
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2004

Software integrity management system. Software integrity management system.

Joseph H. Brown 1980-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Brown, Joseph H. 1980-, "Software integrity management system." (2004). Electronic Theses and
Dissertations. Paper 167.
https://doi.org/10.18297/etd/167

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/167
mailto:thinkir@louisville.edu

SOFTWARE INTEGRITY MANAGEMENT SYSTEM

By

Joseph H. Brown
B.S. University of Louisville, 2002

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed Engineering School

in Partial Fulfillment of the Requirements
for the Professional Degree of

MASTER OF ENGINEERING

Departme:nt of Computer Engineering and Computer Science
University of Louisville

May 2004

Copyright 2003 by Joseph H. Brown

All Rights Reserved

SOFTWARE INTEGRITY MANAGEMENT

By

Joseph H. Brown
B.S., University of Louisville, 2002

A Thesis Approved on

May 2004

By the following Thesis Committee:

Dr. James Graham, Thesis Director

Dr. Mehmed Kantardzic

Dr. Larry Tyler

11

Dedication

This thesis is dledicated to my fiancee Anna Richter and my family who have

given me so much support these past years during my attendance at the University of

Louisville J.B. Speed School of Engineering.

111

ACKNOWLEDGMENTS

The author would like to thanks Dr. James H. Graham for his guidance and

support through out the entirety of the project. He has shown superb leadership and

outstanding encouragement that has lead to the completion of this project. The author

would also like to thank Dr. Mehead Kantardzic and Dr. Larry Tyler for being on the

thesis overview committee.

Special thanks to Ronald A. Lile who has been an outstanding supervisor and

good friend to the author during the author's masters candidacy. Also special thanks to

Eric Kramer, Yindong Yu, Jared Baldridge, and Dr. Carol O'Conner for their aid and

direction contributions to this project. Thanks also go to the author's family for

providing support and encouragement through out the years of attending University of

Louisville Speed School of Engineering.

Windows NT, Windows 2000, Windows XP are registered trade marks with the

Microsoft Corporation. Java is a registered trademark of the Sun Microsystems.

IV

ABSTRACT

The purpose of this thesis is to design, implement, and evaluate a software

package that is mutli-platform and will provide software integrity management (SIM).

The software package is implemented in Java and will perform two hashing algorithms,

Message Digest version S (MDS) and Secure Hashing Algorithm 1 (SHA-l), in order to

verify the integrity of executable files. These records of executables and their hash value

will be stored in flat database files. The database files will be stored off site on multiple

servers. Each server will hold a file corresponding to the hash algorithm that was used.

By storing the files off site, the users of the SIM package will be guaranteed a certain

level of security and assurance that their executable files have not been tampered with.

With the growing threats of security exploits and viruses, it is important for

average users to be able to have this level of security. The security of the files off site

will be as good as the security of the servers themselves. For this reason the server

machines will be Linux machines since they are less susceptible to viruses. The server

administrator will still have to keep up with security patches in order to avoid exploits,

but the job will be less time consuming without having to worry about virus definitions.

Initial testing using the GNU Compiler for Java (GCJ) in the Linux environment showed

an increase in computational speed.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER I INTRODUCTION ... 11

CHAPTER II LITERATURE REVIEW ... 14

2.1 Computer Security .. 14

2.1.1 Firewalls .. 15

2.1.2 Intrusion Detection Systems ... 17

2.1.2.1 Expert Systems ... 18

2.1.2.2 Autonomous Agents ... 19

2.1.2.3 Adaptive Intrusion Detection (AID) .. 19

2.1.2.4 Autonomous Agents for Intrusion Detection (AAFID) 20

2.1.3 Binary File integrity .. 20

2.1.4 Commercial Security Products .. 21

2.1.5 Open Source Products ... 22

2.2 Computer Forensics .. 23

2.2.1 Legal Aspects .. 23

2.2.2 Commercial Products .. 24

2.2.3 Open Source Products ... 24

VI

CHAPTER III SOFTWARE INTEGRITY MANAGEMNENT DESIGN 26

3.1 Initial Design .. 26

3.2 Alternate Design ... 28

3.3 Limitations .. 30

3.4 Revised Design ... 31

CHAPTER IV IMPLEMENTATION ... 33

4.1 Initial Implementations ... 33

4.2 Java Libraries .. 34

4.3 S.I.M. package .. 35

4.4 User Interface .. 37

4.5 GNU Complier for Java ... 40

CHAPTER V TESTING ... 41

5.1 Testing Phase I - Computational Speed Test .. 42

5.2 Testing Phase II - Accuracy oflntegrity Check .. 48

5.3 Testing Phase III - Compatibility Check of Client Versions 50

CHAPTER VI CONCLUSIONS AND FUTURE RESEARCH 53

6.1 Conclusions ... 53

6.2 Future Research .. 58

REFERENCES ... 61

APPENDIX I. Test Phase I Time Trials Data .. 64

APPENDIX II. Test Phase II Accuuracy Data .. 66

APPENDIX III. Selected Source Code .. 68

APPENDIX IV. Selected Method Summaries ... 117

vii

APPENDIX V. Miscellaneous Source Code 120

VITA ... 121

viii

LIST OF TABLES

Table 5.1 - Sample Trial Times in Milliseconds ... 42

Table 5.2 - Sample Results from Accuracy Test ... 50

Table 5.3 - Client Interoperability Test Results .. 51

IX

LIST OF FIGURES

Figure 3.1 - Initial Design Layout ... 27

Figure 3.2 - Alternative Design Layout.. ... 30

Figure 4.1 - Organizational Structure of S.I.M ... 37

Figure 4.2 - S.I.M. User Menu ... 38

Figure 4.3 - Execution of Option 1 .. 39

Figure 5.1 - Results of Comparing the Time Averages with the Four Factors 45

x

CHAPTER I

INTRODUCTION

The modem world today is becoming increasingly dependent on advanced

technology. Technology provides solutions to major problems ranging from data storage

to data processing. As technology is rapidly growing and changing, so are security

threats, system intrusions, and viruses and Trojan horse software. Security exploits and

virus attacks were common among home users and companies that had internal

workstation computers, prior to widespread internet availability. These systems were

isolated from the possibility of an attack or exploit except from that of a normal user of

the system.

The majority of these systems were never connected to the Internet, and those that

were usually connected by way of modem and did not stay connected for long periods of

time. Because of the advancing of technology and lower costs of computer parts, the

Internet has grown exponentially as well as the number of home users who connect to it

daily. More recently, broadband, low-cost Internet access has become more widely

available. As a result, more computers are connected to the Internet nearly twenty-four

hours per day. With systems accessible to nearly anyone at any time during the period of

a day, someone will eventually find a way to break into that system.

Most home users are not accustomed to updating the critical update components

and updating virus definitions; these users are the first to get their system compromised

or infected with a virus. Most of time a user is not even aware that their system has been

compromised; and the attacker has unlimited access and control over the user's system.

11

There are several ways to prevent these attacks. The user could install some sort of

software firewall solution, install an intrusion detection application, keep up with critical

updates, and/or keep virus definitions current. Even if all of these weekly tasks are kept

current, viruses and exploits arise almost daily. At this alarming rate, an intruder could

break into a system and put Trojan horse programs on a user's machine before the user is

even aware of the compromise. Worse the intruder could replace known good programs

that are run daily that would allow the intruder access at any time or transmit the user's

sensitive data to the intruder.

Some software utilities such as Tripwire use hashing algorithms to ensure that the

programs are not switched with Trojan horse programs, but still the clever intruder could

gain access and find the database file that holds the hash values and switch some values

in order to not alert the user. Usually an offline file is suggested by means of a floppy

disk or some other external media, but the average user would either lose the media or

just forget about doing scheduled checks. A task such as this should be more automated

and invisible to the user.

The solution presented in this thesis is to implement a similar hashing program

with standard hashing algorithms that will store the files offline via network

communication to secure servers. The program will be implemented in Java but with an

interesting aspect. Java can run in mUltiple environments as long as the Java runtime

environment is installed, however, by using GeJ (an open source java compiler) the Java

program can be compiled into native machine code that would dramatically reduce

processing time. The program will be designed and implemented in a pure object-

12

oriented language but will be compiled in native operating systems in order to increase

the speed of the program.

The second chapter will provide an overview of relevant literature search for this

project. The third chapter will discuss the overall design layout for the project including

server and client layouts. The fourth chapter will cover the implementation in detail of

the project. The fifth chapter will cover the testing approach of the project. The final

chapter will review the overall project and the testing conclusions as well as layout a path

for future research.

13

CHAPTER II

LITERATURE REVIEW

2.1 Computer Security

With the explosion of the internet, most of the world has become connected.

With all of the connectivity comes an increase in not interoperability, but also possible

security intrusions. Since the mid 1990's, logged incidents of security intrusions have

become alarmingly numerous. In 2003 alone there were over 3,000 vulnerabilities and

more than 115,000 security incidents reported according to CERT [25]. The definition of

an intrusion becomes vague because of the many types of security breaches that exist

from viruses and worms to program vulnerabilities. There are a number of false reports

of people who believe they are being invaded because of the misunderstanding of what a

true security intrusion is. Every personal computer has ports or "doors" that any outside

program can try to access. Whether or not access is allowed or denied is up to the

personal computer hosting these ports.

Each port is labeled with a number such as 21, 22, etc. These certain programs or

"services" that use these ports are part of functions such as web servers or ftp servers

which are generally geared to server machines; and these ports usually have a great deal

activity from outside programs. Every computer communicates on some port when

interacting with each other, and when a computer notifies a user of activity on a certain

port, sometimes it can lead the user to believe that the machine is being invaded. When

14

there is activity on a port of a machine, it does not necessarily mean that someone is

trying to invade your machine [13].

In the case of someone accessing these ports, it does not necessarily guarantee

that the intruder has successfully gained access to the machine. The misunderstanding of

what an actual intrusion is considered has caused confusion in society. Many commercial

solutions were developed and rushed to the market and gave people a false sense of

security. Naturally, when a warning alerts the user that a port is being accessed, the user

assumes that they are being invaded by an intruder. These commercial solutions were

hurriedly released for single user machines to accommodate the rising worries of

consumers that were scared of being invaded or "hacked". This was also a chance for

companies to capitalize on security programs. Most users aren't aware that there is no

need for a security program to try to lock down everything. Even password rotation is

not as effective when users just append letters on the end of their current password. This

coping technique dealing with having to change their password is actually degrading

security [14]. Classic security solutions such as firewalls or intrusion detection

applications are still some of the better solutions for home users pending they are

configured properly.

2.1.1 Firewalls

Firewalls have been used for security since the early 1980's. Most of the research

done on firewalls was usually geared toward military purposes, but firewalls have

become fairly common to the commercial environment and to the home environments.

15

Firewalls are either hardware or software solutions for keeping some security on home

systems or internal private networks. First an examination of the basic technologies of a

firewall will be conducted. The two basic technologies of a firewall are packet filtering

and application proxy gateways [9]. Packet filtering is sorting all of the incoming traffic

which based on where the packet needs to go. If a packet is going to a port that it should

or should not be, then firewall will decide to let the packet pass. or not. An application

proxy gateway is a more complex system. It will act as middle man between the client

and the data received or sent. The application proxy gateway will decide if the data

should pass based on the data, not its destination. These technologies are implemented

in either hardware architecture or software architecture.

The hardware architecture is a physical machine that is the firewall. It is a

physical point between the home user or commercial user and the internet. The firewall

will be the user's first line of defense. The software firewall is a program that is installed

on the user's machine. The currently most used firewall is software firewalls because

they offer easier set up configurations for most users. A hardware solution is usually

better because of the greater customization that can be done with a physical firewall. The

physical firewall usually intimidates home users by its cost and sometimes quite

confusing set up configurations. A technician who is capable of such tasks is usually

hired to configure such a solution. Companies are the ones who more often implement

hardware solution firewalls. With the technological advances, users are exploring other

solutions for security [2]. Some of these solutions include "intelligent" firewalls. The

types of firewalls are usually referred to as Intrusion Detection Systems (IDS). Another

16

popular method of security is ensuring binary file integrity. These two methods will be

discussed next.

2.1.2 Intrusion Detection Systems

IDS were developed in the early 1990's when the occurrence of intruder attacks

were on the rise. IDSs were developed in order to block or alert the user that the system

is being invaded. IDSs are still infantile in research compared other areas of research.

The early forms of research in protection from intrusions were firewalls. Perdue

University and the Brandenburg University of Technology at Cottbus have made

considerable amounts of contribution to the research of IDS. Some common

characteristics of an IDS are unsupervised capabilities - the IDS must be able to run

without user intervention - , fault tolerance - resistant to a system failure or sudden

power loss - , resist subversion - must be able to resist an intruder's attempt to be taken

over - , minimal overhead - use little system resource so the machine can operate at

optimal performance - , observe deviations - be able to catch when a sudden change

occurs within the system - , easily tailored - be simple enough to change or customize - ,

cope with changing system behavior - if new programs are installed by the user the IDS

must recognize it as a normal change - , and difficult to fool - not be tricked by an

intruder that they are a valid user [4]. However, there is one major drawback to the IDSs,

there needs to be someone monitoring them for a large part of the day. With more

advanced tools available for people to create viruses and find ways to exploit existing

software, a trained professional would need to be involved with the IDS and be able to

distinguish between a real threat from a false alarm. [16]. There are two specific IDS

models that will be discussed, anomaly detection and misuse detection.

17

There are two specific models used when implementing an IDS, they are anomaly

detection and misuse detection. The anomaly detection model looks for any deviation of

system behavior that is not normal, such as an irregular service that may be running. The

misuse model will look for users or intruders that are trying to access parts of a system

where permission is otherwise denied. These models are only half of the process. A

form of artificial intelligence must be chosen in order to carry the automated tasks of an

IDS. Experts Systems and Autonomous Agents are the two most popular choices for

implementing such an IDS.

2.1.2.1 Expert Systems

Expert Systems have been in development since the mid 1970's. An expert

system is a set of rules that apply to a specific area of expertise, hence expert systems.

One would only ask a doctor about fungi diseases, not a chef. So the expert system only

has knowledge that is specific to its area of expertise. One of the first Projects developed

using the expert system was the MYCIN project [1]. It was system that could produce

medical diagnosis of blood infections based on certain answers it was provided. Other

systems such as the Ventilator Manager (VM) and TEIRESIAS were also expert systems

developed around a medical knowledge. An expert system can be classified as a

technique for detecting intrusions, while its counterpart autonomous agents are an actual

technology. This technology can implement expert systems or any other type of

technique available for detection.

18

2.1.2.2 Autonomous Agents

Autonomous agents have been around since the 1990's. Agents were mostly

introduced for distributed purposes; however, the use of autonomous agents has spread to

many other applications. The idea of the autonomous agent is that it is completely

independent. The agent should be able to run effectively and efficiently enough to

support itself, and at the same time be able to interact with other agents within the same

system. A system can be composed of several autonomous agents that can effectively

communicate with each other in order to process a job or monitor events [1]. With these

artificial intelligent approaches, projects such as Adaptive Intrusion Detection (AID) and

Autonomous Agents for Intrusion Detection (AAFID) have been implemented.

2.1.2.3 Adaptive Intrusion Detection (AID)

AID was a research project done at the Brandenburg University of Technology at

Cottbus from 1994 to spring 1996 using the UNIX environment. The environment

consisted of agents that gathered audit data from workstations and sent the data to a

manager where an expert system analyzed the data in order to interpret. The data sent

from the agents to manger was transferred using secure RPC. The AID system was

platform independent and could process more than 2.5 megabytes of information per

minute [26].

19

2.1.2.4 Autonomous Agents for Intrusion Detection (AAFID)

The AAFID was originally released in 1998 and has released AAFID2 in 1999.

This system is developed in a scripting language called Perl version 5. The system has

built-in agents and monitoring rules ready to run "out of the box". The system has been

tested in the UNIX environment and is currently in testing for the Windows environment.

These agents sole job is to monitor either network environment or individual machines

alerting the user when there is an anomaly detected. These research projects have

progressed tremendously over the last few years, but commercial products are not far

behind implementing their own proprietary code to sell on the market.

2.1.3 Binary File integrity

Binary file integrity is any method that ensures that a binary file - such as

executables or even office documents - has not been altered in any way. There are many

reasons users want to have file integrity. The most important reason is for security. If an

executable has been changed to do something other that its original design, a user could

suffer loss of control of their machine, or worse loss of data. Also, users can use the

methods of file integrity to guarantee that the files received are from other trusted users.

Digital signatures and the public key infrastructure are types of authentication strategies

that are used. The most common form of file integrity checks is the verification of a hash

sum.

20

Hash sums are mathematical formulas that produce checksum sums of files and

produce a hexadecimal format number that is unique to a file. These numbers can be

used to verify that the file is the same as when it was checked the last time. There are

several hash functions available to use in order to complete an integrity check. The most

popular method to use for file integrity is Message Digest version 5 (MD5) that was

produced by Professor Ronald L. Rivest of Massachusetts Institute of Technology (MIT).

