arbitrary indicator will

be chosen for the value. After each element of set B is stored in the hashmap, all of the

elements in set A are fetched. Each element in set A is checked in the hashmap. If the

hashmap contains the arbitrary value for the key, an identifier based on the element, then

set B contains that element. That would mean that the element from set A is contained in

set B and the quantifier would return true. Otherwise, it would return false.

F At Least

The At least operator functions similarly to Some. AtLeast(n) can be written

formally as |A ∩ B| >= n. Thus, the number of common elements between A and B must

be greater than some specified number, n. Based on this description, the algorithm can be

shown to be monotonically increasing in the same way as the Some operator. One

important distinction between Some and At least is that At least needs to not only

return the token to identify the set as having common elements but also the number of

these common elements. This is trivial to implement in SQL using a group by on the A set

identifier and a count on the number of rows, common elements. The count must be

returned because the total number n may not be achieved on any single host so the results

must be aggregated at the processing host.

One may observe that if a single host contains n elements in common between A

and B then that host has enough information to identify the set A as satisfying the

operator and based on the monotonically increasing property the messages returned from

all other hosts can be safely ignored. Theoretically it should be possible for one host to

alert the others that set A has been identified as being successful and there is no need to

return it to the processing host. Unfortunately, alerting all of the other hosts would require

N-1 messages and it would best case only save N-1 results being sent to the processing
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host. All things being equal, it would therefore not be advantageous to alert other nodes

that a candidate set qualifies.

G At Most

At Most can be formally defined as |A ∩B| <= n. Therefore, it does not share the

monotonically increasing property with Some and At Least because additions to |A ∩B|

could make it larger than n. But it is downward monotone, this can be used to eliminate

sets from consideration symmetrically to At Least. AtMost(n) can be implemented using

the Set Operator Semijoin by returning a candidate set identifier and the number of

elements shared between set A and set B.

H Ratio Operators

The Ratio Operators are a set of operators that include Half,Percent, and All.

These operators require that |A ∩ B| / |A| = n, where n is defined by the specific algorithm.

Half could be expressed as 50 Percent. In order to evaluate the Percent operator,

|A ∩B| and |A| must both be calculated. All could be implemented by looking for all

elements that satisfy ∃ x (A(x) ∧ ¬B(x)) and then removing all of those elements from a

list of all possible A’s.

I All But

The All But Operator is slightly different from the Ratio Operators. It is defined as

|A ∩B|+ n = |A ∪B| where n is a specified constant. The similarity between All But and

the Ratio Operators is enough to allow all of the steps to be identical between the two

except those performed on the processing host.
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CHAPTER IV

Experiments

A Technical Setup

A leading commercial relational database system was installed and configured on

commodity Linux desktop computers. Trials were conducted with a cluster of 3 and 5

computers. Each database was loaded with the TPCH database. Trials were conducted

using the TPCH database with a factor of 1, 10, and 100. The TPCH utility ’dbgen’ was

used to generate data to populate these tables. Dbgen created several text files that

represented the data in the various tables in the TPCH database.

Different database users were created to represent each of the trial configurations.

For example 5 hosts had a user called ’tpch5x10’ which represented the TPCH dataset

with a factor of 10 divided between 5 hosts. The TPCH lineitem data of the respective

scale was divided randomly between the number of hosts for the trial and loaded to the

appropriate user. This was to simulate a horizontally distributed database.

The database system’s built in utility for querying remote databases was used to

communicate between hosts. For each division factor and data scale, a view was created on

one host which contained all of the data unioned together. For instance the 3x10 view was

created using the following query:

CREATE VIEW ALL_LINEITEMS AS

SELECT * FROM LINEITEM@DBLABB

UNION ALL

SELECT * FROM LINEITEM@DBLABC

UNION ALL
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SELECT * FROM LINEITEM@DBLABD

This view combines data from 3 hosts in a single view. Querying this view will then

utilize the distributed features of the database. Queries were written such that they would

handle small, medium, and large amounts of data. The dataset sizes are displayed in

Table 2. The TPCH data generator did not create orders with large numbers of products

so ranges of orders were used for the medium and large datasets. As such, there were some

orders in the range which shared the same product. These duplicates were removed in the

respective algorithms.

TABLE 2

Queries were formulated with sets of the following sizes.

