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ABSTRACT 

HEAT TRANSFER MEASUREMENT IN OIL-BASED NANOFLUIDS 

Kan Liu 

April 11, 2011 

Nanoparticles are a class of materials that exhibit unique physical and chemical 

properties compared to those of the same material at the bulk scale. One method of 

enhancing the thermal conductivity, and hence the heat transfer coefficient, of a fluid is to 

add nanoparticles to the fluid creating a so called nanofluid. The term "nanofluids" was 

coined by researchers at Argonne National Laboratory and refers to a two-phase mixture 

composed of a continuous liquid phase and dispersed nanoparticles in suspension. 

Nowadays, nanofluids are considered to be the next-generation heat transfer fluids as 

they offer exciting new possibilities to enhance heat transfer performance compared to 

pure liquids. 

Heat transfer coefficient of a fluid is the proportionality coefficient between the 

heat flux that is a heat flow per unit area and the thermodynamic driving force for the 

flow of heat. It shows how effective heat can be transferred within a system and can be 

passively enhanced by changing flow geometry, boundary conditions, or by enhancing 
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thermal conductivity of the fluid. In most existing systems, since the first two of these are 

set by design, the only method to enhance heat transfer is to enhance heat transfer 

properties of the fluid. 

In this study, we used three sizes of eu nanoparticles with different particle 

loadings and dispersed them into PAO formulated motor oil to create nanofluids. 

Measurements of heat transfer coefficients and other fluid properties were performed. 

Both base and nanofluids appeared to behave like Newtonian fluids and an up to 25% 

enhancement of the heat transfer coefficient was observed in the laminar flow regime. 

The heat transfer coefficient is shown to increase with increasing Reynolds number. 

However, as fluid temperature increases, the heat transfer coefficient decreased. Various 

factors including Reynolds number, fluid temperature, nanoparticle size, and nanoparticle 

loadings are all capable of impacting the enhancement ratio. A consistent downward trend 

of enhancement ratio with respect to Reynolds number was observed for the nanofluids 

discussed in this work. Future studies in the turbulent flow regime are needed to confirm 

this trend. Finally, a theoretical model to predict the heat transfer coefficient of nanofluids 

is developed based on previously published correlations the results of which are in 

excellent agreement with the experimental data. 
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CHAPTER I 

INTRODUCTION 

The first use of the concepts found in 'nano-technology' was in "There's Plenty of 

Room at the Bottom", a talk given by physicist Richard Feynman at an American 

Physical Society meeting at California Institute of Technology (Caltech) on December 29, 

1959 [I]. Feynman described a process by which the ability to manipUlate individual 

atoms and molecules might be developed, using one set of precise tools to build and 

operate another proportionally smaller set, and so on down to the needed scale. In the 

course of this, he noted, scaling issues would arise from the changing magnitude of 

various physical phenomena: gravity would become less important while the surface 

tension and van der Waals attraction would become increasingly more significant. 

The term "nanotechnology" was first defined by Norio Taniguchi of the Tokyo 

Science University in a 1974 paper [2] as follows: "'Nano-technology' mainly consists of 

the processing of separation, consolidation, and deformation of materials by one atom or 

one molecule." Since that time the definition of nanotechnology has generally been 

extended to include features as large as 100 nm. Additionally, the idea that 

nanotechnology embraces structures exhibiting quantum mechanical aspects, such as 

quantum dots, has further evolved its definition. Also in 1974, the process of atomic layer 



deposition, for depositing uniform thin films one atomic layer at a time, was developed 

and patented by Dr. Tuomo Suntola and co-workers in Finland. In the 1980s, the idea of 

nanotechnology as a deterministic, rather than stochastic, handling of individual atoms 

and molecules was conceptually explored in depth by Dr. K. Eric Drexler. His vision of 

nanotechnology is often called "Molecular Nanotechnology" (MNT) or "molecular 

manufacturing. " 

Nanotechnology is the understanding and control of matter at dimensions between 

approximately 1 and 100 nanometers, where unique phenomena enable novel 

applications. Encompassing nanoscale SCIence, engineering, and technology, 

nanotechnology involves imaging, measuring, modeling, and manipulating matter at this 

length scale. Dimensions between 1 and 100 nanometers are known as the nanoscale. At 

the nanoscale, unusual physical, chemical, and biological properties can emerge in 

materials. These properties may differ in important ways from the properties of bulk 

materials and single atoms or molecules. 

Work within the intersecting disciplines at the core of nanotechnology 

innovation-including physical, life, and social sciences and engineering-has revealed 

the potential of nanomaterials and nanoscale processes in a number of ways. They can be 

used to collect and store energy, reinforce materials, sense contaminants, enable 

life-saving drugs, and shrink and accelerate computational devices in both incremental 

and paradigm-shifting ways. Furthermore, nanotechnology has enabled development of 

entirely new materials and devices that can be exploited in each of these and countless 

other applications [31. 

The United States has set the pace for nanotechnology innovation world-wide 
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with the National Nanotechnology Initiative (NNI). Launched in 200 I with eight 

agencIes, the NNI today consists of the individual and cooperative 

nanotechnology-related activities of 25 Federal agencies with a range of research and 

regulatory roles and responsibilities. The ten-year history of U.S leadership in 

fundamental nanotechnology research and development under the NNI has established a 

thriving nanotechnology R&D environment. One of the major goals of the National 

Nanotechnology Initiative strategic plan in 2011 is to advance a world-class 

nanotechnology research and development program. This program expands the 

boundaries of knowledge and develops technologies through a comprehensive program of 

research development. The NNI agencies invest at the frontiers and intersections of many 

disciplines, including chemistry, engineering, biology, materials science, and physics. The 

interest in nanotechnology arises from its potential to significantly impact numerous 

fields, including aerospace, agriculture, energy, healthcare, information technology, and 

transportation systems. In this strategic plan, fundamental nanoscale phenomena and 

processes is one of the most important research areas. 

An important term "nanofluids" was coined by researchers at Argonne National 

Laboratory in 1995 and refers to a two-phase mixture composed of a continuous liquid 

phase and dispersed nanoparticles in suspension [4]. Studies have shown the great 

potential of nanofluids to enhance thermal properties of their base fluids. As the first step, 

the preparation of nanofluids [5] is a key step to these enhancements. 

The term nanofluid does not simply equate to a liquid-solid mixture. Special 

requirements including stable suspension, even with low agglomeration of nanoparticles 

and no chemical change in fluid are needed. To meet these requirements one need to 
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change the surface properties of suspended particles and to suppress the formation of 

particle clusters to obtain a stable suspension. Depending on the properties of the 

nanoparticles and the solution selected, different types of surfactants can be used to 

enhance stability. Surfactants reduce the surface tension of water by adsorbing at the 

liquid-gas interface. They also reduce the interfacial tension between oil and water by 

adsorbing at the liquid-liquid interface. When surfactants assemble in oil , the aggregate is 

referred to as a reverse micelle. In a reverse micelle, the hydrophilic heads of the 

surfactants are in the core of the micelle and the hydrophobic tails maintain favorable 

contact with oil [6-8]. The most commonly used surfactants are thiols, oleic acid, laurate 

salts. Also, different surfactants may affect the properties of the nanofluids which still 

need to be more fully investigated. Figure 1.1 shows how cetyl trimethylammonium 

bromide (eTAB) works as a surfactant on alumina molecule. 

head 

+ 
_-tail 

CTAB 

Fig 1.1 Encapsulation of nanoparticle with surfactant molecules 

There are two major techniques used to produce nanofluids: the two-step 

technique and the single step technique. The two-step technique [4] starts with 

nanoparticles, produced by one of the physical or chemical synthesis techniques, and 

proceeds to disperse them into a base fluid. It is commonly used in producing of 
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nanofluids containing oxide nanoparticles as well as carbon nanotubes. The advantage of 

the two-step technique in terms of eventual commercialization of nanofluids is that inert 

gas condensation techniques have been scaled up to economically produce tonnage 

quantities of nanoparticles [9]. Making nanofluids using the two-step technique is 

challenging, though, because of the results from potential agglomeration of nanoparticles 

prior to a complete dispersion. This agglomeration is due to the attractive Van der Waals 

forces between nanoparticles, and causes the particles to quickly settle out of suspension. 

In fact, agglomeration is a critical issue in all nanopowder technology, including 

nanofluid technology, and a key step to success in achieving high-performing heat 

transfer nanofluids IS to produce and suspend nearly mono-dispersed or 

non-agglomerated nanoparticles in liquids. This barrier is exacerbated by the use of oxide 

nanoparticles that require higher volume concentrations compared to metal particles to 

achieve the same heat transfer enhancement in nanofluids. At high volume concentrations, 

the agglomeration problem becomes worse. 

The single-step technique [4] simultaneously makes and disperses the 

nanoparticles directly into a base fluid. It is preferable to the two-step process when 

making nanofluids containing high-conductivity metals to prevent oxidation. A 

disadvantage of the single-step technique for nanofluid production is that systems run in 

batch mode with limited control over several important parameters, including those that 

control nanoparticle size. Commercial viability would be greatly increased if the 

single-step technique could be run in a continuous mode. 

Metals (Ag, Cu, Fe, and Au), metal oxides (Ah03, CuO), nitride ceramics and 

carbon nanotubes have been used to produce nanofluids [10-21]. The great potential of 
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nanofluids in different applications led many researchers to launch projects focusing on 

nanofluids. Because of this, more and more nanofluid-related research publications have 

appeared in literature. It can be seen from Figure 1.2 that there have been a total of 990 

research articles on nanofluids published from 2001 to 2010 [22l. Different particle sizes, 

shapes, aspect ratios and volume fractions have been studied by research groups around 

the world [5, 23-
27l. Most studies have focused on the enhancement of the thermal 

conductivity of nanofluids whereas studies on the enhancement of the heat transfer 

coefficient have been limited and mostly focused on carbon based nanoparticles. 

Furthermore, most studies have used water as the base fluid . There are relatively few 

studies on the effects of nanoparticles on oil-based nanofluids especially for PAO oils. 

300 
*151 Web of Knowledge 20.02.2011 272 

250 
'" c: 
0 . .;::; 

200 nI 
.~ 
:0 
:J 
[l. 150 -0 .... 
Q) 

..0 100 
E 
:J 
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50 

2 3 
0 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Year 

Fig 1.2 Number of published research articles on nanofluids between 2000 and 2010. 

Thermal conductivity is the property of a material that indicates its ability to 

conduct heat. It is a more studied research area than any other nanofluid-related topic. 

Thermal conductivity of nanofluid is strongly dependent on several factors including 
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nanoparticle size, shape, volume fraction, base fluid material, temperature, and acidity. 

Keblinski et al. (28] proposed four possible reasons for the contribution of the 

nanometer-sized particles to the increase of the thermal conductivity: Brownian motion of 

the particles, molecular level layering of the liquid at the liquid/solid interface, the nature 

of the heat transport in the nanoparticles, and the effects of nanoparticle clustering. The 

transient hot-wire method is the most common way to experimentally measure the 

thermal conductivity. As shown in Figure 1.3 , the transient hot-wire method (29] is a 

standard transient dynamic technique based on the measurement of the temperature rise at 

a defined distance from a linear heat source (hot wire) embedded in the test material. If 

the heat source is assumed to have a constant and uniform output along the length of test 

sample, the thermal conductivity can be derived directly from the resulting change in the 

temperature over a known time interval (30]. So far it has been very difficult to develop a 

sophisticated theory to determine the thermal conductivity but some empirical equations 

have been developed to estimate the thermal conductivity of nanofluids (31-34] . 

.-----t mV }-----, 

s HW 

Fig 1.3 Transient hot-wire method. 

While increases in the effective thermal conductivity as well as changes in density, 

specific heat, and viscosity are important indications of improved heat transfer behavior 

of nanofluids, the net benefit of nanofluids as heat transfer fluids is best determined 
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through the heat transfer coefficient. Because of the complex morphology and orientation 

of the nanoparticles dispersed in fluids, there have been few correlations developed for 

the heat transfer coefficients as compared to the study of thermal conductivity. The heat 

transfer coefficient is a proportionality constant between the heat flux, i.e. the heat flow 

per unit area, and the thermodynamic driving force for the flow of heat. There are 

numerous methods for calculating the heat transfer coefficient in different heat transfer 

modes, flow regimes and different fluids. Its magnitude relates to the effective heat that 

can be transferred within a system and can be passively enhanced by changing flow 

geometry, boundary conditions, or by enhancing thermal conductivity of the fluid. 

Nowadays, nanofluids are considered to be the next-generation heat transfer fluids 

as they offer exciting new possibilities to enhance heat transfer performance compared to 

pure liquids. They are expected to have superior properties compared to conventional 

heat transfer fluids, as well as fluids containing micro-sized metallic particles [35]. The 

main reasons that contributed to this enhancement of heat transfer performance are as [5]: 

a) The suspended nanoparticles increase the surface area for heat transfer and 

the heat capacity of the fluid. 

b) The suspended nanoparticles increase the effective thermal conductivity of 

the fluid. 

c) The interaction and collision among particles, fluid and the flow passage 

surface are intensified. 

d) The mixing fluctuation and turbulence of the fluid are intensified. 

e) The dispersion of nanoparticles flattens the transverse temperature gradient of 

the fluid. 
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Therefore, the heat transfer coefficient of the nanofluids is a function of 

suspended nanoparticle dimension, volume fraction, fluid flow velocity as well as various 

fluid properties. In this article, we refer to the heat transfer coefficient of a fluid as the 

heat transfer coefficient that is measured in our system with certain flow conditions. We 

can conclude that traditional mechanisms to predict the heat transfer coefficient are no 

longer applicable to nanofluids. But, prediction of the enhancement of heat transfer 

coefficient in thermal energy systems will aid in reducing the size of such systems, 

increasing the energy efficiency, lowering pollution and improving system reliability. 

However, there has been limited research in these areas when compared to thermal 

conductivity especially for oil-based nanofluids. 

Nanofluids have a great potential in a number of different application areas like 

transportation, electronics cooling, biomedicine, and nuclear system cooling. For 

example, a 50/50 ethylene glycol (EG) and water mixture is commonly used as an 

automotive coolant. Unfortunately, the mixture is a relatively poor heat transfer fluid 

when compared to pure water. Water/EG mixture based nanofluids with additional 

nanoparticles are currently being studied to enhance heat transfer performance. [361. 