RFC1321 explains that the MD5 algorithm takes an arbitrary file and produces a 128 bit

"fingerprint" or "message digest" of the input [27]. The algorithm was originally

intended for digital signatures. Other algorithms exist as well such as the Secure Hashing

Algorithm (SHA 1) and RIPEMD-160 hash function.

These other algorithms have been developed in order to add to the security of

creating more unique numbers of a file and guaranteeing its integrity. The SHA 1

algorithm produces a 160 bit output of a file. The SHAI has been officially adopted by

government as the Secure Hash standard of the Federal Information Processing Standard

(FIPS) and is specified in RFC31 74 [28]. The RIPEMD-160 is also 160 bit but it has not

become any standard. These hashing algorithms are available for use through various

applications. The market has various software applications for computer security.

2.1.4 Commercial Security Products

Available commercial firewall solutions include Symantec's Norton Firewall and

Microsoft Windows XP built-in firewall. Also, available commercial IDS products on

the market are Symantec Intruder Alert, Microsoft's IDS, etc. Applications that perform

21

file integrity checks; Tripwire is one of the more popular programs on the market. There

are several other products that exist in each category in the market place. Concerning

Tripwire, it is both a commercial product and an open source product. Tripwire is a

program that will check your programs to make sure that none of them have been

modified by an intruder to do something different. This is done by taking a snap shot of

your system programs. Tripwire also has Tripwire for servers available with a

centralized management console to handle administration and monitoring. The decision

of which tools should be used is based on the ease of use, amount of money to spend, and

the support and documentation available to the user. Another alternative to spending

money is using open source products.

2.1.5 Open Source Products

Open source products are free to use but there are some down sides for the

average users. Even though these are free to use, the documentation may not always

prove to be complete useful. Some open source projects have great documentation while

others appear to lag in that area. Sometimes, numerous searches must be done on the

internet to find crucial information about the open source application. Using open source

software packages are usually developed for the Linux operating system. There are many

versions of open source firewalls, IDSs, and file integrity applications available for use.

Tripwire is one of the few applications that have a closed source application and an open

source application. All the applications mentioned could also be used to perform

computer forensic analysis.

22

2.2 Computer Forensics

Computer forensics is a growing field in today's society. Computer forensics is

the act of analyzing a computer system by a serires of analysis ranging from searching all

log files to performing a bit by bit search on a hard drive. As mentioned, intrusions are

becoming more and more frequent. Once a machine has been compromised, there are

some decisions that must be made. First, depending on the severity of the intrusion, is it

worth the time and effort to take a production machine offline in order to analyze it.

Second, does the analyst have permission to do so? Third, how will the analyst save

volatile data if it is pertinent to the analyst? These decisions are debatable even today

[3]. After vigorous decision making, assuming the analyst has the permission to go a

head and do the analysis, the analyst must make sure not to modify the data in anyway. If

the evidence is to be presented in court, then the analyst must be sure to keep the original

state of the information they collected and analyze a copy of the data.

2.2.1 Legal Aspects

More and more legal cases are using evidence that is obtained from a seized

computer. The information obtained from these computers can be critical. If an

investigator does not follow the exact procedure; or if the investigator accesses the hard

drive in such a way that data is lost, the evidence will not be admissible [3]. The

investigator needs to be aware that they should be a analyzing a copy and not the original.

23

There are several ways to make copies of hard drives. There are commercial and open

source versions of these solutions.

2.2.2 Commercial Products

One of the more popular choices for forensic tools is Encase suite. Encase is a

comprehensive suite of tools that will allow the imaging of hard drives and aid in a

detailed analysis of these hard drive images. The analysis would help develop a time line

that would aid in the approximation of the point of entry of an intruder. Although

popular, Encase is quite expensive. There are several other forensic tools besides Encase

such as the computer incident response suite from New Technologies Inc. (NT!) and

TapeCat from Sanderson Forensics located in the United Kingdom (U.K.). Many are for

commercial use, but there are open source tools as well. Some of the most popular open

source tools are offered from the company @stake. This company specializes

particularly in security. They offer many security auditing utilities and many forensic

utilities. One of the more popular @stake tools is The @stake Sleuth Kit (T.A.S.K)

along with Autopsy - a graphical web-based front end for T.A.S.K. [29]

2.2.3 Open Source Products

The T.A.S.K application is a command line driven utility that will analyze images

of hard drive. It will support both UNIX/Linux environments and Windows

24

environments. Within this package, an analyst can look at low level file systems and find

evidence that an intruder may have tried to delete files or tried to cover up their tracks

with another program. This tool is very versatile in how it can manipulate the image.

The Autopsy Forensic browser is a simple web page that will interact with T.A.S.K.

making a powerful combination that allows a complete forensic analysis [30]. These

tools as well as many other tools are freely downloadable for users or system

administrators to use. The author's intent is to create an open source application freely

usable to the public. The next chapter will discuss the layout of the open source

application Software Integrity Management.

25

CHAPTER III

SOFTWARE INTEGRITY MANAGEMNENT DESIGN

3.1 Initial Design

The early stages of the application included the creation of a module inserted into

the existing forensic tool T.A.S.K to add more functionality. This tool would only be for

the LinuxlUnix platform. The insert would perform "wizard like" operations to simplify

the tedious work of a forensic analyzer. A forensic analyst could spend numerous man

hours searching through log files in order to find the point of entry of an intruder without

knowing where to begin. This module would aid the analyst in finding a starting point.

The module would scan an image of a mounted drive and perform hash functions on

common binary files of the mounted image and compare them with the hash of known

good binary files. The operation would also complete a comparison analysis in order to

determine which operating system distribution was being analyzed. The benefits of

knowing this type of information could be used in order to help give the analyst a starting

point. To accomplish this type of task there were two major factors that would have to

happen. There would have to be a repository of such information that could be easily -

and securely - accessed by a client machine. See figure 3.1 for the initial design layout.

Many draw backs and limitation to this model design were found from the start.

26

Laptop

Repository of
Files

Contact Server

Workstation

Figure 3.1 - Initial Design Layout

First, with the various distributions of LinuxlUnix it would be very hard to find a

comprehensive repository of the binary files for one distribution. If such a repository

existed, the amount of information searched would be become numerous and slow down

processing time. Also, there is no redundancy for the repository. If the machine where

the repository was stored ever failed, the module would be useless. Also, not every user

of a personal computer would have the knowledge and experience of a security expert.

For these reasons, an alternate design was needed in order to address these issues. Also

the design should include a way to run on Windows compliant machines as well as Linux

27

compliant machines. Most users currently use Windows, and it would be beneficial for

these users to have access to an application that would serve as a computer security utility

and/or forensic helper. The alternate design created would include these enhancements

and become a stand-alone application.

3.2 Alternate Design

The new design created was titled Software Integrity Management (S.I.M.). The

S.I.M. application would solve all of the drawbacks of the initial design. The layout for

S.I.M. is a distributed model. There will be an ability to have multiple clients that will

calculate two hash functions for each binary file on their system - message digest version

5 and secure hashing algorithm 1 - and send the files off site to multiple servers. There

will be two servers - one for each hash function respectively - that will hold a flat

database file for each client node it serves, see figure 3.1. The files will be read only in

order to keep write protection limited to the server portion of the application. Also, each

file has a date last modified field that will help ensure that the files have not been altered

by any outside source. Each client node will have a database file on each server that is

uniquely identified by a combination of the client's IP address, the client's machine

name, and hash sum of the client's IP address. The dual files imitate a mock redundancy

for each client node which will provide fault tolerance in the case of a hardware failure of

either the client or the server; or a compromise of one of the server nodes or client

machine. There were specific goals in mind while designing the architecture of the

application.

28

The intended of the application were the following. First, to create a software

package that would support multi-platform usage seamlessly with client level control.

Secondly, to have an interface that would allow ease of use for any user with any level of

experience or knowledge. Lastly, to the lay ground work for future implementations of

an intelligent analyzer that will help users maintain the integrity of their operating system

files. In order to address the goals of the author, the application was implemented in the

following way.

The menu interface will have as few choices as possible to allow less confusion

and more understanding of the application function. The chosen language to implement

the application was java since the class files generated are created in byte code and can be

executed on any given machine with the aid of a virtual machine. The classes intended to

be used for the software package would be a client class, server class, and menu class.

These few classes were designed in order to add ease of use, flexibility, and reusability

for the application; however, having such few classes and needing a virtual machine

caused some limitations to the application package.

29

Store I Review
Checksums

Contact Hash
Server

Laptop

Store I Review
Checksums

Contact Hash
Server

Workstation

Figure 3.2 - Alternative Design Layout

3.3 Limitations

Running class files using a virtual machine is generally slower since the byte code

has to be interpreted by a virtual machine. If the code was converted into native machine

language, then the processing time could be saved when computing the hash functions.

Particularly Windows has many executable files in the root system folder which is either

"WINDOWS" or "WINNT". Linux binary files have multiple directories with normal

30

user binary files and administrative user binary files; however, the time to calculate hash

sequences of the Linux binary files is usually less than the time it takes to calculate the

hash sequences on Windows binary files. Since the application's goal is to be efficient

on a multi-platform level, an element of speed would need to be incorporated.

The class design was also a limiting factor because the amount of methods that

filled each class became numerous. More often than not another ''useful method" would

be thought of to make the application more user-friendly. The classes became

overwhelming to sort through all of the methods. Because of ''bloated'' classes,

confusion about the state of the program would be encountered. The classes would need

to be further broken down into more classes in order to establish the reusability of the

application as well as the organization and fundamental characteristics of being an object

oriented program. With these two major revisions, the software package would be able to

run in less time with more efficiency.

3.4 Revised Design

The revisions will consist of two main factors. The software will be compiled

into machine executables for Windows and Linux; and the application will be broken into

more classes for more reusability and efficiency. The gnu GeJ compiler will be used to

compile the software into native machine code. The gnu GeJ compiler is packaged with

the gnu Gee compiler version 3. This compiler will convert Java code into native

machine code for Windows or Linux. The windows version is of GeJ can be used with

31

Cygwin - a windows compliant tool kit with Linux utilities. By creating the binary files,

process time will shortened immensely.

The classes will be broken into the following classes: client, md5Server,

shal Server, secureHash, integrityCheck, transport, generateList, menu, menuChoices,

menu, keyboard, functions, directory, choice 1 , choice2, choice3, reget, resend, and

drivers for the client and server side applications. The same basic system from section

3.1 is still applicable even when several classes exist. By expanding the class list, future

enhancements of each choice is simplified. Also, if more choices needed to be added for

future functionality, they could be added easily. A more detailed explanation of each

class and implementation is covered in the next chapter.

32

CHAPTER IV

IMPLEMENTATION

The choice of object oriented language for the implementation was Java. Java is a

language that was designed by Sun Microsystems in order to be a multiplatform

programming solution for creating applications. With this flexibility, the project could

be written in such a way to be compatible with Windows compliant machines and Linux

compliant machines.

4.1 Initial Implementations

Some of the early implementations included using PERL to create and insert a

module into the T.A.S.K program created by the @stake organization. This PERL

module would be a "wizard" for the T.A.S.K utility used to search a mounted image and

help complete a forensic analysis. The module would scan all binary files in the common

system paths and calculuate several hash values of the files. These files would be used to

compare to a repository of known good system binary files in order to narrow down what

operating system was being analyzed and if there were any changed binary files before

the system was shut down. Later, the program became a standalone Java program that

would perform the forensic analysis without the aid of T.A.S.K. The next phase would

implement servers that would store large database files of different workstations for the

Linux / Unix operating systems only and their corresponding hash value. There would be

33

a total of four hash algorithms used. The last revision before the final project was

solidified into its current state was to make the a program that would manage software

integrity by using four hashing algorithms to check the integrity of the binary files and

storing the database files offline on four servers each corresponding to a hash algorithm.

The total number of algorithms used was reduced to two since the remaining two

algorithms were available in the Java language.

After final revisions of design layouts and choice of language for the final project,

an initial implementation of the project had begun using Borland Jbuilder version 8

personal edition. This Integrated Development Environment (IDE) was chosen because

of three reasons. First the author was more familiar with this particular IDE. Secondly,

the IDE generally had a faster response time than previously used IDEs. Thirdly, this

particular IDE included the Java Library version 1.4.1 that would be used to implement

the application.

4.2 Java Libraries

The Java Library used was version 1.4.1. This version of the library has many

useful features that the project took advantage of. Some features that were used were

standard built-in hash methods of Message Digest version 5 (MD5) and Secure Hashing

Algorithm 1 (SHAl) that are part of the Java Security package. Another useful method

that the String class offered was the "split" method. This method would split a long

string based on the regular expression or character (s) given in the argument. These

methods were essential to the functionality of the project; however, a special split

34

function was written in order to remedy compatibility issues in a GNU compiler used that

will be discussed in section 4.5. The overall project was programmed into a Java

package. The Software Integrity Management (SIM) package was created in order to

make the usability and portability of the project simple.

4.3 S.I.M. package

The S.I.M. package's organizational structure is composed of the sim directory

and two subdirectories named agents and interfaces, see figure 4.1. In the agents

directory there are a total of seven classes - client, md5Serer, shalServer, generateList,

secureHash, integrityCheck, and transport - which are the vital components of the S.I.M.

application. The interfaces directory consists of ten classes - menu, menuChoices,

choicel, choice2, choice3, keyBoard, functions, directory, reget, and resend - which is

the rest of the S.I.M. application. The interface directory of the package is responsible

for the interfacing with the user. Information is received through the interface and the

necessary agents are created for execution from the agents directory. The class

functionalities are as follows.

The menu class handles displaying the menu for the program's command line

interface choices. The menuChoice class handles the choices passed from the menu

class. Each choice class handles the respective choice. The keyBoard class is

responsible for handling keyboard input. The functions class is responsible for handling

any special function needed by the S.I.M. application. The directory class handles

functions performed for adding, editing, and deleting custom directories; however it will

35

not be implemented in this version of S.I.M. because of the added complexity from the

user perspective. This will be discussed in the next section. The reget and resend classes

are responsible for handling if files needed to be re-sent to the servers, or re-received

from the servers. The client class handles the interfacing of secureHash class and

integrityCheck class with the client machine. The md5Server class and shal Server class

are used to run remote servers. The secureHash class handles the hashing of the binary

files for the S.I.M. application. The integrityCheck class handles the checking functions

used to detect any integrity breaches. The generate List class is used by the secureHash

class and the integrityCheck class in order to generate the list of common binary files of

the client machine. Method summaries for each class can be found in Appendix IV.

36

Software Integrity
Management I SIM

<':/<

interfaces agents

menu keyBoard client sha1Server

directory functions secureHash md5Server

choice1 choice2 inlegrityCheck generateList

choice3 menuChoice transport

resend reget

Figure 4.1 - Organizational Structure of S.I.M.

4.4 User Interface

The user interface for the SIM package is command line driven. There are 2 main

options. 1.) Begin Secure Hash, and 2.) Check Integrity. Figure 4.2 shows a screen shot

of the interface menu. The option to add custom directories has been omitted because

this version of S.I.M. is focusing on the simplest interface for users; however the feature

37

is note worthy to mention since there are several future features that can be implemented

with the

Figure 4.2 - S.I.M. User Menu

directory class. These options provide flexibility to the user so that custom directories for

user programs and binary files may be added. The overall performance of the application

will be decent and use a larger portion of processing time since the application is

dependent on a virtual machine. The slightly slower processing of Java comes from the

fact that the class files are in byte format and they have to be interpreted rather than a

program written in CIC++ that uses the processor directly. See Figure 4.3 for option I

execution example.

38

Figure 4.3 - Execution of Option 1

An alternate method to the virtual machine is to compile the program using the GNU

compiler for java (GeJ). The next section covers more detail about GeJ. A Graphical

User Interface (GUI) is planned for the next version of the application. If a GUI is

developed for this version, benefits of the desired compiler GeJ will not be realized since

the current version cannot create window components from Javax library.

39

4.5 GNU Complier for Java

The GNU GCJ compiler is available at http://www.gci.org for free usage under

the General Public License (GPL). The project has become part of the GCC suite since

GCC version 3. GCJ has the ability to compile Java code into native machine code

whether Windows or LinuxlUnix. By doing this, the virtual machine is eliminated.

Processing time is tremendously reduced when the virtual machine is eliminated and the

Java code is converted into native machine code such as C or c++. There are a few draw

backs to using GCJ. One is that GCJ will only convert Java code compatible with library

version 1.3.1. Also, the compiler does not convert Javax or swing components into

native windows of the operating system environment. This severely limits the code to

command line interface only, and some of the Java functionality will be unusable.

Overall, GCJ is good to use to speed up the processing time of the program. Detailed

testing is discussed in the following chapter.

40

CHAPTER V

TESTING

Although there were many initial testing intervals to test the functionality of each

class developed during the creation of the S.I.M. application, the major testing of the

application consisted of three phases. The first phase was testing the speed of

computation for the binary files on a machine in order to confirm the overall performance

of reading and calculating the desired hash sums. The second phase consisted of

verifying the accuracy of the S.I.M application in terms of its ability to detect extra

binary files installed andlor changed binary files on the system. The final phase consisted

of testing the interaction of different client versions, i.e. using the virtual machine version

or using the compiled binary version, with the servers. Several pieces of equipment were

needed to complete these phases.