Name Number Unique of Elements Total Number of Elements
Small 4 4
Medium 9723 9965
Large 198679 1000048

B Some

1 SQL

Some was implemented using a SQL query as follows:

SELECT DISTINCT ITEMS.L_ORDERKEY

FROM ALL_LINEITEMS ITEMS

WHERE ITEMS.L_PARTKEY IN

(

SELECT DISTINCT L_PARTKEY

FROM ALL_LINEITEMS
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WHERE L_ORDERKEY = X

)

2 Naive Algorithm

The generic naive algorithm as described previously was adapted to Algorithm 3.

The generic algorithm builds a hashmap to represent set B. It then compares each element

in A against B’s hashmap. If the element is found it consumes the rest of the elements in

set A without inspection and then returns set A’s identifier.

Algorithm 3 Naive Some Algorithm

B ← ∅
for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

for all hi ∈ Hosts do

Ai ← select Aj , all elements from h that belong to Aj order by Aj

send Ai to h0

end for

for all Aj ∈ A0..n do

for all e ∈ Aj do

if e ∈ B then

return Aj

end if

end for

end for

3 Set Operator Semijoin

The Set Operator Semijoin was adapted to Algorithm 4. As can be seen, the other

hosts in the network only need to send Ai ∩B back to the processing host. This feature

should improve performance where large data sets are involved.
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Algorithm 4 Some Set Operator Semijoin Algorithm

for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

send B to each of the hosts
for all hi ∈ Hosts do

Ai ← select all elements from h that belong to Ai and B order by Ai

send |Ai ∩ B| to h0

end for

for all Ai ∈ results from hosts do

for all e ∈ Aj do

if e ∈ B then

return Aj

end if

end for

end for

4 Comparison

Figures 2, 3, and 4 display the absolute run-times for the three implementations in a

linear scale for the 1, 10, and 100X datasets respectively. The performance for the small

query in the 1X set is pretty equal. However, as the query size and the data size increases,

the semijoin outperforms the SQL and naive algorithms.

Figure 2. The absolute run-times of the implementations of Some for the 1X TPCH dataset
split between 3 hosts.

Figures 5, 6, and 7 display the absolute run-times for the three implementations in a

linear scale. As was noted for the 3 host trials, the relative performance of the semijoin

approach gets better as the query size and dataset size increased. One particularly glaring
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Figure 3. The absolute run-times of the implementations of Some for the 10X TPCH dataset
split between 3 hosts.

Figure 4. The absolute run-times of the implementations of Some for the 100X TPCH
dataset split between 3 hosts.

example is the 5 host 100X large trial. The SQL approach on this trial took several times

more time than the semijoin approach.

Figure 5. The absolute run-times of the implementations of Some for the 1X TPCH dataset
split between 5 hosts.

C At Least

Some(x) can be considered a more specific implementation of AtLeast(x). Some(x)

is equivalent to AtLeast1(x).
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Figure 6. The absolute run-times of the implementations of Some for the 10X TPCH dataset
split between 5 hosts.

Figure 7. The absolute run-times of the implementations of Some for the 100X TPCH
dataset split between 5 hosts.

1 SQL

Although there are many different possible ways to implement AtLeast(x) in SQL,

the following query was used for testing:

select l1.l_orderkey

from all_lineitems l1,

(

select distinct l_partkey from all_lineitems where l_orderkey = X

) l2

where l1.l_partkey = l2.l_partkey

group by l1.l_orderkey

having count(l1.l_orderkey)>=2

This query builds a set of all the parts in the specified range of orders. It then joins

these parts with all lineitems on partkey. The results are then grouped by the orderkey.
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Only the orders with 2 or more parts shared with the specified order range will be returned

based on the having clause.

2 Naive Algorithm

The generic naive algorithm as described previously was adapted in Algorithm 5.

The generic algorithm builds a hash map to represent set B. It then compares each element

in A against B’s hash map. If the element is found it increments a counter. Once the

threshold for the counter is reached, it will consume the rest of the elements in set A

without inspection and return set A’s identifier.

Algorithm 5 Naive At Least Algorithm

B ← ∅
for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

for all hi ∈ Hosts do

Ai ← select Aj , all elements from h that belong to Aj order by Aj

send Ai to h0

end for

for all Aj ∈ A0..n do

matches← 0
for all e ∈ Aj do

if e ∈ B then

matches← matches + 1
end if

if matches ≥ N then

return Aj

end if

end for

end for

3 Set Operator Semijoin

The Set Operator Semijoin was adapted in Algorithm 6. The algorithm starts by
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Algorithm 6 At Least Set Operator Semijoin Algorithm

for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

(on h0) B ← B0 ∪B1 ∪ ..Bn

send B to each of the hosts
for all hi ∈ Hosts do

Ai ← select all elements from h that belong to Ai order by Ai

send |Ai ∩ B| to h0

end for

for all A ∈ results from hosts do

sum← 0
for all Ai ∈ A do

sum← sum+ |Ai ∩ B|
end for

if sum ≥ N then

return A
end if

end for

building set B and storing it in a table T. Each host then joins table T with its own

lineitem table. The query is grouped by l orderkey and counts the number of rows per

order. The processing host will sum the number of matches found per host and then decide

if it satisfies the AtLeast(x) operator.