Nanoparticles can improve the heat transfer coefficient of pure ethylene glycol and the 

resulting nanofluid performs better at low pressure working conditions and smaller 

coolant system when compared to 50/50 mixture. Therefore, smaller and lighter radiator 

can be used to increase engine performance and fuel efficiency. Large companies like 

GM and Ford all have ongoing nanofluid research projects. Nanofluids can also be used 

as the working fluid for heat pipes in electronic cooling applications where nanofluids 

can greatly reduce the thermal resistance of the heat pipe when compared to conventional 
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deionized water. In the biomedical field, iron-based nanoparticles could be used as 

delivery vehicles for drugs or radiation without damaging nearby tissue to circumvent 

side effects of traditional cancer treatment methods. Such particles could be guided in the 

bloodstream to a tumor using magnets external to the body [4l. 

Motor oil is a lubricant used in internal combustion engines for motor or road 

vehicles such as cars and motorcycles, and heavier vehicles such as buses and 

commercial trucks. Lubricating oil creates a separating film between surfaces of adjacent 

moving parts to minimize direct contact between them, decreasing heat caused by friction 

and reducing wear, thus protecting the engine. In use, motor oil transfers heat through 

convection as it flows through the engine by means of air flow over the surface of the oil 

pan, oil cooler and through the buildup of oil gases evacuated by the Positive Crankcase 

Ventilation (PCV) system. Motor oils today are mainly blended from base oils composed 

of various hydrocarbons (mineral, poly-alpha-olefins (PAO), etc. [37l), and are thus 

organic compounds consisting entirely of carbon and hydrogen. 

Most motor oil has many different chemicals in it with very different properties. 

The temperature at which the oil starts burning is called the flash point. It is determined 

by the chemicals that burn at the lowest temperature. The higher the flash point, the more 

stable the oil is at high temperatures and the less the oil in the engine will burn. The pour 

point is the temperature at which the oil stops flowing like a liquid. The lower this 

number is, the better protected the engine is when it's cold. The thickness of the oil, that 

is the resistance the oil offers to motion, is called the viscosity. The viscosity depends on 

all of the various chemicals in the oil and how they react to each other and to heat. 

Importantly, as the oil heats up, it thins out, that is the viscosity goes down. The better the 
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oil is at retaining its viscosity at high temperatures, the higher the viscosity index. All of 

these properties depend on all the chemicals in the oil. 

The high and low temperature performances of oils are described by the Viscosity 

Index (VI). The VI indicates how much the viscosity of the oil changes as the 

temperature is increased. In the late 1990s, a process was invented yielding base oils with 

VIs over 120 [38] compared to conventional oils which generally have VIs of less than 100. 

These base oils are called Group III or "unconventional base oils." The higher the VI, the 

fewer additives are necessary to achieve the required viscosity. 

Synthetic oils were originally designed for the purpose of having pure base oil 

with excellent properties [39]. By starting from scratch and building up oil molecules from 

little pieces, almost every molecule in the oil is just like every other molecule, and 

therefore the properties are exactly what is designed in and not compromised by 

impurities. Synthetics were originally a reaction to the relatively poor refining processes 

available from about 1930 to about 1990. The original synthetics were designed for the 

Army Air Force in World War II, because they could not make their high performance 

turbo-charged radial engines stay alive on the available motor oils of the time [38]. 

One process for making synthetic base oils is to start with a chemical called an 

olefin, and makes new molecules by attaching them to each other in long chains. A 

poly-alpha-olefin (PAO) is a polymer made by polymerizing an alpha-olefin which is an 

alkene where carbon-carbon double bond starts at the a-carbon atom. In transportation 

applications, pure synthetic oils, mostly made up of PAO, have a much higher flash point 

than traditional petroleum oils which means they will hold up better in high temperature 

environments. The primary advantage of a PAO base oil is that all the molecules in the 
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base oil are nearly identical, so it is easy to get the base oil to behave in a predictable 

manner. However, due to the high price of producing PAO oils, most of the synthetic oils 

on the market today are made of Group III oils. Oil companies use a blend of mostly 

Group III oils and a smaller amount of true synthetics that can produce a product that has 

nearly the same properties as pure synthetic oil. The molecular uniformity of 

commercialized PAO formulated motor oils promotes superior lubrication and friction 

reduction, therefore promotes superior heat control, wear control and energy efficiency. 

Their uniformity also helps synthetics maintain their protective viscosity in 

high-temperature operations, which also promotes superior wear control. 

In this study, we examine the various factors that could potentially impact the 

enhancement of heat transfer coefficient of oil-based nanofluid including nanoparticle 

size, weight fraction, Reynolds number and fluid temperature. PAO formulated oil is used 

as the base fluid. Copper nanoparticles are added into the PAO oil to make the nanofluids. 

The enhancement of heat transfer coefficient is the main focus of this study as well as 

several other fluid properties. Optimized nanoparticle size and concentration are expected 

to be found that will maximize the enhancement of heat transfer performance. A 

theoretical model is used based on published models to predict heat transfer coefficient of 

PAO oil-based nanofluids. 
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CHAPTER II 

LITERATURE REVIEW 

1. Experimental Research on Thermal Conductivity of Nanofluids 

The enhancement of thermal conductivity is one of the most studied areas of 

nanofluids for heat transfer purposes, and a big portion of these studies have focused on 

automotive applications. Various parameters including particle SIze, particle 

concentration, particle material, base fluid material, and operating temperature have been 

studied to determine if they would impact the enhancement of thermal conductivity of 

nanofluids. 

The effect of particle size on thermal conductivity of spherical nanoparticles was 

studied. Lee et al. [40], Wang et al. [41] and Xie et al. [42] have all measured the 

enhancement of thermal conductivity using Ah03 nanoparticles with sizes of 28nm, 

38nm and 60nm, respectively dispersed in water. The enhancement ratio increased with 

increasing volume concentration of nanoparticles. The larger 60nrn particles showed the 

highest enhancement. Interestingly though, it was the 38nrn particle that showed the least 

enhancement and not the smaller particle of 28nrn. Because of this, no clear conclusions 

can be drawn from the results. Similar comparisons can be made from the work of three 

groups who studied different sizes of Ah03 nanoparticles dispersed in ethylene glycol. 

This time, the intermediate-sized particle of 28nm exhibited the best enhancement while 
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the other two sizes (15nm and 60nm) showed almost identical results. 

Volume concentration of nanofluids on the enhancement of thermal conductivity 

was the most extensively studied parameter. Most research groups [11, 14,40,42-47] used 

certain types of nanoparticle with different concentrations up to 5% to make nanofluids 

and measure the thermal conductivity. Particle size or base fluid material may vary but 

the general trend is clear: thermal conductivity enhancement increases with increased 

particle volume concentration. (Weight fraction was used in some publications.) 

The effect of particle material on the enhancement of thermal conductivity is hard 

to find since different research groups used different sizes of nanoparticles and conducted 

experiments under different conditions. Comparing the results from Wang et al. [41] (28nm 

Ab03/water, 23nrn CuO/water), Lee et al. [40] (24nm CuO/water), Das et al. [44] (29nm 

CuO/water), and Xie et al. [26] (26nm SiC/water), shows that particle material has little 

effect on the enhancement for those relatively low thermal conductivity particles. Similar 

results were found for ethylene glycol (EG) based nanofluids by comparing the data from 

Xie et al. [26,42] (26nm Ab03/EG, 26nm SiC/EG), Wang et al. [41] (28nm Ab03/EG), Lee 

et al. [40] (24nm CuO/EG). 

Water and ethylene glycol are the two most commonly used base fluids. A study 

by Xie and colleagues [48] used 60nm Ab03 dispersed in these two base fluids and oil to 

measure the enhancement of thermal conductivity. Results showed increased thermal 

conductivity enhancement for heat transfer fluids with lower thermal conductivity. Water 

is the best heat transfer fluid with the highest thermal conductivity of the fluids compared. 

But it showed the least enhancement around 10%-23% while Ab03/oil nanofluid showed 

a maximum enhancement of 38%. Although this trend was not supported by results from 
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all research groups, generally it was the case. This result is encouraging because heat 

transfer enhancement is often most needed when poorer heat transfer fluids are involved. 

All results discussed above are shown in Table 1. Types of nanofluids and testing 

parameters are listed with enhancement ratio obtained. 

Table 1 Thermal conductivity enhancements 

Author/Year Nanofluid Particle size Concentration Enhancement 

(nm) (vol%) ratio 

Lee et al.!I999[40] Ah03/water 38.4 1.00 - 4.30 1.03 - 1.10 
CuO/water 23.6 1.00 - 3.41 1.03 - 1.12 
Ah0 3/ethylene 38.4 1.00 - 5.00 1.03 -1.18 
glycol 
CUO/ethylene 23.6 1.00 - 4.00 1.05 - 1.23 
glycol 

Wang et Ah03/water 28 0.19 - 1.59 1.01 - 1.10 
al.!1999[41] CuO/water 23 

Ah0 3/ethylene 28 5.00 - 8.00 1.25 - 1.41 
glycol 
CuO/ethylene 23 6.20 - 14.80 1.24 - 1.54 
glycol 
Ah03/engine oil 28 2.25 -7.40 1.05 - 1.30 
Ah03/rumr oil 28 5.00 -7.10 1.13 - 1.20 

Xie et a1.!200i26
] SiC/water 26 sphere 0.78 -4.18 1.03-1.17 

600 1.00 - 4.00 1.06 - 1.24 
cylinder 

SiC/ethylene 26 sphere 0.89 - 3.50 1.04 - 1.13 
glycol 600 1.00 - 4.00 1.06 - 1.23 

cylinder 
Xie et a1.!2002l48] Ah03/water 60.4 5.00 1.23 

Ah0 3ethylene 60.4 5.00 1.29 
glycol 
Ah03/pump oil 60.4 5.00 1.38 

Das et a1.!2003[44] CuO/water 
(2JDC) 28.6 1.00 - 4.00 1.07-1.14 
(36°C) 28.6 1.00 - 4.00 1.22 - 1.26 
(51°C) 28.6 1.00 - 4.00 1.29 - 1.36 

In general, the thermal conductivity of nanofluids is more temperature sensitive 
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than that of the base fluid. Consequently, the thermal conductivity enhancement of 

nanofluids is also temperature-sensitive. Das et al. [44) used nanofluids based on 38nm 

Ab03 dispersed in water to measure thermal conductivity under three different 

temperatures at 21°C, 36°C and 51 DC. Results clearly showed that enhancement 

increased as temperature was increased. This trend is supported by many other research 

groups [12,49,50) except Masuda et al. [43) who concluded that enhancement of thermal 

conductivity decreased with increased temperature. This trend is also important for 

engineering applications where most fluids operate at elevated temperatures. 

Finally, PAO oil-based nanofluids seem to exhibit best enhancement of thermal 

conductivity. Both Marquis et al. [16) and Yang et al. [51) used carbon nanotubes/PAO oil 

nanofluids and observed thermal conductivity increase of 183% and 161 %, respectively. 

Over 100% enhancement was report by Shaikh et al. [27) using nanofluids with carbon 

nanofiber and exfoliated graphite dispersed in PAO oil. Other parameters like pH value, 

additive type and concentration, and types of surfactants are not discussed due to limited 

data provided. A complete summary of results by different research groups are listed in 

Appendix A. 

2. Experimental Research on Heat Transfer Coefficient 

When put into application, the heat transfer coefficient of a nanofluid is more 

important than the thermal conductivity as this determines how effectively the heat can be 

transferred within a system. If nanofluids can improve the heat transfer coefficient of 

thermal energy systems, they can facilitate the reduction in size of such systems and lead 

to increased energy and fuel efficiencies, lower pollution, and improved reliability. To 
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this end, it is essential to directly measure the heat transfer performance of nanofluids 

under flow conditions typical of specific applications. While not as common as reports on 

the enhancement of thermal conductivity in nanofluids, there are still several significant 

studies on the enhancement of the heat transfer coefficient under flow conditions. Most 

heat transfer studies were presented using Nusselt number Nu, which is the ratio of 

convective to conductive heat transfer across the boundary. It is defined as: 

h·D 
Nu=­

k 
(1) 

where h is the heat transfer coefficient, D is the diameter of the tube, and k is thermal 

conductivity of the fluid. 

2.1 Results based on types of base fluid 

Choi [52] pointed out that heat transfer coefficients should increase with fluid flow 

rates or with increasing thermal conductivities of the fluid provided that other properties 

of the nanofluid system, such as heat capacity, density and viscosity, are kept the same. 

Most studies on enhancement of heat transfer performance used water or ethylene glycol 

as the base fluid. Li et al. [53] experimentally investigated a 35 nm Culdeionized water 

nanofluid flowing in a tube with constant wall heat flux and showed that the ratio of the 

Nusselt number for the nanofluid to that of pure water under the same flow velocity 

varies from 1.05 to 1.14 by increasing the volume fraction of nanoparticles from 0.5% to 

1.2%, respectively. In other words, the heat transfer performance was enhanced by a 

maximum of 14% by using Culwater nanofluids. Xuan et al. [19] investigated heat transfer 

of Culwater nanofluid under constant wall heat flux in turbulent flow regime and 

concluded that convective heat transfer enhancement of the nanofluid may be related to 
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the thermal conductivity increase or the random movement and dispersion of 

nanoparticies within nanofluid. They proposed a new correlation based on a dispersion 

model and considered the effect of volume fraction and size of the nanoparticies to 

account for the enhancement. Wen et al. [11] have studied Ah03/water nanofluid heat 

transfer in laminar flow under constant wall heat flux and reported an increase in 

nanofluid heat transfer coefficient with Reynolds number and nanoparticie concentration 

particularly at the entrance region. They expressed that the thermal developing length for 

a nanofluid was greater than that for pure water. Based on this, they conciuded that the 

reason for the heat transfer enhancement for nanofluids is due the decreased thermal 

boundary layer thickness arising from the non-uniform distribution of thermal 

conductivity and viscosity resulting from Brownian motion of nanoparticies. Putra et al. 

[18] have reported the suppression of the natural convective heat transfer in a nanofluid of 

Ah03/water and CuO/water and conciuded that this could be due to several factors such 

as the settling of the nanoparticies and the velocity difference between the nanoparticies 

and the main fluid. 

Results on the heat transfer performance of oil-based nanofluids are relatively 

limited but there are still several studies that are particularly significant to this work. 

Chun et al.[54] determined that heat transfer coefficients increased as particie loading 

increased from 0 to 0.5 vol% for Ah03/transformer oil nanofluids. It was also found 

that over a Reynolds number (Re) range of 100 to 450, larger nanoparticie sizes (43nm) 

showed a slight enhancement in heat transfer coefficient when compared to smaller 

nanoparticie sizes (27-43nm). A more interesting result is that the rod-like alumina (7 nm 

diameter with an aspect ratio of 50 to 200) dispersed in oil displayed higher heat transfer 
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coefficients at lower Re but lower heat transfer coefficients at higher Re when compared 

to the larger nanoparticles over the Re range of 100 to 450. The researchers postulate that 

this may be due to alignment of the rods at the thermal boundary layer in the pipe at 

lower Re. 