The equipment used in the testing phase included two Dell Dimensions 2100

machines, one Libranet Linux 2.8.1 machine, and one Debain 3.0 Linux machine. The

two Dell machines were Intel Celeron 1.1 GHz processors, 256 Megabytes of RAM, and

a 40 Gigabyte hard drive. The two server machines hardware configurations were not as

important because the performance was analyzed on the client side. The two servers

were available to client machines via a 10/100 megabit network. Bandwidth was of no

concern since very limited client machines would be accessing the servers. Also, during

the first two phases the server machines were not used so a controlled environment could

be created for the test clients. The above hardware used in the testing phases has some

41

effect on phase I because not all machines are of equal speed. All results of phase I

following is based on these hardware configurations. The following section will discuss

the computational speed of each of the versions of the S.I.M. application.

5.1 Testing Phase I - Computational Speed Test

Phase I was set up as follows, two client machines - one with Windows 2000

Professional Edition and the other with Debian Linux 3.0 Testing version - were

configured with minimal installation options as well as the Java Runtime Environment

version 1.4.2_04. Both ran the S.I.M. application fifty times each with the runtime

environment and both ran with a compiled binary executable without the assistance of

any virtual machine. Table 5.1 shows sample data of the time trial runs. The time is in

the format of milliseconds in the table. For example Trial 1 under column 2 completed

the hash computation in 285,871 milliseconds or in approximately 4 minutes, 45 seconds,

and 87 tenths of a second. For the complete set of test data refer to Appendix I.

Table 5.1 - Sample Trial Times in Milliseconds

Test Windows Debian Linux Windows Debian Linux
Runs with with without without

Java Virtual Java Virtual Java Virtual Java Virtual
Machine Machine Machine Machine

1 285871 166120 266564 208432
2 250770 154417 216451 207559
3 250209 156357 214778 222299
4 252663 155404 216241 121199
5 251602 156871 215009 120506
6 252673 155415 214719 120792
7 250520 154867 215570 120536
8 251481 155590 215050 121292
9 250501 155129 216411 120459

10 251883 155162 216392 121116

42

Each time was acquired by use of the Calendar class in order to get an instance of

the time before the hash method was invoked. After the hash method was finished, the

Calendar class was used to take another snapshot of the current system time and compute

the difference between the two times. The times were then appended to a file in the local

directory in order to view later. There were some difficulties implementing the time

capturing function since the capturing had to be compatible across multiple platforms.

The main difficulty was discovering how to find a class that would return milliseconds

and operate correctly in both environments. The other difficulty was making sure that the

classes used were implemented in the version of GCl used to create the binary files.

Four T distribution tests were conducted to test the significance of the variables in

relation to whether or not the virtual machine had an influence, the operating system had

and influence, or a combination of the two factors had an influence. The results from the

Minitab output are as follows.

Two-Sample T-Test and CI: Time I , WindowswithlwithoutVM
Two-sample T for Timel
Windowsw N Mean StDev SE Mean
o 50 217648 7396 1046
I 50 252332 5167 731

Difference = mu (0) - mu (l)
Estimate for difference: -34684
95% CI for difference: (-37220, -32148)
T-Testofdifference = 0 (vsnot =): T-Value = -27.18 P-Value = 0.000 DF = 87

Two-Sample T-Test and CI: Time2, LinuxwithwithoutVM

Two-sample T for Time2

Linuxwit N Mean StDev SE Mean
o 50 126372 22114 3127
I 50 158646 14126 1998

43

Difference = mu (0) - mu (l)
Estimate for difference: -32274
95% CI for difference: (-39655, -24893)
T-Test of difference = 0 (vs not =): T-Value = -8.70 P-Value = 0.000 DF = 83

Two-Sample T -Test and CI: Time3, VM

Two-sample T for Time3

VM
o
1

N Mean
50 158646
50 252332

StDev SE Mean
14126 1998
5167 731

Difference = mu (0) - mu (1)
Estimate for difference: -93686
95% CI for difference: (-97939, -89432)
T-Test of difference = 0 (vs not =): T-Value = -44.04 P-Value = 0.000 DF = 61

Two-Sample T -Test and CI: Time4, NONVM

Two-sample T for Time4

NONVM N Mean StDev SE Mean
o 50 126372 22114 3127
1 50 217648 7396 1046

Difference = mu (0) - mu (1)
Estimate for difference: -91276
95% CI for difference: (-97875, -84678)
T-Testofdifference = 0 (vs not =): T-Value = -27.68 P-Value = 0.000 DF = 59

Essentially the four means are significantly different from each other according to

Minitba. Figure 5.1 shows a graphical display of the results.

44

Windows VS Linux Vs VM VS NonVM

260000

240000
VI
'C 220000 c
0
u 200000 Q)
tn

....-Windows --
-S 180000

--Linux c 160000 --
Q)

E 140000 i=
120000

100000

VM NonVM

Figure 5.1 - Results of Comparing the Time Averages with the Four Factors

Most cases the test results were consistent as far as computational time is

concerned. The average running time for Windows with the Java virtual machine was

252332 milliseconds. The average time for Windows without the virtual machine was

217648. The client machine was newly installed and had few programs installed except

for the Java runtime environment. Most users have several thousand binary files in their

Windows directory and Program Files directory. As the number of files increase, it

would be likely to see an increase in the time for computing the hashes. The binary file

was compiled using GCJ - a suite of Linux development tools that are Windows

compliant - and then copied over to the client machine. It should be noted that the

classpath had to be set to "." in order to make GCJ function properly. The commands

used to create the executable file are as follows:

45

export CLASSPATH=.
gcj -c driver java simlagnetsl *java simlinterfacesl * java
gcj --main-driver -{) driver.exe *.0

Next the Linux Environment and its time trial phase will be discussed.

Linux has traditionally been an environment for development and this made it

easier to make changes and add some nicer features when dealing the Linux environment.

The average time for the S.I.M. application running with a virtual machine was 247,024

milliseconds, and the average time for without a virtual machine was 216,910

milliseconds. This was truly significant since it was the opposite with the Windows

environment and the outcome was what was expected. However, the Linux environment

had some issue of its own.

To start, not every Linux machine has GCJ although it is quickly becoming

adapted by the GNU organization and being integrated with the standard GCC suite. But

having GCJ is only part of the issue for Linux machines. The developers of GCJ are

implementing the Java libraries to into code that can be converted to machine code at

compilation time. The full library is not yet implemented, but most of the features the

S.I.M. uses are standard enough to not need anything special. For that very reason, the

functions class was created to handle things that were not available.

When the time came to test the Linux binary, everything went well except for the

fact that no directories could be read for binary files. With further investigation, it was

discovered that the Java security library had only been implemented in GCL version 3.3.0

or higher. This was definitely a problem since not every Linux machine is the same.

With the help Yin dong Yu, a configuration file was created using autoconf in Linux that

would test for these packages to make sure the machine was able to run the S.I.M.

46

application. In the process a Makefile is created that will be able to "clean" or "make"

the client or the server binary file. Once these files and source code files were put

together, a gzipped tar file was created in order to be portable to any Linux machine in

order to run the S.I.M. application. There is some noteworthy information that should be

taken into consideration as far as the speed is concerned.

The Windows client machine only read two directories while the Linux client

machine read six directories and still computed the hash sums faster with and with the

Java virtual machine. The fact must be stressed that these both were very basic installs

and these time trials were based on minimal amount of binary files installed. With

regards to Windows, there are several binary files that get installed with general web

browsing and the fact that many people like to download different programs and try them

out. Keeping this in mind it was realized quickly that the amount of binary would

become numerous and take an extreme amount time process all of them. Generally in the

Linux environment only needed tools are installed, however, there are some users that

may like to install several programs to test them out. Both operating systems would

experience high computations time with the increase of binary files, but Windows would

suffer extremely more since most users just install programs here and there. Usually a

Linux operator will like to compile things by source; and if the user prefers to use binary

installation files, generally there are not a lot of binary files that have to be installed.

Testing phase I was a success in proving that Linux provides a bit more robustness for

processing and computation. After the completion of the testing phase I, the accuracy of

the integrity check was to be tested in phase II. The next section will discuss the results

of testing phase II.

47

5.2 Testing Phase II - Accuracy of Integrity Check

Testing phase II consisted of runmng the application and changing or

adding/deleting binary files. This phase was only conducted on the Linux system rather

than its counterpart Windows. There were two reasons for this decision. First, the S.I.M.

was written in Java so it has cross-platform capabilities which means the same integrity

check algorithm will be used for either operating system. The second reason is for the

obvious speed the Linux environment was capable of producing. It should be noted that

these tests were also conducted on the client machine entirely to have a controlled

environment. The Java code was simply modified to not delete the files to be sent, and

only use the local machine for sending files to the server and receiving files from the

server.

In order to test the accuracy of the integrity check, there were two things to keep

in mind. First the original files of the machine scan would not be altered or deleted in

order to have a base line of the good binary files. Second, the files altered were copies

from the original base line which were used during the integrity check. Realistically, the

files would reside on two different servers and the local file that contains the good binary

files would also be deleted upon completion of the transmission to server. There are

several possible combinations in which the check could be completed. There is the

possibility that only the md5 file is good and all decisions are based on that file; or there

is the possibility that only the shal file is good and al decisions are based on the file. The

last combination is that both are checked simultaneously and a decision is based on that

48

comparison. These three main groups of comparisons are dictated by the initial check of

the integrityCheck class.

When the files are transferred to the client an initial check of those files are

checked to make sure they are 1) the same length and 2) have the same binary file paths.

If they do not meet the criteria, the servers are contacted and the server that possesses the

file with a date that is least recent will be the file used for the comparison. From then on,

decisions are based on the integrity of that particular file. This unique feature about this

process is that one of the files from the multiple servers will generally be guaranteed its

integrity. This means that it is unusual for both servers to be compromised at the same

time. Once the decision about which file is going to be used, there are four possible

decisions to be made. The system is either 1) good and resubmits both good files to both

servers replacing the old files, 2) the system has detected extra binary files and advises

the use to make sure no one has installed something without their permission, 3) the

system has detected altered binary files and advise immediate action for the use, or 4) a

combination of two and three.

These options are also available in the event the files pass the initial file check of

the server files. Naturally, there were three main tests for this testing phase. There is the

test of using the md5 file solely, using the shal file solely, and using both files to

determine if the system binary files are valid. Table 5.2 has sample information about the

test results from these various test. Only ten tests of each segment were completed. The

full set of results can be found in Appendix II.

49

Table 5.2 - Sample Results from Accuracy Test

Trial Detected extra Detected changed Detected both extra files
binary files binary files and chanjled files

1 Pass Pass Pass
2 Pass Pass Pass
3 Pass Pass Pass
4 Pass Pass Pass

It was not as extensive as the time trials since integrity checks should not result in

detecting changes frequently; however, it is an important test to make sure all of the

functionality is working properly. Also, while difficult to quantify the accuracy test, it

should be noted that more testing samples from outside sources should be used to

calululate a more quantifiable number. It was discovered that one of the methods had

cause the application to crash because of index issue with an array. Phase II was helpful

in testing the overall performance and validity of Java of the Java code of the

integrityCheck class if nothing else. Lastly, testing phase III - client interoperability -

will be discussed in the next section.

5.3 Testing Phase III - Compatibility Check of Client Versions

Testing phase III consisted of testing the client interaction with the server over a

true networking environment. Two Linux servers were used for the servers, and the

Windows and Linux client machines were used to test the client functionality. Each of

the four clients was used to interact with the servers to make sure there were no

compatibility issues between client versions versus server version. The results of this

testing phase proved there were yet more factors that affect the networking environment.

50

All four clients could successfully compute check sums and send the files to the network

server machines flawlessly. It was only when changing the server files and testing the

integrity option that one issue arose.

The issue was concerning the last date modified aspect of the process. When the

files are changed they are time stamped by the server with the time of the last

modification. This is an important feature since the S.I.M. application will use those

dates in the event the files do not pass the server check. If the files fail the server check,

then the last date modified is used to decide which hash file will be used to decide the

security status. If the last date modified is wrong, then the integrity of the files is lost.

This made it clear the servers had to have the exact same date. Most servers use a

centralized time server such as the server from the National Institute of Standards and

Technology (NIST). For these test cases, ntp.louisville.edu was used as the time server

for both of the servers. Once the date was remedied, the integrity checks went as well as

the accuracy checks in testing phase II. Table 5.3 shows the results of mixing the client

and server versions. All interactions had passing results. There was also some software

flaws discovered during this testing phase.

Table 5.3 - Client Interoperability Test Results

Trial Java Client and Java Client and Binary Client and Binary Client and
Java Server Binary Server Java Server Binary Server

1 Passed Passed Passed Passed
2 Passed Passed Passed Passed

3 Passed Passed Passed Passed
4 Passed Passed Passed Passed
5 Passed Passed Passed Passed

During test phase III there was also a bug in the program. There was a class that

would take care of any re-submission of hash files in the event of one or more servers

51

being unreachable, and it functioned as expected with option number 1. However, when

this class was used to re-submit files during an overwrite procedure in option number

when one of the servers was down; it was discovered that the resend class would not

work properly in the event of this error. This error was not critical because the server

would have to go down directly after be asked for the date last modified of the server file.

lt is not impossible that this could happen, but it is a very low possibility.

Test phase III proved not only useful for the client interoperability, but it also

revealed some of the pitfalls that server administrators would have to be aware of as well

as some program bugs. Both servers could have approximately the same time, but it is

recommended that both servers have the same time server and update simultaneously in

order to prevent the wrong actions from happening in the integrity check option. Overall,

all testing phases were successful. Problems were encountered throughout all three

phases, but there were enough resources available that quickly helped remedy these

problems. The final chapter will overview the results with a conclusion with a section

suggesting some future research possibilities.

52

CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This chapter will overview and summarize the testing results of the three phases,

and it will also comment on the discoveries made during these testing phases. Also, the

author will explain details for future research that the S.I.M. application could create for

other areas of research.

6.1 Conclusions

Overall the S.I.M. application functioned well during the time trials, accuracy test,

and the client interoperability test. First the time trials will be discussed, then the

accuracy test will be discussed, and finally, the client interoperability test will be

discussed. The time trial test results show that the client applications are suitable for both

Windows systems and Linux systems. However, the Window systems can have several

binary files installed that increase the amount of time to compute the hash sums. The

performance of the Windows system will be evaluated and some recommendations will

be suggested.

The performance of the client side of S.I.M. for the Windows platform was

successful. The Java virtual machine and the stand alone executable both functioned

properly during the testing phase. Test results show that the binary executable was faster

53

while processing the hash algorithms. This result becomes important since the speed of

computing will become an issue for machines with several binary files. There are a few

recommendations that will help with the usability of S.I.M.

The recommendations from the performance testing are as follows. The user

should run S.I.M. as a background job while other applications are accessed. Task

manager wizard can be used to create a job that the S.I.M. application can run

periodically. Last, it is recommended by the author for the Windows client machines to

use the binary executable file. This client is chosen for two main reasons. First, the user

can easily take the single binary file to any Windows platform machine and run it like

any a normal program. The distribution would be effectively achieved by a common

network share where the file could reside. The second reason is because when GCJ is

released in later versions, more of the overall functionality of the Java libraries will be

available. It also means that a graphical user interface would more feasible because the

window will be able to run optimally on the native OS. Next, the time trial tests on the

Linux platform will be discussed.

The S.I.M. application ran successfully in the Linux environment. Both the Java

client and the binary file functioned accordingly. The binary file is not referred to as a

stand alone because it is not a type of binary that could run on any Linux machine. As it

was shown in testing phase I, there were compatibility issues between GCJ versions.

Also, when Linux binaries are created, they are linked to shared library files that reside

on that particular system. F or this reason a Linux binary could not be moved to another

Linux machine because of the chance a library file might not exist or the chance that the

54

versions might differ. Most of these issues were resolved when the configure file and the

Makefile were created in order to make the distribution of the S.I.M. application easier.

The binary file was faster - as was expected - during the time trials in the Linux

environment. Considering that the Linux client read four directories as opposed to just

two from the Windows client is a significant point. The Linux environment proved to be

more robust and efficient - even with the compatibility issues encountered - for the client

to operate. Any client type would work for the Linux environment with no problem, but

the binary client would be the first choice of the author. Both write the hash files in the

same manner, so the clients have the ability to be used interchangeably. Also, the binary

version does not exempt the same symptoms as the Windows binary version. If the

developers of GCJ updated the library files, it easier for a Linux machine to run a

command such as apt-get upgrade in order to update the GCJ version and have the latest

implementation of the Java library. Then the Makefile could be used to clean up the old

configuration and recreate the new binary file with the new available Java library

implementations. The overall recommendation is to use the Linux environment;

however, the average user is using some version of Windows. For the Windows users,

the binary file will be the best choice. Next, the overview and recommendations of phase

II - the accuracy test.