4 Comparison

Figures 8, 9, and 10 display the absolute run-times for the three implementations in

a linear scale for the 1, 10, and 100X datasets respectively. The three implementations

appear evenly matched in the TPCH 1X dataset. However, in the larger databases the

Naive and Semijoin implementations outperform the SQL implementation.

Figures 11, 12, and 13 display the absolute run-times for the three implementations

in a linear scale. The relative performance of the algorithms on the 5 host cluster appears

to closely resemble the performance on the 3 host cluster. In the TPCH 1X dataset, the

algorithms appear neck and neck. In the 10X and 100X databases, the Semijoin
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Figure 8. The absolute run-times of the implementations of at least for the 1X TPCH dataset
split between 3 hosts.

Figure 9. The absolute run-times of the implementations of at least for the 10X TPCH
dataset split between 3 hosts.

Figure 10. The absolute run-times of the implementations of at least for the 100X TPCH
dataset split between 3 hosts.
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implementation pulls ahead of SQL implementation. The Naive implementation maintains

a steady time regardless of the query size. In the small and medium queries, the Naive

implementation was the slowest. However, in the large queries, the naive implementation

was the fastest once and second fastest twice.

Figure 11. The absolute run-times of the implementations of at least for the 1X TPCH
dataset split between 5 hosts.

Figure 12. The absolute run-times of the implementations of at least for the 10X TPCH
dataset split between 5 hosts.

Figure 13. The absolute run-times of the implementations of at least for the 100X TPCH
dataset split between 5 hosts.
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D At Most

Fundamentally AtMost(x) is similar to AtLeast(x). The key difference between the

two is the direction of the greater than/less than operator. For that reason, the

implementation of this algorithm was almost identical to AtLeast(x) other than the greater

than/less than operator being switched.

1 SQL

The following SQL query was used to test AtMost(x):

select l1.l_orderkey

from all_lineitems l1,

(

select distinct l_partkey from all_lineitems where l_orderkey = X

) l2

where l1.l_partkey = l2.l_partkey

group by l1.l_orderkey

having count(l1.l_orderkey)<=2

order by l1.l_orderkey

The query works very similarly to the SQL query for AtLeast(x). The next query in

the some builds a set of parts in the specified range of orders. That set is joined with with

the total set of lineitems. The results are grouped by order and counted. Orders with a

count of no more than 2 were returned.

2 Naive Algorithm

AtMost(x) was implement in the same fashion as AtLeast(x). The only difference

was that the line ”if matches ≥ n” was replaced by ”if matches ≤ n”.
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3 Set Operator Semijoin

AtMost(x) was implement in the same fashion as AtLeast(x). The only difference

was that the line ”if sum ≥ n” was replaced by ”if sum ≤ n”

4 Comparison

Figures 14, 15, and 16 display the absolute run-times for the three implementations

in a linear scale for the 1, 10, and 100X datasets respectively. The performance of the

implementations of AtMost(x) appear to be consistent with the performance of

AtLeast(x). The implementations of the two are almost identical and so this is not

surprising.

Figure 14. The absolute run-times of the implementations of at most for the 1X TPCH
dataset split between 3 hosts.

Figure 15. The absolute run-times of the implementations of at most for the 10X TPCH
dataset split between 3 hosts.

Figures 17, 18, and 19 display the absolute run-times for the three implementations

in a linear scale. The performance of the algorithms in a 5 host cluster is consistent with

that of the 3 host cluster. The only notable difference between the 3 and 5 host clusters is
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Figure 16. The absolute run-times of the implementations of at most for the 100X TPCH
dataset split between 3 hosts.

that the gap between the performance of SQL and the other two algorithms is larger in the

larger queries and database sizes.

Figure 17. The absolute run-times of the implementations of at most for the 1X TPCH
dataset split between 5 hosts.

Figure 18. The absolute run-times of the implementations of at most for the 10X TPCH
dataset split between 5 hosts.

E Ratio Operators

As previously discussed, the half operator is a special case of the percent operator.

