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ABSTRACT 

MITIGATING CISPLATIN RESISTANCE IN OVARIAN CANCER 

Clarisse S. Muenyi 

July 21, 2011 

Epithelial Ovarian cancer (EOC) is the leading cause of gynecological 

cancer death in the USA. Recurrence rates are high after front-line platinum 

chemotherapy and most patients eventually die from platinum-resistant disease. 

P53 plays an important role in cellular response to platinum-DNA 

damage. It transcriptionally activates XPC, a platinum-DNA damage recognition 

protein in the global genome repair (GGR), sub-pathway of nucleotide excision 

repair (NER). The goal of this research is to investigate the effect of a novel 

combination of cisplatin, sodium arsenite (NaAs02) and hyperthermia (CPA 39 

DC) on EOC cells with different p53 status. Human EOC cells were treated with 

cisplatin ± 20 IJM NaAs02 for 1 h at 37 or 39°C. NaAs02 ± hyperthermia 

selectively sensitized wild-type p53 EOC cells to cisplatin by suppressing XPC 

and enhancing cellular and DNA platinum accumulation. In contrast, only 

hyperthermia sensitized p53-mutated and p53-null EOC cells to cisplatin by 

enhancing cellular and DNA platinum accumulation. Cisplatin ± NaAs02 at 37 or 

39°C induced pseudo-G1 associated apoptosis in p53 expressing cells. 

Co-treatment with HSP90 inhibitor 17-DMAG plus CPA 39°C greatly 

sensitized EOC cells by enhancing cellular platinum accumulation. In order to 
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translate the in vitro findings in an in vivo model, metastatic ovarian cancer was 

established in nude mice by intraperitoneal injection of A2780/CP70 human EOC 

cells. Tumor bearing mice were perfused with 3 mg/kg body weight (BW) cisplatin 

± 26 mg/kg BW NaAs02 for 1 h at 37 or 43°C using a murine intraperitoneal 

chemotherapy system developed in our laboratory. Cisplatin induced NER 

proteins XPC and XPA and suppressed mismatch repair protein MSH2 that is 

associated with resistance. However, co-treatment with NaAs02 at 37 or 43°C 

suppressed XPC, restored higher levels of MSH2 and enhanced tumor platinum 

uptake. Platinum and arsenic generally accumulated in systemic tissues during 

intraperitoneal lavage and decreased 24 h after perfusion. 

In conclusion, CPA 39 °C alone or combined with 17-DMAG has the 

potential to sensitize EOC to cisplatin by attenuating NER, activating mismatch 

repair, enhancing tumor platinum accumulation and activating apoptotic cell 

death. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Every year, about 225,000 women are diagnosed with ovarian cancer 

(OC) worldwide and more than 50% of these patients die from the disease, 

making OC the ih leading cause of cancer death in women globally (Jemal, et 

aI., 2011). In the United States, an estimated 21,880 women were diagnosed 

with OC in 2010 and 13,850 died from the disease (Jemal, et aI., 2010), making 

OC the leading cause of gynecological cancer death in the U.S. The high death 

rate is due to tumor spread beyond the ovary at the time of diagnosis and both 

innate and acquired resistance to chemotherapeutics (Cannistra, 2004). 

The front-line treatment for advanced OC is cytoreductive surgery to 

excise the bulk of tumors followed by intravenous (IV) or combined IV and 

intraperitoneal (IP) cisplatin or carboplatin in combination with taxane therapy 

(McGuire, et aI., 1996; Vasey, et aI., 1999; Armstrong, et aI., 2002; Markman, 

1988). Although most women initially respond to treatment, the disease recurs in 

60 - 70% of women with very poor prognosis (Ozols, 2005; Rubin, et aI., 1999). 

Recurrent tumors that initially responded to platinum become resistant. In 

addition to this 'acquired' resistance, about 25% of OC are 'innately' resistant to 

platinum and respond poorly to initial chemotherapy. 
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Acquired or innate resistance to platinum compounds is a major limitation 

to clinical success. Ways of mitigating drug resistance include: increasing dose, 

changing route of drug administration or combining therapies. Increasing the 

dose of platinum agents will increase the risk for adverse side effects such as 

kidney failure (Zhang, et aI., 2007). Changing route of drug delivery from 

intravenous to intraperitoneal makes sense because metastatic DC is usually 

confined to the peritoneal cavity. The rationale for intraperitoneal therapy in DC 

treatment is that tumors will receive sustained exposure to high concentrations of 

drugs while the peritoneal lining will protect against systemic distribution of drugs 

to limit toxicity (Echarri Gonzalez, et aI., 2011). In response to three large 

randomized clinical trials showing benefit to incorporating intraperitoneal (lP) 

delivery in DC, the National Cancer Institute issued a clinical announcement 

recommending that patients with small volume disease at the end of frontline 

surgery be offered the chance of receiving IP chemotherapy (Trimble and 

Christian, 2008). Adding hyperthermia to chemotherapy agents delivered 

intraperitoneally (HIPEC) could improve outcome (Helm, 2009; Yang, et aI., 

2010; Dovern, et aI., 2010). 

Cisplatin is a potent chemotherapeutic against various forms of solid 

tumors including ovarian (Vasey, et aI., 1999), testicular (Duale, et aI., 2007) and 

bladder cancer (Ecke, et aI., 2006). In vitro cell culture studies have shown that 

the cytotoxicity of cisplatin and its analogues such as carboplatin and oxaliplatin 

is directly related to total platinum bound to DNA (Knox, et aI., 1986). 

Development of resistance to platinum drugs is a major challenge in 
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chemotherapy. Mechanisms of cisplatin resistance are multifactorial and include: 

decreased drug accumulation, enhanced detoxification by glutathionylation and 

efflux by multi-drug resistance proteins or binding to metallothionein, elevated 

DNA repair and DNA damage tolerance (Parker, et aI., 1991; Stewart, 2007). The 

consequence of these mechanisms of resistance is decreased cell kill. In order to 

enhance OC cell kill, combined hyperthermia and platinum-based 

chemotherapeutics delivered intraperitoneally (HIPEC) has been used to treat 

women with advanced OC (Dovern, et aI., 2010; Helm, et aI., 2008). 

Hyperthermia enhances cisplatin cytotoxicity (Akaboshi, et aI., 1994; Alberts, et 

aI., 1980; Hahn, 1979; Herman, et aI., 1988; Los, et aI., 1994). Hyperthermia 

enhances the penetration of cisplatin into peritoneal tumor implant when 

delivered intraperitoneally (van, V, et aI., 1998) and also enhances platinum-DNA 

adduct formation (Meyn, et aI., 1980; van, V, et aI., 1998). In addition, 

hyperthermia causes cellular stress and induces mitotic catastrophe 

(Hildebrandt, et aI., 2002; Sekhar, et aI., 2007). Even though HIPEC therapy 

increases survival, complete remission is not attained (Dovern, et aI., 2010). 

Failure to achieve complete remission could be due to heat loss or uneven 

temperature distribution during HIPEC. Thus, there is need for pharmacological 

agents that will enhance the effect of hyperthermia on platinum-based 

chemotherapy. Arsenic has the potential to enhance hyperthermia cytotoxicity 

effect on cisplatin. Arsenic can potentially inhibit mechanisms of cisplatin 

resistance and also enhance mechanisms of hyperthermia induced cell death 

(Helm and States, 2.009; Muenyi, et aI., 2011). 
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Arsenic has a paradoxical effect because it is a chemotherapeutic as well 

as an environmental hazard (Desoize, 2004; Cui, et aL, 2008). Arsenic (Fowler's 

solution (KAS02)) has been used as a chemotherapeutic to treat chronic 

myelogenous leukemia before the advent of radiation therapy (Waxman and 

Anderson, 2001). Arsenic trioxide (As20 3) has been used in Chinese traditional 

medicine for hundreds of years. The Food and Drug Administration approved the 

use of Trisenox® (As20 3) for the treatment of all-trans retinoic acid (ATRA) 

resistant acute promyelogenous leukemia in 2001 (Cohen, et aL, 2001). There 

are several clinical trials underway using Trisenox® (As20 3) to treat 

hematological and solid tumors (Murgo, 2001; Murgo, et aL, 2000). 

Mechanisms of arsenic induced cytotoxicity include: inhibition of 

nucleotide excision repair (Hartwig, et aL, 1997; Hartwig, et aL, 2003; Nollen, et 

aL, 2009; Muenyi et aL, 2011), causation of oxidative stress (Shi, et aL, 2004b; 

Shi, et aI., 2004a), induction of mitotic catastrophe (Taylor, et aL, 2008; McNeely, 

et aL, 2008a) and induction of apoptotic cell death (HU, et aL, 2005; Ramos, et 

aL, 2005). Resistance to arsenic is associated with enhanced metallothionein 

binding, detoxification by glutathione conjugation and efflux by multi-drug 

resistance proteins (Leslie, et aL, 2004), similar to cisplatin and its analogues 

(Cole, et aL, 1994; Byun, et aL, 2005; Surowiak, et aL, 2005). Therefore, arsenic 

and platinum are expected to compete for the detoxification and efflux pathways. 

Hence, it is reasonable to predict that co-treatment with arsenic and cisplatin may 

increase the intracellular accumulation of platinum via competition for the 

detoxification and efflux systems. Increased cellular accumulation will likely 
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increase the amount of platinum binding to DNA and thus, increase cell death. 

Furthermore, arsenic mimics hyperthermia because it also causes mitotic 

catastrophe (Taylor, et aI., 2006; McNeely, et aI., 2008b; McNeely, et aI., 2008a) 

and induces cellular stress similar to hyperthermia (Del Razo, et aI., 2001). 

The cytotoxicity of platinum-based chemotherapeutics is mediated through 

high levels of DNA damage leading to apoptosis, DNA repair, or cell cycle arrest. 

Cellular response to platinum-DNA damage is mediated through ATMIATR and 

CHK1/CHK2 (8asu and Krishnamurthy, 2010) that phosphorylate and activate 

the tumor suppressor protein p53 (Canman, et aI., 1998). P53 regulates cell 

death and cell survival following DNA damage. The role of p53 is to maintain the 

integrity of the genome. Thus, it is known as the "guardian of the genome" 

(Efeyan and Serrano, 2007). Activated p53 induces cell cycle checkpoint 

activation, apoptosis and DNA repair protein expression (Harris and Levine, 

2005; Ford, 2005). Cisplatin is known to cause G2 arrest. P53 regulates G2/M 

transition by transcriptionally activating cyclin dependent kinase (CDK) inhibitor 

CDKN1A, GADD45 and 14-3-30" (Abraham, 2001). These proteins inhibit 

CDK1/cyclin 8 and block entry into mitosis. Arsenic causes mitotic arrest and 

both arsenic and hyperthermia induce mitotic catastrophe (Taylor, et aI., 2008; 

McNeely, et aI., 2008a). Thus, it will be interesting to determine if arsenic and 

hyperthermia induce mitotic catastrophe in cisplatin treat cells. 

Cisplatin forms bulky DNA adducts by binding to the N7 position of 

adjacent guanines to form predominantly intrastrand cross links and to a lesser 

extent interstrand cross links by linking guanines on opposite strands at CpG 

5 



sites. The bulky lesions resulting from intrastrand cross links are repaired 

primarily by the nucleotide excision repair (NER) pathway (Wood, 1996). 

Resistance to cisplatin is associated with enhanced NER (Martin, et aI., 2008). 

There are five main steps involved in NER: damage recognition, assembly of 

repair complex, excision of damage, gap filling and ligation (Figure 1). There are 

two sub-pathways of NER: global genome repair (GGR) and transcription 

coupled repair (TCR). GGR removes DNA damage from the entire genome 

whereas TCR repairs DNA damage only on actively transcribing strands. These 

two pathways differ only in the lesion recognition step. In TCR, a stalled RNA 

polymerase II at the region of damage and Cockayne syndrome A and B (CSA 

and CSB) recognize damage on actively transcribing genes. In GGR, XPC and 

DDB2 are involved in DNA damage recognition (Fitch, et aI., 2003). P53 

regulates DNA repair by transcriptionally regulating XPC and DDB2 (Adimoolam 

and Ford, 2003; Ford and Hanawalt, 1995; Ford, 2005; Ford and Hanawalt, 

1997). XPC is actively involved in cisplatin-DNA damage recognition (Neher, et 

aI., 2010). Arsenic inhibits NER by suppressing XPC in fibroblast (Nollen, et aI., 

2009). This suggests that arsenic will sensitize OC cells to cisplatin by inhibiting 

XPC. 

Following DNA damage recognition, downstream repair proteins XPA, 

RPA, ERCC1, TFIIH, DNA polymerase 8 and DNA ligase are recruited to repair 

the damage in a common pathway (Figure 1). Over-expression of XPA and 

ERCC1 mRNA has been associated with cisplatin resistance in OC (Dabholkar, 
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et aI., 1994). Thus, understanding if arsenic and hyperthermia modulate the 

expression of XPA and ERCC1 in order to sensitize cells to cisplatin is needed. 

7 



Figure 1 
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Figure 1. Nucleotide exicision repair pathway. The nucleotide excision repair 

pathway indicating the two sub-pathways: transcription coupled repair and global 

genome repair. This Figure was adapted from Paul Porter's dissertation. 
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In addition to NER, the mismatch repair (MMR) pathway has been 

implicated in cisplatin resistance (Fink, et aI., 1997). In an effort to repair 

platinum-DNA damage by the MMR pathway, a futile MMR occurs leading to cell 

death (Martin, et aI., 2008; Topping, et aI., 2009). Ovarian cancer cells over­

expressing MMR proteins such as MSH6 and MSH2 are sensitive to cisplatin 

(Ding, et aI., 2009; Pani, et aI., 2007; Topping, et aI., 2009). Therefore, it is 

important to determine if arsenic and hyperthermia sensitize cells to cisplatin by 

activating the MMR pathway. 

Although there has been tremendous effort in recent years to enhance the 

efficacy of platinum-based chemotherapy against OC by changing route of drug 

delivery and using combination therapy, over 50% of OC patients still die 

annually. The low response to chemotherapy and high death rate could be due to 

the heterogeneity of cancer cell population that result from constant mutation and 

alteration of important genes such as p53. This heterogeneous population of 

cancer cells cannot be treated successfully by a single agent or combination of 

drugs designed for a single target or cellular pathway. The need for combination 

therapy with each drug aimed at different targets or cellular pathways is 

paramount. In the following studies, I investigated the cytotoxicity effect of a new 

combination of sodium arsenite and hyperthermia on cisplatin cytotoxicity on a 

panel of OC cells expressing wild-type p53 or that are p53-null or p53-mutated. I 

used cells with different p53 status because about 50% of OC cells have non­

functional p53 (Schuijer and Berns, 2003). In addition, p53 transcriptionally 

regulates genes involved in platinum-DNA damage repair (Ford, 2005). 
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Therefore, understanding how p53 status affects response to combined cisplatin, 

sodium arsenite and hyperthermia is important. I also examined how sodium 

arsenite and hyperthermia alter the mechanisms of cisplatin resistance. 

Particularly I examined the effects of sodium arsenite and hyperthermia on 

cellular and DNA accumulation of platinum, platinum-DNA repair pathways, 

induction of cellular stress, mitotic arrest/mitotic catastrophe induction and cell 

cycle regulation. I used both in vitro cell culture and human DC xenograft models 

for these studies. Cytotoxicity data indicate that combined cisplatin, sodium 

arsenite and hyperthermia sensitized wild-type p53 expressing human DC cells 

to cisplatin by suppressing p53 regulated protein XPC, enhancing cellular and 

tumor accumulation of platinum and enhancing platinum bound to DNA. I also 

observed that sodium arsenite ± hyperthermia suppressed XPC and enhanced 

platinum accumulation in metastatic tumors. Inhibition of the activity of stress 

response protein HSP90 greatly potentiated the cytotoxicity of combined 

cisplatin, sodium arsenite and hyperthermia in a p53-independent manner. 

Cisplatin, sodium arsenite and hyperthermia induced pseudo-G1 arrest 

associated apoptosis in p53 expressing cells. 

In conclusion, combined cisplatin, sodium arsenite and hyperthermia (CPA 

39°C) or CPA 39 °c plus 17 -DMAG has the potential to sensitize DC to cisplatin 

by suppressing NER, activating mismatch repair and enhancing cellular and DNA 

platinum accumulation, causing cellular stress and inducing apoptotic cell death. 

This combination chemotherapy will be effective because each of these drugs 

has a different mechanism of action. 
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CHAPTER 2 

COMBINED SODIUM ARSENITE AND HYPERTHERMIA SELECTIVE 

SENSITIZATION OF WILD-TYPE P53 HUMAN OC CELLS TO CISPLATIN 

INVOLVES SUPPRESSION OF XPC AND ENHANCEMENT OF CELLULAR 

AND DNA PLATINUM ACCUMULATION 

INTRODUCTION 

Epithelial Ovarian cancer (OC) is the leading cause of gynecological 

cancer death among women in the United (Jemal, et aI., 2010). Cisplatin and its 

analogues are front-line drugs to treatment OC (Armstrong, et aI., 2002). 

Cisplatin causes DNA damage to induce cell death (Cepeda, et aI., 2007). 

However, cellular processes such as enhanced platinum-DNA damage tolerance, 

platinum-DNA repair, cisplatin metabolism and cellular export and reduced 

accumulation confer resistance to cisplatin (Stewart, 2007), and thus decrease 

the effectiveness of cisplatin. 

Combined hyperthermia and cisplatin is used to treat OC (Helm, et aI., 

2008). Hyperthermia augments cisplatin-induced cytotoxicity and enhances the 

uptake of platinum and platination of DNA (Los, et aI., 1994; van, V, et aI., 1998). 

However, complete remission is not attained (Dovern, et aI., 2010). The goal of 

this study is to determine if adding sodium arsenite (sodium 
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arsenite) to combined cisplatin and hyperthermia will further sensitize cisplatin­

resistant OC cells to cisplatin. 

In vitro studies demonstrate that arsenic induces apoptosis in solid cancer 

cells including gastric, colon, pancreatic, lung, prostate and OC (Cui, et aL, 2008; 

Murgo, 2001). In vivo, arsenic inhibits the growth of orthotopic metastatic 

prostate cancer and peritoneal metastatic OC (Maeda, et aL, 2001; Zhang and 

Wang, 2006). Results of combination chemotherapy studies demonstrate that 

arsenic sensitizes cancer cells to hyperthermia, radiation, cisplatin, adriamycin, 

doxorubicin, and etoposide (Chun, et aL, 2002; Griffin, et aL, 2003; Uslu, et aL, 

2000; Wang, et aL, 2001). Arsenic has additive or synergistic effect with cisplatin 

following prolonged exposure (Uslu, et aL, 2000; Wang, et aL, 2001; Zhang, et 

aL, 2009). Mechanisms of arsenic-induced cell death include formation of 

oxidative DNA damage (Nakagawa, et aL, 2002), activation of the Fas pathway 

(Kong, et aL, 2005), and inhibition of NER (Nollen, et aL, 2009; Muenyi et aL, 

2011) and causation of mitotic catastrophe (McNeely, et aL, 2008a). 