The accuracy test was performed with successful results. There were many

scenarios that were possible for an integrity breach, and the S.I.M. application detected

them all very well. Realistically, not all of the situations could happen in such close time

intervals that was tested; but conducting the test in this manner shows that the S.I.M.

application is capable of handling more than could realistically handle. An example of a

55

realistic situation is when a person may compromise one of your servers. An intruder

would have to know exactly which other machine is running the other server in order to

corrupt both hash files. More than likely, an integrity check would be scheduled before

the intruder could find the other server. Once this check occurs, then both servers are

replaced with the verified files. By that time, an administrator would see that one of the

servers was compromised and take necessary action to protecting the other servers and

rebuilding the compromised server. The integrity of the workstation has been kept.

The above example demonstrates events that could happen in any network

environment. The S.I.M. was armed with possible outcomes of a scenario in anticipation

of an intelligent intruder that could bring the whole network down. But that scenario is

highly unlikely. S.I.M. has built-in fault tolerance as well as the ability to be modified to

add even more server to provide an even greater fault tolerant resistance to intruders. The

accuracy test was a success on both platforms and that demonstrates that the S.I.M.

application is suitable for any client. The last phase of the testing will be discussed next.

Phase III was a success and very helpful in discovering design flaws. Overall, the

four client versions worked as expected; however, there were some errors that occurred

that raise interesting questions. There were two main issues that arose from this testing

phase. The first issue was that of server communication. When the testing phase was

initiated, only one server could be contacted. At first it was not apparent as to what the

problem could be. After some investigation, it was concluded that the server could not

accept any transmissions from the clients because of the shorewall application. This

Linux server was configured slightly different than the other intended server that was to

be used. The shorewall application is a front end for iptables that does port filtering for

56

the purpose of firewalls and other routing related tasks. After realizing that shorewall

would not allow the S.I.M. to accept hash files, another Linux server was chosen in its

place. Both servers could function properly as the S.I.M. servers. The second issue was

that of the time stamp.

When the clients initiated the integrity checks, the decisions made were not what

were intended. The error was traced to a portion of the code where the last date modified

field of the files was used to decide which option to use in the process. This error

showed that the two servers used obviously had different system times. The time stamp

is a key role in the S.I.M. application, so if these parameters were incorrect, the S.I.M.

application becomes useless. In order to make sure the two servers had the same time,

and application called ntpdate was installed on one of the servers. One server already

synchronized its clock with ntp.louisville.edu, so the second server had to do the same.

The ntpdate application connected to ntp.louisville.edu and synchronized its system

clock. Now that both servers had approximately the same time the testing resumed. All

testing phases were successful and proved the S.I.M. application could be used over a

network environment. Testing data results can be viewed in Appendix II. The next

section will cover some of the future research projects that could be spawned from the

S.I.M. application or appended to the S.I.M. application.

57

6.2 Future Research

The S.I.M. application provides a multitude of directions for future research in the

area of computer security, computer forensics, and intelligent systems. First in the area

of computer security, the S.I.M. application lays ground work for homogenous

applications that improve the area of usability and security. The user interface was

designed to extremely simply for any user to operate. With later versions, there will be

more choices, but the menu interface should still be simplistic. Even in the

implementation of a Graphical Interface, the layout will need to be eye pleasing and be

able to be navigated easily. With regard to security, more hashing algorithms can be

implemented in order to create more hash files for more redundancy. Keep in mind that

by adding more hashing algorithms more processing time would be required to run the

client application. Concerning the server side of S.I.M., there are four possible

improvements on the security.

There could be more multiple servers to create redundancy in case of server

intrusions and/or server failures. Second, the files could be hashed by one of the

algorithms, then the output hashed by the same algorithm or another hashing algorithm.

This hierarchy could be implemented in a number of ways that would only be known to

designer. Even on client level, this custom hierarchy could be used to do two and three

round hash sums of the binary files. This also would increase the processing time

required to run the S.I.M. application. Security can also be implemented on a file level as

well. The third improvement can be on the database file the server contains for each

client. It can be stored in a more secure manner than just a flat database file where a

58

simple text editor can interpret it. Writing the file in binary format and doing bit shifting

operations before decrypting the contents can help protect the contents from being

changed by outside sources. Lastly, the S.I.M. application can be modified to use the

Secure Sockets Layer during communication in order to give an extra layer of security to

guarantee that the transmission is not being intercepted by intruders. Next areas

concerning computer forensics will be discussed.

The S.I.M. application can be used to help when conducting an analysis on a

compromised system. When a system has been compromised, usually an image of the

hard driver copied and analyzed in order to help prevent the event from happening again.

The S.I.M. application could possibly be modified to connect to a repository of known

good hash sums to check against the compromised hard to isolate where a Trojan

program could reside. This would also be useful in helping to derive a timeline of when

an attacker compromised a client system. Users browse the web for work and leisure

time, and this browsing can allow viruses and Trojan programs to be installed without the

user's knowledge. It is beneficial to have a type of utility such as S.1M. in order to

ensure that their binary files are safe to execute. This type of application use would be

well suited for small business network environments as well as home usage for the

security conscience. Lastly, in the area of intelligent systems the S.I.M application can

be used in many beneficial ways.

The S.I.M. application can be modified with autonomous agents thereby

improving on the monitoring of client binary utilities. Using autonomous agents would

greatly improve on the user friendliness of the S.I.M. application as well as its flexibility.

Agents could be scheduled to run integrity check jobs periodically in a background

59

process and alert the user if any programs look like they may have been changed. For a

more dynamic approach, the agents could scan the system $P ATH, and store the paths in

a file to use later in a secure hash option. Also the S.I.M. application could be modified

to use an expert system to find integrity violations more effectively and efficiently. The

highlighted points previously mentioned are major areas where future research would be

greatly beneficial; and there are many more enhancements that could be added to the

S.I.M. application improving its usability, functionality, and flexibility.

60

REFERENCES

[1] Luger, George F. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. United States: Pearson Education, Inc, 2002

[2] McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed.
Berkley, California: OsbornelMcGraw-Hill, 2001

[3] Caloyannides, Michael A. Computer Forensics and Privacy. Norwood, MA:
Artech House, Inc 2001

[4] Alberts, Christopher and Dorofee, Audrey. Managing Information Security
Risks: The OctaveSm Approach. Upper Saddle River, NJ: Pearson Education, Inc., 2003

[5] Kizza, Joseph Migga. Computer Network Security and Cyber Ethics.
Jefferson, North Carolina: McFarland & Company, Inc., Publishers, 2002

[6] Ghosh, Sumit. Principles of Secure Network Systems Design. Hoboken, NJ:
Springer-Verlag New York, Inc., 2002

[7] Ramachandran, Jay. Designing Security Architecture Solutions. New York,
NY: John Wiley & Sons, Inc., 2002

[8] Kruse II, Warren G. and Heiser, Jay G. Computer Forensics: Incident
Response Essentials. Indianapolis, IN: Pearson Education, Inc., 2002

[9] Musaji, Yusufali F. Auditing and Security: AS/400. NT. UNIX. Networks.
and Disaster Recovery Plans. New York, NY: John Wiley & Sons, Inc., 2001

[10] Ursino, Domenico. Extraction and Exploitation oflntensional Knowledge
from Heterogeneous Information Sources. Springer-Verlag Berlin Heidelberg New York,
2002

[11] Chen, Guanorong, and Pham, Trung T. "Some Applications of Fuzzy Logic
in Rule - Based Systems." Experts Systems Vol. 19 No.4 (2002):208 - 222

[12] Chen, Guanorong, and Pham, Trung T. "Modeling for an Expert System and
a Parameter Validation." Experts Systems Vol. 19 No.5 (2002):285 - 294

[13] Caloyannides, Michael A. Desktop Witness: the do's and don'ts of personal
computer security. West Sussex, England: John Wiley & Sons Ltd, 2002

[14] Sandhu, Ravi. "Good-Enough Security: Toward a Pragmatic Business
Driven Discipline." IEEE Internet Computing Volume 7 Issue 1 (2003): 66-68

61

[15] Thompson, Herbert H. "Why Security Testing is Hard." IEEE Security &
Privacy Volume 1 Issue 4 (2003): 83-86

[16] Schneier, Bruce. "The Speed of Security." IEEE Security & Privacy Volume
1 Issue 4 (2003): 96

[17] Bishop, Matt. "What is Computer Security?" IEEE Security & Privacy
Volume 1 Issue 1 (2003): 67-69

[18] Arce, Ivan. "The Weakest Link Revisted." IEEE Security & Privacy Volume
1 Issue 2 (2003): 72-76

[19] Caloyannides, Michael. "Privacy vs. Information Technology." IEEE
Security & Privacy Volume 1 Issue 1 (2003): 100-103

[20] Whittaker, James. "Why Secure Applications are Difficult to Write." IEEE
Security & Privacy Volume 1 Issue 2 (2003): 81-83

[21] Smith, S.W. "Humans in the Loop." IEEE Security & Privacy Volume 1
Issue 3 (2003): 75-79

[22] Cowan, Crispin. "Software Security for Open-Source Systems." IEEE
Security & Privacy Volume 1 Issue 1 (2003): 38-45

[23] Gong, Li. "Why Cross-Platform Security." IEEE Internet Computing
Volume 7 Issue 3 (2003): 95-96

[24] Yasinsac, Alec, Erbacher, Robert F., Marks, Donald G., Pollit, Mark M., and
Sommer, Peter M. "Computer Forensics Education." IEEE Security & Privacy Volume 1
Issue 3 (2003): 15-23

[25] Arce, Ivan. "More Bang for the Bug: An Account of 2003's Attack Trends."
IEEE Internet Computing Volume 2 Issue 1 (2004): 66-68

[26] http://www.securityfocus.comltoolsiSS Accessed February 2004

[27] http://useroages.umbc.edul-mabzugllcs/mdS/mdS.html Accessed March
2004

[28]
http://www.bytefusion.comlproductsiens/secexmdS+/indexsecexmdS.htm?ussecurehash
algorithml(sh.htm Accessed March 2004

62

[29] http://stake.comlresearch/tooIslforensic/ Accessed December 2003

[30] http://www.sleuthkit.org! Accessed February 2004

63

APPENDIX I. Test Phase I Time Trials Data

Time in Milliseconds Format

Test Windows Debian Linux Windows Debian Linux
Runs with with wihtout without

Java Virtual Java Virtual Java Virtual Java Virtual
Machine Machine Machine Machine

1 285871 166120 266564 208432
2 250770 154417 216451 207559
3 250209 156357 214778 222299
4 252663 155404 216241 121199
5 251602 156871 215009 120506
6 252673 155415 214719 120792
7 250520 154867 215570 120536
8 251481 155590 215050 121292
9 250501 155129 216411 120459

10 251883 155162 216392 121116
11 252453 156360 215330 120521
12 250730 255555 216021 121475
13 250570 159785 221899 120817
14 254656 159750 216512 121116
15 251211 160010 217543 120840
16 245844 156042 216251 120866
17 251802 159858 215911 120603
18 250200 159516 215290 121032
19 250060 159358 215680 120903
20 257600 159930 216241 121392
21 249739 156388 217633 120545
22 251762 156540 218034 121108
23 251782 156641 217122 120559
24 249880 156133 217012 121126
25 251101 156670 216401 120380
26 251081 156679 219235 121064
27 250270 156554 216811 120475
28 255016 156184 215690 120962
29 250770 156753 215420 121068
30 250871 156339 215791 121644
31 252893 156204 215279 120364
32 254917 157034 215711 120873
33 252173 156323 217302 120534
34 253794 155422 217153 121190
35 252453 156004 217072 120551
36 251102 155926 215700 121096
37 249970 155508 215810 120520
38 250710 155555 215480 120993

64

39 249699 155786 216281 120769
40 251812 155284 215740 120952
41 251873 156188 217183 120495
42 252002 155712 217242 120974
43 254836 155641 216922 120338
44 253655 156315 216301 121398
45 252823 156111 218023 120325
46 250871 154713 215429 120954
47 250260 155905 216852 120514
48 251211 155878 216472 120908
49 251301 155246 229280 120840
50 252674 155184 214168 121331

65

APPENDIX II. Test Phase II Accuuracy Data

Decision Test For Passing
Server Verification

Trial Detected extra Detected changed Detected both extra files
binary files binary files and changed files

1 Pass Pass Pass
2 Pass Pass Pass

3 Pass Pass Pass
4 Pass Pass Pass
5 Pass Pass Pass
6 Pass Pass Pass
7 Pass Pass Pass
8 Pass Pass Pass
9 Pass Pass Pass

10 Pass Pass Pass

MD5 Decision
Test Results

Trial Detected extra Detected changed Detected both extra files
binary files binary files and changed files

1 Pass Pass Pass
2 Pass Pass Pass
3 Pass Pass Pass
4 Pass Pass Pass
5 Pass Pass Pass
6 Pass Pass Pass
7 Pass Pass Pass
8 Pass Pass Pass
9 Pass Pass Pass

10 Pass Pass Pass

66

SHA1 Decision
Test Results

Trial Detected extra Detected changed Detected both extra files
binary files binary files and changed files

1 Pass Pass Pass
2 Pass Pass Pass

3 Pass Pass Pass
4 Pass Pass Pass

5 Pass Pass Pass
6 Pass Pass Pass
7 Pass Pass Pass
8 Pass Pass Pass
9 Pass Pass Pass

10 Pass Pass Pass

67

APPENDIX III. Selected Source Code

package .iJIl. agent.,
import java.io •• ,
import .i •• interface ••• ,

/**
* <p>Title: Software Integrity Management</p>
* <p>Description: Security Software</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>University: University of Louisville, J.B. Speed School of

Engineering</p>
* @author Joseph H. Brown
* @version 1.0 Revision 1
*/

public class integrityCheck (
public integrityCheck{) { }

private String md5NoMatch = MW;
private String shalNoMatch = W";
private String md5Extras = .";
private String shalExtras = "";
private int md5Yes = 0, md5No = 0, shalYes = 0, shalNo = 0;
private int md5BinaryYes = 0, md5BinaryNo = 0, shalBinaryYes = 0,

shalBinaryNo = 0;
private functions fl = new functions();

/**
* Responsible for performing the integrity check. This method will

call
* others suppport methods to help in determining the validity of the

system.

*
* @param serverMD5
* The file downloaded from the md5 server.
* md5Client
* The client hle of the stored md5 results.
* serverSHAl
* The file downloaded from the shal server.
* shalClient
* The client file of the stored shal results.
* date
* The date of the md5 file used for both file's last

date modified.
* @return Nothing
* @throws IOException
*/

public void performlntegrityCheck{String serverMD5, String md5Client,
String serverSHAl, String shalClient, long date) throws IOException {

int status = 0, status2 = 0, index = 0, index2 = 0;
long datel, date2;
String[] md5Array, shalArray, md5Ext raArray, shalExtraArray;

68

System.out.println("Verifying server files ·};
status; this.checkServerFiles(serverMD5, serverSHA1};
if (status == O) {

Ilfile not the same size or there are binaries that do not match
System.out.println("The file sizes are not the same length or

have different binaries, using the last modified date."};
transport t1 = new transport(};
date1 = t1.getLastModifiedMD5(};
Ilif date == -1 need to by pass operation - not likely though
IISystem.out.println("date1 = " + date1);
date2 = t1.getLastModifiedSHA1(};
Ilif date == -1 need to by pass operation - not likely though
IISystem.out.println("date2 = " + date2);

/************* Use the MD5 file for the integrity check
*************/

files.

the •

if (date1 < date2) {
System.out.println("Using the date from the MD5 server");
System.out.println("Initiating MD5 secure check.");
status = this.checkIntegrity(md5Client, serverMD5,O);
if (status == 3) {

IISuccessful match
resend r1 = new resend(};
int close = -1, tryMe = -1;
System.out.println("The mdS check has verified all binary

+ "Both the md5 and sha1 servers will have

+ "most up to date secure files. H);
System.out.println("Sending to the mdS server "};
t1 = nUlli
t1 = new transport (date, md5Client, sha1Client}i
t1.overrideMD5Server(md5Client}i
System.out.println(" Sending to the sha1 server ")i

t1.overrideSHA1Server(sha1Client}i

/**/

Ilcreate resend here!! - later version must have a class to
test for this.