Choi and colleagues [55] used spherical and rod shape Ah03 and spherical AIN 

nanoparticles dispersed in transformer oil to make nanofluids. All three types of 

nanofluids showed a small enhancement in the heat transfer coefficient at a Reynolds 

number range of 100 to 500. A maximum of 20% increase was observed for the 

AIN/transformer oil based nanoparticles at a volume fraction of 0.5%. 

Yang et al. [24] found that at a graphite nanoparticle loading of2 vol%, a nanofluid 

based on mixture of two synthetic oil showed little enhancement of the heat transfer 

coefficient, but at a particle loading of 2.5 vol%, there was a 22% increase in the heat 

transfer coefficient at a temperature of 50DC over a Re of 5 to 110. As the temperature 

increased to 70DC, the enhancement of heat transfer coefficient decreased slightly to 15%. 

The researchers postulated that this decrease in enhancement could be due either to an 

increased alignment in the particles at higher temperatures which would lead to lower 

viscosities or a depletion of particles near the wall. Results discussed above are 

summarized in Table 2. 
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Table 2 Heat transfer enhancements 

Author/Year Nanofluid Particle size Concentration Enhancement 

(nm) (vol%) ratio 

Putra et aI.l2003[18] Ah03/water 131.2 1.00 0.85 - 1.02 
(LlD=0.5) 131.2 4.00 0.70 - 0.85 

Ah03/water 131.2 1.00 0.87 - 1.04 
(LID=1.0) 131.2 1.00 0.63 - 0.82 

Xuan et aI.l2003[19] Culwater <100 0.30 0.99 - 1.05 
<100 0.50 1.01 - 1.08 
<100 0.80 1.07-1.13 
<100 1.00 1.13-1.15 
<100 1.20 1.14 - 1.21 
<100 1.50 1.23 - 1.27 
<100 2.00 1.25 - 1.35 

Wen et aI.l2004[11] Ah03/water 42 0.60 1.04 - 1.12 
(x1D=63) 42 1.00 1.09 - 1.22 

42 1.60 1.25 - 1.38 
Al20 3/water 42 0.60 1.1 0 - 1.20 
(x1D= 11 6) 42 1.00 1.12 - 1.20 

42 1.60 1.26 - 1.35 
Yang et aI.l2005[24] Graphite/ 1000-2000x2 0.77 0.97 - 1.02 

transmission Fluid 0-40 0.97 1.21-1.31 
(50GC) 
Graphite/ 1000-2000x2 0.77 0.97 -1.03 
transmission Fluid 0-40 0.97 1.14-1.29 
(70GC) 
Graphite/mixture 1000-2000x2 0.75 0.99 - 1.05 
of two syn. oils 0-40 0.75 1.01 - 1.05 
(50GC) 
Graphite/mixture 1000-2000x2 0.75 1.05 -1.15 
of two syn. oils 0-40 0.75 1.05 - 1.13 
(70GC) 

Choi et al.I2008[55] Ah03 (sphere)/ 13 0.5 1.01 - 1.03 
pure oil 

2 x 20-200 0.5 1.14-1.17 
Ah03 (fiber)/pure 
oil 
AIN/pure oil 50 0.5 1.24 - 1.29 
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2.2 Results based on flow conditions 

The study of the enhancement heat transfer coefficients of nanofluids is often 

divided by fluid conditions including laminar flow, turbulent flow, and pool boiling. 

Laminar flow refers to flow with Reynolds number less than 2100 and turbulent flow 

refers to flow with Reynolds number larger than 4000. Flow with Reynolds number 

between 2100 and 4000 is called transition flow. 

Several studies have been conducted in the laminar flow regime. Wen et al. [11] 

studied Ab03/water nanofluids in a Reynolds number range from 700 to 1950. 

Enhancement of the heat transfer coefficient was observed for nanofluids with various 

particle concentrations. But there was no observed influence of the Reynolds number as 

the enhancement ratio stayed close to constant in this laminar flow regime. Heris et al. [56] 

also used Ah03/water to measure the enhancement of the heat transfer coefficient. At 

particle volume concentrations below 2%, the heat transfer enhancement is comparable 

with Wen's work with the enhancement rising even higher as particle volume 

concentration increases above 2%. This trend is consistent with the increase of thermal 

conductivity based on increased particle volume concentration, but the heat transfer 

enhancement is larger than the thermal conductivity enhancement. The results for flow at 

the lower particle volume concentrations are in the same range as Wen's results, showing 

little effect of the Reynolds number heat transfer enhancement. However, at volume 

concentrations above 2%, an increase in Reynolds number is seen to have a positive 

effect on heat transfer enhancement. Nanofluid heat transfer results for multi-walled 

carbon nanotubes (MWCNTs) in water show a very high heat transfer enhancement [49] at 
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a Re number range of 800-1200. In this range of intermediate laminar flow, heat transfer 

enhancement ratio rises rapidly at the highest values of Reynolds number. 

For oil-based nanofluids, studies covered only a small part of the Reynolds 

number range. Results for graphite particles in automotive transmission fluid show no 

enhancement at relatively lower particle volume concentrations, while increasing to a 25% 

enhancement at a relatively higher volume concentration of approximately 1 %. In 

synthetic oil mixtures, the trends are much the same where nanofluids made from 

different sources of graphite particles were used. All experiments covered a Reynolds 

number range from 10 to 110 and no effect of Reynolds number on the enhancement of 

heat transfer coefficient was observed. 

The turbulent flow regime is hard to reach due to limitations of lab equipments. 

Therefore, very few research groups were able to study enhancement of heat transfer 

coefficient in the turbulent flow regime. Pak and Cho measured heat transfer performance 

of Ab03/water and Ti02/water nanofluids in the turbulent flow regime. There is little or 

no effect of Reynolds number on the heat transfer enhancement. Similar conclusions can 

be made from Xuan and Li's work [191, where Cu/water nanofluids were used. 

Some researchers have used a correlation calculation to compare the enhancement 

of heat transfer to the enhancement of thermal conductivity for turbulent flow. One can 

predict the Nusselt number of the base fluid with reasonable accuracy by using a 

long-standing heat transfer correlation for turbulent flow, like the Dittus-Boelter 

correlation [571. Then, using the increased thermal conductivity of the nanofluid in the 

same Dittus-Boelter correlation as a rough simulation of the nanofluid, one can predict a 

Nusselt number for the nanofluid. In so doing, the Dittus-Boelter correlation often 
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underpredicts the measured nanofluid Nusselt number. For heated turbulent flow, the 

base fluid Nusselt number is proportional to the thermal conductivity to the 0.6 power. 

Thus, even if the enhancement ratios for thermal conductivity and Nusselt number were 

the same, the actual heat transfer would exceed the prediction by the heat transfer 

correlation because the thermal conductivity in it appears to only the 0.6 power. Some 

authors have attributed the increased heat transfer enhancement above the thermal 

conductivity enhancement to particle-fluid interactions. 

Long-standing heat transfer correlations for turbulent flow heat transfer in base 

fluids have also been used as the basis of the development of heat transfer models in 

turbulently flowing nanofluids, although the effort has been very limited. Typically, 

nanofluid heat transfer predictive equations were modified from traditional equations 

such as the Dittus-Boelter equation or the Gnielinski equation [58] with empirical 

parameters added. Such equations are only valid for specific nanofluids in small 

parameter ranges. More experimental and theoretical studies are needed before general 

models can be developed. 

It is worth mentioning that the data for both laminar and turbulent flow are not 

enough to draw the conclusion that the enhancement of heat transfer is a function of 

particle size. The thermal conductivity enhancement had been seen to increase with 

particle size, but more experimental data are needed to establish such a trend with regard 

to the enhancement of heat transfer coefficient. 
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Table 3 Pool boiling heat transfer enhancements 

Author/Year Nanofluid Particle size Concentration Enhancement 

(nm) (vol%) ratio 

Das et a1.l2003 l59j Ah03/water 38 1.00 0.72 - 0.80 
(smooth cylindrical 38 2.00 0.69 - 0.76 
surface) 38 4.00 0.60 - 0.65 

Ah03/water (rough 38 1.00 0.65 - 0.69 
cylindrical surface) 38 2.00 0.64 - 0.69 

38 4.00 0.57 - 0.60 
Das et a1.l2003 l6Oj Ah03/water 58.4 1.00 0.79 - 0.85 

(4mm tube) 58.4 4.00 0.46 - 0.55 
Ah03/water 58.4 1.00 0.71 - 0.79 

(6.5mm tube) 58.4 4.00 0.64 - 0.71 
Ah03/water 58.4 1.00 0.83 - 0.85 
(20mm tube) 58.4 4.00 0.64 - 0.70 

Bang et Ah03/water 47 0.50 0.75 - 0.92 
al.12005[6Ij 47 1.00 0.78 - 0.89 

47 2.00 0.70 - 0.83 
47 4.00 0.68 - 0.83 

Wen et Ah03/water 10 - 50 0.08 1.06 - 1.22 
a1.l2005[62] 10 - 50 0.18 1.12 - 1.29 

10 - 50 0.24 1.19 - 1.36 
10 - 50 0.32 1.24 - 1.40 

A few experiments were focused on pool boiling for nanofluids. From Das and 

colleagues' work [44], the enhancement ratio decreases as particle volume concentration 

increases, in contrast to the enhancement of thermal conductivity results. The author 

noted particle coating on the heat surfaces, and concluded that the poor nanofluid 

performance was due to particles coming out of suspension and depositing on the heated 

surfaces. The experimental parameters used by Bang et al. [61] are in the same range as 

Das and colleagues' work, and so is the heat transfer enhancement ratio. The addition of 

nanoparticles decreased the heat transfer rate, and the degradation became worse as 
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particle volume concentration was increased. However, at very low particle volume 

concentrations (less than 0.32%), Wen et al.'s study [62] shows heat transfer enhancement 

for pool boiling of this nanofluid. Also, the usual trend is observed in their data, wherein 

the heat transfer enhancement increases with increased particle volume concentration up 

to 0.32%. Clearly, there is a need for more experimental work in this area. A summary of 

results is shown in Table 3. 

3. Theoretical Modeling of Nanofluids 

3.1. Correlations of thermal conductivity 

For theoretical modeling purposes, we can define a nanofluid as a mixture of two 

parts. One is a continuous base fluid and the other is the discontinuous solid nanoparticles. 

Because the microstructures of nanofluids are not completely known, it is impossible to 

effectively determine physical properties including heat transfer coefficient. 

Experimenters usually have to make some reasonable assumptions on the microstructures 

of the mixtures to better estimate those properties. 

In this project, the main focus was on determining heat transfer coefficient 

correlations that could fit the experimental data obtained. Since most correlations use 

dimensionless number called Nusselt number Nu to represent heat transfer performance, 

which is a function of both thermal conductivity and heat transfer coefficient, we need to 

predict thermal conductivity of nanofluids used in this project based on developed 

correlations to obtain the heat transfer coefficient. 

Maxwell was the first to investigate conduction through suspended particles. He 

developed the Maxwell equation [31] considering a very dilute suspension of spherical 
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particles by ignoring the interactions between particles, which is defined as: 

(2) 

where km is the thermal conductivity of a matrix in which all the spherical particles are 

embedded in and kp is the thermal conductivity of spherical particles. Note that this 

equation is only a first-order approximation and is applicable only to mixtures low 

particle concentrations. 

Hamilton and Crosser [32] established a correlation to estimate effective thermal 

conductivity, keff, of macroscopic solid-liquid mixtures, which is defined in the following 

equation: 

kef! _ kp+(n-l)kf-(n-l)cp(kf-kp) 

kf kp+(n-l)kf+CP(kf-kp) 
(3) 

where kf and kp are the thermal conductivities of the fluid and particles, respectively. cP 

is the volume fraction of the particles, and n is the empirical shape factor. Large aspect 

ratio particles such as carbon nanotubes (CNT) have high values of n, which means they 

have great potential for enhancement of thermal conductivity since the result of the right 

side of Eq.(3) will increase with increasing n. 

A number of correlations have been developed based on the Maxwell equation. 

Various factors including particle shape, distribution, and particle shell structure are taken 

into consideration in developing these correlations. To improve the predictive ability of 

these correlations, mechanisms of thermal conductivity have been formulated specifically 

for nanoscale application to account for the effects of nanoparticle Brownian motion, the 

nanoparticle-matrix interfacial layer, and nanoparticle clustering/aggregation. 

Yu and Choi [34] introduced another formula for calculating thermal conductivity 

26 



of nanofluids, which is expressed in the following equation: 

(4) 

where P is the ratio of the nanolayer thickness to the original particle radius. In a 

nanoparticle-in-liquid suspension, the nanolayer is considered to be a solid-like layer 

around the nanoparticles. Normally p=O.1 is used to calculate the thermal conductivity of 

nanofluid. This modification of the Maxwell model considered the impact of the 

nanolayer and is a good fit for smaller size nanoparticle based nanofluids. 

Murshed et al. [33] established the Bruggeman model for calculating the thermal 

conductivity of nanofluids, which is defined as: 

keff = ~ [(3cf> - 1)kp + (2 - 3cf> )kw ] + k; {K (5) 

I:J.= [(3<p -1)2(kp /kw)2 + (2 - 3<p)2 + 2(2 + 9<p - 9<p2)(kp /kw )] (6) 

By taking particle agglomeration into consideration, Timofeeva et al. [63] introduced the 

effective medium theory for computing thermal conductivity of nanofluids, which is 

expressed as follows: 

keff = [1 + 3cf>]kw (7) 

In summary, most of the correlations developed based on the physical 

mechanisms of the nanoparticle-matrix interfacial layer effect, nanoparticle Brownian 

motion effect, or nanoparticle aggregate effect usually involve some empirical parameters. 

Those parameters must be obtained before they can be used to predict thermal 

conductivity of a nanofluid. This requirement greatly limits the use of those correlations. 

Furthermore, instead of one single mechanism, the combined effect of two or more 

mechanisms may contribute to the enhancement of thermal conductivity. This will be an 
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important issue in future research on physical mechanisms of the enhancement of thermal 

conductivity of nanofluids. 

3.2 Correlations of heat transfer coefficient 

Theoretical models for heat transfer coefficient calculation are usually presented 

using Nusselt number Nu. In general, Nu of a nanofluid may be expressed as follows: 

f { P kd (PCp)d ,.,.. d· . d h f . J NUnt = Rent, rnt' - , -( -)- , '¥, zmenSLOns an s ape 0 partzcies 
kf pCp f 

(8) 

where Renf is the Reynolds number of the nanofluid, Prnf is the Prandtl number of the 

nanofluid, kd is the thermal conductivity of the nanoparticle, kfis the thermal conductivity 

of the base fluid, (pcph is the heat capacity of the nanoparticle, (pcp)f is the heat capacity 

of the base fluid, and QJ is the volume fraction of the nanofluid. 