For that reason, 50 Percent/Half were tested to measure the performance of ratio
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Figure 19. The absolute run-times of the implementations of at most for the 100X TPCH
dataset split between 5 hosts.

operators. All is a special case of the ratio operator where that ratio is 1:1. Due to that

unique constraint, All was tested in its own section later in this chapter. The following

sections describe the results for 50 Percent/Half:

1 SQL

SELECT l1.l_orderkey

FROM all_lineitems l1

LEFT JOIN

(

SELECT DISTINCT l_partkey FROM all_lineitems WHERE l_orderkey = X

) l2

ON l1.l_partkey = l2.l_partkey

GROUP BY l1.l_orderkey

HAVING COUNT(l2.l_partkey)/COUNT(l1.l_partkey) >= 1/2

ORDER BY l1.l_orderkey

The SQL query above works almost identically to the AtLeast(x) and AtMost(x)

SQL queries. There are two differences between the queries. The Ratio query left joins the

set of parts from the set of relevant orders on the set of all lineitems. AtLeast(x) and

AtMost(x) naturally joined the selected part set with all lineitems. The second difference

is the having clause. The having clause states that the number of parts from the range of

orders divided by the number of parts from all lineitems per order must be greater than
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1/2. 1/2 can be substituted with any percentage or fraction.

2 Naive Algorithm

The naive algorithm was adapted for Percent(x) and Half(x) in Algorithm 7.

Algorithm 7 Naive Ratio Algorithm

results← ∅
B ← ∅
for all hi ∈ Hosts do

Bi ← select Aj , all elements from h that belong to Aj order by Aj

send Bi to h0

end for

for all hi ∈ Hosts do

Ai ← select l orderkey, l partkey from lineitem order by l orderkey
send Ai to h0

end for

for all orderkey ∈ A0..n do

matches← 0
total ← 0
for all partkey ∈ Aiorderkey do

total ← total + 1
if partkey ∈ B then

matches← matches + 1
end if

end for

if matches/total ≈ N then

results← results ∪ orderkey
break

end if

end for

return results

This algorithm calculates the ratio of the number of items of set A in B compared to

the number of items in set A. If the ratio is as specified by the algorithm, greater than or

equal to N, then the set is considered a match.

3 Set Operator Semijoin
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Algorithm 8 Ratio Set Operator Semijoin Algorithm

for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

B ← B0 ∪ B1 ∪ ..Bn

send B to each of the hosts
for all hi ∈ Hosts do

calculate and send |Ai ∩ B| and |Ai| to h0

end for

for all A ∈ results from hosts do
matches← 0
total ← 0
for all Ai ∈ A do

matches← matches + |Ai ∩ B|
total ← total + |Ai|

end for

if matches/total ≥ N then

return A
end if

end for

4 Comparison

Figures 20, 21, and 22 display the absolute run-times for the three implementations

in a linear scale for the 1, 10, and 100X datasets respectively. The Naive implementation

performed admirably well in this instance. The Naive implementation’s times for the Small,

Medium, and Large trials were almost level for the 1X, 10X, and 100X trials. The Naive

implementation was either the fastest or a close second in all of the configurations tested.

Figure 20. The absolute run-times of the implementations of ratio for the 1X TPCH dataset
split between 3 hosts.

42



Figure 21. The absolute run-times of the implementations of ratio for the 10X TPCH dataset
split between 3 hosts.

Figure 22. The absolute run-times of the implementations of ratio for the 100X TPCH
dataset split between 3 hosts.

Figures 23, 24, and 25 display the absolute run-times for the three implementations

in a linear scale. The results for the 5 host cluster were consistent with the 3 host cluster.

The SQL implementation particularly under performed on the TPCH 100X Large query. It

took about 4.5 times as long as the Naive implementation.

Figure 23. The absolute run-times of the implementations of ratio for the 1X TPCH dataset
split between 5 hosts.
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Figure 24. The absolute run-times of the implementations of ratio for the 10X TPCH dataset
split between 5 hosts.

Figure 25. The absolute run-times of the implementations of ratio for the 100X TPCH
dataset split between 5 hosts.

F All

As described previously, All(x) is true if A ⊆ B. The following sections describe the

results from the different implementations tested.

1 SQL

All was implemented in SQL with the following query:

SELECT DISTINCT L_ORDERKEY

FROM ALL_LINEITEMS

WHERE L_ORDERKEY NOT IN(

SELECT L.L_ORDERKEY

FROM ALL_LINEITEMS L

WHERE L_PARTKEY NOT IN

(

44



SELECT L_PARTKEY

FROM ALL_LINEITEMS

WHERE L_ORDERKEY = X

)

) ORDER BY L_ORDERKEY

2 Naive Algorithm

All(x) was implemented using the ratio operator described in the previous section

with N = 1.0.