Iisend the md5
l*tryMe = t1.overrideMD5Server(md5Client);
Iistatus = t1. sendToMD5Server (this.mdSAddress, this.mdSPort);
if (tryMe == 1)

System.out.println("MDS File sent successfully");
else if (tryMe == -1) {

I ISystem. out. println ("Chosen not to overwrite mdS ");
IldelmdS = true;

else {
lido the create resend
r1.createResend(mdSClient, date);
r1.setFlag();
close = 1;
System.out.println("Saving the mdS job for later.");

Iisend the sha1

69

tryMe = t1.overrideSHA1Server(sha1Client):
Iistatus = t1.sendToSHA1Server(this.sha1Address,

this.sha1Port):

}

if (tryMe == 1) {
System.out.println("SHA1 File sent successfully"):

else if (tryMe == -1) {
IISystem.out.println("Not overwrite."):
Iidelsha1 = true:

else {
lido the res end send sha1
r1.addToResend(sha1Client, date):
close = 1:
System.out.println("Saving sha1 job for later."):

if (close == 1)
r1.completeResend() :

r1 = null:
t1 = null:
/**/

else if (status == 2) (
//extra binaries and no matches
System.out.println("There are extra binaries detected on your

system since •
+ "the last secure hash. Please make

sure that no program(s) "

knowledge.
+ "have been installed without your

These hinaries •
+ "are usually trojan programs or spy ware

installed without your knowledge."):
/IList the extra binaries.
String[] temp = fl.split(this.md5Extras, .! ");
System.out.println("The following is a list of the extra

binaries detected"):
for (int i = 0; i < temp. length: i++)

System.out.println(temp[i].substring(temp[i].indexOf(" H),
temp[i].length(»):

temp = null:
temp = f1.split(this.md5NoMatch, "!H):
System.out.println("The system has also detected that some

binary programs •
+ "may have been changed. sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation •
+ "is that there has been an unauthorized

breech in the system programs
+ ·Please verify the changes were made by

you and update the files, or perform
+ "an analysis for intrusion detection"):

System.out.println("The following is a list of the changed
binaries detected");

for (int i = 0: i < temp. length: i++)
System.out.println(temp[i]);

70

temp = null;
}

else if (status == 1) (
Ilextra binaries
System.out.println("There are extra binaries detected on your

system since "
+ "the last secure hash. Please make

sure that no program(s) •

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge. ");
System.out.println("The main suggestion is to double check

and make sure your secure hash •
+ "file was up to date with any programs

you may have installed.");
IIList the extra binaries.
String[] temp = f1.split(this.md5Extras, "!");
System.out.println("The following is a list of the extra

binaries detected");
for (int i = OJ i < temp. length; i++)

System.out.println(temp[i].substring(temp[i].indexOf(" "),
temp[i].length(»);

temp = nullj
}

else if (status == 0) (
Iino mathces
System.out.println("The system has detected that some binary

programs "
+ "may have been changed .. Sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation
+ "is that there has been an unauthorized

breech in the system programs
+ "Please verify the changes were made by

you and update the files, or perform
+ "an analysis for intrusion detection");

String[] temp = f1.split(this.md5NoMatch, "!");
System.out.println("The following is a list of the altered

binaries detected");

}

}

for (int i = OJ i < temp.lengthj i++)
System.out.println(temp[i]);

temp = null;

/************* Use the SHAl file for the integrity check
*************/

else if (datel > date2) (
System.out.println("Using the date from the SHAl server");
System.out.println("Initiating SHA-1 secure check.");
status2 = this.checklntegrity(sha1Client, serverSHA1,l)i
System.out.println(status2);
if (status2 == 3) (

int tryMe = -1, close = -1;
resend rl = new resend();

71

files.

the "

System.out.println("The sha1 check has verified all binary

+ "Both the mdS and sha1 servers will have

+ "most up to date secure files. ") ;
System.out.println("Sending to the mdS server ");
tl = null;
t1 = new transport (date, mdSClient, shalClient);
tl.overrideMDSServer(mdSClient);
System.out.println(" Sending to the sha1 server H);
t1.overrideSHA1Server(sha1Client);

/**/
Ilcreate resend here!! - later version must have a class to

test for this.
Iisend the mdS
l*tryMe = t1.overrideMDSServer(mdSClient);
Iistatus = t1.sendToMDSServer(this.mdSAddress, this.mdSPort);
if (tryMe == 1)

System.out.println("MDS File sent successfully");
else if (tryMe == -1) {

I/System.out.println("Chosen not to overwrite mdS ");
IldelmdS = true;

else {
lido the create resend
r1.createResend(mdSClient, date);
r1.setFlag();
close = 1;
System.out.println("Saving the mdS job for later.");

Iisend the sha1
tryMe = t1. overrideSHA1Server (sha1Client) ;
Iistatus = t1. sendToSHA1Server (this.sha1Address,

this.sha1Port);

}

if (tryMe == 1)
System.out.println("SHA1 File sent successfully");

else if (tryMe == -1)
IISystem.out.println("Not overwirte.");
Iidelsha1 = true;

else {
lido the res end send sha1
r1.addToResend(sha1Client, date);
close = 1;
System.out.println("Saving sha1 job for later."};

if (close == 1)
r1.completeResend() ;

r1 = null;
t1 = null;
1**1

else if (status2 == 2) (
Ilextra binaries and no matches

72

System.out.println("There are extra binaries detected on your
system since "

+ "the last secure hash. Please make
sure that no program(s) •

knowledge.
+ "have been installed without your

These binaries •
+ "are usually trojan programs or spy ware

installed without your knowledge. H);
//List the extra binaries.
String[) temp = f1.split(this.sha1Extras, "!");

System.out.println("The following is a list of the extra
binaries detected");

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i).substring(temp[i).indexOf(" "),

temp[i).length(»);
temp = null:
System.out.println("The system has detected that some binary

programs "
+ Hmay have been changed. Sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation
+ "is that there has been an unauthorized

breech in the system programs "
+ "Please verify the changes were made by

you and update the files, or perform
+ "an analysis for intrusion detection"):

temp = f1.split(this.sha1NoMatch, "I");

System.out.println("The following is a list of the altered
binaries detected"):

)

for (int i = 0: i < temp. length: i++)
System.out.println(temp[i]):

temp = null:

else if (status2 == 1) (
System.out.println("There are extra binaries detected on your

system since "
+ "the last secure hash. . Please make

sure that no program(s) "

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge."):
System.out.println("The main suggestion is to double check

and make sure your secure hash "
+ "file was up to date with any programs

you may have installed."):
I/List the extra binaries.
String[) temp = f1.split(this.sha1Extras, "!"):
System.out.println("The following is a list of the extra

binaries detected");
for (int i = 0: i < temp. length; i++)

System.out.println(temp[i) .substring(temp[i).indexOf(" "),
temp[i).length(»):

temp = null:
)

else if (status2 -- 0) (

73

System.out.println("In the 0, all good");
Iino mathces
System.out.println("The system has detected that some binary

programs
+ "may have been changed. Sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation
+ "is that there has been an unauthorized

breech in the system programs
+ "Please verify the changes were made by

you and update the files, or perform "
+ "an analysis for intrusion detection");

String[] temp = f1.split(this.sha1NoMatch, "I");
System.out.println("The following is a list of the altered

binaries detected");

}

}

for (int i = 0; i < temp. length; i++)
System.out.println{temp[i]);

temp = null;

else if (datel == date2) (
Iisomething went reel wrong!!
System.out.println{"The System has performed an error -

integrity Class. System Failure.");
System.exit(l);

}

else (
lido nothing
System.out.println("The application has exhibited bad system

behavior, exiting!");
System.exit{l);

}

}

/************ Start scenario where files are of same length
**********/

else if (status == 1) (
Ilit is all good
System.out.println{"Initiating MD5 secure check.");
status = this.checklntegrity{md5Client, serverMD5,O);
System.out.println{"Initiating SHA-l secure check.");
status2 = this.checklntegrity(sha1Client, serverSHA1,1);
IISystem.out.println(status + " and" + status2); IIDebugging

Statement
IIBoth files matched successfully
if ((status == 3) && (status2 == 3)) (

System.out.println("Both files returned and verified
successfully.

+ "Your system binary files are good.");
}

IIFound good MDS hash sums and bad SHAl sums
if { (status == 3) && (status2 == 0)) (

transport tl;
System.out.println("The mdS check has verified all binary

files, but the"

74

+ "shal check has failed. The md5 file will
be used for replacement.

the "
+ "Both the md5 and shal servers will have

+ "most up to date secure files. ")i

System.out.println("Sending to the md5 server H);
tl = new transport (date, mdSClient, shalClient)i
tl.overrideMDSServer(mdSClient);
System.out.println(" Sending to the shal server ")i

tl.overrideSHAlServer(shalClient);
tl = nUlli
Ilcreate resend here!! - later version must have a class to

test for this.
)

IIFound good SHAl hash sums and bad MDS sums
if ((status == 0) && (status2 == 3)) (

transport tli
System.out.println("The shal check has verified all binary

files, but the"
+ "md5 check has failed. The shal file will

be used for replacement.

the "
+ "Both the mdS and shal servers will have

+ "most up to date secure files. ")i
System.out.println("Sending to the md5 server ");
tl = new transport (date, mdSClient, shalClient)i
tl.overrideMDSServer(md5Client)i
System.out.println(" Sending to the sha1 server ")i

tl.overrideSHAlServer(shalClient)i
tl = nUlli
Ilcreate resend here!! - later version must have a class to

test for this.
)

Ilextra MDS binaries and no mdS matches && extra SHAl binaries
and no SHAl matches

if ((status == 2) && (status2 == 2)) (
System.out.println("There are extra binaries detected on your

system since "
+ "the last secure hash. Please make sure

that no program(s) "

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge.")i
System.out.println("The main suggestion is to double check and

make sure your secure hash "
+ "file was up to date with any programs you

may have installed.")i
I/List the extra binaries.
String[] temp = fl.split(this.shalExtras, "!")i

System.out.println("The following is a list of the extra
binaries detected");

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i].substring(temp[i] .indexOf(" "),

temp[i].length(»)i
temp = nUlli
Iino matches below here

75

System.out.println("The system has also detected that some
binary programs ~

+ "may have been changed. Sometimes extra
programs installed "

+ "can change other binary programs, or
the worst situation

+ "is that there has been an unauthorized
breech in the system programs");

//List the compromised binaries.
temp:::: fl.split(this.shalNoMatch, "!");

System.out.println(" The following is a list of the no match
binaries detected according to the shal hash.");

for (int i :::: 0; i < temp. length; i++)
System.out.println(temp[i);

temp:::: null;
System.out.println(" ");
temp:::: f1.split(this.md5NoMatch, "t");
System.out.println("The following is a list of the no match

binaries detected according to the md5 hash.");
for (int i :::: 0; i < temp. length; i++)

System.out.println(temp[i);
temp:::: null;

}

I/extra MDS binaries and no mdS matches && extra SHAl binaries
if ((status :::::::: 2) && (status2 :::::::: 1)) (

System.out.println("There are extra binaries detected on your
system since "

+ "the last secure hash. Please make sure
that no program(s) "

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge.");
System.out.println("The main suggestion is to double check and

make sure your secure hash "
+ "file was up to date with any programs you

may have installed.");
I/List the extra binaries.
String[) temp:::: fl.split(this.shalExtras, "I");

System.out.println("The following is a list of the extra
binaries detected");

for (int i :::: 0; i < temp. length; i++)
System.out.println(temp[i).substring(temp[i) .indexOf(" H),

temp[i).length(»);
temp:::: null;
Iino matches below here
System.out.println("The system has also detected that some

binary programs "
+ "may have been changed. sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation
+ "is that there has been an unauthorized

breech in the system programs");
//List the compromised binaries.
temp:::: fl.split(this.md5NoMatch, "I");

76

System.out.println(" 'rhe following is a list of the no match
binaries detected according to the mdS hash.");

}

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i]);

temp = null;

Ilextra MD5 binaries && extra SHAl binaries and no SHAl matches
if ((status == 1) && (status2 == 2)) {

System.out.println(HThere are extra binaries detected on your
system since "

+ "the last secure hash. Please make sure
that no program(s) "

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge.");
System.out.println("The main suggestion is to double check and

make sure your secure hash H

+ "file was up to date with any programs you
may have installed.");

IIList the extra binaries.
String[] temp = fl.split(thia.sha1Extras, "!");

System.out.println("The following is a list of the extra
binaries detected");

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i].substring(temp[i] .indexOf(" "),

temp[i].length(»);
temp = null;
Iino matches below here
System.out.println("The system has also detected that some

binary programs "
+ "may have been changed. Sometimes extra

programs installed "
+ "can change other binary programs, or

the worst situation
+ "is that there has been an unauthorized

breech in the system programs");
IIList the compromised binaries.

temp = f1.split(thia.sha1NoMatch, "!");
System.out.println(" The following is a list of the no match

binaries detected according to the shal hash.");

)

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i]);

temp = null;

Ilextra MD5 binaries && extra SHAl binaries
if ((status == 1) && (status2 == 1)) {

System.out.println("There are extra binaries detected on your
system since •

+ "the last secure hash. please make sure
that no program(s) H

knowledge.
+ "have been installed without your

These binaries "
+ "are usually trojan programs or spy ware

installed without your knowledge.");
System.out.println("The main suggestion is to double check and

make sure your secure hash "

77

+ "file was up to date with any programs you
may have installed.");

IIList the extra binaries.
String[] temp = f1.split(thia.sha1Extras, W!");
System.out.println("The following is a list of the extra

binaries detected");
for (int i = 0; i < temp. length; i++)

System.out.println(temp[i].substring(temp[i] .indexOf(" "),
temp[i].length(»);

temp = null;
>
IIMD5 binaries with no match && SHA1 binaries with no match
if ((status == 0) && (status2 == 0)) {

System. out. print In ("MD5 binaries with no match and II SHA1
binaries with no match");

Iino matches
System.out.println("The system has detected that some binary

programs "
+ "may have been changed. Sometimes extra

programs installed H

+ "can change other binary programs, or
the worst situation

+ "is that there has been an unauthorized
breech in the system programs");

IIList the compromised binaries.
String[] temp = fl.split(thia.shalNoMatch, "!");
System.out.println(" The following is a list of the no match

binaries detected according to the shal hash.");
for (int i = 0; i < temp. length; i++)

System.out.println(temp[i]);
temp = null;
System.out.println(" ");
temp = fl. split (this .md5NoMatch, "!");

System.out.println("The following is a list of the no match
binaries detected according to the rod5 hash.");

for (int i = 0; i < temp. length; i++)
System.out.println(temp[i]);

temp = null;
}

} IIEnd the else if stastus -- 1
else (

System.out.println("Error in the integrity class - code 148.
System will exit now");

System.exit(l);
}

}

/**
* Checks the server files to make sure they are the same length and

have the
* same binary files.
*

* @param

*
*
*

serverMD5
The file from the md5 server.

serverSHAl
The file from the shal server.

78

* @return int
* An integer that returns the result of the server files

verification.
* @throws IOExcept.ion
* File not found exception.
*/

private int checkServerFiles(String serverMD5, String serverSHAl) (
try (

BufferedReader b = new BufferedReader(new FileReader(serverMD5»;
BufferedReader b2 = new BufferedReader(new

FileReader(serverSHAl»;
String temp = •• , one = "., two = .. n;
String[] arrayOne, arrayTwo;
int countl = 0, count2 = 0, flag = 0, index = 0, index2 = 0;

while (! (temp = b. readLine ()) . equals (. ## *~##&&? .. » (
IISystem.out.println(one)i
one = one + temp +
countl++;

H f ,

}

b.closeO;
while (! (temp = b2. readLine ()) . equals (" # # * * U&&? n)} (

IISystem.out.println(two); IIDebugging statement

}

two = two + temp +
count2++;

" , " . . ,

b2 . close () ;
IISystem.out.println(countl + nand n + count2)i II Debugging

statement
if (countl != count2) (

}

IIReturn the file lengths do not match.
return (0);

else (
arrayOne = fl.split(one, »!");

arrayTwo = fl.split(two, "I");

for (int i = 0; i < arrayOne.length; i++) (
IICompare the binary files only.
index = arrayOne[i].indexOf(" ");
for (int k = 0; k < arrayTwo.length; k++) (

index2 = arrayTwo[k] . indexOf(" .);
if (arrayOne[i) . substring (index+l ,

arrayOne[i] .length(».equals(arrayTwo[k] . substring (index2+1 ,
arrayTwo[k] .length(»)) (

flag = 1;
break;

)

} IIEnd for loop with k.
if (flag != 1) (

flag = 0;
IIReturn the binaries do not match
return (0);

}

flag = 0;
} IIEnd the main for loop.
Ilelse return status good
return (1);

79

)

)

catch (FileNotFoundException f1) (
System.out.println("There has been a file reading error, error

code: server - integrity check");
return (-1);

)

catch (IOException e) (
System.out.println("There has been an 10 error in the server

verification method - inegrity check.");
return (-1);

)

)

/**
* Checks the integrity of the local file compared to the server

file. The
* hash type is indicated by the value of the integer passed.
*
* @param localFile
* The file name of the local saved results.
* serverFile
* The file name of the server saved results.
* @return int
* An integer that returns the result of the file

verification.
* @throws IOException
* File could not be found.
*/

public int checklntegrity(String localFile, String serverFile, int
indicator) throws IOException (

try (

BufferedReader b = new BufferedReader(new FileReader(localFile»;
BufferedReader b2 = new BufferedReader(new