Considering that nanofluids consist of small size particles and low concentrations 

in base fluids, some early studies of correlations for homogenous liquid systems might be 

applied to determine the Nu for nanofluids. A commonly used correlation is the 

Dittus-Boelter heat transfer correlation [64) for fluids in turbulent flow. This correlation is 

applicable when forced convection is the only mode of heat transfer; i.e., there is no 

boiling, condensation, significant radiation, etc. It is defined as: 

Nu = 0.023Reo.8 Pr°.4 (9) 

Another correlation for convective heat transfer of laminar flow In tubes IS the 

Seider-Tate equation [65), 

(10) 
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where (..!:.t)0.14 is the radial variation of fluid properties and natural convection effect. 
/lw 

f..lb and f..lw are the dynamic viscosity at the bulk fluid temperature and dynamic 

viscosity at boundary surface temperature, respectively. This equation can be more 

accurate compared to Dittus-Boelter equation as it takes into account the change in 

viscosity due to temperature change between the bulk fluid average temperature and the 

heat transfer surface temperature. 

The Oliver correlation [66] for horizontal flow in tubes is: 

( )

0.14 
Nu :: = 1.75[Gz + 5.6 x 10-4(Gr' Pr' L/D)0.70p/3 (11 ) 

where Gz is the Graetz number, Gz = wCP, Gr is the Grashof number. The Eubank and 
kL 

Proctor correlation [67] for laminar flow in horizontal tube is: 

( )

0.14 
Nu :: = 1.75[Gz + 12.6(Gr· Pr' D/L)0.40p/3 (12) 

For both Eq. (11) and (12), the first term Gz is contributed by the forced convection 

mechanism, and the second term which includes Grashof number, Prandtl number, and 

the ratio of LID are intended to account for the effect of the natural convection. Therefore, 

we can estimate the relation between those variables which divides the forced convection 

from the natural convection regime based on the magnitude of the two terms. 

The modeling of heat transfer coefficients of nanofluids is gaining attention from 

researchers but it is still at its early stage since most the correlations developed are 

modified from those traditional correlations discussed above. More extensive study on 

the modeling of heat transfer coefficient and more experimental data are needed in future 

study. The theoretical modeling of heat transfer coefficient of nanofluids is discussed 

later in this dissertation. 

29 



CHAPTER III 

METHODS AND MATERIALS 

1. Preparation of Nanofluids 

Three different particle sizes (25nm, 40-60nm, 60-80nm) of spherical shaped 

copper nanopowders (purity: 99.9%) were obtained from Skyspring Nanomaterials 

(Houston, Texas, USA). 100% Poly-alpha-olefin (PAO) formulated motor oil was 

purchased from Amsoil Inc. (Superior, Wisconsin, USA). I-Dodecanethiol, was obtained 

from Alfa Aesar (Ward Hill , Massachusetts, USA) and used as a surfactant. Each size of 

Fig 3.1 Model 500 Sonic Dismembrator. 
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copper nanoparticles were suspended in the PAO oil at weight percentages of 0.25, 1.0, 

1.5, and 2.0 using a Model 500 Sonic Dismembrator from Fisher Scientific (shown in 

Figure 3.1) that is able to deliver up to 400 watts of power. Due to the lack of functional 

groups in these very hydrophobic molecules, special surfactants are needed to disperse 

nanoparticles uniformly. In this work, dodecanethiol was added to help stabilize fluid 

suspension and the amount of dodecanethiol was carefully controlled based on the total 

available surface area of the copper nanoparticles. The hydrophilic groups (heads) of the 

surfactant are attached to the surface of copper nanoparticles by physical forces while 

their hydrophobic groups (tails) maintain favorable contact with oil. Each sample is 

sonicated for 60min. All the samples were kept at least 48 hours after sonicating and 

shaken well before further testing. All experimental fluids are list in Table 4. Notice that 

only three concentrations of nanofluids were made for 40-60nm Cu nanoparticles due to 

the limited amount of 40-60nm Cu nanopowder provided. 

Table 4 Experimental fluids 

Nanoparticle Base fluid Particle Loading 

Cu25-l 25nm Cu PAO oil 0.25 wt% 
Cu25-2 25nm Cu PAO oil 1.0 wt% 
Cu25-3 25nm Cu PAO oil 1.5 wt% 
Cu25-4 25nm Cu PAO oil 2.0 wt'llo 

Cu40-2 40-60nm Cu PAO oil 1.0 wt% 
Cu40-3 40-60nm Cu PAO oil 1.5 wt% 
Cu40-4 40-60nm Cu PAO oil 2.0 wt% 

Cu60-1 60-80nm Cu PAO oil 0.25 wt% 
Cu60-2 60-80nm Cu PAO oil 1.0 wt% 
Cu60-3 60-80nm Cu PAO oil 1.5 wt% 
Cu60-4 60-80nm Cu PAO oil 2.0 wt% 
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2. Experimental Setup 

Heat transfer coefficients of prepared base and nanofluids were measured using a 

lab-built test rig. A schematic of the heat transfer test rig is shown in Figure 3.2. The 

entire system is made from Y! inch stock copper tubing and fittings. In the flow system, a 

copper pipe serving as a reservoir for the nanofluids is capable of holding 2 liters of fluid. 

The fluid flows from the reservoir through a variable speed gear pump (Grainger 6NY97). 

The gear pump is sized to cover a wide range of flowrates up to 4.8 gal/min. Based on the 

properties of the nanofluid, particularly viscosity, the pump will cover a Re range from 50 

to 7000. Flowrates are measured using an inline flowmeter connected into an electronic 

readout. From here the fluid flows through a copper coil held in a hot water bath which 

can maintain the test fluid at any temperature from room temperature up to 96°C. The 

fluid then enters the heat exchange section. There are two thermocouples placed in the 

fluid at both the inlet and outlet of this section. The section itself is formed form Y! inch 

high thermal conductivity copper refrigerator tubing. Six type-T thermocouples are 

attached equidistant along the exterior of the copper tube in this section. The entire heat 

exchange section is wrapped in heat tape which provides a constant heat flux to the fluid. 

Two layers of insulation are wrapped around the heating tape to ensure low 

environmental heat loses within the heat exchange section. Temperatures are monitored 

in real time using a Labview program designed for the system. The program also provides 

real time calculation of the heat transfer coefficient based on the fluid properties and 

flowrates. 
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Fig 3.2 Schematic of heat transfer test rig. 

fluid . 
reservOir 

The heat transfer measurement procedures are: 1) set up water bath temperature 

and fill the reservoir with test fluid; 2) Start the pump and circulate the fluid until inlet 

fluid temperature is stable at the bath temperature; 3) Set up desired flow rate and heating 

tape power; 4) Record data after the system reaches a steady state (usually in 20-30min). 

By using control variables including heating power, inlet fluid temperature and fluid flow 

rate, we conducted a series of heat transfer coefficient tests of base and nanofluids. The 

ratio of heat transfer coefficient of nanofluid to base fluid was calculated to determine if 

there was any enhancement. 

To prevent coating of the nanoparticles inside the heat transfer test rig, kerosene 

was used to flush the system twice for 20 minutes between test fluids. For preliminary 

tests, hexane was used after the kerosene flush to flush the residual kerosene. Due to the 

low boiling point of hexane (69°C), we could elevate the water bath temperature to 

evaporate the hexane residual inside the system. Later in this project, we used the base 

motor oil to flush the residual kerosene. 
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Heat transfer coefficient is defined by: 

h = I1Q 
A-I1T·M 

(13) 

where ~Q is the heat input or heat loss, A is the surface area, ~T is the temperature 

difference between solid surface and surrounding fluid area, and M is the time period. 

In this study, heat transfer coefficient is calculated using the following equation: 

(14) 

where Toul and Tin are the outlet and the inlet temperature of the heat exchange section, 

respectively. cp is the specific heat of the fluid, p is the density of the fluid, q is 

volumetric flow rate, d and L are the diameter of the tube and total length of the heat 

exchange section, respectively. ~T is the average temperature difference between surface 

of the tube and the fluid. 

Another commonly used value is called the Nusselt number Nu. In heat transfer at 

a boundary (surface) within a fluid, the Nusselt number is the ratio of convective to 

conductive heat transfer across the boundary. Named after Wilhelm Nusselt, it is a 

dimensionless number, which is defined as: 

h'D 
Nu=­

k 
(1) 

where h is the heat transfer coefficient, D is the diameter of the tube, and k is thermal 

conductivity of the fluid. 

All collected data were then input into a spreadsheet where the equations for 

calculating heat transfer coefficient, Reynolds number, and several other parameters. 

Figure 3.3 shows an example of the spreadsheet for base fluid at a water bath temperature 
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A D E F G H J 
current 20-0ct 20-0ct 20-0ct 20-0ct 20-0ct 20-0ct 20-0ct 

fluid base 
% power 50% T=40C 

Flow cds 10 20.1 30.1 40 60.1 80 97.9 
inlet 40.9 41.16 41.13 4135 41.98 42.86 44.85 

1 47.09 46.92 4643 46.35 46.6 47.25 4899 
2 59.84 5784 5658 55.9 5552 5568 5697 
3 61.76 58.84 57.12 56.19 55.56 55.54 56.65 
4 65.78 62.11 60.13 58.97 58 57}7 58.8 
5 66A 6221 59.93 58.61 57A6 57.15 58.12 
6 68.84 62.84 59.87 58.12 56.49 55.88 56.96 

outlet 60.91 54.1 51.55 50.06 48A4 47.92 4906 
density 87J6 87J6 87J6 873.6 87J6 87J6 8736 

viscosity 0.0246 00283 0.0298 0 .. 0305 0.0311 0.0309 00291 
specific heat 2050 2050 2040 2040 2040 2040 2040 

therm cond 0.1396 o 1396 01396 01396 0.1396 0.1396 0.1396 

Tout-Tin 20.01 12.94 10.42 8.71 6.46 5.06 4.21 
avg AT 10.67 10.80 10.31 9.97 9..71 9A8 9.12 

total heat in 358 466 559 621 692 721 735 
avg heat flow 21.802 28.339 34.006 37}75 42.09:5 43.89:0 44,688 

Nusselt # 703 90.2 11J4 1303 149.0 1592 1685 
Reynolds # 944 1644 234.0 303.5 447.7 599.9 7796 

Prandtl # 3606 4160 4356 4463 4546 451 6 4253 
Graetz # 149.9 3012 448.9 596.5 8962 1193.0 1459.9 

ATfluidfATwall 1 876 1198 1.010 0.874 0.665 0.534 0462 
heat transf coeft 2044 2624 3297 3791 4334 4631 4902 

Fig 3.3 Spreadsheet for heat transfer coefficient calculation. 
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Fig 3.4 TA Instruments Q200 Differential Scanning Calorimeter. 

Specific heat was measured by a Q200 Differential Scanning Calorimeter from 

TA Instruments (shown in Figure 3.4). Differential Scanning Calorimetry (DSC) is a 

thermoanalytical technique in which the difference in the amount of heat required to 

increase the temperature of a sample and reference is measured as a function of 

temperature. Both the sample and reference are maintained at nearly the same 

temperature throughout the experiment. Generally, the temperature program for a DSC 

analysis is designed such that the sample holder temperature increases linearly as a 

function of time. The technique was developed by E.S. Watson and MJ. O'Neill in 1960 

[68], and introduced commercially at the 1963 Pittsburgh Conference on Analytical 

Chemistry and Applied Spectroscopy. The term DSC was coined to describe this 

instrument which measures energy directly and allows precise measurements of heat 

capacity [69]. 
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Viscosity was measured by a cone and plate DV-III Digital Rheometer from 

Brookfield Engineering Laboratories (shown in Figure 3.5). The rheometer uses a 

calibrated spring to drive a spindle that is immersed in the test fluid. A viscous drag force 

of the test fluid against the spindle is created due to the rotation of the spindle, which is 

determined by the deflection of the spring. Spin speed of the spindle was manually 

controlled so that we were able to measure the test fluid under various shear rates to 

determine if the corresponding shear stress increased linearly with the increasing shear 

rate, which is the definition of Newtonian fluid. Identification of the oil based eu 

nanofluids as either Newtonian or non-Newtonian fluids is particularly important to this 

project and will be discussed later. 

Fig 3.5 Brookfield DV-III Rheometer. 
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The density of nanofluids is calculated using the correlation proposed by Pak and 

Cho [17], which is defined as: 

(15) 

where Pnf is the density of the nanofluid, ¢ is the weight fraction of the nanoparticles, 

and P p and Phf are the density of the Cu nanoparticle and base fluid, respectively. 

Reynolds number was calculated using the following equation: 

Re = pVL 

11 
(16) 

where p is the density of the test fluid, V is the mean velocity of the test fluid, L is the 

diameter of the test tube, and f1 is the dynamic viscosity of the fluid. 
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CHAPTER IV 

RESULTS 

1. Preliminary Results 

For the first two years of this project, we worked with a well-known lubricant 

manufacturing company to measure the heat transfer coefficient of five samples using a 

lab-built heat transfer test rig. These samples were oil based nanofluids but the 

nanoparticles and other additives were unknown. Table 5 shows the code name for each 

base fluid and its corresponding nanofluid. Results for heat transfer tests are shown in 

Figure 4.1.1 - 4.1.6. All figures are plotted showing heat transfer coefficient as a function 

of Reynolds number. 

Table 5 Preliminary test fluid samples 

Base fluid Nanofluid 
Base/nano# 1 504-250-5B 504-252-7B 

Base/nano#2 504-257-2B 504-257-6A 

Base/nano#3 7451-120-1 7451-121-1 

Base/nano#4 7451-135-3 7451-143-1 

Base/nano#5 145-1 145-2 

Test fluid T504-250-5B and T504-252-7B (Base and nanofluid# 1) were tested 
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twice in Dec. 2008 (Figure 4. I . I) and in March 2009 (Figure 4. I .2). Each measurement 

was conducted twice under same conditions to ensure accuracy. Specific heat capacity 

and viscosity data of the nanofluid are assumed to be the same as the base fluid as 

specified by the supplier. As is shown in Figure 4.1. I nanofluid#I exhibited a higher heat 

transfer coefficient than base fluid#1. Specifically, at both temperatures, the enhancement 

in the heat transfer coefficient from the nanofluid as compared to the base fluid increases 

with increasing in the Re. It should be noted that the maximum Re that can be achieved is 

related to temperature of the fluid since Re is inversely proportional to viscosity and 

viscosity decreases with increasing temperature. Consistent results were produced in 

March 2009 using same base and nanofluid#1 (Figure 4.1.2). Under the same conditions, 

the nanofluid again showed higher heat transfer coefficient than base fluid# 1. However, 

the enhancement ratio decreased from 1.288 to 1.092 as the Reynolds number is 

increased at temperature of 80°C. 
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Fig 4.1.1 Heat transfer coefficient as a function ofRe for Base/nano#1 (Dec 2008). 
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Fig 4.1.3 Heat transfer coefficient as a function of Re for Base/nano#2 (Jan 2009). 