In response to DNA damage, p53 is activated and stabilized by upstream 

DNA damage sensors. Activated p53 regulates cell cycle arrest, DNA repair and 

apoptosis. P53 is often mutated in human cancers (Olivier, et aL, 2002), 

especially OC with about 50% of the tumors bearing p53 mutations (Schuijer and 

Berns, 2003). The role of p53 in OC response to platinum chemotherapy remains 

unclear. Most clinical studies suggest better response to platinum chemotherapy 

in patients with p53-mutated tumors than those with wild-type p53 tumors 

(Havrilesky, et aL, 2003; Nakayama, et aL, 2003; Okuda, et aL, 2003). Most in 
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vitro studies also demonstrate that p53-mutated or p53-null cancer cells are 

more sensitive to cisplatin than those expressing wild-type p53 (Hagopian, et aI., 

1999; Havrilesky, et aI., 1995; Yazlovitskaya, et aI., 2001; Metzinger, et aI., 

2006). Therefore, presence of wild-type p53 generally confer resistance to 

cisplatin. 

Enhanced DNA repair is an important mechanism of cisplatin resistance in 

OC cells (Parker, et aI., 1991). XPC is required for platinum-DNA damage repair 

(Neher, et aI., 2010). P53 is implicated in platinum-DNA repair because it 

transcriptionally regulates XPC (Ford, 2005). Therefore understanding the p53 

status of tumors is important in developing personalized chemotherapy to 

effectively treat platinum-resistant cancer patients, and interfering with p53 

function may suppress DNA repair and sensitize cancer cells to platinum therapy. 

The present chapter addresses how the p53 status of OC cells affects 

response to new combination chemotherapy of cisplatin, sodium arsenite and 

hyperthermia. I show here for the first time that combined sodium arsenite and 

hyperthermia sensitize wild-type p53 expressing OC cells to cisplatin by 

suppressing XPC and enhancing cellular and DNA platinum accumulation. P53-

mutated and-null cells were sensitized to cisplatin by hyperthermia only which 

involved enhancement of cellular and DNA platinum accumulation. 
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HYPOTHESIS 

Sodium arsenite and hyperthermia sensitize DC cells to cisplatin by 

inhibiting DNA repair and enhancing accumulation of cisplatin. 
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MATERIALS AND METHODS 

Chemicals 

Bovine serum albumin, Tween 20, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide), RNase A, cisplatin and sodium arsenite were 

purchased from Sigma-Aldrich (St. Louis, MO). DMSO was purchased from 

Fisher Scientific (Pittsburgh, PA). Stock solutions (cisplatin (1 mg/mL) in 

phosphate buffered saline (PBS) and sodium arsenite in water (10 mM)) were 

prepared freshly on the day of treatment and filter sterilized (0.22 !-1m) prior to 

use. It should be noted that Trisenox® (arsenic trioxide (AS20 3) dissolved in 1 M 

NaOH) and sodium arsenite (sodium arsenite) both generate the same oxyanion 

[As(OHh] in solution (pharmacological form of arsenic). I used sodium arsenite 

for this research because it is readily soluble in water and is stable in water. 

Cells and cell culture 

Cisplatin-sensitive (A2780) and -resistant (A2780/CP70) human OC cells 

were the kind gift of Dr. Eddie Reed (The Mitchell Cancer Institute, University of 

South Alabama, Mobile, Alabama). SKOV-3 human OC cells were the kind gift of 

Dr. Donald Miller (Department of Medicine, University of Louisville). OVCA 420, 

429, 432 and 433 cells were the kind gift of Dr. Zahid Siddik (Department of 

Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, 

Houston, Texas). OVCAR-3 cells were purchased from American Type Culture 

Collection (Manassas, VA). A2780 and A2780/CP70 and OVCA 420,429,432 

and 433 cells were maintained in RPMI 1640 media supplemented with 10% fetal 

bovine serum, 100 !-Ig/mL penicillin/streptomycin, 2 mM L-glutamine and 0.2 
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units/mL insulin. SKOV-3 cells were maintained in McCoy's 5A media 

supplemented with 10% FBS and 100 IJg/mL penicillin/streptomycin. OVCAR-3 

cells were maintained in RPMI 1640 media supplemented with 20% fetal bovine 

serum, 100 IJg/mL penicillin/streptomycin, 2 mM L-glutamine and 0.01 mg/mL 

bovine insulin. Cells were cultured in an atmosphere of 95% humidity and 5% 

C02 at 37°C. Cells were passaged twice weekly and replated at a density of 1 X 

106 cells/150 mm dish. 

Cell Viability assay 

The growth inhibitory effects of cisplatin, sodium arsenite and 

hyperthermia were evaluated using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide) cell viability assay (Mosmann, 1983). Briefly, 2500 

cells/well were seeded overnight in 96-well plate. Cells were treated with drugs at 

3Tor 39°C for 1 h. After treatment, cells were washed twice with PBS and refed 

with drug-free media and incubated at 37°C for 5 days prior to assay. Control for 

no surviving cells ("blank") was cells treated with 0.1 mg/mL hygromycin B. The 

MTT assay evaluates the reduction of yellow tetrazolium salt to insoluble dark 

purple formazan crystals by mitochondrial succinate dehydrogenase in cells with 

functional mitochondria. The insoluble purple crystals that were formed were 

solubilized in DMSO and the absorbance measured at 570 nm. The absorbance 

values corresponded to the number of viable cells. Cell viability was calculated 

as follows and plotted against concentration of cisplatin. 

100 x(Mean of triplicate treated samples - Blank) 
% cell viability = 

(Mean of triplicate untreated samples - Blank) 
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Data were expressed as means ± SEM of at least 3 independent experiments. 

Each experiment was done with triplicate wells for each treatment condition. 

P53 and XPC siRNA transfections 

One million cells were transfected with 400 nM of either XPC or p53 smart 

pool siRNAs (Dharmacon, # L-016040-00 and M-003329-01 respectively), non­

targeting control pool (Dharmacon, # 0-001206-13-05), or 1x universal buffer 

(Dharmacon, # B-001 050-UB-015) using the Amaxa nucleofector kit V (Lonza, 

cat # VCA-1 003, 2.5 mL). After transfection, 2500 cells/well were plated in 96-

well plates for MTT assay and 1 x1 05 cells were plated in 6 cm dishes for western 

blot analyses. Cells were incubated at 37°C for 23 h. Cells were then treated 

with cisplatin ± 20 11M sodium arsenite at 37°C for 1 h. After treatment, cells 

were washed twice with PBS and refed with drug-free media and incubated at 37 

°c for 5 days prior to MTT assay. Protein Iysates were collected at 0 

(immediately) and 24 h after treatment for western blot analyses. 

Western blot analyses 

Total cellular Iysates were prepared from treated cells at 0 (immediately), 

6, 12, 24, 36,48 and 72 h after treatment. Cells were lysed with cell lysis solution 

(10 mM Tris-HCI pH 7.4,1 mM EDTA, 1% sodium dodecyl sulfate, 180 I-Ig/ml 

phenylmethylsulphonylfluoride). After removal of debris by centrifugation at 

13,000 xg for 45 min, total protein concentration in supernatant was determined 

by Bradford assay (Bio-Rad, Hercules, CA), using bovine serum albumin as 

standard. Proteins (30-40 I-Ig/Iane) were loaded and resolved by SDS­

polyacrylamide gel electrophoresis and electro-transferred to nitrocellulose 
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membranes. Membranes were probed with mouse monoclonal antibodies for p53 

(Neomarkers, 00-1, dilution 1: 1000), 00B2 (Abcam, # ab51017, dilution 1:50), 

XPC (Abcam, # ab6264, dilution 1: 1 000), B-actin (Sigma, # A 5441, dilution 

1: 1 0,000), or rabbit polyclonal antibodies for phospho-p53 Ser15 (Cell Signaling 

Technology, # 9284, dilution 1 :500), XPC (Novus, # NB100-58801, dilution 

1:10,000) and XPC (Santa Cruz, A-5, # SC-74411, 1:500). Secondary antibodies 

(rabbit anti-mouse IgG, # 81-6120 or goat anti-rabbit, # 81-6120, dilution 1:2500) 

conjugated to horseradish peroxidase (Zymed laboratories, Inc. South San 

Francisco, CA) were bound to primary antibodies and protein bands detected 

using enhanced chemiluminescence (ECl) substrate (Pierce, Rockford, Il) 

followed by exposure to Kodak XAR x-ray film. B-actin was used as the loading 

control. 

G/utathione-S-transferase (GST) activity assay 

Cells (2x106 cells/6 cm dish) were treated with 40 IJM cisplatin ± 20 IJM sodium 

arsenite at 37 or 39°C for 1 h. Immediately after treatment, cells were washed 

twice with phosphate buffered saline and collected in 500 IJl phosphate buffered 

saline EOTA (PBSE) by scraping with a rubber policeman. Cells were sonicated 

(at 3 pulses for 2 seconds each) using a probe sonicator, centrifuged at 10,000 

xg for 15 min at 4°C. The supernatant was collected and stored at -80°C until 

use (samples are stable for at least a month). On the day of the assay, 10 mM 

glutathione (GSH, Sigma Aldrich, St. louis, MO) in PBSE and 100 mM 1-chloro-

2,4-dinitrobenzene (CONB, Santa Cruz, # 237329) in ethanol were prepared 

fresh (these reagents are stable at room temperature during assay). For total 
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glutathione-S-transferase activity determination, 830 IJL PBSE plus 100 IJL GSH 

plus 60 IJL protein sample (25 - 50 IJg protein) were transferred into a quartz 

cuvette. The cuvette was covered with parafilm wrap and mixed six times. The 

parafilm wrap was then removed and the background absorbance read at 340 

nm for 1 min using a Varian Cary UV Spectrophotometer (Agilent Technologies, 

Palo Alto, CA). Then 10 IJL CONB was added rapidly, reaction mix was mixed six 

times and the absorbance for glutathione conjugated CONB (GS-CONB) was 

read for 2 min. 

. . . . (Abs/min (sample) -Abs/min (background)) Total GST aCltvlty (nmollmln/mg protein) = ........... .............. ............ . ............. . 
Am nmollmL X mg protein added 

The molar extinction coefficient for GS-CONB (Am) = 0.0096 umol-1 cm-1. 

Genomic DNA isolation 

After treatment, cells were washed twice with PBS and lysed with DNA lysis 

buffer (0.5 M Tris-HCI (pH 8.0),20 mM Na2EOTA, 10 mM NaCI, 1% sodium 

dodecyl sulfate (SOS), and 0.5 mg/mL proteinase K). Lysed cells were collected 

and incubated overnight at 37 cC. The Iysates were mixed with 1/4 volume of 

saturated NaCI solution and centrifuged at room temperature for 30 minutes at 

500 x g to pellet undigested proteins. The supernatants were collected, mixed 

with 2 volumes of 96% ethanol, and inverted several times and kept overnight at 

4 aC. The precipitated DNA was recovered, rinsed in 70% ethanol, briefly air 

dried to remove excess ethanol, and resuspended in 1X TE buffer (10 mM Tris-

HCI, pH 7.4 and 1.0 mM Na2EOTA, pH 7.4). DNA was incubated at 3rC with 

100 IJgl mL heat-treated RNase A for 3 h, mixed gently with 115 volume of 11 M 

ammonium acetate (pH 6.5) and 2 volumes of cold 96% ethanol. DNA was 
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allowed to precipitate overnight at -20°C and then recovered, rinsed in 70% 

ethanol, briefly dried, and resuspended in 1X TE buffer. DNA was quantified by 

A260 and purity determined by A26o/A28o ratio. DNA was stored at -20°C until use. 

Platinum accumulation studies 

Cells (1 X 106/10 cm dish) were treated with cisplatin ± 20 IJM sodium 

arsenite at 37 or 39°C for 1 h. The cell monolayers were washed twice with PBS, 

harvested and lysed with protein lysis solution. Samples were removed for 

protein determination using the bicinchoninic acid (BCA) method according to 

manufacturer's instruction (Pierce, Rockford, IL, micro-well plate protocol) (Smith, 

et aI., 1985). Then 100 IJL samples of Iysates were transferred to 2 mL acid 

washed (washed with 0.1 M nitric acid) centrifuge tubes and Iyphophilized using 

FTS systems Flexi-Dry MP (Stone Ridge, NY). Concentrated nitric acid (350 IJL) 

was added to every sample and the samples were predigested overnight. After 

predigestion, 100 IJL of each sample was transferred into 10 mL acid-washed 

microwavable digestion tubes (triplicate for each sample). The samples were 

microwave-digested at 150°C for 10 min using an automated focused beam 

microwave digestion system (ExplorerTM, CEM, Matthews, NC, USA). Then 1.9 

mL of 18 Mohm H20 containing 10 ppb internal standard (SPEX CertiPrep, 

Metuchen, NJ) was added into every sample to give final 5% nitric acid. Platinum 

was determined using Thermo X Series II Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) instrument (Thermo Fisher Scientific, Waltham, MA) 

located at the University of Louisville Center for Regulatory and Environmental 

Analytical Metabolomics (CREAM) facility. Concentrated nitric acid was 
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processed similarly and used as Blank. Platinum standard (SPEX CertiPrep, 

Metuchen, NJ) was used to generate a standard curve. Cellular platinum levels 

were expressed as ng platinum/mg protein. Results are the mean of 3 ICP-MS 

determinations for each data point from 3 independent experiments. 

Statistical analysis 

Results are expressed as the mean ± SD of three independent 

experiments. Statistical analyses were performed using Microsoft Excel built in 

formulas for one-way analysis of variance and student's t-test with significance 

level as p < 0.05, n ~ 3. 
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RESULTS 

Sodium arsenite ± hyperthermia selectively sensitizes wild-type p53 

expressing OC cells to cisplatin 

P53 regulates DNA repair and is frequently mutated in OC cells. Thus, it is 

very important to determine if p53 status will affect response to DNA damaging 

chemotherapeutics such as cisplatin. I used wild-type p53 expressing (A2780 

(cisplatin-sensitive) and A2780/CP70, OVCA 420, OVCA 429, OVCA 433 

(cisplatin-resistant)), p53-null (SKOV-3) and p53 mutated (OVCAR-3 and OVCA 

432) human OC cells to determine if the p53 status is an important determinant 

of OC cells response to a new combination of cisplatin, sodium arsenite and 

hyperthermia. Cells were treated with cisplatin ± 20 IlM sodium arsenite at 37 or 

39°C for 1 h. The 20 IlM sodium arsenite I used for all studies was determined to 

be non-toxic in A2780 and A2780/CP70 cells when treated for 1 hand MTT 

assay five days later (Figure 2). 
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Figure 2 
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Figure 2. Cell viability in response to sodium arsenite. A2780 and 

A2780/CP70 cells were treated with the indicated concentrations of sodium 

arsenite and incubated at 37°C for 1 h. Cells were then washed twice with PBS 

and refed with fresh media and incubated at 37°C. Cell viability MTT assay was 

performed five days later. Data are expressed as percentage of untreated control 

and plotted as means ± SO of triplicate independent experiments each performed 

with triplicate wells. 
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Co-treatment of cells with cisplatin plus 20 IlM sodium arsenite or 

hyperthermia moderately enhanced cisplatin cytotoxicity in cells expressing wild­

type p53 (Figure 3A). However, combined sodium arsenite and hyperthermia 

greatly potentiated cisplatin cytotoxicity in wild-type p53 expressing cells. In 

contrast, only hyperthermia sensitized p53-null and mutated cells to cisplatin 

(Figure 38), combining arsenite with hyperthermia did not further increase 

cisplatin sensitivity in cells lacking functional p53 (Figure 38). 
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as indicated. B. P53-null (SKOV-3) and mutated (OVCAR-3 and OVCA-432) 

cells. Cells were co-treated with the indicated concentrations of cisplatin with 

(filled symbols) or without (open symbols) 20 IJM sodium arsenite and incubated 

at 37 (circles) or 39°C (triangles) for 1 h. Cells were then washed twice with PBS 

and refed with fresh media and incubated for 5 days at 37 cC. Cell viability MTT 

assay was performed on day 5. Data are expressed as percentage of untreated 

control and plotted as means ± SD of triplicate independent experiments each 

performed with triplicate wells. R-values for the best fitting polynomial curves 

were all >0.99. 
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Sodium arsenite requires functional p53 to sensitize cells to cisplatin 

Data in Figure 3 indicate that sodium arsenite sensitizes only wild-type p53 

expressing cells to cisplatin. To test whether sodium arsenite requires functional 

p53 to sensitize cells to cisplatin, I transfected A2780 and A2780/CP70 cells with 

p53 smart pool siRNA, non-targeting control (NSC) or universal buffer (mock). 

Western blot data confirmed suppression of p53 at 24 after transfection for 

A2780 cells (Figure 4A) and at 24 and 48 h for A2780/CP70 cells (Figure 4C). 

MTT cell viability data indicate that suppression of p53 abrogates sodium 

arsenite sensitization effect (Figures 48 and 40). Moderate arsenite 

sensitization effect on cisplatin was observed in cells transfected with NSC and 

mock (Figures 48 and 40). These data indicate that sodium arsenite requires 

functional p53 to sensitize cells to cisplatin. 
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Figure 4 

A2780 
A B 

200 53 siRNA 200 NSC 
200 Mock 

0 CP 37 'C 
24 h 48 h 100 100 100 • CPA 37°C , \~ GAP 

10 \ , 10 ~ 10 
"- ' T .L", 

J. 