3 Set Operator Semijoin

All(x) was implemented using the ratio operator described in the previous section

with N = 1.0.

4 Comparison

Figures 26, 27, and 28 display the absolute run-times for the three implementations

in a linear scale for the 1, 10, and 100X datasets respectively. The results for All(x) on 3

hosts were comparable to the results for the Ratio operator tested in the previous section.

Figure 26. The absolute run-times of the implementations of all for the 1X TPCH dataset
split between 3 hosts.

Figures 29, 30, and 31 display the absolute run-times for the three implementations

in a linear scale. As was noted for the 3 host trials, the relative performance of the

algorithms is comparable to the Ratio operator in the previous section.
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Figure 27. The absolute run-times of the implementations of all for the 10X TPCH dataset
split between 3 hosts.

Figure 28. The absolute run-times of the implementations of all for the 100X TPCH dataset
split between 3 hosts.

Figure 29. The absolute run-times of the implementations of all for the 1X TPCH dataset
split between 5 hosts.

Figure 30. The absolute run-times of the implementations of all for the 10X TPCH dataset
split between 5 hosts.
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Figure 31. The absolute run-times of the implementations of all for the 100X TPCH dataset
split between 5 hosts.

G AllBut

All But can be expressed as |A| − |A ∩ B| = N . Based on this |A| and |A ∩ B| must

both be calculated.

1 SQL

SELECT l1.l_orderkey

FROM all_lineitems l1

LEFT JOIN

(

SELECT DISTINCT l_partkey

FROM all_lineitems

WHERE l_orderkey = X

) l2

ON l1.l_partkey = l2.l_partkey

GROUP BY l1.l_orderkey

HAVING COUNT(l2.l_partkey) > 0

AND COUNT(l2.l_partkey) + 2 = COUNT(l1.l_partkey)

ORDER BY l1.l_orderkey

2 Naive
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Algorithm 9 Naive All But Algorithm

results← ∅
b← ∅
for all hi ∈ Hosts do

Bi ← select Aj , all elements from h that belong to Aj order by Aj

send Bi to h0

end for

for all hi ∈ Hosts do

Ai ← select l orderkey, l partkey from lineitem order by l orderkey
send Ai to h0

end for

for all orderkey ∈ A0..n do

matches← 0
total ← 0
for all partkey ∈ Aiorderkey do

total ← total + 1
if partkey ∈ B then

matches← matches + 1
end if

end for

if total −matches = N then

results← results ∪ orderkey
break

end if

end for

return results

48



3 Semijoin

Algorithm 10 All But Set Operator Semijoin Algorithm

for all hi ∈ Hosts do

Bi ← select all elements from h that belong to set B
send Bi to h0

end for

B ← B0 ∪ B1 ∪ ..Bn

send B to each of the hosts
for all hi ∈ Hosts do

calculate and send |Ai ∩ B| and |Ai| to h0

end for

for all A ∈ results from hosts do
matches← 0
total ← 0
for all Ai ∈ A do

matches← matches + |Ai ∩ B|
total ← total + |Ai|

end for

if total −matches = N then

return A
end if

end for

4 Comparison

Figures 32, 33, and 34 display the absolute run-times for the three implementations

in a linear scale for the 1, 10, and 100X datasets respectively. The Naive algorithm was the

fastest algorithm in every configuration tested. The Naive algorithm was level across the

Small, Medium, Large trials for the 1, 10, and 100X databases. The SQL implementation

distinctly ramped up as the query size went from Small to Large.

Figures 35, 36, and 37 display the absolute run-times for the three implementations

in a linear scale. The results were consistent with the 3 host trials.
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Figure 32. The absolute run-times of the implementations of all but for the 1X TPCH
dataset split between 3 hosts.

Figure 33. The absolute run-times of the implementations of all but for the 10X TPCH
dataset split between 3 hosts.

Figure 34. The absolute run-times of the implementations of all but for the 100X TPCH
dataset split between 3 hosts.

Figure 35. The absolute run-times of the implementations of all but for the 1X TPCH
dataset split between 5 hosts.

50



Figure 36. The absolute run-times of the implementations of all but for the 10X TPCH
dataset split between 5 hosts.

Figure 37. The absolute run-times of the implementations of all but for the 100X TPCH
dataset split between 5 hosts.