After the test of base and nanofluid#2, the heat transfer measurement system was 

then modified to allow higher temperatures (96°C) to obtain a better approximation of 

actual engine operating temperatures in an automobile. At the higher operating 

temperature of 96°C, the Reynolds number would increase significantly due to the 

decrease in viscosity. Base fluid#3 (C74S1-120-1) and its nanofluid (C74S1-121-1) were 

tested at two temperatures (80°C and 96°C) in a Reynolds number in the range of 1000 to 

4000, which covered the laminar flow and transition flow regimes. Figure 4.1.4 shows 

that a small enhancement was observed at fluid temperature of 80°C. At 96°C, the 

enhancement decreased with the increase of Reynolds number. At a maximum flow rate, 

the transition flow regime was reached and no enhancement was observed. 
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Fig 4.1.4 Heat transfer coefficient as a function of Re for Base/nano#3 (May 2009). 

Base and nanofluid#4 (C7451-135-3 and C7451-143-1) and base and nanofluid#5 

(C7451-145-1 and C7451-145-2) were tested between June and July of 2009. All fluids 

were measured at a single temperature of 80°C. It can be seen from Figure 4.1.5 that 

nanofluids showed a small enhancement over its base fluid at a Reynolds number range 

of 600 to 2200. This enhancement increased with increasing Reynolds number. Results 

for base and nanofluids#5 were plotted in Figure 4.1.6. In contrast to base and 

nanofluid#4, the heat transfer coefficient of nanofluid#5 is consistently lower than base 

fluid#5. 
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Fig 4.1.5 Heat transfer coefficient as a function ofRe for Base/nano#4 (Jun 2009). 
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Fig 4.1.6 Heat transfer coefficient as a function ofRe for Base/nano#5 (July 2009). 
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While heat transfer measurements for nanofluids and base oils are reproducible 

within a single measurement session, there seems to be a longer term trend of decreasing 

values over a period of several weeks. This trend can be seen in Figure 4.1.7 and Figure 

4.1.8 which show four measurements at two temperatures for nanofluid#3 (C74S1-121-1) 

and its base fluid#3 (C74S1-120-1) from March 4th to May 18th at a temperature of9S°C. 

As the fluid ages, the measured trends of the heat transfer coefficient increasing with Re 

are consistent. However the absolute values of the heat transfer coefficient declines 

steadily. 
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Fig 4.1.7 Measured heat transfer values for base fluid #3 decreases over a ten week period. 
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Fig 4.1.8 Measured heat transfer values for nanofluid#3 decreases over a ten week period. 

2. Specific Heat Test Results 

Specific heat measurements for all copper nanoparticle based nanofluids and base 

fluids were conducted to ensure accuracy in the calculation of the heat transfer coefficient. 

Heat flow increase as the increasing temperature (30°C to 90°C) was measured using 

DSC. Specific heat is shown to increase linearly with rising temperature. The base fluid 

shows the highest specific heat value. As weight fraction of nanoparticles is increased, 

the value of specific heat of nanofluid decreases. Results are plotted in Figure 4.2.1 -

4.2.3. The last number (-1, -2, -3, -4) on the name of each nanofluid represents its weight 

percentage (0.25, 1.0, 1.5, 2.0). 
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Fig 4.2.1 Specific heat test for Cu25 nanofluids. 
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Fig 4.2.2 Specific heat test for Cu40 nanofluids. 
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Fig 4.2.3 Specific heat test for Cu60 nanofluids. 

3. Viscosity Test Results 

Viscosities of base and nanofluids were measured usmg a cone and plate 

Brookfield DV-III Rheometer at a temperature range from 30°C to 90°C. Results for base 

and nanotluids with weight fraction of 2.0% are shown in Figure 4.3.1 - 4.3.4. Viscosity 

is independent of shear rate for all test fluids which indicates a Newtonian behavior based 

on Newton's law of viscosity. 
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Fig 4.3.1 Viscosity test for base fluid at various temperatures. 
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Fig 4.3.2 Viscosity test for Cu25-4 nanofluid at various temperatures. 
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Fig 4.3.3 Viscosity test for Cu40-4 nanofluid at various temperatures. 
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Fig 4.3.4 Viscosity test for Cu60-4 nanofluid at various temperatures. 

4. Heat Transfer Coefficient Test Results 

After viscosity and specific heat test, heat transfer measurements were started. 
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Two liters of test fluid were made and added into the heat transfer test rig. Each fluid was 

tested at various flow rates and temperatures using the procedure discussed earlier. Each 

measurement was conducted twice under the same flow conditions to ensure repeatability. 

Some of these results are shown below in Figure 4.4.1.1 - 4.4.3.5. Complete results can 

be seen in Appendix C. All measurements for base and nanofluids show increasing heat 

transfer coefficient as both the flow rate and Reynolds number increases. 

4.1 250m Cu oaoofluids (Cu25) 

Four weight percentages (0.25, 1.0, 1.5, 2.0) of Cu25 nanofluids were tested. 

Results of heat transfer coefficient measurement for three fluid temperatures are shown in 

Figure 4.4.1.1. - 4.4.1.3. 
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Fig 4.4.1.2 Heat transfer coefficient (h) as a function of flow rate at 65°C. 

4,500 
0 
,j). 

4,000 ~ ~ 

x 
3,500 0 

:l 
IIIl 

'" x 
E 3,000 rl:J 0 --~ 1:0. 
'-' 
.: 

If!l ~ o base 
2,500 x Cu25-1 

Ci x ~ 
~ 

o Cu25-2 
2,000 0 

+ Cu25-3 x 0 

0 1:0. Cu25-4 
1,500 

0 50 100 150 

flow rate (mIls) 

Fig 4.4.1.3 Heat transfer coefficient (h) as a function of flow rate at 90°C. 

52 



1.600 

x Cu25-1 o Cu25-2 <> Cu25-3 !::::. Cu25-4 
1.500 

1.400 

1.300 
Q 

..c: 0 ---..c: 
6 1.200 

x ~ 006 
0 

DO 6 0 
6 

1.100 
X 

0 X X X X 
x O 0 

1.000 
X 

0.900 

0 500 1000 1500 2000 2500 

Re 

Fig 4.4.1.4 Enhancement ratio (hlho) as a function of Reynolds number (Re) at 65°C. 
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Fig 4.4.1.5 Enhancement ratio (hlho) as a function of Reynolds number (Re) at 90°C. 
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Based on these results, the enhancement ratio of nanofluid to base fluid hlho are 

calculated. These results are presented in Figure 4.4.1.4 and Figure 4.4.1.5. The 

maximum enhancement of 25% is found for Cu25-3 at an inlet fluid temperature of 65°C 

and a Reynolds number of around 400. 

4.2 40-60nm Cu nanofluids (Cu40) 

Only three weight percentages (1.0, 1.5, 2.0) of Cu40 nanofluids were made and 

tested due to the limit supply of 40nm nanoparticles. Results are shown in Figures 4.4.2.1. 

- 4.4.2.6. A maximum enhancement of 16.4% is obtained for Cu40-3 nanofluids at 40°C. 

Fig 4.4.2.1 Heat transfer coefficient (h) as a function of flow rate at 40°C. 
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Fig 4.4.2.4 Enhancement ratio (hIho) as a function of Reynolds number (Re) at 40°C. 

1.600 

x Cu40-2 OCu40-3 6 Cu40-4 
1.500 

1.400 

1.300 
" .::: 

.c 
1.200 

x6 
xo 

1.100 X0
6 x 06 

x 
6 

0 6 
x 

1.000 
00 

0.900 

0 1000 2000 3000 

Re 

Fig 4.4.2.5 Enhancement ratio (hIho) as a function of Reynolds number (Re) at 65°C. 
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Fig 4.4.2.6 Enhancement ratio (h/ho) as a function of Reynolds number (Re) at 90°C. 

4.3 60-80nm Cu nanofluids (Cu60) 

Four weight percentages (0.25, 1.0, 1.5, 2.0) of Cu60 nanofluids were tested. 

Results are shown in Figures 4.4.3.1. - 4.4.3.5. Nanofluid with a weight fraction of 2.0% 

exhi bits a maximum enhancement of 21 % at 40°C. 
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Fig 4.4.3.5 Enhancement ratio (h/ho) as a function of Reynolds number at 65°C. 
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1. Preliminary Results 

CHAPTER V 

DISCUSSION 

Five different pairs of base and nanofluids as provided were tested during the 

initial system and procedural development period. Through this process, several trends 

became evident even though specific information about the fluids being tested was 

severely limited. 

From the results presented in the previous chapter, the heat transfer measurements 

are reproducible within a single measurement. But there is a longer term trend of 

decreasing heat transfer coefficient values over a period of time as shown in Figures 4.1. 7 

and 4.1.8. One potential source of this drift is the buildup of a coating on the tube wall of 

the heat exchange section which may result in a reduction in the heat transfer coefficient. 

Another explanation is that the decrease could be due to the kerosene residue in the 

system. Kerosene was used to flush the system between runs to remove the residual test 

fluid and particles but the kerosene could not be completely drained out prior to the start 

of another test run. As kerosene has a poor heat transfer properties, the residual kerosene 

mixed with the new test fluid could decrease the heat transfer coefficient. 

When changing fluids, our standard flush technique involved draining the system 

of the previous test fluid, refilling with kerosene, circulating the kerosene for a period of 
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time, draining the kerosene and refilling the system with the new test fluid. The 

thoroughness of the drain steps and the time and intensity of kerosene circulation were 

somewhat variable. Residual amounts of fluid or kerosene could affect subsequent 

measurements. In order to evaluate the effectiveness of this flush procedure, we made a 

series of measurements at a standard condition of 40°C and 30 mlls flow rate. These 

results are shown in Figure 5.1.1. 
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Fig. 5.1.1 Flush effectiveness experiment measured heat transfer coefficient at 40°C and 
30 mlls after a series of fluid changes. The measurements were taken sequentially and 
displayed from left to right in the bar chart above. 

The experiment started with a measurement for the heat transfer coefficient of 

base oil #3, yielding a value of 1113 W/K-m2
. After draining that oil and refilling with 

kerosene, the heat transfer of the kerosene was measured as 958 W/K-m2
. Draining and 

refilling with new kerosene yielded a value 755 W/K-m2
. It seems that the initial flush 

step left residual oil in the system. Assuming that the second measurement for kerosene is 
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a more accurate value for kerosene in a "clean" system, we use this value as a baseline 

for assuring that the flush process restores the system to a consistent state. 

The fourth step in this experiment started with a refilling of the system with base 

oil. The heat transfer measurement of 1166 W lK_m2 is somewhat higher than the initial 

measurement, suggesting that the double flush may have removed a residual coating on 

the tube interior. Draining and refilling the system with base oil (no flush) resulted in a 

new heat transfer value of 1170 WIK-m2
, very close to the previous measurement. Again 

draining the base oil and refilling with nanofluid #3 yielded a heat transfer coefficient of 

1300 W/K-m2
, significantly higher than that of the base fluid. 

Adopting a somewhat more intense procedure for draining and flushing, we 

refilled the system with kerosene three times, measuring heat transfer coefficients of 738, 

721 and 714 W/K-m2
, consistent with our "baseline" value of 755 and indicating a 

"clean" system. Refilling twice with nanofluid#3 yielded 1268 and 1240 W/K-m2
, which 

is a little lower than the initial nanofluid measurement but still significantly higher than 

that of the base fluid. 

From all the results obtained during this development period, some of the 

conclusions that can be drawn seem to agree well with what has been reported in literature. 

As shown in Figures 4.1.1 - 4.1.6, there is always a decrease in the heat transfer 

coefficient as well as a decrease in the enhancement of the heat transfer coefficient as the 

temperature is increased. This could potentially be an important issue in transportation 

applications since the working temperature of motor oil is typically more than 100°C. The 

possibility of the decrease in heat transfer coefficient as the fluid ages or as a coating is 

built up has not been reported previously but may have significant implications for 
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commercial uses. These results provide a solid foundation for our continued study of 

nanofluids, but with many questions remaining unanswered. There was a need to more 

fully investigate the fundamental heat transfer properties of nanofluids. 

2. Specific Heat and Viscosity 

Thermal conductivity and heat transfer performance have always been the main 

research focus of nanofluids. The influence of nanoparticles specific heat cp seems too 

small to be considered due to the low particle concentration [24, 45]. However, in most 

cases, it has been supposed to be strongly dependent on the volume concentration of 

nanoparticles [17, 70-74]. In this study, specific heat capacity of nanofluids cp was 

determined thorough the equation: 

heat flow (wjg) 
C =--~----~~ 

P heat rate (Oejs) 
(12) 

where heat flows of all fluids were measured by DSe at a temperature range of 300 e to 

loooe with an increment of 2°C. Heat rate represents the speed of temperature increase 

as a function of time. 

Results for specific heat tests are presented in Figure 4.2.1 - 4.2.3 where all three 

types of nanofluids showed similar trend. Specific heat increased linearly with increasing 

temperature from 400 e to lOOoe. If we compare specific heats for nanofluids with 

different concentrations at same temperature, we can also conclude that the specific heat 

of a nanofluid decreases with increasing particle concentration. This is in good agreement 

with Zhou and colleagues work [75] when specific heat of Ab03/water nanofluids were 

measured. 
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In the study of viscosity, an important concept used to distinguish between 

different fluids is whether the apparent viscosity of the fluid is shear-rate dependent. In 

other words, is the fluid Newtonian or non-Newtonian? These two types of fluids have 

completely different rheological behaviors. The viscosity is independent of shear rate in 

the case of a Newtonian fluid, whereas for non-Newtonian fluid, the viscosity is a 

function of shear rate. In the field of nanofluids, some have been observed to exhibit 

Newtonian behaviors [17, 18, 24, 76] while others have been determined to be 

non-Newtonian [21,49,77,78]. 