10 4 8121620 10 4 8 12 1620 10 4 8 12 1620 

cisplat in (J.JM) 

A2780/CP70 
C 0 

53 siRNA 200 NSC Mock 
200 200 0 

24 h 48 h CP 37 "C • CPA 37 'C 
100 100 100 

£ 'e~ -'~ 

\ P53 :0 , , 
co , 

~ GAPDH 5= 
~ 10 10 10 

1 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 

cisplatin (J.JM) 

Figure 4. Cell viability and western blot analysis of cells transfected with 

p53 siRNA. A. Western blot analyses of A2780 cells transfected with p53 siRNA, 

NSC or mock. B. MTI cell viability assay of A2780 cells transfected with p53 

siRNA, NSC or mock. C. Western blot analyses of A2780/CP70 cells transfected 

with p53 siRNA, NSC or mock. D. MTT cell viability assay of A2780/CP70 cells 
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transfected with p53 siRNA, NSC or mock. A2780 and A2780/CP70 cells were 

transfected with p53, smart pool siRNA, non-targeting control (NSC) or mock. At 

23 h after transfection, cells were co-treated with the indicated concentrations of 

cisplatin with (filled symbols) or without (open symbols) 20 IJM sodium arsenite 

for 1 h at 37°C. Protein Iysates for western blot analyses were prepared at 24 

and 48 h after transfection. Data in panels A and C are representative of 3 

independent experiments. Data in panels Band 0 are means ± SO from 3 

independent experiments. 
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Induction of XPC is p53-dependent 

Cisplatin causes DNA damage that is repaired by the nucleotide excision repair 

(NER) system. P53 regulates the NER pathway by transcriptionally activating 

XPC and DDB2, DNA damage recognition proteins in the global genome repair­

NER sub-pathway (Ford, 2005). Thus, the p53 dependence of arsenite 

sensitization may be related to the role of p53 in DNA repair. Post-translational 

modification of p53 is required for its stabilization and activity. P53 

phosphorylated on ser392 (p53Ser392P) activates the DNA binding function of 

p53 by stabilizing tetramer formation and p53 phosphorylated on ser15 

(p53Ser15P) stabilizes p53 (Boehme and Blattner, 2009). Therefore, I determine 

the expression of p53Ser15P and p53Ser392P and also DDB2 and XPC 

expression in A2780, A2780/CP70, OVCA 420 and SKOV-3 cells 24 h after 

cisplatin treatment (Figure 5). P53 and p53Ser15P induction occurred in a 

concentration-dependent manner in the wild-type p53 expressing A2780 and 

A2780/CP70 cells (Figure 5A and 5B). DDB2 induction in response to cisplatin 

treatment was robust in the wild-type p53 expressing cells but modest in p53-null 

SKOV-3 cells (Figure 5A and B). Basal XPC expression was observed in both 

wild-type p53 expressing and p53 null cells (Figures 5A, 5B and 5C) . However, 

induction of XPC occurred only in wild-type p53 expressing A2780, A2780/CP70 

and OVCA 420 cells (Figure 5A, 5B and 5C). These results suggest that p53 and 

its phosphorylation on Ser15 (p53Ser15P) mediate XPC induction. Robust DDB2 

induction in A2780 and A2780/CP70 cells is also regulated by p53 and 

p53Ser15P. P53Ser392P was stabilized in OVCA 420 cells (Figure 5C). 
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Figure 5 
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Figure 5. Expression of DDB2, p53, p53Ser15P, p53Ser392P and XPC in OC 

cells after cisplatin treatment A. Western blot determination of DDB2, p53 , 

p53Ser15P and XPC in A2780, A2780/CP70 and SKOV-3 cells_ B. Densitometry 

analysis of DDB2, p53 , p53Ser15P and XPC for A2780 and A2780/CP70 cells; 

DDB2 and XPC for SKOV-3 cells . C. Western blot determination of p53Ser15P, 

p53Ser392P and XPC in OVCA 420 cells. Cells were treated with the indicated 

concentrations of cisplatin (CP) at 37 °C for 1 h. After treatment, cells were 

washed twice with PBS and incubated in drug-free media for 24 h and protein 

Iysates were then prepared . Blots were probed for DDB2, p53 , p53Ser15P, 
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p53Ser392P and XPC as described in methods. r.,-actin is the loading control. 

Blots are representative of 3 independent experiments. 
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Sodium arsenite ± hyperthermia sensitizes wild-type p53 expressing cells 

to cisplatin by suppressing XPC 

Data in Figure 5 suggest that induction of XPC occurs only in wild-type p53 

expressing cells. Therefore I predicted that sodium arsenite and/or hyperthermia 

sensitize wild-type p53 expressing cells to cisplatin by suppressing XPC. Cells 

were treated for 1 h with their respective IC50 cisplatin (A2780 = 4 11M and 

A2780/CP70 = 40 11M (Behrens, et aI., 1987), SKOV-3 = 20 11M and OVCA 420 = 

45 11M) ± 20 11M sodium arsenite at 37 or 39°C. P53Ser15P and XPC were 

induced in a time-dependent manner in A2780, A2780/CP70 and OVCA 420 

cells 24 h after cisplatin treatment (Figure 6A, Band C, CP 37°C). P53Ser392P 

was induced in a time-dependent manner in OVCA 420 cells (Figure 6C, CP 37 

°C). Co-treatment with sodium arsenite suppressed cisplatin-induced XPC in 

A2780, A2780/CP70 and OVCA 420 cells (Figure 6A, Band C, CPA 37°C). 

Hyperthermia co-treatment did not alter cisplatin-induced XPC in A2780 and 

A2780/CP70 cells (Figure 6A and B, CP 39°C), but it suppressed XPC in OVCA 

420 cells (Figure 6C, CP 39°C). Combined treatment with sodium arsenite and 

hyperthermia suppressed cisplatin-induced XPC in A2780, A2780/CP70 and 

OVCA 420 cells (Figure 6A, Band C, CPA 39°C). Sodium arsenite and 

hyperthermia did not suppress p53Ser15P. XPC was not induced by cisplatin 

over time in p53-null SKOV-3 cells and co-treatment with sodium arsenite ± 

hyperthermia did not suppress XPC in these cells (Figure 60). 
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Figure 6 
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Figure 6. Effect of sodium arsenite and hyperthermia on XPC. A, B, C and D 

Western blot analyses of XPC, p53Ser15P and p53Ser392P. Cells were treated 

with their IC50 cisplatin (CP; A2780, 4 !-1M; A2780/CP70, 40 !-1M ; SKOV-3, 20 !-1M 

and OVCA 420, 45 !-1M) , or CP plus 20 !-1M sodium arsenite (CPA) at 37 or 39 °C 

for 1 h. After treatment, cells were washed with PBS and incubated in drug-free 

media. Protein Iysates were prepared at the indicated time points for Western 
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Blot analysis. ~-actin and GAPDH are loading controls. Data are representative 

blots for 3 independent experiments. 
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XPC siRNA sensitizes OC cells to cisplatin 

Data in Figure 6 suggest that sodium arsenite suppressed XPC in wild-type p53 

expressing cells. In order to better understand the significance of XPC 

suppression, I transfected A2780, A2780/CP70 and SKOV-3 cells with XPC 

smart pool siRNA, NSC or mock. Suppression of XPC was confirmed by western 

blot (Figure 7 A). Suppression of XPC moderately sensitized A2780 and 

A2780/CP70 cells to cisplatin but had no effect on SKOV-3 cells (Figure 78). 

These data suggest that suppression of XPC by sodium arsenite ± hyperthermia 

is the mechanism of sensitizing wild-type p53 expressing OC cells to cisplatin. 
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Figure 7 
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Figure 7. Effect of XPC siRNA on cisplatin cytotoxicity. A. Western blot 

analysis of XPC after siRNA transfection . B. MTI cell viability assay of A2780, 

A2780/CP70 and SKOV-3 cells after siRNA transfection . Cells were transfected 

with XPC smart pool siRNA, NSC or mock. At 23 h after transfection , cells were 

treated with the indicated concentrations of cisplatin (0) or respective IC50 

cisplatin (CP; A2780, 4 IJM; A2780/CP70, 40 IJM; SKOV-3, 20 IJM). After 

treatment, cells were washed twice with PBS and incubated in drug-free media. 

MTI assay was performed 5 days after treatment. Protein Iysates for western 

blot analyses were prepared at 24 and 48 h after transfection . Blots are 
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representative for 3 independent experiments. Data are means ± SO from 3 

independent experiments. 
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Effect of cisplatin on ERCC1, XPA and MSH2 

Western blot analysis of downstream NER proteins ERCC1 and XPA and the 

mismatch repair protein MSH2 revealed that cisplatin did not induce these 

proteins in A2780, A2780/CP70 and OVCA 420 cells (Figure 8A, B and C). 

However, cisplatin-resistant A2780/CP70 cells expressed higher levels of XPA 

and low levels of MSH2 compared to cisplatin sensitive A2780 cells (Figure 8A). 

ERCC1 levels were similar in A2780 and A2780/CP70 cells (Figure 8A). ERCC1 

and MSH2 were induced in SKOV-3 cells (Figure 8C). 
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Figure 8 
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Figure 8. Expression of ERCC1, MSH2 and XPA in OC cells after cisplatin 

treatment. Cells were treated with the indicated concentrations of cisplatin (CP) 

at 37 °C for 1 h. After treatment, cells were washed twice with PBS and 
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incubated in drug-free media for 24 h and protein Iysates were then prepared. 

Blots were probed for ERCC1, MSH2 and XPA as described in methods. Blots 

are representative of 2 independent experiments. l3.-actin and GAPDH are 

loading controls. 
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Sodium arsenite and/or hyperthermia alter ERCC1, XPA and MSH2 

expression 

Oata in Figure 8A indicate that cisplatin resistance in A2780/CP70 cells is 

associated with high levels of XPA and low levels of MSH2. Also, high levels of 

XPA were observed in OVCA 420 cells (Figure 88). ERCC1 was induced in 

SKOV-3 cells in response to cisplatin treatment (Figure 8C). Therefore, I 

performed western blot analysis to determine if sodium arsenite and/or 

hyperthermia altered the expression of ERCC1, XPA and MSH2. The data 

suggest that sodium arsenite and/or hyperthermia did not suppress ERCC1 or 

XPA in A2780, A2780/CP70 and SKOV-3 cells (Figure 9A, 8 and C). MSH2 

levels were suppressed by cisplatin ± sodium arsenite at 37 or 39°C in 

A2780/CP70 cells (Figure 98), suggesting reduced mismatch repair. Reduced 

mismatch repair is associated with increased cisplatin resistance (Fink, et aI., 

1997). Co-treatment with sodium arsenite induced higher levels of ERCC 1 in 

OVCA 420 cells (Figure 90, CPA37). ERCC1 and XPA levels decreased over 

time in OVCA 420 cells (Figure 90). XPA was completely suppressed by sodium 

arsenite plus hyperthermia co-treatment with cisplatin in OVCA 420 cells (Figure 

90, CPA39). 
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Figure 9 
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Figure 9. Effect of cisplatin, sodium arsenite and hyperthermia on ERCC1, 

XPA and MSH2. Cells were treated with their IC50 cisplatin (CP) (A2780 , 4 I-IM; 

A2780/CP70 , 40 I-IM; SKOV-3, 20 I-IM; OVCA 420 , 45 I-IM) , or CP plus 20 I-IM 

sodium arsenite (CPA) at 37 or 39 °C for 1 h. After treatment, cells were washed 

with PBS and incubated in drug-free media. Cell Iysates were prepared at the 

indicated time points for Western Blot analyses. UT is untreated control. ~-actin 

and GAPDH are loading controls. Data are representative blots from 2 

independent experiments. 
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Hyperthermia ± sodium arsenite enhance cellular accumulation of cisplatin 

Decreased cellular accumulation is an important mechanism of cisplatin 

resistance (Parker, et aI., 1991; Cepeda, et aI., 2007). I used inductively coupled 

plasma mass spectrometry (ICP-MS) to determine if differential cellular platinum 

(platinum) accumulation contributes to resistance and also to determine if sodium 

arsenite and hyperthermia alter platinum accumulation (Figure 10). The 

concentration response of platinum accumulation (Figure 10A) in the p53 (+) 

cisplatin-sensitive cell line (A2780) had a linear correlation of Y = 0.87X + 0.95, R 

= 0.99. In the resistant cell line (A2780/CP70) the equation was Y = 0.38X + 

0.55, R = 0.99. P53-null SKOV-3 cells had a linear correlation of Y = 0.75X + 

0.11, R = 0.99. A2780 and SKOV-3 cells accumulated similar levels of platinum 

and -2-fold more platinum than A2780/CP70 cells. Hyperthermia alone or 

combined with sodium arsenite enhanced platinum accumulation in A2780 cells 

(Figure 10B, left panel). Co-treatment with sodium arsenite and hyperthermia 

significantly enhanced cellular platinum accumulation in A2780/CP70 cells 

(Figure 10B center panel). In contrast, only hyperthermia enhanced cellular 

accumulation of platinum in SKOV-3 cells (Figure 10B, right panel). 
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Figure 10 
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Figure 10. ICP- MS analysis of cellular platinum accumulation and effect of 

sodium arsenite and hyperthermia. A. Concentration-dependent accumulation 

of platinum in cells. B. Effect of sodium arsenite and hyperthermia on cellular 
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platinum accumulation. A2780, A2780/CP70 and SKOV-3 cells were treated with 

the indicated cisplatin concentrations for 1 hat 37°C (A) or with 40 ~M cisplatin 

with (CPA 37 or CPA 39) or without 20 ~M sodium arsenite (CP 37 or CP 39) at 

37 or 39°C for 1 h (8). Cells were harvested immediately after treatment for total 

cellular platinum determination. Data are means ± SO from 3 independent 

experiments. P<0.05. * compared to CP37, # compared to CPA37 and f 

compared to CP39. 
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Enhanced cellular accumulation of platinum by hyperthermia and sodium 

arsenite is not associated with decreased glutathione-S-transferase 

acitivity 

Increased glutathionylation and export of platinum-GSH and arsenic-GSH 

conjugates by the multidrug resistance proteins is a mechanism of resistance to 

cisplatin and arsenic respectively (Leslie, et aI., 2004; Stewart, 2007). 

Glutathione (GSH) conjugation is mediated by glutathione-S-transferase (GST). I 

hypothesized that co-treatment with sodium arsenite, hyperthermia and cisplatin 

might decrease GST activity and enable more platinum to accumulate in the 

cells. I determined total GST activity as described in Materials and Methods 

section. GST activity for all treatment conditions was similar to that of untreated 

control (UT) in A2780 and A2780/CP70 cells (Figure 11, left and center panels). 

GST activity significantly increased in SKOV-3 cells co-treated with cisplatin, 

sodium arsenite and hyperthermia (Figure 11, right panel, CPA 39°C). These 

data indicate that decreased GST activity is not a mechanism of enhancement of 

cellular platinum accumulation. 
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Figure 11 
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Figure 11. Total GST activity determination. A2780, A2780/CP70 and SKOV-3 

cells were treated with 40 IlM cisplatin (CP) or CP plus 20 IlM sodium arsenite 

(CPA) at 37°C (CP or CPA) or 39°C (CP39 or CPA39) for 1 h. Cells were 

harvested immediately after treatment for total GST activity determination. Data 

are means ± SO from triplicate biological experiments. P<0.05. * compared to 

untreated cells (UT). 
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Hyperthermia ± sodium arsenite enhances accumulation of platinum on 

DNA 

The cytotoxicity of cisplatin is known to depend on its direct interaction 

with DNA to form bulky platinum-DNA adducts. I tested the hypothesis that 

sodium arsenite and hyperthermia sensitize cells to cisplatin by increasing 

platinum (platinum) binding to DNA. Using ICP-MS, I determined platinum bound 

to DNA immediately after exposure (0 h) to measure initial platinum binding to 

DNA and DNA bound platinum remaining 24 h after treatment to determine repair 

of platinum-DNA adducts. I observed that hyperthermia alone or combined with 

sodium arsenite significantly increased platinum binding to DNA in A2780 and 

A2780/CP70 cells (Figure 12, left and center panels). Retention of platinum on 

DNA in A2780 cells was favored by sodium arsenite, hyperthermia or the 

combination. In A2780/CP70 cells retention was favored by hyperthermia only. In 

SKOV-3 cells, only hyperthermia favored initial binding (0 h) and retention (24 h) 

of platinum on DNA (Figure 12, right panel). These data suggest that in the wild­

type p53 expressing cells, platinum binding to DNA was favored by both sodium 

arsenite and hyperthermia, whereas, in p53-null cells only hyperthermia favored 

platinum binding to DNA. 
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Figure 12 
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Figure 12. Determination of sodium arsenite and hyperthermia effect on 

DNA-bound platinum. A2780, A2780/CP70 and SKOV-3 cells were treated with 

40 ~M cisplatin for 1 hat 37 or 39°C. Total genomic DNA was isolated at 0 

(immediately) and 24 h after treatment for platinum on DNA determination. Data 

are means ± SO from 3 independent experiments. P<0.05, * compared to CP37 

o h, # compared to CP39 0 h, ~ compared to CP37 24 hand ¥ compared to 

CP39 24 h. 
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Data in Figure 12 were used to determine platinum-DNA repair as follows: 

P t I t
' DNA '- 100 x (pg Ptlf.l9 DNA at 0 h) - (pg Ptlf.lg DNA at ~4 h) 

ercen age p a Inum- repair - (pg Ptlf.lg DNA at 0 h) 

A2780/CP70 cells repaired platinum-DNA damage better than A2780 and SKOV-

3 cells (Figure 13), However, sodium arsenite and hyperthermia did not alter 

overall platinum-DNA repair at 24 h after treatment. 
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FIGURE 13 
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Figure 13. Determination of platinum-DNA repair. A2780, A2780/CP70 and 

SKOV-3 cells were treated with 40 j..lM cisplatin for 1 h at 37 or 39 cC. Total 

genomic DNA was isolated at 0 (immediately) and 24 h after treatment for 

platinum on DNA determination. Percentage of platinum-DNA repair was 

calculated using platinum bound to DNA data in Figure 12. Data are means ± SO 

from 3 independent experiments. 
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DISCUSSION 

The present study was aimed at determining the efficacy and mechanisms 

of action of a novel combination of cisplatin, sodium arsenite and hyperthermia in 

human OC cells with different p53 status. A panel of wild-type p53 expressing 

(A2780 (cisplatin-sensitive) and A2780/CP70, OVCA 420, OVCA 429, OVCA 433 

(cisplatin-resistant)) and p53-null (SKOV-3) and p53-mutated (OVCA 432 and 

OVCAR-3) human DC cells were used for this study. I showed for the first time 

that combining sodium arsenite and hyperthermia sensitizes wild-type p53 

expressing cells to dsplatin (Figure 3A). The combination of all three drugs is 

more effective than the individual combination. P53-null and p53-mutated cells 

were sensitized only by hyperthermia to cisplatin (Figure 38). Suppression of p53 

abrogated sodium arsenite sensitization to cisplatin effect (Figure 4), indicating 

that the arsenite effect was p53-dependent. 

The mechanism of cisplatin cytotoxicity involves DNA damage formation. 

However, resistance to cisplatin is a major problem. Mechanisms of cisplatin 

resistance are multifactorial and include reduced cellular drug accumulation, 

enhanced drug metabolism by glutathionylation, export by multidrug resistance 

proteins, enhanced DNA damage tolerance and enhanced DNA repair (Stewart, 

et aI., 2007). Enhanced cisplatin-DNA repair by the nucleotide excision repair 

pathway (NER) confers resistance to cisplatin (Martin, et aI., 2008). P53 

regulates NER by transcriptionally regulating XPC and DD82, critical DNA 

damage recognition proteins in global genome repair, a sub-pathway of NER 

(GGR-NER) (Ford, 2005). XPC is actively involved in cisplatin-induced DNA 
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damage recognition (Neher, et aI., 2010). Basal expression of XPC was 

observed in both wild-type p53 and p53-null cells, consistent with a report that, in 

addition to p53, other proteins are involved in regulating basal XPC levels (Lin, et 

aI., 2009). However, cisplatin-dependent induction of XPC occurred only in wild­

type p53-expressing cells but not in p53-null cells (Figure 4), indicating that 

cisplatin-induction of XPC is regulated by p53 in these cells. Co-treatment with 

sodium arsenite alone or combined with hyperthermia attenuated cisplatin­

induced XPC in the wild-type p53 cells (Figure 6A, Band C, CPA 37°C and CPA 

39 °C). Suppression of XPC by sodium arsenite ± hyperthermia is a mechanism 

of sensitizing wild-type p53 expressing cells to cisplatin because XPC siRNA 

moderately sensitizes A2780 and A2780/CP70 cells to cisplatin (Figure 7). Given 

that XPC is critical to platinum-DNA damage recognition in GGR-NER, 

suppression of XPC could diminish the assembly of the downstream NER repair 

complex (Nollen, et aI., 2009) and subsequently decrease DNA repair. Arsenic 

has been shown to inhibit p53 DNA binding activity by suppressing p53S392P via 

inhibition of CK II (Tang, et aI., 2006). My goal was to investigate whether 

p53S392P is required for the transcriptional activation of XPC by p53 and if 

arsenic suppression of XPC is via inhibition of p53S392P. However, arsenite did 

not inhibit p53Ser392P in OVCA 420 cells, suggesting that arsenite is not acting 

by inhibiting CK2. 