FileReader(serverFile»;
String one = "., two = "., temp = "", warning = .";
String[] oneArray, twoArray;
int yesBinary = 0, yesSum = 0, noBinary = 0, noSum = 0;
int flag = 0, index = 0, index2 = 0;
//System.out.println("Reading the mdS files for comparison");

//Debugging statement

GCJ

GCJ

while (! (temp = b.readLine(».equals("##**##&&?"»
one = one + temp + "1";

b.closeO;
while (! (temp = b2.readLine{».equals{"##**##&&?"»

two = two + temp + "!";
b2 . close 0 ;
oneArray = fl.split(one, "!"); //Function written to accomadate

twoArray = fl.split{two, "!"); //Function written to accomadate

//oneArray
regular Java

//twoArray
regular Java

temp = .";

one.split("!"); //Built-in String function for

two.split("!"); //Built-in String function for

80

System.out.println("Running Secure Check");
for (int i = 0; i < oneArray.length; i++) {

IICompare the binary files only.
index = oneArray[i).indexOf(" .);
for (int k = 0; k < twoArray.length; k++) {

index2 = twoArray[k).indexOf(" .);
if (oneArray[i) . substring(index+1 ,

oneArray[i) .1ength(».equals(twoArray[k) . substring (index2+1 ,
twoArray[k).length(»)) {

if (indicator == 0)
this.md5BinaryYes++;

if (indicator == 1)
this.sha1BinaryYes++;

IlyesBinary++; IIDebugging statement
flag = 1;
IINext compare the sums
if (oneArray[i).substring(O, index-

1).equals(twoArray[k).substring(0, index2-1») {
if (indicator == 0)

)

this.md5Yes++;
if (indicator == 1)

this.shalYes++;
IlyesSum++i IIDebugging statement

else (
warning = warning + oneArray[i).substring(index+1,

oneArray[i) .length(» + "!Hi

)

if (indicator == 0)
this.md5No++i

if (indicator == 1)
this.sha1No++i

noSum++;
)

break;

) IIEnd for loop with k.
if (flag != 1) {

}

if (indicator == 0)
this.md5No++;

if (indicator == 1)
this.shalNo++;

noBinary++;
temp = temp + oneArray[i)
flag = 0;

flag = 0;

+ .. t " • . ,

) IIEnd the main for loop.
if ((noSum> 0) && (temp.equals(·"») {

Iino matches but all binaries found

)

if (indicator == 0)
this.md5NoMatch = warning;

if (indicator == 1)
this.sha1NoMatch = warning;

return (0);

if ((!(temp.equals(""») && (noSum -- 0)) {
IIFound Extra Binaries

81

}

if (indicator == 0)
this.md5Extras = temp;

if (indicator == 1)
this.sha1Extras = temp;

return (1);
Ilwrite to file insecure.log - extra feature for future version

if ((noSurn> 0) && (!(temp.equals(""»)) {
Ilfound no matches and extra binaries

}

if (indicator == 0) {
this.md5Extras = temp;
this.md5NoMatch = warning;

}

if (indicator == 1) (
this.sha1Extras = temp;
this.shalNoMatch = warning;

)

return (2);

if ((noSurn == 0) && (temp.equals(""») (
System.out.println("The files have been verified

successfully.");
return (3);

}

return (-1);
}

catch (FileNotFoundException e) (
System.out.println("File is not found, internal error 4568. • +

"System will now quit.",;
return (-1);

)

}

}

packag •• i ••• g.nt.,
import j.va. io. • ,
~rt j.va.util •• ,
import j.va ••• curity g.Dig •• t,
import java ••• curi ty. JIIoSucbA,lgori tludxc.ption,
import .i •• int.rf.c •••• ,

/**
* <p>Title: Software Integrity Management</p>
* <p>Description: Security Software</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>University: University of Louisville, J.B. Speed School of

Engineer ing< /p>
* @author Joseph H. Broum.
* @version 1.0 Revision 1
*/

public class secureHash (
public secureHash() ()

private Vector results =
private String md5File =

new Vector () ;
" " . ,

82

private String sha1File = "0;
private long mainDate = -1;
private functions f1 = new functions();

/**
* Decides which version of the OS is found and calls the necessary

method.

*
* @param os
* The string value of the OS name.
* @return String
* This string indicates weather or not the OS can be

used with S.I.M.
* @throws IOException
*/

public String hash(String os) throws IOException (
if (os.indexOf("Windows·) > -1) (

)

)

this.results = this.beginWindowsHash();
this.saveResults("windowsmdS", "windowsshal");

else if (os.indexOf("CYGWIN") > -1) (
this.results = this.beginWindowsHash();
this.saveResults("windowsmdS", ·windowsshal");

)

else if (os.indexOf("Linux") > -1) (
this.results = this.beginLinuxHash();
this.saveResults("linuxmd5", "linuxsha1");

)

else
return ("os_error");

return ("complete");

/**
* Sets the returning Vector with paths of the windows executables

and their
* mdS hashed values in Hex format and their shal hashed values in

Hex format.

*
* @return theFiles2

* This vector will contain all the executables with
their

* full paths and mdS hashed value in Hex.
* @throws NoSuchAlgorithmException
* Thrown when the MessageDigest cannot find the

desired hashing
* algorithm to compute the hash function.
* @throws IOException
* Thrown when File IO exceptions occurs.
*/

private Vector beginWindowsHash() throws IOException
(

String digest = "n, digest2 = "., temp = .", in =
Vector theFiles = new Vector();
Vector theFiles2 = new vector();

83

n ... ,

menu

byte[) hash, hash2;
String[) dirList;
generateList g1 = new generateList();

//Check for Custom Directory File that will be created from the

try (
BufferedReader custom = new BufferedReader(new

FileReader("dircust"»;

}

while «temp = custom.readLine(» != null)
in = in + temp + "!";

custom.close()j

catch (FileNotFoundException ferror) (
System.out.println("There are no custom directories found, using

defaults.");
}

try (
MessageDigest md5 = MessageDigest.getlnstance("MD5");
MessageDigest sha1 = MessageDigest.getlnstance("SHA-l");
int i = 0, status;
File test = new File("c: windows");
if (test.exists(»

theFiles = g1.readWindows("c: windows");
else (

theFiles = g1.readWindows("c: winnt")j
//System.out.println("It is windows NT architecture");

//Debugging statement

GCJ

}

theFiles2 = g1. readWindows (. c: program files");
theFiles.addAll(theFiles2)j
theFiles2.removeAllElementS()j

//Add the custom directories to the hash file
if ((!in.equals(""» && (!in.equals(" H»~) (

dirList = f1.split(in, "!"); I/Function written to accomadate

IldirList = in.split("!")i //Built-in String function for
regular Java

}

for (int k = Oi k < dirList.length; k++) (
theFiles2 = g1.readWindows(dirList[k);
theFiles.addAll(theFiles2);
theFiles2.removeAllElements()j

}

theFiles2.removeAlIElements();

System.out.print("Computing the hashes·);
status = (theFiles.size(»/16;
IISystem.out.println(status); IIDebugging statement
while (i < theFiles.size{» (

FilelnputStream fReader = new
FilelnputStream(theFiles.elementAt(i).toString(»;

int Chi

while ((ch = fReader.read(» != -1) (
md5.update((byte) Ch)i
sha1.update((byte) ch);

}

hash = md5.digest();

84

hash2 = sha1.digest()i
;;Convert to Hex Value.
for (int j = Oi j < hash.lengthi j++) (

int v = hash[j] & OxFFi
if (v < 16)

digest += "O"i
digest += Integer.toString(v, 16).toUpperCase()i

)

IISHA-l computation
for (int j = Oi j < hash2.lengthi j++) (

int v = hash2[j] & OxFFi
if (v < 16)

digest2 += ·O"i
digest2 += Integer.toString(v, 16).toUpperCase()i

)

if ((i % status) == 0)
System.out.print(".")i

theFiles2.add{i, digest + " " +
theFiles.elementAt(i).toString{) + " shal • + digest2 + " " +
theFiles.elementAt(i).toString{»i

IISystem.out.println(digest + " • +

theFiles. elementAt (i) . toString () + • shal • + digest2 + " • +
theFiles.elementAt(i) .toString())i IIDebugging statement

digest = ""i

)

digest2 = ""i
i++i

)

System.out.print("complete ")i

return(theFiles2)i
) IIEnd try
catch (NoSuchAlgorithmException e) ()
return{theFiles2)i

/**
* Sets the returning Vector with paths of the linux executables and

their
* md5 hashed values in Hex format and their shal hashed values in

Hex format.
*
* @return thePiles2
* This vector will contain al.I the executables with

their
* full paths and md5 hashed value in Hex.
* @throws NoSuchAlgorithmException
* Thrown when the MessageDigest cannot find the

desired hashing
* algori thm to compute the hash function.
* @throws IOException
* Thrown when Pile IO exceptions occurs.
*/

private Vector beginLinuxHash{) throws IOException (
String digest = "", digest2 = "", temp = "", in =
Vector theFiles = new Vector{)i
Vector theFiles2 = new Vector()i
byte[] hash, hash2i

85

" " . ,

String[] dirList;
generateList gl = new generateList();

IICheck for Custom Directory File that will be created from the
menu

try (
BufferedReader custom = new BufferedReader(new

FileReader("dircust"»;

}

while «temp = custom.readLine(» != null)
in = in + temp + "!"i

custom.closeO i

catch (FileNotFoundException ferror) (
System.out.println("There are no custom directories found, using

defaults.");
}

try (
MessageDigest mdS = MessageDigest.getInstance("MDS")i
MessageDigest shal = MessageDigest.getInstance("SHA-l");
int i = 0, status;
theF iles = gl. readLinux (" I sbin ..) ;
theFiles2 = gl.readLinux("/bin");
theFiles.addAll(theFiles2);
theFiles2.removeAllElements()i
theFiles2 = gl.readLinux("/usrlsbin")i
theFiles.addAll(theFiles2);
theFiles2.removeAllElements();
theFiles2 = gl.readLinux("/usr/bin");
theFiles.addAll(theFiles2)i
theFiles2.removeAllElements();
theFiles2 = gl.readLinux("/usr/local/sbin");
theFiles.addAll(theFiles2)i
theFiles2.removeAllElements()i
theFiles2 = gl.readLinux("/usr/local/bin")i
theFiles.addAll(theFiles2)i
theFiles2.removeAllElements()i
//Add Custom Directories
if ((!in.equals(·"» && (!in.equals(" H»~) (

dirList = fl.split(in, H!")i

}

l/dirList = in.split("!");
for (int k = Oi k < dirList.lengthi k++) (

theFiles2 = gl.readLinux(dirList[k])i
theFiles.addAll(theFiles2)i
theFiles2.removeAllElements()i

)

theFiles2.removeAllElements()i

System.out.print("Computing the hashes");
status = (theFiles.size(»/16;
IISystem.out.println(status); IIDebugging statement
while (i < theFiles.size(» (

FileInputStream fReader = new
FileInputStream(theFiles.elementAt(i).toString(»i

int ehi
while ((eh = fReader.read(» != -1) (

mdS.update((byte) eh)i
shal.update((byte) Ch)i

86

)

hash = md5.digest();
hash2 = sha1.digest();
IIConvert to Hex Value ..
for (int j = 0; j < hash. length; j++) (

int v = hash[j) & OxFF;
if (v < 16)

digest += "0";
digest += Integer.toString(v, 16).toUpperCase();

)

IISHA-1 computation
for (int j = 0; j < hash2.length; j++) (

int v = hash2[j) & OxFF;
if (v < 16)

digest2 += '0";
digest2 += Integer.toString(v, 16).toUpperCase();

)

if ((i % status) == 0)
System.out.print(".");

theFiles2.add(i, digest + " " +
theFiles.elementAt(i).toString() + " sha1 " + digest2 + " " +
theFiles.elementAt(i).toString(»;

IISystem.out.println(digest + " " +
theFiles.elementAt(i) .toString() + " sha1 " + digest2 + " " +
theFiles.elementAt(i) .toString()); IIDebugging statement

digest = "";

}

/**

digest2 = "";
i++;

}

System.out.print("complete H);
return(theFiles2);

) IIEnd try
catch (NoSuchAlgorithmException e) ()
return(theFiles2);

* Saves the private data member results to a md5 file and a shal
file.

(

*
* @param md5
* The file name of the saved md5 results.
* @param shal
* The file name of the saved shal results.
* @return Nothing
* @throws IOException
* File could not be created.
*/

private void saveResults(String mdS, String sha1) throws IOException

int i = 0;
int index;
long mainDate = -1;

//System.out.println("I am in the write file"); //Debugging
statement

87

try (
this.md5File = md5;
this.shalFile = shal;
BufferedWriter b = new BufferedWriter(new FileWriter(md5»i
BufferedWriter b2 = new BufferedWriter(new FileWriter(shal»;

System.out.println(~Writing the md5 file to M + this.md5File +
" +

"Writing the sha-l file to " + this.shalFile+
" . ") ;

//System.out.println("this.results.size = " +
this.results.size()); //Debugging statement

while (i < this.results.size(» {
index = (this.results.elementAt(i).toString(».indexOf(" shal

") ;

//System.out.println(index + "String
this.results.elementAt(i) .toString() + " i = "
statement

if (index == -1) (

" +
+ i); //Debugging

System.out.println("File not formatted correctly" + i);
break;

}

b.write(«this.results.elementAt(i).toString(».substring(O,
index)) +" •) ;

b2.write(
«this.results.elementAt(i).toString(».substring(index+6,
(this.results.elementAt(i).toString(».length(») +" H);

}

i++;
}

b.write("##**##&&?");
b2.write("##**##&&?");
b.closeO;
b2. close();
//set the last modified date of both files equal
File f = new File(this.md5File);
this.mainDate = f.lastModified();
f.setLastModified(this.mainDate);
f.setReadOnly();
f = new File(this.shalFile);
f.setLastModified(this.mainDate);
f.setReadOnly();
f =null;

catch (IOException e){
System.out.println("There was some file permission and/or reading

error: • + e);
System.exit(1) ;

}

}

/**
* Returns the name of the md5 file that was written to disk.
*

* @return this.md5File
* The name of the md5 file that was written to disk

after the

88

* hash function has completed.
*/

public String getMD5File() (
return(this.md5File);

}

/**
* Returns the name of the shal file that was written to disk.
*
* @return this.shalFile
* The name of the shal file that was written to disk

after the
* hash function has completed.
*/

public String getSHAIFile() (
return(this.shalFile);

}

/**
* Returns the date of the md5 file that was written to disk.
*
* @return this.mmainDate
* The date of the md5 file that was written to disk

after the
* hash function has completed. This date will be used

for both
* the md5 last date modified and shal last date

modified.
*/

)

public long getDate() (
return(this.mainDate);

)

package .im.agent.,
import java. io. * I
import java.net.*,
import .im.interface •• *,

/**
* <p>Title: Software Integrity Management</p>
* <p>Description: Security Software</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>University: University of Louisville, J.B. Speed School of

Eng ineer ing< /p>
* @author Joseph H. Brown
* @version 1.0 Revision 1
*/

public class transport (
Ilused when using the integrity option
public transport() ()

Ilused for sending, must use this constructor when doing secure hash

89

public transport(long date, String md5, String sha1) {
this.md5File ~ md5;
this.sha1File ~ sha1;
this.mainDate ~ date;

}

private String md5File ~ .";
private String shalFile ~ "";
private long mainDate = -1;
private keyBoard k1 = new keyBoard();

//Default values
private String md5Address = "ox.slug.louisville.edu";
private int md5Port = 7001;
private String sha1Address = "gradoff8.spd.louisville.edu";
private int sha1Port = 7007;

/**
* Contacts the server and sends the c.1ient md5 file to the server

and deletes
* the local file.
*
* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int sendToMD5Server() throws IOException {
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp =

try {

.~ " . ,

clientSocket = new Socket (this.md5Address, this.md5Port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new FileReader(this.md5File»;
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getlnputStream(»);
String LINE = "";
int keyStroke;
System.out.println("Contacting the mdS server ·);
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server_mdS"» {

//Send Operation
out.println("l");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/")i
temp = LINE.substring(index+l);
if (add.hashCode() < 0) (

int num = add.hashCode();

90

num = num*-1;
LINE = LINE.substring(O, index) +

num + ")" + "-" + this.mainDate;
)

else

. " + temp + . '. + • (. +

LINE = LINE.substring(O, index) + "." + temp + "." +
add.hashCode() + "-" + this.mainDate;

file " +

" +

//System.out.println(LINE): //Debugging statement
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

)

System.out.println("Sending the file ");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () :
File f = new File(this.md5File);
f . delete () :
f = null:
return (1):

if (LINE.equals("yes"» (
System.out.println("The server has determined that there is a

"already created for this machine. ,It is

"recommended that you run an integrity
check or " +

"if you are 100% positive that you want
to overwrite this " +

• file press 1 and enter to overwrite. .If
you overwrite you • +

·potentially have corrupted binaries and
will not be aware " +

"of their presence. Press any other key
and then enter to quit. "+

·You should use the update option if you
have installed any new programs.");

statement

keyStroke = k1.readInt();
if (keyStroke == 1) (

)

out.println("go");
System.out.println("Sending the file ");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
File f = new File(this.md5File):
f. delete () ;
f = null;
return(1) ;

else (

)

//System. out. println (" I am sending -1 back"); I/Debuggin

out.println("stop");
in. close () ;
return (-1);

91

}

}

else (
System.out.println("Did not get correct response from server, "

+
"terminating.");

return (0);
}

}

catch (NumberFormatException n1) (
//System.out.println("I am sending -1 back"); //Debuggin

statement
out.println("stop·);
in. close () ;
out. close () ;
return (-1);

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_md5, agent may be

down. ");
return (0);

)

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_md5.");
return (0);

}

return (1);
}

/**
* Contacts the server and sends the client md5 file to the server

and deletes
* the local file.