H Summary and Evaluation of Results

In general, the most significant variable in an algorithms run time is the scale of the

TPCH data. Each of the trials tested TPCH scales of 1X, 10X, and 100X. These scales

were factors of the original dataset where the TPCH 1X set was 1 gigabyte. The 100X set

was 100 times larger.

For the 1X dataset, different implementations outperformed others and there was no

clear best option. However, as the dataset size increased from 1X to 100X the SQL

approach became less favorable. At the 100X size, the SQL implementation was never the

fastest algorithm. The Semijoin implementation performed the best overall for Some,

AtLeast and AtMost. For the Ratio operator, All, and AllBut, the Naive implementation

was the best overall performer.

The Semijoin and Naive algorithms were not without their own experimental

shortcomings. They were written in Java and queries were issued through the vendors

JDBC interface. This extra layer intuitively introduced some extra latency in the
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experimental run times for these two algorithms.

One shortcoming of the naive algorithm was that it assumed that all objects would

fit in memory. The hashmap that gets constructed fit into memory for all of the tests in

this experiment. Had there been too many items in the hashmap to fit into memory, swap

space would have been used. Intuition would dictate that the naive algorithms performance

would suffer detrimentally if parts of the hashmap had to be retrieved from swap space.

With these limitations in mind it still appears that there is some merit to utilizing

these generalized quantifiers in an extension to the SQL standard.
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CHAPTER V

CONCLUSION

To conclude, the current implementation of SQL makes optimizing distributed

queries difficult. Improvements can be made by leveraging some of the discussed properties

of generalized quantifiers. The proposed query language’s implementation appears

plausible. The plausibility was measured against existing database technology. In the cases

tested, these implementations tended to outperform the existing methods where the

dataset was large and/or the size of the set in the query was large. These tests were

intended to be sufficiently general so that it would not favor a specific implementation.

Implementing this system could be useful for academic and commercial interests.

This query language could be used in data mining. These Generalized Quantifiers could be

utilized to find association rules.

Future work should include testing on systems where assumptions are not as closely

followed. For the trials conducted, it was assumed that all hosts in the system were

operating with equivalent processing power, equal load, and an equal sized partition of

data. Loosening any of those constraints should intuitively change the performance of the

system. Thus, it should be investigated what happens when these assumptions are

degraded.

Another area worth investigating would be in the fault tolerance of the system. The

algorithms assume that all hosts will be up all the time. This is not completely accurate

for a real word scenario.
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CHAPTER VI

APPENDIX

This appendix lists all of the results underlying the experimental chapter. Every list

is the average of five runs. Results are grouped by quantifier and implementation.
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TABLE 3

Some(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:28
3 1X Med 0:00:31
3 1X Large 0:01:11
3 10X Small 0:04:00
3 10X Med 0:04:12
3 10X Large 0:08:29
3 100X Small 0:46:40
3 100X Med 0:46:56
3 100X Large 0:54:02
5 1X Small 0:00:35
5 1X Med 0:00:38
5 1X Large 0:01:23
5 10X Small 0:04:44
5 10X Med 0:04:58
5 10X Large 0:07:51
5 100X Small 0:47:47
5 100X Med 0:50:20
5 100X Large 2:37:24
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TABLE 4

Some(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:35
3 1X Med 0:00:35
3 1X Large 0:00:35
3 10X Small 0:05:04
3 10X Med 0:05:10
3 10X Large 0:04:54
3 100X Small 0:51:20
3 100X Med 0:51:35
3 100X Large 0:51:31
5 1X Small 0:00:42
5 1X Med 0:00:41
5 1X Large 0:00:43
5 10X Small 0:05:40
5 10X Med 0:05:41
5 10X Large 0:05:38
5 100X Small 0:52:47
5 100X Med 0:53:41
5 100X Large 0:53:01
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TABLE 5

Some(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:29
3 1X Med 0:00:31
3 1X Large 0:00:41
3 10X Small 0:03:01
3 10X Med 0:03:08
3 10X Large 0:05:00
3 100X Small 0:31:58
3 100X Med 0:31:58
3 100X Large 0:34:31
5 1X Small 0:00:36
5 1X Med 0:00:39
5 1X Large 0:00:52
5 10X Small 0:03:53
5 10X Med 0:03:58
5 10X Large 0:05:27
5 100X Small 0:30:16
5 100X Med 0:30:09
5 100X Large 0:38:37
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TABLE 6