Decreased cellular accumulation is an important mechanism of cisplatin­

resistance (Stewart, et aI., 2007). It has been shown previously using atomic 

absorption spectroscopy that A2780 cells accumulate -2-fold more cellular 
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platinum than A2780/CP70 cells (Parker, et aI., 1991). Here, I used a more 

sensitive analytical technique (lCP-MS) and showed that A2780 cells accumulate 

-2.3 fold more platinum than A2780/CP70 cells (Figure 10A), consistent with the 

earlier platinum measurements. Cisplatin-resistance in SKOV-3 cells has been 

linked partially to decreased cellular platinum accumulation (Mistry, et aI., 1992). 

However, a comparative cellular cisplatin accumulation study by Johnson et al 

indicated that A2780 and SKOV-3 cells accumulated similar levels of platinum 

during 4 h incubation with equimolar concentrations of cisplatin (Johnson, et aI., 

1997). In the current study, I showed that A2780 and SKOV-3 cells accumulated 

similar level of cellular platinum when treated with 40 11M cisplatin; similar to 

previous findings by Johnson et al. Co-treatment of A2780 cells with 

hyperthermia ± sodium arsenite significantly enhanced cellular accumulation of 

platinum. Combined sodium arsenite and hyperthermia significantly enhanced 

platinum accumulation in A2780/CP70 cells (Figure 108). Consistent with my 

findings that only hyperthermia sensitized SKOV-3 cells to cisplatin, I also 

observed that only hyperthermia increased cellular platinum accumulation in 

these cells (Figures 108). Therefore, increasing cellular platinum accumulation is 

a mechanism by which sodium arsenite and hyperthermia are sensitizing wild­

type p53 expressing cells to cisplatin. Enhanced platinum accumulation is not 

associated with decreased GST activity (Figure 11). 

Reduced platinum bound to DNA contributes to cisplatin resistance 

(Parker, et aI., 1991). When A2780 and A2780/CP70 cells were treated with 40 

11M cisplatin, wild-type p53 A2780 (cisplatin-sensitive) and p53-null SKOV-3 
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(cisplatin-resistant) cells accumulated similar amounts of platinum on DNA 

(Figure 12A), contrary to previous findings by Johnson et al. (Johnson, et aI., 

1997). The observed difference in amount of platinum bound to DNA between my 

study and that of Johnson et al could be due to differences in drug exposure and 

platinum determination times. Johnson et al treated cells for 4 h and assayed for 

platinum at 0 (immediately after treatment) and 8 h after treatment, whereas, I did 

a 1 h exposure and determined platinum levels at 0 and 24 h after treatment. My 

data suggest that cisplatin-resistance in SKOV-3 cells is not due to decreased 

platinum bound to DNA. However, cisplatin-resistance in wild-type p53 

A2780/CP70 cells is due to decreased platinum bound to DNA, consistent with 

previous findings (Parker, et aI., 1991). Hyperthermia alone or combined with 

sodium arsenite significantly increased initial (0 h) platinum bound to DNA in both 

A2780 and A2780/CP70 cells (Figure 128). Meanwhile, platinum retention (24 h) 

on DNA was favored by sodium arsenite, hyperthermia or the combined 

treatment in A2780 cells. Retention was favored by hyperthermia in A2780/CP70 

cells (Figure 128). Therefore, increased accumulation of platinum bound to DNA 

is a mechanism by which sodium arsenite and hyperthermia are sensitizing wild­

type p53 cells to cisplatin. In p53-null SKOV-3 cells, only hyperthermia increased 

platinum bound to DNA accumulation (Figure 128). Sodium arsenite and 

hyperthermia did not alter platinum-DNA damage repair (Figure 13). 

In summary, I have shown for the first time that combining sodium arsenite 

and hyperthermia with cisplatin sensitizes wild-type p53 expressing human OC 

cells to cisplatin by attenuating XPC induction in response to cisplatin and 
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enhancing cellular and DNA bound platinum accumulation. The combination of 

cisplatin, sodium arsenite and hyperthermia works better than the individual 

combinations because each drug has a different mechanism of action. Further 

studies using in vivo cancer models are necessary to determine whether this 

combination therapy may improve clinical outcomes. 
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CHAPTER 3 

SODIUM ARSENITE AND HYPERTHERMIA MODULATE CISPLATIN-DNA 

DAMAGE RESPONSES AND ENHANCE PLATINUM ACCUMULATION IN 

MURINE METASTATIC OC XENOGRAFT AFTER HYPERTHERMIC 

INTRAPERITONEAL CHEMOTHERAPY (HIPEC) 

(This chapter has been published as Muenyi et aL, JOR, 2011.) 

INTRODUCTION 

Epithelial OC (OC) is the leading cause of gynecological cancer death in 

the U.S. (Jemal, et aL, 2010). Most women are diagnosed only after peritoneal 

dissemination has occurred. The standard treatment for patients with OC is 

cytoreductive surgery (CRS) followed by intravenous platinum-taxane 

chemotherapy (Armstrong, et aL, 2006). Even though initially effective, relapse 

from residual disease and/or drug resistant cancer reduces the 5-year survival 

rate to about 20% (Ozols, 2005). Despite research efforts to improve on 

platinum-based chemotherapy, or to develop new drugs against OC, most 

patients still die from metastatic disease. Since metastatic OC is usually confined 

in the peritoneal cavity, it makes theoretical sense to deliver chemotherapy 

intraperitoneally rather than intravenously since higher levels of drug can be 

delivered to the disease site by that route (Markman, 2001; van, V, et aL, 1998). 

In response to three large randomized clinical trials showing benefit to 

incorporating intraperitoneal (lP) delivery in OC, the National Cancer Institute 
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issued a clinical announcement recommending that patients with small volume 

disease at the end of frontline surgery be offered the opportunity to receive IP 

chemotherapy (Trimble and Christian, 2008). Adding hyperthermia to 

chemotherapy agents delivered intraperitoneally (HIPEC) could improve outcome 

(Helm, 2009; Yang, et aI., 2010; Dovern, et aI., 2010). 

Cisplatin is a DNA damaging chemotherapeutic used to treat solid tumors 

including DC. However, resistance to cisplatin limits clinical success (Stewart, et 

aI., 2007). Since platinum-containing chemotherapy drugs remain the major 

weapon against DC, improving their efficacy could have a great impact on 

mortality. The combination of hyperthermia with cisplatin administered 

intraperitoneally (HIPEC) has been reported for the treatment of DC (Helm, et aI., 

2008). However, complete remission is not achieved with HIPEC therapy 

(Dovern, et aI., 2010). Adding arsenic could potentially sensitize cancer cells to 

cisplatin and hyperthermia (Helm and States, 2009; Wang, et aI., 2001; Griffin, et 

aI., 2003). In vivo studies also show that arsenic inhibits the growth of orthotopic 

metastatic prostate cancer and peritoneal metastatic DC (Maeda, et aI., 2001; 

Zhang and Wang, 2006). The mechanism of arsenic-induced cell death in vitro is 

suggested to include formation of oxidative DNA damage (Nakagawa, et aI., 

2002), activation of the Fas pathway (Kong, et aI., 2005), inhibition of DNA repair 

(Hartwig, et aI., 1997; Nollen, et aI., 2009), and causation of mitotic arrest and 

induction of apoptosis in the mitotic cells (McNeely, et aI., 2008a; Taylor, et aI., 

2008). 
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Enhanced repair of platinum-DNA damage by the nucleotide excision 

repair (NER) pathway (Earley and Turchi, 2010), decreased mismatch repair 

(MMR) (Fink, et aI., 1997) and reduced accumulation contribute to cisplatin 

resistance (Parker, et aI., 1991). Adding arsenic to cisplatin and hyperthermia 

could potentially decrease cisplatin resistance by decreasing NER, enhancing 

MMR and increasing accumulation. Arsenic and cisplatin are detoxified by 

glutathionylation and exported by multidrug resistant family transport pumps 

(Leslie, et aI., 2004; Stewart, 2007), suggesting a potential for competition for the 

detoxification pathway if arsenic and cisplatin are used in combination. This 

competition might enhance cisplatin accumulation in tumors. 

The goal of this study is to determine how sodium arsenite and 

hyperthermia modulate mechanisms of cisplatin resistance in vivo. We 

developed murine models of HIPEC treatment and metastatic human DC to 

investigate if sodium arsenite and hyperthermia alter the expression of DNA 

repair proteins, tumor platinum levels and systemic distribution of platinum. I 

show that sodium arsenite and hyperthermia either as single agents or in 

combination reverse key DNA repair proteins (XPA, XPC and MSH2) responsible 

for cisplatin resistance and also enhanced tumor platinum uptake suggesting 

decreased platinum detoxification. Sodium arsenite and hyperthermia did not 

alter systemic platinum distribution. 
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HYPOTHESIS 

Sodium arsenite and hyperthermia modulate cisplatin-induced DNA 

damage responses and enhance platinum accumulation in metastatic tumors. 
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MATERIAL AND METHODS 

Animals 

Female NCr athymic nude mice (7 - 9 weeks old), were purchased from 

Taconic (Cambridge City, IN). Animals were kept in a temperature-controlled 

room on a 12 h light-dark schedule. The animals were maintained in cages with 

paper filter covers under controlled atmospheric conditions. Cages, covers, 

bedding, food, and water were changed and sterilized weekly. Animals were fed 

autoclaved animal chow diet and water. All procedures were performed under 

sterile conditions. This experiment was approved by the Institutional Animal Care 

and Use Committee of the University of Louisville in an AALAC approved facility 

in accordance with all regulatory guidelines. 

Establishment of intraperitoneal metastatic ovarian tumors in mice 

A2780/CP70 cell suspension (1x106 cells in 500 IJL of serum-free RPMI 

1640 media) was injected into the peritoneum of anesthetized mice using an 18-

gauge needle. The needle was flushed with 500 IJL physiological saline. The 

abdomen of injected animals was massaged to ensure even distribution of cells. 

By 3 - 4 weeks after injection, the mice had developed multiple small 

disseminated intraperitoneal tumors (1 - 7 mm) (Figure 14). Tumors were 

monitored by microCT scanning in the Brown Cancer Center Small Animal 

Imaging Facility. 
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Figure 14 

Figure 14. Mouse with multiple small intraperitoneal tumors. A. MicroCT 

scan of tumors in live mouse. B. Direct visualization of tumors at necropsy of 

mouse. Three tumors are denoted by arrow in panels A and B. 
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Intraperitoneal chemotherapy 

Tumor-bearing mice were anesthetized with 3% isoflurane in an inhalation 

chamber and maintained on 1% isoflurane during surgery. Incisions (-0.5 cm) 

were made on both sides of the lower abdominal wall allowing entry into the 

peritoneal cavity (Figure 15). Inflow and outflow tubes were inserted into the 

peritoneal cavity and secured with skin sutures. The tubes were connected to a 

bag containing 100 mL normal saline with added cisplatin (3 mg/kg body weight 

(BW)) ± sodium arsenite (26 mg/kg BW) and cefazolin (0.01 mg/mL). (The dose 

of cisplatin used for this study was determined from human dose of cisplatin (100 

mg/m2
) administered intravenously to a 70 kg (body surface area = 1.87 m2

) 

(Reagan-Shaw, et aI., 2008) cancer patient and sodium arsenite dose was 

calculated from a single daily dose of Trisenox (0.15 mg/kg/day) administered 

intravenously to a 70 kg acute promyelocytic leukemia patient. The underlying 

assumption in the calculations is that the drugs are mixed in 2 L saline solution 

for HIPEC therapy in humans). The saline bag was submerged in a water bath to 

maintain the perfusate temperature at either 37 or 43°C. Perfusion was 

performed at a rate of 3 mLlmin for 60 min using a Masterflex pump (Cole­

Palmer Instrument Co, Cat # 07524-50). The inflow and outflow temperatures 

were monitored by thermocouple probes with temperature maintained within 1°C. 

The core temperature of the animals was monitored using an anal temperature 

probe and maintained using a heating pad and heat lamp. After 60 min perfusion, 

most of the perfusate in the peritoneum was sucked out using sterile cotton balls 

with a light abdominal massage. Wounds were sutured closed and animals were 
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injected intraperitoneally with 1 mL physiological saline containing 0.01 mg 

ketoprofen for pain. Mice were kept in warm cages (single mouse/cage) and 

monitored for recovery and discomfort. Immediately (0 h) and 24 h after 

perfusion, mice were euthanized and tumors, kidneys, liver, spleen, heart and 

brain were dissected and snap frozen in liquid nitrogen and stored at -80°C until 

use. 
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Figure 15 

A. 

Figure 15. Murine hyperthermic intraperitoneal chemotherapy model. A. 

Drawing of tumor bearing mouse undergoing HIPEC. Depicted are inlet (a) and 

outlet (b) ports and anal temperature probe (c) to monitor internal temperature of 

mouse during perfusion . B. Photograph showing perfusion pump (a) , 

temperature monitor (b) , flow tubes (c) and heating bath (d) . Mice were perfused 

for 1 h at the rate of 3 mLlmin with cisplatin (3 mg/kg) ± sodium arsenite (26 

mg/kg) at 37 or 43°C. 
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Western blot analysis 

Tumors of - 3-5 mm in diameter were homogenized in protein lysis 

solution (10 mM Tris-HCI pH 7.4,1 mM EDTA, 1% sodium dodecyl sulfate, 180 

IJg/ml phenylmethylsulphonylfluoride) using a tissue grinder. After removal of 

debris by centrifugation (45 min, 14,000 x g), total protein concentration in 

supernatant was determined by bicinchoninic acid (BCA) method according to 

manufacturer's instructions (Pierce, Rockford, IL, micro-well plate protocol) 

(Smith, et aI., 1985). Fifteen IJg protein samples were resolved by SDS­

polyacrylamide gel electrophoresis and electro-transferred to nitrocellulose 

membranes. Membranes were probed with antibodies to XPA (Neomarkers, MS-

650-P1, dilution 1: 1 000), XPC (Novus, # ab6264, dilution 1: 10,000), GAPDH 

(Sigma, #A 5441, dilution 1:10,000), p53 (DO-1, Cell Signaling Technology, # 

9284, dilution 1: 1 000), MSH2 (Santa Cruz, # SC-494, dilution 1: 1000), and 

ERCC1 (Santa Cruz, # SC-10785, dilution 1 :1000). Secondary antibodies (rabbit 

anti-mouse IgG, # 81-6120 or goat anti-rabbit, # 81-6120, dilutions 1 :2500) 

conjugated to horseradish peroxidase (Zymed Laboratories, Inc. South San 

Francisco, CA) were bound to primary antibodies and protein bands detected 

using enhanced chemiluminescence (ECL) substrate (Pierce, Rockford, IL). 

GAPDH was used as the loading control. Films were scanned with a Molecular 

Dynamics Personal Densitometer SI (Molecular Dynamics, Sunnyvale, CA) and 

analyzed with ImageQuaNT software (Molecular Dynamics) to determine band 

density. 
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ICP-MS analysis 

Samples of tumor homogenates were Iyphophilized using Heto vacuum 

centrifuge (ATR, laurel, MO) and 350 III concentrated nitric acid was added to 

each sample. Wet weight of brain, heart, spleen, liver and kidney was recorded 

and concentrated nitric acid (350 - 500 IJl) was added to samples. Samples were 

predigested overnight, and then 100 IJl of each dissolved sample was 

transferred into 10 ml acid washed microwavable digestion tubes (triplicate for 

each sample). The samples were microwave-digested at 150°C for 10 min using 

an automated focused beam microwave digestion system (ExplorerTM, CEM, 

Matthews, NC, USA). After digestion, 1.9 ml of 18 Mohm H20 containing 10 ppb 

internal standard (SPEX CertiPrep, Metuchen, NJ) was added into every sample 

to give final 5% nitric acid and ICP-MS analyses was performed using Thermo X 

Series II ICP-MS (Thermo Fisher Scientific, Waltham, MA) at the University of 

louisville Center for Regulatory and Environmental Analytical Metabolomics 

facility. Concentrated nitric acid was processed similarly as blank. Platinum 

standard (SPEX CertiPrep, Metuchen, NJ) was used to generate a standard 

curve. Platinum and arsenic levels in tumors and tissues were expressed as ng 

metallmg protein and ng metallmg wet weight respectively. Results are 

presented as the means of three ICP-MS determinations for each data point ± 

SO from 3 individual mice. 

Immunocytochemistry 

Cells (1 x 105
) were plated on poly-O-Iysine coated coverslips (BO 

Biosciences) in a 24-well plate and allowed to acclimate for 24 h. Cells were then 
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treated with 40 IJM cisplatin for 1 h. After treatment, cells were washed twice with 

PBS and incubated in drug-free media for 24 h. Cells were fixed in ice-cold 

acetone for 10 min at room temperature and washed twice with ice cold PBS and 

samples incubated for 10 min with PBS containing 0.25% Triton X-100 (PBST). 

Cells were then washed with PBS three times for 5 min and incubated in 3% 

hydrogen peroxide for 30 min to quench endogenous peroxidase. Cells were 

washed three times with PBS and incubated in 1 % BSA in PBST for 30 min to 

block unspecific binding of the antibodies. Cells were incubated overnight at 4°C 

in primary antibodies (1 :200 dilution in PBST containing 1 % BSA). The primary 

antibodies used were XPA (Neomarkers, MS-650-P1), XPC (H-300, SantaCruz 

Biotechnology, # sc-30156), p53 (00-1, Cell Signaling Technology, # 9284), 

MSH2 (Santa Cruz, # SC-494) and ERCC1 (Santa Cruz, # SC-10785). After 

incubation, the primary antibody solution was decanted and cells were washed 

three times with PBS for 5 min each wash. Cells were incubated with secondary 

antibodies (rabbit anti-mouse IgG, # 81-6120 or goat anti-rabbit, # 81-6120, 

dilution 1 :200 in PBST containing 1 % BSA) conjugated to horseradish 

peroxidase (Zymed Laboratories, Inc. South San Francisco, CA) for 1 h at room 

temperature. Secondary antibody solution was decanted and cells were washed 

three times with PBS for 5 min. Cells were stained with 3,3'-diaminobenzidine 

(DAB) substrate solution by incubating cells in 200 IJL premixed DAB solution 

(mix 30 IJL (one drop) of the DAB liquid chromogen solution to 2 mL of the DAB 

liquid buffer solution (Sigma, # 0 3939)) for 10 min. DAB solution was removed 

and cells rinsed briefly with PBS. Cells were counterstained with 20% Wright 
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Giemsa solution for 1 min. Coverslips were mounted on microscope slides using 

a drop of permount mounting medium. Slides were viewed under a Nikon Eclipse 

E600 Microscope (Fryer Company Inc, Scientific Instruments, Cincinnati OH 

45240) and pictures taken using MetaMorph software (Universal Imaging 

Corporation). DAB-positive cells were counted per 1000 cells using MetaMorph 

software. 