*
* @param address
* The address - ipaddress or dns - of the md5 server.

* port

* The port ot the md5 server that will be used for
communication.

* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int sendToMD5Server(String address, int port) throws
IOException (

Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp = "";

try (

92

clientSocket = new Socket (address, port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new FileReader(this.md5File»;
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = "~;
int keyStroke;
System.out.println("Contacting the md5 server ·);
LINE = inFromServer.readLine();
if (LINE. equals ("Hello from Server_mdS"» (

//Send Operation
out.println("l");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+1);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) +

num + ")" + "-" + this.mainDate;
)

else

. " + temp + " " + "(" +

LINE = LINE.substring(O, index) + • " + temp + • • +
add.hashCode() + "-" + this.mainDate;

file " +

" +

//System.out.println(LINE);
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

)

System.out.println("Sending the file ");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close ();
File f = new File(this.md5File);
f . delete () ;
f = null;
return (1);

if (LINE.equals("yes"» (
System.out.println("The server has determined that there is a

"already created for this machine. It is

"recommended that you run an integrity
check or " +

"if you are 100% positive that you want
to overwrite this " +

"file press 1 and enter to overwrit.e.,If
you overwrite you " +

"potentially have corrupted binaries and
will not be aware " +

·of their presence. Press any other key
and then enter to quit. "+

"You should use the update option if you
have installed any new programs.");

93

keyStroke:;:; k1.readInt();
if (keyStroke :;:;:;:; 1) (

out.println("go");

}

System.out.println("Sending the file ·);
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
File f = new File(this.md5File);
f . delete () ;
f :;:; null;
return(l);

else (
//System.out.println("I am sending -1 back"); //Debugging

statement

+

}

}

}

}

out.println("stop");
in. close () ;
return (-1);

else (
System.out.println("Did not get correct response from server, "

"terminating.");
return (0);

}

catch (NumberFormatException n1) (
//System.out.println("I am sending -1 back"); I/Debugging

statement
out.println("stop");
in. close () ;
out.close();
return (-1);

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_md5, agent may be

down. ");
return (0);

}

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_md5.");
return (0);

}

return (1);
}

/**
* Contacts the server and sends the client shal file to the server

and deletes
* the local file.

*
* @return integer

94

* An integer to signify if the transfer was successful
or not.

* @throws IOException
* Could not properly communicate with the server.
*/

public int sendToSHAlServer() throws IOException (
Socket clientSocket : null;
PrintWriter out: null;
BufferedReader in : null;
BufferedReader inFromServer nulli
int indexi
String temp :

try (

... ,
clientSocket = new Socket(this.shalAddress, this.shalPort);
out: new PrintWriter(clientSocket.getOutputStream(), true)i
in = new BufferedReader(new FileReader(this.shalFile»i
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»)i
String LINE = .n:
int keyStroke;
System.out.println("Contacting the shal server ");
LINE = inFromServer.readLine();
if (LINE. equals ("Hello from Server_shaln» (

//Send Operation
out.println(nl");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+l);
if (add.hashCode() < 0) (

int num = add.hashCode()i
num = num*-li
LINE = LINE.substring(O, index) +

num + ")" + "-" + this.mainDate;
)

else

" . + temp + . . + "(" +

LINE = LINE.substring(O, index) + •• + temp + •• +
add.hashCodeO + "-" + this.mainDate;

file • +

//System.out.println(LINE);
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine()i
if (LINE.equals("no"» (

}

System.out.println("Sending the file ");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () i
File f = new File(this.shalFile);
f . delete () ;
f = null;
return (1);

if (LINE.equals("yes"» {
System.out.println("The server has determined that there is a

95

"already created for this machine. It is
" +

"recommended that you run an integrity
check or " +

"if you are 100% positive that you want
to overwrite this • +

"file press 1 and enter to overwrite .. If
you overwrite you " +

"potentially have corrupted binaries and
will not be aware If +

"of their presence. Press any other key
and then enter to quit. "+

"You should use the update option if you
have installed any new programs.");

keyStroke: kl.readInt{);
if (keyStroke :: 1) (

}

out.println{"go");
System.out.println{"Sending the file ·);
while ((LINE: in.readLine(» != null)

out.println{LINE);
in. close () ;
File f = new File(this.shalFile)i
f. delete () ;
f = null;
return (1) ;

else (
IISystem.out.println("I am sending -1 back"); II Debugging

statement

+

)

}

}

}

out.println("stop");
in.close() ;
return (-1);

else (
System.out.println{"Did not get correct response from server, "

"terminating.");
return (0);

)

catch (NumberFormatException nl) (
IISystem.out.println("I am sending -1 back"); I I Debugging

statement
out.println("stop·);
in. close () i
out. close () ;
return (-1) i

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_shal, agent may be

down. ");
return (0);

)

catch (IOException e) {

96

System.err.println("Couldn't get I/O for the connection to
Agent_sha1.");

return (0);
)

return (1);
)

/**
* Contacts the server and sends the client shal file to the server

and deletes
* the local file.
*
* @param address
* The address - ipaddress or dns - of the shal server.

* port
* The port of the shal server that will be used for

communication.
* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int sendToSHAlServer(String address, int port) throws
IOException (

Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp =

try (

"" . ,

clientSocket = new Socket (address, port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new FileReader(this.sha1File»;
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getlnputStream(»);
String LINE = .";
int keyStroke;
System.out.println("Contacting the sha1 server ·);
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server_shal"» (

//Send Operation
out.println("1");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf(·/");
temp = LINE.substring(index+l);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) +

num + ")" + "-" + this.mainDate;

97

" " + temp + " " + "(" +

)

else
LINE = LINE.substring(O, index) + It " + temp + .. " +

add.hashCode() + ,,_It + this.mainDate;

file " +

.. +

//System.out.println(LINE);
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no lt » (

)

System.out.println("Sending the file ·);
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
File f = new File(this.sha1File);
f. delete 0 ;
f = null;
return (1);

if (LINE.equals("yes"» (
System.out.println("The server has determined that there is a

"already created for this machine. It is

"recommended that you run an integrity
check or • +

"if you are 100% positive that you want
to overwrite this • +

"file press 1 and enter to overwrite. If
you overwrite you .. +

"potentially have corrupted binaries and
will not be aware • +

"of their presence. Press any other key
and then enter to quit. "+

"You should use the update option if you
have installed any new programs.");

statement

)

)

keyStroke = k1.readInt();
if (keyStroke == 1) (

)

out.println("go");
System.out.println(·Sending the file•);
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
File f = new File(this.sha1File);
f .delete();
f = null;
return(1);

else (

)

//System.out.println("I am sending -1 back"); //Debugging

out.println(·stop·);
in.closeO;
return (-1);

else (

98

System.out.println("Did not get correct response from server, "
+

"terminating.");
return (0);

}

}

catch (NumberFormatException n1) {
//System.out.println("I am sending -1 back"); /Debugging

statement
out.println("stop·);
in. close () ;
out.close();
return (-1);

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_shal, agent may be

down. .);
return (0);

}

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_shal.");
return (0);

}

return (1);
}

/**
* Contacts the md5 server and gets the md5 file from the server.
*

address * @param
*
*

The address - ipaddress or dns - of the md5 server.
port

* The port of the md5 server that will be used for
communication.

* serverFile
* The name of the file that will store the results from

the md5 server.
* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int getFromServerMD5(String address, int port, String
serverFile) throws IOException {

Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp = ... , output Line =

try (

" " . ,

clientSocket = new Socket (address, port);
out = new PrintWriter(clientSocket.getOutputStream(), true);

99

inFromServer = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream(»);

BufferedWriter bWriter = new BufferedWriter(new
FileWriter(serverFile»;

String LINE = ".;

num +

System.out.println("Contacting the mdS server ·);
LINE = inFromServer.readLine()i
if (LINE.equals("Hello from Server_md5"»
(

//Send Operation
out.println("2")i
//Create file name
InetAddress add = InetAddress.getLocalHost()i
LINE = add.toString():
index = LINE.indexOf("/");
temp = LINE.substring(index+1);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE. substring (0 , index) +

"). + "-" + this.mainDate;
)

else

" . + temp + + "(" +

LINE = LINE. substring (0 , index) + "." + temp + "." +
add.hashCode() + "-" + this.mainDate;

//System.out.println(LINE): //Debugging statement
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine():
if (LINE.equals("no"» (

System.out.println("There is no file stored on the server
associated " +

"with your machine. Please use the Secure
Hash option"):

bWriter.close()i
return (-1):

}

if (LINE. equals ("yes"» (
System.out.println("Receiving the file "):
while (! (outputLine =

inFromServer.readLine(».equals("##**##&&?"»
bWriter.write(outputLine +" "):

bWriter.write(outputLine):

+

}

bwriter.close()i
}

}

else (
System.out.println("Did not get correct response from server, "

}

in. close () ;
out.close():
return (-3):

"terminating."):

catch (UnknownHostException e) {

100

System.err.println("Could not contact Agent_mdS, agent may be
down.") ;

return (0);
}

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_md5.");
return (0);

}
return (1);

}

/**
* Contacts the md5 server and gets the md5 file from the server.

*
* @param

* serverFile
* The name of the file that will store the results from

the md5 server.
* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int getFromServerMD5(String serverFile) throws IOException (
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp = "", output Line =

try (

" .. ,
clientSocket = new Socket (this.md5Address, this.mdSPort);
out = new PrintWriter(clientSocket.getOutputStream(), true);
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
BufferedWriter bWriter = new BufferedWriter(new

FileWriter(serverFile»;
String LINE = "Hi

System.out.println("Contacting the mdS server ");
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server_mdS"» (

IISend Operation
out.println("2");
IICreate file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString(};
index = LINE.indexOf("I");
temp = LINE.substring(index+l};
if (add.hashCode() < O} {

int num = add.hashCode(};
num = num*-l;
LINE = LINE.substring(O, index} +

num + ")" + "-" + this.mainDate;

101

" " + temp +

)

else
LINE = LINE. substring (0 , index) + "." + temp + "." +

add.hashCode() + "-" + this.mainDate;
//System.out.println(LINE); //Debugging statement

out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

System.out.println("There is no file stored on the server
associated " +

"with your machine. Please use the Secure
Hash option·);

bWriter.close();
return (-1);

}

if (LINE. equals ("yes"» (
System.out.println(·Receiving the file•);
while (! (outputLine =

inFromServer.readLine(».equals("U**##&&?"»

+

)

}
)

bWriter.write(outputLine +" H);
bWriter.write(outputLine);
bWriter.close();

else (

)

System.out.println(·Did not get correct response from server, "

in. close () ;
out.close();
return (-3);

"terminating.");

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_mdS, agent may be

down. ,,,);
return (0);

)

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_mdS.");
return (0):

)

return (1);
}

/**
* Contacts the shal server and gets the shal file from the server.
*
* @param

*
*
*

address
The address - ipaddress or dns - of the shal server.

port
The port of the shal server that will be used for

communication.

* serverFile

102

* The name of the file that will store the results from
the shal server.

* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int getFromServerSHA1(String address, int port, String
serverFile) throws IOException (

Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp = "., outputLine =

try (

" .. ,

clientSocket = new Socket (address, port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
BufferedWriter bWriter = new BufferedWriter(new

FileWriter(serverFile»;
String LINE = "";

System.out.println("Contacting the sha1 server ·);
LINE = inFromServer.readLine()i
if (LINE. equals (. Hello from Server __ shaP» (

//Send Operation
out.println("2");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+l);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-1;
LINE = LINE.substring(O, index) +

num + ")" + "-" + this.mainDate;
}

else

.. .. + temp + + .. (" +

LINE = LINE.substring(O, index) + •. " + temp + "." +
add.hashCode() + "-" + this.mainDate;

//System.out.print.ln(LINE)i //Debugging statement
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

System.out.println(·There is no file stored on the server
associated " +

Hash option");
bWriter.close();
return (-1);

}

"with your machine. Please use the Secure

103

if (LINE.equals("yes"» {
System.out.println("Receiving the file ·);
while (! (outputLine =

inFromServer.readLine(».equals("##**##&&?"»
bWriter.write(outputLine +" "):

bWriter.write(outputLine);

+

}

bWriter.close();
}

}
else {

System.out.println("Did not get correct response from server, •

}

in. close () ;
out.close();
return (0):

"terminating.");

catch (UnknownHostException e) {
System.err.println("Could not contact Agent_sha1, agent may be

down. ");
return (0);

}

catch (IOException e) {
System.err.println("Couldn't get I/O for the connection to

Agent_sha1.");

*

return (0);
}

return (1);
}

/**
* Contacts the shal server and gets the shal file from the server.
*
* @param

*
address

The address - ipaddress or dns - of the shal server.

* @return integer
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate with the server.
*/

public int getFromServerSHA1(String serverFile) throws IOException {
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer = null;
int index;
String temp = "', output Line =

try {

." . ,

clientSocket = new Socket(this.shalAddress, this.shalPort);
out = new PrintWriter(clientSocket.getOutputStream(), true};
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getlnputStream(»);

104

BufferedWriter bWriter = new BufferedWriter(new
FileWriter(serverFile»;

String LINE = "";
System.out.println("Contacting the shal server• ");
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server_shal"» (

//Send Operation
out.println("2");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+1);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) + " • + temp +

num + "j" + "-" + this.mainDate;
}

else

. " + • (" +

LINE = LINE.substring(O, index) + "." + temp + "." +
add.hashCode() + "-" + this.mainDate;

//System.out.println(LINE); //Debugging statement
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE. equals ("no'» (

System. out. println("There is no file stored on the server
associated • +

"with your machine. Please use the Secure
Hash option");

bWriter.close();
return (-1);

}

if (LINE.equals("yes·» (
System.out.println("Receiving the file ·);
while (! (outputLine =

inFromServer.readLine(».equals("##**##&&?"»
bWriter.write(outputLine + "');

bWriter.write(outputLine);

+

}

bWriter.close();
}

}

else (

}

System.out.println("Did not get correct response from server, "

in. close () ;
out.close();
return (0);

• terminating .•) ;

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_shal, agent may be

down. ");
return (0);

}

105

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_shal.");
return (0);

}

return (1);
}

/**
* Contacts the md5 server and gets the last modified date from md5

file on
* the server.
*
* @return date
* The last date modified or an integer to signify that

the
* server is down.
* @throws IOException
* Could not properly communicate with the server.
*/

public long getLastModifiedMD5() throws IOException {
long date:: 0;
Socket clientSocket :: null;
PrintWriter out:: null;
BufferedReader in :: null;
BufferedReader inFromServer :: null;
int index;
String temp:: "";

try (
clientSocket = new Socket (this.md5Address, this.md5Port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = "";
System.out.println("Contacting the md5 server ");
LINE = inFromServer.readLine();
if (LINE. equals ("Hello from Server_md5"» (

//Send Operation
out.println("3");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+1);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE:: LINE.substring(O, index) +

num + "}" + "-" + this.mainDate;
}

else
LINE = LINE.substring(O, index) +

add.hashCode() + "-" + this.mainDate;
out.println(LINE);
//Wait to see if it exists

106

. . + temp +

. " + temp +

" "

" • +

LINE = inFromServer.readLine();
if (LINE.equals("no"» (

System.out.println("The file does not exist according to get
last modified - «

}

+ "transport class error");
System.exit(l);

}

if (LINE.equals("yes"» (

}

LINE = inFromServer.readLine();
date = Long.parseLong(LINE);
in. close () ;

else (
System.out.println("Did not get correct response from server,

terminating NOW'");
System. exit (1);
return (0);

)
}

catch (UnknownHostException e)(
System.err.println("Could not contact Agent_md5, agent may be

down. ");
return (-1);

}

catch (IOException e) (
System.err.println("Couldn't get 1/0 for the connection to

Agent_mdS. ") ;
return (-1);

}

return (date);
}

/**
* Contacts the md5 server and gets the last modified date from md5

file on
* the server.
*
* @param

*
*
*

address
The address - ip address or dns - of the md5 server.

port
The port of the shal server that will be used for

communication.
* @return date

* The last date modified or an integer to signify that
the

* server is down.
* @throws IOException
* Could not properly communicate with the server.
*/

public long getLastModifiedMD5(String address, int port) throws
IOException (

long date = 0;
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;