AtLeast(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:28
3 1X Med 0:00:30
3 1X Large 0:00:59
3 10X Small 0:03:57
3 10X Med 0:04:05
3 10X Large 0:08:24
3 100X Small 0:46:47
3 100X Med 0:50:06
3 100X Large 0:57:44
5 1X Small 0:00:39
5 1X Med 0:00:39
5 1X Large 0:01:08
5 10X Small 0:04:46
5 10X Med 0:04:50
5 10X Large 0:09:18
5 100X Small 0:47:45
5 100X Med 0:47:55
5 100X Large 7:16:08
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TABLE 7

AtLeast(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:34
3 1X Med 0:00:35
3 1X Large 0:00:38
3 10X Small 0:05:23
3 10X Med 0:04:17
3 10X Large 0:05:33
3 100X Small 0:51:08
3 100X Med 0:51:08
3 100X Large 0:51:13
5 1X Small 0:00:41
5 1X Med 0:00:44
5 1X Large 0:00:46
5 10X Small 0:05:43
5 10X Med 0:05:45
5 10X Large 0:05:58
5 100X Small 0:52:57
5 100X Med 0:52:52
5 100X Large 0:53:49
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TABLE 8

AtLeast(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:29
3 1X Med 0:00:31
3 1X Large 0:00:44
3 10X Small 0:02:59
3 10X Med 0:03:05
3 10X Large 0:05:14
3 100X Small 0:31:50
3 100X Med 0:31:53
3 100X Large 0:34:40
5 1X Small 0:00:37
5 1X Med 0:00:40
5 1X Large 0:00:54
5 10X Small 0:04:00
5 10X Med 0:03:56
5 10X Large 0:05:40
5 100X Small 0:30:31
5 100X Med 0:30:24
5 100X Large 0:39:37
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TABLE 9

AtMost(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:29
3 1X Med 0:00:32
3 1X Large 0:00:52
3 10X Small 0:04:00
3 10X Med 0:04:04
3 10X Large 0:08:21
3 100X Small 0:46:48
3 100X Med 0:46:57
3 100X Large 0:57:00
5 1X Small 0:00:37
5 1X Med 0:00:43
5 1X Large 0:01:03
5 10X Small 0:04:51
5 10X Med 0:04:52
5 10X Large 0:09:39
5 100X Small 0:47:55
5 100X Med 0:48:52
5 100X Large 7:22:17
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TABLE 10

AtMost(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:35
3 1X Med 0:00:35
3 1X Large 0:00:38
3 10X Small 0:05:30
3 10X Med 0:05:10
3 10X Large 0:05:36
3 100X Small 0:54:29
3 100X Med 0:54:16
3 100X Large 0:54:25
5 1X Small 0:00:39
5 1X Med 0:00:39
5 1X Large 0:00:57
5 10X Small 0:03:56
5 10X Med 0:04:00
5 10X Large 0:05:44
5 100X Small 0:52:38
5 100X Med 0:53:26
5 100X Large 0:53:33
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TABLE 11

AtMost(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:30
3 1X Med 0:00:33
3 1X Large 0:00:46
3 10X Small 0:03:11
3 10X Med 0:03:23
3 10X Large 0:04:46
3 100X Small 0:31:53
3 100X Med 0:32:06
3 100X Large 0:34:43
5 1X Small 0:00:37
5 1X Med 0:00:40
5 1X Large 0:00:55
5 10X Small 0:03:56
5 10X Med 0:03:57
5 10X Large 0:05:43
5 100X Small 0:30:23
5 100X Med 0:30:13
5 100X Large 0:39:43
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TABLE 12

Ratio(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:35
3 1X Med 0:00:36
3 1X Large 0:01:11
3 10X Small 0:05:32
3 10X Med 0:05:31
3 10X Large 0:13:56
3 100X Small 1:12:12
3 100X Med 1:12:03
3 100X Large 1:44:11
5 1X Small 0:00:44
5 1X Med 0:00:45
5 1X Large 0:01:19
5 10X Small 0:05:49
5 10X Med 0:05:53
5 10X Large 0:13:56
5 100X Small 1:18:26
5 100X Med 1:18:56
5 100X Large 4:03:06
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TABLE 13

Ratio(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:36
3 1X Med 0:00:36
3 1X Large 0:00:39
3 10X Small 0:05:05
3 10X Med 0:05:05
3 10X Large 0:05:37
3 100X Small 0:53:35
3 100X Med 0:53:43
3 100X Large 0:53:40
5 1X Small 0:00:42
5 1X Med 0:00:40
5 1X Large 0:00:45
5 10X Small 0:05:41
5 10X Med 0:05:39
5 10X Large 0:05:55
5 100X Small 0:53:09
5 100X Med 0:52:52
5 100X Large 0:53:29
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TABLE 14