Statistical analysis 

Statistical analyses were performed using wilcoxon rank sum test with 

significance set as p < 0.05, n ~ 3. 

70 



RESULTS 

Murine intraperitoneal chemotherapy model 

Multiple disseminated tumors were established in the peritoneal cavity of 

nude mice as described in Materials and Methods. Mice were scanned using 

microCT scan to determine the location and estimate the size of tumors (Figure 

14A). This was confirmed upon necropsy (Figure 148). 

Tumor bearing mice were treated by peritoneal lavage for 1 h with 

cisplatin ± sodium arsenite at 37°C (normothermia) or 43 °C (hyperthermia) 

(Figure 15A and 8) as described in Materials and Methods. 

During treatment, the required inflow temperature was reached within 2-5 

min after the start of perfusion. Inflow, outflow and rectal temperatures were 

recorded every 15 min and remained stable within 1 °C throughout the 60 min 

perfusion (Table 1). 
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Table 1: Inflow, outflow and body temperatures of mouse during intraperitoneal 

perfusion. 

Inflow Outflow Body 

temperature temperature temperature 

37.4 ±1.1 °C 36.4 ± 0.8 °C 35.5 ± 1.0 °C 

43.0 ± 0.7 °C 39.7 ± 0.6 °C 36.3 ± 2.1 °C 

Mice were perfused for 1 h with cisplatin (CP/37; CP/43) or cisplatin + sodium 

arsenite (CPAl37; CPAl43) at 37 or 43°C respectively. Inflow, outflow and body 

temperatures were recorded every 15 min. Data are presented as means ± SD of 

readings taken from five mice. 
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Platinum and arsenic accumulation and retention in metastatic tumors 

I determined platinum and arsenic accumulation in tumors immediately (0 

h) and 24 h after perfusion using ICP-MS. platinum and arsenic accumulated in 

tumors during treatment (0 h) and generally decreased after treatment (24 h), 

compared with the untreated control (Figure 16). Co-treatment with sodium 

arsenite and cisplatin at 37°C (CPAl37) or 43°C (CPAl43) caused significantly 

more platinum to accumulate in tumors. By 24 h after perfusion, tumor platinum 

levels for CPAl37 and CPAl43 treatment conditions decreased to levels similar to 

CP/37. Hyperthermia did not increase tumor platinum levels nor alter platinum 

retention in tumors 24 h after treatment. More arsenic initially accumulated in 

tumors when co-treated with cisplatin and sodium arsenite at 37°C (CPAl37) 

than with hyperthermia treatment (CPAl43). Arsenic decreased to similar levels 

at 24 h. 
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Figure 16 
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Figure 16. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

determination of platinum and arsenic in tumors. Mice were perfused for 1 h 

with cisplatin (CP/37 ; CP/43) or cisplatin plus sodium arsenite at 37 or 43°C 

respectively (CPAl37; CPAl43). Tumors from untreated (UT) and treated mice 

were harvested at 0 and 24 h after treatment. Tumors were homogenized and 

samples of the homogenate were analyzed for protein concentration by BCA or 

digested in nitric acid for ICP-MS analysis for platinum and arsenic. Data are 

presented as means ± SEM of ~3 tumors each from different mice. Statistical 

analysis was performed using wilcoxon rank sum test. P < 0.05, N ~ 3: # = lower 

than 0 h partner, :t: = higher than CP/37 at 0 hand CP/43 at 0 h, 11 = higher than 

CPAl43 °C at 0 h. 
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Effect of cisplatin, arsenic and hyperthermia on DNA repair protein 

expression 

Cisplatin causes bulky DNA damage that is repaired mostly by the 

nucleotide excision repair system (NER). Cellular response to cisplatin-DNA 

damage involves the induction of DNA repair proteins to initiate DNA repair 

(Cepeda, et aI., 2007). I determined if sodium arsenite and hyperthermia 

modulated the expression of XPC, a platinum-DNA damage recognition protein in 

global genome repair (GGR) (Neher, et aI., 2010) sub pathway of NER, and of 

ERCC1 and XPA, downstream NER proteins that have been implicated in 

cisplatin resistance (Dabholkar, et aI., 1994). I also determined the expression of 

p53, which is involved in the activation of the GGR pathway by transcriptionally 

activating XPC (Ford, 2005). In addition to NER, decreased mismatch repair 

(MMR) has been implicated in cisplatin resistance (Fink, et aI., 1997; Jensen, et 

aI., 2008). Thus, we also investigated the expression of MSH2, an important 

MMR DNA damage recognition protein. Western blot analysis of p53, XPC, XPA, 

ERCC1and MSH2 revealed mouse-to-mouse and tumor-to-tumor variabilities 

(Figure 17 A). Some tumors failed to express the protein of interest while others 

either expressed high, moderate or very low levels of the proteins. I determined 

band intensities for the expressed proteins by scanning the films using a 

Molecular Dynamics Personal Densitometer SI (Molecular Dynamics, Sunnyvale, 

CA) and analyzing bands of interest using ImageQuaNT software (Molecular 

Dynamics). Each protein value was normalized to its respective GAPDH (loading 

control) value. Data were further normalized to untreated control (Figure 178). 
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Tumors that failed to express the protein of interest were not considered in the 

densitometry analyses. P53 (Figure 17B, panel a) and XPC (Figure 17B, panel b) 

were significantly induced during treatment (0 h) by cisplatin at 37 DC (CP/37) or 

43 DC (CP/43) and cisplatin plus arsenite at 43 DC (CPAl43). P53 significantly 

decreased at 24 h after treatment with CPAl43 (Figure 17B, panel a). XPC 

decreased at 24 h after perfusion with both CP/43 and CPAl43 treatments 

(Figure 17B, panel b). P53 (Figure 17B, panel a) and XPC (Figure 17B, panel b) 

did not significantly increase during (0 h) and after (24 h) peritoneal lavage with 

sodium arsenite and cisplatin co-treatment at 37 DC (CPAl37). XPA (Figure 17B, 

panel c) was significantly induced during (0 h) and 24 h after perfusion with 

CP/37, CPAl37 and CPAl43 but not with CP/43. ERCC1 remained generally low 

for all treatment conditions except with CPAl37 (Figure 17B, panel d). The 

suppression of MSH2 by CP/37 and CP/43 treatments was not seen in tumors 

co-treated with arsenite (CPAl37, CPAl43) (Figure 17B, panel e). 
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Figure 17 
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Figure 17. DNA repair protein expression in tumors. A. Western blot 

determination of p5:~, XPC, XPA, ERCC1 and MSH2 in tumors. GAPDH is 

loading control. B. Densitometry analyses of (a) p53, (b) XPC, (c) XPA, (d) 

ERCC1 and (e) MSH2 normalized to GAPDH loading control and untreated 

tumors. Mice were perfused for 1 h with cisplatin (CP/37; CP/43) or cisplatin plus 

sodium arsenite (CPAl37; CPAl43) at 37 or 43°C respectively. Tumors from 

untreated (UT) mice and treated mice were harvested at 0 and 24 h after 

treatment. Protein extracts were prepared from the tumors and 20 tJg loaded per 

lane for SDS-PAGE.. Data are presented as means ± SD of ~5 tumors each from 

different mice. Statistical analysis was performed using wilcoxon rank sum test. P 

< 0.05, N ~ 5. # = compared to 0 h partner, *= compared to UT. 
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Expression of P53, XPA and MSH2 in OC cells 

Western blot determination of P53, XPC, XPA, ERCC1 and MSH2 in 

metastatic tumors revealed that some tumors failed to express p53 (6%), XPC 

(3%), XPA (8%), ERCC1 (40%) and MSH2 (9%) (Figure 17A). Failure to express 

these proteins could be an inherent feature of the cells that were used to 

establish the tumors or due to mutations and alteration of genes during tumor 

development that could result in lack of protein expression. I therefore performed 

immunocytochemistry studies using A2780/CP70 cells to determine expression 

of P53, XPA and MSH2 in these cells (Figure 18A). Immunocytochemistry data 

revealed that 25% of cells do not express p53 as evident by lack of 3,3'­

diaminobenzidine (DAB) brown staining and -3% and 60% of cells did not stain 

positive for XPA and MSH2 respectively (Figure 18B). Full-length western blots 

for XPC and ERCC1 had several non-specific bands in addition to the band of 

interest (data not shown) making it impossible to perform Immunocytochemistry 

with specificity for these proteins. 
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Figure 18 
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Figure 18. Immunocytochemical determination of p53, XPA and MSH2 

expression in OC cells. A. A2780/CP70 cells were treated for 1 h with 40 ~M 

cisplatin. Cells were washed and incubated in drug-free media for 24 hand 

immunohistochemistry was performed. Representative pictures at 20x 

magnification of cells for secondary antibody only control (a), p53 (b) , XPA (c) 

and MSH2 (d) . B. Plot of percentage of 3,3'-diaminobenzidine (DAB)-positive 

cells. Data are single biological experiment performed in duplicate. Four different 

fields were counted per coverslip . 
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Platinum and arsenic biodistribution in somatic tissues 

The clinical use of anticancer chemotherapeutic agents is limited by 

adverse toxicities. For cisplatin, these include toxicity to the kidney, peripheral 

nerves, liver, heart, bone marrow and brain (Hartmann and Lipp, 2003; Gesson­

Paute, et aI., 2008). Clinical use of arsenic is known to cause liver, kidney and 

neurological damage, cardiovascular and gastro-intestinal toxicity, anemia and 

leucopenia (Senkus and Jassem, 2010; Emadi and Gore, 2010; Au and Kwong, 

2008). Therefore, I determined cisplatin and arsenic accumulation in mouse 

tissues including kidney, liver, heart, spleen and brain (Figures 19A and 8). 

Samples were prepared as described in Methods. During perfusion, platinum 

accumulated in all tissues examined regardless of the treatment condition, in the 

order: kidney> liver = spleen> heart> brain. At 24 h after perfusion, significant 

decrease of platinum was observed in the kidney for all treatment conditions. The 

combination treatment (CPAl43) favored the removal of platinum from the liver, 

spleen and heart at 24 h after perfusion. Arsenic also significantly accumulated in 

all the tissues examined, in the order: liver> kidney = spleen> heart> brain and 

it significantly decreased in all tissues by 24 h after perfusion. 
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Figure 19 
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Figure 19. Platinum and arsenic accumulation in somatic tissues. Mice were 

perfused for 1 h with cisplatin (CP/37 ; CP/43) or cisplatin plus sodium arsenite 

(CPAl37; CPAl43) at 37 or 43°C respectively. Tissues from untreated (UT) and 

treated mice were harvested at 0 and 24 h after treatment. Tissue samples were 

weighed and digested in nitric acid for ICP-MS analysis for platinum (A) and 

arsenic (8) . Data are presented as means ± SD of triplicate samples each from 

different mice. Statistical analysis was performed using wilcoxon rank sum test. P 

< 0.05, N = 3. # = compared to 0 h partner. 
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DISCUSSION 

Although the platinum analogues (cisplatin and carboplatin) are at the 

forefront of combination chemotherapy for OC, acquired or inherent resistance 

limits clinical success. In the current study, I used metastatic OC xenograft in 

nude mice to investigate how sodium arsenite and hyperthermia modulate 

response to cisplatin in vivo. I focused on three key mechanisms of cisplatin 

resistance: enhanced NER, diminished MMR and decreased platinum 

accumulation. My data suggest that cisplatin induces resistant phenotype in 

metastatic tumors by inducing XPC and XPA and suppressing MSH2. Sodium 

arsenite alone or combined with hyperthermia inhibits mechanisms of cisplatin 

resistance by suppressing XPC induction, maintaining higher levels of MSH2 and 

increasing tumor uptake of cisplatin. 

Decreased platinum accumulation is an important mechanism of cisplatin 

resistance. Hyperthermia has been reported to increase both cellular and DNA 

bound platinum levels in vitro. However, in vivo data remain controversial. Los et 

al used rats bearing metastatic colon cancer to show that hyperthermia 

suppressed tumor growth by increasing platinum accumulation in tumors (Los, et 

aI., 1994). Zeamari et al used a similar colon cancer xenograft model in rats and 

reported that hyperthermia did not increase tumor platinum levels (Zeamari, et 

aI., 2003). Similar to Zeamari, I observed that hyperthermia does not increase 

platinum accumulation in tumors. The observed discrepancies with Los et al 

could be due to differences on how HIPEC was performed. Los et al injected 

hyperthermic cisplatin intraperitoneally; whereas I and Zeamari et al performed 
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peritoneal lavage similar to what is done clinically. Unlike hyperthermia, I 

observed that sodium arsenite at 37 or 43°C increased initial tumor platinum 

levels. Since arsenic and cisplatin are detoxified by glutathionylation and export 

by the multidrug resistant family proteins, potential competition for the 

detoxification/export pathways might have resulted in more platinum 

accumulating in the tumors when cisplatin is co-administered with sodium 

arsenite. 

Cisplatin is a DNA damaging agent and p53 is implicated in platinum-DNA 

damage response (Ford, 2005). P53 is frequently mutated in OC (Berchuck, et 

aI., 1994). The p53 phenotype of A2780/CP70 cells remains controversial. Some 

studies have demonstrated that A2780/CP70 cells have non-functional p53 

(Jones, et aI., 1998; Lu, et aI., 2001), while other studies have shown that these 

cells have wild type p53 (Brown, et aI., 1993; Yazlovitskaya, et aI., 2001). My 

data indicate that A2780/CP70 cell population is heterogeneous: -75% of cells 

express wild type p53 and -25% are p53 null (Figure 18). In addition, 6% of the 

tumors derived from A2780/CP70 are p53 null (Figure 17 A). My in vitro data also 

demonstrate the induction of p53 target genes CDKN1A, XPC and DDB2 in 

A2780/CP70 cells (Figures 5 and 25), which strongly suggests that a large 

fraction of these cells have wild type p53. The observed heterogeneity might 

have resulted from mutations and alterations that occur during serial propagation 

of cells in culture leading to cell line drift (Hughes, et aI., 2007). The observed 

heterogeneity may impact response to chemotherapy and result in treatment 

failures because p53 wild type and null cells will respond differently to 
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chemotherapy especially DNA damaging agents such as cisplatin. This 

heterogeneity explains why targeting master regulators such as p53 or AKT in 

cancer cells has not been successful (Zeimet and Marth, 2003; Engelman, 2009). 

Therefore, combination chemotherapy such as cisplatin, sodium arsenite and 

hyperthermia with different mechanisms of action might be more beneficial than 

using a single drug to target a single protein or pathway. 

Cisplatin predominantly forms intrastrand DNA crosslinks that are repaired 

by the nucleotide excision repair (NER) system. There are two sub-pathways of 

NER; transcription coupled repair (TCR) which removes damage from actively 

transcribing DNA and global genome repair (GGR) which removes lesions from 

the entire genome (Martin, et aL, 2008). These two pathways differ only in the 

proteins that are involved in damage recognition. In TCR, CSA and CSB along 

with RNA pol II recognize damage, whereas in GGR, XPC and DDB2 are 

important for lesion recognition. XPC is actively involved in the recognition and 

initiation of cisplatin-DNA damage repair in GGR (Earley and Turchi, 2010; 

Neher, et aL, 2010). Arsenic has been shown to inhibit NER by inhibiting XPC 

expression (Nollen, et aL, 2009). In the current study, I observed that P53 and 

XPC were induced by cisplatin. However, sodium arsenite alone or in 

combination with hyperthermia prevented the induction of p53 and XPC by 

cisplatin (Figure 178, panels a and b). Since p53 is known to transcriptionally 

induce XPC (Ford, 2005), my data suggest that sodium arsenite ± hyperthermia 

might be inhibiting p53, which in turn might be suppressing XPC induction. 

Suppression of XPC will potentially sensitize tumors to cisplatin because my in 
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vitro data indicate that inhibition of XPC using siRNA sensitizes OC cells to 

cisplatin (Figure 7). Therefore, the suppression of XPC could potentially sensitize 

tumors to cisplatin in a similar fashion. Following DNA damage recognition, 

downstream DNA repair proteins (XPA, RPA, TFIIH complex, ERCC1/XPF and 

XPG) are recruited to the DNA damage recognition complexes in both TCR and 

GGR to remove the damage in a common pathway. Over-expression of XPA and 

ERCC1 mRNA has been associated with cisplatin resistance in OC (Dabholkar, 

et aI., 1994). In the current study, cisplatin induced XPA (Figure 178, panel c) 

that was suppressed by hyperthermia co-treatment (Figure 17 panel c). 

Suppression of XPA might decrease repair of cisplatin-DNA damage. ERCC1 

was modestly induced «1.5 fold) by sodium arsenite co-treatment with cisplatin at 

37°C (CPA37) (Figure 178, panel d). 

In addition to the NER pathway, the mismatch repair (MMR) system has 

been implicated in cisplatin resistance (Fink, et aI., 1997). In an effort to repair 

platinum-DNA damage by the MMR system, a futile MMR occurs leading to cell 

death (Martin, et aI., 2008; Topping, et aI., 2009). Ovarian cancer cells over­

expressing MMR proteins are sensitive to cisplatin (Ding, et aI., 2009; Pani, et aI., 

2007; Topping, et aI., 2009). I report for the first time that tumors treated with 

cisplatin at 37°C (CP37) significantly suppressed MSH2 consistent with 

resistance. The observed suppression of MSH2 by cisplatin was reversed in 

tumors co-treated with sodium arsenite at 37 or 43°C (CPAl37 and CPAl43 

respectively). Thus, sodium arsenite at 37 or 43°C has the potential to sensitize 

tumors to cisplatin by maintaining functional MMR. 
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Cisplatin causes serious and dose-limiting side effects including kidney 

damage, peripheral sensory neuropathy, cardiovascular toxicity, 

myelosuppression and anemia which occur as a result of diffusion of 

chemotherapy from the peritoneal to systemic compartment. In addition, arsenic 

also causes adverse side effects including cardiovascular toxicity, kidney 

damage, myelosuppression and anemia, liver damage and peripheral sensory 

neuropathy. Understanding the biodistribution of these drugs during peritoneal 

perfusion of chemotherapy is important in order to predict the occurrence of 

these adverse side effects and determine the risk:benefit balance in performing 

intraperitoneal perfusion with cisplatin and arsenic. For this reason, I determined 

platinum and arsenic accumulation in the brain, heart, liver, kidney and spleen 

during (0 h) and 24 h after perfusion. I observed that platinum and arsenic 

accumulated to similar extent in these tissues regardless of the treatment 

condition. The greatest accumulation of platinum was observed in the kidney, the 

site of platinum elimination. Likewise, greatest level of arsenic was observed in 

the liver, the organ for arsenic metabolism and detoxification. Even though I did 

not observe any toxicity with the short-term survival study, accumulation of 

arsenic and platinum in assayed organs suggests that potential adverse side 

effects such as encephalopathy, cardiotoxicity, liver damage, renal damage and 

myelosuppression/anemia respectively may occur during long-term survival 

studies. 