The viscosity of PAO oil (base fluid) as a function of shear rate at a temperature 

range of 30°C to 90°C is shown in Figure 4.3.1. It can be seen that the viscosity of PAO 

oil is independent of the shear rate over the entire temperature range, which indicates a 

Newtonian behavior. While many studies use water or ethylene glycol based nanofluids, 

there are relatively few studies using oil-based nanofluids. One study by Zhou and 

colleagues [79] found that the viscosity in the nanofluids where alumina nanospheres were 

suspended into PAO lubricant showed very little shear rate dependence at most volume 

fractions and only a very weak shear rate dependence at the highest nanoparticle volume 

fraction of 3.0%. The results from this study were found to be in close agreement for 

PAO oil based nanofluids. 

Viscosities at various temperatures for three SIzes of nanofluids with three 

different sizes of nanoparticles in the same particle loading of 2.0wt% were shown in 

Figure 4.3.2 - 4.3.4. Newtonian fluid behavior were observed for the Cu25-4 nanofluid as 

viscosity remained constant with very little fluctuation as shear rate was increased. 

Similar behaviors were found on the Cu40 and Cu60 nanofluids. From an engineering 

65 



point of view, these nanofluids with low particle loading can be approximated as 

Newtonian fluids. Since PAO oil was used, and oil viscosity is dependent on temperature, 

nanofluids with different weight fractions showed strong temperature dependence on 

their viscosity. As temperature is increased, the viscosity of nanofluid decreases 

significantly. 

3. Effect of Reynolds number on Heat Transfer Enhancement 

The experiments of Cu nanofluids were conducted over a wide range of Reynolds 

numbers (95 < Re < 4700). All measurements for base and nanofluids show an increasing 

heat transfer coefficient as the average flow velocity Q and Reynolds number Re 

increases. Data for the heat transfer coefficient in the turbulent flow regime is limited but 

enhancements were observed. From Figure 4.4.1.5, it is clearly shown that there is close 

to a 10% enhancement for Cu25-4 in the turbulent as well as in the laminar flow regime. 

Cu40-4 nanofluid (Figure 4.4.2.5) achieved a 9.9% increase in the heat transfer 

coefficient at Reynolds number of 4500 while Cu60-4 (Figure 4.4.3.5) reached a 4.8% 

enhancement at Reynolds number of 4700. While promising, the data in turbulent flow 

are still insufficient to determine any specific trends for enhancement of the heat transfer 

coefficient as a function of particle concentration. Heat transfer enhancement in laminar 

and transition flow regimes will be more fully discussed in the following sections. 

4. Effect of Fluid Temperature on Heat Transfer Enhancement 

The initial fluid temperature was controlled by the water bath in the heat transfer 

measurement system. Three temperatures (40°C, 65°C, and 90°C) were used during the 
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measurement of the heat transfer coefficient. Due to the heat loss in the copper tube, the 

inlet temperature is slightly lower than the preset temperature of the water bath but will 

not affect the accuracy of the measurement. 

From Figure 4.4.1.1 - 4.4.1.3, the heat transfer coefficient decreases as the fluid 

temperature increases at the same flow rate for both the base and Cu25 nanofluids. A 

similar decrease is found for Cu40 and Cu60 nanofluids when comparing Figures 4.4.2.1 

- 4.4.2.3 or Figures 4.4.3.1 - 4.4.3.3. This is in good agreement with our conclusions 

from the preliminary results where the heat transfer coefficient is significantly lower at 
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Fig. 5.4.1 Effect of fluid temperature on enhancement of heat transfer coefficient 
for Cu25-4 nanofluids. 

The enhancement of heat transfer coefficient is reflected in the ratio of the heat 

transfer coefficient of the nanofluid ho to the base fluid h. Figure 5.4.1 shows that, at 

40°C, Cu25-4 has a typical increase in heat transfer coefficient of 15.1 % over the base 

fluid. However, at 65°C, the heat transfer coefficient enhancements average 14.4%. At 
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90°C, the average enhancement is only lO.3%. Similar to what was concluded in 

preliminary results, the enhancement of heat transfer coefficient decreases with 

increasing fluid temperature. In transportation applications, this could be an important 

issue because of the high working temperature of the motor oil in a car engine. 

Furthermore, there's a clear downward trend of enhancement ratio with respect to 

Reynolds number as the fluid reaches the transition flow regime at fluid temperature at 

65°C. However, the trend is close to a horizontal line throughout the laminar and 

turbulent flow regime at fluid temperature of 90°C. 

There are several mechanisms that lead to smaller improvements in heat transfer 

coefficient between the nanofluids and the base fluids at higher temperatures. A possible 

explanation is the depletion of particles in the near-wall fluid phase [801, which leads to 

the development of a lower thermal conductivity layer at the wall. Another possible 

explanation is the alignment of nanoparticles in the laminar flow regime. 

At the lower temperature of 65°C, the viscosity of the nanofluid is higher which 

means there is less Brownian motion and collisions of the nanoparticles. The lateral 

movement of nanoparticles (perpendicular to the direction of the flow) is less intense 

compared to higher temperature of 90°C where the Brownian motion is more intense. 

Based on the results shown in Figure 5.4.1, Brownian motion seems to have a negative 

effect on the enhancement of heat transfer coefficient, indicating that the main 

contribution to the enhancement of the heat transfer coefficient is the contact between the 

nanoparticles and the base fluid rather than the collision between the nanoparticles. As 

the Reynolds number reaches the transition flow regime, the enhancement for Cu25-4 

nanofluid at 65°C decreases to around lO% which is close to the enhancement at 90°C. 
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This could be due to the fact that the main reason for the enhancement of heat transfer 

coefficient in turbulent flow is the convective heat transfer of the fluid. At higher 

Reynolds number, the effect of the nanoparticies becomes smaller. That also explains the 

steady trend of enhancement ratio at a fluid temperature of 90°C in transition and 

turbulent flow regime as Brownian motion would be more prevalent at the higher 

temperatures and lower viscosities. 

5. Effect of Particle Size of N anofluids on Heat Transfer Enhancement 
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Fig 5.5.1 Enhancement ratio of heat transfer coefficient versus Reynolds number of 3 
sizes of Cu nanofluids with particie loading of 1.Owt% with an inlet fluid temperature of 

65°C. 

The study of effect of nanoparticie size in heat transfer enhancement is limited 

since most studies focus on using a single size of nanoparticie at different concentrations. 

This effect is studied by plotting the enhancement ratio of the heat transfer coefficient 

under same conditions versus Reynolds number. Results for 1.0wt% nanofluids at an inlet 
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fluid temperature of 65°C are shown in Fig 5.5.1. The enhancement of the heat transfer 

coefficient for Cu25-2 averages about 11.4%. For Cu40-2 nanofluids, the enhancement is 

10.5%. Only a 2.1 % enhancement is found for Cu60-2 nanofluids at 65°C. 

To find a possible explanation for this decrease in enhancement as the particle 

size increases, we start by calculating the decrease in the total number of particles in the 

fluid for each of the different sizes. For each weight fraction, a consistent mass of Cu 

nanoparticles is added to the base fluid. Since the density of copper stays the same, the 

total volume, V, added is the same for three nanoparticles. For sphere nanoparticles, the 

total number of particles of each size can be calculated as: 

v 
# of particles = -

±rrr3 
3 

(13) 

Using the average diameter of the sphere Cu nanoparticles of 25, 50 and 70nm, the ratio 

of total number of particles in each fluid is approximately 22.0 : 2.74 : 1 based on the 

calculation of through Eq. (13). 

Another possible explanation of this phenomenon is the decrease of total surface 

area of nanoparticles. Again, we assumed the same amount of Cu nanoparticles added 

which means that the total volume, V added is the same for three nanoparticles. Therefore, 

the total surface area of each type of nanoparticles can be calculated through the 

following equation: 

V 2 3V 
Atotal = -4 - • 4rrr =-

-rrr3 r 
(14) 

3 

Based on this equation, the ratio of total particle surface area for these three 

different sizes of nanoparticle is approximately 4 : 2 : 1.43. Given the small decrease in 

the magnitude of the enhancement ratio, the change in total surface area ratio is more 
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believable explanation as compared to the high change in the ratio of the number of 

particles. The decrease of total surface area of nanoparticles could weaken the interaction 

between the nanoparticles and base fluid molecules therefore reduce heat transfer 

performance of the nanofluid. 

As the weight fraction is increased to 2.0% at 65°C, the trend of decreasing heat 

transfer enhancement is clearer and, more importantly higher enhancement was observed 

as shown in Figure 5.5.2, especially for Cu25-4 nanofluid. A 21 % of enhancement of heat 

transfer coefficient was achieved for Cu25-4 nanofluids at lowest Reynolds number of 

398. An enhancement of only 16% was found for Cu40-4 and less than 10% for Cu60-4 

at the same Re range. 
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Fig 5.5.2 Enhancement ratio of heat transfer coefficient versus Reynolds number of 3 
sizes of Cu nanofluids with particle loading of 2.0wt% with an inlet fluid temperature of 

65°C. 

Similar trend can be found for fluid temperature at 90°C. Comparing Figure 

4.4.1.4, 4.4.2.4, and 4.4.3.4, it can be seen that Cu25-3 showed an average enhancement 
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of 12.7%, 6.3% for Cu40-4 and only 3.3% for Cu60-3. When the particle loading was 

increased to 2.0wt%, there was 10.4% enhancement for Cu25-4, 9.2% enhancement for 

Cu40-4 and only 5.2% enhancement for Cu60-4 (Figure 4.4.1.5, 4.4.2.5 and 4.4.3.5). 

All the data shows that nanoparticle size does have a significant impact on the 

enhancement of the heat transfer coefficient. The smallest particle size of 25nm showed 

the best heat transfer performance. This could be due to the increased surface area of 

nanoparticles that intensified the random movement and collision between nanoparticles 

and base fluid molecules. Interestingly, the enhancement of heat transfer coefficient 

seems to decrease as Reynolds number is increased over the laminar flow regime. The 

maximum enhancement is always at the lowest Reynolds number and a clear downward 

trend can be seen from Figure 5.5.1, which has never been reported by others to the best 

knowledge of the author. 

6. Effect of Nanoparticie Loading of N anofluids on Heat Transfer Enhancement 
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Fig 5.6.1 Enhancement ratio of heat transfer coefficient versus Reynolds number of Cu25 
nanofluids with different particle loadings at inlet fluid temperature of 65°C. 
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A summary of results for the effect of nanoparticle loadings at 65°C are plotted in 

Figure 5.6.1. Enhancement of heat transfer coefficient is observed for all 4 concentrations 

of Cu25 nanofluids except Cu25-1 at a Reynolds number of 2000. A maximum 

enhancement of 25% is found for Cu25-3 at lowest Reynolds number around 400. 

Cu25-1 shows the least enhancement through the entire Reynolds number range although 

it reaches a maximum enhancement of 16% at a Reynolds number of 185. This is most 

likely due to the very small particle loading (0.25wt%) of Cu nanoparticles. The other 3 

types of nanofluids show a very similar enhancement performance below a Reynolds 

number of 1500. It should be noted that only Cu25-4 is able to maintain a 10% 

enhancement above a Reynolds number of 1500. Each of the other particle loadings show 

a marked decrease in enhancement above this value. 
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Fig 5.6.2 Enhancement ratio of heat transfer coefficient versus Reynolds number ofCu25 
nanofluids with different particle loadings at inlet fluid temperature of 90°C. 
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As fluid temperature was increased to 90°C, test fluids were able to cover the 

entire transition flow regime and part of turbulent flow regime (Re>4000) due to the 

significant decrease in fluid viscosity. Cu25-1 showed least heat transfer enhancement 

again with average increase around only 5% while similar average enhancement of 11 % 

were observed for other three nanofluids. This is in marked contrast to the results at 65°C 

and again suggests that viscosity may playa significant role in these systems. A possible 

explanation to this phenomenon is that as the concentration of nanoparticles increases, 

they may aggregate and cause the size to increase and leads to a decrease in the heat 

transfer performance. In other words, the effect of surface area increase by the increasing 

amount of nanoparticle is offset by the effect of particle agglomeration. An example of 

aggregation after 4 weeks for 60-80nm nanofluids is shown in Figure 5.6.3. 

Fig 5.6.3 Example of nanoparticles aggregation after 4 weeks of settling. 

7. Theoretical Modeling of Heat Transfer Coefficient 

The modeling of heat transfer coefficient is starting to receive more attention from 

researchers because it is a better indicator of heat transfer performance than thermal 

conductivity. However, theoretical modeling of the heat transfer coefficient is limited due 

to the fact that nanofluids are multi-component systems with complex morphology. Most 
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correlations were established based on several traditional correlations for homogenous 

liquids such as Eqs. (9) - (12). Unfortunately, they are only valid for certain nanofluids in 

small parameter ranges. 

7.1 Estimation of thermal conductivity 

Most correlations for heat transfer coefficient are based on finding the Nusselt 

number for the system in question. In order to obtain values for the heat transfer 

coefficients, the thermal conductivities of both the base and nanofluids are needed. The 

best way to measure thermal conductivity is through the transient hot-wire method as 

discussed earlier. In lieu of direct measurement, the thermal conductivities of the test 

fluids are estimated using Eq. (4). 

(4) 

A summary of results are shown in Table 6. Due to the low volume fraction of 

nanoparticies, only small enhancements in the thermal conductivities were found. The 

standard thermal conductivity ofthe PAO oil at 25°C is obtained from Amsoil. 

Table 6 Thermal Conductivity of Nanofluids 

Weight fraction Volume fraction Thermal conductivity k (W/mK) 

Base fluid 0 0 kbF 0.1395 

Cu-l 0.25 wt% 0.02386 vol% k nf= 1.001 kbf = 0.1396 

Cu-2 1.0 wt% 0.09546 vol% knf= 1.0038 kbf= 0.1400 

Cu-3 1.5 wt% 0.1432 vol% knf= 1.0057 kbf = 0.1403 

Cu-4 2.0 wt% 0.1910 vol% knf= 1.0076 kbf = 0.1406 
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7.2 Theoretical models 

There are several models that could be used to predict the heat transfer coefficient 

under different conditions. Based on Dittus - Boetler's model, Das et al. [60] introduced a 

model in 2003 which is defined as follows: 

Nu = cRebPr°.4 (17) 

where c and m are particle volume concentration dependent parameters. However, this 

model does not directly consider the effect of nanoparticle concentration and size which, 

according to the results of this study, will impact the heat transfer coefficient significantly. 

Oliver's correlation and Eubank and Proctor's correlation were also discussed earlier. 

These two models address the natural convection that will occur in a laminar flow. 

However, it was found that both correlations predicted heat transfer coefficients that are 

much lower than the experimental data in this study. 

7.3 Xuan et al.'s model 

Li and Xuan [81] studied the convective heat transfer and flow characteristics of 

Cu/water nanofluids. Spherical Cu nanoparticles with diameters less than 100mn were 

dispersed in deionized water with the addition of a fatty acid salt to prevent aggregation. 