107

BufferedReader inFromServer = null;
int index;
String temp =

try (

... ,
clientSocket = new Socket (address, port);
out = new PrintWriter(clientSocket.getOutputStream(), true);
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = ""I

System.out.println("Contacting the md5 server ");
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server_md5"» (

//Send Operation
out.println("3");
//Create file name
InetAddress add = InetAddress.getLocaIHost();
LINE = add.toString();
index = LINE.indexOf("/");
temp = LINE.substring(index+1);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) +

num + "}" + "_It + this.mainDate;
}

else

. " + temp + . " + "(' +

LINE = LINE.substring(O, index) + + temp + " • +

add.hashCode() + "-" + this.mainDate;
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

System.out.println("The file does not exist according to get
last modified - "

}

+ "transport class error");
System.exit(l);

}

if (LINE.equals("yes"» (

}

LINE = inFromServer.readLine();
date = Long.parseLong(LINE);
in. close ();

else (
System.out.println("Did not get correct response from server,

terminating NOW!");
System.exit(l);
return (0);

}

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_md5, agent may be

down. ");
return (-1);

}

catch (IOException e) {

108

System.err.println("Couldn't get 1/0 for the connection to
Agent_md5."):

return (-1):
)

return (date):
)

/**
* Contacts the shal server and gets the last modified date from shal

file on
* the server.
*
* @return date
* The last date modified or an integer to signify that

the
* server is down.
* @throws IOException
* Could not properly communicate with the server.
*/

public long getLastModifiedSHA1() {
long date = 0:
Socket clientSocket = null:
PrintWriter out = null:
BufferedReader in = nUll;
BufferedReader inFromServer = null:
int index:
String temp =

try (

... ,

clientSocket = new Socket(this.sha1Address, this.sha1Port):
out = new PrintWriter(clientSocket.getOutputStream(), true):
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»):
String LINE = .":
System.out.println("Contacting the sha1 server "):

num +

LINE = inFromServer.readLine():
if (LINE.equals("Hello from Server_shai"» (

I/Send Operation
out.println("3"):
I/Create file name
InetAddress add = InetAddress.getLocalHost():
LINE = add.toString():
index::;; LINE.indexOf("/·):
temp = LINE.substring(index+1):
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num*-l;
LINE = LINE. substring (0, index) +

")" + "-" + this.mainDate:
}

else
LINE = LINE.substring(O, index) +

. . + temp +

" . + temp +

add.hashCodeO + "-" + this.mainDate;
out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine():

109

. " + • (. +

• " +

if (LINE.equals("no"» (
System.out.println("The file does not exist according to get

last modified - "

}

+ "transport class error");
System.exit(l);

}

if (LINE.equals("yes·»
(

}

LINE = inFromServer.readLine();
date = Long.parseLong(LINE);
in. close () ;

else (
System.out.println("Did not get correct response from server,

terminating NOWl");
System. exit (1);
return (0);

}
}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_shal, agent may be

down. ") ;
return (-1);

}

catch (IOException e) (
System.err.println("Couldn't get IIO for the connection to

Agent_shal.");
return (-1);

}

return (date);
}

/**
* Contacts the shal server and gets the last modified date from shal

file on
* the server.
*
* @param

*
*
*

address
The address - ip address or dns - of the shal server.

port
The port of the shal server that will be used for

communication.
* @return date
* The last date modified or an integer to signify that

the
* server is down.
* @throws IOException
* Could not properly communicate with the server.
*/

public long getLastModifiedSHA1(String address, int port) {
long date = 0;
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = nUll;
BufferedReader inFromServer = null;

110

i:nt index;
String temp =

try (

't n • ,

clientSocket = :new Socket (address, port);
out = :new PrintWriter(clientSocket.getOutputStream(), true);
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = "Wi
System.out.println("Contacting the shal server.. ·);
LINE = inFromServer.readLine();
if (LINE. equals ("Hello [rom Server. __ shal"» (

IISend Operation
out.println("3");
IICreate file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE. indexOf (" I ") ;
temp = LINE.substring(index+1);
if (add.hashCode() < 0) {

i:nt num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) +

num + ")" + "-' + this.mainDate;
}

else

+ temp + + "{" +

LINE = LINE.substring(O, index) + + temp + " " +
add.hashCode() + "-" + this.mainDate;

out.println(LINE);
/IWait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» {

System.out.println("The file does not exist according to get
last modified - "

}

+ "transport class error");
System. exi t (1) ;

}

if (LINE.equals("yes"» {

}

LINE = inFromServer.readLine();
date = Long.parseLong(LINE);
in.close();

else (
System.out.println("Did not get correct response from server,

terminating NOW!");
System.exit(1);
retur:n (0);

}

}

catch (UnknownHostException e) (
System.err.println("Could not contact Agent_sha!, agent may be

down. ..) ;
return (-1) i

}

catch (IOException e) {

111

System.err.println("Couldn't get I/O for the connection to
Agent_sha1."):

return (-1):
}

return (date):
}

/**
* Sends the verified client file up to the shal server overwriting

the old server
* file.
*

file * @param

* The client file to upload and overwrite the server
file.

* @return intege.r
* An integer to signify if the transfer was successful

or not.
* @throws IOException
* Could not properly communicate wi th the server.
*/

public int overrideSHA1Server(String file) throws IOException {
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer null;
int index;
String temp =

try {

.. n • ,

clientSocket := new Socket (this. shalAddress, this. shalPort) ;
out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new FileReader(file»;
inFromServer := new BufferedReader (new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = "";
int keyStroke;
System.out.println("Contacting the shal server. ");
LINE = inFromServer. rei'idLine () ;
if (LINE. equals ("Hello from Server_shal"» (

//Send Operation
out.println("1");
//Create file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("I");
temp = LINE.substring(index+l);
if (add.hashCode() < 0) (

int num = add.hashCode();
num = num'~-l;
LINE = LINE.substring(O, index) +

num + ")H + "-" + this.mainDate;
}

+ temp + + "(" +

else
LINE LINE.substring(O, index) + + temp + • • +

add. hashCode () + "-" + this .rnainDate;

112

+

}

}

out.println(LINE);
//Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE.equals("no"» (

}

System.out.println("Sending the file ");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
out.closeO;
File f = new File(file);
f.delete();
f = null;
return (1);

if (LINE. equals (.. yes"» (

}

out.println("go·);
System.out.println("Sending the file 0");

while ((LINE = in.readLine(» != null)
out.println(LINE);

in. close () ;
out. close () ;
File f = :new File (file) ;
f .delete();
f = null;
return(1);

else (
System.out.println("Did not get correct response from server, "

"terminating.");
return (0);

}

catch (UnknownHostException e) {
System.err.println("Could not contact Agent_shal, agent may be

down. ..) ;
return (0);

}

catch (IOException e) (
System.err.println("Couldn't get I/O for the connection to

Agent_shal.·);
return (0);

}

return (1);
}

/**
* Sends the verified cl_ient file up to the md5 server overwriting

the old server
* file.

*
* @param

*
file.

file
The client file to upload and overwrite the server

* @return integer

113

* An integer to signify if the transfer was successful
or not.

* @throws IOException
* Could not properly communicate with the server.
*/

public int overrideMD5Server(String file) throws IOException {
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
BufferedReader inFromServer
int index;
String temp =

try {

Jt n • ,

null;

clientSocket = new Socket (this.md5Address , this.md5Port);
out = new PrintWriter(clientSocket. getOutputStream(), true);
in = new BufferedReader(new FileReader(file»;
inFromServer = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream(»);
String LINE = .. ";
int keyStroke;
System.out.println("Contacting the md5 server ");
LINE = inFromServer.readLine();
if (LINE.equals("Hello from Server,_md5"» {

//Send Operation
out.println("l");
IICreate file name
InetAddress add = InetAddress.getLocalHost();
LINE = add.toString();
index = LINE.indexOf("i");
temp = LINE.substring(index+1);
if (add.hashCodeO < 0) {

int num = add.hashCode();
num = num*-l;
LINE = LINE.substring(O, index) +

num + ")" + • -" + t:h.is .mainDate;
}

else
LINE = LINE.substring(O, index) +

add.hashCodeO + "-" + this.mainDate;
out.println(LINE);

I/Wait to see if it exists
LINE = inFromServer.readLine();
if (LINE. equals ("no"» {

+ temp +

+ temp +

System.out.println("Sending the file ·);
while ((LINE = in. readLine (» ! == null)

}

out.println(LINE);
in. close () ;
out. close () ;
File f = ltleW File(file);
f. delete () ;
f = null;
return (1);

if (LINE.equals("yes"» {
out.println("go");

114

+ "(" +

" " +

+

}

}

System.out.println("Sending the file ,");
while ((LINE = in.readLine(» != null)

out.println(LINE);
in. close () ;
out.close();
File f = new File(file);
f. delete () ;
f = null;
return (1) ;

}

else.{
System.out.println("Did not get corr·ect response from server, •

"terminating.");
return (0);

}

catch (UnknownHostException e) {
System.err.println("Could not contact Agen t __ md 5 , agent may be

down~ U)i

return (0);
}

catch (IOException e) {
System.err.println("Couldn't get I/O for the connection to

Agent __ mdS. ") ;
return (0);

}

return (1);
}

/**
* Returns md5 server address which is the value of this.md5Address.
*
* @return this.md5Address

* The value of the md5 server address in the i.nstance of
this class.

*/
public String getmd5Address() {

return (this.md5Address);
}

/**
* Returns md5 server port which is the value of this.md5Port.

*
* @return this.md5Port

* The value of the md5 server port in the instance of
this class.

*/

public int getmd5Port() {
return (this. md'5Port) ;

}

/**

115

* Returns shal server address which is the value of
this.shalAddress.

*
* @return this.shalAddress

* The value of the sha.l server address in the instance
of this class.

*/
public String getshalAddress{) {

return (this.shalAddress);
}

/**
* Returns shal server port which is the value of this.shalPort.

*
* @return this.shalPort
* The value of the shal server port in the instance of

this class.
*/

)

public int getshalPort{) {
return (this.shalPort);

)

116

APPENDIX IV. Selected Method Summaries

sim.agents

Class integrityCheck
java.lang.Object

I
+--sim.agents. intlegrityCheck

r---'-------------------' ---------,
,Method Summary
r-i~t I ~h.oklnt.grit;[(String i~~alFile, String serverFile,

int indicator)

i
dr Checks thl:: integrity of the local file compared to the server file.

r----~ ---"-'M __ "_~," ---....... ~,,--"---,-~-....-. ~---... ----•• --.-.-,,--.----.-.. ---.-------------

:

void performInt.gr,ityCh.ok (String serverMD5, String md5Client,
String serverSHA1, String shalClient, long date)

Responsible for performing the integrity check.
~,-~-",---.,..,,",-,",-,----,,,,--.. ,,,,--... --,--------.......... -~--~ ... -,----,-.,,,,.------,---"~ -----...... ----~ -.-...... -""'"-""'--

sim.agents

Class secureHasl1
java.lang.Object

I
+--sim.agents. sec'LlreHash

Method Summary
long : "' ... n. ... ()

Returns the date of the md5 file that was written to disk.

String g.tIlDSPU. ()
Returns the name of the md5 file that was written to disk.

r-
String getSllA1Pil. ()

Returns the name of the shal file that was written to disk.

String .~(java.lang.String os)

Decides which version of the OS is found and calls the necessary
... ,,,,+h,..A

117

sim.agents

Class transport
java.lang.Object

I
+--sim.agents. tra:nsport

[M~~~t~==25~St~i;;-se-r~-rF;-e)-'-----'-'-' -' .. ----. -' --:-~l
r----'-.-r--~~ta~~ th~_~~~_~~~~~~~~_~~.~~~~ile _~om the .~~~er. _____ _

int qetl'romServl~(String address, int port, J
java.lang.String serverFile)

r---intTi!tl'r:::::~:~1~::~ ~:!!;?F:h:e;d5_~~~ro~ th~~erver. --- I
I Contacts the shal server and gets the shal file from the server.

r---·-r·-----~-·-·-------'-·---·-------.. ·-------·------.--.. -
int getl'romServ,erSBAl (String address, int port, String serverFile) J

Contacts the shal server and gets the shal file from the server.

'-long I i.tx.~=~-:~~-:m-m-~~)~-erv-e-r -an-d~et~-he---Ia-st~0~~fi-le-d-~~te-fr-o-m--m-d-5 -fil-e on I
I the server. j

'. "---l-on-~-r;;tL;~~-ta-:~:~~::~-~-~~-;v-i;: a~~:~s-s:h~-t-'a~~'::~i~~~-d~t:'~~~--:d;'fil~-'O-n-J
the server.

r - long I i-;tL;~t;;;difi;dsBA1()"---"--'-'--"--'--------'----------- I

~
I Contacts the shal server and gets the last modified date from shal file OJ
the server.

,t----, .------.----------.--------------.-----.--------------
long qetX.etJlodi:UedSBAl (String address, int port)

I Contacts the shal server and gets the last modified date from shal file on
I the server.

t-s'~ring I g~t;S-5Mdr~; •• -() -----------------.. --------.. -_.----.-.-----.---------

! Returns md5 server address which is the value ofthis.md5Address.

r---i;tfi!tqetmd-~-~-~~~)::5-s-e~e~-~0~:hl-. Ch-::':-e va;:e-o-f-th-i:~:~5Po-rt.-----.. ---
r-~--"~ _ ... ~ ~ .. __ .. __ ~ ____ "" ~........_ __ """" ~ ~ ___ ..._._..... _~_ ... _.,_.. __ .. __ ~ b ... _____-...J_~ .. __ ~_. __ .• _. __ .. ~~_ ... __

String qeteha1A44r4!!! ()
I Returns shal server address which is the value ofthis.shalAddress.

=-_-,-~.-·-:-_Rl_e~_~~_t~~_(~h~_l·-_S:;_e;o;_--:_~h_~~~_~~_·-l~-,_e~_~-h_i~-:Sh~_~_P_~_.-_-_~_-_J
int overri4elm5IBerver(String file) I

Sends the verified client file up to the md5 server overwriting the old
server file.

r-----.. t----·-----·---·------·-.. ----------·-·---····-----·--.. ----·----·----.... ----···-----------l
int overrideSBA:1Server(String file)

Sends the verified client file up to the shal server overwriting the old
server file.

118

r-............. -

int •• Dd!'ollD5S.~ ()

Contacts the server and sends the client md5 file to the server and
the local file.

,....-
int •• Dd!'ollD5S •. rv.r (String address, int port)

Contacts the server and sends the client md5 file to the server and np1ptpII

the local file.
r----

int •• Dd'1'oSIIA1S'arv.r ()
Contacts the server and sends the client shal file to the server and np1ptpII

the local file.
r-

int •• Dd'1'oSIIA1S,arver (String address, int port)

Contacts the server and sends the client shal file to the server and np1ptp"

the local file.

119

APPENI)IX V. Miscellaneous Source Code

import j.v •. io.*1
import j.va .•• curi ty geDig •• t I
import j.v •.•• curit:y.IIoSuchAlgorithmBxc.ptiolll

/**
* <p>Title: Software Integrity Management</p>
* <p>Description: Security Software</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>University:: University of Louisville, J.B. Speed School of
Engineer ing< /p>
* @author Joseph H. Brown
* @version 1.0 Revision 1
*/

public class Test (
public Test() {)

public static voi,a main (String [] args) throws IOException (
Test test new Test();
String as = ''';

//Test for java security hash methods
try (

MessageDigest md5 = MessageDigest. get Instance (·'MD5·) ;
)

catch (NoSuchA190rithmException a) (
System.out.println("NOMDS");

)

try {
MessageDigest shal = MessageDigest. getInstance (., SHA.-l") ;

)

catch (NoSuchA190rithmException a) (
System. out .println ("NOSRA1") ;

}

//Test to make sure the OS is supported
as = System.getl?roperty("os.name");
if ((os.indexO:f("Windo\'[s") < 0) && (os.indexOf("Linux") < 0) &&

(os.indexOf("CYGWIN") < 0)) {
Sys tem. ou t . pr in tln (• lJ'NKNOWNOS ") ;

}

)

)

120

VITA

NAME: Joseph H. Brown

ADDRESS: Department of Computer Engineering and Computer Science
University of Louisville
Louisville, KY 40292

DOB: Louisville, KY - January 29, 1980

EDUCATION &
TRAINING: B.S. Computer Engineering and Computer Science

University of Louisville
1998 - 2002

AWARDS: Presidential Scholarship, The Arthur M. Riehl Award, Academic Dean's
List

PROFESSIONAL SOCIETIES:

• National Chapter of Association of Computing Machinery

• Student Chapter of Association of Computing Machinery

Linux Users Special Interest Group

Mac Users Special Interest Group

• Upsilon Pi Epsilon Computer Engineering Honor Society

• Tau Beta Pi Engineering Honor Society

• Institute of Electrical and Electronic Engineers

• Institute of Electrical and Electronic Engineers Computer

• Order of the Engineer

• Student Chapter of Technology Network of Greater Louisville

121

	Software integrity management system.
	Recommended Citation

	tmp.1423685735.pdf.IG5sU