In summary, treatment of tumors with cisplatin plus sodium arsenite or 

combined cisplatin, sodium arsenite and hyperthermia is most likely to enhance 
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cisplatin efficacy because sodium arsenite ± hyperthermia impairs NER by 

inhibiting induction of p53 and XPC and activates MMR by maintaining high 

levels of MSH2 and enhances platinum accumulation in tumors. Sodium arsenite 

and hyperthermia might not produce added systemic toxicity to cisplatin 

chemotherapy; on the contrary, the combined treatment might help in the 

clearance of platinum from tissues. Long-term survival studies are required to 

determine the efficacy of this new combination chemotherapy. The murine 

HIPEC model may serve as a useful tool to study in vivo mechanisms of platinum 

resistance and explore ways to sensitize tumors to platinum chemotherapy. 
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CHAPTER 4 

CISPLATIN, SODIUM ARSENITE AND HYPERTHERMIA INDUCE PSEUDO­

G1 ASSOCIATED APOPTOTIC CELL DEATH IN OC CELLS 

INTRODUCTION 

Cisplatin and its analogues are widely used to treat ovarian, testicular, 

head and neck, bladder, gastric and lung cancer (Vasey, et aI., 1999; Winter and 

Albers, 2011; Pan, etal., 2009; Mitsui, etal., 2011; Norman, etal., 2010; 

81ackhall and Faivre-Finn, 2011). The cytotoxicity of cisplatin is mediated through 

cisplatin-DNA damage formation. Cisplatin primarily forms 1 ,2-intrastrand cross 

links between adjacent purines and to a lesser extent 1 ,3-intrastrand cross links, 

monoadducts and interstrand crosslinks (8asu and Krishnamurthy, 2010). In 

addition to DNA damage, cisplatin can also form covalent bonds with biologically 

important macromolecules such as protein and RNA. 

Inherent and/or acquired resistance to cisplatin limits clinical success 

(Armstrong, 2002a). One approach to mitigate cisplatin resistance is the use of 

combination chemotherapy. My dissertation research project focuses on 

investigating the cytotoxic effects and mechanisms of action of a new 

combination of cisplatin, sodium arsenite and hyperthermia. I previously showed 

that combined sodium arsenite and hyperthermia sensitize wild-type p53 

expressing OC cells to cisplatin (Figure 3, Chapter 2). Mechanistically, sodium 

arsenite and hyperthermia attenuated DNA repair protein XPC in vitro and in vivo 
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(Figure 6 and Figure 17) and enhanced cellular and DNA accumulation of 

cisplatin (Figures 1 OB and 16). 
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In response to platinum-DNA damage, p53 is stabilized and activated by 

upstream kinases. Activated p53 activates cell cycle checkpoints, DNA repair 

and apoptosis (Abraham, 2001; Horvath, et aI., 2007). P53 regulates cell cycle 

checkpoints by inducing transcription of cyclin dependent kinase inhibitor 

CDKN1A, GADD45 and 14-3-30 (8asu and Krishnamurthy, 2010; Taylor and 

Stark, 2001). CDKN1A blocks cell cycle progression by binding and inactivating 

cyclin/CDK complexes which are required for pRb phosphorylation in order to 

release E2F for cell cycle progression through G1. Cisplatin is known to cause 

G2 arrest (Horvath, et aI., 2007). CDKN1A blocks G2 to M transition by binding 

and inactivating CDK1/cyciin 8 complex (Taylor and Stark, 2001). 

Sodium arsenite causes mitotic arrest and mitotic arrest associated 

apoptosis (mitotic catastrophe) (McNeely, et aI., 2008b; McNeely, et aI., 2008a). 

P53 has been implicated in sodium arsenite induced mitotic arrest. Presence of 

functional p53 promotes mitotic exit (McNeely, et aI., 2006), whereas, cells with 

non-functional p53 are more susceptible to sodium arsenite-induced mitotic 

arrest (Taylor, et aI., 2006). In addition, a functional spindle checkpoint is 

required for arsenite-induced mitotic arrest and apoptosis (McNeely, et aI., 

2008b; Wu, et aI., 2008). Similar to sodium arsenite, hyperthermia has been 

reported to induce mitotic catastrophe in cancer cells (Grzanka, et aI., 2008; 

Michalakis, et aI., 2005; Nakahata, et aI., 2002). Therefore, I hypothesized that 

combined sodium arsenite and hyperthermia will enhance mitotic catastrophe in 

cisplatin treated DC cells. 
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The purpose of the studies in this chapter is to determine if a new 

combination of sodium arsenite and hyperthermia alters cisplatin-induced G2 cell 

cycle arrest and causes mitotic arrest and mitotic arrest associated apoptosis 

(mitotic catastrophe) in wild-type p53 expressing OC cells treated with cisplatin. I 

show that cisplatin, sodium arsenite and hyperthermia fails to activate spindle 

assembly checkpoint protein BUBR1 and causes cells to exit mitosis without 

dividing. Cells accumulate in pseudo-G1 with 2C DNA content and subsequently 

underwent apoptotic cell death. 
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HYPOTHESIS 

Sodium arsenite and hyperthermia sensitize DC cells to cisplatin by 

causing mitotic arrest associated apoptotic cell death. 
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MATERIALS AND METHODS 

Western blot analyses 

Cells were treated and protein Iysates prepared and resolved by SDS­

polyacrylamide gel electrophoresis as previously described in Materials and 

Methods section in Chapter 2. Membranes were probed with mouse monoclonal 

antibodies for /1-actin (Sigma, # A 5441, 1: 1 0,000 dilution), GAPDH (Ambion, # 

AM4300, 1:10,000 dilution), cyclin A (Cell Signaling, # 4656,1:1000 dilution), 

cyclin B (BD Biosciences PharMingen, # 55477, 1 :1000 dilution), histone H3 

Ser10 phosphorylation (Cell Signaling, # 9706S, 1: 1 000 dilution) and cyclin E 

(BD Biosciences PharMingen # 51-1459GR, 1 :1000 dilution) or rabbit polyclonal 

antibodies for CDKN1A (H-164, Santa Cruz, # SC 756, 1 :1000 dilution), CDK1 

(Upstate Cell Signaling Solutions, # 06-141, 1:1000 dilution) and pRbSer807/811 

phosphorylation (cell signaling, # 9308, 1: 1 000 dilution). Secondary antibodies 

(rabbit anti-mouse IgG, # 81-6120 or goat anti-rabbit, # 81-6120) conjugated to 

horseradish peroxidase (Zymed laboratories, Inc. South San Francisco, CA) 

were bound to primary antibodies and protein bands detected using enhanced 

chemiluminescence (ECl) substrate (Pierce, Rockford, Il). Bands for BUBR1, 

cyclin E, CDK1 Y15P, histone H3 Ser10P and GAPDH were detected using 

enhanced chemiluminescence (ECl) plus western blotting detection system (GE 

Healthcare, RPN2132) and bands were developed using Molecular Dynamics 

Storm 860 (GE Healthcare BioSciences) in blue fluorescence mode. /1-actin and 

GAPDH served as the loading control. 
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Flow cytometry analyses 

Cells (1 X 106
) were cultured in 10 cm dishes overnight and treated with 

IC50 cisplatin (A2780 = 4 ~M and A2780/CP70 = 40 ~M) ± 20 IJM sodium 

arsenite at 37 or 39 Cc for 1 h. Cells were washed twice with PBS and refed with 

fresh media and incubated at 37 cC. Whole cells were trypsinized and collected 

at 0 and 36 h, washed twice with PBS and fixed in 70% ethanol overnight at 4 cC. 

Cells in 0.5 mL PBS were incubated at 37 cc with RNase A (100 U/mL) for 30 

min. After adding propidium iodide (5 IJg/mL), cells were incubated at room 

temperature for 30 min protected from light. Propidium iodide fluorescence (DNA 

content) was determined by flow cytometry using FACScalibur (BD Biosciences, 

San Jose, CA). A minimum of 20,000 cells/sample were analyzed. Data were 

collected and analyzed using FLOWJO software (FLOWJO, Ashland, OR). 

Mitotic Index determination 

Cells (5 X 105/6 cm dish) were treated with IC50 cisplatin (A2780 = 4 ~M 

and A2780/CP70 = 40 ~M) ± 20 IJM sodium arsenite at 37 or 39 Cc for 1 h. The 

cell monolayers were washed twice with PBS and incubated in drug-free media 

for 36 h. Cells were washed twice with cold PBS, trypsinized using 1x trypsin 

and collected by centrifugation at 500 xg for 5 min. Cells were resuspended in 

150 ~L serum free media and 2.5 mL of 0.4% KCI was added. The cell 

suspension was incubated for 10 min at 37 cC. Methanol:acetic acid (3: 1 v/v) 

fixation solution was added to 2% v/v and cells collected by centrifugation at 500 

xg for 5 min. Cells were resuspended in 2.5 mL fixation solution and fixed at 

room temperature for 20 min. Samples were centrifuged at 500 xg for 5 min and 
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pellets resuspended in 0.5 mL fixation solution and chilled on ice for a minimum 

of 20 min. Aliquots of the suspensions were dropped onto slides (2 slides per 

sample), air dried for about 1 min and stained with Wright Giemsa solution 

(States, et aI., 2002). Slides were examined under a microscope and a minimum 

of 200 nuclei were counted on each slide for determination of mitotic index and 

mitotic catastrophe index. Chromosomal spreads with sharp features were 

scored as mitotic nuclei (Taylor, et aI., 2006) 

Annexin V-FITe apoptosis assay 

Cells (5 X 105/6 cm dish) were treated with IC50 cisplatin (A2780 = 4 ~M 

and A2780/CP70 = 40 ~M) ± 20 IJM sodium arsenite at 37 or 39°C for 1 h. The 

cell monolayers were washed twice with PBS and incubated in drug-free media 

for 36 h. Cells were trypsinized using 1x trypsin and collected by centrifugation at 

500 xg for 5 min. Cells were resuspended in 500 ~L of 1X binding buffer and 5 ~L 

of annexin V-FITC and 5 ~L of propidium iodide (50 ~g/mL). Samples were 

incubated at room temperature in the dark for 5 min. Annexin V-FITC binding 

was analyzed by flow cytometry (excitation = 488 nm; emission = 530 nm) using 

FACScalibur (BO Biosciences, San Jose, CA). Minimum of 20,000 cells/sample 

were analyzed. Annexin V assay was performed following manufacturers' 

instructions (Cat #: K101-25, BioVision Research Products, Mountain View, CA). 

Statistical analysis 

Results were expressed as the mean ± SO of three independent 

experiments. Statistical analyses were performed using Microsoft Excel built in 
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formulas for one-way analysis of variance and student's t-test with significance 

level as p < 0.05, n = 3. 
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RESULTS 

Flow cytometry determination of cell cycle arrest 

Cisplatin is a DNA damaging agent. Cellular response to DNA damage 

involves cell cycle arrest to allow time to repair damaged DNA (8asu and 

Krishnamurthy, 2010). Cisplatin is known to cause G2 arrest (Cepeda, et aI., 

2007). The goal of this experiment was to determine if sodium arsenite and 

hyperthermia alter the accumulation of cells in the G2/M compartment of the cell 

cycle following cisplatin treatment. Data suggest that both A2780 and 

A2780/CP70 cells accumulated in the G2/M compartment 36 h after cisplatin 

IC50 exposure (Figure 20). A2780/CP70 cells accumulated in the G2/M 

compartment to a greater extent than A2780 cells. Accumulation was not altered 

by sodium arsenite and/or hyperthermia co-treatment with cisplatin. 
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Figure 20 
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Figure 20. Cell cycle analyses by flow cytometry. A. Representative 

histogram of untreated cells (left panel) showing no cell cycle arrest and cisplatin 
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treated cells (right panel) accumulating in the G2/M compartment. B. Plot of 

percentage of cells in each phase of the cell cycle. A2780 and A2780/CP70 cells 

were treated with their IC50 cisplatin (CP) (A2780, 4 IJM; CP70, 40 IJM), CP plus 

20 IJM sodium arsenite at 37 or 39°C for 1 h. Cells were harvested at 0 and 36 h 

after treatment. DNA content was analyzed by flow cytometry after propidium 

iodide staining. Data are the means ± SO of samples from 2 independent 

experiments. Each experiment was performed in duplicate dishes. Statistically 

analysis was performed using one way ANOVA and student t test. P<0.05, * = 

compared to G2/M partners. 
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Sodium arsenite and hyperthermia effect on G2 and M cell cycle regulatory 

proteins 

Flow cytometry determination of DNA content using propidium iodide does 

not distinguish between G2 and M cells because these cells both have 2C DNA 

content. In order to determine if cells are in the G2 or M phase of the cell cycle at 

36 h after treatment, the expression of cyclin A and cyclin Band cyclin 

dependent kinase CDK1 were determined. Furthermore, I determined if sodium 

arsenite and hyperthermia alter the expression of cyclin A, cyclin Band CDK1 in 

response to cisplatin treatment. G2 to M progression requires degradation of 

cyclin A and accumulation of cyclin B (Malumbres and Barbacid, 2009). Data in 

Figure 21 indicate that cisplatin treatment at 37°C stabilized CDK1, cyclin A and 

cyclin B (Figure 21, panel a), suggesting G2 arrest. Adding hyperthermia to 

cisplatin decreased the levels of both cyclin A and cyclin B in A2780 cells 

suggesting G1 arrest, whereas; in A2780/CP70 cells cyclin A and cyclin B were 

stabilized suggesting G2 arrest (Figure 21, panel b). Co-treatment with cisplatin 

and sodium arsenite decreased both cyclin A and cyclin B in A2780 cells 

suggesting G1 arrest; while in A2780/CP70 cells, cyclin A was undetected, while 

cyclin B was stabilized, suggesting mitotic arrest (Figure 21, panel c). Combined 

cisplatin, sodium arsenite and hyperthermia stabilized cyclin Band CDK1 but 

attenuated the expression of cyclin A in both cell lines at 36 h after treatment 

(Figure 21, panel d), suggesting mitotic arrest. These data suggest that 

combined sodium arsenite and hyperthermia induced mitotic arrest in cisplatin 

treated cells. 
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Figure 21 
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Figure 21. Western blot analyses of G2/M cell cycle regulatory proteins. 

Cells were treated with their respective IC50 cisplatin (CP) (A2780, 4 IJM; CP70, 

40 IJM), or CP plus 20 IJM sodium arsenite (CPA) at 37 or 39 aC (hyperthermia) 

for 1 h, then washed with PBS and refed with fresh media and incubated at 37 

aC . Cells Iysates were prepared at 0, 24 and 36 h. ~-actin is the loading control. 

Blots shown are representative of 2 independent experiments. 
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Sodium arsenite and hyperthermia do not enhance mitotic index in 

cisplatin treated cells and also failed to induce histone H3 Ser10 

phosphorylation 

Data in Figure 21 suggest that combining sodium arsenite and 

hyperthermia with cisplatin is causing treated cells to arrest in mitosis. In order to 

confirm if indeed these cells are in mitosis, I determined mitotic index as 

described in Materials and Methods section. Adding sodium arsenite and/or 

hyperthermia to cisplatin did not increase the mitotic index in both A2780 and 

A2780/CP70 cells (Figure 22). The observed low mitotic index suggested that 

sodium arsenite and hyperthermia do not induce mitotic arrest in cisplatin treated 

cells. 
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Figure 22 
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Figure 22. Mitotic index determination. A. Representative picture of (a) mitotic 

spread and (b) interphase nuclei. B. Plot of means of percentage of mitotic index 

for duplicate slides. Cells were treated with their respective IC50 cisplatin (CP) 

(A2780, 4 ~M ; CP70, 40 ~M) , or CP plus 20 ~M sodium arsenite (CPA) at 37 or 

39°C (hyperthermia) for 1 h. Treated cells were washed with PBS and refed 

fresh media and incubated at 37°C for 36 h. Mitotic index was determined at 36 . 

h after treatment. Data are single biological experiments performed in duplicate 

dishes. 

104 



Mitotic index data in Figure 22 indicate that less than 3% of cells were 

undergoing mitotic arrest. In order to confirm this finding, I performed western 

blot analysis of histone H3 phosphorylated on Serine 10 (H3Ser10P), a mitotic 

marker, (Figure 23). H3Ser10P was undetected in both A2780 and A2780/CP70 

cells treated with cisplatin ± sodium arsenite at 37 or 39 aC. These data 

confirmed that a large fraction of cells were not in mitosis. 

105 



Figure 23 
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Figure 23 .. Western blot analysis of protein marker of mitotic arrest. 

Western blot analysis of H3Ser1 OP. Cells were treated with their respective IC50 

cisplatin (CP) (A2780, 4 ~M ; A2780/CP70 , 40 ~M), or CP plus 20 ~M sodium 

arsenite (CPA) at 37 or 39°C (hyperthermia) for 1 h. Treated cells were washed 

with PBS and refed fresh media and incubated at 37°C. Protein Iysates were 

prepared at 36 h for western blot analysis. Data are representative from duplicate 

biological experiments. A375 cells were treated with 5 11M sodium arsenite for 24 

h served as positive control for mitotic cells. r.,-actin served as loading control. 
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Cisplatin, sodium arsenite and hyperthermia prevent BUBR1 

phosphorylation 

A functional spindle assemble checkpoint is required for mitotic arrest. The 

mitotic spindle checkpoint complex consists of MAD3/BUBR1, BUB3 and MAD2 

(Tan, et aI., 2005). The mitotic spindle checkpoint induces mitotic arrest by 

inhibiting anaphase onset by associating with CDC20, a subunit of the anaphase 

promoting complex (APC). Therefore, I determined if A2780 and A2780/CP70 

cells have functional spindle checkpoint by determining the phosphorylation of 

BUBR 1 following 100 nM taxol treatment for 16 h. I observed that taxol treatment 

induced BUBR1 phosphorylation in A2780 and A2780/CP70 cells (Figure 24), 

indicating that these cells have functional spindle assembly check point. 