They developed a new correlation for heat transfer coefficient of nanofluids in a 

horizontal tube as: 

Nu = 0.4328(1.0 + 11.285cpo.754 Pe~·218)Reo.333 PrO.4 (18) 

Nu = 0.0059(1.0 + 7.628cpo.6886Pe~·001)Reo.9238PrO.4 (19) 

in which Eq. (18) is for laminar flow and Eq. (19) is for turbulent flow. Ped is the particle 

Peclet number that is defined as: 
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(20) 

where Urn is the mean velocity, dp is the average diameter of the nanoparticle. The thermal 

diffusivity of the nanofluid ant is defined as: 

(21) 

When compared with more conventional approaches used to find the heat transfer 

coefficient, several parameters including Peclet number Pe and volume fraction cP are 

taken into consideration in the correlations above. The Peclet number represents the 

thermal dispersion attributed to the nanoparticles. All exponential factors and prefactors 

are empirical parameters. The differences between Eq. (18) and Eq. (19) are exponents of 

Reynolds and Peclet numbers, the particle volume fraction and the prefactors. In laminar 

flow, suspended nanoparticles contribute more to overall heat transfer than in turbulent 

flow. As the fluid reaches turbulent flow region, the exponents in the bracket in Eq. (19) 

decreases and Reynolds number exponent increases. This indicates that the convective 

flow of the test fluid contributes more than the movement of nanoparticles to overall heat 

transfer. These trends are qualitatively similar to what was experimentally measured 

during this study. 

This correlation is used in this study because it was established using spherical eu 

nanoparticles, which is the same material as this project. Although we used PAO 

formulated oil while they used water as a base fluid, and oil is not as good as a heat 

transfer fluid compared with water, we may still modify Xuan et al. 's correlation to 

predict heat transfer coefficient. This is a reasonable conclusion since the PAO based 

nanofluid is still a Newtonian fluid in spite of its higher viscosity and poor thermal 

conductivity leading to similar behavior. In laminar flow regime, the exponent and 
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prefactor for Reynolds number can be replaced with a and b in Eq. (18), which can now 

be re-written as: 

Nu = aReb (1.0 + 11.285cP0.754 Pe~·218)PrO.4 (22) 

The data obtained in this study can be fitted using Eq. (22). Results for values of a 

and b are listed in Table 7. It should be noted that for the same type of nanofluid, the 

coefficients a and b will not change with concentration because the volume fraction term 

cP is included as a separate factor in the above equation. For the base fluid, the 

concentration of nanoparticles is 0, so the second term in the bracket of Eq. (22) is o. The 

Reynolds number exponent b of all nanofluids is fairly close to that of the base fluid at 

the same fluid temperature. As the fluid temperature is increased, the value of b decreases. 

This effect is more apparent for nanofluids than the base fluid. 

Table 7 Results for coefficients a and h of Eq. (22) 

Fluid teml2erature Fluid tYl2e a b 
40°C base 1.4715 0.342 

Cu25 1.4715 0.349 
Cu40 1.4715 0.349 
Cu60 1.4715 0.340 

65°C base 1.4282 0.320 
Cu25 1.4715 0.320 
Cu40 1.4932 0.315 
Cu60 1.4282 0.311 

90°C base 1.2335 0.323 
Cu25 1.3850 0.313 
Cu40 1.3417 0.313 
Cu60 1.3417 0.304 
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Fig 5.7.3.1 Comparison between experimental data and calculated values for base fluid at 
40°C, 65°C, and 90°C. 

Figure 5.7.3.1 gives the calculated and experimental results for the base fluid at 

each experimental temperature. Comparison shows that the calculated results from Eg. 

(20) are in good agreement with the experimental data at the lower temperatures and 

Reynolds numbers. The only divergence from the correlation seems to appear at fluid 

temperature for 90°C for the two Nu values at Reynolds number greater than 2500. This 

correlation underpredicted heat transfer coefficient in turbulent flow. It could be due to 

the relatively high shear rate that can disperse clustered nanoparticles especially in 

turbulent flow. However, the dispersing effect is relatively small in laminar flow system. 

Another possible explanation is that the nanoparticles tend to align in the direction of the 

flow in laminar flow regime. The random movement of the nanoparticles becomes more 

intense as well as the thermal dispersion in turbulent flow which will accelerate the 

energy exchange process in the fluid. This order to disorder transition could lead to the 

79 



under prediction of heat transfer coefficient in turbulent flow. Therefore, the original 

equation is only valid to predict heat transfer coefficient in laminar flow. As the fluid 

reaches transition flow regime, the correlation is no longer applicable. 

The comparison between experimental data and calculated values for Cu25 

nanofluid are plotted in Figures 5.7.3.2 - 5.7.3.5. Results for Cu25 nanofluid with 4 

concentrations are presented using same coefficient values for a and b. Calculated results 

show good agreement with experimental data. Again, at Reynolds number greater than 

2500, experimental values show more than 8% discrepancy with calculated data. More 

experimental data is needed to establish correlations for turbulent flow regime. Complete 

results are summarized in Appendix D. 
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Fig 5.7.3.2 Comparison between experimental data and calculated values for Cu25-1 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig 5.7.3.3 Comparison between experimental data and calculated values for Cu25-2 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig S.7.3.S Comparison between experimental data and calculated values for Cu2S-4 
nanofluid at 40°C, 6SoC, and 90°C. 

7.4 Yang et al. 's model 

In 200S, Yang and colleagues [24] developed a model to predict the heat transfer 

coefficient for their graphite-in-transmission fluid and graphite-in-synthetic oil nanofluids 

in laminar flow. Their equation is based on the Seider - Tate equation [65] and is defined 

as: 

(23) 

where c and mare nanofluid and temperature dependent empirical parameters. 

Experimental data sets were correlated using Eq. (23) and results for values of c 

and m are listed in Table 8. For fluid temperature at 90°C, the average temperature at the 

tube wall was over 9S°C. Since there is no dynamic viscosity data for all test fluids at 

temperatures over 90°C, viscosity values at 100°C were assumed based on viscosity 
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decrease profile as a function of temperature. 

Table 8 Results for coefficients c and m of Eq. (23) 

Fluid temperature Fluid type c m 
40°C base 12.741 0.347 

Cu25-1 12.834 0.351 
Cu25-2 12.834 0.357 
Cu25-3 12.834 0.357 
Cu25-4 13.020 0.355 

65°C base 12.927 0.310 
Cu25-1 13.392 0.310 
Cu25-2 13.578 0.315 
Cu25-3 13.206 0.315 
Cu25-4 13.336 0.315 

90°C base 12.462 0.291 
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Fig 5.7.4.1 Comparison between experimental data and calculated values for base fluid at 
40°C, 65°C, and 90°C. 
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Fig 5.7.4.2 Comparison between experimental data and calculated values for Cu25-1 
nanofluid at 40°C, 65°C, and 90°C. 

Results for base fluid and Cu25-1 nanofluid are presented in Figures 5.7.4.1 and 

5.7.4.2. By applying proper coefficients, our experimental data fit Yang et al. 's model 

fairly well except for lowest Reynolds number at 40°C. At a Reynolds number of 72, the 

experimental Nu value is 30% lower than calculated value for base fluid. For Cu25-1 

nanofluid, the Nu value is off by only 10% is found at lowest Reynolds number of 94. 

Near wall particle depletion is a possible reason for this phenomenon. However, at fluid 

temperature of 90°C, this model greatly underpredicts the heat transfer coefficients in the 

transition and turbulent flow regime. Complete results for Cu25 nanofluids are included 

in Appendix E. 

In summary, we examined several models that could be used to predict heat 

transfer coefficient of base and nanofluids in our system. Two correlations introduced by 
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Xuan et al. and Yang et al. seem to fit our data fairly well in laminar flow. Both models 

discussed above use an empirical prefactor and Reynolds number exponent to predict the 

heat transfer coefficient. Yang et al.'s correlation considers the radial variation of fluid 

properties, the effect of natural convection and the dimension of heat exchange section. 

But a drawback of their correlation is the lack of consideration of nanoparticle 

concentration and size, which are included in Xuan et al.'s model. It is concluded that 

both nanoparticle concentration and size will affect the enhancement of heat transfer 

coefficient significantly. Moreover, calculation of the natural convection effect term 

(J1b)O.14 in Yang et al.'s correlation with any precision will require knowledge of the 
J1w 

radial temperature profile for test fluid within the heat exchange section which would be 

difficult to measure. A linear increase of temperature within the heat exchange section 

was assumed in this study to calculate dynamic viscosity which may potentially increase 

the range of error of the results. However, both correlations underpredict the heat transfer 

coefficient of base and nanofluids in turbulent flow regime. More data is needed in 

turbulent flow to develop any correlations. 

85 



1. Conclusions 

CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation has demonstrated the development of study on the enhancement 

of thermal conductivity and heat transfer coefficient using nanofluids. Many research 

groups determined significant enhancement for thermal conductivity by dispersing 

different types of nanoparticles into water, ethylene glycol or oil. However, there are 

limited studies on the enhancement of heat transfer coefficient of nanofluids especially 

oil-based nanofluids. 

Three different sizes (25nm, 40-60nm, 60-80nm) of spherical Cu nanoparticles 

were used to dispersed into PAO (Poly Alpha Olefin) formulated motor oil using a sonic 

dismembrator. By adding dodecanethiol as a surfactant, stable nanofluid suspensions 

were made. Different sizes and concentrations of nanoparticles were added to create 

nanofluids. Viscosities of base and nanofluids were measured using a cone-and-plate 

rheometer. Results showed that all base and nanofluids appeared to be Newtonian fluids 

as the shear stress was increased linearly with the increasing shear rate. Specific heats 

were measured using a Differential Scanning Calorimeter (DSC). As the particle 

concentration of the nanofluid was increased, the specific heat value was decreased. 

By using a lab-built heat transfer test rig, the temperature rise was measured 
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within the heat exchange section so that heat transfer coefficient can be calculated. 

Results showed that heat transfer coefficients of base and nanofluids increase as the 

average flow velocity Q and Reynolds number Re increases. As the fluid temperature is 

elevated, the heat transfer coefficient decreases. As for heat transfer enhancement, all 

nanofluids exhibited enhancement of heat transfer coefficient over the base fluid. 

Nanofluids with the smallest particle size (25nm) showed the best enhancement. This 

could be due to the increased total surface area as the size of nanoparticle is decreased. 

The effect of particle loading on heat transfer enhancement is minimal in this tested range. 

A possible explanation is that those nanoparticles tend to agglomerate as the particle 

loading increases, therefore decrease the total surface area. The decrease of total surface 

area offset the effect of increased loading of nanoparticles. 

Finally, a theoretical model to predict heat the transfer coefficient of nanofluids 

is modified to use in this study based on previously published correlations; the results of 

which are in excellent agreement with the experimental data. 

2. Future Directions 

Several important directions of further research can be identified. 

1. Other metal nanoparticles such as Al or Au can be used to make nanofluids to 

determine if particle type will have an impact on the heat transfer coefficient. 

2. Heat transfer performance of CulPAO oil nanofluids in turbulent flow can be 

investigated in future to confirm the downtrend of enhancement ratio we 

observed in laminar flow. 

3. Transient hot-wire method can be used to determine thermal conductivity values 
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for base and nanofluids. 

4. To investigate the effect of alignment of nanoparticies in nanofluids, a magnetic 

field can be installed in the heat exchange section to ensure the nanoparticies 

move only in the direction of the flow. 
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APPENDIX A 

ENHANCEMENT OF THERMAL CONDUCTIVITY 

Author/Year Nanofluid Particle size Concentration Enhancement 

(nm) (vol%) ratio 

Masuda et Ah03/water 
a 1.1 I 993[43] (31.85°C) 13 1.30 - 4.30 1.109 - 1.324 

(46.85°C) 13 1.30 - 4.30 1.100 - 1.296 
(66.85°C) 13 1.30 - 4.30 1.092 - 1.262 
Si02/water 
(31.85°C) 12 1.10 - 2.30 1.010 - 1.011 
(46.85°C) 12 1.10 - 2.30 1.009 - 1.010 
(66.85°C) 12 1.10 - 2.30 1.005 - 1.007 
Ti02/water 
(31.85°C) 27 3.25 - 4.30 1.080 - 1.105 
(46.85°C) 27 3.25 -4.30 1.084 - 1.108 
(66.85°C) 27 3.15-4.30 1.075 - 1.099 

Lee et al.lI999[40] Ah0 3/water 38.4 1.00 - 4.30 1.03 - 1.10 
CuO/water 23.6 1.00 - 3.41 1.03 - 1.12 
Ah03/ethy lene 38.4 1.00 - 5.00 1.03 - 1.18 
glycol 
CUO/ethylene 23.6 1.00 - 4.00 1.05 - 1.23 
glycol 

Wang et Ah03/water 28 0.19 - 1.59 1.01 - 1.10 
al.lI999[41] CuO/water 23 

Ah0 3/ethylene 28 5.00 - 8.00 1.25 - 1.41 
glycol 
CuO/ethylene 23 6.20 - 14.80 1.24 - 1.54 
glycol 
Ah03/engine oil 28 2.25 -7.40 1.05 - 1.30 
Ah03/pump oil 28 5.00 -7.10 1.13 - 1.20 

Xuan et al.I2000[S] Culwater 100 2.50 -7.50 1.22 - 1.75 
Cultransformer 100 2.50 -7.50 1.12-1.43 
oil 

Choi et a1.l200 1 [82] MWCNT/ 25x50000 0.04 - 1.02 1.02 - 2.57 
PAO oil 
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Xie et a1.l200i26
] SiC/water 26 sphere 0.78-4.18 1.03-1.17 

600 cylinder 1.00 - 4.00 1.06 - 1.24 
SiC/ethylene 26 sphere 0.89 - 3.50 1.04 - 1.13 
glycol 600 cylinder 1.00 - 4.00 1.06 - 1.23 

Xie et a1.l200i48
] Ah03/water 60.4 5.00 1.23 

Ah0 3ethylene 60.4 5.00 1.29 
glycol 
Al203/pump oil 60.4 5.00 1.38 

Das et a1.l2003 l44
] CuO/water 

(21°C) 28.6 1.00 - 4.00 1.07-1.14 
(36°C) 28.6 1.00 - 4.00 1.22 - 1.26 
(51 0c) 28.6 1.00 - 4.00 1.29 - 1.36 

Patel et a1.l2003 l83] C i trate-red uced 
Ag/water (30°C) 60-70 0.001 1.030 
(60°C) 60-70 0.001 1.04 
Citrate-reduced 
Au/water (30°C) 10-20 0.00013 1.03 