Ratio(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:42
3 1X Med 0:00:44
3 1X Large 0:00:48
3 10X Small 0:05:33
3 10X Med 0:05:44
3 10X Large 0:07:42
3 100X Small 0:55:32
3 100X Med 0:55:44
3 100X Large 0:59:52
5 1X Small 0:00:57
5 1X Med 0:00:57
5 1X Large 0:00:55
5 10X Small 0:07:00
5 10X Med 0:07:00
5 10X Large 0:07:25
5 100X Small 1:03:14
5 100X Med 1:03:11
5 100X Large 1:37:53
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TABLE 15

All(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:38
3 1X Med 0:00:39
3 1X Large 0:00:49
3 10X Small 0:05:35
3 10X Med 0:06:04
3 10X Large 0:08:25
3 100X Small 1:03:12
3 100X Med 1:04:21
3 100X Large 1:18:35
5 1X Small 0:00:47
5 1X Med 0:00:48
5 1X Large 0:01:00
5 10X Small 0:06:23
5 10X Med 0:06:34
5 10X Large 0:07:59
5 100X Small 1:09:11
5 100X Med 1:07:57
5 100X Large 1:56:29
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TABLE 16

All(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:34
3 1X Med 0:00:35
3 1X Large 0:00:39
3 10X Small 0:04:57
3 10X Med 0:05:04
3 10X Large 0:05:22
3 100X Small 0:54:03
3 100X Med 0:53:15
3 100X Large 0:53:38
5 1X Small 0:00:44
5 1X Med 0:00:39
5 1X Large 0:00:44
5 10X Small 0:05:42
5 10X Med 0:05:36
5 10X Large 0:05:54
5 100X Small 0:52:33
5 100X Med 0:53:47
5 100X Large 0:53:40
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TABLE 17

All(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:35
3 1X Med 0:00:36
3 1X Large 0:00:43
3 10X Small 0:04:08
3 10X Med 0:04:00
3 10X Large 0:06:28
3 100X Small 0:49:17
3 100X Med 0:48:52
3 100X Large 0:54:37
5 1X Small 0:00:44
5 1X Med 0:00:46
5 1X Large 0:00:50
5 10X Small 0:05:04
5 10X Med 0:05:55
5 10X Large 0:06:19
5 100X Small 0:50:33
5 100X Med 0:53:09
5 100X Large 1:21:38
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TABLE 18

AllBut(x) SQL

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:36
3 1X Med 0:00:35
3 1X Large 0:01:00
3 10X Small 0:05:25
3 10X Med 0:05:32
3 10X Large 0:13:01
3 100X Small 1:14:17
3 100X Med 1:17:51
3 100X Large 1:39:16
5 1X Small 0:00:49
5 1X Med 0:00:47
5 1X Large 0:01:13
5 10X Small 0:06:04
5 10X Med 0:05:49
5 10X Large 0:14:13
5 100X Small 1:22:42
5 100X Med 1:20:47
5 100X Large 4:06:47
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TABLE 19

AllBut(x) Naive

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:34
3 1X Med 0:00:35
3 1X Large 0:00:38
3 10X Small 0:05:01
3 10X Med 0:05:05
3 10X Large 0:05:23
3 100X Small 0:54:54
3 100X Med 0:53:13
3 100X Large 0:54:05
5 1X Small 0:00:41
5 1X Med 0:00:42
5 1X Large 0:00:43
5 10X Small 0:05:41
5 10X Med 0:05:42
5 10X Large 0:05:54
5 100X Small 0:53:02
5 100X Med 0:53:20
5 100X Large 0:54:44
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TABLE 20

AllBut(x) Semijoin

Number of Hosts TPCH Scale Query Size Runtime
3 1X Small 0:00:45
3 1X Med 0:01:34
3 1X Large 0:01:35
3 10X Small 0:11:10
3 10X Med 0:11:14
3 10X Large 0:14:25
3 100X Small 1:51:02
3 100X Med 1:55:02
3 100X Large 2:01:22
5 1X Small 0:01:51
5 1X Med 0:01:54
5 1X Large 0:01:58
5 10X Small 0:14:29
5 10X Med 0:14:05
5 10X Large 0:14:58
5 100X Small 2:06:38
5 100X Med 2:06:50
5 100X Large 3:05:22
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