However, cisplatin or its co-treatment with sodium arsenite and hyperthermia 

failed to induce BUBR1 phosphorylation (Figure 24); suggesting that mitotic 

spindle checkpoint is disrupted. 
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Figure 24 

Cisplatin (f.lM) -

NaAs02 (f.lM) -

Hyperthermia (39 'C) -

A2780 A2780/CP70 

++++-++++ 

-+ -+ --+-+ 

--++---++ 

Figure 24. Western blot analysis of mitotic spindle assembly checkpoint 

protein. Western blot analysis of BUBR 1 and phosphorylated BUBR 1 in control 

Iysates treated with 100 nM taxol 16 h. Cells were treated with their respective 

IC50 cisplatin (CP) (A2780, 4 IJM; A2780/CP70, 40 IJM), or CP plus 20 IJM 

sodium arsenite (CPA) at 37 or 39 Cc (hyperthermia) for 1 h. Treated cells were 

washed with PBS and refed fresh media and incubated at 37 cC. Protein Iysates 

were prepared at 36 h after treatment for western blot analysis. Data are 

representative of triplicate biological experiments. GAPDH served as loading 

control. 
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Cispiatin, sodium arsenite and hyperthermia induced pseudo-G1 arrest in 

OC cells 

Data in Figure 24 suggest that cisplatin ± sodium arsenite at 37 or 39°C 

are disrupting the mitotic spindle assembly checkpoint in A2780 and 

A2780/CP70 cells. Absence of mitotic spindle checkpoint activation allows cells 

with damaged DNA to exit mitosis and progress through the cell cycle to G1 

without dividing and end up with double DNA content (2C) (Lanni and Jacks, 

1998). Therefore I determined if the cells were undergoing pseudo-G1 arrest by 

determining the expression of CDKN1A, pRbSer807/811 P and cyclin E using 

western blot analysis. Data in Figure 25 suggest that cisplatin stabilized 

CDKN1A over time and decreased pRbSer807/811 Pat 36 h after treatment 

(Figure 25A panel a). Adding sodium arsenite ± hyperthermia (Figure 25A, 

panels c, band d respectively) caused stronger CDKN1A induction and 

decreased levels of pRbSer807/811P compared with cisplatin alone at 37°C 

(Figure 25, panels b, c and d). These data confirmed that G1 arrest is taking 

place at 36 h after treatment. I also observed that cyclin E was stabilized in both 

A2780 and A2780/CP70 cells when compared to mitotic positive A2780 and 

A2780/CP70 cells that did not express cyclin E (Figure 258). These data suggest 

that cisplatin alone or combined with sodium arsenite and hyperthermia is 

inducing pseudo-G1 arrest in A2780 and A2780/CP70 cells. 
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Figure 25 
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Figure 25. Western blot analysis of protein markers of G1 arrest. A. Western 

blot analysis of CDKN1A and pRbSer807/811 P. Panel (a) is CP 37°C, (b) is CP 

39°C, (c) is CPA 37 °C and (d) is CPA39 °C. B. Western blot analysis of cyclin E. 

Cells were treated with their respective IC50 cisplatin (CP; A2780, 4 !-1M ; CP70, 

40 !-1M) , or CP plus 20 !-1M sodium arsenite (CPA) at 37 or 39°C (hyperthermia) 

for 1 h. Cells were washed with PBS and refed with fresh media and incubated at 

37°C. Cell Iysates were prepared at 0, 6, 12, 24, and 36 h. ~-actin and GAPDH 

are loading controls. A2780 and A2780/CP70 cells were treated with 100 nM 

Taxol for 16 h and served as negative control for cyclin E. 
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Cispiatin, sodium arsenite and hyperthermia induce apoptotic cell death in 

pseudo-G1 arresting cells 

Data in Figure 25 suggest that cisplatin, sodium arsenite and hyperthermia 

are causing pseudo-G1 arrest in DC cells. I performed FITC Annexin V 

propidium iodide assay to determine if pseudo-G1 cells were undergoing 

apoptosis. Data suggest that cisplatin alone or combined with sodium arsenite 

and/or hyperthermia significantly induced apoptotic cell death (-15%) at 36 h 

after treatment (Figure 26). 
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Figure 26 
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Figure 26. Apoptotic cell death determination using File Annexin V 

propidium iodide assay. Cells were treated with their respective IC50 cisplatin 

(CP) (A2780, 4 !-1M ; CP70, 40 !-1M) , or CP plus 20 !-1M sodium arsenite (CPA) at 

37 or 39°C (hyperthermia) for 1 h. Treated cells were washed with PBS and 

refed fresh media and incubated at 37°C for 36 h. Cell death was determined at 

36 h after treatment. Data are means ± SO of triplicate biological experiments. 

Statistically analysis was performed using one way ANOVA and Turkey test. 

P<0.05, a = compared to untreated (UT) A2780 cells, b = compared to untreated 

A2780/CP70 cells. 
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DISCUSSION 

This study was aimed at determining if a new combination of sodium 

arsenite and hyperthermia altered cisplatin-induced G2 cell cycle arrest and 

induced mitotic arrest and mitotic arrest associated-apoptosis (mitotic 

catastrophe) in OC cells treated with cisplatin. I used a well characterized and 

widely used human OC cell model for cisplatin-sensitive (A2780) and its cisplatin­

resistant subline (A2780/CP70) for this study. I showed that sodium arsenite and 

hyperthermia does not alter cisplatin-induced accumulation of cells in the G2/M 

compartment when analyzed by flow cytometry for DNA content. However, 

cisplatin alone or combined with sodium arsenite and/or hyperthermia failed to 

activate the mitotic spindle checkpoint which allowed cells to exit mitosis and 

enter pseudo G1 with 2C DNA content. These cells then underwent apoptotic cell 

death. 

Flow cytometry determination of DNA content using propidium iodide does 

not distinguish between G2 and M cells because they both have 2C DNA 

content. Therefore I used western blot analysis to determine the expression of 

G2/M regulatory proteins cyclin A and cyclin B. Cyclin A is usually degraded 

before cells enter mitosis, whereas cyclin B is stabilized during mitosis 

(Malumbres and Barbacid, 2009). Stabilization of cyclin A and cyclin B by 

cisplatin (CP 37°C) in both A2780 and A2780/CP70 cells suggest G2 arrest 

(Figure 21, panel a), consistent with previous findings (Cepeda, et aI., 2007). 

Decreased expression of cyclin A and cyclin B by hyperthermia co-treatment with 

cisplatin (CP 39°C) in A2780 cells is consistent with G1 arrest (Figure 21, panel 
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b). Decreased expression of cyclin A and cyclin B by sodium arsenite co­

treatment with cisplatin (CPA 37°C) in A2780 cells is consistent with G1 arrest 

(Figure 21, panel c). Sodium arsenite co-treatment with cisplatin (CPA 37°C) 

decreased expression of cyclin A and stabilized cyclin B in A2780/CP70 cells 

(Figure 21, panel c), consistent with mitotic arrest. Sodium arsenite plus 

hyperthermia co-treatment with cisplatin (CPA 39°C) attenuated expression of 

cyclin A and it stabilized cyclin B in both cell lines (Figure 21, panel d), consistent 

with mitotic arrest. However, mitotic arrest in A2780/CP70 cells treated with CPA 

37°C or in A2780 and A2780/CP70 cells treated with CPA 39°C was not 

supported by mitotic index or histone H3Ser10P data (Figures 22 and 23 

respectively). Sodium arsenite and hyperthermia did not increase mitotic index in 

cisplatin treated cells and undetected levels of histone H3 phosphorylation 

(H3Ser10P) clearly indicated that arsenite co-treated cells are not arresting in 

mitosis. 

Mitosis is the phase of the cell cycle where cells divide to produce two 

genetically identical cells from one cell. In order to ensure proper division, the 

mitotic spindle checkpoint must ensure that all chromosomes are attached to the 

kinetochores by microtubules and that proper tension is exerted on the 

kinetochores before mitotic exit (Zhou, et aI., 2002; Tan, et aI., 2005). Cells with 

defective spindle checkpoint will proceed through the cell cycle with aberrant 

chromosomes. The mitotic spindle checkpoint complex consists of 

MAD3/BUBR1, BUB3 and MAD2 (Tan, et aI., 2005). The mitotic spindle 

checkpoint inhibits anaphase onset by associating with CDC20, a subunit of the 
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anaphase promoting complex (APC). APC is an E3-ubiqitin ligase that mediates 

degradation of securin and cyclin B. Degradation of securin and cyclin B is 

required for anaphase onset and subsequent mitotic exit. Treatment of A2780 

and A2780/CP70 cells with a mitotic arrest inducing drug taxol caused 

phosphorylation of BUBR1 in these cells (Figure 24). Phosphorylation of BUBR1 

suggests that these cells have functional spindle assembly checkpoint. However, 

cisplatin ± sodium arsenite treatment at 37 or 39°C failed to activate 

BUBR1 phosphorylation in OC cells (Figure 24). Disruption of mitotic spindle 

checkpoint may allow cells to exit mitosis without undergoing cytokinesis. 

In response to DNA damage, p53 is stabilized and activated and it 

transcriptionally activates CDKN1A expression. Induced CDKN1A binds to and 

inhibits CDK2/cyciin E complex, preventing the phosphorylation of pRb, thus 

blocking cells in G1. I observed strong induction of CDKN1A and suppression of 

pRb Ser807/811 P (Figure 25) at 36 h after treatment suggested that G1 arrest is 

taking place. Accumulation of cells in G1 was supported by the stabilization of 

cyclin E (Figure 25B). The data clearly suggest that the cells accumulating in the 

G2/M compartment underwent endoreduplication and exited mitosis without 

cytokinesis and subsequently accumulated in G1 with 2C DNA content. The 

phenomenon of cells with disrupted spindle checkpoint undergoing 

endoreduplication and exiting mitosis without cytokinesis was previously 

observed by Lanni and Jacks (Lanni and Jacks, 1998). Lanni and Jacks showed 

that when mouse embryo fibroblasts were treated with spindle inhibitor 

nocodazole, these cells accumulated transiently in mitosis and progressed into 
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G1 with 4N DNA content. These cells were classified as pseudo-G1 cells 

because they showed upregulated cyclin E and hypophorylated pRb, but had 4N 

DNA content similar to G2/M cells. Cells with disrupted spindle checkpoint are 

expected to be resistant to sodium arsenite induced mitotic arrest and apoptosis 

(McNeely, et aI., 2008b; Wu, et aI., 2008). However, these pseudo-G1 cells 

underwent apoptotic cell death in response to cisplatin treatment and co­

treatment with sodium arsenite andlor hyperthermia resulted in greater 

percentage of dead cells (Figure 26). 

In summary, I have shown for the first time that cisplatin ± sodium arsenite 

at 37 or 39°C disrupts the mitotic spindle checkpoint and causes cells to exit 

mitosis without dividing and subsequently accumulating in G1. These pseudo-G1 

cells with 2C DNA content stabilized cyclin E and induced CDKN1A and 

decreased pRb Ser807/811 P. In addition these pseudo-G1 cells underwent 

apoptotic cell death. These data suggest potential new mechanisms by which 

cisplatin or its combination with sodium arsenite and hyperthermia induce cell 

death in wild-type p53 expressing DC cells. 
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CHAPTER 5 

HSP90 INHIBITOR 17 -DMAG ROBUSTLY ENHANCES THE 

CYTOTOXICITY OF COMBINED CISPLATIN, SODIUM ARSENITE AND 

HYPERTHERMIA AGAINST OC 

INTRODUCTION 

Ovarian cancer is the most common cause of gynecologic cancer death in 

women in the United States (Jemal, et aI., 2010). Cisplatin or carboplatin with 

taxane is used in the frontline treatment of OC following cytoreductive surgery 

(McGuire, et aI., 1996). Inherent and/or acquired resistance decreases 

effectiveness of platinum-based chemotherapy, and only about 20% of women 

survive for 5 years once diagnosed with OC (Armstrong, 2002; Rubin, et aI., 

1999). Thus, finding a new effective treatment regimen to mitigate cisplatin 

resistance is highly needed. 

Cisplatin exerts its cytotoxic effect by causing DNA damage. In addition to 

its effect on DNA, cisplatin binds to non-DNA targets such as glutathione, 

metallothionein, protein and RNA (Cepeda, et aI., 2007). Cisplatin also binds to 

the C-terminus of HSP90 and interferes with ATP binding (Donnelly and Blagg, 

2008; Landriscina, et aI., 2010). Binding of cisplatin to non-DNA targets may give 

rise to cytotoxic oxidative and electrophile stress (Jacobs and Marnett, 2010). 

Presence of cellular stress induces drug metabolizing enzymes and antioxidant 

proteins such as hemoxygenase (HO-1), quinine oxidoreductase (NQ01) and 
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nicotinamide adenine dinucleotide phosphate (NAD(P)H) via NRF2 binding to 

antioxidant and electrophile response elements (Nerland, 2007). In addition, heat 

shock factor 1 (HSF1) protects against oxidative and electrophile-induced toxicity 

by inducing pro-survival heat shock genes such as HSP70, HSP11 0 and HSP40 

that function to fold denatured proteins (Landriscina, et aI., 2010). These 

defensive mechanisms additionally contribute to cisplatin resistance. 

Combination chemotherapy has been implemented to enhance cisplatin 

cytotoxicity. I previously showed that combined sodium arsenite and 

hyperthermia sensitized wild-type p53 expressing OC cells to cisplatin (Figure 3, 

Chapter 2) by suppressing XPC (Figure 6, Chapter 2) and enhancing cellular 

(Figure 10B, Chapter 2) and DNA (Figure 12, Chapter 2) accumulation of 

platinum. Cisplatin and sodium arsenite can generate oxidative and electrophile 

stress and hyperthermia can generate oxidative and heat stress (Jacobs and 

Marnett, 2010). Cellular response to stress involves induction of stress response 

proteins to protect the cells from dying. 

The goal of this study is to investigate if inhibiting the activity of the 

molecular chaperone, HSP90 will sensitize both p53 (+) and p53 (-) OC cells to 

cisplatin. Cisplatin, sodium arsenite and hyperthermia induced HSP60 and 

HSP70 and stabilized HSP90 in A2780 and A2780/CP70 cells. PARP-1 cleavage 

was observed in these cells, suggesting that apoptosis is occurring. Inhibition of 

HSP90 activity using 17 -(Dimethylaminoethyamino )-17 -demethoxygeldanamycin 

(17-DMAG) remarkably potentiated the cytotoxicity of combined cisplatin, sodium 

arsenite and hyperthermia (CPA 39°C) against OC cells in a p53-independent 
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manner. Enhanced cellular accumulation of cisplatin was observed with 17-

DMAG co-treatment with CPA 39°C. These data suggest that 17-DMAG has the 

potential to reverse cisplatin resistance when co-treated with CPA 39°C. 
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HYPOTHESIS 

Cisplatin, sodium arsenite and hyperthermia induce cellular stress. Inhibition of 

HSP90, a key modulator of stress response will potentiate the cytotoxicity of 

combined cisplatin, sodium arsenite and hyperthermia against ac. 
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MATERIALS AND METHODS 

Chemicals 

Stock and working solutions of 17-DMAG (17-(Dimethylaminoethyamino)-

17 -demethoxygeldanamycin) (InvivoGen, San Diego, California, # NSC 707545) 

were prepared in sterile water and stored at -20°C protected from light. 

Cell Viability assay 

The growth inhibitory effects of cisplatin, sodium arsenite, hyperthermia 

and 17 -DMAG were evaluated using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide) cell viability assay (Mosmann, 1983) as described 

in the Materials and Methods section of Chapter 2 with some modifications. 

Briefly, 2500 cells/well were seeded overnight in 96-well plates. Next day, cells 

were treated with cisplatin ± 20 IJM sodium arsenite and/or 100 nM of 17 -DMAG 

at 37 or 39°C for 1 h. After treatment, cells were washed twice with PBS and 

refed with drug-free medium and incubated at 37°C for 5 days prior to assay. 

Blank was cells treated with 0.1 mg/mL hygromycin B. MTT assay was measured 

at 570 nm. The absorbance values corresponded to the number of viable cells. 

Cell viability was calculated as follows and plotted against concentration of 

cisplatin. 

01 II· b·l·t _ 100 x (mean of triplicate treated samples - Blank) 
/0 ce via I I Y - . . 

(Mean of triplicate untreated samples - Blank) 

Data were expressed as means ± SEM of at least four independent experiments. 

Each experiment was done with triplicate wells for each treatment condition. 
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Western blot analyses 

Total cellular Iysates were prepared at 2 and 24 h after treatment. Cell 

Iysates were prepared and proteins were separated on 10 % SOS­

polyacrylamide gel electrophoresis as previously described in Materials and 

Methods section of Chapter 2. Membranes were probed with mouse monoclonal 

antibodies for HSP90 (F-8, Santa Cruz Biotechnology, Santa Cruz, CA, dilution 

1: 1 000), ~-actin (Sigma, # A 5441, dilution 1: 1 0,000), or rabbit polyclonal 

antibodies for PARP-1, HSP70 (Cell Signaling Technology, dilution 1: 1 000) and 

HSP60 (Chemicon International, Millipore, Temecula, CA, 1:1000). Secondary 

antibodies (rabbit anti-mouse IgG, # 81-6120 or goat anti-rabbit, # 81-6120, 

dilution 1 :2500) conjugated to horseradish peroxidase (Zymed laboratories, Inc. 

South San Francisco, CA) were bound to primary antibodies and protein bands 

detected using enhanced chemiluminescence (ECl) substrate (Pierce, Rockford, 

Il) followed by exposure to Kodak XAR x-ray film. ~-actin was used as the 

loading control. 

Platinum accumulation studies 

Cells (5 X 10516 cm dish) were treated with 40 IJM cisplatin ± 20 IJM 

sodium arsenite with or without 100 nM of 17 -OMAG at 37 or 39°C for 1 h. 

Samples were prepared and analyzed using ICP-MS as previously described in 

Materials and Methods section in Chapter 2. 

Statistical analysis 

Results were expressed as the mean ± SO of three independent 

experiments. Statistical analyses were performed using Microsoft Excel built in 
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formulas for one-way analysis of variance and student's t-test with significance 

level as p < 0.05, n = 3. 
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RESULTS 

Cisplatin, sodium arsenite and hyperthermia induced stress response 

proteins in DC cells 

Treatment of cells with cisplatin or sodium arsenite can generate reactive 

oxygen species and electrophiles that may cause oxidative DNA, lipid, RNA and 

protein damage (Sahin, et aI., 2010; Davison, et aI., 2002). In addition, 

hyperthermia may generate heat stress and denature important cellular proteins 

(Hildebrandt, et aI., 2002). Thus, combined cisplatin, sodium arsenite and 

hyperthermia may enhance cytotoxic cellular stress. Following cellular stress, 

heat shock proteins are induced to fold denatured proteins and protect against 

stress-induced cell death. This experiment was aimed at investigating if cisplatin, 

sodium arsenite and hyperthermia induce stress response proteins in OC cells in 

response to cellular stress. Cells were treated as described in Materials and 

Methods Section. HSP90 was unchanged for all treatment conditions. HSP60 

and HSP70 were induced at 2 and 24 h after treatment (Figure 27). Robust 

induction of HSP70 occurred at 24 h after treatment for all treatment conditions 

and in both cell lines. These data suggest that cisplatin, sodium arsenite and 

hyperthermia both individually and in combination induce cellular stress. 