10-20 0.00026 1.05 
(60°C) 10-20 0.00013 1.05 

10-20 0.00026 1.08 
Thi 0 late-coverd 
Au/toluene 
(30°C) 3-4 0.005 1.03 

3-4 0.008 1.06 
3-4 0.011 1.06 

(60°C) 3-4 0.005 1.05 
3-4 0.008 1.07 
3-4 0.011 1.09 

Xie et a1.l2003 l84] MWCNT /water 15x30000 0.40 - 1.00 1.03 - 1.07 
MWCNT/ 
ethylene glycol 15x30000 0.23 - 1.00 1.02 - 1.13 

Wen et al.l2004l85] MWCNT /water 20-60 0.04 - 0.84 1.04 - 1.24 
(20°C) 
MWCNT /water 20-60 0.04 - 0.84 1.05 - 1.31 
(45°C) 

Assael et DWCNT/water 0.75 5 1.03 
al.12005[12] 1.00 5 1.08 

MWCNT/water 0.60 BOx> 10000 1.34 
0.60 130x>10000 1.28 

Chon et al.12005(13] Ah03/water 11 1.00 1.09 
(21°C) 47 1.00 1.03 

150 1.00 1.004 
47 4.00 1.08 

Ah03/water 11 1.00 1.15 
(71°C) 47 1.00 1.10 

150 1.00 1.09 
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47 4.00 1.29 
Hong et al.I2005[14] Fe/ethylene 10 0.20 - 0.55 1.13-1.18 

glycol 
Liu et al.I2005[15] MWCNT/ 20 - 50 0.20 - 1.00 1.02 - 1.12 

ethylene glycol 

MWCNT/ 20 - 50 1.00 - 2.00 1.09 - 1.30 
engine oil 

Marquis et SWCNT/ 10-50x 0.25 - 1.00 1.10- 1.46 
al.I2005[16] diesel oil 0.3-10 flm 

20-300x 0.25 -1.00 1.30 - 2.17 
1-100flm 

MWCNT/PAO 20-300x 1.00 2.83 
oil l-100flm 

Murshed et Ti02(+CTAB)/ 15 0.50 - 5.00 1.05 - 1.30 
al.I2005[33] water 10 x 40 0.50 - 5.00 1.08 - 1.33 
Wen et al.I2005[45] Ah0 3/water 0.31 - 0.72 1.02 - 1.06 
Ding et aI.l2006[49] MWCNT/ 0.05 - 0.49 1.00-1.10 

water (20°C) 
MWCNT/ 0.05 - 0.49 1.07 - 1.27 
water (25°C) 
MWCNT/ 0.05 - 0.49 1.18 - 1. 79 
water (30°C) 

Hwang et CuO/water 1.00 1.05 
aI.l2006[86] Si02/water 1.00 1.03 

MWCNT /water 1.00 1.07 
CuO/ethylene 1.00 1.09 
glycol 
MWCNT /miner 0.50 1.09 
al oil 

Lee et a1.l2006l87] CuO/water 25 0.03 - 0.30 1.04 - 1.12 
(pH=3) 
CuO/water 25 0.03 - 0.30 1.02 - 1.07 
(pH=6) 

Liu et aI.l2006[88] Cu/water 0.05 1.04 
50 - 100 0.10 1.24 
75 - 100 0.10 1.24 
100 - 200 0.05 1.12 
100 - 300 0.10 1.11 
130 - 200 0.05 1.09 
130 - 300 0.20 1.10 
250 0.20 1.04 
200 x 500 0.20 1.13 
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Li et aI.l2006[46] Ah03/water 36 2.00 - 10.00 1.08 - 1.11 
(27.5°C) 
Ah03/water 36 2.00 - 10.00 1.15 - 1.22 
(32.5°C) 
Ah03/water 36 2.00 - 10.00 1.18 -1.29 
(34.7°C) 
CuO/water 29 2.00 - 6.00 1.35 - 1.36 
(28.9°C) 
CuO/water 29 2.00 - 6.00 1.35 - 1.50 
(31.3°C) 
CuO/water 29 2.00- 6.00 1.38 - 1.51 
(33.4°C) 

Yang et aI.l2006[51] MWCNT/PAO 0.04 - 0.34 1.06 - 3.00 
oil 

Shaikh et CNTIPAOoil 10 -15nm 0.1 -1.0 1.34 - 2.61 
aI.l2007[27] 

Exfoliated 0.1 - 1.0 1.18 - 2.31 
graphite /PAO 
oil 

0.1-1.0 1.11 - 2.03 
Carbon 
nanofiber 
/PAO oil 

Choi et aI.l2008(55] Ah03 (sphere)/ 13 0.5 -4.0 1.05 - 1.21 
pure oil 

Ah0 3 2 x 20-200 0.5 1.04 
(fiber)/pure oil 

AIN/pure oil 50 0.5 1.08 
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APPENDIXB 

ENHANCEMENT OF HEAT TRANSFER COEFFCIENTS 

Author/Year Nanofluid Particle size Concentration Enhancement 

(nm) (vol%) ratio 

Pak and Cho Ah03/water l3 1.34 1.07 - 1.30 
/1998[17] l3 2.78 1.24 - 1.35 

Ti02/water 27 0.99 0.93 - 1.09 
27 2.04 0.98-l.l6 

Putra et a1.l2003[!8] Ah0 3/water 131.2 1.00 0.85 - 1.02 
(LID=0.5) 131.2 4.00 0.70 - 0.85 

Ah03/water 131.2 1.00 0.87 - 1.04 
(LlD=1.0) l31.2 1.00 0.63 - 0.82 

Xuan et a1.l2003[!9] Culwater <100 0.30 0.99 - 1.05 
<100 0.50 1.01 - 1.08 
<100 0.80 1.07 - 1.l3 
<100 1.00 1.13-1.15 
<100 1.20 1.14 - 1.21 
<100 1.50 1.23 - 1.27 
<100 2.00 1.25 - 1.35 

Faulkner et MWCNT /water 1.10 1.01 - 4.69 
al.l2004 [89] q"=O.l W/cm2 2.20 1.93 - 2.21 

4.40 1.20 - 1.71 
MWCNT/water 1.10 0.48 - l.99 
q"=0.5W/cm2 2.20 1.17 -1.63 

4.40 0.90 -l.19 
Wen et a1.l2004[!!j Ah03/water 42 0.60 1.04 - l.12 

(X/D=63) 42 l.00 l.09 - 1.22 
42 1.60 l.25 - 1.38 

Ah03/water 42 0.60 1.10- 1.20 
(X/D=116) 42 1.00 l.12 - 1.20 

42 l.60 1.26 - 1.35 
Zhou et a1.l2004[20j Culacetone 80-100 0.0-4.0g/1 HTC 
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Increases 
with addition 
ofCu 
nanoQarticies 

Wen et al.I2005[il5] Ti02/water (12H=3) 34 0.19 0.85 - 0.98 
Yang et al.l2005[2il] Graphite/ 1000-2000x2 0.77 0.97 - 1.02 

transmission Fluid 0-40 0.97 1.21 - 1.31 
(50°C) 
Graphite/ 1000-2000x2 0.77 0.97 - 1.03 
transmission Fluid 0-40 0.97 1.14 - 1.29 
(70°C) 
Graphite/mixture 1000-2000x2 0.75 0.99 - 1.05 
of two syn. oils 0-40 0.75 1.01 - 1.05 
(50°C) 
Graphite/mixture 1000-2000x2 0.75 1.05-1.15 
of two syn. oils 0-40 0.75 1.05 - 1.13 
(70°C) 

Wen et al.l2006[90] Ti02/water (pH=3) 34 0.35 0.77 - 0.95 
34 0.57 0.64 - 0.87 

Ding et al.l2006[49] MWCNT /water 0.048 1.63 - 1.93 
x/D=26.2 
MWCNT /water 0.048 1.96 - 2.27 
x/D=63.3 
MWCNT /water 0.048 1.63 - 2.28 
xlD=116. 
MWCNT /water 0.048 1.49 - 2.65 
xlD=147 
MWCNT /water 0.048 1.33 - 2.53 
x/D=174 

Heris et al.l2006l56] Ah03/water 20 0.20 1.04-1.10 
20 1.00 1.12-1.19 
20 2.00 1.13 - 1.31 
20 2.50 1.12 - 1.38 
20 3.00 1.08 - 1.41 

CuO.water 50-60 0.20 1.02 - 1.11 
50-60 1.00 1.06 - 1.20 
50-60 2.00 1.03 - 1.27 
50-60 2.50 1.02 - 1.36 
50-60 3.00 1.02 - 1.38 

He et a1.l2007[91] Ti02/water 20 0.24 0.99 - 1.03 
20 0.60 1.06 - 1.24 
20 1.10 1.16-1.22 

Nguyen et Ah03/water 47 1.0 1.10-1.15 
aI.l2007[92) 47 3.1 1.16-1.19 

47 6.8 1.37 - 1.41 
Choi et al.l2008[55] Ab03 (sphere)/ 13 0.5 1.01 - 1.03 
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pure oil 

Ah03 (fiber)/pure 2 x 20-200 0.5 1.14-1.17 
oil 

AIN/rure oil 50 0.5 1.24 - 1.29 
Williams et Zr02/water 46 0.9-3.6 Considerable 
al.l2008 [93] 60 0.2-0.9 enhancement 

observed 
Jwo et aU201 0[94] Ah03/water (30°C) 20 0.5 wt% 1.01 - 1.06 

20 1.0 wt<>10 1.13-1.18 
Ah03/water (40°C) 20 0.5 wt% 1.02 - 1.08 

20 1.0 wt% 1.12-1.18 
Lee et aU20 1 0[95] Ah03/mix of 35 0.01 1.14 

NHiH20 35 0.02 1.29 
35 0.04 1.21 
35 0.06 1.2 

CNT/mix of 25 x 10000 0.01 1.09 
NH31H2O 25 x 10000 0.02 1.18 

25 x 10000 0.04 1.17 
25 x 10000 0.06 1.15 
25 x 10000 0.08 1.15 
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APPENDIXC 

RESULTS OF HEAT TRANSFER MEASUREMENT 

1. 25nm Cu nanofluids (Cu25) 
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Fig C.l.t Heat transfer coefficient (h) as a function of flow rate at 40°C. 
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Fig C.l.2 Heat transfer coefficient (h) as a function of flow rate at 65°C. 
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Fig C.1.4 Enhancement ratio (h/ho) as a function of flow rate at 40°C. 
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Fig C.l. 5 Enhancement ratio (h/ho) as a function of flow rate at 65°C. 
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Fig C.l.6 Enhancement ratio (h/ho) as a function of flow rate at 90°C. 
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Fig c.l. 7 Enhancement ratio (h/ho) as a function of Reynolds number (Re) at 40°C. 
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Fig C.1.8 Enhancement ratio (h/ho) as a function of Reynolds number (Re) at 65°C. 
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Fig C.l. 9 Enhancement ratio (h/ho) as a function of Reynolds number (Re) at 90°C. 
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2. 40-60nm Cu nanofluids (Cu40) 
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Fig C.2.1 Heat transfer coefficient (h) as a function of flow rate at 40°C. 
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Fig C.2.2 Heat transfer coefficient (h) as a function of flow rate at 65°C. 
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Fig C.2.4 Enhancement ratio (h/ho) as a function of flow rate at 40°C. 
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Fig C.2.5 Enhancement ratio (h/ho) as a function of flow rate at 65°C. 
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Fig C.2.7 Enhancement ratio (hlho) as a function of Reynolds number (Re) at 40°C. 
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Fig C.2.8 Enhancement ratio (hlho) as a function of Reynolds number (Re) at 65°C. 

112 



1.600 

x Cu40-2 OCu40-3 6 Cu40-4 
1.500 

1.400 

1.300 
.:::.0 

--.:::. 
1.200 

0 X 6 X D.. 

1.100 x xO 
x X 

6 
06 0 D.. 

1.000 
0 

0 

0.900 

0 1000 2000 3000 4000 5000 

Re 
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3. 60-80nm Cu nanofluids (Cu60) 
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Fig C.3.8 Enhancement ratio (hlho) as a function of Reynolds number at 65°C. 

1.600 

x Cu60-1 0 Cu60-2 0 Cu60-3 6 Cu60-4 
1.500 

1.400 

1.300 
o 
~ 
.c 

1.200 

1.100 

0
6 

1.000 
x 

0.900 +------r----,-------,----,------, 

o 1000 2000 3000 4000 5000 

Re 
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APPENDIXD 

RESULTS BASED ON MODIFIED XUAN ET AL. 'S CORRELATION 
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Fig D.I Comparison between experimental data and calculated values for base fluid at 
40°C, 65°C, and 90°C. 
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Fig 0.3 Comparison between experimental data and calculated values for Cu25-2 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig D.4 Comparison between experimental data and calculated values for Cu25-3 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig D.5 Comparison between experimental data and calculated values for Cu25-4 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig 0.6 Comparison between experimental data and calculated values for Cu40-2 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig 0.7 Comparison between experimental data and calculated values for Cu40-3 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig D.8 Comparison between experimental data and calculated values for Cu40-4 
nanofluid at 40°C, 65°C, and 90°C. 

= Z 

180 

160 

140 

120 

100 

80 

5> 
~. 

<:1 

o· ,. 

,J"" :, ,~ 
. "'" 

60 o9x,' , 
40 

20 

o 1000 

o '" 
'" 

,)(' 

o 

--

x 

x 

---­x .... _-----

EXp. values: Calculated values: 

o Cu60-1@40C ......... Cu60-1@40C 

o Cu60-1@65C _. - Cu60-1@65C 

x Cu60-1@90C -----Cu60-1@90C 

2000 3000 4000 5000 

Re 

Fig D.9 Comparison between experimental data and calculated values for Cu60-1 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig D.I 0 Comparison between experimental data and calculated values for Cu60-2 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig D.lI Comparison between experimental data and calculated values for Cu60-3 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig 0.12 Comparison between experimental data and calculated values for Cu60-4 
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APPENDIXE 

RESULTS BASED ON MODIFIED YANG ET AL.'S CORRELATION 
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Fig E.1 Comparison between experimental data and calculated values for base fluid at 
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Fig E.2 Comparison between experimental data and calculated values for Cu25-1 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig E.3 Comparison between experimental data and calculated values for Cu25-2 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig EA Comparison between experimental data and calculated values for Cu25-3 
nanofluid at 40°C, 65°C, and 90°C. 
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Fig E.5 Comparison between experimental data and calculated values for Cu25-4 
nanofluid at 40°C, 65°C, and 90°C. 
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