124 



Figure 27 
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Figure 27. Western blot analysis of stress response proteins. A2780 and 

A2780/CP70 cells were treated with their IC50 cisplatin (CP) (A2780, 4 IJM; 

CP70, 40 IJM), CP plus 20 IJM sodium arsenite (CPA) at 37 or 39 °C for 1 h. After 

treatment, cells were washed with 1X PBS, incubated in fresh media at 37 cC. 

Protein Iysates were collected at 2 and 24 h after treatment for western blot 

analysis. Blots are representative of two independent experiments. Ponceau 

stained picture serves as loading control. 
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Cispiatin, sodium arsenite and hyperthermia induce apoptotic cell death in 

OC cells 

Data in Figure 27 indicate that cisplatin, sodium arsenite and hyperthermia 

each induced stress response proteins HSP60 and HSP70 and did not change 

HSP90 levels. I then determined if induction of stress response proteins is 

associated with apoptotic cell death. Western blot analysis technique was used 

to determine PARP-1 cleavage (Figure 28). Data indicate that PARP-1 is cleaved 

24 h after treatment, suggesting that apoptotic cell death is occurring in these 

cells at 24 h. 
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Figure 28 
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Figure 28. Western blot analysis of apoptotic proteins. A2780 and 

A2780/CP70 cells were treated with their IC50 cisplatin (CP) (A2780, 4 ~M ; 

CP70, 40 ~M) , CP plus 20 ~M sodium arsenite (CPA) at 37 or 39 °C for 1 h. After 

treatment, cells were washed with 1X PBS, incubated in fresh media at 37°C. 

Protein Iysates were collected at 2 and 24 h for western blot analysis. Blots are 

representative of two independent experiments. Ponceau stained picture serves 

as loading control. 
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HSP90 inhibitor 17-DMAG potentiates cisplatin, sodium arsenite and 

hyperthermia cytotoxicity against OC 

Data in Figure 27 suggest that cisplatin, sodium arsenite and hyperthermia 

are inducing cellular stress as evident by the induction of HSP60 and HSP70, 

while HSP90 remained stable. Inhibiting the activity of heat shock proteins may 

enhance the cytotoxicity of anticancer agents. HSP90 is a druggable target 

because it is ubiquitously expressed in most cancer cells and it is integrally 

involved in cell signaling, survival and proliferation (Taipale, et aI., 2010). 

Furthermore, several HSP90 inhibitors have been extensively investigated as 

anticancer agents and most are undergoing clinical trial (Messaoudi, et aI., 

2011). I determined if inhibition of HSP90 activity using 17 -DMAG would 

potentiate the cytotoxicity of cisplatin, sodium arsenite and hyperthermia against 

oe. I used a non-toxic dose of 17-DMAG (100 nM) (Figure 29) to treat the cells. 
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Figure 29 
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Figure 29. Cell viability effect of 17-DMAG on sodium arsenite ± 

hyperthermia. Cells were treated with the indicated concentrations of 17 -DMAG 

± 20 IJM sodium arsenite at 37 or 39°C for 1 h. Cells were then washed twice 

with PBS and refed with fresh media and incubated for 5 days at 37°C. Cell 

viability MTT assay was performed 5 days after treatment. Data are expressed 

as percentage of untreated control and plotted as means ± SD of at least four 

independent experiments each performed with triplicate wells. 
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Cell viability data suggest that 17 -DMAG moderately enhanced the 

sensitivity of wild-type p53 expressing A2780 and A2780/CP70 cells to cisplatin 

(CP 37°C) or cisplatin plus arsenite (CPA 37°C) or cisplatin plus hyperthermia 

(CP 39°C) (Figure 30A). Combined 17-DMAG and CPA 39°C greatly decreased 

cell viability (Figure 308). P53-null SKOV-3 cells were not sensitized by 17-

DMAG when co-treated with CP 37°C or CPA 37 °c (Figure 30A, right panel). 

However, 17-DMAG enhanced the cytotoxicity of CP 39°C and CPA 39 °C in 

SKOV-3 cells (Figure 308, right panel). The enhancement of CPA 39°C was 

greater than that of CP 39°C in SKOV-3 cells. 
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Figure 30 
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Figure 30. Cell viability as determined by MTT assay. A. Cells treated at 37 

aC . B. Cells treated at 39 aC . Cells were treated with the indicated concentrations 

of cisplatin with (CPA) or without (CP) ± 20 ~M sodium arsenite in the presence 

(diamond symbol) or absence (circle symbol) of 100 nM of 17-DMAG at 37 or 39 

aC for 1 h. Cells were then washed twice with PBS and refed with fresh media 

and incubated for 5 days at 37 aC . Cell viability MTT assay was performed 5 days 

after treatment. Data are expressed as percentage of untreated control and 

plotted as means ± SEM of at least four independent experiments each 

performed with triplicate wells. R-values for the best fitting polynomial curves 

were all >0.99. 
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HSP90 inhibitor 17-DMAG enhanced cellular accumulation of cisplatin 

Data in Figure 308 suggest that 17 -DMAG has the potential to reverse 

cisplatin resistance when used in combination with cisplatin, sodium arsenite and 

hyperthermia (CPA 39°C). In order to understand the mechanism involved in 17-

DMAG sensitization, I determined if 17-DMAG enhanced cellular accumulation of 

cisplatin because decreased cellular accumulation of cisplatin is an important 

mechanism of resistance (Parker, et aI., 1991). The results suggest that 17-

DMAG moderately increased platinum accumulation in A2780 and A2780/CP70 

cells when co-treated with CPA 39°C (CPAD 39) (Figure 31, left and center 

panels). Cisplatin accumulation in SKOV-3 cells was significantly higher (Figure 

31, right panel). 
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Figure 31 

40 

30 
c .Q5 -o ..... 
c.. 
0) 20 
E 

';:J-
0... 
0) 
c 

10 

11 

A2780 

f 
f 
# 

# * . 
* 

A2780/CP70 SKOV-3 
20 40 

f 
15 # 30 

* 
f 
~ # # 

* * 

10 20 

5 10 

:. 

Figure 31. ICP- MS analysis of cellular platinum accumulation. A2780, 

A2780/CP70 and SKOV-3 cells were treated with 40 IJM cisplatin (CP37 and 

CP39)) ± 20 IJM sodium arsenite (CPA37 and CPA39) and/or 100 nM of 17-

11 
# 
* 

DMAG (CPAD39) at 37 or 39°C for 1 h. Cells were harvested immediately after 

treatment for total cellular platinum determination. Data are means ± SD from 3 

independent experiments. N = 3, P<0.05. * compared with CP37, # compared 

with CPA37, f compared with CP39 and ~ compared with CPA39. 
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DISCUSSION 

Cisplatin remains the drug of choice to treat OC. However, resistance 

limits clinical success. Combination chemotherapy is at the forefront to improve 

the efficacy of cisplatin and its analogues against OC. I showed in chapter 2 that 

combined sodium arsenite and hyperthermia (CPA 39°C) sensitized wild-type 

p53 expressing cells to cisplatin by mitigating mechanisms of cisplatin resistance 

such as inhibiting DNA repair protein XPC and enhancing cellular platinum 

accumulation and platinum bound to DNA. A potential mechanism of cytotoxicity 

for combined cisplatin, sodium arsenite and hyperthermia (CPA 39°C) is 

induction of oxidative, electrophile and heat stress (Davison, et aI., 2002; 

Pandita, et aI., 2009; Hildebrandt, et aI., 2002; Jacobs and Marnett, 2010). 

Cellular stress may denature key proteins required for signal transduction, cell 

survival and proliferation by cancer cells. Heat shock proteins are intimately 

involved in refolding these denatured proteins to the correct conformation, 

thereby promoting survival (Landriscina, et aI., 2010). Therefore, inhibiting heat 

shock protein function could sensitize cells to anticancer agents. The goal of this 

study was to investigate if inhibition of HSP90 activity would further sensitize OC 

cells to the combination of cisplatin, sodium arsenite and hyperthermia (CPA 39 

°C) in a p53-independent manner. HSP90 inhibitor 17 -DMAG at a non-toxic 

concentration potentiated CPA 39°C cytotoxicity against OC cells. Presence of 

cellular stress was evident by the induction of HSP60 and HSP70 in response to 

cisplatin ± sodium arsenite treatment at 37 or 39°C. In addition, PARP-1 
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cleavage occurred at 24 h after treatment, suggesting that apoptotic cell death is 

occurring following cellular stress induction. 

HSP90 is a highly conserved and ubiquitously expressed in most tissues 

and cancer cells. It is a molecular chaperone and forms complexes with HSP70, 

HSP40, CDC37/p50, p23, AHA1 and accessory molecules such as HSP 

organizing protein (HOP), HSP-interacting protein (HIP) and immunophilin 

(Taipale, et aI., 2010). HSP90 chaperone complex acts on its client proteins to 

stabilize them and prevent aggregation, facilitate cell membrane crossing, 

stabilize conformations and target client proteins for degradation (Taipale, et aI., 

2010). Because HSP90 regulates diverse cellular processes that promote cell 

survival and proliferation, it is a good molecular target to sensitize cancer cells to 

anticancer drugs. Cisplatin binds to HSP90 at its C-terminus and inhibits its ATP 

binding ability (Donnelly and Blagg, 2008; Landriscina, et aI., 2010). In addition to 

the C-terminus domain, the N-terminal domain has an ATP binding site that is 

highly conserved. HSP90 inhibitors such as geldanamycin and 17-DMAG 

compete with ATP for this binding site. ATP binding and hydrolysis is required for 

HSP90 function. Several inhibitors of the ATP binding site of HSP90 are 

undergoing clinical trials as anticancer agents (Messaoudi, et aI., 2011). In the 

current study, I have showed that HSP60 and HSP70 were induced and HSP90 

remained unchanged in response to CPA 39 cc. Inhibition of HSP90 activity 

using 17 -DMAG potentiated CPA 39 cc cytotoxicity in A2780, A2780/CP70 and 

SKOV-3 cells. The robust cytotoxicity observed with 17 -DMAG co-treatment with 

CPA 39 Cc could be due partially to enhanced cellular accumulation of cisplatin. 
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In summary, I have showed that co-treatment with HSP90 inhibitor 17-

DMAG and CPA 39 DC (CPAD 39 DC) may reverse cisplatin resistance in OC 

cells independent of p53 status. Co-treatment enhanced cellular accumulation of 

cisplatin. Further studies are needed to better understand the precise 

mechanisms involved in 17-DMAG enhancement of the CPA 39 DC cytotoxicity. 
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CHAPTER 6 

OVERALL DISCUSSION AND CONCLUSIONS 

The goal of this research project was to mitigate cisplatin resistance in 

OC. I investigated the effect of a new combination of cisplatin, sodium arsenite 

and hyperthermia against OC cells. Sodium arsenite alone or combined with 

hyperthermia selectively sensitized wild-type p53 expressing human OC cells 

(A2780, A2780/CP70, OVCA 420, OVCA 429 and OVCA 433) to cisplatin (Figure 

3A). In contrast, only hyperthermia sensitized p53-null (SKOV-3) and p53-

mutated (OVCAR-3 and OVCA 432) cells to cisplatin (Figure 38). Sodium 

arsenite selective sensitization of p53 expressing cells to cisplatin could be due 

to its effect on the nucleotide excision repair (NER) pathway that repairs 

platinum-DNA damage and confers resistance to cisplatin. Arsenic has been 

shown to inhibit induction of the global genome repair - NER protein XPC 

(Nollen, et aI., 2009). XPC is intimately involved in the repair of platinum-DNA 

damage (Neher, et aI., 2010). P53 is implicated in platinum-DNA repair because 

it transcriptionally regulates XPC (Ford, 2005), which is required for efficient 

global genome repair. I have shown that cisplatin induces XPC only in wild-type 

p53 expressing cells and in tumors derived from p53 expressing A2780/CP70 

cells. XPC siRNA transfection enhanced cisplatin cytotoxicity, indicating that 

induction of XPC confers resistance to cisplatin. Furthermore, sodium arsenite ± 

hyperthermia inhibited XPC in p53 expressing OC 
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cells and in tumors derived from p53 expressing A2780/CP70 cells. These data 

indicated that sodium arsenite selectively sensitized p53 expressing cells to 

cisplatin by suppressing XPC. Inhibition of XPC will decrease the recruitment of 

downstream NER proteins and suppress DNA repair (Nollen, et aI., 2009). 

In addition to enhanced DNA repair, decreased cellular platinum and 

platinum bound to DNA contributes to cisplatin resistance (Parker, et aI., 1991). 

Hyperthermia ± sodium arsenite enhanced cellular and platinum bound to DNA in 

p53 expressing A2780 and A2780/CP70 cells. Whereas, only hyperthermia 

enhanced cellular and platinum bound to DNA in p53 null SKOV-3 cells. Platinum 

accumulation in xenograft tumors was enhanced by sodium arsenite co­

treatment with cisplatin at 37 or 39 cC. GST activity was not altered by cisplatin 

alone or by its combination with sodium arsenite and/or hyperthermia, suggesting 

that the GSH/GST system does not contribute to cisplatin resistance in these 

cells. 

In response to cisplatin treatment, p53 induces G2 arrest by 

transcriptionally activating CDKN1A, GADD45 and 14-3-3cr which inhibit cyclin 

B/CDK1 to prevent cell cycle progression through G2 phase (Taylor and Stark, 

2001). Cell cycle analysis data suggested that A2780 and A2780/CP70 cells 

treated with cisplatin ± sodium arsenite at 37 or 39 cc accumulated in the G2/M 

compartment 36 h after treatment. Western blot analyses of cyclin A and cyclin B 

suggested that sodium arsenite ± hyperthermia is caused cisplatin treated cells 

to arrest in mitosis. However, lack of histone H3Ser10P and relative low mitotic 

index clearly indicated that cells are not in mitosis. Furthermore, I observed that 
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cisplatin alone or combined with sodium arsenite and hyperthermia did not 

induce spindle checkpoint protein BUBR1 phosphorylation. Since the spindle 

assembly complex is dependent on BUBR1 phosphorylation for it to function, 

lack of BUBR1 phosphorylation weakens the mitotic spindle checkpoint and 

cause cells to exit mitosis without dividing (McNeely, et aI., 2008b). Similar to a 

report by Lanni and Jacks (Lanni and Jacks, 1998), these postmitotic cells had 

biochemical properties similar to G1 cells: induction of CDKN1A, stabilization of 

cyclin E and hypophosphorylation of pRb. Thus, cells with 2C DNA content that 

accumulated in the G2/M compartment were postmitotic or pseudo-G1 cells that 

failed to divide in mitosis. These cells underwent apoptosis. These data suggest 

a new mechanism by which cisplatin alone or combined with sodium arsenite 

and/or hyperthermia induces cell death. 

Cisplatin, sodium arsenite and hyperthermia induce stress-mediated cell 

death by generating reactive oxygen and electrophile species (Del Razo, et aI., 

2001; Pandita, et aI., 2009). These reactive species can cause oxidative damage 

to DNA, protein, RNA and lipids. Stress response proteins promote survival by 

refolding unfolded proteins and degrading damaged proteins. These stress 

response proteins or heat shock proteins therefore confer resistance to 

anticancer drugs (Landriscina, et aI., 2010). In response to cisplatin, sodium 

arsenite and hyperthermia treatment, I observed induction of HSP60 and HSP70 

in A2780 and A2780/CP70 cells as early as 2 h after treatment and robustly at 24 

h. In addition, HSP90 was stabilized in these cells. These data suggested that 

cisplatin, sodium arsenite and hyperthermia generated cellular stress that led to 
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the induction of stress response proteins. I also observed PARP-1 cleavage at 24 

h after treatment, suggesting that apoptotic cell death occurred in response to 

cellular stress. HSP90 is ubiquitously expressed in cancer cells and it regulates 

signaling pathways, cell survival and proliferation (Taipale, et aI., 2010), making it 

a good molecular target in cancer cells. HSP90 inhibitor 17-DMAG greatly 

sensitized A2780, A2780/CP70 and SKOV-3 cells to combined cisplatin, sodium 

arsenite and hyperthermia (CPA 39°C). This sensitization was associated with 

enhanced cellular platinum accumulation. 

Cancer cell populations are heterogeneous and not homogenous because 

cancer cells frequently undergo mutations and alterations in key genes such as 

p53 (Zeimet and Marth, 2003). Immunocytochemistry data suggest that 

A2780/CP70 cell population is heterogeneous in p53 expression. About 75% of 

the cells expressed functional p53 while 25% did not express the protein. Also, 

about 6% of tumors derived from A2780/CP70 cells were p53 null. Presence of 

heterogeneity makes it ineffective to treat cancer with a single drug or multiple 

drugs aimed at single key regulatory protein such as p53 or a signaling pathway. 

Therefore, My findings that combined cisplatin, sodium arsenite and 

hyperthermia (CPA 39°C) suppressed DNA repair protein, enhanced cellular 

platinum and platinum bound to DNA accumulation, induced cytotoxic cellular 

stress, disrupted mitotic spindle checkpoint and caused cells to accumulate in 

pseudo-G1 and subsequently undergo apoptosis, indicate that this new 

combination chemotherapy has multiple mechanisms of sensitizing cancer cells 

to cisplatin and inducing cell death. Thus, this new combination therapy may be 
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beneficial clinically in treating patients with cisplatin resistant disease regardless 

of the p53 status. Adding 17 -DMAG to counteract the heat shock protein 

response will potentially reverse cisplatin resistance. Therefore CPA 39°C or 

CPA 39 °C plus 17 -DMAG delivered intraperitoneally may be useful in increasing 

overall survival of DC patients. In the future, in vivo survival studies using the 

metastatic DC model and murine HIPEC system is required in order to determine 

if this combination chemotherapy is effective in vivo to suppress tumor burden. 

Long-term survival data generated from the in vivo studies will be useful in 

determining the potential clinical application of the new combination of cisplatin, 

sodium arsenite and hyperthermia (CPA 39°C) and also CPA 39 °c plus 17-

DMAG. 
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CHAPTER 7 

FUTURE STUDIES 

In the future, long-term survival studies are needed to determine response 

of peritoneal tumors to the new combination of cisplatin, sodium arsenite and 

hyperthermia (CPA 39°C) and also CPA 39 °c plus 17-DMAG. These studies 

wi" require a non-invasive method of visualizing the tumors. Therefore, one 

means of visualizing is to establish OC cells stably expressing f3, actin­

pTurboFP635 (katushka) fusion protein. These cells can be injected into the 

peritoneum of nude mice to establish metastatic tumors stably expressing red 

fluorescent katushka protein. Tumors with red fluorescent katushka protein 

should be easily visualized by non-invasive fluorescence imaging. Tumor bearing 

mice wi" be treated with cisplatin, sodium arsenite and/or 17-DMAG at 37 or 39 

°c for 1 h using the HIPEC model. Mice will be maintained for up to 60 days and 

response to chemotherapy wi" be determined by fluorescence imaging of tumors. 

The fluorescence intensity wi" be used to calculate the tumor burden. Data 

generated from this survival study wi" provide a better understanding of the in 

vivo response of peritoneal tumors to this new combination chemotherapy and its 

potential clinical use. 
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